xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 36a3d1d6)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.11 2008/08/30 02:56:11 dillon Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 static int
257 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
258 {
259     struct ata_request *request;
260     device_t dev;
261     int disk, error;
262 
263     error = 0;
264     bp->bio_driver_info = NULL;
265 
266     for (disk = 0; disk < rdp->total_disks; disk++) {
267 	if ((dev = rdp->disks[disk].dev) != NULL)
268 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
269     }
270     for (disk = 0; disk < rdp->total_disks; disk++) {
271 	if ((dev = rdp->disks[disk].dev) == NULL)
272 	    continue;
273 	if (!(request = ata_raid_init_request(rdp, bp)))
274 	    return ENOMEM;
275 	request->dev = dev;
276 	request->u.ata.command = ATA_FLUSHCACHE;
277 	request->u.ata.lba = 0;
278 	request->u.ata.count = 0;
279 	request->u.ata.feature = 0;
280 	request->timeout = 1;
281 	request->retries = 0;
282 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
283 	ata_queue_request(request);
284     }
285     return 0;
286 }
287 
288 /*
289  * XXX TGEN there are a lot of offset -> block number conversions going on
290  * here, which is suboptimal.
291  */
292 static int
293 ata_raid_strategy(struct dev_strategy_args *ap)
294 {
295     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
296     struct bio *bp = ap->a_bio;
297     struct buf *bbp = bp->bio_buf;
298     struct ata_request *request;
299     caddr_t data;
300     u_int64_t blkno, lba, blk = 0;
301     int count, chunk, drv, par = 0, change = 0;
302 
303     if (bbp->b_cmd == BUF_CMD_FLUSH) {
304 	int error;
305 
306 	error = ata_raid_flush(rdp, bp);
307 	if (error != 0) {
308 		bbp->b_flags |= B_ERROR;
309 		bbp->b_error = error;
310 		biodone(bp);
311 	}
312 	return(0);
313     }
314 
315     if (!(rdp->status & AR_S_READY) ||
316 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
317 	bbp->b_flags |= B_ERROR;
318 	bbp->b_error = EIO;
319 	biodone(bp);
320 	return(0);
321     }
322 
323     bbp->b_resid = bbp->b_bcount;
324     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
325 	 /* bio_offset is byte granularity, convert */
326 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
327 	 data = bbp->b_data;
328 	 count > 0;
329 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
330 
331 	switch (rdp->type) {
332 	case AR_T_RAID1:
333 	    drv = 0;
334 	    lba = blkno;
335 	    chunk = count;
336 	    break;
337 
338 	case AR_T_JBOD:
339 	case AR_T_SPAN:
340 	    drv = 0;
341 	    lba = blkno;
342 	    while (lba >= rdp->disks[drv].sectors)
343 		lba -= rdp->disks[drv++].sectors;
344 	    chunk = min(rdp->disks[drv].sectors - lba, count);
345 	    break;
346 
347 	case AR_T_RAID0:
348 	case AR_T_RAID01:
349 	    chunk = blkno % rdp->interleave;
350 	    drv = (blkno / rdp->interleave) % rdp->width;
351 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
352 	    chunk = min(count, rdp->interleave - chunk);
353 	    break;
354 
355 	case AR_T_RAID5:
356 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
357 	    par = rdp->width - 1 -
358 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
359 	    if (drv >= par)
360 		drv++;
361 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
362 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
363 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
364 	    break;
365 
366 	default:
367 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
368 	    bbp->b_flags |= B_ERROR;
369 	    bbp->b_error = EIO;
370 	    biodone(bp);
371 	    return(0);
372 	}
373 
374 	/* offset on all but "first on HPTv2" */
375 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
376 	    lba += rdp->offset_sectors;
377 
378 	if (!(request = ata_raid_init_request(rdp, bp))) {
379 	    bbp->b_flags |= B_ERROR;
380 	    bbp->b_error = EIO;
381 	    biodone(bp);
382 	    return(0);
383 	}
384 	request->data = data;
385 	request->bytecount = chunk * DEV_BSIZE;
386 	request->u.ata.lba = lba;
387 	request->u.ata.count = request->bytecount / DEV_BSIZE;
388 
389 	switch (rdp->type) {
390 	case AR_T_JBOD:
391 	case AR_T_SPAN:
392 	case AR_T_RAID0:
393 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
394 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
395 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
396 		ata_raid_config_changed(rdp, 1);
397 		ata_free_request(request);
398 		bbp->b_flags |= B_ERROR;
399 		bbp->b_error = EIO;
400 		biodone(bp);
401 		return(0);
402 	    }
403 	    request->this = drv;
404 	    request->dev = rdp->disks[request->this].dev;
405 	    ata_raid_send_request(request);
406 	    break;
407 
408 	case AR_T_RAID1:
409 	case AR_T_RAID01:
410 	    if ((rdp->disks[drv].flags &
411 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
412 		!rdp->disks[drv].dev) {
413 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
414 		change = 1;
415 	    }
416 	    if ((rdp->disks[drv + rdp->width].flags &
417 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
418 		!rdp->disks[drv + rdp->width].dev) {
419 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
420 		change = 1;
421 	    }
422 	    if (change)
423 		ata_raid_config_changed(rdp, 1);
424 	    if (!(rdp->status & AR_S_READY)) {
425 		ata_free_request(request);
426 		bbp->b_flags |= B_ERROR;
427 		bbp->b_error = EIO;
428 		biodone(bp);
429 		return(0);
430 	    }
431 
432 	    if (rdp->status & AR_S_REBUILDING)
433 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
434 		      (rdp->interleave * (drv % rdp->width)) +
435 		      lba % rdp->interleave;;
436 
437 	    if (bbp->b_cmd == BUF_CMD_READ) {
438 		int src_online =
439 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
440 		int mir_online =
441 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
442 
443 		/* if mirror gone or close to last access on source */
444 		if (!mir_online ||
445 		    ((src_online) &&
446 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
447 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
448 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
449 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
450 		    rdp->toggle = 0;
451 		}
452 		/* if source gone or close to last access on mirror */
453 		else if (!src_online ||
454 			 ((mir_online) &&
455 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
456 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
457 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
458 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
459 		    drv += rdp->width;
460 		    rdp->toggle = 1;
461 		}
462 		/* not close to any previous access, toggle */
463 		else {
464 		    if (rdp->toggle)
465 			rdp->toggle = 0;
466 		    else {
467 			drv += rdp->width;
468 			rdp->toggle = 1;
469 		    }
470 		}
471 
472 		if ((rdp->status & AR_S_REBUILDING) &&
473 		    (blk <= rdp->rebuild_lba) &&
474 		    ((blk + chunk) > rdp->rebuild_lba)) {
475 		    struct ata_composite *composite;
476 		    struct ata_request *rebuild;
477 		    int this;
478 
479 		    /* figure out what part to rebuild */
480 		    if (drv < rdp->width)
481 			this = drv + rdp->width;
482 		    else
483 			this = drv - rdp->width;
484 
485 		    /* do we have a spare to rebuild on ? */
486 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
487 			if ((composite = ata_alloc_composite())) {
488 			    if ((rebuild = ata_alloc_request())) {
489 				rdp->rebuild_lba = blk + chunk;
490 				bcopy(request, rebuild,
491 				      sizeof(struct ata_request));
492 				rebuild->this = this;
493 				rebuild->dev = rdp->disks[this].dev;
494 				rebuild->flags &= ~ATA_R_READ;
495 				rebuild->flags |= ATA_R_WRITE;
496 				spin_init(&composite->lock);
497 				composite->residual = request->bytecount;
498 				composite->rd_needed |= (1 << drv);
499 				composite->wr_depend |= (1 << drv);
500 				composite->wr_needed |= (1 << this);
501 				composite->request[drv] = request;
502 				composite->request[this] = rebuild;
503 				request->composite = composite;
504 				rebuild->composite = composite;
505 				ata_raid_send_request(rebuild);
506 			    }
507 			    else {
508 				ata_free_composite(composite);
509 				kprintf("DOH! ata_alloc_request failed!\n");
510 			    }
511 			}
512 			else {
513 			    kprintf("DOH! ata_alloc_composite failed!\n");
514 			}
515 		    }
516 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
517 			/*
518 			 * if we got here we are a chunk of a RAID01 that
519 			 * does not need a rebuild, but we need to increment
520 			 * the rebuild_lba address to get the rebuild to
521 			 * move to the next chunk correctly
522 			 */
523 			rdp->rebuild_lba = blk + chunk;
524 		    }
525 		    else
526 			kprintf("DOH! we didn't find the rebuild part\n");
527 		}
528 	    }
529 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
530 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
531 		    ((rdp->status & AR_S_REBUILDING) &&
532 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
533 		     ((blk < rdp->rebuild_lba) ||
534 		      ((blk <= rdp->rebuild_lba) &&
535 		       ((blk + chunk) > rdp->rebuild_lba))))) {
536 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
537 			((rdp->status & AR_S_REBUILDING) &&
538 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
539 			 ((blk < rdp->rebuild_lba) ||
540 			  ((blk <= rdp->rebuild_lba) &&
541 			   ((blk + chunk) > rdp->rebuild_lba))))) {
542 			struct ata_request *mirror;
543 			struct ata_composite *composite;
544 			int this = drv + rdp->width;
545 
546 			if ((composite = ata_alloc_composite())) {
547 			    if ((mirror = ata_alloc_request())) {
548 				if ((blk <= rdp->rebuild_lba) &&
549 				    ((blk + chunk) > rdp->rebuild_lba))
550 				    rdp->rebuild_lba = blk + chunk;
551 				bcopy(request, mirror,
552 				      sizeof(struct ata_request));
553 				mirror->this = this;
554 				mirror->dev = rdp->disks[this].dev;
555 				spin_init(&composite->lock);
556 				composite->residual = request->bytecount;
557 				composite->wr_needed |= (1 << drv);
558 				composite->wr_needed |= (1 << this);
559 				composite->request[drv] = request;
560 				composite->request[this] = mirror;
561 				request->composite = composite;
562 				mirror->composite = composite;
563 				ata_raid_send_request(mirror);
564 				rdp->disks[this].last_lba =
565 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
566 				    chunk;
567 			    }
568 			    else {
569 				ata_free_composite(composite);
570 				kprintf("DOH! ata_alloc_request failed!\n");
571 			    }
572 			}
573 			else {
574 			    kprintf("DOH! ata_alloc_composite failed!\n");
575 			}
576 		    }
577 		    else
578 			drv += rdp->width;
579 		}
580 	    }
581 	    request->this = drv;
582 	    request->dev = rdp->disks[request->this].dev;
583 	    ata_raid_send_request(request);
584 	    rdp->disks[request->this].last_lba =
585 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
586 	    break;
587 
588 	case AR_T_RAID5:
589 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
590 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
591 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
592 		change = 1;
593 	    }
594 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
595 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
596 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
597 		change = 1;
598 	    }
599 	    if (change)
600 		ata_raid_config_changed(rdp, 1);
601 	    if (!(rdp->status & AR_S_READY)) {
602 		ata_free_request(request);
603 		bbp->b_flags |= B_ERROR;
604 		bbp->b_error = EIO;
605 		biodone(bp);
606 		return(0);
607 	    }
608 	    if (rdp->status & AR_S_DEGRADED) {
609 		/* do the XOR game if possible */
610 	    }
611 	    else {
612 		request->this = drv;
613 		request->dev = rdp->disks[request->this].dev;
614 		if (bbp->b_cmd == BUF_CMD_READ) {
615 		    ata_raid_send_request(request);
616 		}
617 		if (bbp->b_cmd == BUF_CMD_WRITE) {
618 		    ata_raid_send_request(request);
619 		    /* XXX TGEN no, I don't speak Danish either */
620 		    /*
621 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
622 		     * par kopi af request
623 		     * l�se orgdata fra drv
624 		     * skriv nydata til drv
625 		     * l�se parorgdata fra par
626 		     * skriv orgdata xor parorgdata xor nydata til par
627 		     */
628 		}
629 	    }
630 	    break;
631 
632 	default:
633 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
634 	}
635     }
636 
637     return(0);
638 }
639 
640 static void
641 ata_raid_done(struct ata_request *request)
642 {
643     struct ar_softc *rdp = request->driver;
644     struct ata_composite *composite = NULL;
645     struct bio *bp = request->bio;
646     struct buf *bbp = bp->bio_buf;
647     int i, mirror, finished = 0;
648 
649     if (bbp->b_cmd == BUF_CMD_FLUSH) {
650 	if (bbp->b_error == 0)
651 		bbp->b_error = request->result;
652 	ata_free_request(request);
653 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
654 	if ((intptr_t)bp->bio_driver_info == 0) {
655 		if (bbp->b_error)
656 			bbp->b_flags |= B_ERROR;
657 		biodone(bp);
658 	}
659 	return;
660     }
661 
662     switch (rdp->type) {
663     case AR_T_JBOD:
664     case AR_T_SPAN:
665     case AR_T_RAID0:
666 	if (request->result) {
667 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
668 	    ata_raid_config_changed(rdp, 1);
669 	    bbp->b_error = request->result;
670 	    finished = 1;
671 	}
672 	else {
673 	    bbp->b_resid -= request->donecount;
674 	    if (!bbp->b_resid)
675 		finished = 1;
676 	}
677 	break;
678 
679     case AR_T_RAID1:
680     case AR_T_RAID01:
681 	if (request->this < rdp->width)
682 	    mirror = request->this + rdp->width;
683 	else
684 	    mirror = request->this - rdp->width;
685 	if (request->result) {
686 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
687 	    ata_raid_config_changed(rdp, 1);
688 	}
689 	if (rdp->status & AR_S_READY) {
690 	    u_int64_t blk = 0;
691 
692 	    if (rdp->status & AR_S_REBUILDING)
693 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
694 		      rdp->interleave + (rdp->interleave *
695 		      (request->this % rdp->width)) +
696 		      request->u.ata.lba % rdp->interleave;
697 
698 	    if (bbp->b_cmd == BUF_CMD_READ) {
699 
700 		/* is this a rebuild composite */
701 		if ((composite = request->composite)) {
702 		    spin_lock(&composite->lock);
703 
704 		    /* handle the read part of a rebuild composite */
705 		    if (request->flags & ATA_R_READ) {
706 
707 			/* if read failed array is now broken */
708 			if (request->result) {
709 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
710 			    ata_raid_config_changed(rdp, 1);
711 			    bbp->b_error = request->result;
712 			    rdp->rebuild_lba = blk;
713 			    finished = 1;
714 			}
715 
716 			/* good data, update how far we've gotten */
717 			else {
718 			    bbp->b_resid -= request->donecount;
719 			    composite->residual -= request->donecount;
720 			    if (!composite->residual) {
721 				if (composite->wr_done & (1 << mirror))
722 				    finished = 1;
723 			    }
724 			}
725 		    }
726 
727 		    /* handle the write part of a rebuild composite */
728 		    else if (request->flags & ATA_R_WRITE) {
729 			if (composite->rd_done & (1 << mirror)) {
730 			    if (request->result) {
731 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
732 				rdp->rebuild_lba = blk;
733 			    }
734 			    if (!composite->residual)
735 				finished = 1;
736 			}
737 		    }
738 		    spin_unlock(&composite->lock);
739 		}
740 
741 		/* if read failed retry on the mirror */
742 		else if (request->result) {
743 		    request->dev = rdp->disks[mirror].dev;
744 		    request->flags &= ~ATA_R_TIMEOUT;
745 		    ata_raid_send_request(request);
746 		    return;
747 		}
748 
749 		/* we have good data */
750 		else {
751 		    bbp->b_resid -= request->donecount;
752 		    if (!bbp->b_resid)
753 			finished = 1;
754 		}
755 	    }
756 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
757 		/* do we have a mirror or rebuild to deal with ? */
758 		if ((composite = request->composite)) {
759 		    spin_lock(&composite->lock);
760 		    if (composite->wr_done & (1 << mirror)) {
761 			if (request->result) {
762 			    if (composite->request[mirror]->result) {
763 				kprintf("DOH! all disks failed and got here\n");
764 				bbp->b_error = EIO;
765 			    }
766 			    if (rdp->status & AR_S_REBUILDING) {
767 				rdp->rebuild_lba = blk;
768 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
769 			    }
770 			    bbp->b_resid -=
771 				composite->request[mirror]->donecount;
772 			    composite->residual -=
773 				composite->request[mirror]->donecount;
774 			}
775 			else {
776 			    bbp->b_resid -= request->donecount;
777 			    composite->residual -= request->donecount;
778 			}
779 			if (!composite->residual)
780 			    finished = 1;
781 		    }
782 		    spin_unlock(&composite->lock);
783 		}
784 		/* no mirror we are done */
785 		else {
786 		    bbp->b_resid -= request->donecount;
787 		    if (!bbp->b_resid)
