xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 07a2f99c)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/disk.h>
39 #include <sys/endian.h>
40 #include <sys/libkern.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/nata.h>
44 #include <sys/spinlock2.h>
45 #include <sys/systm.h>
46 
47 #include <vm/pmap.h>
48 
49 #include <machine/md_var.h>
50 
51 #include <bus/pci/pcivar.h>
52 
53 #include "ata-all.h"
54 #include "ata-disk.h"
55 #include "ata-raid.h"
56 #include "ata-pci.h"
57 #include "ata_if.h"
58 
59 
60 /* device structure */
61 static	d_strategy_t	ata_raid_strategy;
62 static	d_dump_t	ata_raid_dump;
63 static struct dev_ops ar_ops = {
64 	{ "ar", 0, D_DISK },
65 	.d_open =	nullopen,
66 	.d_close =	nullclose,
67 	.d_read =	physread,
68 	.d_write =	physwrite,
69 	.d_strategy =	ata_raid_strategy,
70 	.d_dump =	ata_raid_dump,
71 };
72 
73 /* prototypes */
74 static void ata_raid_done(struct ata_request *request);
75 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
76 static int ata_raid_status(struct ata_ioc_raid_config *config);
77 static int ata_raid_create(struct ata_ioc_raid_config *config);
78 static int ata_raid_delete(int array);
79 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
80 static int ata_raid_rebuild(int array);
81 static int ata_raid_read_metadata(device_t subdisk);
82 static int ata_raid_write_metadata(struct ar_softc *rdp);
83 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
84 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
85 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
87 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
88 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
90 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
91 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
93 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
94 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
97 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
98 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
99 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
101 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
102 static int ata_raid_via_write_meta(struct ar_softc *rdp);
103 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
104 static int ata_raid_send_request(struct ata_request *request);
105 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
106 static char * ata_raid_format(struct ar_softc *rdp);
107 static char * ata_raid_type(struct ar_softc *rdp);
108 static char * ata_raid_flags(struct ar_softc *rdp);
109 
110 /* debugging only */
111 static void ata_raid_print_meta(struct ar_softc *meta);
112 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
113 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
114 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
115 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
116 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
117 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
118 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
119 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
120 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
121 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
122 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
123 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
124 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
125 
126 /* internal vars */
127 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
128 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
129 static devclass_t ata_raid_sub_devclass;
130 static int testing = 0;
131 
132 static void
133 ata_raid_attach(struct ar_softc *rdp, int writeback)
134 {
135     struct disk_info info;
136     cdev_t cdev;
137     char buffer[32];
138     int disk;
139 
140     spin_init(&rdp->lock);
141     ata_raid_config_changed(rdp, writeback);
142 
143     /* sanitize arrays total_size % (width * interleave) == 0 */
144     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
145 	rdp->type == AR_T_RAID5) {
146 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
147 			     (rdp->interleave * rdp->width);
148 	ksprintf(buffer, " (stripe %d KB)",
149 		(rdp->interleave * DEV_BSIZE) / 1024);
150     }
151     else
152 	buffer[0] = '\0';
153     /* XXX TGEN add devstats? */
154     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
155     cdev->si_drv1 = rdp;
156     cdev->si_iosize_max = 128 * DEV_BSIZE;
157     rdp->cdev = cdev;
158 
159     bzero(&info, sizeof(info));
160     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
161     info.d_media_blocks = rdp->total_sectors;
162 
163     info.d_secpertrack = rdp->sectors;		/* optional */
164     info.d_nheads = rdp->heads;
165     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
166     info.d_secpercyl = rdp->sectors * rdp->heads;
167 
168     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
169 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
170 	   ata_raid_format(rdp), ata_raid_type(rdp),
171 	   buffer, ata_raid_flags(rdp));
172 
173     if (testing || bootverbose)
174 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
175 	       rdp->lun, rdp->total_sectors,
176 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
177 
178     for (disk = 0; disk < rdp->total_disks; disk++) {
179 	kprintf("ar%d: disk%d ", rdp->lun, disk);
180 	if (rdp->disks[disk].dev) {
181 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
182 		/* status of this disk in the array */
183 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
184 		    kprintf("READY ");
185 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
186 		    kprintf("SPARE ");
187 		else
188 		    kprintf("FREE  ");
189 
190 		/* what type of disk is this in the array */
191 		switch (rdp->type) {
192 		case AR_T_RAID1:
193 		case AR_T_RAID01:
194 		    if (disk < rdp->width)
195 			kprintf("(master) ");
196 		    else
197 			kprintf("(mirror) ");
198 		}
199 
200 		/* which physical disk is used */
201 		kprintf("using %s at ata%d-%s\n",
202 		       device_get_nameunit(rdp->disks[disk].dev),
203 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
204 		       (((struct ata_device *)
205 			 device_get_softc(rdp->disks[disk].dev))->unit ==
206 			 ATA_MASTER) ? "master" : "slave");
207 	    }
208 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
209 		kprintf("DOWN\n");
210 	    else
211 		kprintf("INVALID no RAID config on this subdisk\n");
212 	}
213 	else
214 	    kprintf("DOWN no device found for this subdisk\n");
215     }
216 
217     disk_setdiskinfo(&rdp->disk, &info);
218 }
219 
220 /*
221  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
222  * to the dev_ops way, because it's just chained from the generic ata ioctl.
223  */
224 static int
225 ata_raid_ioctl(u_long cmd, caddr_t data)
226 {
227     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
228     int *lun = (int *)data;
229     int error = EOPNOTSUPP;
230 
231     switch (cmd) {
232     case IOCATARAIDSTATUS:
233 	error = ata_raid_status(config);
234 	break;
235 
236     case IOCATARAIDCREATE:
237 	error = ata_raid_create(config);
238 	break;
239 
240     case IOCATARAIDDELETE:
241 	error = ata_raid_delete(*lun);
242 	break;
243 
244     case IOCATARAIDADDSPARE:
245 	error = ata_raid_addspare(config);
246 	break;
247 
248     case IOCATARAIDREBUILD:
249 	error = ata_raid_rebuild(*lun);
250 	break;
251     }
252     return error;
253 }
254 
255 static int
256 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
257 {
258     struct ata_request *request;
259     device_t dev;
260     int disk, error;
261 
262     error = 0;
263     bp->bio_driver_info = NULL;
264 
265     for (disk = 0; disk < rdp->total_disks; disk++) {
266 	if ((dev = rdp->disks[disk].dev) != NULL)
267 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
268     }
269     for (disk = 0; disk < rdp->total_disks; disk++) {
270 	if ((dev = rdp->disks[disk].dev) == NULL)
271 	    continue;
272 	if (!(request = ata_raid_init_request(rdp, bp)))
273 	    return ENOMEM;
274 	request->dev = dev;
275 	request->u.ata.command = ATA_FLUSHCACHE;
276 	request->u.ata.lba = 0;
277 	request->u.ata.count = 0;
278 	request->u.ata.feature = 0;
279 	request->timeout = 1;
280 	request->retries = 0;
281 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
282 	ata_queue_request(request);
283     }
284     return 0;
285 }
286 
287 /*
288  * XXX TGEN there are a lot of offset -> block number conversions going on
289  * here, which is suboptimal.
290  */
291 static int
292 ata_raid_strategy(struct dev_strategy_args *ap)
293 {
294     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
295     struct bio *bp = ap->a_bio;
296     struct buf *bbp = bp->bio_buf;
297     struct ata_request *request;
298     caddr_t data;
299     u_int64_t blkno, lba, blk = 0;
300     int count, chunk, drv, par = 0, change = 0;
301 
302     if (bbp->b_cmd == BUF_CMD_FLUSH) {
303 	int error;
304 
305 	error = ata_raid_flush(rdp, bp);
306 	if (error != 0) {
307 		bbp->b_flags |= B_ERROR;
308 		bbp->b_error = error;
309 		biodone(bp);
310 	}
311 	return(0);
312     }
313 
314     if (!(rdp->status & AR_S_READY) ||
315 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
316 	bbp->b_flags |= B_ERROR;
317 	bbp->b_error = EIO;
318 	biodone(bp);
319 	return(0);
320     }
321 
322     bbp->b_resid = bbp->b_bcount;
323     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
324 	 /* bio_offset is byte granularity, convert */
325 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
326 	 data = bbp->b_data;
327 	 count > 0;
328 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
329 
330 	switch (rdp->type) {
331 	case AR_T_RAID1:
332 	    drv = 0;
333 	    lba = blkno;
334 	    chunk = count;
335 	    break;
336 
337 	case AR_T_JBOD:
338 	case AR_T_SPAN:
339 	    drv = 0;
340 	    lba = blkno;
341 	    while (lba >= rdp->disks[drv].sectors)
342 		lba -= rdp->disks[drv++].sectors;
343 	    chunk = min(rdp->disks[drv].sectors - lba, count);
344 	    break;
345 
346 	case AR_T_RAID0:
347 	case AR_T_RAID01:
348 	    chunk = blkno % rdp->interleave;
349 	    drv = (blkno / rdp->interleave) % rdp->width;
350 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
351 	    chunk = min(count, rdp->interleave - chunk);
352 	    break;
353 
354 	case AR_T_RAID5:
355 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
356 	    par = rdp->width - 1 -
357 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
358 	    if (drv >= par)
359 		drv++;
360 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
361 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
362 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
363 	    break;
364 
365 	default:
366 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
367 	    bbp->b_flags |= B_ERROR;
368 	    bbp->b_error = EIO;
369 	    biodone(bp);
370 	    return(0);
371 	}
372 
373 	/* offset on all but "first on HPTv2" */
374 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
375 	    lba += rdp->offset_sectors;
376 
377 	if (!(request = ata_raid_init_request(rdp, bp))) {
378 	    bbp->b_flags |= B_ERROR;
379 	    bbp->b_error = EIO;
380 	    biodone(bp);
381 	    return(0);
382 	}
383 	request->data = data;
384 	request->bytecount = chunk * DEV_BSIZE;
385 	request->u.ata.lba = lba;
386 	request->u.ata.count = request->bytecount / DEV_BSIZE;
387 
388 	switch (rdp->type) {
389 	case AR_T_JBOD:
390 	case AR_T_SPAN:
391 	case AR_T_RAID0:
392 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
393 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
394 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
395 		ata_raid_config_changed(rdp, 1);
396 		ata_free_request(request);
397 		bbp->b_flags |= B_ERROR;
398 		bbp->b_error = EIO;
399 		biodone(bp);
400 		return(0);
401 	    }
402 	    request->this = drv;
403 	    request->dev = rdp->disks[request->this].dev;
404 	    ata_raid_send_request(request);
405 	    break;
406 
407 	case AR_T_RAID1:
408 	case AR_T_RAID01:
409 	    if ((rdp->disks[drv].flags &
410 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
411 		!rdp->disks[drv].dev) {
412 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
413 		change = 1;
414 	    }
415 	    if ((rdp->disks[drv + rdp->width].flags &
416 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
417 		!rdp->disks[drv + rdp->width].dev) {
418 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
419 		change = 1;
420 	    }
421 	    if (change)
422 		ata_raid_config_changed(rdp, 1);
423 	    if (!(rdp->status & AR_S_READY)) {
424 		ata_free_request(request);
425 		bbp->b_flags |= B_ERROR;
426 		bbp->b_error = EIO;
427 		biodone(bp);
428 		return(0);
429 	    }
430 
431 	    if (rdp->status & AR_S_REBUILDING)
432 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
433 		      (rdp->interleave * (drv % rdp->width)) +
434 		      lba % rdp->interleave;
435 
436 	    if (bbp->b_cmd == BUF_CMD_READ) {
437 		int src_online =
438 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
439 		int mir_online =
440 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
441 
442 		/* if mirror gone or close to last access on source */
443 		if (!mir_online ||
444 		    ((src_online) &&
445 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
446 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
447 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
448 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
449 		    rdp->toggle = 0;
450 		}
451 		/* if source gone or close to last access on mirror */
452 		else if (!src_online ||
453 			 ((mir_online) &&
454 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
455 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
456 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
457 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
458 		    drv += rdp->width;
459 		    rdp->toggle = 1;
460 		}
461 		/* not close to any previous access, toggle */
462 		else {
463 		    if (rdp->toggle)
464 			rdp->toggle = 0;
465 		    else {
466 			drv += rdp->width;
467 			rdp->toggle = 1;
468 		    }
469 		}
470 
471 		if ((rdp->status & AR_S_REBUILDING) &&
472 		    (blk <= rdp->rebuild_lba) &&
473 		    ((blk + chunk) > rdp->rebuild_lba)) {
474 		    struct ata_composite *composite;
475 		    struct ata_request *rebuild;
476 		    int this;
477 
478 		    /* figure out what part to rebuild */
479 		    if (drv < rdp->width)
480 			this = drv + rdp->width;
481 		    else
482 			this = drv - rdp->width;
483 
484 		    /* do we have a spare to rebuild on ? */
485 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
486 			if ((composite = ata_alloc_composite())) {
487 			    if ((rebuild = ata_alloc_request())) {
488 				rdp->rebuild_lba = blk + chunk;
489 				bcopy(request, rebuild,
490 				      sizeof(struct ata_request));
491 				rebuild->this = this;
492 				rebuild->dev = rdp->disks[this].dev;
493 				rebuild->flags &= ~ATA_R_READ;
494 				rebuild->flags |= ATA_R_WRITE;
495 				spin_init(&composite->lock);
496 				composite->residual = request->bytecount;
497 				composite->rd_needed |= (1 << drv);
498 				composite->wr_depend |= (1 << drv);
499 				composite->wr_needed |= (1 << this);
500 				composite->request[drv] = request;
501 				composite->request[this] = rebuild;
502 				request->composite = composite;
503 				rebuild->composite = composite;
504 				ata_raid_send_request(rebuild);
505 			    }
506 			    else {
507 				ata_free_composite(composite);
508 				kprintf("DOH! ata_alloc_request failed!\n");
509 			    }
510 			}
511 			else {
512 			    kprintf("DOH! ata_alloc_composite failed!\n");
513 			}
514 		    }
515 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
516 			/*
517 			 * if we got here we are a chunk of a RAID01 that
518 			 * does not need a rebuild, but we need to increment
519 			 * the rebuild_lba address to get the rebuild to
520 			 * move to the next chunk correctly
521 			 */
522 			rdp->rebuild_lba = blk + chunk;
523 		    }
524 		    else
525 			kprintf("DOH! we didn't find the rebuild part\n");
526 		}
527 	    }
528 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
529 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
530 		    ((rdp->status & AR_S_REBUILDING) &&
531 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
532 		     ((blk < rdp->rebuild_lba) ||
533 		      ((blk <= rdp->rebuild_lba) &&
534 		       ((blk + chunk) > rdp->rebuild_lba))))) {
535 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
536 			((rdp->status & AR_S_REBUILDING) &&
537 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
538 			 ((blk < rdp->rebuild_lba) ||
539 			  ((blk <= rdp->rebuild_lba) &&
540 			   ((blk + chunk) > rdp->rebuild_lba))))) {
541 			struct ata_request *mirror;
542 			struct ata_composite *composite;
543 			int this = drv + rdp->width;
544 
545 			if ((composite = ata_alloc_composite())) {
546 			    if ((mirror = ata_alloc_request())) {
547 				if ((blk <= rdp->rebuild_lba) &&
548 				    ((blk + chunk) > rdp->rebuild_lba))
549 				    rdp->rebuild_lba = blk + chunk;
550 				bcopy(request, mirror,
551 				      sizeof(struct ata_request));
552 				mirror->this = this;
553 				mirror->dev = rdp->disks[this].dev;
554 				spin_init(&composite->lock);
555 				composite->residual = request->bytecount;
556 				composite->wr_needed |= (1 << drv);
557 				composite->wr_needed |= (1 << this);
558 				composite->request[drv] = request;
559 				composite->request[this] = mirror;
560 				request->composite = composite;
561 				mirror->composite = composite;
562 				ata_raid_send_request(mirror);
563 				rdp->disks[this].last_lba =
564 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
565 				    chunk;
566 			    }
567 			    else {
568 				ata_free_composite(composite);
569 				kprintf("DOH! ata_alloc_request failed!\n");
570 			    }
571 			}
572 			else {
573 			    kprintf("DOH! ata_alloc_composite failed!\n");
574 			}
575 		    }
576 		    else
577 			drv += rdp->width;
578 		}
579 	    }
580 	    request->this = drv;
581 	    request->dev = rdp->disks[request->this].dev;
582 	    ata_raid_send_request(request);
583 	    rdp->disks[request->this].last_lba =
584 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
585 	    break;
586 
587 	case AR_T_RAID5:
588 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
589 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
590 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
591 		change = 1;
592 	    }
593 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
594 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
595 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
596 		change = 1;
597 	    }
598 	    if (change)
599 		ata_raid_config_changed(rdp, 1);
600 	    if (!(rdp->status & AR_S_READY)) {
601 		ata_free_request(request);
602 		bbp->b_flags |= B_ERROR;
603 		bbp->b_error = EIO;
604 		biodone(bp);
605 		return(0);
606 	    }
607 	    if (rdp->status & AR_S_DEGRADED) {
608 		/* do the XOR game if possible */
609 	    }
610 	    else {
611 		request->this = drv;
612 		request->dev = rdp->disks[request->this].dev;
613 		if (bbp->b_cmd == BUF_CMD_READ) {
614 		    ata_raid_send_request(request);
615 		}
616 		if (bbp->b_cmd == BUF_CMD_WRITE) {
617 		    ata_raid_send_request(request);
618 		    /* XXX TGEN no, I don't speak Danish either */
619 		    /*
620 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
621 		     * par kopi af request
622 		     * l�se orgdata fra drv
623 		     * skriv nydata til drv
624 		     * l�se parorgdata fra par
625 		     * skriv orgdata xor parorgdata xor nydata til par
626 		     */
627 		}
628 	    }
629 	    break;
630 
631 	default:
632 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
633 	}
634     }
635 
636     return(0);
637 }
638 
639 static void
640 ata_raid_done(struct ata_request *request)
641 {
642     struct ar_softc *rdp = request->driver;
643     struct ata_composite *composite = NULL;
644     struct bio *bp = request->bio;
645     struct buf *bbp = bp->bio_buf;
646     int i, mirror, finished = 0;
647 
648     if (bbp->b_cmd == BUF_CMD_FLUSH) {
649 	if (bbp->b_error == 0)
650 		bbp->b_error = request->result;
651 	ata_free_request(request);
652 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
653 	if ((intptr_t)bp->bio_driver_info == 0) {
654 		if (bbp->b_error)
655 			bbp->b_flags |= B_ERROR;
656 		biodone(bp);
657 	}
658 	return;
659     }
660 
661     switch (rdp->type) {
662     case AR_T_JBOD:
663     case AR_T_SPAN:
664     case AR_T_RAID0:
665 	if (request->result) {
666 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
667 	    ata_raid_config_changed(rdp, 1);
668 	    bbp->b_error = request->result;
669 	    finished = 1;
670 	}
671 	else {
672 	    bbp->b_resid -= request->donecount;
673 	    if (!bbp->b_resid)
674 		finished = 1;
675 	}
676 	break;
677 
678     case AR_T_RAID1:
679     case AR_T_RAID01:
680 	if (request->this < rdp->width)
681 	    mirror = request->this + rdp->width;