788 			finished = 1;
789 		}
790 	    }
791 	}
792 	else {
793 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
794 	    bbp->b_error = request->result;
795 	    biodone(bp);
796 	}
797 	break;
798 
799     case AR_T_RAID5:
800 	if (request->result) {
801 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
802 	    ata_raid_config_changed(rdp, 1);
803 	    if (rdp->status & AR_S_READY) {
804 		if (bbp->b_cmd == BUF_CMD_READ) {
805 		    /* do the XOR game to recover data */
806 		}
807 		if (bbp->b_cmd == BUF_CMD_WRITE) {
808 		    /* if the parity failed we're OK sortof */
809 		    /* otherwise wee need to do the XOR long dance */
810 		}
811 		finished = 1;
812 	    }
813 	    else {
814 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
815 		bbp->b_error = request->result;
816 		biodone(bp);
817 	    }
818 	}
819 	else {
820 	    /* did we have an XOR game going ?? */
821 	    bbp->b_resid -= request->donecount;
822 	    if (!bbp->b_resid)
823 		finished = 1;
824 	}
825 	break;
826 
827     default:
828 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
829     }
830 
831     if (finished) {
832 	if ((rdp->status & AR_S_REBUILDING) &&
833 	    rdp->rebuild_lba >= rdp->total_sectors) {
834 	    int disk;
835 
836 	    for (disk = 0; disk < rdp->total_disks; disk++) {
837 		if ((rdp->disks[disk].flags &
838 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
839 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
840 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
841 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
842 		}
843 	    }
844 	    rdp->status &= ~AR_S_REBUILDING;
845 	    ata_raid_config_changed(rdp, 1);
846 	}
847 	if (!bbp->b_resid)
848 	    biodone(bp);
849     }
850 
851     if (composite) {
852 	if (finished) {
853 	    /* we are done with this composite, free all resources */
854 	    for (i = 0; i < 32; i++) {
855 		if (composite->rd_needed & (1 << i) ||
856 		    composite->wr_needed & (1 << i)) {
857 		    ata_free_request(composite->request[i]);
858 		}
859 	    }
860 	    spin_uninit(&composite->lock);
861 	    ata_free_composite(composite);
862 	}
863     }
864     else
865 	ata_free_request(request);
866 }
867 
868 static int
869 ata_raid_dump(struct dev_dump_args *ap)
870 {
871 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
872 	struct buf dbuf;
873 	int error = 0;
874 	int disk;
875 
876 	if (ap->a_length == 0) {
877 		/* flush subdisk buffers to media */
878 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
879 			if (rdp->disks[disk].dev) {
880 				error |= ata_controlcmd(rdp->disks[disk].dev,
881 						ATA_FLUSHCACHE, 0, 0, 0);
882 			}
883 		}
884 		return (error ? EIO : 0);
885 	}
886 
887 	bzero(&dbuf, sizeof(struct buf));
888 	BUF_LOCKINIT(&dbuf);
889 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
890 	initbufbio(&dbuf);
891 	/* bio_offset is byte granularity, convert block granularity a_blkno */
892 	dbuf.b_bio1.bio_offset = ap->a_offset;
893 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
894 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
895 	dbuf.b_bio1.bio_done = biodone_sync;
896 	dbuf.b_bcount = ap->a_length;
897 	dbuf.b_data = ap->a_virtual;
898 	dbuf.b_cmd = BUF_CMD_WRITE;
899 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
900 	/* wait for completion, unlock the buffer, check status */
901 	if (biowait(&dbuf.b_bio1, "dumpw")) {
902 	    BUF_UNLOCK(&dbuf);
903 	    return(dbuf.b_error ? dbuf.b_error : EIO);
904 	}
905 	BUF_UNLOCK(&dbuf);
906 
907 	return 0;
908 }
909 
910 static void
911 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
912 {
913     int disk, count, status;
914 
915     spin_lock(&rdp->lock);
916     /* set default all working mode */
917     status = rdp->status;
918     rdp->status &= ~AR_S_DEGRADED;
919     rdp->status |= AR_S_READY;
920 
921     /* make sure all lost drives are accounted for */
922     for (disk = 0; disk < rdp->total_disks; disk++) {
923 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
924 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
925     }
926 
927     /* depending on RAID type figure out our health status */
928     switch (rdp->type) {
929     case AR_T_JBOD:
930     case AR_T_SPAN:
931     case AR_T_RAID0:
932 	for (disk = 0; disk < rdp->total_disks; disk++)
933 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
934 		rdp->status &= ~AR_S_READY;
935 	break;
936 
937     case AR_T_RAID1:
938     case AR_T_RAID01:
939 	for (disk = 0; disk < rdp->width; disk++) {
940 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
941 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
942 		rdp->status &= ~AR_S_READY;
943 	    }
944 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
945 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
946 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
947 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
948 		rdp->status |= AR_S_DEGRADED;
949 	    }
950 	}
951 	break;
952 
953     case AR_T_RAID5:
954 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
955 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
956 		count++;
957 	}
958 	if (count) {
959 	    if (count > 1)
960 		rdp->status &= ~AR_S_READY;
961 	    else
962 		rdp->status |= AR_S_DEGRADED;
963 	}
964 	break;
965     default:
966 	rdp->status &= ~AR_S_READY;
967     }
968 
969     /*
970      * Note that when the array breaks so comes up broken we
971      * force a write of the array config to the remaining
972      * drives so that the generation will be incremented past
973      * those of the missing or failed drives (in all cases).
974      */
975     if (rdp->status != status) {
976 	if (!(rdp->status & AR_S_READY)) {
977 	    kprintf("ar%d: FAILURE - %s array broken\n",
978 		   rdp->lun, ata_raid_type(rdp));
979 	    writeback = 1;
980 	}
981 	else if (rdp->status & AR_S_DEGRADED) {
982 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
983 		kprintf("ar%d: WARNING - mirror", rdp->lun);
984 	    else
985 		kprintf("ar%d: WARNING - parity", rdp->lun);
986 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
987 		   ata_raid_type(rdp));
988 	    writeback = 1;
989 	}
990     }
991     spin_unlock(&rdp->lock);
992     if (writeback)
993 	ata_raid_write_metadata(rdp);
994 
995 }
996 
997 static int
998 ata_raid_status(struct ata_ioc_raid_config *config)
999 {
1000     struct ar_softc *rdp;
1001     int i;
1002 
1003     if (!(rdp = ata_raid_arrays[config->lun]))
1004 	return ENXIO;
1005 
1006     config->type = rdp->type;
1007     config->total_disks = rdp->total_disks;
1008     for (i = 0; i < rdp->total_disks; i++ ) {
1009 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1010 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1011 	else
1012 	    config->disks[i] = -1;
1013     }
1014     config->interleave = rdp->interleave;
1015     config->status = rdp->status;
1016     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1017     return 0;
1018 }
1019 
1020 static int
1021 ata_raid_create(struct ata_ioc_raid_config *config)
1022 {
1023     struct ar_softc *rdp;
1024     device_t subdisk;
1025     int array, disk;
1026     int ctlr = 0, disk_size = 0, total_disks = 0;
1027     device_t gpdev;
1028 
1029     for (array = 0; array < MAX_ARRAYS; array++) {
1030 	if (!ata_raid_arrays[array])
1031 	    break;
1032     }
1033     if (array >= MAX_ARRAYS)
1034 	return ENOSPC;
1035 
1036     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1037 	M_WAITOK | M_ZERO);
1038 
1039     for (disk = 0; disk < config->total_disks; disk++) {
1040 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1041 					   config->disks[disk]))) {
1042 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1043 
1044 	    /* is device already assigned to another array ? */
1045 	    if (ars->raid[rdp->volume]) {
1046 		config->disks[disk] = -1;
1047 		kfree(rdp, M_AR);
1048 		return EBUSY;
1049 	    }
1050 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1051 
1052 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1053 
1054 	    switch (pci_get_vendor(gpdev)) {
1055 	    case ATA_HIGHPOINT_ID:
1056 		/*
1057 		 * we need some way to decide if it should be v2 or v3
1058 		 * for now just use v2 since the v3 BIOS knows how to
1059 		 * handle that as well.
1060 		 */
1061 		ctlr = AR_F_HPTV2_RAID;
1062 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1063 		break;
1064 
1065 	    case ATA_INTEL_ID:
1066 		ctlr = AR_F_INTEL_RAID;
1067 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1068 		break;
1069 
1070 	    case ATA_ITE_ID:
1071 		ctlr = AR_F_ITE_RAID;
1072 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1073 		break;
1074 
1075 	    case ATA_JMICRON_ID:
1076 		ctlr = AR_F_JMICRON_RAID;
1077 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1078 		break;
1079 
1080 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1081 	    case ATA_PROMISE_ID:
1082 		ctlr = AR_F_PROMISE_RAID;
1083 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1084 		break;
1085 
1086 	    case ATA_SIS_ID:
1087 		ctlr = AR_F_SIS_RAID;
1088 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1089 		break;
1090 
1091 	    case ATA_ATI_ID:
1092 	    case ATA_VIA_ID:
1093 		ctlr = AR_F_VIA_RAID;
1094 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1095 		break;
1096 
1097 	    default:
1098 		/* XXX SOS
1099 		 * right, so here we are, we have an ATA chip and we want
1100 		 * to create a RAID and store the metadata.
1101 		 * we need to find a way to tell what kind of metadata this
1102 		 * hardware's BIOS might be using (good ideas are welcomed)
1103 		 * for now we just use our own native FreeBSD format.
1104 		 * the only way to get support for the BIOS format is to
1105 		 * setup the RAID from there, in that case we pickup the
1106 		 * metadata format from the disks (if we support it).
1107 		 */
1108 		kprintf("WARNING!! - not able to determine metadata format\n"
1109 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1110 		       "If that is not what you want, use the BIOS to "
1111 		       "create the array\n");
1112 		ctlr = AR_F_FREEBSD_RAID;
1113 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1114 		break;
1115 	    }
1116 
1117 	    /* we need all disks to be of the same format */
1118 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1119 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1120 		kfree(rdp, M_AR);
1121 		return EXDEV;
1122 	    }
1123 	    else
1124 		rdp->format = ctlr;
1125 
1126 	    /* use the smallest disk of the lots size */
1127 	    /* gigabyte boundry ??? XXX SOS */
1128 	    if (disk_size)
1129 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1130 	    else
1131 		disk_size = rdp->disks[disk].sectors;
1132 	    rdp->disks[disk].flags =
1133 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1134 
1135 	    total_disks++;
1136 	}
1137 	else {
1138 	    config->disks[disk] = -1;
1139 	    kfree(rdp, M_AR);
1140 	    return ENXIO;
1141 	}
1142     }
1143 
1144     if (total_disks != config->total_disks) {
1145 	kfree(rdp, M_AR);
1146 	return ENODEV;
1147     }
1148 
1149     switch (config->type) {
1150     case AR_T_JBOD:
1151     case AR_T_SPAN:
1152     case AR_T_RAID0:
1153 	break;
1154 
1155     case AR_T_RAID1:
1156 	if (total_disks != 2) {
1157 	    kfree(rdp, M_AR);
1158 	    return EPERM;
1159 	}
1160 	break;
1161 
1162     case AR_T_RAID01:
1163 	if (total_disks % 2 != 0) {
1164 	    kfree(rdp, M_AR);
1165 	    return EPERM;
1166 	}
1167 	break;
1168 
1169     case AR_T_RAID5:
1170 	if (total_disks < 3) {
1171 	    kfree(rdp, M_AR);
1172 	    return EPERM;
1173 	}
1174 	break;
1175 
1176     default:
1177 	kfree(rdp, M_AR);
1178 	return EOPNOTSUPP;
1179     }
1180     rdp->type = config->type;
1181     rdp->lun = array;
1182     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1183 	rdp->type == AR_T_RAID5) {
1184 	int bit = 0;
1185 
1186 	while (config->interleave >>= 1)
1187 	    bit++;
1188 	rdp->interleave = 1 << bit;
1189     }
1190     rdp->offset_sectors = 0;
1191 
1192     /* values that depend on metadata format */
1193     switch (rdp->format) {
1194     case AR_F_ADAPTEC_RAID:
1195 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1196 	break;
1197 
1198     case AR_F_HPTV2_RAID:
1199 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1200 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1201 	break;
1202 
1203     case AR_F_HPTV3_RAID:
1204 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1205 	break;
1206 
1207     case AR_F_INTEL_RAID:
1208 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1209 	break;
1210 
1211     case AR_F_ITE_RAID:
1212 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1213 	break;
1214 
1215     case AR_F_JMICRON_RAID:
1216 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1217 	break;
1218 
1219     case AR_F_LSIV2_RAID:
1220 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1221 	break;
1222 
1223     case AR_F_LSIV3_RAID:
1224 	rdp->interleave = min(max(2, rdp->interleave), 256);
1225 	break;
1226 
1227     case AR_F_PROMISE_RAID:
1228 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1229 	break;
1230 
1231     case AR_F_SII_RAID:
1232 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1233 	break;
1234 
1235     case AR_F_SIS_RAID:
1236 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1237 	break;
1238 
1239     case AR_F_VIA_RAID:
1240 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1241 	break;
1242     }
1243 
1244     rdp->total_disks = total_disks;
1245     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1246     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1247     rdp->heads = 255;
1248     rdp->sectors = 63;
1249     rdp->cylinders = rdp->total_sectors / (255 * 63);
1250     rdp->rebuild_lba = 0;
1251     rdp->status |= AR_S_READY;
1252 
1253     /* we are committed to this array, grap the subdisks */
1254     for (disk = 0; disk < config->total_disks; disk++) {
1255 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1256 					   config->disks[disk]))) {
1257 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1258 
1259 	    ars->raid[rdp->volume] = rdp;
1260 	    ars->disk_number[rdp->volume] = disk;
1261 	}
1262     }
1263     ata_raid_attach(rdp, 1);
1264     ata_raid_arrays[array] = rdp;
1265     config->lun = array;
1266     return 0;
1267 }
1268 
1269 static int
1270 ata_raid_delete(int array)
1271 {
1272     struct ar_softc *rdp;
1273     device_t subdisk;
1274     int disk;
1275 
1276     if (!(rdp = ata_raid_arrays[array]))
1277 	return ENXIO;
1278 
1279     rdp->status &= ~AR_S_READY;
1280     disk_destroy(&rdp->disk);
1281 
1282     for (disk = 0; disk < rdp->total_disks; disk++) {
1283 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1284 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1285 		     device_get_unit(rdp->disks[disk].dev)))) {
1286 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1287 
1288 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1289 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1290 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1291 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1292 		ars->raid[rdp->volume] = NULL;
1293 		ars->disk_number[rdp->volume] = -1;
1294 	    }
1295 	    rdp->disks[disk].flags = 0;
1296 	}
1297     }
1298     ata_raid_wipe_metadata(rdp);
1299     ata_raid_arrays[array] = NULL;
1300     kfree(rdp, M_AR);
1301     return 0;
1302 }
1303 
1304 static int
1305 ata_raid_addspare(struct ata_ioc_raid_config *config)
1306 {
1307     struct ar_softc *rdp;
1308     device_t subdisk;
1309     int disk;
1310 
1311     if (!(rdp = ata_raid_arrays[config->lun]))
1312 	return ENXIO;
1313     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1314 	return ENXIO;
1315     if (rdp->status & AR_S_REBUILDING)
1316 	return EBUSY;
1317     switch (rdp->type) {
1318     case AR_T_RAID1:
1319     case AR_T_RAID01:
1320     case AR_T_RAID5:
1321 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1322 
1323 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1324 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1325 		continue;
1326 
1327 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1328 					       config->disks[0] ))) {
1329 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1330 
1331 		if (ars->raid[rdp->volume])
1332 		    return EBUSY;
1333 
1334 		/* XXX SOS validate size etc etc */
1335 		ars->raid[rdp->volume] = rdp;
1336 		ars->disk_number[rdp->volume] = disk;
1337 		rdp->disks[disk].dev = device_get_parent(subdisk);
1338 		rdp->disks[disk].flags =
1339 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1340 
1341 		device_printf(rdp->disks[disk].dev,
1342 			      "inserted into ar%d disk%d as spare\n",
1343 			      rdp->lun, disk);
1344 		ata_raid_config_changed(rdp, 1);
1345 		return 0;
1346 	    }
1347 	}
1348 	return ENXIO;
1349 
1350     default:
1351 	return EPERM;
1352     }
1353 }
1354 
1355 static int
1356 ata_raid_rebuild(int array)
1357 {
1358     struct ar_softc *rdp;
1359     int disk, count;
1360 
1361     if (!(rdp = ata_raid_arrays[array]))
1362 	return ENXIO;
1363     /* XXX SOS we should lock the rdp softc here */
1364     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1365 	return ENXIO;
1366     if (rdp->status & AR_S_REBUILDING)
1367 	return EBUSY;
1368 
1369     switch (rdp->type) {
1370     case AR_T_RAID1:
1371     case AR_T_RAID01:
1372     case AR_T_RAID5:
1373 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1374 	    if (((rdp->disks[disk].flags &
1375 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1376 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1377 		rdp->disks[disk].dev) {
1378 		count++;
1379 	    }
1380 	}
1381 
1382 	if (count) {
1383 	    rdp->rebuild_lba = 0;
1384 	    rdp->status |= AR_S_REBUILDING;
1385 	    return 0;
1386 	}
1387 	return EIO;
1388 
1389     default:
1390 	return EPERM;
1391     }
1392 }
1393 
1394 static int
1395 ata_raid_read_metadata(device_t subdisk)
1396 {
1397     devclass_t pci_devclass = devclass_find("pci");
1398     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1399     device_t gpdev;
1400     uint16_t vendor;
1401 
1402     /* prioritize vendor native metadata layout if possible */
1403     if (devclass == pci_devclass) {
1404 	gpdev = device_get_parent(subdisk);
1405 	gpdev = GRANDPARENT(gpdev);
1406 	vendor = pci_get_vendor(gpdev);
1407 
1408 	switch (vendor) {
1409 	case ATA_HIGHPOINT_ID:
1410 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1411 		return 0;
1412 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1413 		return 0;
1414 	    break;
1415 
1416 	case ATA_INTEL_ID:
1417 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1418 		return 0;
1419 	    break;
1420 
1421 	case ATA_ITE_ID:
1422 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1423 		return 0;
1424 	    break;
1425 
1426 	case ATA_JMICRON_ID:
1427 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1428 		return 0;
1429 	    break;
1430 
1431 	case ATA_NVIDIA_ID:
1432 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1433 		return 0;
1434 	    break;
1435 
1436 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1437 	case ATA_PROMISE_ID:
1438 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1439 		return 0;
1440 	    break;
1441 
1442 	case ATA_ATI_ID:
1443 	case ATA_SILICON_IMAGE_ID:
1444 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1445 		return 0;
1446 	    break;
1447 
1448 	case ATA_SIS_ID:
1449 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1450 		return 0;
1451 	    break;
1452 
1453 	case ATA_VIA_ID:
1454 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1455 		return 0;
1456 	    break;
1457 	}
1458     }
1459 
1460     /* handle controllers that have multiple layout possibilities */
1461     /* NOTE: the order of these are not insignificant */
1462 
1463     /* Adaptec HostRAID */
1464     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1465 	return 0;
1466 
1467     /* LSILogic v3 and v2 */
1468     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1469 	return 0;
1470     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1471 	return 0;
1472 
1473     /* if none of the above matched, try FreeBSD native format */
1474     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1475 }
1476 
1477 static int
1478 ata_raid_write_metadata(struct ar_softc *rdp)
1479 {
1480     switch (rdp->format) {
1481     case AR_F_FREEBSD_RAID:
1482     case AR_F_PROMISE_RAID:
1483 	return ata_raid_promise_write_meta(rdp);
1484 
1485     case AR_F_HPTV3_RAID:
1486     case AR_F_HPTV2_RAID:
1487 	/*
1488 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1489 	 * this is handy since we cannot know what version BIOS is on there
1490 	 */
1491 	return ata_raid_hptv2_write_meta(rdp);
1492 
1493     case AR_F_INTEL_RAID:
1494 	return ata_raid_intel_write_meta(rdp);
1495 
1496     case AR_F_JMICRON_RAID:
1497 	return ata_raid_jmicron_write_meta(rdp);
1498 
1499     case AR_F_SIS_RAID:
1500 	return ata_raid_sis_write_meta(rdp);
1501 
1502     case AR_F_VIA_RAID:
1503 	return ata_raid_via_write_meta(rdp);
1504 #if 0
1505     case AR_F_HPTV3_RAID:
1506 	return ata_raid_hptv3_write_meta(rdp);
1507 
1508     case AR_F_ADAPTEC_RAID:
1509 	return ata_raid_adaptec_write_meta(rdp);
1510 
1511     case AR_F_ITE_RAID:
1512 	return ata_raid_ite_write_meta(rdp);
1513 
1514     case AR_F_LSIV2_RAID:
1515 	return ata_raid_lsiv2_write_meta(rdp);
1516 
1517     case AR_F_LSIV3_RAID:
1518 	return ata_raid_lsiv3_write_meta(rdp);
1519 
1520     case AR_F_NVIDIA_RAID:
1521 	return ata_raid_nvidia_write_meta(rdp);
1522 
1523     case AR_F_SII_RAID:
1524 	return ata_raid_sii_write_meta(rdp);
1525 
1526 #endif
1527     default:
1528 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1529 	       rdp->lun, ata_raid_format(rdp));
1530     }
1531     return -1;
1532 }
1533 
1534 static int
1535 ata_raid_wipe_metadata(struct ar_softc *rdp)
1536 {
1537     int disk, error = 0;
1538     u_int64_t lba;
1539     u_int32_t size;
1540     u_int8_t *meta;
1541 
1542     for (disk = 0; disk < rdp->total_disks; disk++) {
1543 	if (rdp->disks[disk].dev) {
1544 	    switch (rdp->format) {
1545 	    case AR_F_ADAPTEC_RAID:
1546 		lba = ADP_LBA(rdp->disks[disk].dev);
1547 		size = sizeof(struct adaptec_raid_conf);
1548 		break;
1549 
1550 	    case AR_F_HPTV2_RAID:
1551 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1552 		size = sizeof(struct hptv2_raid_conf);
1553 		break;
1554 
1555 	    case AR_F_HPTV3_RAID:
1556 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1557 		size = sizeof(struct hptv3_raid_conf);
1558 		break;
1559 
1560 	    case AR_F_INTEL_RAID:
1561 		lba = INTEL_LBA(rdp->disks[disk].dev);
1562 		size = 3 * 512;         /* XXX SOS */
1563 		break;
1564 
1565 	    case AR_F_ITE_RAID:
1566 		lba = ITE_LBA(rdp->disks[disk].dev);
1567 		size = sizeof(struct ite_raid_conf);
1568 		break;
1569 
1570 	    case AR_F_JMICRON_RAID:
1571 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1572 		size = sizeof(struct jmicron_raid_conf);
1573 		break;
1574 
1575 	    case AR_F_LSIV2_RAID:
1576 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1577 		size = sizeof(struct lsiv2_raid_conf);
1578 		break;
1579 
1580 	    case AR_F_LSIV3_RAID:
1581 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1582 		size = sizeof(struct lsiv3_raid_conf);
1583 		break;
1584 
1585 	    case AR_F_NVIDIA_RAID:
1586 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1587 		size = sizeof(struct nvidia_raid_conf);
1588 		break;
1589 
1590 	    case AR_F_FREEBSD_RAID:
1591 	    case AR_F_PROMISE_RAID:
1592 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1593 		size = sizeof(struct promise_raid_conf);
1594 		break;
1595 
1596 	    case AR_F_SII_RAID:
1597 		lba = SII_LBA(rdp->disks[disk].dev);
1598 		size = sizeof(struct sii_raid_conf);
1599 		break;
1600 
1601 	    case AR_F_SIS_RAID:
1602 		lba = SIS_LBA(rdp->disks[disk].dev);
1603 		size = sizeof(struct sis_raid_conf);
1604 		break;
1605 
1606 	    case AR_F_VIA_RAID:
1607 		lba = VIA_LBA(rdp->disks[disk].dev);
1608 		size = sizeof(struct via_raid_conf);
1609 		break;
1610 
1611 	    default:
1612 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1613 		       rdp->lun, ata_raid_format(rdp));
1614 		return ENXIO;
1615 	    }
1616 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1617 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1618 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1619 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1620 		error = EIO;
1621 	    }
1622 	    kfree(meta, M_AR);
1623 	}
1624     }
1625     return error;
1626 }
1627 
1628 /* Adaptec HostRAID Metadata */
1629 static int
1630 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1631 {
1632     struct ata_raid_subdisk *ars = device_get_softc(dev);
1633     device_t parent = device_get_parent(dev);
1634     struct adaptec_raid_conf *meta;
1635     struct ar_softc *raid;
1636     int array, disk, retval = 0;
1637 
1638     meta = (struct adaptec_raid_conf *)
1639 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1640 
1641     if (ata_raid_rw(parent, ADP_LBA(parent),
1642 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1643 	if (testing || bootverbose)
1644 	    device_printf(parent, "Adaptec read metadata failed\n");
1645 	goto adaptec_out;
1646     }
1647 
1648     /* check if this is a Adaptec RAID struct */
1649     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1650 	if (testing || bootverbose)
1651 	    device_printf(parent, "Adaptec check1 failed\n");
1652 	goto adaptec_out;
1653     }
1654 
1655     if (testing || bootverbose)
1656 	ata_raid_adaptec_print_meta(meta);
1657 
1658     /* now convert Adaptec metadata into our generic form */
1659     for (array = 0; array < MAX_ARRAYS; array++) {
1660 	if (!raidp[array]) {
1661 	    raidp[array] =
1662 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1663 					  M_WAITOK | M_ZERO);
1664 	}
1665 	raid = raidp[array];
1666 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1667 	    continue;
1668 
1669 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1670 	    continue;
1671 
1672 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1673 	    switch (meta->configs[0].type) {
1674 	    case ADP_T_RAID0:
1675 		raid->magic_0 = meta->configs[0].magic_0;
1676 		raid->type = AR_T_RAID0;
1677 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1678 		raid->width = be16toh(meta->configs[0].total_disks);
1679 		break;
1680 
1681 	    case ADP_T_RAID1:
1682 		raid->magic_0 = meta->configs[0].magic_0;
1683 		raid->type = AR_T_RAID1;
1684 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1685 		break;
1686 
1687 	    default:
1688 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1689 			      meta->configs[0].type);
1690 		kfree(raidp[array], M_AR);
1691 		raidp[array] = NULL;
1692 		goto adaptec_out;
1693 	    }
1694 
1695 	    raid->format = AR_F_ADAPTEC_RAID;
1696 	    raid->generation = be32toh(meta->generation);
1697 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1698 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1699 	    raid->heads = 255;
1700 	    raid->sectors = 63;
1701 	    raid->cylinders = raid->total_sectors / (63 * 255);
1702 	    raid->offset_sectors = 0;
1703 	    raid->rebuild_lba = 0;
1704 	    raid->lun = array;
1705 	    strncpy(raid->name, meta->configs[0].name,
1706 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1707 
1708 	    /* clear out any old info */
1709 	    if (raid->generation) {
1710 		for (disk = 0; disk < raid->total_disks; disk++) {
1711 		    raid->disks[disk].dev = NULL;
1712 		    raid->disks[disk].flags = 0;
1713 		}
1714 	    }
1715 	}
1716 	if (be32toh(meta->generation) >= raid->generation) {
1717 	    struct ata_device *atadev = device_get_softc(parent);
1718 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1719 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1720 			      ATA_DEV(atadev->unit);
1721 
1722 	    raid->disks[disk_number].dev = parent;
1723 	    raid->disks[disk_number].sectors =
1724 		be32toh(meta->configs[disk_number + 1].sectors);
1725 	    raid->disks[disk_number].flags =
1726 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1727 	    ars->raid[raid->volume] = raid;
1728 	    ars->disk_number[raid->volume] = disk_number;
1729 	    retval = 1;
1730 	}
1731 	break;
1732     }
1733 
1734 adaptec_out:
1735     kfree(meta, M_AR);
1736     return retval;
1737 }
1738 
1739 /* Highpoint V2 RocketRAID Metadata */
1740 static int
1741 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1742 {
1743     struct ata_raid_subdisk *ars = device_get_softc(dev);
1744     device_t parent = device_get_parent(dev);
1745     struct hptv2_raid_conf *meta;
1746     struct ar_softc *raid = NULL;
1747     int array, disk_number = 0, retval = 0;
1748 
1749     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1750 	M_AR, M_WAITOK | M_ZERO);
1751 
1752     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1753 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1754 	if (testing || bootverbose)
1755 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1756 	goto hptv2_out;
1757     }
1758 
1759     /* check if this is a HighPoint v2 RAID struct */
1760     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1761 	if (testing || bootverbose)
1762 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1763 	goto hptv2_out;
1764     }
1765 
1766     /* is this disk defined, or an old leftover/spare ? */
1767     if (!meta->magic_0) {
1768 	if (testing || bootverbose)
1769 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1770 	goto hptv2_out;
1771     }
1772 
1773     if (testing || bootverbose)
1774 	ata_raid_hptv2_print_meta(meta);
1775 
1776     /* now convert HighPoint (v2) metadata into our generic form */
1777     for (array = 0; array < MAX_ARRAYS; array++) {
1778 	if (!raidp[array]) {
1779 	    raidp[array] =
1780 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1781 					  M_WAITOK | M_ZERO);
1782 	}
1783 	raid = raidp[array];
1784 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1785 	    continue;
1786 
1787 	switch (meta->type) {
1788 	case HPTV2_T_RAID0:
1789 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1790 		(HPTV2_O_RAID0|HPTV2_O_OK))
1791 		goto highpoint_raid1;
1792 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1793 		goto highpoint_raid01;
1794 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1795 		continue;
1796 	    raid->magic_0 = meta->magic_0;
1797 	    raid->type = AR_T_RAID0;
1798 	    raid->interleave = 1 << meta->stripe_shift;
1799 	    disk_number = meta->disk_number;
1800 	    if (!(meta->order & HPTV2_O_OK))
1801 		meta->magic = 0;        /* mark bad */
1802 	    break;
1803 
1804 	case HPTV2_T_RAID1:
1805 highpoint_raid1:
1806 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1807 		continue;
1808 	    raid->magic_0 = meta->magic_0;
1809 	    raid->type = AR_T_RAID1;
1810 	    disk_number = (meta->disk_number > 0);
1811 	    break;
1812 
1813 	case HPTV2_T_RAID01_RAID0:
1814 highpoint_raid01:
1815 	    if (meta->order & HPTV2_O_RAID0) {
1816 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1817 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1818 		    continue;
1819 		raid->magic_0 = meta->magic_0;
1820 		raid->magic_1 = meta->magic_1;
1821 		raid->type = AR_T_RAID01;
1822 		raid->interleave = 1 << meta->stripe_shift;
1823 		disk_number = meta->disk_number;
1824 	    }
1825 	    else {
1826 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1827 		    continue;
1828 		raid->magic_1 = meta->magic_1;
1829 		raid->type = AR_T_RAID01;
1830 		raid->interleave = 1 << meta->stripe_shift;
1831 		disk_number = meta->disk_number + meta->array_width;
1832 		if (!(meta->order & HPTV2_O_RAID1))
1833 		    meta->magic = 0;    /* mark bad */
1834 	    }
1835 	    break;
1836 
1837 	case HPTV2_T_SPAN:
1838 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1839 		continue;
1840 	    raid->magic_0 = meta->magic_0;
1841 	    raid->type = AR_T_SPAN;
1842 	    disk_number = meta->disk_number;
1843 	    break;
1844 
1845 	default:
1846 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1847 			  meta->type);
1848 	    kfree(raidp[array], M_AR);
1849 	    raidp[array] = NULL;
1850 	    goto hptv2_out;
1851 	}
1852 
1853 	raid->format |= AR_F_HPTV2_RAID;
1854 	raid->disks[disk_number].dev = parent;
1855 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1856 	raid->lun = array;
1857 	strncpy(raid->name, meta->name_1,
1858 		min(sizeof(raid->name), sizeof(meta->name_1)));
1859 	if (meta->magic == HPTV2_MAGIC_OK) {
1860 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1861 	    raid->width = meta->array_width;
1862 	    raid->total_sectors = meta->total_sectors;
1863 	    raid->heads = 255;
1864 	    raid->sectors = 63;
1865 	    raid->cylinders = raid->total_sectors / (63 * 255);
1866 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1867 	    raid->rebuild_lba = meta->rebuild_lba;
1868 	    raid->disks[disk_number].sectors =
1869 		raid->total_sectors / raid->width;
1870 	}
1871 	else
1872 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1873 
1874 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1875 	    raid->total_disks = raid->width;
1876 	if (disk_number >= raid->total_disks)
1877 	    raid->total_disks = disk_number + 1;
1878 	ars->raid[raid->volume] = raid;
1879 	ars->disk_number[raid->volume] = disk_number;
1880 	retval = 1;
1881 	break;
1882     }
1883 
1884 hptv2_out:
1885     kfree(meta, M_AR);
1886     return retval;
1887 }
1888 
1889 static int
1890 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1891 {
1892     struct hptv2_raid_conf *meta;
1893     struct timeval timestamp;
1894     int disk, error = 0;
1895 
1896     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1897 	M_AR, M_WAITOK | M_ZERO);
1898 
1899     microtime(&timestamp);
1900     rdp->magic_0 = timestamp.tv_sec + 2;
1901     rdp->magic_1 = timestamp.tv_sec;
1902 
1903     for (disk = 0; disk < rdp->total_disks; disk++) {
1904 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1905 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1906 	    meta->magic = HPTV2_MAGIC_OK;