682 	else
683 	    mirror = request->this - rdp->width;
684 	if (request->result) {
685 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
686 	    ata_raid_config_changed(rdp, 1);
687 	}
688 	if (rdp->status & AR_S_READY) {
689 	    u_int64_t blk = 0;
690 
691 	    if (rdp->status & AR_S_REBUILDING)
692 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
693 		      rdp->interleave + (rdp->interleave *
694 		      (request->this % rdp->width)) +
695 		      request->u.ata.lba % rdp->interleave;
696 
697 	    if (bbp->b_cmd == BUF_CMD_READ) {
698 
699 		/* is this a rebuild composite */
700 		if ((composite = request->composite)) {
701 		    spin_lock(&composite->lock);
702 
703 		    /* handle the read part of a rebuild composite */
704 		    if (request->flags & ATA_R_READ) {
705 
706 			/* if read failed array is now broken */
707 			if (request->result) {
708 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
709 			    ata_raid_config_changed(rdp, 1);
710 			    bbp->b_error = request->result;
711 			    rdp->rebuild_lba = blk;
712 			    finished = 1;
713 			}
714 
715 			/* good data, update how far we've gotten */
716 			else {
717 			    bbp->b_resid -= request->donecount;
718 			    composite->residual -= request->donecount;
719 			    if (!composite->residual) {
720 				if (composite->wr_done & (1 << mirror))
721 				    finished = 1;
722 			    }
723 			}
724 		    }
725 
726 		    /* handle the write part of a rebuild composite */
727 		    else if (request->flags & ATA_R_WRITE) {
728 			if (composite->rd_done & (1 << mirror)) {
729 			    if (request->result) {
730 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
731 				rdp->rebuild_lba = blk;
732 			    }
733 			    if (!composite->residual)
734 				finished = 1;
735 			}
736 		    }
737 		    spin_unlock(&composite->lock);
738 		}
739 
740 		/* if read failed retry on the mirror */
741 		else if (request->result) {
742 		    request->dev = rdp->disks[mirror].dev;
743 		    request->flags &= ~ATA_R_TIMEOUT;
744 		    ata_raid_send_request(request);
745 		    return;
746 		}
747 
748 		/* we have good data */
749 		else {
750 		    bbp->b_resid -= request->donecount;
751 		    if (!bbp->b_resid)
752 			finished = 1;
753 		}
754 	    }
755 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
756 		/* do we have a mirror or rebuild to deal with ? */
757 		if ((composite = request->composite)) {
758 		    spin_lock(&composite->lock);
759 		    if (composite->wr_done & (1 << mirror)) {
760 			if (request->result) {
761 			    if (composite->request[mirror]->result) {
762 				kprintf("DOH! all disks failed and got here\n");
763 				bbp->b_error = EIO;
764 			    }
765 			    if (rdp->status & AR_S_REBUILDING) {
766 				rdp->rebuild_lba = blk;
767 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
768 			    }
769 			    bbp->b_resid -=
770 				composite->request[mirror]->donecount;
771 			    composite->residual -=
772 				composite->request[mirror]->donecount;
773 			}
774 			else {
775 			    bbp->b_resid -= request->donecount;
776 			    composite->residual -= request->donecount;
777 			}
778 			if (!composite->residual)
779 			    finished = 1;
780 		    }
781 		    spin_unlock(&composite->lock);
782 		}
783 		/* no mirror we are done */
784 		else {
785 		    bbp->b_resid -= request->donecount;
786 		    if (!bbp->b_resid)
787 			finished = 1;
788 		}
789 	    }
790 	}
791 	else {
792 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
793 	    bbp->b_error = request->result;
794 	    biodone(bp);
795 	}
796 	break;
797 
798     case AR_T_RAID5:
799 	if (request->result) {
800 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
801 	    ata_raid_config_changed(rdp, 1);
802 	    if (rdp->status & AR_S_READY) {
803 		if (bbp->b_cmd == BUF_CMD_READ) {
804 		    /* do the XOR game to recover data */
805 		}
806 		if (bbp->b_cmd == BUF_CMD_WRITE) {
807 		    /* if the parity failed we're OK sortof */
808 		    /* otherwise wee need to do the XOR long dance */
809 		}
810 		finished = 1;
811 	    }
812 	    else {
813 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
814 		bbp->b_error = request->result;
815 		biodone(bp);
816 	    }
817 	}
818 	else {
819 	    /* did we have an XOR game going ?? */
820 	    bbp->b_resid -= request->donecount;
821 	    if (!bbp->b_resid)
822 		finished = 1;
823 	}
824 	break;
825 
826     default:
827 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
828     }
829 
830     if (finished) {
831 	if ((rdp->status & AR_S_REBUILDING) &&
832 	    rdp->rebuild_lba >= rdp->total_sectors) {
833 	    int disk;
834 
835 	    for (disk = 0; disk < rdp->total_disks; disk++) {
836 		if ((rdp->disks[disk].flags &
837 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
838 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
839 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
840 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
841 		}
842 	    }
843 	    rdp->status &= ~AR_S_REBUILDING;
844 	    ata_raid_config_changed(rdp, 1);
845 	}
846 	if (!bbp->b_resid)
847 	    biodone(bp);
848     }
849 
850     if (composite) {
851 	if (finished) {
852 	    /* we are done with this composite, free all resources */
853 	    for (i = 0; i < 32; i++) {
854 		if (composite->rd_needed & (1 << i) ||
855 		    composite->wr_needed & (1 << i)) {
856 		    ata_free_request(composite->request[i]);
857 		}
858 	    }
859 	    spin_uninit(&composite->lock);
860 	    ata_free_composite(composite);
861 	}
862     }
863     else
864 	ata_free_request(request);
865 }
866 
867 static int
868 ata_raid_dump(struct dev_dump_args *ap)
869 {
870 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
871 	struct buf dbuf;
872 	int error = 0;
873 	int disk;
874 
875 	if (ap->a_length == 0) {
876 		/* flush subdisk buffers to media */
877 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
878 			if (rdp->disks[disk].dev) {
879 				error |= ata_controlcmd(rdp->disks[disk].dev,
880 						ATA_FLUSHCACHE, 0, 0, 0);
881 			}
882 		}
883 		return (error ? EIO : 0);
884 	}
885 
886 	bzero(&dbuf, sizeof(struct buf));
887 	initbufbio(&dbuf);
888 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
889 	/* bio_offset is byte granularity, convert block granularity a_blkno */
890 	dbuf.b_bio1.bio_offset = ap->a_offset;
891 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
892 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
893 	dbuf.b_bio1.bio_done = biodone_sync;
894 	dbuf.b_bcount = ap->a_length;
895 	dbuf.b_data = ap->a_virtual;
896 	dbuf.b_cmd = BUF_CMD_WRITE;
897 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
898 	/* wait for completion, unlock the buffer, check status */
899 	if (biowait(&dbuf.b_bio1, "dumpw")) {
900 	    BUF_UNLOCK(&dbuf);
901 	    return(dbuf.b_error ? dbuf.b_error : EIO);
902 	}
903 	BUF_UNLOCK(&dbuf);
904 	uninitbufbio(&dbuf);
905 
906 	return 0;
907 }
908 
909 static void
910 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
911 {
912     int disk, count, status;
913 
914     spin_lock(&rdp->lock);
915     /* set default all working mode */
916     status = rdp->status;
917     rdp->status &= ~AR_S_DEGRADED;
918     rdp->status |= AR_S_READY;
919 
920     /* make sure all lost drives are accounted for */
921     for (disk = 0; disk < rdp->total_disks; disk++) {
922 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
923 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
924     }
925 
926     /* depending on RAID type figure out our health status */
927     switch (rdp->type) {
928     case AR_T_JBOD:
929     case AR_T_SPAN:
930     case AR_T_RAID0:
931 	for (disk = 0; disk < rdp->total_disks; disk++)
932 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
933 		rdp->status &= ~AR_S_READY;
934 	break;
935 
936     case AR_T_RAID1:
937     case AR_T_RAID01:
938 	for (disk = 0; disk < rdp->width; disk++) {
939 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
940 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
941 		rdp->status &= ~AR_S_READY;
942 	    }
943 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
944 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
945 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
946 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
947 		rdp->status |= AR_S_DEGRADED;
948 	    }
949 	}
950 	break;
951 
952     case AR_T_RAID5:
953 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
954 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
955 		count++;
956 	}
957 	if (count) {
958 	    if (count > 1)
959 		rdp->status &= ~AR_S_READY;
960 	    else
961 		rdp->status |= AR_S_DEGRADED;
962 	}
963 	break;
964     default:
965 	rdp->status &= ~AR_S_READY;
966     }
967 
968     /*
969      * Note that when the array breaks so comes up broken we
970      * force a write of the array config to the remaining
971      * drives so that the generation will be incremented past
972      * those of the missing or failed drives (in all cases).
973      */
974     if (rdp->status != status) {
975 	if (!(rdp->status & AR_S_READY)) {
976 	    kprintf("ar%d: FAILURE - %s array broken\n",
977 		   rdp->lun, ata_raid_type(rdp));
978 	    writeback = 1;
979 	}
980 	else if (rdp->status & AR_S_DEGRADED) {
981 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
982 		kprintf("ar%d: WARNING - mirror", rdp->lun);
983 	    else
984 		kprintf("ar%d: WARNING - parity", rdp->lun);
985 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
986 		   ata_raid_type(rdp));
987 	    writeback = 1;
988 	}
989     }
990     spin_unlock(&rdp->lock);
991     if (writeback)
992 	ata_raid_write_metadata(rdp);
993 
994 }
995 
996 static int
997 ata_raid_status(struct ata_ioc_raid_config *config)
998 {
999     struct ar_softc *rdp;
1000     int i;
1001 
1002     if (!(rdp = ata_raid_arrays[config->lun]))
1003 	return ENXIO;
1004 
1005     config->type = rdp->type;
1006     config->total_disks = rdp->total_disks;
1007     for (i = 0; i < rdp->total_disks; i++ ) {
1008 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1009 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1010 	else
1011 	    config->disks[i] = -1;
1012     }
1013     config->interleave = rdp->interleave;
1014     config->status = rdp->status;
1015     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1016     return 0;
1017 }
1018 
1019 static int
1020 ata_raid_create(struct ata_ioc_raid_config *config)
1021 {
1022     struct ar_softc *rdp;
1023     device_t subdisk;
1024     int array, disk;
1025     int ctlr = 0, disk_size = 0, total_disks = 0;
1026     device_t gpdev;
1027 
1028     for (array = 0; array < MAX_ARRAYS; array++) {
1029 	if (!ata_raid_arrays[array])
1030 	    break;
1031     }
1032     if (array >= MAX_ARRAYS)
1033 	return ENOSPC;
1034 
1035     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1036 	M_WAITOK | M_ZERO);
1037 
1038     for (disk = 0; disk < config->total_disks; disk++) {
1039 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1040 					   config->disks[disk]))) {
1041 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1042 
1043 	    /* is device already assigned to another array ? */
1044 	    if (ars->raid[rdp->volume]) {
1045 		config->disks[disk] = -1;
1046 		kfree(rdp, M_AR);
1047 		return EBUSY;
1048 	    }
1049 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1050 
1051 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1052 
1053 	    switch (pci_get_vendor(gpdev)) {
1054 	    case ATA_HIGHPOINT_ID:
1055 		/*
1056 		 * we need some way to decide if it should be v2 or v3
1057 		 * for now just use v2 since the v3 BIOS knows how to
1058 		 * handle that as well.
1059 		 */
1060 		ctlr = AR_F_HPTV2_RAID;
1061 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1062 		break;
1063 
1064 	    case ATA_INTEL_ID:
1065 		ctlr = AR_F_INTEL_RAID;
1066 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1067 		break;
1068 
1069 	    case ATA_ITE_ID:
1070 		ctlr = AR_F_ITE_RAID;
1071 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1072 		break;
1073 
1074 	    case ATA_JMICRON_ID:
1075 		ctlr = AR_F_JMICRON_RAID;
1076 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1077 		break;
1078 
1079 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1080 	    case ATA_PROMISE_ID:
1081 		ctlr = AR_F_PROMISE_RAID;
1082 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1083 		break;
1084 
1085 	    case ATA_SIS_ID:
1086 		ctlr = AR_F_SIS_RAID;
1087 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1088 		break;
1089 
1090 	    case ATA_ATI_ID:
1091 	    case ATA_VIA_ID:
1092 		ctlr = AR_F_VIA_RAID;
1093 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1094 		break;
1095 
1096 	    default:
1097 		/* XXX SOS
1098 		 * right, so here we are, we have an ATA chip and we want
1099 		 * to create a RAID and store the metadata.
1100 		 * we need to find a way to tell what kind of metadata this
1101 		 * hardware's BIOS might be using (good ideas are welcomed)
1102 		 * for now we just use our own native FreeBSD format.
1103 		 * the only way to get support for the BIOS format is to
1104 		 * setup the RAID from there, in that case we pickup the
1105 		 * metadata format from the disks (if we support it).
1106 		 */
1107 		kprintf("WARNING!! - not able to determine metadata format\n"
1108 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1109 		       "If that is not what you want, use the BIOS to "
1110 		       "create the array\n");
1111 		ctlr = AR_F_FREEBSD_RAID;
1112 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1113 		break;
1114 	    }
1115 
1116 	    /* we need all disks to be of the same format */
1117 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1118 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1119 		kfree(rdp, M_AR);
1120 		return EXDEV;
1121 	    }
1122 	    else
1123 		rdp->format = ctlr;
1124 
1125 	    /* use the smallest disk of the lots size */
1126 	    /* gigabyte boundry ??? XXX SOS */
1127 	    if (disk_size)
1128 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1129 	    else
1130 		disk_size = rdp->disks[disk].sectors;
1131 	    rdp->disks[disk].flags =
1132 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1133 
1134 	    total_disks++;
1135 	}
1136 	else {
1137 	    config->disks[disk] = -1;
1138 	    kfree(rdp, M_AR);
1139 	    return ENXIO;
1140 	}
1141     }
1142 
1143     if (total_disks != config->total_disks) {
1144 	kfree(rdp, M_AR);
1145 	return ENODEV;
1146     }
1147 
1148     switch (config->type) {
1149     case AR_T_JBOD:
1150     case AR_T_SPAN:
1151     case AR_T_RAID0:
1152 	break;
1153 
1154     case AR_T_RAID1:
1155 	if (total_disks != 2) {
1156 	    kfree(rdp, M_AR);
1157 	    return EPERM;
1158 	}
1159 	break;
1160 
1161     case AR_T_RAID01:
1162 	if (total_disks % 2 != 0) {
1163 	    kfree(rdp, M_AR);
1164 	    return EPERM;
1165 	}
1166 	break;
1167 
1168     case AR_T_RAID5:
1169 	if (total_disks < 3) {
1170 	    kfree(rdp, M_AR);
1171 	    return EPERM;
1172 	}
1173 	break;
1174 
1175     default:
1176 	kfree(rdp, M_AR);
1177 	return EOPNOTSUPP;
1178     }
1179     rdp->type = config->type;
1180     rdp->lun = array;
1181     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1182 	rdp->type == AR_T_RAID5) {
1183 	int bit = 0;
1184 
1185 	while (config->interleave >>= 1)
1186 	    bit++;
1187 	rdp->interleave = 1 << bit;
1188     }
1189     rdp->offset_sectors = 0;
1190 
1191     /* values that depend on metadata format */
1192     switch (rdp->format) {
1193     case AR_F_ADAPTEC_RAID:
1194 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1195 	break;
1196 
1197     case AR_F_HPTV2_RAID:
1198 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1199 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1200 	break;
1201 
1202     case AR_F_HPTV3_RAID:
1203 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1204 	break;
1205 
1206     case AR_F_INTEL_RAID:
1207 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1208 	break;
1209 
1210     case AR_F_ITE_RAID:
1211 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1212 	break;
1213 
1214     case AR_F_JMICRON_RAID:
1215 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1216 	break;
1217 
1218     case AR_F_LSIV2_RAID:
1219 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1220 	break;
1221 
1222     case AR_F_LSIV3_RAID:
1223 	rdp->interleave = min(max(2, rdp->interleave), 256);
1224 	break;
1225 
1226     case AR_F_PROMISE_RAID:
1227 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1228 	break;
1229 
1230     case AR_F_SII_RAID:
1231 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1232 	break;
1233 
1234     case AR_F_SIS_RAID:
1235 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1236 	break;
1237 
1238     case AR_F_VIA_RAID:
1239 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1240 	break;
1241     }
1242 
1243     rdp->total_disks = total_disks;
1244     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1245     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1246     rdp->heads = 255;
1247     rdp->sectors = 63;
1248     rdp->cylinders = rdp->total_sectors / (255 * 63);
1249     rdp->rebuild_lba = 0;
1250     rdp->status |= AR_S_READY;
1251 
1252     /* we are committed to this array, grap the subdisks */
1253     for (disk = 0; disk < config->total_disks; disk++) {
1254 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1255 					   config->disks[disk]))) {
1256 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1257 
1258 	    ars->raid[rdp->volume] = rdp;
1259 	    ars->disk_number[rdp->volume] = disk;
1260 	}
1261     }
1262     ata_raid_attach(rdp, 1);
1263     ata_raid_arrays[array] = rdp;
1264     config->lun = array;
1265     return 0;
1266 }
1267 
1268 static int
1269 ata_raid_delete(int array)
1270 {
1271     struct ar_softc *rdp;
1272     device_t subdisk;
1273     int disk;
1274 
1275     if (!(rdp = ata_raid_arrays[array]))
1276 	return ENXIO;
1277 
1278     rdp->status &= ~AR_S_READY;
1279     disk_destroy(&rdp->disk);
1280 
1281     for (disk = 0; disk < rdp->total_disks; disk++) {
1282 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1283 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1284 		     device_get_unit(rdp->disks[disk].dev)))) {
1285 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1286 
1287 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1288 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1289 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1290 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1291 		ars->raid[rdp->volume] = NULL;
1292 		ars->disk_number[rdp->volume] = -1;
1293 	    }
1294 	    rdp->disks[disk].flags = 0;
1295 	}
1296     }
1297     ata_raid_wipe_metadata(rdp);
1298     ata_raid_arrays[array] = NULL;
1299     kfree(rdp, M_AR);
1300     return 0;
1301 }
1302 
1303 static int
1304 ata_raid_addspare(struct ata_ioc_raid_config *config)
1305 {
1306     struct ar_softc *rdp;
1307     device_t subdisk;
1308     int disk;
1309 
1310     if (!(rdp = ata_raid_arrays[config->lun]))
1311 	return ENXIO;
1312     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1313 	return ENXIO;
1314     if (rdp->status & AR_S_REBUILDING)
1315 	return EBUSY;
1316     switch (rdp->type) {
1317     case AR_T_RAID1:
1318     case AR_T_RAID01:
1319     case AR_T_RAID5:
1320 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1321 
1322 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1323 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1324 		continue;
1325 
1326 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1327 					       config->disks[0] ))) {
1328 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1329 
1330 		if (ars->raid[rdp->volume])
1331 		    return EBUSY;
1332 
1333 		/* XXX SOS validate size etc etc */
1334 		ars->raid[rdp->volume] = rdp;
1335 		ars->disk_number[rdp->volume] = disk;
1336 		rdp->disks[disk].dev = device_get_parent(subdisk);
1337 		rdp->disks[disk].flags =
1338 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1339 
1340 		device_printf(rdp->disks[disk].dev,
1341 			      "inserted into ar%d disk%d as spare\n",
1342 			      rdp->lun, disk);
1343 		ata_raid_config_changed(rdp, 1);
1344 		return 0;
1345 	    }
1346 	}
1347 	return ENXIO;
1348 
1349     default:
1350 	return EPERM;
1351     }
1352 }
1353 
1354 static int
1355 ata_raid_rebuild(int array)
1356 {
1357     struct ar_softc *rdp;
1358     int disk, count;
1359 
1360     if (!(rdp = ata_raid_arrays[array]))
1361 	return ENXIO;
1362     /* XXX SOS we should lock the rdp softc here */
1363     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1364 	return ENXIO;
1365     if (rdp->status & AR_S_REBUILDING)
1366 	return EBUSY;
1367 
1368     switch (rdp->type) {
1369     case AR_T_RAID1:
1370     case AR_T_RAID01:
1371     case AR_T_RAID5:
1372 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1373 	    if (((rdp->disks[disk].flags &
1374 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1375 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1376 		rdp->disks[disk].dev) {