1907 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1908 	    meta->magic_0 = rdp->magic_0;
1909 	    if (strlen(rdp->name))
1910 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1911 	    else
1912 		strcpy(meta->name_1, "FreeBSD");
1913 	}
1914 	meta->disk_number = disk;
1915 
1916 	switch (rdp->type) {
1917 	case AR_T_RAID0:
1918 	    meta->type = HPTV2_T_RAID0;
1919 	    strcpy(meta->name_2, "RAID 0");
1920 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1921 		meta->order = HPTV2_O_OK;
1922 	    break;
1923 
1924 	case AR_T_RAID1:
1925 	    meta->type = HPTV2_T_RAID0;
1926 	    strcpy(meta->name_2, "RAID 1");
1927 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1928 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1929 	    break;
1930 
1931 	case AR_T_RAID01:
1932 	    meta->type = HPTV2_T_RAID01_RAID0;
1933 	    strcpy(meta->name_2, "RAID 0+1");
1934 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1935 		if (disk < rdp->width) {
1936 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1937 		    meta->magic_0 = rdp->magic_0 - 1;
1938 		}
1939 		else {
1940 		    meta->order = HPTV2_O_RAID1;
1941 		    meta->disk_number -= rdp->width;
1942 		}
1943 	    }
1944 	    else
1945 		meta->magic_0 = rdp->magic_0 - 1;
1946 	    meta->magic_1 = rdp->magic_1;
1947 	    break;
1948 
1949 	case AR_T_SPAN:
1950 	    meta->type = HPTV2_T_SPAN;
1951 	    strcpy(meta->name_2, "SPAN");
1952 	    break;
1953 	default:
1954 	    kfree(meta, M_AR);
1955 	    return ENODEV;
1956 	}
1957 
1958 	meta->array_width = rdp->width;
1959 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1960 	meta->total_sectors = rdp->total_sectors;
1961 	meta->rebuild_lba = rdp->rebuild_lba;
1962 	if (testing || bootverbose)
1963 	    ata_raid_hptv2_print_meta(meta);
1964 	if (rdp->disks[disk].dev) {
1965 	    if (ata_raid_rw(rdp->disks[disk].dev,
1966 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1967 			    sizeof(struct promise_raid_conf),
1968 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1969 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1970 		error = EIO;
1971 	    }
1972 	}
1973     }
1974     kfree(meta, M_AR);
1975     return error;
1976 }
1977 
1978 /* Highpoint V3 RocketRAID Metadata */
1979 static int
1980 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1981 {
1982     struct ata_raid_subdisk *ars = device_get_softc(dev);
1983     device_t parent = device_get_parent(dev);
1984     struct hptv3_raid_conf *meta;
1985     struct ar_softc *raid = NULL;
1986     int array, disk_number, retval = 0;
1987 
1988     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1989 	M_AR, M_WAITOK | M_ZERO);
1990 
1991     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1992 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1993 	if (testing || bootverbose)
1994 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1995 	goto hptv3_out;
1996     }
1997 
1998     /* check if this is a HighPoint v3 RAID struct */
1999     if (meta->magic != HPTV3_MAGIC) {
2000 	if (testing || bootverbose)
2001 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2002 	goto hptv3_out;
2003     }
2004 
2005     /* check if there are any config_entries */
2006     if (meta->config_entries < 1) {
2007 	if (testing || bootverbose)
2008 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2009 	goto hptv3_out;
2010     }
2011 
2012     if (testing || bootverbose)
2013 	ata_raid_hptv3_print_meta(meta);
2014 
2015     /* now convert HighPoint (v3) metadata into our generic form */
2016     for (array = 0; array < MAX_ARRAYS; array++) {
2017 	if (!raidp[array]) {
2018 	    raidp[array] =
2019 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2020 					  M_WAITOK | M_ZERO);
2021 	}
2022 	raid = raidp[array];
2023 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2024 	    continue;
2025 
2026 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2027 	    continue;
2028 
2029 	switch (meta->configs[0].type) {
2030 	case HPTV3_T_RAID0:
2031 	    raid->type = AR_T_RAID0;
2032 	    raid->width = meta->configs[0].total_disks;
2033 	    disk_number = meta->configs[0].disk_number;
2034 	    break;
2035 
2036 	case HPTV3_T_RAID1:
2037 	    raid->type = AR_T_RAID1;
2038 	    raid->width = meta->configs[0].total_disks / 2;
2039 	    disk_number = meta->configs[0].disk_number;
2040 	    break;
2041 
2042 	case HPTV3_T_RAID5:
2043 	    raid->type = AR_T_RAID5;
2044 	    raid->width = meta->configs[0].total_disks;
2045 	    disk_number = meta->configs[0].disk_number;
2046 	    break;
2047 
2048 	case HPTV3_T_SPAN:
2049 	    raid->type = AR_T_SPAN;
2050 	    raid->width = meta->configs[0].total_disks;
2051 	    disk_number = meta->configs[0].disk_number;
2052 	    break;
2053 
2054 	default:
2055 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2056 			  meta->configs[0].type);
2057 	    kfree(raidp[array], M_AR);
2058 	    raidp[array] = NULL;
2059 	    goto hptv3_out;
2060 	}
2061 	if (meta->config_entries == 2) {
2062 	    switch (meta->configs[1].type) {
2063 	    case HPTV3_T_RAID1:
2064 		if (raid->type == AR_T_RAID0) {
2065 		    raid->type = AR_T_RAID01;
2066 		    disk_number = meta->configs[1].disk_number +
2067 				  (meta->configs[0].disk_number << 1);
2068 		    break;
2069 		}
2070 	    default:
2071 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2072 			      meta->configs[1].type);
2073 		kfree(raidp[array], M_AR);
2074 		raidp[array] = NULL;
2075 		goto hptv3_out;
2076 	    }
2077 	}
2078 
2079 	raid->magic_0 = meta->magic_0;
2080 	raid->format = AR_F_HPTV3_RAID;
2081 	raid->generation = meta->timestamp;
2082 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2083 	raid->total_disks = meta->configs[0].total_disks +
2084 	    meta->configs[1].total_disks;
2085 	raid->total_sectors = meta->configs[0].total_sectors +
2086 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2087 	raid->heads = 255;
2088 	raid->sectors = 63;
2089 	raid->cylinders = raid->total_sectors / (63 * 255);
2090 	raid->offset_sectors = 0;
2091 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2092 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2093 	raid->lun = array;
2094 	strncpy(raid->name, meta->name,
2095 		min(sizeof(raid->name), sizeof(meta->name)));
2096 	raid->disks[disk_number].sectors = raid->total_sectors /
2097 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2098 	raid->disks[disk_number].dev = parent;
2099 	raid->disks[disk_number].flags =
2100 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2101 	ars->raid[raid->volume] = raid;
2102 	ars->disk_number[raid->volume] = disk_number;
2103 	retval = 1;
2104 	break;
2105     }
2106 
2107 hptv3_out:
2108     kfree(meta, M_AR);
2109     return retval;
2110 }
2111 
2112 /* Intel MatrixRAID Metadata */
2113 static int
2114 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2115 {
2116     struct ata_raid_subdisk *ars = device_get_softc(dev);
2117     device_t parent = device_get_parent(dev);
2118     struct intel_raid_conf *meta;
2119     struct intel_raid_mapping *map;
2120     struct ar_softc *raid = NULL;
2121     u_int32_t checksum, *ptr;
2122     int array, count, disk, volume = 1, retval = 0;
2123     char *tmp;
2124 
2125     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2126 
2127     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2128 	if (testing || bootverbose)
2129 	    device_printf(parent, "Intel read metadata failed\n");
2130 	goto intel_out;
2131     }
2132     tmp = (char *)meta;
2133     bcopy(tmp, tmp+1024, 512);
2134     bcopy(tmp+512, tmp, 1024);
2135     bzero(tmp+1024, 512);
2136 
2137     /* check if this is a Intel RAID struct */
2138     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2139 	if (testing || bootverbose)
2140 	    device_printf(parent, "Intel check1 failed\n");
2141 	goto intel_out;
2142     }
2143 
2144     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2145 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2146 	checksum += *ptr++;
2147     }
2148     checksum -= meta->checksum;
2149     if (checksum != meta->checksum) {
2150 	if (testing || bootverbose)
2151 	    device_printf(parent, "Intel check2 failed\n");
2152 	goto intel_out;
2153     }
2154 
2155     if (testing || bootverbose)
2156 	ata_raid_intel_print_meta(meta);
2157 
2158     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2159 
2160     /* now convert Intel metadata into our generic form */
2161     for (array = 0; array < MAX_ARRAYS; array++) {
2162 	if (!raidp[array]) {
2163 	    raidp[array] =
2164 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2165 					  M_WAITOK | M_ZERO);
2166 	}
2167 	raid = raidp[array];
2168 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2169 	    continue;
2170 
2171 	if ((raid->format & AR_F_INTEL_RAID) &&
2172 	    (raid->magic_0 != meta->config_id))
2173 	    continue;
2174 
2175 	/*
2176 	 * update our knowledge about the array config based on generation
2177 	 * NOTE: there can be multiple volumes on a disk set
2178 	 */
2179 	if (!meta->generation || meta->generation > raid->generation) {
2180 	    switch (map->type) {
2181 	    case INTEL_T_RAID0:
2182 		raid->type = AR_T_RAID0;
2183 		raid->width = map->total_disks;
2184 		break;
2185 
2186 	    case INTEL_T_RAID1:
2187 		if (map->total_disks == 4)
2188 		    raid->type = AR_T_RAID01;
2189 		else
2190 		    raid->type = AR_T_RAID1;
2191 		raid->width = map->total_disks / 2;
2192 		break;
2193 
2194 	    case INTEL_T_RAID5:
2195 		raid->type = AR_T_RAID5;
2196 		raid->width = map->total_disks;
2197 		break;
2198 
2199 	    default:
2200 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2201 			      map->type);
2202 		kfree(raidp[array], M_AR);
2203 		raidp[array] = NULL;
2204 		goto intel_out;
2205 	    }
2206 
2207 	    switch (map->status) {
2208 	    case INTEL_S_READY:
2209 		raid->status = AR_S_READY;
2210 		break;
2211 	    case INTEL_S_DEGRADED:
2212 		raid->status |= AR_S_DEGRADED;
2213 		break;
2214 	    case INTEL_S_DISABLED:
2215 	    case INTEL_S_FAILURE:
2216 		raid->status = 0;
2217 	    }
2218 
2219 	    raid->magic_0 = meta->config_id;
2220 	    raid->format = AR_F_INTEL_RAID;
2221 	    raid->generation = meta->generation;
2222 	    raid->interleave = map->stripe_sectors;
2223 	    raid->total_disks = map->total_disks;
2224 	    raid->total_sectors = map->total_sectors;
2225 	    raid->heads = 255;
2226 	    raid->sectors = 63;
2227 	    raid->cylinders = raid->total_sectors / (63 * 255);
2228 	    raid->offset_sectors = map->offset;
2229 	    raid->rebuild_lba = 0;
2230 	    raid->lun = array;
2231 	    raid->volume = volume - 1;
2232 	    strncpy(raid->name, map->name,
2233 		    min(sizeof(raid->name), sizeof(map->name)));
2234 
2235 	    /* clear out any old info */
2236 	    for (disk = 0; disk < raid->total_disks; disk++) {
2237 		raid->disks[disk].dev = NULL;
2238 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2239 		      raid->disks[disk].serial,
2240 		      sizeof(raid->disks[disk].serial));
2241 		raid->disks[disk].sectors =
2242 		    meta->disk[map->disk_idx[disk]].sectors;
2243 		raid->disks[disk].flags = 0;
2244 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2245 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2246 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2247 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2248 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2249 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2250 		    raid->disks[disk].flags |= AR_DF_SPARE;
2251 		}
2252 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2253 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2254 	    }
2255 	}
2256 	if (meta->generation >= raid->generation) {
2257 	    for (disk = 0; disk < raid->total_disks; disk++) {
2258 		struct ata_device *atadev = device_get_softc(parent);
2259 
2260 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2261 		    sizeof(raid->disks[disk].serial))) {
2262 		    raid->disks[disk].dev = parent;
2263 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2264 		    ars->raid[raid->volume] = raid;
2265 		    ars->disk_number[raid->volume] = disk;
2266 		    retval = 1;
2267 		}
2268 	    }
2269 	}
2270 	else
2271 	    goto intel_out;
2272 
2273 	if (retval) {
2274 	    if (volume < meta->total_volumes) {
2275 		map = (struct intel_raid_mapping *)
2276 		      &map->disk_idx[map->total_disks];
2277 		volume++;
2278 		retval = 0;
2279 		continue;
2280 	    }
2281 	    break;
2282 	}
2283 	else {
2284 	    kfree(raidp[array], M_AR);
2285 	    raidp[array] = NULL;
2286 	    if (volume == 2)
2287 		retval = 1;
2288 	}
2289     }
2290 
2291 intel_out:
2292     kfree(meta, M_AR);
2293     return retval;
2294 }
2295 
2296 static int
2297 ata_raid_intel_write_meta(struct ar_softc *rdp)
2298 {
2299     struct intel_raid_conf *meta;
2300     struct intel_raid_mapping *map;
2301     struct timeval timestamp;
2302     u_int32_t checksum, *ptr;
2303     int count, disk, error = 0;
2304     char *tmp;
2305 
2306     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2307 
2308     rdp->generation++;
2309 
2310     /* Generate a new config_id if none exists */
2311     if (!rdp->magic_0) {
2312 	microtime(&timestamp);
2313 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2314     }
2315 
2316     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2317     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2318     meta->config_id = rdp->magic_0;
2319     meta->generation = rdp->generation;
2320     meta->total_disks = rdp->total_disks;
2321     meta->total_volumes = 1;                                    /* XXX SOS */
2322     for (disk = 0; disk < rdp->total_disks; disk++) {
2323 	if (rdp->disks[disk].dev) {
2324 	    struct ata_channel *ch =
2325 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2326 	    struct ata_device *atadev =
2327 		device_get_softc(rdp->disks[disk].dev);
2328 
2329 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2330 		  sizeof(rdp->disks[disk].serial));
2331 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2332 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2333 	}
2334 	else
2335 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2336 	meta->disk[disk].flags = 0;
2337 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2338 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2339 	else {
2340 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2341 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2342 	    else
2343 		meta->disk[disk].flags |= INTEL_F_DOWN;
2344 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2345 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2346 	}
2347     }
2348     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2349 
2350     bcopy(rdp->name, map->name, sizeof(rdp->name));
2351     map->total_sectors = rdp->total_sectors;
2352     map->state = 12;                                            /* XXX SOS */
2353     map->offset = rdp->offset_sectors;
2354     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2355     map->stripe_sectors =  rdp->interleave;
2356     map->disk_sectors = rdp->total_sectors / rdp->width;
2357     map->status = INTEL_S_READY;                                /* XXX SOS */
2358     switch (rdp->type) {
2359     case AR_T_RAID0:
2360 	map->type = INTEL_T_RAID0;
2361 	break;
2362     case AR_T_RAID1:
2363 	map->type = INTEL_T_RAID1;
2364 	break;
2365     case AR_T_RAID01:
2366 	map->type = INTEL_T_RAID1;
2367 	break;
2368     case AR_T_RAID5:
2369 	map->type = INTEL_T_RAID5;
2370 	break;
2371     default:
2372 	kfree(meta, M_AR);
2373 	return ENODEV;
2374     }
2375     map->total_disks = rdp->total_disks;
2376     map->magic[0] = 0x02;
2377     map->magic[1] = 0xff;
2378     map->magic[2] = 0x01;
2379     for (disk = 0; disk < rdp->total_disks; disk++)
2380 	map->disk_idx[disk] = disk;
2381 
2382     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2383     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2384 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2385 	checksum += *ptr++;
2386     }
2387     meta->checksum = checksum;
2388 
2389     if (testing || bootverbose)
2390 	ata_raid_intel_print_meta(meta);
2391 
2392     tmp = (char *)meta;
2393     bcopy(tmp, tmp+1024, 512);
2394     bcopy(tmp+512, tmp, 1024);
2395     bzero(tmp+1024, 512);
2396 
2397     for (disk = 0; disk < rdp->total_disks; disk++) {
2398 	if (rdp->disks[disk].dev) {
2399 	    if (ata_raid_rw(rdp->disks[disk].dev,
2400 			    INTEL_LBA(rdp->disks[disk].dev),
2401 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2402 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2403 		error = EIO;
2404 	    }
2405 	}
2406     }
2407     kfree(meta, M_AR);
2408     return error;
2409 }
2410 
2411 
2412 /* Integrated Technology Express Metadata */
2413 static int
2414 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2415 {
2416     struct ata_raid_subdisk *ars = device_get_softc(dev);
2417     device_t parent = device_get_parent(dev);
2418     struct ite_raid_conf *meta;
2419     struct ar_softc *raid = NULL;
2420     int array, disk_number, count, retval = 0;
2421     u_int16_t *ptr;
2422 
2423     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2424 	M_WAITOK | M_ZERO);
2425 
2426     if (ata_raid_rw(parent, ITE_LBA(parent),
2427 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2428 	if (testing || bootverbose)
2429 	    device_printf(parent, "ITE read metadata failed\n");
2430 	goto ite_out;
2431     }
2432 
2433     /* check if this is a ITE RAID struct */
2434     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2435 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2436 	ptr[count] = be16toh(ptr[count]);
2437 
2438     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2439 	if (testing || bootverbose)
2440 	    device_printf(parent, "ITE check1 failed\n");
2441 	goto ite_out;
2442     }
2443 
2444     if (testing || bootverbose)
2445 	ata_raid_ite_print_meta(meta);
2446 
2447     /* now convert ITE metadata into our generic form */
2448     for (array = 0; array < MAX_ARRAYS; array++) {
2449 	if ((raid = raidp[array])) {
2450 	    if (raid->format != AR_F_ITE_RAID)
2451 		continue;
2452 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2453 		continue;
2454 	}
2455 
2456 	/* if we dont have a disks timestamp the RAID is invalidated */
2457 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2458 	    goto ite_out;
2459 
2460 	if (!raid) {
2461 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2462 						     M_AR, M_WAITOK | M_ZERO);
2463 	}
2464 
2465 	switch (meta->type) {
2466 	case ITE_T_RAID0:
2467 	    raid->type = AR_T_RAID0;
2468 	    raid->width = meta->array_width;
2469 	    raid->total_disks = meta->array_width;
2470 	    disk_number = meta->disk_number;
2471 	    break;
2472 
2473 	case ITE_T_RAID1:
2474 	    raid->type = AR_T_RAID1;
2475 	    raid->width = 1;
2476 	    raid->total_disks = 2;
2477 	    disk_number = meta->disk_number;
2478 	    break;
2479 
2480 	case ITE_T_RAID01:
2481 	    raid->type = AR_T_RAID01;
2482 	    raid->width = meta->array_width;
2483 	    raid->total_disks = 4;
2484 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2485 			  ((meta->disk_number & 0x01) << 1);
2486 	    break;
2487 
2488 	case ITE_T_SPAN:
2489 	    raid->type = AR_T_SPAN;
2490 	    raid->width = 1;
2491 	    raid->total_disks = meta->array_width;
2492 	    disk_number = meta->disk_number;
2493 	    break;
2494 
2495 	default:
2496 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2497 	    kfree(raidp[array], M_AR);
2498 	    raidp[array] = NULL;
2499 	    goto ite_out;
2500 	}
2501 
2502 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2503 	raid->format = AR_F_ITE_RAID;
2504 	raid->generation = 0;
2505 	raid->interleave = meta->stripe_sectors;
2506 	raid->total_sectors = meta->total_sectors;
2507 	raid->heads = 255;
2508 	raid->sectors = 63;
2509 	raid->cylinders = raid->total_sectors / (63 * 255);
2510 	raid->offset_sectors = 0;
2511 	raid->rebuild_lba = 0;
2512 	raid->lun = array;
2513 
2514 	raid->disks[disk_number].dev = parent;
2515 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2516 	raid->disks[disk_number].flags =
2517 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2518 	ars->raid[raid->volume] = raid;
2519 	ars->disk_number[raid->volume] = disk_number;
2520 	retval = 1;
2521 	break;
2522     }
2523 ite_out:
2524     kfree(meta, M_AR);
2525     return retval;
2526 }
2527 
2528 /* JMicron Technology Corp Metadata */
2529 static int
2530 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2531 {
2532     struct ata_raid_subdisk *ars = device_get_softc(dev);
2533     device_t parent = device_get_parent(dev);
2534     struct jmicron_raid_conf *meta;
2535     struct ar_softc *raid = NULL;
2536     u_int16_t checksum, *ptr;
2537     u_int64_t disk_size;
2538     int count, array, disk, total_disks, retval = 0;
2539 
2540     meta = (struct jmicron_raid_conf *)
2541 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2542 
2543     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2544 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2545 	if (testing || bootverbose)
2546 	    device_printf(parent,
2547 			  "JMicron read metadata failed\n");
2548     }
2549 
2550     /* check for JMicron signature */
2551     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2552 	if (testing || bootverbose)
2553 	    device_printf(parent, "JMicron check1 failed\n");
2554 	goto jmicron_out;
2555     }
2556 
2557     /* calculate checksum and compare for valid */
2558     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2559 	checksum += *ptr++;
2560     if (checksum) {
2561 	if (testing || bootverbose)
2562 	    device_printf(parent, "JMicron check2 failed\n");
2563 	goto jmicron_out;
2564     }
2565 
2566     if (testing || bootverbose)
2567 	ata_raid_jmicron_print_meta(meta);
2568 
2569     /* now convert JMicron meta into our generic form */
2570     for (array = 0; array < MAX_ARRAYS; array++) {
2571 jmicron_next:
2572 	if (!raidp[array]) {
2573 	    raidp[array] =
2574 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2575 					  M_WAITOK | M_ZERO);
2576 	}
2577 	raid = raidp[array];
2578 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2579 	    continue;
2580 
2581 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2582 	    if (meta->disks[disk]) {
2583 		if (raid->format == AR_F_JMICRON_RAID) {
2584 		    if (bcmp(&meta->disks[disk],
2585 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2586 			array++;
2587 			goto jmicron_next;
2588 		    }
2589 		}
2590 		else
2591 		    bcopy(&meta->disks[disk],
2592 			  raid->disks[disk].serial, sizeof(u_int32_t));
2593 		total_disks++;
2594 	    }
2595 	}
2596 	/* handle spares XXX SOS */
2597 
2598 	switch (meta->type) {
2599 	case JM_T_RAID0:
2600 	    raid->type = AR_T_RAID0;
2601 	    raid->width = total_disks;
2602 	    break;
2603 
2604 	case JM_T_RAID1:
2605 	    raid->type = AR_T_RAID1;
2606 	    raid->width = 1;
2607 	    break;
2608 
2609 	case JM_T_RAID01:
2610 	    raid->type = AR_T_RAID01;
2611 	    raid->width = total_disks / 2;
2612 	    break;
2613 
2614 	case JM_T_RAID5:
2615 	    raid->type = AR_T_RAID5;
2616 	    raid->width = total_disks;
2617 	    break;
2618 
2619 	case JM_T_JBOD:
2620 	    raid->type = AR_T_SPAN;
2621 	    raid->width = 1;
2622 	    break;
2623 
2624 	default:
2625 	    device_printf(parent,
2626 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2627 	    kfree(raidp[array], M_AR);
2628 	    raidp[array] = NULL;
2629 	    goto jmicron_out;
2630 	}
2631 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2632 	raid->format = AR_F_JMICRON_RAID;
2633 	strncpy(raid->name, meta->name, sizeof(meta->name));
2634 	raid->generation = 0;
2635 	raid->interleave = 2 << meta->stripe_shift;
2636 	raid->total_disks = total_disks;
2637 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2638 	raid->heads = 255;
2639 	raid->sectors = 63;
2640 	raid->cylinders = raid->total_sectors / (63 * 255);
2641 	raid->offset_sectors = meta->offset * 16;
2642 	raid->rebuild_lba = 0;
2643 	raid->lun = array;
2644 
2645 	for (disk = 0; disk < raid->total_disks; disk++) {
2646 	    if (meta->disks[disk] == meta->disk_id) {
2647 		raid->disks[disk].dev = parent;
2648 		raid->disks[disk].sectors = disk_size;
2649 		raid->disks[disk].flags =
2650 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2651 		ars->raid[raid->volume] = raid;
2652 		ars->disk_number[raid->volume] = disk;
2653 		retval = 1;
2654 		break;
2655 	    }
2656 	}
2657 	break;
2658     }
2659 jmicron_out:
2660     kfree(meta, M_AR);
2661     return retval;
2662 }
2663 
2664 static int
2665 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2666 {
2667     struct jmicron_raid_conf *meta;
2668     u_int64_t disk_sectors;
2669     int disk, error = 0;
2670 
2671     meta = (struct jmicron_raid_conf *)
2672 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2673 
2674     rdp->generation++;
2675     switch (rdp->type) {
2676     case AR_T_JBOD:
2677 	meta->type = JM_T_JBOD;
2678 	break;
2679 
2680     case AR_T_RAID0:
2681 	meta->type = JM_T_RAID0;
2682 	break;
2683 
2684     case AR_T_RAID1:
2685 	meta->type = JM_T_RAID1;
2686 	break;
2687 
2688     case AR_T_RAID5:
2689 	meta->type = JM_T_RAID5;
2690 	break;
2691 
2692     case AR_T_RAID01:
2693 	meta->type = JM_T_RAID01;
2694 	break;
2695 
2696     default:
2697 	kfree(meta, M_AR);
2698 	return ENODEV;
2699     }
2700     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2701     meta->version = JMICRON_VERSION;
2702     meta->offset = rdp->offset_sectors / 16;
2703     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2704     meta->disk_sectors_low = disk_sectors & 0xffff;
2705     meta->disk_sectors_high = disk_sectors >> 16;
2706     strncpy(meta->name, rdp->name, sizeof(meta->name));
2707     meta->stripe_shift = ffs(rdp->interleave) - 2;
2708 
2709     for (disk = 0; disk < rdp->total_disks; disk++) {
2710 	if (rdp->disks[disk].serial[0])
2711 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2712 	else
2713 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2714     }
2715 
2716     for (disk = 0; disk < rdp->total_disks; disk++) {
2717 	if (rdp->disks[disk].dev) {
2718 	    u_int16_t checksum = 0, *ptr;
2719 	    int count;
2720 
2721 	    meta->disk_id = meta->disks[disk];
2722 	    meta->checksum = 0;
2723 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2724 		checksum += *ptr++;
2725 	    meta->checksum -= checksum;
2726 
2727 	    if (testing || bootverbose)
2728 		ata_raid_jmicron_print_meta(meta);
2729 
2730 	    if (ata_raid_rw(rdp->disks[disk].dev,
2731 			    JMICRON_LBA(rdp->disks[disk].dev),
2732 			    meta, sizeof(struct jmicron_raid_conf),
2733 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2734 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2735 		error = EIO;
2736 	    }
2737 	}
2738     }
2739     /* handle spares XXX SOS */
2740 
2741     kfree(meta, M_AR);
2742     return error;
2743 }
2744 
2745 /* LSILogic V2 MegaRAID Metadata */
2746 static int
2747 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2748 {
2749     struct ata_raid_subdisk *ars = device_get_softc(dev);
2750     device_t parent = device_get_parent(dev);
2751     struct lsiv2_raid_conf *meta;
2752     struct ar_softc *raid = NULL;
2753     int array, retval = 0;
2754 
2755     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2756 	M_AR, M_WAITOK | M_ZERO);
2757 
2758     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2759 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2760 	if (testing || bootverbose)
2761 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2762 	goto lsiv2_out;
2763     }
2764 
2765     /* check if this is a LSI RAID struct */
2766     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2767 	if (testing || bootverbose)
2768 	    device_printf(parent, "LSI (v2) check1 failed\n");
2769 	goto lsiv2_out;
2770     }
2771 
2772     if (testing || bootverbose)
2773 	ata_raid_lsiv2_print_meta(meta);
2774 
2775     /* now convert LSI (v2) config meta into our generic form */
2776     for (array = 0; array < MAX_ARRAYS; array++) {
2777 	int raid_entry, conf_entry;
2778 
2779 	if (!raidp[array + meta->raid_number]) {
2780 	    raidp[array + meta->raid_number] =
2781 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2782 					  M_WAITOK | M_ZERO);
2783 	}
2784 	raid = raidp[array + meta->raid_number];
2785 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2786 	    continue;
2787 
2788 	if (raid->magic_0 &&
2789 	    ((raid->magic_0 != meta->timestamp) ||
2790 	     (raid->magic_1 != meta->raid_number)))
2791 	    continue;
2792 
2793 	array += meta->raid_number;
2794 
2795 	raid_entry = meta->raid_number;
2796 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2797 		     meta->disk_number - 1;
2798 
2799 	switch (meta->configs[raid_entry].raid.type) {
2800 	case LSIV2_T_RAID0:
2801 	    raid->magic_0 = meta->timestamp;
2802 	    raid->magic_1 = meta->raid_number;
2803 	    raid->type = AR_T_RAID0;
2804 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2805 	    raid->width = meta->configs[raid_entry].raid.array_width;
2806 	    break;
2807 
2808 	case LSIV2_T_RAID1:
2809 	    raid->magic_0 = meta->timestamp;
2810 	    raid->magic_1 = meta->raid_number;
2811 	    raid->type = AR_T_RAID1;
2812 	    raid->width = meta->configs[raid_entry].raid.array_width;
2813 	    break;
2814 
2815 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2816 	    raid->magic_0 = meta->timestamp;
2817 	    raid->magic_1 = meta->raid_number;
2818 	    raid->type = AR_T_RAID01;
2819 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2820 	    raid->width = meta->configs[raid_entry].raid.array_width;
2821 	    break;
2822 
2823 	default:
2824 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2825 			  meta->configs[raid_entry].raid.type);
2826 	    kfree(raidp[array], M_AR);
2827 	    raidp[array] = NULL;
2828 	    goto lsiv2_out;
2829 	}
2830 
2831 	raid->format = AR_F_LSIV2_RAID;
2832 	raid->generation = 0;
2833 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2834 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2835 	raid->heads = 255;
2836 	raid->sectors = 63;
2837 	raid->cylinders = raid->total_sectors / (63 * 255);
2838 	raid->offset_sectors = 0;
2839 	raid->rebuild_lba = 0;
2840 	raid->lun = array;
2841 
2842 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2843 	    raid->disks[meta->disk_number].dev = parent;
2844 	    raid->disks[meta->disk_number].sectors =
2845 		meta->configs[conf_entry].disk.disk_sectors;
2846 	    raid->disks[meta->disk_number].flags =
2847 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2848 	    ars->raid[raid->volume] = raid;
2849 	    ars->disk_number[raid->volume] = meta->disk_number;
2850 	    retval = 1;
2851 	}
2852 	else
2853 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2854 
2855 	break;
2856     }
2857 
2858 lsiv2_out:
2859     kfree(meta, M_AR);
2860     return retval;
2861 }
2862 
2863 /* LSILogic V3 MegaRAID Metadata */
2864 static int
2865 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2866 {
2867     struct ata_raid_subdisk *ars = device_get_softc(dev);
2868     device_t parent = device_get_parent(dev);
2869     struct lsiv3_raid_conf *meta;
2870     struct ar_softc *raid = NULL;
2871     u_int8_t checksum, *ptr;
2872     int array, entry, count, disk_number, retval = 0;
2873 
2874     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2875 	M_AR, M_WAITOK | M_ZERO);
2876 
2877     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2878 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2879 	if (testing || bootverbose)
2880 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2881 	goto lsiv3_out;
2882     }
2883 
2884     /* check if this is a LSI RAID struct */
2885     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2886 	if (testing || bootverbose)
2887 	    device_printf(parent, "LSI (v3) check1 failed\n");
2888 	goto lsiv3_out;
2889     }
2890 
2891     /* check if the checksum is OK */
2892     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2893 	checksum += *ptr++;
2894     if (checksum) {
2895 	if (testing || bootverbose)
2896 	    device_printf(parent, "LSI (v3) check2 failed\n");
2897 	goto lsiv3_out;
2898     }
2899 
2900     if (testing || bootverbose)
2901 	ata_raid_lsiv3_print_meta(meta);
2902 
2903     /* now convert LSI (v3) config meta into our generic form */
2904     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2905 	if (!raidp[array]) {
2906 	    raidp[array] =
2907 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2908 					  M_WAITOK | M_ZERO);
2909 	}
2910 	raid = raidp[array];
2911 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2912 	    array++;
2913 	    continue;
2914 	}
2915 
2916 	if ((raid->format == AR_F_LSIV3_RAID) &&
2917 	    (raid->magic_0 != meta->timestamp)) {
2918 	    array++;
2919 	    continue;
2920 	}
2921 
2922 	switch (meta->raid[entry].total_disks) {
2923 	case 0:
2924 	    entry++;
2925 	    continue;
2926 	case 1:
2927 	    if (meta->raid[entry].device == meta->device) {
2928 		disk_number = 0;
2929 		break;
2930 	    }
2931 	    if (raid->format)
2932 		array++;
2933 	    entry++;
2934 	    continue;
2935 	case 2:
2936 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2937 	    break;
2938 	default:
2939 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2940 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2941 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2942 	    break;
2943 	}
2944 
2945 	switch (meta->raid[entry].type) {
2946 	case LSIV3_T_RAID0:
2947 	    raid->type = AR_T_RAID0;
2948 	    raid->width = meta->raid[entry].total_disks;
2949 	    break;
2950 
2951 	case LSIV3_T_RAID1:
2952 	    raid->type = AR_T_RAID1;
2953 	    raid->width = meta->raid[entry].array_width;
2954 	    break;
2955 
2956 	default:
2957 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2958 			  meta->raid[entry].type);
2959 	    kfree(raidp[array], M_AR);
2960 	    raidp[array] = NULL;
2961 	    entry++;