1377 		count++;
1378 	    }
1379 	}
1380 
1381 	if (count) {
1382 	    rdp->rebuild_lba = 0;
1383 	    rdp->status |= AR_S_REBUILDING;
1384 	    return 0;
1385 	}
1386 	return EIO;
1387 
1388     default:
1389 	return EPERM;
1390     }
1391 }
1392 
1393 static int
1394 ata_raid_read_metadata(device_t subdisk)
1395 {
1396     devclass_t pci_devclass = devclass_find("pci");
1397     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1398     device_t gpdev;
1399     uint16_t vendor;
1400 
1401     /* prioritize vendor native metadata layout if possible */
1402     if (devclass == pci_devclass) {
1403 	gpdev = device_get_parent(subdisk);
1404 	gpdev = GRANDPARENT(gpdev);
1405 	vendor = pci_get_vendor(gpdev);
1406 
1407 	switch (vendor) {
1408 	case ATA_HIGHPOINT_ID:
1409 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1410 		return 0;
1411 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1412 		return 0;
1413 	    break;
1414 
1415 	case ATA_INTEL_ID:
1416 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1417 		return 0;
1418 	    break;
1419 
1420 	case ATA_ITE_ID:
1421 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1422 		return 0;
1423 	    break;
1424 
1425 	case ATA_JMICRON_ID:
1426 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1427 		return 0;
1428 	    break;
1429 
1430 	case ATA_NVIDIA_ID:
1431 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1432 		return 0;
1433 	    break;
1434 
1435 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1436 	case ATA_PROMISE_ID:
1437 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1438 		return 0;
1439 	    break;
1440 
1441 	case ATA_ATI_ID:
1442 	case ATA_SILICON_IMAGE_ID:
1443 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1444 		return 0;
1445 	    break;
1446 
1447 	case ATA_SIS_ID:
1448 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1449 		return 0;
1450 	    break;
1451 
1452 	case ATA_VIA_ID:
1453 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1454 		return 0;
1455 	    break;
1456 	}
1457     }
1458 
1459     /* handle controllers that have multiple layout possibilities */
1460     /* NOTE: the order of these are not insignificant */
1461 
1462     /* Adaptec HostRAID */
1463     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1464 	return 0;
1465 
1466     /* LSILogic v3 and v2 */
1467     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1468 	return 0;
1469     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1470 	return 0;
1471 
1472     /* if none of the above matched, try FreeBSD native format */
1473     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1474 }
1475 
1476 static int
1477 ata_raid_write_metadata(struct ar_softc *rdp)
1478 {
1479     switch (rdp->format) {
1480     case AR_F_FREEBSD_RAID:
1481     case AR_F_PROMISE_RAID:
1482 	return ata_raid_promise_write_meta(rdp);
1483 
1484     case AR_F_HPTV3_RAID:
1485     case AR_F_HPTV2_RAID:
1486 	/*
1487 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1488 	 * this is handy since we cannot know what version BIOS is on there
1489 	 */
1490 	return ata_raid_hptv2_write_meta(rdp);
1491 
1492     case AR_F_INTEL_RAID:
1493 	return ata_raid_intel_write_meta(rdp);
1494 
1495     case AR_F_JMICRON_RAID:
1496 	return ata_raid_jmicron_write_meta(rdp);
1497 
1498     case AR_F_SIS_RAID:
1499 	return ata_raid_sis_write_meta(rdp);
1500 
1501     case AR_F_VIA_RAID:
1502 	return ata_raid_via_write_meta(rdp);
1503 #if 0
1504     case AR_F_HPTV3_RAID:
1505 	return ata_raid_hptv3_write_meta(rdp);
1506 
1507     case AR_F_ADAPTEC_RAID:
1508 	return ata_raid_adaptec_write_meta(rdp);
1509 
1510     case AR_F_ITE_RAID:
1511 	return ata_raid_ite_write_meta(rdp);
1512 
1513     case AR_F_LSIV2_RAID:
1514 	return ata_raid_lsiv2_write_meta(rdp);
1515 
1516     case AR_F_LSIV3_RAID:
1517 	return ata_raid_lsiv3_write_meta(rdp);
1518 
1519     case AR_F_NVIDIA_RAID:
1520 	return ata_raid_nvidia_write_meta(rdp);
1521 
1522     case AR_F_SII_RAID:
1523 	return ata_raid_sii_write_meta(rdp);
1524 
1525 #endif
1526     default:
1527 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1528 	       rdp->lun, ata_raid_format(rdp));
1529     }
1530     return -1;
1531 }
1532 
1533 static int
1534 ata_raid_wipe_metadata(struct ar_softc *rdp)
1535 {
1536     int disk, error = 0;
1537     u_int64_t lba;
1538     u_int32_t size;
1539     u_int8_t *meta;
1540 
1541     for (disk = 0; disk < rdp->total_disks; disk++) {
1542 	if (rdp->disks[disk].dev) {
1543 	    switch (rdp->format) {
1544 	    case AR_F_ADAPTEC_RAID:
1545 		lba = ADP_LBA(rdp->disks[disk].dev);
1546 		size = sizeof(struct adaptec_raid_conf);
1547 		break;
1548 
1549 	    case AR_F_HPTV2_RAID:
1550 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1551 		size = sizeof(struct hptv2_raid_conf);
1552 		break;
1553 
1554 	    case AR_F_HPTV3_RAID:
1555 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1556 		size = sizeof(struct hptv3_raid_conf);
1557 		break;
1558 
1559 	    case AR_F_INTEL_RAID:
1560 		lba = INTEL_LBA(rdp->disks[disk].dev);
1561 		size = 3 * 512;         /* XXX SOS */
1562 		break;
1563 
1564 	    case AR_F_ITE_RAID:
1565 		lba = ITE_LBA(rdp->disks[disk].dev);
1566 		size = sizeof(struct ite_raid_conf);
1567 		break;
1568 
1569 	    case AR_F_JMICRON_RAID:
1570 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1571 		size = sizeof(struct jmicron_raid_conf);
1572 		break;
1573 
1574 	    case AR_F_LSIV2_RAID:
1575 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1576 		size = sizeof(struct lsiv2_raid_conf);
1577 		break;
1578 
1579 	    case AR_F_LSIV3_RAID:
1580 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1581 		size = sizeof(struct lsiv3_raid_conf);
1582 		break;
1583 
1584 	    case AR_F_NVIDIA_RAID:
1585 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1586 		size = sizeof(struct nvidia_raid_conf);
1587 		break;
1588 
1589 	    case AR_F_FREEBSD_RAID:
1590 	    case AR_F_PROMISE_RAID:
1591 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1592 		size = sizeof(struct promise_raid_conf);
1593 		break;
1594 
1595 	    case AR_F_SII_RAID:
1596 		lba = SII_LBA(rdp->disks[disk].dev);
1597 		size = sizeof(struct sii_raid_conf);
1598 		break;
1599 
1600 	    case AR_F_SIS_RAID:
1601 		lba = SIS_LBA(rdp->disks[disk].dev);
1602 		size = sizeof(struct sis_raid_conf);
1603 		break;
1604 
1605 	    case AR_F_VIA_RAID:
1606 		lba = VIA_LBA(rdp->disks[disk].dev);
1607 		size = sizeof(struct via_raid_conf);
1608 		break;
1609 
1610 	    default:
1611 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1612 		       rdp->lun, ata_raid_format(rdp));
1613 		return ENXIO;
1614 	    }
1615 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1616 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1617 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1618 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1619 		error = EIO;
1620 	    }
1621 	    kfree(meta, M_AR);
1622 	}
1623     }
1624     return error;
1625 }
1626 
1627 /* Adaptec HostRAID Metadata */
1628 static int
1629 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1630 {
1631     struct ata_raid_subdisk *ars = device_get_softc(dev);
1632     device_t parent = device_get_parent(dev);
1633     struct adaptec_raid_conf *meta;
1634     struct ar_softc *raid;
1635     int array, disk, retval = 0;
1636 
1637     meta = (struct adaptec_raid_conf *)
1638 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1639 
1640     if (ata_raid_rw(parent, ADP_LBA(parent),
1641 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1642 	if (testing || bootverbose)
1643 	    device_printf(parent, "Adaptec read metadata failed\n");
1644 	goto adaptec_out;
1645     }
1646 
1647     /* check if this is a Adaptec RAID struct */
1648     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1649 	if (testing || bootverbose)
1650 	    device_printf(parent, "Adaptec check1 failed\n");
1651 	goto adaptec_out;
1652     }
1653 
1654     if (testing || bootverbose)
1655 	ata_raid_adaptec_print_meta(meta);
1656 
1657     /* now convert Adaptec metadata into our generic form */
1658     for (array = 0; array < MAX_ARRAYS; array++) {
1659 	if (!raidp[array]) {
1660 	    raidp[array] =
1661 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1662 					  M_WAITOK | M_ZERO);
1663 	}
1664 	raid = raidp[array];
1665 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1666 	    continue;
1667 
1668 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1669 	    continue;
1670 
1671 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1672 	    switch (meta->configs[0].type) {
1673 	    case ADP_T_RAID0:
1674 		raid->magic_0 = meta->configs[0].magic_0;
1675 		raid->type = AR_T_RAID0;
1676 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1677 		raid->width = be16toh(meta->configs[0].total_disks);
1678 		break;
1679 
1680 	    case ADP_T_RAID1:
1681 		raid->magic_0 = meta->configs[0].magic_0;
1682 		raid->type = AR_T_RAID1;
1683 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1684 		break;
1685 
1686 	    default:
1687 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1688 			      meta->configs[0].type);
1689 		kfree(raidp[array], M_AR);
1690 		raidp[array] = NULL;
1691 		goto adaptec_out;
1692 	    }
1693 
1694 	    raid->format = AR_F_ADAPTEC_RAID;
1695 	    raid->generation = be32toh(meta->generation);
1696 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1697 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1698 	    raid->heads = 255;
1699 	    raid->sectors = 63;
1700 	    raid->cylinders = raid->total_sectors / (63 * 255);
1701 	    raid->offset_sectors = 0;
1702 	    raid->rebuild_lba = 0;
1703 	    raid->lun = array;
1704 	    strncpy(raid->name, meta->configs[0].name,
1705 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1706 
1707 	    /* clear out any old info */
1708 	    if (raid->generation) {
1709 		for (disk = 0; disk < raid->total_disks; disk++) {
1710 		    raid->disks[disk].dev = NULL;
1711 		    raid->disks[disk].flags = 0;
1712 		}
1713 	    }
1714 	}
1715 	if (be32toh(meta->generation) >= raid->generation) {
1716 	    struct ata_device *atadev = device_get_softc(parent);
1717 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1718 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1719 			      ATA_DEV(atadev->unit);
1720 
1721 	    raid->disks[disk_number].dev = parent;
1722 	    raid->disks[disk_number].sectors =
1723 		be32toh(meta->configs[disk_number + 1].sectors);
1724 	    raid->disks[disk_number].flags =
1725 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1726 	    ars->raid[raid->volume] = raid;
1727 	    ars->disk_number[raid->volume] = disk_number;
1728 	    retval = 1;
1729 	}
1730 	break;
1731     }
1732 
1733 adaptec_out:
1734     kfree(meta, M_AR);
1735     return retval;
1736 }
1737 
1738 /* Highpoint V2 RocketRAID Metadata */
1739 static int
1740 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1741 {
1742     struct ata_raid_subdisk *ars = device_get_softc(dev);
1743     device_t parent = device_get_parent(dev);
1744     struct hptv2_raid_conf *meta;
1745     struct ar_softc *raid = NULL;
1746     int array, disk_number = 0, retval = 0;
1747 
1748     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1749 	M_AR, M_WAITOK | M_ZERO);
1750 
1751     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1752 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1753 	if (testing || bootverbose)
1754 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1755 	goto hptv2_out;
1756     }
1757 
1758     /* check if this is a HighPoint v2 RAID struct */
1759     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1760 	if (testing || bootverbose)
1761 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1762 	goto hptv2_out;
1763     }
1764 
1765     /* is this disk defined, or an old leftover/spare ? */
1766     if (!meta->magic_0) {
1767 	if (testing || bootverbose)
1768 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1769 	goto hptv2_out;
1770     }
1771 
1772     if (testing || bootverbose)
1773 	ata_raid_hptv2_print_meta(meta);
1774 
1775     /* now convert HighPoint (v2) metadata into our generic form */
1776     for (array = 0; array < MAX_ARRAYS; array++) {
1777 	if (!raidp[array]) {
1778 	    raidp[array] =
1779 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1780 					  M_WAITOK | M_ZERO);
1781 	}
1782 	raid = raidp[array];
1783 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1784 	    continue;
1785 
1786 	switch (meta->type) {
1787 	case HPTV2_T_RAID0:
1788 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1789 		(HPTV2_O_RAID0|HPTV2_O_OK))
1790 		goto highpoint_raid1;
1791 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1792 		goto highpoint_raid01;
1793 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1794 		continue;
1795 	    raid->magic_0 = meta->magic_0;
1796 	    raid->type = AR_T_RAID0;
1797 	    raid->interleave = 1 << meta->stripe_shift;
1798 	    disk_number = meta->disk_number;
1799 	    if (!(meta->order & HPTV2_O_OK))
1800 		meta->magic = 0;        /* mark bad */
1801 	    break;
1802 
1803 	case HPTV2_T_RAID1:
1804 highpoint_raid1:
1805 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1806 		continue;
1807 	    raid->magic_0 = meta->magic_0;
1808 	    raid->type = AR_T_RAID1;
1809 	    disk_number = (meta->disk_number > 0);
1810 	    break;
1811 
1812 	case HPTV2_T_RAID01_RAID0:
1813 highpoint_raid01:
1814 	    if (meta->order & HPTV2_O_RAID0) {
1815 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1816 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1817 		    continue;
1818 		raid->magic_0 = meta->magic_0;
1819 		raid->magic_1 = meta->magic_1;
1820 		raid->type = AR_T_RAID01;
1821 		raid->interleave = 1 << meta->stripe_shift;
1822 		disk_number = meta->disk_number;
1823 	    }
1824 	    else {
1825 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1826 		    continue;
1827 		raid->magic_1 = meta->magic_1;
1828 		raid->type = AR_T_RAID01;
1829 		raid->interleave = 1 << meta->stripe_shift;
1830 		disk_number = meta->disk_number + meta->array_width;
1831 		if (!(meta->order & HPTV2_O_RAID1))
1832 		    meta->magic = 0;    /* mark bad */
1833 	    }
1834 	    break;
1835 
1836 	case HPTV2_T_SPAN:
1837 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1838 		continue;
1839 	    raid->magic_0 = meta->magic_0;
1840 	    raid->type = AR_T_SPAN;
1841 	    disk_number = meta->disk_number;
1842 	    break;
1843 
1844 	default:
1845 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1846 			  meta->type);
1847 	    kfree(raidp[array], M_AR);
1848 	    raidp[array] = NULL;
1849 	    goto hptv2_out;
1850 	}
1851 
1852 	raid->format |= AR_F_HPTV2_RAID;
1853 	raid->disks[disk_number].dev = parent;
1854 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1855 	raid->lun = array;
1856 	strncpy(raid->name, meta->name_1,
1857 		min(sizeof(raid->name), sizeof(meta->name_1)));
1858 	if (meta->magic == HPTV2_MAGIC_OK) {
1859 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1860 	    raid->width = meta->array_width;
1861 	    raid->total_sectors = meta->total_sectors;
1862 	    raid->heads = 255;
1863 	    raid->sectors = 63;
1864 	    raid->cylinders = raid->total_sectors / (63 * 255);
1865 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1866 	    raid->rebuild_lba = meta->rebuild_lba;
1867 	    raid->disks[disk_number].sectors =
1868 		raid->total_sectors / raid->width;
1869 	}
1870 	else
1871 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1872 
1873 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1874 	    raid->total_disks = raid->width;
1875 	if (disk_number >= raid->total_disks)
1876 	    raid->total_disks = disk_number + 1;
1877 	ars->raid[raid->volume] = raid;
1878 	ars->disk_number[raid->volume] = disk_number;
1879 	retval = 1;
1880 	break;
1881     }
1882 
1883 hptv2_out:
1884     kfree(meta, M_AR);
1885     return retval;
1886 }
1887 
1888 static int
1889 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1890 {
1891     struct hptv2_raid_conf *meta;
1892     struct timeval timestamp;
1893     int disk, error = 0;
1894 
1895     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1896 	M_AR, M_WAITOK | M_ZERO);
1897 
1898     microtime(&timestamp);
1899     rdp->magic_0 = timestamp.tv_sec + 2;
1900     rdp->magic_1 = timestamp.tv_sec;
1901 
1902     for (disk = 0; disk < rdp->total_disks; disk++) {
1903 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1904 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1905 	    meta->magic = HPTV2_MAGIC_OK;
1906 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1907 	    meta->magic_0 = rdp->magic_0;
1908 	    if (strlen(rdp->name))
1909 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1910 	    else
1911 		strcpy(meta->name_1, "FreeBSD");
1912 	}
1913 	meta->disk_number = disk;
1914 
1915 	switch (rdp->type) {
1916 	case AR_T_RAID0:
1917 	    meta->type = HPTV2_T_RAID0;
1918 	    strcpy(meta->name_2, "RAID 0");
1919 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1920 		meta->order = HPTV2_O_OK;
1921 	    break;
1922 
1923 	case AR_T_RAID1:
1924 	    meta->type = HPTV2_T_RAID0;
1925 	    strcpy(meta->name_2, "RAID 1");
1926 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1927 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1928 	    break;
1929 
1930 	case AR_T_RAID01:
1931 	    meta->type = HPTV2_T_RAID01_RAID0;
1932 	    strcpy(meta->name_2, "RAID 0+1");
1933 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1934 		if (disk < rdp->width) {
1935 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1936 		    meta->magic_0 = rdp->magic_0 - 1;
1937 		}
1938 		else {
1939 		    meta->order = HPTV2_O_RAID1;
1940 		    meta->disk_number -= rdp->width;
1941 		}
1942 	    }
1943 	    else
1944 		meta->magic_0 = rdp->magic_0 - 1;
1945 	    meta->magic_1 = rdp->magic_1;
1946 	    break;
1947 
1948 	case AR_T_SPAN:
1949 	    meta->type = HPTV2_T_SPAN;
1950 	    strcpy(meta->name_2, "SPAN");
1951 	    break;
1952 	default:
1953 	    kfree(meta, M_AR);
1954 	    return ENODEV;
1955 	}
1956 
1957 	meta->array_width = rdp->width;
1958 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1959 	meta->total_sectors = rdp->total_sectors;
1960 	meta->rebuild_lba = rdp->rebuild_lba;
1961 	if (testing || bootverbose)
1962 	    ata_raid_hptv2_print_meta(meta);
1963 	if (rdp->disks[disk].dev) {
1964 	    if (ata_raid_rw(rdp->disks[disk].dev,
1965 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1966 			    sizeof(struct promise_raid_conf),
1967 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1968 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1969 		error = EIO;
1970 	    }
1971 	}
1972     }
1973     kfree(meta, M_AR);
1974     return error;
1975 }
1976 
1977 /* Highpoint V3 RocketRAID Metadata */
1978 static int
1979 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1980 {
1981     struct ata_raid_subdisk *ars = device_get_softc(dev);
1982     device_t parent = device_get_parent(dev);
1983     struct hptv3_raid_conf *meta;
1984     struct ar_softc *raid = NULL;
1985     int array, disk_number, retval = 0;
1986 
1987     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1988 	M_AR, M_WAITOK | M_ZERO);
1989 
1990     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1991 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1992 	if (testing || bootverbose)
1993 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1994 	goto hptv3_out;
1995     }
1996 
1997     /* check if this is a HighPoint v3 RAID struct */
1998     if (meta->magic != HPTV3_MAGIC) {
1999 	if (testing || bootverbose)
2000 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2001 	goto hptv3_out;
2002     }
2003 
2004     /* check if there are any config_entries */
2005     if (meta->config_entries < 1) {
2006 	if (testing || bootverbose)
2007 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2008 	goto hptv3_out;
2009     }
2010 
2011     if (testing || bootverbose)
2012 	ata_raid_hptv3_print_meta(meta);
2013 
2014     /* now convert HighPoint (v3) metadata into our generic form */
2015     for (array = 0; array < MAX_ARRAYS; array++) {
2016 	if (!raidp[array]) {
2017 	    raidp[array] =
2018 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2019 					  M_WAITOK | M_ZERO);
2020 	}
2021 	raid = raidp[array];
2022 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2023 	    continue;
2024 
2025 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2026 	    continue;
2027 
2028 	switch (meta->configs[0].type) {
2029 	case HPTV3_T_RAID0:
2030 	    raid->type = AR_T_RAID0;
2031 	    raid->width = meta->configs[0].total_disks;
2032 	    disk_number = meta->configs[0].disk_number;
2033 	    break;
2034 
2035 	case HPTV3_T_RAID1:
2036 	    raid->type = AR_T_RAID1;
2037 	    raid->width = meta->configs[0].total_disks / 2;
2038 	    disk_number = meta->configs[0].disk_number;
2039 	    break;
2040 