2962 	    continue;
2963 	}
2964 
2965 	raid->magic_0 = meta->timestamp;
2966 	raid->format = AR_F_LSIV3_RAID;
2967 	raid->generation = 0;
2968 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2969 	raid->total_disks = meta->raid[entry].total_disks;
2970 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2971 	raid->heads = 255;
2972 	raid->sectors = 63;
2973 	raid->cylinders = raid->total_sectors / (63 * 255);
2974 	raid->offset_sectors = meta->raid[entry].offset;
2975 	raid->rebuild_lba = 0;
2976 	raid->lun = array;
2977 
2978 	raid->disks[disk_number].dev = parent;
2979 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2980 	raid->disks[disk_number].flags =
2981 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2982 	ars->raid[raid->volume] = raid;
2983 	ars->disk_number[raid->volume] = disk_number;
2984 	retval = 1;
2985 	entry++;
2986 	array++;
2987     }
2988 
2989 lsiv3_out:
2990     kfree(meta, M_AR);
2991     return retval;
2992 }
2993 
2994 /* nVidia MediaShield Metadata */
2995 static int
2996 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2997 {
2998     struct ata_raid_subdisk *ars = device_get_softc(dev);
2999     device_t parent = device_get_parent(dev);
3000     struct nvidia_raid_conf *meta;
3001     struct ar_softc *raid = NULL;
3002     u_int32_t checksum, *ptr;
3003     int array, count, retval = 0;
3004 
3005     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3006 	M_AR, M_WAITOK | M_ZERO);
3007 
3008     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3009 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3010 	if (testing || bootverbose)
3011 	    device_printf(parent, "nVidia read metadata failed\n");
3012 	goto nvidia_out;
3013     }
3014 
3015     /* check if this is a nVidia RAID struct */
3016     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3017 	if (testing || bootverbose)
3018 	    device_printf(parent, "nVidia check1 failed\n");
3019 	goto nvidia_out;
3020     }
3021 
3022     /* check if the checksum is OK */
3023     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3024 	 count < meta->config_size; count++)
3025 	checksum += *ptr++;
3026     if (checksum) {
3027 	if (testing || bootverbose)
3028 	    device_printf(parent, "nVidia check2 failed\n");
3029 	goto nvidia_out;
3030     }
3031 
3032     if (testing || bootverbose)
3033 	ata_raid_nvidia_print_meta(meta);
3034 
3035     /* now convert nVidia meta into our generic form */
3036     for (array = 0; array < MAX_ARRAYS; array++) {
3037 	if (!raidp[array]) {
3038 	    raidp[array] =
3039 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3040 					  M_WAITOK | M_ZERO);
3041 	}
3042 	raid = raidp[array];
3043 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3044 	    continue;
3045 
3046 	if (raid->format == AR_F_NVIDIA_RAID &&
3047 	    ((raid->magic_0 != meta->magic_1) ||
3048 	     (raid->magic_1 != meta->magic_2))) {
3049 	    continue;
3050 	}
3051 
3052 	switch (meta->type) {
3053 	case NV_T_SPAN:
3054 	    raid->type = AR_T_SPAN;
3055 	    break;
3056 
3057 	case NV_T_RAID0:
3058 	    raid->type = AR_T_RAID0;
3059 	    break;
3060 
3061 	case NV_T_RAID1:
3062 	    raid->type = AR_T_RAID1;
3063 	    break;
3064 
3065 	case NV_T_RAID5:
3066 	    raid->type = AR_T_RAID5;
3067 	    break;
3068 
3069 	case NV_T_RAID01:
3070 	    raid->type = AR_T_RAID01;
3071 	    break;
3072 
3073 	default:
3074 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3075 			  meta->type);
3076 	    kfree(raidp[array], M_AR);
3077 	    raidp[array] = NULL;
3078 	    goto nvidia_out;
3079 	}
3080 	raid->magic_0 = meta->magic_1;
3081 	raid->magic_1 = meta->magic_2;
3082 	raid->format = AR_F_NVIDIA_RAID;
3083 	raid->generation = 0;
3084 	raid->interleave = meta->stripe_sectors;
3085 	raid->width = meta->array_width;
3086 	raid->total_disks = meta->total_disks;
3087 	raid->total_sectors = meta->total_sectors;
3088 	raid->heads = 255;
3089 	raid->sectors = 63;
3090 	raid->cylinders = raid->total_sectors / (63 * 255);
3091 	raid->offset_sectors = 0;
3092 	raid->rebuild_lba = meta->rebuild_lba;
3093 	raid->lun = array;
3094 	raid->status = AR_S_READY;
3095 	if (meta->status & NV_S_DEGRADED)
3096 	    raid->status |= AR_S_DEGRADED;
3097 
3098 	raid->disks[meta->disk_number].dev = parent;
3099 	raid->disks[meta->disk_number].sectors =
3100 	    raid->total_sectors / raid->width;
3101 	raid->disks[meta->disk_number].flags =
3102 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3103 	ars->raid[raid->volume] = raid;
3104 	ars->disk_number[raid->volume] = meta->disk_number;
3105 	retval = 1;
3106 	break;
3107     }
3108 
3109 nvidia_out:
3110     kfree(meta, M_AR);
3111     return retval;
3112 }
3113 
3114 /* Promise FastTrak Metadata */
3115 static int
3116 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3117 {
3118     struct ata_raid_subdisk *ars = device_get_softc(dev);
3119     device_t parent = device_get_parent(dev);
3120     struct promise_raid_conf *meta;
3121     struct ar_softc *raid;
3122     u_int32_t checksum, *ptr;
3123     int array, count, disk, disksum = 0, retval = 0;
3124 
3125     meta = (struct promise_raid_conf *)
3126 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3127 
3128     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3129 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3130 	if (testing || bootverbose)
3131 	    device_printf(parent, "%s read metadata failed\n",
3132 			  native ? "FreeBSD" : "Promise");
3133 	goto promise_out;
3134     }
3135 
3136     /* check the signature */
3137     if (native) {
3138 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3139 	    if (testing || bootverbose)
3140 		device_printf(parent, "FreeBSD check1 failed\n");
3141 	    goto promise_out;
3142 	}
3143     }
3144     else {
3145 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3146 	    if (testing || bootverbose)
3147 		device_printf(parent, "Promise check1 failed\n");
3148 	    goto promise_out;
3149 	}
3150     }
3151 
3152     /* check if the checksum is OK */
3153     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3154 	checksum += *ptr++;
3155     if (checksum != *ptr) {
3156 	if (testing || bootverbose)
3157 	    device_printf(parent, "%s check2 failed\n",
3158 			  native ? "FreeBSD" : "Promise");
3159 	goto promise_out;
3160     }
3161 
3162     /* check on disk integrity status */
3163     if (meta->raid.integrity != PR_I_VALID) {
3164 	if (testing || bootverbose)
3165 	    device_printf(parent, "%s check3 failed\n",
3166 			  native ? "FreeBSD" : "Promise");
3167 	goto promise_out;
3168     }
3169 
3170     if (testing || bootverbose)
3171 	ata_raid_promise_print_meta(meta);
3172 
3173     /* now convert Promise metadata into our generic form */
3174     for (array = 0; array < MAX_ARRAYS; array++) {
3175 	if (!raidp[array]) {
3176 	    raidp[array] =
3177 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3178 					  M_WAITOK | M_ZERO);
3179 	}
3180 	raid = raidp[array];
3181 	if (raid->format &&
3182 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3183 	    continue;
3184 
3185 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3186 	    !(meta->raid.magic_1 == (raid->magic_1)))
3187 	    continue;
3188 
3189 	/* update our knowledge about the array config based on generation */
3190 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3191 	    switch (meta->raid.type) {
3192 	    case PR_T_SPAN:
3193 		raid->type = AR_T_SPAN;
3194 		break;
3195 
3196 	    case PR_T_JBOD:
3197 		raid->type = AR_T_JBOD;
3198 		break;
3199 
3200 	    case PR_T_RAID0:
3201 		raid->type = AR_T_RAID0;
3202 		break;
3203 
3204 	    case PR_T_RAID1:
3205 		raid->type = AR_T_RAID1;
3206 		if (meta->raid.array_width > 1)
3207 		    raid->type = AR_T_RAID01;
3208 		break;
3209 
3210 	    case PR_T_RAID5:
3211 		raid->type = AR_T_RAID5;
3212 		break;
3213 
3214 	    default:
3215 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3216 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3217 		kfree(raidp[array], M_AR);
3218 		raidp[array] = NULL;
3219 		goto promise_out;
3220 	    }
3221 	    raid->magic_1 = meta->raid.magic_1;
3222 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3223 	    raid->generation = meta->raid.generation;
3224 	    raid->interleave = 1 << meta->raid.stripe_shift;
3225 	    raid->width = meta->raid.array_width;
3226 	    raid->total_disks = meta->raid.total_disks;
3227 	    raid->heads = meta->raid.heads + 1;
3228 	    raid->sectors = meta->raid.sectors;
3229 	    raid->cylinders = meta->raid.cylinders + 1;
3230 	    raid->total_sectors = meta->raid.total_sectors;
3231 	    raid->offset_sectors = 0;
3232 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3233 	    raid->lun = array;
3234 	    if ((meta->raid.status &
3235 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3236 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3237 		raid->status |= AR_S_READY;
3238 		if (meta->raid.status & PR_S_DEGRADED)
3239 		    raid->status |= AR_S_DEGRADED;
3240 	    }
3241 	    else
3242 		raid->status &= ~AR_S_READY;
3243 
3244 	    /* convert disk flags to our internal types */
3245 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3246 		raid->disks[disk].dev = NULL;
3247 		raid->disks[disk].flags = 0;
3248 		*((u_int64_t *)(raid->disks[disk].serial)) =
3249 		    meta->raid.disk[disk].magic_0;
3250 		disksum += meta->raid.disk[disk].flags;
3251 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3252 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3253 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3254 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3255 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3256 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3257 		    raid->disks[disk].flags |= AR_DF_SPARE;
3258 		}
3259 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3260 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3261 	    }
3262 	    if (!disksum) {
3263 		device_printf(parent, "%s subdisks has no flags\n",
3264 			      native ? "FreeBSD" : "Promise");
3265 		kfree(raidp[array], M_AR);
3266 		raidp[array] = NULL;
3267 		goto promise_out;
3268 	    }
3269 	}
3270 	if (meta->raid.generation >= raid->generation) {
3271 	    int disk_number = meta->raid.disk_number;
3272 
3273 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3274 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3275 		raid->disks[disk_number].dev = parent;
3276 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3277 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3278 		if ((raid->disks[disk_number].flags &
3279 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3280 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3281 		    ars->raid[raid->volume] = raid;
3282 		    ars->disk_number[raid->volume] = disk_number;
3283 		    retval = 1;
3284 		}
3285 	    }
3286 	}
3287 	break;
3288     }
3289 
3290 promise_out:
3291     kfree(meta, M_AR);
3292     return retval;
3293 }
3294 
3295 static int
3296 ata_raid_promise_write_meta(struct ar_softc *rdp)
3297 {
3298     struct promise_raid_conf *meta;
3299     struct timeval timestamp;
3300     u_int32_t *ckptr;
3301     int count, disk, drive, error = 0;
3302 
3303     meta = (struct promise_raid_conf *)
3304 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3305 
3306     rdp->generation++;
3307     microtime(&timestamp);
3308 
3309     for (disk = 0; disk < rdp->total_disks; disk++) {
3310 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3311 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3312 	meta->dummy_0 = 0x00020000;
3313 	meta->raid.disk_number = disk;
3314 
3315 	if (rdp->disks[disk].dev) {
3316 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3317 	    struct ata_channel *ch =
3318 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3319 
3320 	    meta->raid.channel = ch->unit;
3321 	    meta->raid.device = ATA_DEV(atadev->unit);
3322 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3323 	    meta->raid.disk_offset = rdp->offset_sectors;
3324 	}
3325 	else {
3326 	    meta->raid.channel = 0;
3327 	    meta->raid.device = 0;
3328 	    meta->raid.disk_sectors = 0;
3329 	    meta->raid.disk_offset = 0;
3330 	}
3331 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3332 	meta->magic_1 = timestamp.tv_sec >> 16;
3333 	meta->magic_2 = timestamp.tv_sec;
3334 	meta->raid.integrity = PR_I_VALID;
3335 	meta->raid.magic_0 = meta->magic_0;
3336 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3337 	meta->raid.generation = rdp->generation;
3338 
3339 	if (rdp->status & AR_S_READY) {
3340 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3341 	    meta->raid.status =
3342 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3343 	    if (rdp->status & AR_S_DEGRADED)
3344 		meta->raid.status |= PR_S_DEGRADED;
3345 	    else
3346 		meta->raid.status |= PR_S_FUNCTIONAL;
3347 	}
3348 	else {
3349 	    meta->raid.flags = PR_F_DOWN;
3350 	    meta->raid.status = 0;
3351 	}
3352 
3353 	switch (rdp->type) {
3354 	case AR_T_RAID0:
3355 	    meta->raid.type = PR_T_RAID0;
3356 	    break;
3357 	case AR_T_RAID1:
3358 	    meta->raid.type = PR_T_RAID1;
3359 	    break;
3360 	case AR_T_RAID01:
3361 	    meta->raid.type = PR_T_RAID1;
3362 	    break;
3363 	case AR_T_RAID5:
3364 	    meta->raid.type = PR_T_RAID5;
3365 	    break;
3366 	case AR_T_SPAN:
3367 	    meta->raid.type = PR_T_SPAN;
3368 	    break;
3369 	case AR_T_JBOD:
3370 	    meta->raid.type = PR_T_JBOD;
3371 	    break;
3372 	default:
3373 	    kfree(meta, M_AR);
3374 	    return ENODEV;
3375 	}
3376 
3377 	meta->raid.total_disks = rdp->total_disks;
3378 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3379 	meta->raid.array_width = rdp->width;
3380 	meta->raid.array_number = rdp->lun;
3381 	meta->raid.total_sectors = rdp->total_sectors;
3382 	meta->raid.cylinders = rdp->cylinders - 1;
3383 	meta->raid.heads = rdp->heads - 1;
3384 	meta->raid.sectors = rdp->sectors;
3385 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3386 
3387 	bzero(&meta->raid.disk, 8 * 12);
3388 	for (drive = 0; drive < rdp->total_disks; drive++) {
3389 	    meta->raid.disk[drive].flags = 0;
3390 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3391 		meta->raid.disk[drive].flags |= PR_F_VALID;
3392 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3393 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3394 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3395 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3396 	    else
3397 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3398 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3399 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3400 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3401 	    meta->raid.disk[drive].dummy_0 = 0x0;
3402 	    if (rdp->disks[drive].dev) {
3403 		struct ata_channel *ch =
3404 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3405 		struct ata_device *atadev =
3406 		    device_get_softc(rdp->disks[drive].dev);
3407 
3408 		meta->raid.disk[drive].channel = ch->unit;
3409 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3410 	    }
3411 	    meta->raid.disk[drive].magic_0 =
3412 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3413 	}
3414 
3415 	if (rdp->disks[disk].dev) {
3416 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3417 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3418 		if (rdp->format == AR_F_FREEBSD_RAID)
3419 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3420 		else
3421 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3422 	    }
3423 	    else
3424 		bzero(meta->promise_id, sizeof(meta->promise_id));
3425 	    meta->checksum = 0;
3426 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3427 		meta->checksum += *ckptr++;
3428 	    if (testing || bootverbose)
3429 		ata_raid_promise_print_meta(meta);
3430 	    if (ata_raid_rw(rdp->disks[disk].dev,
3431 			    PROMISE_LBA(rdp->disks[disk].dev),
3432 			    meta, sizeof(struct promise_raid_conf),
3433 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3434 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3435 		error = EIO;
3436 	    }
3437 	}
3438     }
3439     kfree(meta, M_AR);
3440     return error;
3441 }
3442 
3443 /* Silicon Image Medley Metadata */
3444 static int
3445 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3446 {
3447     struct ata_raid_subdisk *ars = device_get_softc(dev);
3448     device_t parent = device_get_parent(dev);
3449     struct sii_raid_conf *meta;
3450     struct ar_softc *raid = NULL;
3451     u_int16_t checksum, *ptr;
3452     int array, count, disk, retval = 0;
3453 
3454     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3455 	M_WAITOK | M_ZERO);
3456 
3457     if (ata_raid_rw(parent, SII_LBA(parent),
3458 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3459 	if (testing || bootverbose)
3460 	    device_printf(parent, "Silicon Image read metadata failed\n");
3461 	goto sii_out;
3462     }
3463 
3464     /* check if this is a Silicon Image (Medley) RAID struct */
3465     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3466 	checksum += *ptr++;