2041 	case HPTV3_T_RAID5:
2042 	    raid->type = AR_T_RAID5;
2043 	    raid->width = meta->configs[0].total_disks;
2044 	    disk_number = meta->configs[0].disk_number;
2045 	    break;
2046 
2047 	case HPTV3_T_SPAN:
2048 	    raid->type = AR_T_SPAN;
2049 	    raid->width = meta->configs[0].total_disks;
2050 	    disk_number = meta->configs[0].disk_number;
2051 	    break;
2052 
2053 	default:
2054 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2055 			  meta->configs[0].type);
2056 	    kfree(raidp[array], M_AR);
2057 	    raidp[array] = NULL;
2058 	    goto hptv3_out;
2059 	}
2060 	if (meta->config_entries == 2) {
2061 	    switch (meta->configs[1].type) {
2062 	    case HPTV3_T_RAID1:
2063 		if (raid->type == AR_T_RAID0) {
2064 		    raid->type = AR_T_RAID01;
2065 		    disk_number = meta->configs[1].disk_number +
2066 				  (meta->configs[0].disk_number << 1);
2067 		    break;
2068 		}
2069 	    default:
2070 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2071 			      meta->configs[1].type);
2072 		kfree(raidp[array], M_AR);
2073 		raidp[array] = NULL;
2074 		goto hptv3_out;
2075 	    }
2076 	}
2077 
2078 	raid->magic_0 = meta->magic_0;
2079 	raid->format = AR_F_HPTV3_RAID;
2080 	raid->generation = meta->timestamp;
2081 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2082 	raid->total_disks = meta->configs[0].total_disks +
2083 	    meta->configs[1].total_disks;
2084 	raid->total_sectors = meta->configs[0].total_sectors +
2085 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2086 	raid->heads = 255;
2087 	raid->sectors = 63;
2088 	raid->cylinders = raid->total_sectors / (63 * 255);
2089 	raid->offset_sectors = 0;
2090 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2091 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2092 	raid->lun = array;
2093 	strncpy(raid->name, meta->name,
2094 		min(sizeof(raid->name), sizeof(meta->name)));
2095 	raid->disks[disk_number].sectors = raid->total_sectors /
2096 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2097 	raid->disks[disk_number].dev = parent;
2098 	raid->disks[disk_number].flags =
2099 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2100 	ars->raid[raid->volume] = raid;
2101 	ars->disk_number[raid->volume] = disk_number;
2102 	retval = 1;
2103 	break;
2104     }
2105 
2106 hptv3_out:
2107     kfree(meta, M_AR);
2108     return retval;
2109 }
2110 
2111 /* Intel MatrixRAID Metadata */
2112 static int
2113 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2114 {
2115     struct ata_raid_subdisk *ars = device_get_softc(dev);
2116     device_t parent = device_get_parent(dev);
2117     struct intel_raid_conf *meta;
2118     struct intel_raid_mapping *map;
2119     struct ar_softc *raid = NULL;
2120     u_int32_t checksum, *ptr;
2121     int array, count, disk, volume = 1, retval = 0;
2122     char *tmp;
2123 
2124     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2125 
2126     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2127 	if (testing || bootverbose)
2128 	    device_printf(parent, "Intel read metadata failed\n");
2129 	goto intel_out;
2130     }
2131     tmp = (char *)meta;
2132     bcopy(tmp, tmp+1024, 512);
2133     bcopy(tmp+512, tmp, 1024);
2134     bzero(tmp+1024, 512);
2135 
2136     /* check if this is a Intel RAID struct */
2137     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2138 	if (testing || bootverbose)
2139 	    device_printf(parent, "Intel check1 failed\n");
2140 	goto intel_out;
2141     }
2142 
2143     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2144 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2145 	checksum += *ptr++;
2146     }
2147     checksum -= meta->checksum;
2148     if (checksum != meta->checksum) {
2149 	if (testing || bootverbose)
2150 	    device_printf(parent, "Intel check2 failed\n");
2151 	goto intel_out;
2152     }
2153 
2154     if (testing || bootverbose)
2155 	ata_raid_intel_print_meta(meta);
2156 
2157     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2158 
2159     /* now convert Intel metadata into our generic form */
2160     for (array = 0; array < MAX_ARRAYS; array++) {
2161 	if (!raidp[array]) {
2162 	    raidp[array] =
2163 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2164 					  M_WAITOK | M_ZERO);
2165 	}
2166 	raid = raidp[array];
2167 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2168 	    continue;
2169 
2170 	if ((raid->format & AR_F_INTEL_RAID) &&
2171 	    (raid->magic_0 != meta->config_id))
2172 	    continue;
2173 
2174 	/*
2175 	 * update our knowledge about the array config based on generation
2176 	 * NOTE: there can be multiple volumes on a disk set
2177 	 */
2178 	if (!meta->generation || meta->generation > raid->generation) {
2179 	    switch (map->type) {
2180 	    case INTEL_T_RAID0:
2181 		raid->type = AR_T_RAID0;
2182 		raid->width = map->total_disks;
2183 		break;
2184 
2185 	    case INTEL_T_RAID1:
2186 		if (map->total_disks == 4)
2187 		    raid->type = AR_T_RAID01;
2188 		else
2189 		    raid->type = AR_T_RAID1;
2190 		raid->width = map->total_disks / 2;
2191 		break;
2192 
2193 	    case INTEL_T_RAID5:
2194 		raid->type = AR_T_RAID5;
2195 		raid->width = map->total_disks;
2196 		break;
2197 
2198 	    default:
2199 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2200 			      map->type);
2201 		kfree(raidp[array], M_AR);
2202 		raidp[array] = NULL;
2203 		goto intel_out;
2204 	    }
2205 
2206 	    switch (map->status) {
2207 	    case INTEL_S_READY:
2208 		raid->status = AR_S_READY;
2209 		break;
2210 	    case INTEL_S_DEGRADED:
2211 		raid->status |= AR_S_DEGRADED;
2212 		break;
2213 	    case INTEL_S_DISABLED:
2214 	    case INTEL_S_FAILURE:
2215 		raid->status = 0;
2216 	    }
2217 
2218 	    raid->magic_0 = meta->config_id;
2219 	    raid->format = AR_F_INTEL_RAID;
2220 	    raid->generation = meta->generation;
2221 	    raid->interleave = map->stripe_sectors;
2222 	    raid->total_disks = map->total_disks;
2223 	    raid->total_sectors = map->total_sectors;
2224 	    raid->heads = 255;
2225 	    raid->sectors = 63;
2226 	    raid->cylinders = raid->total_sectors / (63 * 255);
2227 	    raid->offset_sectors = map->offset;
2228 	    raid->rebuild_lba = 0;
2229 	    raid->lun = array;
2230 	    raid->volume = volume - 1;
2231 	    strncpy(raid->name, map->name,
2232 		    min(sizeof(raid->name), sizeof(map->name)));
2233 
2234 	    /* clear out any old info */
2235 	    for (disk = 0; disk < raid->total_disks; disk++) {
2236 		raid->disks[disk].dev = NULL;
2237 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2238 		      raid->disks[disk].serial,
2239 		      sizeof(raid->disks[disk].serial));
2240 		raid->disks[disk].sectors =
2241 		    meta->disk[map->disk_idx[disk]].sectors;
2242 		raid->disks[disk].flags = 0;
2243 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2244 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2245 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2246 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2247 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2248 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2249 		    raid->disks[disk].flags |= AR_DF_SPARE;
2250 		}
2251 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2252 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2253 	    }
2254 	}
2255 	if (meta->generation >= raid->generation) {
2256 	    for (disk = 0; disk < raid->total_disks; disk++) {
2257 		struct ata_device *atadev = device_get_softc(parent);
2258 
2259 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2260 		    sizeof(raid->disks[disk].serial))) {
2261 		    raid->disks[disk].dev = parent;
2262 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2263 		    ars->raid[raid->volume] = raid;
2264 		    ars->disk_number[raid->volume] = disk;
2265 		    retval = 1;
2266 		}
2267 	    }
2268 	}
2269 	else
2270 	    goto intel_out;
2271 
2272 	if (retval) {
2273 	    if (volume < meta->total_volumes) {
2274 		map = (struct intel_raid_mapping *)
2275 		      &map->disk_idx[map->total_disks];
2276 		volume++;
2277 		retval = 0;
2278 		continue;
2279 	    }
2280 	    break;
2281 	}
2282 	else {
2283 	    kfree(raidp[array], M_AR);
2284 	    raidp[array] = NULL;
2285 	    if (volume == 2)
2286 		retval = 1;
2287 	}
2288     }
2289 
2290 intel_out:
2291     kfree(meta, M_AR);
2292     return retval;
2293 }
2294 
2295 static int
2296 ata_raid_intel_write_meta(struct ar_softc *rdp)
2297 {
2298     struct intel_raid_conf *meta;
2299     struct intel_raid_mapping *map;
2300     struct timeval timestamp;
2301     u_int32_t checksum, *ptr;
2302     int count, disk, error = 0;
2303     char *tmp;
2304 
2305     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2306 
2307     rdp->generation++;
2308 
2309     /* Generate a new config_id if none exists */
2310     if (!rdp->magic_0) {
2311 	microtime(&timestamp);
2312 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2313     }
2314 
2315     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2316     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2317     meta->config_id = rdp->magic_0;
2318     meta->generation = rdp->generation;
2319     meta->total_disks = rdp->total_disks;
2320     meta->total_volumes = 1;                                    /* XXX SOS */
2321     for (disk = 0; disk < rdp->total_disks; disk++) {
2322 	if (rdp->disks[disk].dev) {
2323 	    struct ata_channel *ch =
2324 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2325 	    struct ata_device *atadev =
2326 		device_get_softc(rdp->disks[disk].dev);
2327 
2328 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2329 		  sizeof(rdp->disks[disk].serial));
2330 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2331 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2332 	}
2333 	else
2334 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2335 	meta->disk[disk].flags = 0;
2336 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2337 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2338 	else {
2339 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2340 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2341 	    else
2342 		meta->disk[disk].flags |= INTEL_F_DOWN;
2343 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2344 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2345 	}
2346     }
2347     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2348 
2349     bcopy(rdp->name, map->name, sizeof(rdp->name));
2350     map->total_sectors = rdp->total_sectors;
2351     map->state = 12;                                            /* XXX SOS */
2352     map->offset = rdp->offset_sectors;
2353     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2354     map->stripe_sectors =  rdp->interleave;
2355     map->disk_sectors = rdp->total_sectors / rdp->width;
2356     map->status = INTEL_S_READY;                                /* XXX SOS */
2357     switch (rdp->type) {
2358     case AR_T_RAID0:
2359 	map->type = INTEL_T_RAID0;
2360 	break;
2361     case AR_T_RAID1:
2362 	map->type = INTEL_T_RAID1;
2363 	break;
2364     case AR_T_RAID01:
2365 	map->type = INTEL_T_RAID1;
2366 	break;
2367     case AR_T_RAID5:
2368 	map->type = INTEL_T_RAID5;
2369 	break;
2370     default:
2371 	kfree(meta, M_AR);
2372 	return ENODEV;
2373     }
2374     map->total_disks = rdp->total_disks;
2375     map->magic[0] = 0x02;
2376     map->magic[1] = 0xff;
2377     map->magic[2] = 0x01;
2378     for (disk = 0; disk < rdp->total_disks; disk++)
2379 	map->disk_idx[disk] = disk;
2380 
2381     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2382     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2383 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2384 	checksum += *ptr++;
2385     }
2386     meta->checksum = checksum;
2387 
2388     if (testing || bootverbose)
2389 	ata_raid_intel_print_meta(meta);
2390 
2391     tmp = (char *)meta;
2392     bcopy(tmp, tmp+1024, 512);
2393     bcopy(tmp+512, tmp, 1024);
2394     bzero(tmp+1024, 512);
2395 
2396     for (disk = 0; disk < rdp->total_disks; disk++) {
2397 	if (rdp->disks[disk].dev) {
2398 	    if (ata_raid_rw(rdp->disks[disk].dev,
2399 			    INTEL_LBA(rdp->disks[disk].dev),
2400 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2401 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2402 		error = EIO;
2403 	    }
2404 	}
2405     }
2406     kfree(meta, M_AR);
2407     return error;
2408 }
2409 
2410 
2411 /* Integrated Technology Express Metadata */
2412 static int
2413 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2414 {
2415     struct ata_raid_subdisk *ars = device_get_softc(dev);
2416     device_t parent = device_get_parent(dev);
2417     struct ite_raid_conf *meta;
2418     struct ar_softc *raid = NULL;
2419     int array, disk_number, count, retval = 0;
2420     u_int16_t *ptr;
2421 
2422     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2423 	M_WAITOK | M_ZERO);
2424 
2425     if (ata_raid_rw(parent, ITE_LBA(parent),
2426 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2427 	if (testing || bootverbose)
2428 	    device_printf(parent, "ITE read metadata failed\n");
2429 	goto ite_out;
2430     }
2431 
2432     /* check if this is a ITE RAID struct */
2433     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2434 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2435 	ptr[count] = be16toh(ptr[count]);
2436 
2437     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2438 	if (testing || bootverbose)
2439 	    device_printf(parent, "ITE check1 failed\n");
2440 	goto ite_out;
2441     }
2442 
2443     if (testing || bootverbose)
2444 	ata_raid_ite_print_meta(meta);
2445 
2446     /* now convert ITE metadata into our generic form */
2447     for (array = 0; array < MAX_ARRAYS; array++) {
2448 	if ((raid = raidp[array])) {
2449 	    if (raid->format != AR_F_ITE_RAID)
2450 		continue;
2451 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2452 		continue;
2453 	}
2454 
2455 	/* if we dont have a disks timestamp the RAID is invalidated */
2456 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2457 	    goto ite_out;
2458 
2459 	if (!raid) {
2460 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2461 						     M_AR, M_WAITOK | M_ZERO);
2462 	}
2463 
2464 	switch (meta->type) {
2465 	case ITE_T_RAID0:
2466 	    raid->type = AR_T_RAID0;
2467 	    raid->width = meta->array_width;
2468 	    raid->total_disks = meta->array_width;
2469 	    disk_number = meta->disk_number;
2470 	    break;
2471 
2472 	case ITE_T_RAID1:
2473 	    raid->type = AR_T_RAID1;
2474 	    raid->width = 1;
2475 	    raid->total_disks = 2;
2476 	    disk_number = meta->disk_number;
2477 	    break;
2478 
2479 	case ITE_T_RAID01:
2480 	    raid->type = AR_T_RAID01;
2481 	    raid->width = meta->array_width;
2482 	    raid->total_disks = 4;
2483 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2484 			  ((meta->disk_number & 0x01) << 1);
2485 	    break;
2486 
2487 	case ITE_T_SPAN:
2488 	    raid->type = AR_T_SPAN;
2489 	    raid->width = 1;
2490 	    raid->total_disks = meta->array_width;
2491 	    disk_number = meta->disk_number;
2492 	    break;
2493 
2494 	default:
2495 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2496 	    kfree(raidp[array], M_AR);
2497 	    raidp[array] = NULL;
2498 	    goto ite_out;
2499 	}
2500 
2501 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2502 	raid->format = AR_F_ITE_RAID;
2503 	raid->generation = 0;
2504 	raid->interleave = meta->stripe_sectors;
2505 	raid->total_sectors = meta->total_sectors;
2506 	raid->heads = 255;
2507 	raid->sectors = 63;
2508 	raid->cylinders = raid->total_sectors / (63 * 255);
2509 	raid->offset_sectors = 0;
2510 	raid->rebuild_lba = 0;
2511 	raid->lun = array;
2512 
2513 	raid->disks[disk_number].dev = parent;
2514 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2515 	raid->disks[disk_number].flags =
2516 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2517 	ars->raid[raid->volume] = raid;
2518 	ars->disk_number[raid->volume] = disk_number;
2519 	retval = 1;
2520 	break;
2521     }
2522 ite_out:
2523     kfree(meta, M_AR);
2524     return retval;
2525 }
2526 
2527 /* JMicron Technology Corp Metadata */
2528 static int
2529 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2530 {
2531     struct ata_raid_subdisk *ars = device_get_softc(dev);
2532     device_t parent = device_get_parent(dev);
2533     struct jmicron_raid_conf *meta;
2534     struct ar_softc *raid = NULL;
2535     u_int16_t checksum, *ptr;
2536     u_int64_t disk_size;
2537     int count, array, disk, total_disks, retval = 0;
2538 
2539     meta = (struct jmicron_raid_conf *)
2540 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2541 
2542     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2543 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2544 	if (testing || bootverbose)
2545 	    device_printf(parent,
2546 			  "JMicron read metadata failed\n");
2547     }
2548 
2549     /* check for JMicron signature */
2550     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2551 	if (testing || bootverbose)
2552 	    device_printf(parent, "JMicron check1 failed\n");
2553 	goto jmicron_out;
2554     }
2555 
2556     /* calculate checksum and compare for valid */
2557     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2558 	checksum += *ptr++;
2559     if (checksum) {
2560 	if (testing || bootverbose)
2561 	    device_printf(parent, "JMicron check2 failed\n");
2562 	goto jmicron_out;
2563     }
2564 
2565     if (testing || bootverbose)
2566 	ata_raid_jmicron_print_meta(meta);
2567 
2568     /* now convert JMicron meta into our generic form */
2569     for (array = 0; array < MAX_ARRAYS; array++) {
2570 jmicron_next:
2571 	if (!raidp[array]) {
2572 	    raidp[array] =
2573 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2574 					  M_WAITOK | M_ZERO);
2575 	}
2576 	raid = raidp[array];
2577 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2578 	    continue;
2579 
2580 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2581 	    if (meta->disks[disk]) {
2582 		if (raid->format == AR_F_JMICRON_RAID) {
2583 		    if (bcmp(&meta->disks[disk],
2584 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2585 			array++;
2586 			goto jmicron_next;
2587 		    }
2588 		}
2589 		else
2590 		    bcopy(&meta->disks[disk],
2591 			  raid->disks[disk].serial, sizeof(u_int32_t));
2592 		total_disks++;
2593 	    }
2594 	}
2595 	/* handle spares XXX SOS */
2596 
2597 	switch (meta->type) {
2598 	case JM_T_RAID0:
2599 	    raid->type = AR_T_RAID0;
2600 	    raid->width = total_disks;
2601 	    break;
2602 
2603 	case JM_T_RAID1:
2604 	    raid->type = AR_T_RAID1;
2605 	    raid->width = 1;
2606 	    break;
2607 
2608 	case JM_T_RAID01:
2609 	    raid->type = AR_T_RAID01;
2610 	    raid->width = total_disks / 2;
2611 	    break;
2612 
2613 	case JM_T_RAID5:
2614 	    raid->type = AR_T_RAID5;
2615 	    raid->width = total_disks;
2616 	    break;
2617 
2618 	case JM_T_JBOD:
2619 	    raid->type = AR_T_SPAN;
2620 	    raid->width = 1;
2621 	    break;
2622 
2623 	default:
2624 	    device_printf(parent,
2625 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2626 	    kfree(raidp[array], M_AR);
2627 	    raidp[array] = NULL;
2628 	    goto jmicron_out;
2629 	}
2630 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2631 	raid->format = AR_F_JMICRON_RAID;
2632 	strncpy(raid->name, meta->name, sizeof(meta->name));
2633 	raid->generation = 0;
2634 	raid->interleave = 2 << meta->stripe_shift;
2635 	raid->total_disks = total_disks;
2636 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2637 	raid->heads = 255;
2638 	raid->sectors = 63;
2639 	raid->cylinders = raid->total_sectors / (63 * 255);
2640 	raid->offset_sectors = meta->offset * 16;
2641 	raid->rebuild_lba = 0;
2642 	raid->lun = array;
2643 
2644 	for (disk = 0; disk < raid->total_disks; disk++) {
2645 	    if (meta->disks[disk] == meta->disk_id) {
2646 		raid->disks[disk].dev = parent;
2647 		raid->disks[disk].sectors = disk_size;
2648 		raid->disks[disk].flags =
2649 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2650 		ars->raid[raid->volume] = raid;
2651 		ars->disk_number[raid->volume] = disk;
2652 		retval = 1;
2653 		break;
2654 	    }
2655 	}
2656 	break;
2657     }
2658 jmicron_out:
2659     kfree(meta, M_AR);
2660     return retval;
2661 }
2662 
2663 static int
2664 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2665 {
2666     struct jmicron_raid_conf *meta;
2667     u_int64_t disk_sectors;
2668     int disk, error = 0;
2669 
2670     meta = (struct jmicron_raid_conf *)
2671 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2672 
2673     rdp->generation++;
2674     switch (rdp->type) {
2675     case AR_T_JBOD:
2676 	meta->type = JM_T_JBOD;
2677 	break;
2678 
2679     case AR_T_RAID0:
2680 	meta->type = JM_T_RAID0;
2681 	break;
2682 
2683     case AR_T_RAID1:
2684 	meta->type = JM_T_RAID1;
2685 	break;
2686 
2687     case AR_T_RAID5:
2688 	meta->type = JM_T_RAID5;
2689 	break;
2690 
2691     case AR_T_RAID01:
2692 	meta->type = JM_T_RAID01;
2693 	break;
2694 
2695     default:
2696 	kfree(meta, M_AR);
2697 	return ENODEV;
2698     }
2699     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2700     meta->version = JMICRON_VERSION;
2701     meta->offset = rdp->offset_sectors / 16;
2702     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2703     meta->disk_sectors_low = disk_sectors & 0xffff;
2704     meta->disk_sectors_high = disk_sectors >> 16;
2705     strncpy(meta->name, rdp->name, sizeof(meta->name));
2706     meta->stripe_shift = ffs(rdp->interleave) - 2;
2707 
2708     for (disk = 0; disk < rdp->total_disks; disk++) {
2709 	if (rdp->disks[disk].serial[0])
2710 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2711 	else
2712 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2713     }
2714 
2715     for (disk = 0; disk < rdp->total_disks; disk++) {
2716 	if (rdp->disks[disk].dev) {
2717 	    u_int16_t checksum = 0, *ptr;
2718 	    int count;
2719 
2720 	    meta->disk_id = meta->disks[disk];
2721 	    meta->checksum = 0;
2722 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2723 		checksum += *ptr++;
2724 	    meta->checksum -= checksum;
2725 
2726 	    if (testing || bootverbose)
2727 		ata_raid_jmicron_print_meta(meta);
2728 
2729 	    if (ata_raid_rw(rdp->disks[disk].dev,
2730 			    JMICRON_LBA(rdp->disks[disk].dev),
2731 			    meta, sizeof(struct jmicron_raid_conf),
2732 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2733 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2734 		error = EIO;
2735 	    }
2736 	}
2737     }
2738     /* handle spares XXX SOS */
2739 
2740     kfree(meta, M_AR);
2741     return error;
2742 }
2743 
2744 /* LSILogic V2 MegaRAID Metadata */
2745 static int
2746 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2747 {
2748     struct ata_raid_subdisk *ars = device_get_softc(dev);
2749     device_t parent = device_get_parent(dev);
2750     struct lsiv2_raid_conf *meta;
2751     struct ar_softc *raid = NULL;
2752     int array, retval = 0;
2753 
2754     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2755 	M_AR, M_WAITOK | M_ZERO);
2756 
2757     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2758 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2759 	if (testing || bootverbose)
2760 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2761 	goto lsiv2_out;
2762     }
2763 
2764     /* check if this is a LSI RAID struct */
2765     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2766 	if (testing || bootverbose)
2767 	    device_printf(parent, "LSI (v2) check1 failed\n");
2768 	goto lsiv2_out;
2769     }
2770 
2771     if (testing || bootverbose)
2772 	ata_raid_lsiv2_print_meta(meta);
2773 
2774     /* now convert LSI (v2) config meta into our generic form */
2775     for (array = 0; array < MAX_ARRAYS; array++) {
2776 	int raid_entry, conf_entry;
2777 
2778 	if (!raidp[array + meta->raid_number]) {
2779 	    raidp[array + meta->raid_number] =
2780 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2781 					  M_WAITOK | M_ZERO);
2782 	}
2783 	raid = raidp[array + meta->raid_number];
2784 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2785 	    continue;
2786 
2787 	if (raid->magic_0 &&
2788 	    ((raid->magic_0 != meta->timestamp) ||
2789 	     (raid->magic_1 != meta->raid_number)))
2790 	    continue;
2791 
2792 	array += meta->raid_number;
2793 
2794 	raid_entry = meta->raid_number;
2795 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2796 		     meta->disk_number - 1;
2797 
2798 	switch (meta->configs[raid_entry].raid.type) {
2799 	case LSIV2_T_RAID0:
2800 	    raid->magic_0 = meta->timestamp;
2801 	    raid->magic_1 = meta->raid_number;
2802 	    raid->type = AR_T_RAID0;
2803 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2804 	    raid->width = meta->configs[raid_entry].raid.array_width;
2805 	    break;
2806 
2807 	case LSIV2_T_RAID1:
2808 	    raid->magic_0 = meta->timestamp;
2809 	    raid->magic_1 = meta->raid_number;
2810 	    raid->type = AR_T_RAID1;
2811 	    raid->width = meta->configs[raid_entry].raid.array_width;
2812 	    break;
2813 
2814 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2815 	    raid->magic_0 = meta->timestamp;
2816 	    raid->magic_1 = meta->raid_number;
2817 	    raid->type = AR_T_RAID01;
2818 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2819 	    raid->width = meta->configs[raid_entry].raid.array_width;
2820 	    break;
2821 
2822 	default:
2823 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2824 			  meta->configs[raid_entry].raid.type);
2825 	    kfree(raidp[array], M_AR);
2826 	    raidp[array] = NULL;
2827 	    goto lsiv2_out;
2828 	}
2829 
2830 	raid->format = AR_F_LSIV2_RAID;
2831 	raid->generation = 0;
2832 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2833 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2834 	raid->heads = 255;
2835 	raid->sectors = 63;
2836 	raid->cylinders = raid->total_sectors / (63 * 255);
2837 	raid->offset_sectors = 0;
2838 	raid->rebuild_lba = 0;
2839 	raid->lun = array;
2840 
2841 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2842 	    raid->disks[meta->disk_number].dev = parent;
2843 	    raid->disks[meta->disk_number].sectors =
2844 		meta->configs[conf_entry].disk.disk_sectors;
2845 	    raid->disks[meta->disk_number].flags =
2846 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2847 	    ars->raid[raid->volume] = raid;
2848 	    ars->disk_number[raid->volume] = meta->disk_number;
2849 	    retval = 1;
2850 	}
2851 	else
2852 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2853 
2854 	break;
2855     }
2856 
2857 lsiv2_out:
2858     kfree(meta, M_AR);
2859     return retval;
2860 }
2861 
2862 /* LSILogic V3 MegaRAID Metadata */
2863 static int
2864 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2865 {
2866     struct ata_raid_subdisk *ars = device_get_softc(dev);
2867     device_t parent = device_get_parent(dev);
2868     struct lsiv3_raid_conf *meta;
2869     struct ar_softc *raid = NULL;
2870     u_int8_t checksum, *ptr;
2871     int array, entry, count, disk_number, retval = 0;
2872 
2873     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2874 	M_AR, M_WAITOK | M_ZERO);
2875 
2876     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2877 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2878 	if (testing || bootverbose)
2879 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2880 	goto lsiv3_out;
2881     }
2882 
2883     /* check if this is a LSI RAID struct */
2884     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2885 	if (testing || bootverbose)
2886 	    device_printf(parent, "LSI (v3) check1 failed\n");
2887 	goto lsiv3_out;
2888     }
2889 
2890     /* check if the checksum is OK */
2891     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2892 	checksum += *ptr++;
2893     if (checksum) {
2894 	if (testing || bootverbose)
2895 	    device_printf(parent, "LSI (v3) check2 failed\n");
2896 	goto lsiv3_out;
2897     }
2898 
2899     if (testing || bootverbose)
2900 	ata_raid_lsiv3_print_meta(meta);
2901 
2902     /* now convert LSI (v3) config meta into our generic form */
2903     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2904 	if (!raidp[array]) {
2905 	    raidp[array] =
2906 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2907 					  M_WAITOK | M_ZERO);
2908 	}
2909 	raid = raidp[array];
2910 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2911 	    array++;
2912 	    continue;
2913 	}
2914 
2915 	if ((raid->format == AR_F_LSIV3_RAID) &&
2916 	    (raid->magic_0 != meta->timestamp)) {
2917 	    array++;
2918 	    continue;
2919 	}
2920 
2921 	switch (meta->raid[entry].total_disks) {
2922 	case 0:
2923 	    entry++;
2924 	    continue;
2925 	case 1:
2926 	    if (meta->raid[entry].device == meta->device) {
2927 		disk_number = 0;
2928 		break;
2929 	    }
2930 	    if (raid->format)
2931 		array++;
2932 	    entry++;
2933 	    continue;
2934 	case 2:
2935 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2936 	    break;
2937 	default:
2938 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2939 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2940 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2941 	    break;
2942 	}
2943 
2944 	switch (meta->raid[entry].type) {
2945 	case LSIV3_T_RAID0:
2946 	    raid->type = AR_T_RAID0;
2947 	    raid->width = meta->raid[entry].total_disks;
2948 	    break;
2949 
2950 	case LSIV3_T_RAID1:
2951 	    raid->type = AR_T_RAID1;
2952 	    raid->width = meta->raid[entry].array_width;
2953 	    break;
2954 
2955 	default:
2956 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2957 			  meta->raid[entry].type);
2958 	    kfree(raidp[array], M_AR);
2959 	    raidp[array] = NULL;
2960 	    entry++;
2961 	    continue;
2962 	}
2963 
2964 	raid->magic_0 = meta->timestamp;
2965 	raid->format = AR_F_LSIV3_RAID;
2966 	raid->generation = 0;
2967 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2968 	raid->total_disks = meta->raid[entry].total_disks;
2969 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2970 	raid->heads = 255;
2971 	raid->sectors = 63;
2972 	raid->cylinders = raid->total_sectors / (63 * 255);
2973 	raid->offset_sectors = meta->raid[entry].offset;
2974 	raid->rebuild_lba = 0;
2975 	raid->lun = array;
2976 
2977 	raid->disks[disk_number].dev = parent;
2978 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2979 	raid->disks[disk_number].flags =
2980 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2981 	ars->raid[raid->volume] = raid;
2982 	ars->disk_number[raid->volume] = disk_number;
2983 	retval = 1;
2984 	entry++;
2985 	array++;
2986     }
2987 
2988 lsiv3_out:
2989     kfree(meta, M_AR);
2990     return retval;
2991 }
2992 
2993 /* nVidia MediaShield Metadata */
2994 static int
2995 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2996 {
2997     struct ata_raid_subdisk *ars = device_get_softc(dev);
2998     device_t parent = device_get_parent(dev);
2999     struct nvidia_raid_conf *meta;
3000     struct ar_softc *raid = NULL;
3001     u_int32_t checksum, *ptr;
3002     int array, count, retval = 0;
3003 
3004     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3005 	M_AR, M_WAITOK | M_ZERO);
3006 
3007     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3008 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3009 	if (testing || bootverbose)
3010 	    device_printf(parent, "nVidia read metadata failed\n");
3011 	goto nvidia_out;
3012     }
3013 
3014     /* check if this is a nVidia RAID struct */
3015     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3016 	if (testing || bootverbose)
3017 	    device_printf(parent, "nVidia check1 failed\n");
3018 	goto nvidia_out;
3019     }
3020 
3021     /* check if the checksum is OK */
3022     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3023 	 count < meta->config_size; count++)
3024 	checksum += *ptr++;
3025     if (checksum) {
3026 	if (testing || bootverbose)
3027 	    device_printf(parent, "nVidia check2 failed\n");
3028 	goto nvidia_out;
3029     }
3030 
3031     if (testing || bootverbose)
3032 	ata_raid_nvidia_print_meta(meta);
3033 
3034     /* now convert nVidia meta into our generic form */
3035     for (array = 0; array < MAX_ARRAYS; array++) {
3036 	if (!raidp[array]) {
3037 	    raidp[array] =
3038 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3039 					  M_WAITOK | M_ZERO);
3040 	}
3041 	raid = raidp[array];
3042 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3043 	    continue;
3044 
3045 	if (raid->format == AR_F_NVIDIA_RAID &&
3046 	    ((raid->magic_0 != meta->magic_1) ||
3047 	     (raid->magic_1 != meta->magic_2))) {
3048 	    continue;
3049 	}
3050 
3051 	switch (meta->type) {
3052 	case NV_T_SPAN:
3053 	    raid->type = AR_T_SPAN;
3054 	    break;
3055 
3056 	case NV_T_RAID0:
3057 	    raid->type = AR_T_RAID0;
3058 	    break;
3059 
3060 	case NV_T_RAID1:
3061 	    raid->type = AR_T_RAID1;
3062 	    break;
3063 
3064 	case NV_T_RAID5:
3065 	    raid->type = AR_T_RAID5;
3066 	    break;
3067 
3068 	case NV_T_RAID01:
3069 	    raid->type = AR_T_RAID01;
3070 	    break;
3071 
3072 	default:
3073 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3074 			  meta->type);
3075 	    kfree(raidp[array], M_AR);
3076 	    raidp[array] = NULL;
3077 	    goto nvidia_out;
3078 	}
3079 	raid->magic_0 = meta->magic_1;
3080 	raid->magic_1 = meta->magic_2;
3081 	raid->format = AR_F_NVIDIA_RAID;
3082 	raid->generation = 0;
3083 	raid->interleave = meta->stripe_sectors;
3084 	raid->width = meta->array_width;
3085 	raid->total_disks = meta->total_disks;
3086 	raid->total_sectors = meta->total_sectors;
3087 	raid->heads = 255;
3088 	raid->sectors = 63;
3089 	raid->cylinders = raid->total_sectors / (63 * 255);
3090 	raid->offset_sectors = 0;
3091 	raid->rebuild_lba = meta->rebuild_lba;
3092 	raid->lun = array;
3093 	raid->status = AR_S_READY;
3094 	if (meta->status & NV_S_DEGRADED)
3095 	    raid->status |= AR_S_DEGRADED;
3096 
3097 	raid->disks[meta->disk_number].dev = parent;
3098 	raid->disks[meta->disk_number].sectors =
3099 	    raid->total_sectors / raid->width;
3100 	raid->disks[meta->disk_number].flags =
3101 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3102 	ars->raid[raid->volume] = raid;
3103 	ars->disk_number[raid->volume] = meta->disk_number;
3104 	retval = 1;
3105 	break;
3106     }
3107 
3108 nvidia_out:
3109     kfree(meta, M_AR);
3110     return retval;
3111 }
3112 
3113 /* Promise FastTrak Metadata */
3114 static int
3115 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3116 {
3117     struct ata_raid_subdisk *ars = device_get_softc(dev);
3118     device_t parent = device_get_parent(dev);
3119     struct promise_raid_conf *meta;
3120     struct ar_softc *raid;
3121     u_int32_t checksum, *ptr;
3122     int array, count, disk, disksum = 0, retval = 0;
3123 
3124     meta = (struct promise_raid_conf *)
3125 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3126 
3127     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3128 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3129 	if (testing || bootverbose)
3130 	    device_printf(parent, "%s read metadata failed\n",
3131 			  native ? "FreeBSD" : "Promise");
3132 	goto promise_out;
3133     }
3134 
3135     /* check the signature */
3136     if (native) {
3137 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3138 	    if (testing || bootverbose)
3139 		device_printf(parent, "FreeBSD check1 failed\n");
3140 	    goto promise_out;
3141 	}
3142     }
3143     else {
3144 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3145 	    if (testing || bootverbose)
3146 		device_printf(parent, "Promise check1 failed\n");
3147 	    goto promise_out;
3148 	}
3149     }
3150 
3151     /* check if the checksum is OK */
3152     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3153 	checksum += *ptr++;
3154     if (checksum != *ptr) {
3155 	if (testing || bootverbose)
3156 	    device_printf(parent, "%s check2 failed\n",
3157 			  native ? "FreeBSD" : "Promise");
3158 	goto promise_out;
3159     }
3160 
3161     /* check on disk integrity status */
3162     if (meta->raid.integrity != PR_I_VALID) {
3163 	if (testing || bootverbose)
3164 	    device_printf(parent, "%s check3 failed\n",
3165 			  native ? "FreeBSD" : "Promise");
3166 	goto promise_out;
3167     }
3168 
3169     if (testing || bootverbose)
3170 	ata_raid_promise_print_meta(meta);
3171 
3172     /* now convert Promise metadata into our generic form */
3173     for (array = 0; array < MAX_ARRAYS; array++) {
3174 	if (!raidp[array]) {
3175 	    raidp[array] =
3176 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3177 					  M_WAITOK | M_ZERO);
3178 	}
3179 	raid = raidp[array];
3180 	if (raid->format &&
3181 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3182 	    continue;
3183 
3184 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3185 	    !(meta->raid.magic_1 == (raid->magic_1)))
3186 	    continue;
3187 
3188 	/* update our knowledge about the array config based on generation */
3189 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3190 	    switch (meta->raid.type) {
3191 	    case PR_T_SPAN:
3192 		raid->type = AR_T_SPAN;
3193 		break;
3194 
3195 	    case PR_T_JBOD:
3196 		raid->type = AR_T_JBOD;
3197 		break;
3198 
3199 	    case PR_T_RAID0:
3200 		raid->type = AR_T_RAID0;
3201 		break;
3202 
3203 	    case PR_T_RAID1:
3204 		raid->type = AR_T_RAID1;
3205 		if (meta->raid.array_width > 1)
3206 		    raid->type = AR_T_RAID01;
3207 		break;
3208 
3209 	    case PR_T_RAID5:
3210 		raid->type = AR_T_RAID5;
3211 		break;
3212 
3213 	    default:
3214 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3215 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3216 		kfree(raidp[array], M_AR);
3217 		raidp[array] = NULL;
3218 		goto promise_out;
3219 	    }
3220 	    raid->magic_1 = meta->raid.magic_1;
3221 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3222 	    raid->generation = meta->raid.generation;
3223 	    raid->interleave = 1 << meta->raid.stripe_shift;
3224 	    raid->width = meta->raid.array_width;
3225 	    raid->total_disks = meta->raid.total_disks;
3226 	    raid->heads = meta->raid.heads + 1;
3227 	    raid->sectors = meta->raid.sectors;
3228 	    raid->cylinders = meta->raid.cylinders + 1;
3229 	    raid->total_sectors = meta->raid.total_sectors;
3230 	    raid->offset_sectors = 0;
3231 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3232 	    raid->lun = array;
3233 	    if ((meta->raid.status &
3234 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3235 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3236 		raid->status |= AR_S_READY;
3237 		if (meta->raid.status & PR_S_DEGRADED)
3238 		    raid->status |= AR_S_DEGRADED;
3239 	    }
3240 	    else
3241 		raid->status &= ~AR_S_READY;
3242 
3243 	    /* convert disk flags to our internal types */
3244 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3245 		raid->disks[disk].dev = NULL;
3246 		raid->disks[disk].flags = 0;
3247 		*((u_int64_t *)(raid->disks[disk].serial)) =
3248 		    meta->raid.disk[disk].magic_0;
3249 		disksum += meta->raid.disk[disk].flags;
3250 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3251 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3252 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3253 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3254 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3255 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3256 		    raid->disks[disk].flags |= AR_DF_SPARE;
3257 		}
3258 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3259 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3260 	    }
3261 	    if (!disksum) {
3262 		device_printf(parent, "%s subdisks has no flags\n",
3263 			      native ? "FreeBSD" : "Promise");
3264 		kfree(raidp[array], M_AR);
3265 		raidp[array] = NULL;
3266 		goto promise_out;
3267 	    }
3268 	}
3269 	if (meta->raid.generation >= raid->generation) {
3270 	    int disk_number = meta->raid.disk_number;
3271 
3272 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3273 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3274 		raid->disks[disk_number].dev = parent;
3275 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3276 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3277 		if ((raid->disks[disk_number].flags &
3278 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3279 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3280 		    ars->raid[raid->volume] = raid;
3281 		    ars->disk_number[raid->volume] = disk_number;
3282 		    retval = 1;
3283 		}
3284 	    }
3285 	}
3286 	break;
3287     }
3288 
3289 promise_out:
3290     kfree(meta, M_AR);
3291     return retval;
3292 }
3293 
3294 static int
3295 ata_raid_promise_write_meta(struct ar_softc *rdp)
3296 {
3297     struct promise_raid_conf *meta;
3298     struct timeval timestamp;
3299     u_int32_t *ckptr;
3300     int count, disk, drive, error = 0;
3301 
3302     meta = (struct promise_raid_conf *)
3303 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3304 
3305     rdp->generation++;
3306     microtime(&timestamp);
3307 
3308     for (disk = 0; disk < rdp->total_disks; disk++) {
3309 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3310 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3311 	meta->dummy_0 = 0x00020000;
3312 	meta->raid.disk_number = disk;
3313 
3314 	if (rdp->disks[disk].dev) {
3315 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3316 	    struct ata_channel *ch =
3317 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3318 
3319 	    meta->raid.channel = ch->unit;
3320 	    meta->raid.device = ATA_DEV(atadev->unit);
3321 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3322 	    meta->raid.disk_offset = rdp->offset_sectors;
3323 	}
3324 	else {
3325 	    meta->raid.channel = 0;
3326 	    meta->raid.device = 0;
3327 	    meta->raid.disk_sectors = 0;
3328 	    meta->raid.disk_offset = 0;
3329 	}