3467     if (checksum) {
3468 	if (testing || bootverbose)
3469 	    device_printf(parent, "Silicon Image check1 failed\n");
3470 	goto sii_out;
3471     }
3472 
3473     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3474 	checksum += *ptr++;
3475     if (checksum != meta->checksum_1) {
3476 	if (testing || bootverbose)
3477 	    device_printf(parent, "Silicon Image check2 failed\n");
3478 	goto sii_out;
3479     }
3480 
3481     /* check verison */
3482     if (meta->version_major != 0x0002 ||
3483 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3484 	if (testing || bootverbose)
3485 	    device_printf(parent, "Silicon Image check3 failed\n");
3486 	goto sii_out;
3487     }
3488 
3489     if (testing || bootverbose)
3490 	ata_raid_sii_print_meta(meta);
3491 
3492     /* now convert Silicon Image meta into our generic form */
3493     for (array = 0; array < MAX_ARRAYS; array++) {
3494 	if (!raidp[array]) {
3495 	    raidp[array] =
3496 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3497 					  M_WAITOK | M_ZERO);
3498 	}
3499 	raid = raidp[array];
3500 	if (raid->format && (raid->format != AR_F_SII_RAID))
3501 	    continue;
3502 
3503 	if (raid->format == AR_F_SII_RAID &&
3504 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3505 	    continue;
3506 	}
3507 
3508 	/* update our knowledge about the array config based on generation */
3509 	if (!meta->generation || meta->generation > raid->generation) {
3510 	    switch (meta->type) {
3511 	    case SII_T_RAID0:
3512 		raid->type = AR_T_RAID0;
3513 		break;
3514 
3515 	    case SII_T_RAID1:
3516 		raid->type = AR_T_RAID1;
3517 		break;
3518 
3519 	    case SII_T_RAID01:
3520 		raid->type = AR_T_RAID01;
3521 		break;
3522 
3523 	    case SII_T_SPARE:
3524 		device_printf(parent, "Silicon Image SPARE disk\n");
3525 		kfree(raidp[array], M_AR);
3526 		raidp[array] = NULL;
3527 		goto sii_out;
3528 
3529 	    default:
3530 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3531 			      meta->type);
3532 		kfree(raidp[array], M_AR);
3533 		raidp[array] = NULL;
3534 		goto sii_out;
3535 	    }
3536 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3537 	    raid->format = AR_F_SII_RAID;
3538 	    raid->generation = meta->generation;
3539 	    raid->interleave = meta->stripe_sectors;
3540 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3541 	    raid->total_disks =
3542 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3543 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3544 	    raid->total_sectors = meta->total_sectors;
3545 	    raid->heads = 255;
3546 	    raid->sectors = 63;
3547 	    raid->cylinders = raid->total_sectors / (63 * 255);
3548 	    raid->offset_sectors = 0;
3549 	    raid->rebuild_lba = meta->rebuild_lba;
3550 	    raid->lun = array;
3551 	    strncpy(raid->name, meta->name,
3552 		    min(sizeof(raid->name), sizeof(meta->name)));
3553 
3554 	    /* clear out any old info */
3555 	    if (raid->generation) {
3556 		for (disk = 0; disk < raid->total_disks; disk++) {
3557 		    raid->disks[disk].dev = NULL;
3558 		    raid->disks[disk].flags = 0;
3559 		}
3560 	    }
3561 	}
3562 	if (meta->generation >= raid->generation) {
3563 	    /* XXX SOS add check for the right physical disk by serial# */
3564 	    if (meta->status & SII_S_READY) {
3565 		int disk_number = (raid->type == AR_T_RAID01) ?
3566 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3567 		    meta->disk_number;
3568 
3569 		raid->disks[disk_number].dev = parent;
3570 		raid->disks[disk_number].sectors =
3571 		    raid->total_sectors / raid->width;
3572 		raid->disks[disk_number].flags =
3573 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3574 		ars->raid[raid->volume] = raid;
3575 		ars->disk_number[raid->volume] = disk_number;
3576 		retval = 1;
3577 	    }
3578 	}
3579 	break;
3580     }
3581 
3582 sii_out:
3583     kfree(meta, M_AR);
3584     return retval;
3585 }
3586 
3587 /* Silicon Integrated Systems Metadata */
3588 static int
3589 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3590 {
3591     struct ata_raid_subdisk *ars = device_get_softc(dev);
3592     device_t parent = device_get_parent(dev);
3593     struct sis_raid_conf *meta;
3594     struct ar_softc *raid = NULL;
3595     int array, disk_number, drive, retval = 0;
3596 
3597     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3598 	M_WAITOK | M_ZERO);
3599 
3600     if (ata_raid_rw(parent, SIS_LBA(parent),
3601 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3602 	if (testing || bootverbose)
3603 	    device_printf(parent,
3604 			  "Silicon Integrated Systems read metadata failed\n");
3605     }
3606 
3607     /* check for SiS magic */
3608     if (meta->magic != SIS_MAGIC) {
3609 	if (testing || bootverbose)
3610 	    device_printf(parent,
3611 			  "Silicon Integrated Systems check1 failed\n");
3612 	goto sis_out;
3613     }
3614 
3615     if (testing || bootverbose)
3616 	ata_raid_sis_print_meta(meta);
3617 
3618     /* now convert SiS meta into our generic form */
3619     for (array = 0; array < MAX_ARRAYS; array++) {
3620 	if (!raidp[array]) {
3621 	    raidp[array] =
3622 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3623 					  M_WAITOK | M_ZERO);
3624 	}
3625 
3626 	raid = raidp[array];
3627 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3628 	    continue;
3629 
3630 	if ((raid->format == AR_F_SIS_RAID) &&
3631 	    ((raid->magic_0 != meta->controller_pci_id) ||
3632 	     (raid->magic_1 != meta->timestamp))) {
3633 	    continue;
3634 	}
3635 
3636 	switch (meta->type_total_disks & SIS_T_MASK) {
3637 	case SIS_T_JBOD:
3638 	    raid->type = AR_T_JBOD;
3639 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3640 	    raid->total_sectors += SIS_LBA(parent);
3641 	    break;
3642 
3643 	case SIS_T_RAID0:
3644 	    raid->type = AR_T_RAID0;
3645 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3646 	    if (!raid->total_sectors ||
3647 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3648 		raid->total_sectors = raid->width * SIS_LBA(parent);
3649 	    break;
3650 
3651 	case SIS_T_RAID1:
3652 	    raid->type = AR_T_RAID1;
3653 	    raid->width = 1;
3654 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3655 		raid->total_sectors = SIS_LBA(parent);
3656 	    break;
3657 
3658 	default:
3659 	    device_printf(parent, "Silicon Integrated Systems "
3660 			  "unknown RAID type 0x%08x\n", meta->magic);
3661 	    kfree(raidp[array], M_AR);
3662 	    raidp[array] = NULL;
3663 	    goto sis_out;
3664 	}
3665 	raid->magic_0 = meta->controller_pci_id;
3666 	raid->magic_1 = meta->timestamp;
3667 	raid->format = AR_F_SIS_RAID;
3668 	raid->generation = 0;
3669 	raid->interleave = meta->stripe_sectors;
3670 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3671 	raid->heads = 255;
3672 	raid->sectors = 63;
3673 	raid->cylinders = raid->total_sectors / (63 * 255);
3674 	raid->offset_sectors = 0;
3675 	raid->rebuild_lba = 0;
3676 	raid->lun = array;
3677 	/* XXX SOS if total_disks > 2 this doesn't float */
3678 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3679 	    disk_number = 0;
3680 	else
3681 	    disk_number = 1;
3682 
3683 	for (drive = 0; drive < raid->total_disks; drive++) {
3684 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3685 	    if (drive == disk_number) {
3686 		raid->disks[disk_number].dev = parent;
3687 		raid->disks[disk_number].flags =
3688 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3689 		ars->raid[raid->volume] = raid;
3690 		ars->disk_number[raid->volume] = disk_number;
3691 	    }
3692 	}
3693 	retval = 1;
3694 	break;
3695     }
3696 
3697 sis_out:
3698     kfree(meta, M_AR);
3699     return retval;
3700 }
3701 
3702 static int
3703 ata_raid_sis_write_meta(struct ar_softc *rdp)
3704 {
3705     struct sis_raid_conf *meta;
3706     struct timeval timestamp;
3707     int disk, error = 0;
3708 
3709     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3710 	M_WAITOK | M_ZERO);
3711 
3712     rdp->generation++;
3713     microtime(&timestamp);
3714 
3715     meta->magic = SIS_MAGIC;
3716     /* XXX SOS if total_disks > 2 this doesn't float */
3717     for (disk = 0; disk < rdp->total_disks; disk++) {
3718 	if (rdp->disks[disk].dev) {
3719 	    struct ata_channel *ch =
3720 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3721 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3722 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3723 
3724 	    meta->disks |= disk_number << ((1 - disk) << 2);
3725 	}
3726     }
3727     switch (rdp->type) {
3728     case AR_T_JBOD:
3729 	meta->type_total_disks = SIS_T_JBOD;
3730 	break;
3731 
3732     case AR_T_RAID0:
3733 	meta->type_total_disks = SIS_T_RAID0;
3734 	break;
3735 
3736     case AR_T_RAID1:
3737 	meta->type_total_disks = SIS_T_RAID1;
3738 	break;
3739 
3740     default:
3741 	kfree(meta, M_AR);
3742 	return ENODEV;
3743     }
3744     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3745     meta->stripe_sectors = rdp->interleave;
3746     meta->timestamp = timestamp.tv_sec;
3747 
3748     for (disk = 0; disk < rdp->total_disks; disk++) {
3749 	if (rdp->disks[disk].dev) {
3750 	    struct ata_channel *ch =
3751 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3752 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3753 
3754 	    meta->controller_pci_id =
3755 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3756 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3757 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3758 
3759 	    /* XXX SOS if total_disks > 2 this may not float */
3760 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3761 
3762 	    if (testing || bootverbose)
3763 		ata_raid_sis_print_meta(meta);
3764 
3765 	    if (ata_raid_rw(rdp->disks[disk].dev,
3766 			    SIS_LBA(rdp->disks[disk].dev),
3767 			    meta, sizeof(struct sis_raid_conf),
3768 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3769 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3770 		error = EIO;
3771 	    }
3772 	}
3773     }
3774     kfree(meta, M_AR);
3775     return error;
3776 }
3777 
3778 /* VIA Tech V-RAID Metadata */
3779 static int
3780 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3781 {
3782     struct ata_raid_subdisk *ars = device_get_softc(dev);
3783     device_t parent = device_get_parent(dev);
3784     struct via_raid_conf *meta;
3785     struct ar_softc *raid = NULL;
3786     u_int8_t checksum, *ptr;
3787     int array, count, disk, retval = 0;
3788 
3789     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3790 	M_WAITOK | M_ZERO);
3791 
3792     if (ata_raid_rw(parent, VIA_LBA(parent),
3793 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3794 	if (testing || bootverbose)
3795 	    device_printf(parent, "VIA read metadata failed\n");
3796 	goto via_out;
3797     }
3798 
3799     /* check if this is a VIA RAID struct */
3800     if (meta->magic != VIA_MAGIC) {
3801 	if (testing || bootverbose)
3802 	    device_printf(parent, "VIA check1 failed\n");
3803 	goto via_out;
3804     }
3805 
3806     /* calculate checksum and compare for valid */
3807     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3808 	checksum += *ptr++;
3809     if (checksum != meta->checksum) {
3810 	if (testing || bootverbose)
3811 	    device_printf(parent, "VIA check2 failed\n");
3812 	goto via_out;
3813     }
3814 
3815     if (testing || bootverbose)
3816 	ata_raid_via_print_meta(meta);
3817 
3818     /* now convert VIA meta into our generic form */
3819     for (array = 0; array < MAX_ARRAYS; array++) {
3820 	if (!raidp[array]) {
3821 	    raidp[array] =
3822 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3823 					  M_WAITOK | M_ZERO);
3824 	}
3825 	raid = raidp[array];
3826 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3827 	    continue;
3828 
3829 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3830 	    continue;
3831 
3832 	switch (meta->type & VIA_T_MASK) {
3833 	case VIA_T_RAID0:
3834 	    raid->type = AR_T_RAID0;
3835 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3836 	    if (!raid->total_sectors ||
3837 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3838 		raid->total_sectors = raid->width * meta->disk_sectors;
3839 	    break;
3840 
3841 	case VIA_T_RAID1:
3842 	    raid->type = AR_T_RAID1;
3843 	    raid->width = 1;
3844 	    raid->total_sectors = meta->disk_sectors;
3845 	    break;
3846 
3847 	case VIA_T_RAID01:
3848 	    raid->type = AR_T_RAID01;
3849 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3850 	    if (!raid->total_sectors ||
3851 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3852 		raid->total_sectors = raid->width * meta->disk_sectors;
3853 	    break;
3854 
3855 	case VIA_T_RAID5:
3856 	    raid->type = AR_T_RAID5;
3857 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3858 	    if (!raid->total_sectors ||
3859 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3860 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3861 	    break;
3862 
3863 	case VIA_T_SPAN:
3864 	    raid->type = AR_T_SPAN;
3865 	    raid->width = 1;
3866 	    raid->total_sectors += meta->disk_sectors;
3867 	    break;
3868 
3869 	default:
3870 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3871 	    kfree(raidp[array], M_AR);
3872 	    raidp[array] = NULL;
3873 	    goto via_out;
3874 	}
3875 	raid->magic_0 = meta->disks[0];
3876 	raid->format = AR_F_VIA_RAID;
3877 	raid->generation = 0;
3878 	raid->interleave =
3879 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3880 	for (count = 0, disk = 0; disk < 8; disk++)
3881 	    if (meta->disks[disk])
3882 		count++;
3883 	raid->total_disks = count;
3884 	raid->heads = 255;
3885 	raid->sectors = 63;
3886 	raid->cylinders = raid->total_sectors / (63 * 255);
3887 	raid->offset_sectors = 0;
3888 	raid->rebuild_lba = 0;
3889 	raid->lun = array;
3890 
3891 	for (disk = 0; disk < raid->total_disks; disk++) {
3892 	    if (meta->disks[disk] == meta->disk_id) {
3893 		raid->disks[disk].dev = parent;
3894 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3895 		      sizeof(u_int32_t));
3896 		raid->disks[disk].sectors = meta->disk_sectors;
3897 		raid->disks[disk].flags =
3898 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3899 		ars->raid[raid->volume] = raid;
3900 		ars->disk_number[raid->volume] = disk;
3901 		retval = 1;
3902 		break;
3903 	    }
3904 	}
3905 	break;
3906     }
3907 
3908 via_out:
3909     kfree(meta, M_AR);
3910     return retval;
3911 }
3912 
3913 static int
3914 ata_raid_via_write_meta(struct ar_softc *rdp)
3915 {
3916     struct via_raid_conf *meta;
3917     int disk, error = 0;
3918 
3919     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3920 	M_WAITOK | M_ZERO);
3921 
3922     rdp->generation++;
3923 
3924     meta->magic = VIA_MAGIC;
3925     meta->dummy_0 = 0x02;
3926     switch (rdp->type) {
3927     case AR_T_SPAN:
3928 	meta->type = VIA_T_SPAN;
3929 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3930 	break;
3931 
3932     case AR_T_RAID0:
3933 	meta->type = VIA_T_RAID0;
3934 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3935 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3936 	break;
3937 
3938     case AR_T_RAID1:
3939 	meta->type = VIA_T_RAID1;
3940 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3941 	break;
3942 
3943     case AR_T_RAID5:
3944 	meta->type = VIA_T_RAID5;
3945 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3946 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3947 	break;
3948 
3949     case AR_T_RAID01:
3950 	meta->type = VIA_T_RAID01;
3951 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3952 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3953 	break;
3954 
3955     default:
3956 	kfree(meta, M_AR);
3957 	return ENODEV;
3958     }
3959     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3960     meta->disk_sectors =
3961 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3962     for (disk = 0; disk < rdp->total_disks; disk++)
3963 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3964 
3965     for (disk = 0; disk < rdp->total_disks; disk++) {
3966 	if (rdp->disks[disk].dev) {
3967 	    u_int8_t *ptr;
3968 	    int count;
3969 
3970 	    meta->disk_index = disk * sizeof(u_int32_t);
3971 	    if (rdp->type == AR_T_RAID01)
3972 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3973 				   (meta->disk_index & ~0x08);
3974 	    meta->disk_id = meta->disks[disk];
3975 	    meta->checksum = 0;
3976 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3977 		meta->checksum += *ptr++;
3978 
3979 	    if (testing || bootverbose)
3980 		ata_raid_via_print_meta(meta);
3981 
3982 	    if (ata_raid_rw(rdp->disks[disk].dev,
3983 			    VIA_LBA(rdp->disks[disk].dev),
3984 			    meta, sizeof(struct via_raid_conf),
3985 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3986 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3987 		error = EIO;
3988 	    }
3989 	}
3990     }
3991     kfree(meta, M_AR);
3992     return error;
3993 }
3994 
3995 static struct ata_request *
3996 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3997 {