3330 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3331 	meta->magic_1 = timestamp.tv_sec >> 16;
3332 	meta->magic_2 = timestamp.tv_sec;
3333 	meta->raid.integrity = PR_I_VALID;
3334 	meta->raid.magic_0 = meta->magic_0;
3335 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3336 	meta->raid.generation = rdp->generation;
3337 
3338 	if (rdp->status & AR_S_READY) {
3339 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3340 	    meta->raid.status =
3341 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3342 	    if (rdp->status & AR_S_DEGRADED)
3343 		meta->raid.status |= PR_S_DEGRADED;
3344 	    else
3345 		meta->raid.status |= PR_S_FUNCTIONAL;
3346 	}
3347 	else {
3348 	    meta->raid.flags = PR_F_DOWN;
3349 	    meta->raid.status = 0;
3350 	}
3351 
3352 	switch (rdp->type) {
3353 	case AR_T_RAID0:
3354 	    meta->raid.type = PR_T_RAID0;
3355 	    break;
3356 	case AR_T_RAID1:
3357 	    meta->raid.type = PR_T_RAID1;
3358 	    break;
3359 	case AR_T_RAID01:
3360 	    meta->raid.type = PR_T_RAID1;
3361 	    break;
3362 	case AR_T_RAID5:
3363 	    meta->raid.type = PR_T_RAID5;
3364 	    break;
3365 	case AR_T_SPAN:
3366 	    meta->raid.type = PR_T_SPAN;
3367 	    break;
3368 	case AR_T_JBOD:
3369 	    meta->raid.type = PR_T_JBOD;
3370 	    break;
3371 	default:
3372 	    kfree(meta, M_AR);
3373 	    return ENODEV;
3374 	}
3375 
3376 	meta->raid.total_disks = rdp->total_disks;
3377 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3378 	meta->raid.array_width = rdp->width;
3379 	meta->raid.array_number = rdp->lun;
3380 	meta->raid.total_sectors = rdp->total_sectors;
3381 	meta->raid.cylinders = rdp->cylinders - 1;
3382 	meta->raid.heads = rdp->heads - 1;
3383 	meta->raid.sectors = rdp->sectors;
3384 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3385 
3386 	bzero(&meta->raid.disk, 8 * 12);
3387 	for (drive = 0; drive < rdp->total_disks; drive++) {
3388 	    meta->raid.disk[drive].flags = 0;
3389 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3390 		meta->raid.disk[drive].flags |= PR_F_VALID;
3391 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3392 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3393 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3394 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3395 	    else
3396 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3397 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3398 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3399 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3400 	    meta->raid.disk[drive].dummy_0 = 0x0;
3401 	    if (rdp->disks[drive].dev) {
3402 		struct ata_channel *ch =
3403 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3404 		struct ata_device *atadev =
3405 		    device_get_softc(rdp->disks[drive].dev);
3406 
3407 		meta->raid.disk[drive].channel = ch->unit;
3408 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3409 	    }
3410 	    meta->raid.disk[drive].magic_0 =
3411 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3412 	}
3413 
3414 	if (rdp->disks[disk].dev) {
3415 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3416 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3417 		if (rdp->format == AR_F_FREEBSD_RAID)
3418 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3419 		else
3420 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3421 	    }
3422 	    else
3423 		bzero(meta->promise_id, sizeof(meta->promise_id));
3424 	    meta->checksum = 0;
3425 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3426 		meta->checksum += *ckptr++;
3427 	    if (testing || bootverbose)
3428 		ata_raid_promise_print_meta(meta);
3429 	    if (ata_raid_rw(rdp->disks[disk].dev,
3430 			    PROMISE_LBA(rdp->disks[disk].dev),
3431 			    meta, sizeof(struct promise_raid_conf),
3432 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3433 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3434 		error = EIO;
3435 	    }
3436 	}
3437     }
3438     kfree(meta, M_AR);
3439     return error;
3440 }
3441 
3442 /* Silicon Image Medley Metadata */
3443 static int
3444 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3445 {
3446     struct ata_raid_subdisk *ars = device_get_softc(dev);
3447     device_t parent = device_get_parent(dev);
3448     struct sii_raid_conf *meta;
3449     struct ar_softc *raid = NULL;
3450     u_int16_t checksum, *ptr;
3451     int array, count, disk, retval = 0;
3452 
3453     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3454 	M_WAITOK | M_ZERO);
3455 
3456     if (ata_raid_rw(parent, SII_LBA(parent),
3457 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3458 	if (testing || bootverbose)
3459 	    device_printf(parent, "Silicon Image read metadata failed\n");
3460 	goto sii_out;
3461     }
3462 
3463     /* check if this is a Silicon Image (Medley) RAID struct */
3464     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3465 	checksum += *ptr++;
3466     if (checksum) {
3467 	if (testing || bootverbose)
3468 	    device_printf(parent, "Silicon Image check1 failed\n");
3469 	goto sii_out;
3470     }
3471 
3472     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3473 	checksum += *ptr++;
3474     if (checksum != meta->checksum_1) {
3475 	if (testing || bootverbose)
3476 	    device_printf(parent, "Silicon Image check2 failed\n");
3477 	goto sii_out;
3478     }
3479 
3480     /* check verison */
3481     if (meta->version_major != 0x0002 ||
3482 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3483 	if (testing || bootverbose)
3484 	    device_printf(parent, "Silicon Image check3 failed\n");
3485 	goto sii_out;
3486     }
3487 
3488     if (testing || bootverbose)
3489 	ata_raid_sii_print_meta(meta);
3490 
3491     /* now convert Silicon Image meta into our generic form */
3492     for (array = 0; array < MAX_ARRAYS; array++) {
3493 	if (!raidp[array]) {
3494 	    raidp[array] =
3495 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3496 					  M_WAITOK | M_ZERO);
3497 	}
3498 	raid = raidp[array];
3499 	if (raid->format && (raid->format != AR_F_SII_RAID))
3500 	    continue;
3501 
3502 	if (raid->format == AR_F_SII_RAID &&
3503 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3504 	    continue;
3505 	}
3506 
3507 	/* update our knowledge about the array config based on generation */
3508 	if (!meta->generation || meta->generation > raid->generation) {
3509 	    switch (meta->type) {
3510 	    case SII_T_RAID0:
3511 		raid->type = AR_T_RAID0;
3512 		break;
3513 
3514 	    case SII_T_RAID1:
3515 		raid->type = AR_T_RAID1;
3516 		break;
3517 
3518 	    case SII_T_RAID01:
3519 		raid->type = AR_T_RAID01;
3520 		break;
3521 
3522 	    case SII_T_SPARE:
3523 		device_printf(parent, "Silicon Image SPARE disk\n");
3524 		kfree(raidp[array], M_AR);
3525 		raidp[array] = NULL;
3526 		goto sii_out;
3527 
3528 	    default:
3529 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3530 			      meta->type);
3531 		kfree(raidp[array], M_AR);
3532 		raidp[array] = NULL;
3533 		goto sii_out;
3534 	    }
3535 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3536 	    raid->format = AR_F_SII_RAID;
3537 	    raid->generation = meta->generation;
3538 	    raid->interleave = meta->stripe_sectors;
3539 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3540 	    raid->total_disks =
3541 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3542 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3543 	    raid->total_sectors = meta->total_sectors;
3544 	    raid->heads = 255;
3545 	    raid->sectors = 63;
3546 	    raid->cylinders = raid->total_sectors / (63 * 255);
3547 	    raid->offset_sectors = 0;
3548 	    raid->rebuild_lba = meta->rebuild_lba;
3549 	    raid->lun = array;
3550 	    strncpy(raid->name, meta->name,
3551 		    min(sizeof(raid->name), sizeof(meta->name)));
3552 
3553 	    /* clear out any old info */
3554 	    if (raid->generation) {
3555 		for (disk = 0; disk < raid->total_disks; disk++) {
3556 		    raid->disks[disk].dev = NULL;
3557 		    raid->disks[disk].flags = 0;
3558 		}
3559 	    }
3560 	}
3561 	if (meta->generation >= raid->generation) {
3562 	    /* XXX SOS add check for the right physical disk by serial# */
3563 	    if (meta->status & SII_S_READY) {
3564 		int disk_number = (raid->type == AR_T_RAID01) ?
3565 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3566 		    meta->disk_number;
3567 
3568 		raid->disks[disk_number].dev = parent;
3569 		raid->disks[disk_number].sectors =
3570 		    raid->total_sectors / raid->width;
3571 		raid->disks[disk_number].flags =
3572 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3573 		ars->raid[raid->volume] = raid;
3574 		ars->disk_number[raid->volume] = disk_number;
3575 		retval = 1;
3576 	    }
3577 	}
3578 	break;
3579     }
3580 
3581 sii_out:
3582     kfree(meta, M_AR);
3583     return retval;
3584 }
3585 
3586 /* Silicon Integrated Systems Metadata */
3587 static int
3588 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3589 {
3590     struct ata_raid_subdisk *ars = device_get_softc(dev);
3591     device_t parent = device_get_parent(dev);
3592     struct sis_raid_conf *meta;
3593     struct ar_softc *raid = NULL;
3594     int array, disk_number, drive, retval = 0;
3595 
3596     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3597 	M_WAITOK | M_ZERO);
3598 
3599     if (ata_raid_rw(parent, SIS_LBA(parent),
3600 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3601 	if (testing || bootverbose)
3602 	    device_printf(parent,
3603 			  "Silicon Integrated Systems read metadata failed\n");
3604     }
3605 
3606     /* check for SiS magic */
3607     if (meta->magic != SIS_MAGIC) {
3608 	if (testing || bootverbose)
3609 	    device_printf(parent,
3610 			  "Silicon Integrated Systems check1 failed\n");
3611 	goto sis_out;
3612     }
3613 
3614     if (testing || bootverbose)
3615 	ata_raid_sis_print_meta(meta);
3616 
3617     /* now convert SiS meta into our generic form */
3618     for (array = 0; array < MAX_ARRAYS; array++) {
3619 	if (!raidp[array]) {
3620 	    raidp[array] =
3621 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3622 					  M_WAITOK | M_ZERO);
3623 	}
3624 
3625 	raid = raidp[array];
3626 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3627 	    continue;
3628 
3629 	if ((raid->format == AR_F_SIS_RAID) &&
3630 	    ((raid->magic_0 != meta->controller_pci_id) ||
3631 	     (raid->magic_1 != meta->timestamp))) {
3632 	    continue;
3633 	}
3634 
3635 	switch (meta->type_total_disks & SIS_T_MASK) {
3636 	case SIS_T_JBOD:
3637 	    raid->type = AR_T_JBOD;
3638 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3639 	    raid->total_sectors += SIS_LBA(parent);
3640 	    break;
3641 
3642 	case SIS_T_RAID0:
3643 	    raid->type = AR_T_RAID0;
3644 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3645 	    if (!raid->total_sectors ||
3646 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3647 		raid->total_sectors = raid->width * SIS_LBA(parent);
3648 	    break;
3649 
3650 	case SIS_T_RAID1:
3651 	    raid->type = AR_T_RAID1;
3652 	    raid->width = 1;
3653 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3654 		raid->total_sectors = SIS_LBA(parent);
3655 	    break;
3656 
3657 	default:
3658 	    device_printf(parent, "Silicon Integrated Systems "
3659 			  "unknown RAID type 0x%08x\n", meta->magic);
3660 	    kfree(raidp[array], M_AR);
3661 	    raidp[array] = NULL;
3662 	    goto sis_out;
3663 	}
3664 	raid->magic_0 = meta->controller_pci_id;
3665 	raid->magic_1 = meta->timestamp;
3666 	raid->format = AR_F_SIS_RAID;
3667 	raid->generation = 0;
3668 	raid->interleave = meta->stripe_sectors;
3669 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3670 	raid->heads = 255;
3671 	raid->sectors = 63;
3672 	raid->cylinders = raid->total_sectors / (63 * 255);
3673 	raid->offset_sectors = 0;
3674 	raid->rebuild_lba = 0;
3675 	raid->lun = array;
3676 	/* XXX SOS if total_disks > 2 this doesn't float */
3677 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3678 	    disk_number = 0;
3679 	else
3680 	    disk_number = 1;
3681 
3682 	for (drive = 0; drive < raid->total_disks; drive++) {
3683 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3684 	    if (drive == disk_number) {
3685 		raid->disks[disk_number].dev = parent;
3686 		raid->disks[disk_number].flags =
3687 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3688 		ars->raid[raid->volume] = raid;
3689 		ars->disk_number[raid->volume] = disk_number;
3690 	    }
3691 	}
3692 	retval = 1;
3693 	break;
3694     }
3695 
3696 sis_out:
3697     kfree(meta, M_AR);
3698     return retval;
3699 }
3700 
3701 static int
3702 ata_raid_sis_write_meta(struct ar_softc *rdp)
3703 {
3704     struct sis_raid_conf *meta;
3705     struct timeval timestamp;
3706     int disk, error = 0;
3707 
3708     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3709 	M_WAITOK | M_ZERO);
3710 
3711     rdp->generation++;
3712     microtime(&timestamp);
3713 
3714     meta->magic = SIS_MAGIC;
3715     /* XXX SOS if total_disks > 2 this doesn't float */
3716     for (disk = 0; disk < rdp->total_disks; disk++) {
3717 	if (rdp->disks[disk].dev) {
3718 	    struct ata_channel *ch =
3719 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3720 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3721 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3722 
3723 	    meta->disks |= disk_number << ((1 - disk) << 2);
3724 	}
3725     }
3726     switch (rdp->type) {
3727     case AR_T_JBOD:
3728 	meta->type_total_disks = SIS_T_JBOD;
3729 	break;
3730 
3731     case AR_T_RAID0:
3732 	meta->type_total_disks = SIS_T_RAID0;
3733 	break;
3734 
3735     case AR_T_RAID1:
3736 	meta->type_total_disks = SIS_T_RAID1;
3737 	break;
3738 
3739     default:
3740 	kfree(meta, M_AR);
3741 	return ENODEV;
3742     }
3743     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3744     meta->stripe_sectors = rdp->interleave;
3745     meta->timestamp = timestamp.tv_sec;
3746 
3747     for (disk = 0; disk < rdp->total_disks; disk++) {
3748 	if (rdp->disks[disk].dev) {
3749 	    struct ata_channel *ch =
3750 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3751 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3752 
3753 	    meta->controller_pci_id =
3754 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3755 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3756 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3757 
3758 	    /* XXX SOS if total_disks > 2 this may not float */
3759 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3760 
3761 	    if (testing || bootverbose)
3762 		ata_raid_sis_print_meta(meta);
3763 
3764 	    if (ata_raid_rw(rdp->disks[disk].dev,
3765 			    SIS_LBA(rdp->disks[disk].dev),
3766 			    meta, sizeof(struct sis_raid_conf),
3767 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3768 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3769 		error = EIO;
3770 	    }
3771 	}
3772     }
3773     kfree(meta, M_AR);
3774     return error;
3775 }
3776 
3777 /* VIA Tech V-RAID Metadata */
3778 static int
3779 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3780 {
3781     struct ata_raid_subdisk *ars = device_get_softc(dev);
3782     device_t parent = device_get_parent(dev);
3783     struct via_raid_conf *meta;
3784     struct ar_softc *raid = NULL;
3785     u_int8_t checksum, *ptr;
3786     int array, count, disk, retval = 0;
3787 
3788     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3789 	M_WAITOK | M_ZERO);
3790 
3791     if (ata_raid_rw(parent, VIA_LBA(parent),
3792 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3793 	if (testing || bootverbose)
3794 	    device_printf(parent, "VIA read metadata failed\n");
3795 	goto via_out;
3796     }
3797 
3798     /* check if this is a VIA RAID struct */
3799     if (meta->magic != VIA_MAGIC) {
3800 	if (testing || bootverbose)
3801 	    device_printf(parent, "VIA check1 failed\n");
3802 	goto via_out;
3803     }
3804 
3805     /* calculate checksum and compare for valid */
3806     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3807 	checksum += *ptr++;
3808     if (checksum != meta->checksum) {
3809 	if (testing || bootverbose)
3810 	    device_printf(parent, "VIA check2 failed\n");
3811 	goto via_out;
3812     }
3813 
3814     if (testing || bootverbose)
3815 	ata_raid_via_print_meta(meta);
3816 
3817     /* now convert VIA meta into our generic form */
3818     for (array = 0; array < MAX_ARRAYS; array++) {
3819 	if (!raidp[array]) {
3820 	    raidp[array] =
3821 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3822 					  M_WAITOK | M_ZERO);
3823 	}
3824 	raid = raidp[array];
3825 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3826 	    continue;
3827 
3828 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3829 	    continue;
3830 
3831 	switch (meta->type & VIA_T_MASK) {
3832 	case VIA_T_RAID0:
3833 	    raid->type = AR_T_RAID0;
3834 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3835 	    if (!raid->total_sectors ||
3836 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3837 		raid->total_sectors = raid->width * meta->disk_sectors;
3838 	    break;
3839 
3840 	case VIA_T_RAID1:
3841 	    raid->type = AR_T_RAID1;
3842 	    raid->width = 1;
3843 	    raid->total_sectors = meta->disk_sectors;
3844 	    break;
3845 
3846 	case VIA_T_RAID01:
3847 	    raid->type = AR_T_RAID01;
3848 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3849 	    if (!raid->total_sectors ||
3850 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3851 		raid->total_sectors = raid->width * meta->disk_sectors;
3852 	    break;
3853 
3854 	case VIA_T_RAID5:
3855 	    raid->type = AR_T_RAID5;
3856 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3857 	    if (!raid->total_sectors ||
3858 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3859 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3860 	    break;
3861 
3862 	case VIA_T_SPAN:
3863 	    raid->type = AR_T_SPAN;
3864 	    raid->width = 1;
3865 	    raid->total_sectors += meta->disk_sectors;
3866 	    break;
3867 
3868 	default:
3869 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3870 	    kfree(raidp[array], M_AR);
3871 	    raidp[array] = NULL;
3872 	    goto via_out;
3873 	}
3874 	raid->magic_0 = meta->disks[0];
3875 	raid->format = AR_F_VIA_RAID;
3876 	raid->generation = 0;
3877 	raid->interleave =
3878 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3879 	for (count = 0, disk = 0; disk < 8; disk++)
3880 	    if (meta->disks[disk])
3881 		count++;
3882 	raid->total_disks = count;
3883 	raid->heads = 255;
3884 	raid->sectors = 63;
3885 	raid->cylinders = raid->total_sectors / (63 * 255);
3886 	raid->offset_sectors = 0;
3887 	raid->rebuild_lba = 0;
3888 	raid->lun = array;
3889 
3890 	for (disk = 0; disk < raid->total_disks; disk++) {
3891 	    if (meta->disks[disk] == meta->disk_id) {
3892 		raid->disks[disk].dev = parent;
3893 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3894 		      sizeof(u_int32_t));
3895 		raid->disks[disk].sectors = meta->disk_sectors;
3896 		raid->disks[disk].flags =
3897 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3898 		ars->raid[raid->volume] = raid;
3899 		ars->disk_number[raid->volume] = disk;
3900 		retval = 1;
3901 		break;
3902 	    }
3903 	}
3904 	break;
3905     }
3906 
3907 via_out:
3908     kfree(meta, M_AR);
3909     return retval;
3910 }
3911 
3912 static int
3913 ata_raid_via_write_meta(struct ar_softc *rdp)
3914 {
3915     struct via_raid_conf *meta;
3916     int disk, error = 0;
3917 
3918     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3919 	M_WAITOK | M_ZERO);
3920 
3921     rdp->generation++;
3922 
3923     meta->magic = VIA_MAGIC;
3924     meta->dummy_0 = 0x02;
3925     switch (rdp->type) {
3926     case AR_T_SPAN:
3927 	meta->type = VIA_T_SPAN;
3928 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3929 	break;
3930 
3931     case AR_T_RAID0:
3932 	meta->type = VIA_T_RAID0;
3933 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3934 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3935 	break;
3936 
3937     case AR_T_RAID1:
3938 	meta->type = VIA_T_RAID1;
3939 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3940 	break;
3941 
3942     case AR_T_RAID5:
3943 	meta->type = VIA_T_RAID5;
3944 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3945 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3946 	break;
3947 
3948     case AR_T_RAID01:
3949 	meta->type = VIA_T_RAID01;
3950 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3951 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3952 	break;
3953 
3954     default:
3955 	kfree(meta, M_AR);
3956 	return ENODEV;
3957     }
3958     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3959     meta->disk_sectors =
3960 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3961     for (disk = 0; disk < rdp->total_disks; disk++)
3962 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3963 
3964     for (disk = 0; disk < rdp->total_disks; disk++) {
3965 	if (rdp->disks[disk].dev) {
3966 	    u_int8_t *ptr;
3967 	    int count;
3968 
3969 	    meta->disk_index = disk * sizeof(u_int32_t);
3970 	    if (rdp->type == AR_T_RAID01)
3971 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3972 				   (meta->disk_index & ~0x08);
3973 	    meta->disk_id = meta->disks[disk];
3974 	    meta->checksum = 0;
3975 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3976 		meta->checksum += *ptr++;
3977 
3978 	    if (testing || bootverbose)
3979 		ata_raid_via_print_meta(meta);
3980 
3981 	    if (ata_raid_rw(rdp->disks[disk].dev,
3982 			    VIA_LBA(rdp->disks[disk].dev),
3983 			    meta, sizeof(struct via_raid_conf),
3984 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3985 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3986 		error = EIO;
3987 	    }
3988 	}
3989     }
3990     kfree(meta, M_AR);
3991     return error;
3992 }
3993 
3994 static struct ata_request *
3995 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3996 {
3997     struct ata_request *request;
3998 
3999     if (!(request = ata_alloc_request())) {
4000 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4001 	return NULL;
4002     }
4003     request->timeout = ATA_DEFAULT_TIMEOUT;
4004     request->retries = 2;
4005     request->callback = ata_raid_done;
4006     request->driver = rdp;
4007     request->bio = bio;
4008     switch (request->bio->bio_buf->b_cmd) {
4009     case BUF_CMD_READ:
4010 	request->flags = ATA_R_READ;
4011 	break;
4012     case BUF_CMD_WRITE:
4013 	request->flags = ATA_R_WRITE;
4014 	break;
4015     case BUF_CMD_FLUSH:
4016 	request->flags = ATA_R_CONTROL;
4017 	break;
4018     default:
4019 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4020 	ata_free_request(request);
4021 #if 0
4022 	bio->bio_buf->b_flags |= B_ERROR;
4023 	bio->bio_buf->b_error = EIO;
4024 	biodone(bio);
4025 #endif /* 0 */
4026 	return(NULL);
4027     }
4028     return request;
4029 }
4030 
4031 static int
4032 ata_raid_send_request(struct ata_request *request)
4033 {
4034     struct ata_device *atadev = device_get_softc(request->dev);
4035 
4036     request->transfersize = min(request->bytecount, atadev->max_iosize);
4037     if (request->flags & ATA_R_READ) {
4038 	if (atadev->mode >= ATA_DMA) {
4039 	    request->flags |= ATA_R_DMA;
4040 	    request->u.ata.command = ATA_READ_DMA;
4041 	}
4042 	else if (atadev->max_iosize > DEV_BSIZE)
4043 	    request->u.ata.command = ATA_READ_MUL;
4044 	else
4045 	    request->u.ata.command = ATA_READ;
4046     }
4047     else if (request->flags & ATA_R_WRITE) {
4048 	if (atadev->mode >= ATA_DMA) {
4049 	    request->flags |= ATA_R_DMA;
4050 	    request->u.ata.command = ATA_WRITE_DMA;
4051 	}
4052 	else if (atadev->max_iosize > DEV_BSIZE)
4053 	    request->u.ata.command = ATA_WRITE_MUL;
4054 	else
4055 	    request->u.ata.command = ATA_WRITE;
4056     }
4057     else {
4058 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4059 	ata_free_request(request);
4060 	return EIO;
4061     }
4062     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4063     ata_queue_request(request);
4064     return 0;
4065 }
4066 
4067 static int
4068 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4069 {
4070     struct ata_device *atadev = device_get_softc(dev);
4071     struct ata_request *request;
4072     int error;
4073 
4074     if (bcount % DEV_BSIZE) {
4075 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4076 	return ENOMEM;
4077     }
4078 
4079     if (!(request = ata_alloc_request())) {
4080 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4081 	return ENOMEM;
4082     }
4083 
4084     /* setup request */
4085     request->dev = dev;
4086     request->timeout = 10;
4087     request->retries = 0;
4088     request->data = data;
4089     request->bytecount = bcount;
4090     request->transfersize = DEV_BSIZE;
4091     request->u.ata.lba = lba;
4092     request->u.ata.count = request->bytecount / DEV_BSIZE;
4093     request->flags = flags;
4094 
4095     if (flags & ATA_R_READ) {
4096 	if (atadev->mode >= ATA_DMA) {
4097 	    request->u.ata.command = ATA_READ_DMA;
4098 	    request->flags |= ATA_R_DMA;
4099 	}
4100 	else
4101 	    request->u.ata.command = ATA_READ;
4102 	ata_queue_request(request);
4103     }
4104     else if (flags & ATA_R_WRITE) {
4105 	if (atadev->mode >= ATA_DMA) {
4106 	    request->u.ata.command = ATA_WRITE_DMA;
4107 	    request->flags |= ATA_R_DMA;
4108 	}
4109 	else
4110 	    request->u.ata.command = ATA_WRITE;
4111 	ata_queue_request(request);
4112     }
4113     else {
4114 	device_printf(dev, "FAILURE - unknown IO operation\n");
4115 	request->result = EIO;
4116     }
4117     error = request->result;
4118     ata_free_request(request);
4119     return error;
4120 }
4121 
4122 /*
4123  * module handeling
4124  */
4125 static int
4126 ata_raid_subdisk_probe(device_t dev)
4127 {
4128     device_quiet(dev);
4129     return 0;
4130 }
4131 
4132 static int
4133 ata_raid_subdisk_attach(device_t dev)
4134 {
4135     struct ata_raid_subdisk *ars = device_get_softc(dev);
4136     int volume;
4137 
4138     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4139 	ars->raid[volume] = NULL;
4140 	ars->disk_number[volume] = -1;
4141     }
4142     ata_raid_read_metadata(dev);
4143     return 0;
4144 }
4145 
4146 static int
4147 ata_raid_subdisk_detach(device_t dev)
4148 {
4149     struct ata_raid_subdisk *ars = device_get_softc(dev);
4150     int volume;
4151 
4152     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4153 	if (ars->raid[volume]) {
4154 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4155 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4156 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4157 	    ata_raid_config_changed(ars->raid[volume], 1);
4158 	    ars->raid[volume] = NULL;
4159 	    ars->disk_number[volume] = -1;
4160 	}
4161     }
4162     return 0;
4163 }
4164 
4165 static device_method_t ata_raid_sub_methods[] = {
4166     /* device interface */
4167     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4168     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4169     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4170     { 0, 0 }
4171 };
4172 
4173 static driver_t ata_raid_sub_driver = {
4174     "subdisk",
4175     ata_raid_sub_methods,
4176     sizeof(struct ata_raid_subdisk)
4177 };
4178 
4179 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4180 
4181 static int
4182 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4183 {
4184     int i;
4185 
4186     switch (what) {
4187     case MOD_LOAD:
4188 	if (testing || bootverbose)
4189 	    kprintf("ATA PseudoRAID loaded\n");
4190 #if 0
4191 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4192 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4193 				M_AR, M_WAITOK | M_ZERO);
4194 #endif
4195 	/* attach found PseudoRAID arrays */
4196 	for (i = 0; i < MAX_ARRAYS; i++) {
4197 	    struct ar_softc *rdp = ata_raid_arrays[i];
4198 
4199 	    if (!rdp || !rdp->format)
4200 		continue;
4201 	    if (testing || bootverbose)
4202 		ata_raid_print_meta(rdp);
4203 	    ata_raid_attach(rdp, 0);
4204 	}
4205 	ata_raid_ioctl_func = ata_raid_ioctl;
4206 	return 0;
4207 
4208     case MOD_UNLOAD:
4209 	/* detach found PseudoRAID arrays */
4210 	for (i = 0; i < MAX_ARRAYS; i++) {
4211 	    struct ar_softc *rdp = ata_raid_arrays[i];
4212 
4213 	    if (!rdp || !rdp->status)
4214 		continue;
4215 	    disk_destroy(&rdp->disk);
4216 	}
4217 	if (testing || bootverbose)
4218 	    kprintf("ATA PseudoRAID unloaded\n");
4219 #if 0
4220 	kfree(ata_raid_arrays, M_AR);
4221 #endif
4222 	ata_raid_ioctl_func = NULL;
4223 	return 0;
4224 
4225     default:
4226 	return EOPNOTSUPP;
4227     }
4228 }
4229 
4230 static moduledata_t ata_raid_moduledata =
4231     { "ataraid", ata_raid_module_event_handler, NULL };
4232 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4233 MODULE_VERSION(ataraid, 1);
4234 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4235 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4236 
4237 static char *
4238 ata_raid_format(struct ar_softc *rdp)
4239 {
4240     switch (rdp->format) {
4241     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4242     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4243     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4244     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4245     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4246     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4247     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4248     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4249     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4250     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4251     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4252     case AR_F_SII_RAID:         return "Silicon Image Medley";
4253     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4254     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4255     default:                    return "UNKNOWN";
4256     }
4257 }
4258 
4259 static char *
4260 ata_raid_type(struct ar_softc *rdp)
4261 {
4262     switch (rdp->type) {
4263     case AR_T_JBOD:     return "JBOD";
4264     case AR_T_SPAN:     return "SPAN";
4265     case AR_T_RAID0:    return "RAID0";
4266     case AR_T_RAID1:    return "RAID1";
4267     case AR_T_RAID3:    return "RAID3";
4268     case AR_T_RAID4:    return "RAID4";
4269     case AR_T_RAID5:    return "RAID5";
4270     case AR_T_RAID01:   return "RAID0+1";
4271     default:            return "UNKNOWN";
4272     }
4273 }
4274 
4275 static char *
4276 ata_raid_flags(struct ar_softc *rdp)
4277 {
4278     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4279     case AR_S_READY:                                    return "READY";
4280     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4281     case AR_S_READY | AR_S_REBUILDING:
4282     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4283     default:                                            return "BROKEN";
4284     }
4285 }
4286 
4287 /* debugging gunk */
4288 static void
4289 ata_raid_print_meta(struct ar_softc *raid)
4290 {
4291     int i;
4292 
4293     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4294     kprintf("=================================================\n");
4295     kprintf("format              %s\n", ata_raid_format(raid));
4296     kprintf("type                %s\n", ata_raid_type(raid));
4297     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4298 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4299     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4300     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4301     kprintf("generation          %u\n", raid->generation);
4302     kprintf("total_sectors       %ju\n", raid->total_sectors);
4303     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4304     kprintf("heads               %u\n", raid->heads);
4305     kprintf("sectors             %u\n", raid->sectors);
4306     kprintf("cylinders           %u\n", raid->cylinders);
4307     kprintf("width               %u\n", raid->width);
4308     kprintf("interleave          %u\n", raid->interleave);
4309     kprintf("total_disks         %u\n", raid->total_disks);
4310     for (i = 0; i < raid->total_disks; i++) {
4311 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4312 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4313 	if (raid->disks[i].dev) {
4314 	    kprintf("        ");
4315 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4316 			  raid->disks[i].sectors);
4317 	}
4318     }
4319     kprintf("=================================================\n");
4320 }
4321 
4322 static char *
4323 ata_raid_adaptec_type(int type)
4324 {
4325     static char buffer[16];
4326 
4327     switch (type) {
4328     case ADP_T_RAID0:   return "RAID0";
4329     case ADP_T_RAID1:   return "RAID1";
4330     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4331 			return buffer;
4332     }
4333 }
4334 
4335 static void
4336 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4337 {
4338     int i;
4339 
4340     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4341     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4342     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4343     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4344     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4345     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4346     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4347     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4348     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4349     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4350     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4351     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4352 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4353 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4354     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4355 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4356 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4357 
4358     for (i = 0; i < be16toh(meta->total_configs); i++) {
4359 	kprintf("    %d   total_disks  %u\n", i,
4360 	       be16toh(meta->configs[i].disk_number));
4361 	kprintf("    %d   generation   %u\n", i,
4362 	       be16toh(meta->configs[i].generation));
4363 	kprintf("    %d   magic_0      0x%08x\n", i,
4364 	       be32toh(meta->configs[i].magic_0));
4365 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4366 	kprintf("    %d   type         %s\n", i,
4367 	       ata_raid_adaptec_type(meta->configs[i].type));
4368 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4369 	kprintf("    %d   flags        %d\n", i,
4370 	       be32toh(meta->configs[i].flags));
4371 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4372 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4373 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4374 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4375 	kprintf("    %d   disk_number  %u\n", i,
4376 	       be32toh(meta->configs[i].disk_number));
4377 	kprintf("    %d   dummy_6      0x%08x\n", i,
4378 	       be32toh(meta->configs[i].dummy_6));
4379 	kprintf("    %d   sectors      %u\n", i,
4380 	       be32toh(meta->configs[i].sectors));
4381 	kprintf("    %d   stripe_shift %u\n", i,
4382 	       be16toh(meta->configs[i].stripe_shift));
4383 	kprintf("    %d   dummy_7      0x%08x\n", i,
4384 	       be32toh(meta->configs[i].dummy_7));
4385 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4386 	       be32toh(meta->configs[i].dummy_8[0]),
4387 	       be32toh(meta->configs[i].dummy_8[1]),
4388 	       be32toh(meta->configs[i].dummy_8[2]),
4389 	       be32toh(meta->configs[i].dummy_8[3]));
4390 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4391     }
4392     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4393     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4394     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4395     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4396     kprintf("=================================================\n");
4397 }
4398 
4399 static char *
4400 ata_raid_hptv2_type(int type)
4401 {
4402     static char buffer[16];
4403 
4404     switch (type) {
4405     case HPTV2_T_RAID0:         return "RAID0";
4406     case HPTV2_T_RAID1:         return "RAID1";
4407     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4408     case HPTV2_T_SPAN:          return "SPAN";
4409     case HPTV2_T_RAID_3:        return "RAID3";
4410     case HPTV2_T_RAID_5:        return "RAID5";
4411     case HPTV2_T_JBOD:          return "JBOD";
4412     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4413     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4414 			return buffer;
4415     }
4416 }
4417 
4418 static void
4419 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4420 {
4421     int i;
4422 
4423     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4424     kprintf("magic               0x%08x\n", meta->magic);
4425     kprintf("magic_0             0x%08x\n", meta->magic_0);
4426     kprintf("magic_1             0x%08x\n", meta->magic_1);
4427     kprintf("order               0x%08x\n", meta->order);
4428     kprintf("array_width         %u\n", meta->array_width);
4429     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4430     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4431     kprintf("disk_number         %u\n", meta->disk_number);
4432     kprintf("total_sectors       %u\n", meta->total_sectors);
4433     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4434     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4435     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4436     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4437     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4438     kprintf("log_index           0x%02x\n", meta->error_log_index);
4439     if (meta->error_log_entries) {
4440 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4441 	for (i = meta->error_log_index;
4442 	     i < meta->error_log_index + meta->error_log_entries; i++)
4443 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4444 		   meta->errorlog[i%32].timestamp,
4445 		   meta->errorlog[i%32].reason,
4446 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4447 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4448     }
4449     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4450     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4451     kprintf("name_1              <%.15s>\n", meta->name_1);
4452     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4453     kprintf("name_2              <%.15s>\n", meta->name_2);
4454     kprintf("=================================================\n");
4455 }
4456 
4457 static char *
4458 ata_raid_hptv3_type(int type)
4459 {
4460     static char buffer[16];
4461 
4462     switch (type) {
4463     case HPTV3_T_SPARE: return "SPARE";
4464     case HPTV3_T_JBOD:  return "JBOD";
4465     case HPTV3_T_SPAN:  return "SPAN";
4466     case HPTV3_T_RAID0: return "RAID0";
4467     case HPTV3_T_RAID1: return "RAID1";
4468     case HPTV3_T_RAID3: return "RAID3";
4469     case HPTV3_T_RAID5: return "RAID5";
4470     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4471 			return buffer;
4472     }
4473 }
4474 
4475 static void
4476 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4477 {
4478     int i;
4479 
4480     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4481     kprintf("magic               0x%08x\n", meta->magic);
4482     kprintf("magic_0             0x%08x\n", meta->magic_0);
4483     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4484     kprintf("mode                0x%02x\n", meta->mode);
4485     kprintf("user_mode           0x%02x\n", meta->user_mode);
4486     kprintf("config_entries      0x%02x\n", meta->config_entries);
4487     for (i = 0; i < meta->config_entries; i++) {
4488 	kprintf("config %d:\n", i);
4489 	kprintf("    total_sectors       %ju\n",
4490 	       meta->configs[0].total_sectors +
4491 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4492 	kprintf("    type                %s\n",
4493 	       ata_raid_hptv3_type(meta->configs[i].type));
4494 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4495 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4496 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4497 	kprintf("    status              %b\n", meta->configs[i].status,
4498 	       "\20\2RAID5\1NEED_REBUILD\n");
4499 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4500 	kprintf("    rebuild_lba         %ju\n",
4501 	       meta->configs_high[0].rebuild_lba +
4502 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4503     }
4504     kprintf("name                <%.16s>\n", meta->name);
4505     kprintf("timestamp           0x%08x\n", meta->timestamp);
4506     kprintf("description         <%.16s>\n", meta->description);
4507     kprintf("creator             <%.16s>\n", meta->creator);
4508     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4509     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4510     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4511     kprintf("flags               %b\n", meta->flags,
4512 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4513     kprintf("=================================================\n");
4514 }
4515 
4516 static char *
4517 ata_raid_intel_type(int type)
4518 {
4519     static char buffer[16];
4520 
4521     switch (type) {
4522     case INTEL_T_RAID0: return "RAID0";
4523     case INTEL_T_RAID1: return "RAID1";
4524     case INTEL_T_RAID5: return "RAID5";
4525     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4526 			return buffer;
4527     }
4528 }
4529 
4530 static void
4531 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4532 {
4533     struct intel_raid_mapping *map;
4534     int i, j;
4535 
4536     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4537     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4538     kprintf("version             <%.6s>\n", meta->version);
4539     kprintf("checksum            0x%08x\n", meta->checksum);
4540     kprintf("config_size         0x%08x\n", meta->config_size);
4541     kprintf("config_id           0x%08x\n", meta->config_id);
4542     kprintf("generation          0x%08x\n", meta->generation);
4543     kprintf("total_disks         %u\n", meta->total_disks);
4544     kprintf("total_volumes       %u\n", meta->total_volumes);
4545     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4546     for (i = 0; i < meta->total_disks; i++ ) {
4547 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4548 	       meta->disk[i].serial, meta->disk[i].sectors,
4549 	       meta->disk[i].id, meta->disk[i].flags);
4550     }
4551     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4552     for (j = 0; j < meta->total_volumes; j++) {
4553 	kprintf("name                %.16s\n", map->name);
4554 	kprintf("total_sectors       %ju\n", map->total_sectors);
4555 	kprintf("state               %u\n", map->state);
4556 	kprintf("reserved            %u\n", map->reserved);
4557 	kprintf("offset              %u\n", map->offset);
4558 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4559 	kprintf("stripe_count        %u\n", map->stripe_count);
4560 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4561 	kprintf("status              %u\n", map->status);
4562 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4563 	kprintf("total_disks         %u\n", map->total_disks);
4564 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4565 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4566 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4567 	for (i = 0; i < map->total_disks; i++ ) {
4568 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4569 	}
4570 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4571     }
4572     kprintf("=================================================\n");
4573 }
4574 
4575 static char *
4576 ata_raid_ite_type(int type)
4577 {
4578     static char buffer[16];
4579 
4580     switch (type) {
4581     case ITE_T_RAID0:   return "RAID0";
4582     case ITE_T_RAID1:   return "RAID1";
4583     case ITE_T_RAID01:  return "RAID0+1";
4584     case ITE_T_SPAN:    return "SPAN";
4585     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4586 			return buffer;
4587     }
4588 }
4589 
4590 static void
4591 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4592 {
4593     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4594     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4595     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4596 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4597 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4598 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4599     kprintf("total_sectors       %jd\n", meta->total_sectors);
4600     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4601     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4602     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4603 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4604 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4605 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4606     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4607     kprintf("array_width         %u\n", meta->array_width);
4608     kprintf("disk_number         %u\n", meta->disk_number);
4609     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4610     kprintf("=================================================\n");
4611 }
4612 
4613 static char *
4614 ata_raid_jmicron_type(int type)
4615 {
4616     static char buffer[16];
4617 
4618     switch (type) {
4619     case JM_T_RAID0:	return "RAID0";
4620     case JM_T_RAID1:	return "RAID1";
4621     case JM_T_RAID01:	return "RAID0+1";
4622     case JM_T_JBOD:	return "JBOD";
4623     case JM_T_RAID5:	return "RAID5";
4624     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4625 			return buffer;
4626     }
4627 }
4628 
4629 static void
4630 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4631 {
4632     int i;
4633 
4634     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4635     kprintf("signature           %.2s\n", meta->signature);
4636     kprintf("version             0x%04x\n", meta->version);
4637     kprintf("checksum            0x%04x\n", meta->checksum);
4638     kprintf("disk_id             0x%08x\n", meta->disk_id);
4639     kprintf("offset              0x%08x\n", meta->offset);
4640     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4641     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4642     kprintf("name                %.16s\n", meta->name);
4643     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4644     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4645     kprintf("flags               0x%04x\n", meta->flags);
4646     kprintf("spare:\n");
4647     for (i=0; i < 2 && meta->spare[i]; i++)
4648 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4649     kprintf("disks:\n");
4650     for (i=0; i < 8 && meta->disks[i]; i++)
4651 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4652     kprintf("=================================================\n");
4653 }
4654 
4655 static char *
4656 ata_raid_lsiv2_type(int type)
4657 {
4658     static char buffer[16];
4659 
4660     switch (type) {
4661     case LSIV2_T_RAID0: return "RAID0";
4662     case LSIV2_T_RAID1: return "RAID1";
4663     case LSIV2_T_SPARE: return "SPARE";
4664     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4665 			return buffer;
4666     }
4667 }
4668 
4669 static void
4670 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4671 {
4672     int i;
4673 
4674     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4675     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4676     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4677     kprintf("flags               0x%02x\n", meta->flags);
4678     kprintf("version             0x%04x\n", meta->version);
4679     kprintf("config_entries      0x%02x\n", meta->config_entries);
4680     kprintf("raid_count          0x%02x\n", meta->raid_count);
4681     kprintf("total_disks         0x%02x\n", meta->total_disks);
4682     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4683     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4684     for (i = 0; i < meta->config_entries; i++) {
4685 	kprintf("    type             %s\n",
4686 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4687 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4688 	kprintf("    stripe_sectors   %u\n",
4689 	       meta->configs[i].raid.stripe_sectors);
4690 	kprintf("    array_width      %u\n",
4691 	       meta->configs[i].raid.array_width);
4692 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4693 	kprintf("    config_offset    %u\n",
4694 	       meta->configs[i].raid.config_offset);
4695 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4696 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4697 	kprintf("    total_sectors    %u\n",
4698 	       meta->configs[i].raid.total_sectors);
4699     }
4700     kprintf("disk_number         0x%02x\n", meta->disk_number);
4701     kprintf("raid_number         0x%02x\n", meta->raid_number);
4702     kprintf("timestamp           0x%08x\n", meta->timestamp);
4703     kprintf("=================================================\n");
4704 }
4705 
4706 static char *
4707 ata_raid_lsiv3_type(int type)
4708 {
4709     static char buffer[16];
4710 
4711     switch (type) {
4712     case LSIV3_T_RAID0: return "RAID0";
4713     case LSIV3_T_RAID1: return "RAID1";
4714     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4715 			return buffer;
4716     }
4717 }
4718 
4719 static void
4720 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4721 {
4722     int i;
4723 
4724     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4725     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4726     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4727     kprintf("version             0x%04x\n", meta->version);
4728     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4729     kprintf("RAID configs:\n");
4730     for (i = 0; i < 8; i++) {
4731 	if (meta->raid[i].total_disks) {
4732 	    kprintf("%02d  stripe_pages       %u\n", i,
4733 		   meta->raid[i].stripe_pages);
4734 	    kprintf("%02d  type               %s\n", i,
4735 		   ata_raid_lsiv3_type(meta->raid[i].type));
4736 	    kprintf("%02d  total_disks        %u\n", i,
4737 		   meta->raid[i].total_disks);
4738 	    kprintf("%02d  array_width        %u\n", i,
4739 		   meta->raid[i].array_width);
4740 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4741 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4742 	    kprintf("%02d  device             0x%02x\n", i,
4743 		   meta->raid[i].device);
4744 	}
4745     }
4746     kprintf("DISK configs:\n");
4747     for (i = 0; i < 6; i++) {
4748 	    if (meta->disk[i].disk_sectors) {
4749 	    kprintf("%02d  disk_sectors       %u\n", i,
4750 		   meta->disk[i].disk_sectors);
4751 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4752 	}
4753     }
4754     kprintf("device              0x%02x\n", meta->device);
4755     kprintf("timestamp           0x%08x\n", meta->timestamp);
4756     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4757     kprintf("=================================================\n");
4758 }
4759 
4760 static char *
4761 ata_raid_nvidia_type(int type)
4762 {
4763     static char buffer[16];
4764 
4765     switch (type) {
4766     case NV_T_SPAN:     return "SPAN";
4767     case NV_T_RAID0:    return "RAID0";
4768     case NV_T_RAID1:    return "RAID1";
4769     case NV_T_RAID3:    return "RAID3";
4770     case NV_T_RAID5:    return "RAID5";
4771     case NV_T_RAID01:   return "RAID0+1";
4772     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4773 			return buffer;
4774     }
4775 }
4776 
4777 static void
4778 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4779 {
4780     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4781     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4782     kprintf("config_size         %d\n", meta->config_size);
4783     kprintf("checksum            0x%08x\n", meta->checksum);
4784     kprintf("version             0x%04x\n", meta->version);
4785     kprintf("disk_number         %d\n", meta->disk_number);
4786     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4787     kprintf("total_sectors       %d\n", meta->total_sectors);
4788     kprintf("sectors_size        %d\n", meta->sector_size);
4789     kprintf("serial              %.16s\n", meta->serial);
4790     kprintf("revision            %.4s\n", meta->revision);
4791     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4792     kprintf("magic_0             0x%08x\n", meta->magic_0);
4793     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4794     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4795     kprintf("flags               0x%02x\n", meta->flags);
4796     kprintf("array_width         %d\n", meta->array_width);
4797     kprintf("total_disks         %d\n", meta->total_disks);
4798     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4799     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4800     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4801     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4802     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4803     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4804     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4805     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4806     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4807     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4808     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4809     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4810     kprintf("status              0x%08x\n", meta->status);
4811     kprintf("=================================================\n");
4812 }
4813 
4814 static char *
4815 ata_raid_promise_type(int type)
4816 {
4817     static char buffer[16];
4818 
4819     switch (type) {
4820     case PR_T_RAID0:    return "RAID0";
4821     case PR_T_RAID1:    return "RAID1";
4822     case PR_T_RAID3:    return "RAID3";
4823     case PR_T_RAID5:    return "RAID5";
4824     case PR_T_SPAN:     return "SPAN";
4825     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4826 			return buffer;
4827     }
4828 }
4829 
4830 static void
4831 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4832 {
4833     int i;
4834 
4835     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4836     kprintf("promise_id          <%s>\n", meta->promise_id);
4837     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4838     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4839     kprintf("magic_1             0x%04x\n", meta->magic_1);
4840     kprintf("magic_2             0x%08x\n", meta->magic_2);
4841     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4842 		meta->raid.integrity, "\20\10VALID\n" );
4843     kprintf("flags               0x%02x %b\n",
4844 	   meta->raid.flags, meta->raid.flags,
4845 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4846 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4847     kprintf("disk_number         %d\n", meta->raid.disk_number);
4848     kprintf("channel             0x%02x\n", meta->raid.channel);
4849     kprintf("device              0x%02x\n", meta->raid.device);
4850     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4851     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4852     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4853     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4854     kprintf("generation          0x%04x\n", meta->raid.generation);
4855     kprintf("status              0x%02x %b\n",
4856 	    meta->raid.status, meta->raid.status,
4857 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4858     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4859     kprintf("total_disks         %u\n", meta->raid.total_disks);
4860     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4861     kprintf("array_width         %u\n", meta->raid.array_width);
4862     kprintf("array_number        %u\n", meta->raid.array_number);
4863     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4864     kprintf("cylinders           %u\n", meta->raid.cylinders);
4865     kprintf("heads               %u\n", meta->raid.heads);
4866     kprintf("sectors             %u\n", meta->raid.sectors);
4867     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4868     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4869     for (i = 0; i < 8; i++) {
4870 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4871 	       i, meta->raid.disk[i].flags,
4872 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4873 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4874 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4875 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4876     }
4877     kprintf("checksum            0x%08x\n", meta->checksum);
4878     kprintf("=================================================\n");
4879 }
4880 
4881 static char *
4882 ata_raid_sii_type(int type)
4883 {
4884     static char buffer[16];
4885 
4886     switch (type) {
4887     case SII_T_RAID0:   return "RAID0";
4888     case SII_T_RAID1:   return "RAID1";
4889     case SII_T_RAID01:  return "RAID0+1";
4890     case SII_T_SPARE:   return "SPARE";
4891     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4892 			return buffer;
4893     }
4894 }
4895 
4896 static void
4897 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4898 {
4899     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4900     kprintf("total_sectors       %ju\n", meta->total_sectors);
4901     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4902     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4903     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4904     kprintf("version_minor       0x%04x\n", meta->version_minor);
4905     kprintf("version_major       0x%04x\n", meta->version_major);
4906     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4907 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4908 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4909     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4910     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4911     kprintf("disk_number         %u\n", meta->disk_number);
4912     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4913     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4914     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4915     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4916     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4917     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4918     kprintf("generation          0x%08x\n", meta->generation);
4919     kprintf("status              0x%02x %b\n",
4920 	    meta->status, meta->status,
4921 	   "\20\1READY\n");
4922     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4923     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4924     kprintf("position            %02x\n", meta->position);
4925     kprintf("dummy_3             %04x\n", meta->dummy_3);
4926     kprintf("name                <%.16s>\n", meta->name);
4927     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4928     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4929     kprintf("=================================================\n");
4930 }
4931 
4932 static char *
4933 ata_raid_sis_type(int type)
4934 {
4935     static char buffer[16];
4936 
4937     switch (type) {
4938     case SIS_T_JBOD:    return "JBOD";
4939     case SIS_T_RAID0:   return "RAID0";
4940     case SIS_T_RAID1:   return "RAID1";
4941     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4942 			return buffer;
4943     }
4944 }
4945 
4946 static void
4947 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4948 {
4949     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4950     kprintf("magic               0x%04x\n", meta->magic);
4951     kprintf("disks               0x%02x\n", meta->disks);
4952     kprintf("type                %s\n",
4953 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4954     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4955     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4956     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4957     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4958     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4959     kprintf("timestamp           0x%08x\n", meta->timestamp);
4960     kprintf("model               %.40s\n", meta->model);
4961     kprintf("disk_number         %u\n", meta->disk_number);
4962     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4963 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4964     kprintf("=================================================\n");
4965 }
4966 
4967 static char *
4968 ata_raid_via_type(int type)
4969 {
4970     static char buffer[16];
4971 
4972     switch (type) {
4973     case VIA_T_RAID0:   return "RAID0";
4974     case VIA_T_RAID1:   return "RAID1";
4975     case VIA_T_RAID5:   return "RAID5";
4976     case VIA_T_RAID01:  return "RAID0+1";
4977     case VIA_T_SPAN:    return "SPAN";
4978     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4979 			return buffer;
4980     }
4981 }
4982 
4983 static void
4984 ata_raid_via_print_meta(struct via_raid_conf *meta)
4985 {
4986     int i;
4987 
4988     kprintf("*************** ATA VIA Metadata ****************\n");
4989     kprintf("magic               0x%02x\n", meta->magic);
4990     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4991     kprintf("type                %s\n",
4992 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4993     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4994     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4995     kprintf("disk_index          0x%02x\n", meta->disk_index);
4996     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4997     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4998     kprintf(" stripe_sectors     %d\n",
4999 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5000     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5001     kprintf("disk_id             0x%08x\n", meta->disk_id);
5002     kprintf("DISK#   disk_id\n");
5003     for (i = 0; i < 8; i++) {
5004 	if (meta->disks[i])
5005 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5006     }
5007     kprintf("checksum            0x%02x\n", meta->checksum);
5008     kprintf("=================================================\n");
5009 }
5010