3998     struct ata_request *request;
3999 
4000     if (!(request = ata_alloc_request())) {
4001 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4002 	return NULL;
4003     }
4004     request->timeout = ATA_DEFAULT_TIMEOUT;
4005     request->retries = 2;
4006     request->callback = ata_raid_done;
4007     request->driver = rdp;
4008     request->bio = bio;
4009     switch (request->bio->bio_buf->b_cmd) {
4010     case BUF_CMD_READ:
4011 	request->flags = ATA_R_READ;
4012 	break;
4013     case BUF_CMD_WRITE:
4014 	request->flags = ATA_R_WRITE;
4015 	break;
4016     case BUF_CMD_FLUSH:
4017 	request->flags = ATA_R_CONTROL;
4018 	break;
4019     default:
4020 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4021 	ata_free_request(request);
4022 #if 0
4023 	bio->bio_buf->b_flags |= B_ERROR;
4024 	bio->bio_buf->b_error = EIO;
4025 	biodone(bio);
4026 #endif /* 0 */
4027 	return(NULL);
4028     }
4029     return request;
4030 }
4031 
4032 static int
4033 ata_raid_send_request(struct ata_request *request)
4034 {
4035     struct ata_device *atadev = device_get_softc(request->dev);
4036 
4037     request->transfersize = min(request->bytecount, atadev->max_iosize);
4038     if (request->flags & ATA_R_READ) {
4039 	if (atadev->mode >= ATA_DMA) {
4040 	    request->flags |= ATA_R_DMA;
4041 	    request->u.ata.command = ATA_READ_DMA;
4042 	}
4043 	else if (atadev->max_iosize > DEV_BSIZE)
4044 	    request->u.ata.command = ATA_READ_MUL;
4045 	else
4046 	    request->u.ata.command = ATA_READ;
4047     }
4048     else if (request->flags & ATA_R_WRITE) {
4049 	if (atadev->mode >= ATA_DMA) {
4050 	    request->flags |= ATA_R_DMA;
4051 	    request->u.ata.command = ATA_WRITE_DMA;
4052 	}
4053 	else if (atadev->max_iosize > DEV_BSIZE)
4054 	    request->u.ata.command = ATA_WRITE_MUL;
4055 	else
4056 	    request->u.ata.command = ATA_WRITE;
4057     }
4058     else {
4059 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4060 	ata_free_request(request);
4061 	return EIO;
4062     }
4063     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4064     ata_queue_request(request);
4065     return 0;
4066 }
4067 
4068 static int
4069 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4070 {
4071     struct ata_device *atadev = device_get_softc(dev);
4072     struct ata_request *request;
4073     int error;
4074 
4075     if (bcount % DEV_BSIZE) {
4076 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4077 	return ENOMEM;
4078     }
4079 
4080     if (!(request = ata_alloc_request())) {
4081 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4082 	return ENOMEM;
4083     }
4084 
4085     /* setup request */
4086     request->dev = dev;
4087     request->timeout = 10;
4088     request->retries = 0;
4089     request->data = data;
4090     request->bytecount = bcount;
4091     request->transfersize = DEV_BSIZE;
4092     request->u.ata.lba = lba;
4093     request->u.ata.count = request->bytecount / DEV_BSIZE;
4094     request->flags = flags;
4095 
4096     if (flags & ATA_R_READ) {
4097 	if (atadev->mode >= ATA_DMA) {
4098 	    request->u.ata.command = ATA_READ_DMA;
4099 	    request->flags |= ATA_R_DMA;
4100 	}
4101 	else
4102 	    request->u.ata.command = ATA_READ;
4103 	ata_queue_request(request);
4104     }
4105     else if (flags & ATA_R_WRITE) {
4106 	if (atadev->mode >= ATA_DMA) {
4107 	    request->u.ata.command = ATA_WRITE_DMA;
4108 	    request->flags |= ATA_R_DMA;
4109 	}
4110 	else
4111 	    request->u.ata.command = ATA_WRITE;
4112 	ata_queue_request(request);
4113     }
4114     else {
4115 	device_printf(dev, "FAILURE - unknown IO operation\n");
4116 	request->result = EIO;
4117     }
4118     error = request->result;
4119     ata_free_request(request);
4120     return error;
4121 }
4122 
4123 /*
4124  * module handeling
4125  */
4126 static int
4127 ata_raid_subdisk_probe(device_t dev)
4128 {
4129     device_quiet(dev);
4130     return 0;
4131 }
4132 
4133 static int
4134 ata_raid_subdisk_attach(device_t dev)
4135 {
4136     struct ata_raid_subdisk *ars = device_get_softc(dev);
4137     int volume;
4138 
4139     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4140 	ars->raid[volume] = NULL;
4141 	ars->disk_number[volume] = -1;
4142     }
4143     ata_raid_read_metadata(dev);
4144     return 0;
4145 }
4146 
4147 static int
4148 ata_raid_subdisk_detach(device_t dev)
4149 {
4150     struct ata_raid_subdisk *ars = device_get_softc(dev);
4151     int volume;
4152 
4153     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4154 	if (ars->raid[volume]) {
4155 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4156 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4157 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4158 	    ata_raid_config_changed(ars->raid[volume], 1);
4159 	    ars->raid[volume] = NULL;
4160 	    ars->disk_number[volume] = -1;
4161 	}
4162     }
4163     return 0;
4164 }
4165 
4166 static device_method_t ata_raid_sub_methods[] = {
4167     /* device interface */
4168     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4169     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4170     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4171     { 0, 0 }
4172 };
4173 
4174 static driver_t ata_raid_sub_driver = {
4175     "subdisk",
4176     ata_raid_sub_methods,
4177     sizeof(struct ata_raid_subdisk)
4178 };
4179 
4180 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4181 
4182 static int
4183 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4184 {
4185     int i;
4186 
4187     switch (what) {
4188     case MOD_LOAD:
4189 	if (testing || bootverbose)
4190 	    kprintf("ATA PseudoRAID loaded\n");
4191 #if 0
4192 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4193 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4194 				M_AR, M_WAITOK | M_ZERO);
4195 #endif
4196 	/* attach found PseudoRAID arrays */
4197 	for (i = 0; i < MAX_ARRAYS; i++) {
4198 	    struct ar_softc *rdp = ata_raid_arrays[i];
4199 
4200 	    if (!rdp || !rdp->format)
4201 		continue;
4202 	    if (testing || bootverbose)
4203 		ata_raid_print_meta(rdp);
4204 	    ata_raid_attach(rdp, 0);
4205 	}
4206 	ata_raid_ioctl_func = ata_raid_ioctl;
4207 	return 0;
4208 
4209     case MOD_UNLOAD:
4210 	/* detach found PseudoRAID arrays */
4211 	for (i = 0; i < MAX_ARRAYS; i++) {
4212 	    struct ar_softc *rdp = ata_raid_arrays[i];
4213 
4214 	    if (!rdp || !rdp->status)
4215 		continue;
4216 	    disk_destroy(&rdp->disk);
4217 	}
4218 	if (testing || bootverbose)
4219 	    kprintf("ATA PseudoRAID unloaded\n");
4220 #if 0
4221 	kfree(ata_raid_arrays, M_AR);
4222 #endif
4223 	ata_raid_ioctl_func = NULL;
4224 	return 0;
4225 
4226     default:
4227 	return EOPNOTSUPP;
4228     }
4229 }
4230 
4231 static moduledata_t ata_raid_moduledata =
4232     { "ataraid", ata_raid_module_event_handler, NULL };
4233 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4234 MODULE_VERSION(ataraid, 1);
4235 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4236 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4237 
4238 static char *
4239 ata_raid_format(struct ar_softc *rdp)
4240 {
4241     switch (rdp->format) {
4242     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4243     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4244     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4245     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4246     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4247     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4248     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4249     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4250     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4251     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4252     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4253     case AR_F_SII_RAID:         return "Silicon Image Medley";
4254     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4255     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4256     default:                    return "UNKNOWN";
4257     }
4258 }
4259 
4260 static char *
4261 ata_raid_type(struct ar_softc *rdp)
4262 {
4263     switch (rdp->type) {
4264     case AR_T_JBOD:     return "JBOD";
4265     case AR_T_SPAN:     return "SPAN";
4266     case AR_T_RAID0:    return "RAID0";
4267     case AR_T_RAID1:    return "RAID1";
4268     case AR_T_RAID3:    return "RAID3";
4269     case AR_T_RAID4:    return "RAID4";
4270     case AR_T_RAID5:    return "RAID5";
4271     case AR_T_RAID01:   return "RAID0+1";
4272     default:            return "UNKNOWN";
4273     }
4274 }
4275 
4276 static char *
4277 ata_raid_flags(struct ar_softc *rdp)
4278 {
4279     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4280     case AR_S_READY:                                    return "READY";
4281     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4282     case AR_S_READY | AR_S_REBUILDING:
4283     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4284     default:                                            return "BROKEN";
4285     }
4286 }
4287 
4288 /* debugging gunk */
4289 static void
4290 ata_raid_print_meta(struct ar_softc *raid)
4291 {
4292     int i;
4293 
4294     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4295     kprintf("=================================================\n");
4296     kprintf("format              %s\n", ata_raid_format(raid));
4297     kprintf("type                %s\n", ata_raid_type(raid));
4298     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4299 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4300     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4301     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4302     kprintf("generation          %u\n", raid->generation);
4303     kprintf("total_sectors       %ju\n", raid->total_sectors);
4304     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4305     kprintf("heads               %u\n", raid->heads);
4306     kprintf("sectors             %u\n", raid->sectors);
4307     kprintf("cylinders           %u\n", raid->cylinders);
4308     kprintf("width               %u\n", raid->width);
4309     kprintf("interleave          %u\n", raid->interleave);
4310     kprintf("total_disks         %u\n", raid->total_disks);
4311     for (i = 0; i < raid->total_disks; i++) {
4312 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4313 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4314 	if (raid->disks[i].dev) {
4315 	    kprintf("        ");
4316 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4317 			  raid->disks[i].sectors);
4318 	}
4319     }
4320     kprintf("=================================================\n");
4321 }
4322 
4323 static char *
4324 ata_raid_adaptec_type(int type)
4325 {
4326     static char buffer[16];
4327 
4328     switch (type) {
4329     case ADP_T_RAID0:   return "RAID0";
4330     case ADP_T_RAID1:   return "RAID1";
4331     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4332 			return buffer;
4333     }
4334 }
4335 
4336 static void
4337 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4338 {
4339     int i;
4340 
4341     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4342     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4343     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4344     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4345     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4346     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4347     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4348     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4349     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4350     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4351     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4352     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4353 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4354 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4355     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4356 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4357 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4358 
4359     for (i = 0; i < be16toh(meta->total_configs); i++) {
4360 	kprintf("    %d   total_disks  %u\n", i,
4361 	       be16toh(meta->configs[i].disk_number));
4362 	kprintf("    %d   generation   %u\n", i,
4363 	       be16toh(meta->configs[i].generation));
4364 	kprintf("    %d   magic_0      0x%08x\n", i,
4365 	       be32toh(meta->configs[i].magic_0));
4366 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4367 	kprintf("    %d   type         %s\n", i,
4368 	       ata_raid_adaptec_type(meta->configs[i].type));
4369 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4370 	kprintf("    %d   flags        %d\n", i,
4371 	       be32toh(meta->configs[i].flags));
4372 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4373 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4374 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4375 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4376 	kprintf("    %d   disk_number  %u\n", i,
4377 	       be32toh(meta->configs[i].disk_number));
4378 	kprintf("    %d   dummy_6      0x%08x\n", i,
4379 	       be32toh(meta->configs[i].dummy_6));
4380 	kprintf("    %d   sectors      %u\n", i,
4381 	       be32toh(meta->configs[i].sectors));
4382 	kprintf("    %d   stripe_shift %u\n", i,
4383 	       be16toh(meta->configs[i].stripe_shift));
4384 	kprintf("    %d   dummy_7      0x%08x\n", i,
4385 	       be32toh(meta->configs[i].dummy_7));
4386 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4387 	       be32toh(meta->configs[i].dummy_8[0]),
4388 	       be32toh(meta->configs[i].dummy_8[1]),
4389 	       be32toh(meta->configs[i].dummy_8[2]),
4390 	       be32toh(meta->configs[i].dummy_8[3]));
4391 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4392     }
4393     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4394     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4395     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4396     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4397     kprintf("=================================================\n");
4398 }
4399 
4400 static char *
4401 ata_raid_hptv2_type(int type)
4402 {
4403     static char buffer[16];
4404 
4405     switch (type) {
4406     case HPTV2_T_RAID0:         return "RAID0";
4407     case HPTV2_T_RAID1:         return "RAID1";
4408     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4409     case HPTV2_T_SPAN:          return "SPAN";
4410     case HPTV2_T_RAID_3:        return "RAID3";
4411     case HPTV2_T_RAID_5:        return "RAID5";
4412     case HPTV2_T_JBOD:          return "JBOD";
4413     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4414     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4415 			return buffer;
4416     }
4417 }
4418 
4419 static void
4420 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4421 {
4422     int i;
4423 
4424     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4425     kprintf("magic               0x%08x\n", meta->magic);
4426     kprintf("magic_0             0x%08x\n", meta->magic_0);
4427     kprintf("magic_1             0x%08x\n", meta->magic_1);
4428     kprintf("order               0x%08x\n", meta->order);
4429     kprintf("array_width         %u\n", meta->array_width);
4430     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4431     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4432     kprintf("disk_number         %u\n", meta->disk_number);
4433     kprintf("total_sectors       %u\n", meta->total_sectors);
4434     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4435     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4436     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4437     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4438     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4439     kprintf("log_index           0x%02x\n", meta->error_log_index);
4440     if (meta->error_log_entries) {
4441 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4442 	for (i = meta->error_log_index;
4443 	     i < meta->error_log_index + meta->error_log_entries; i++)
4444 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4445 		   meta->errorlog[i%32].timestamp,
4446 		   meta->errorlog[i%32].reason,
4447 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4448 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4449     }
4450     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4451     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4452     kprintf("name_1              <%.15s>\n", meta->name_1);
4453     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4454     kprintf("name_2              <%.15s>\n", meta->name_2);
4455     kprintf("=================================================\n");
4456 }
4457 
4458 static char *
4459 ata_raid_hptv3_type(int type)
4460 {
4461     static char buffer[16];
4462 
4463     switch (type) {
4464     case HPTV3_T_SPARE: return "SPARE";
4465     case HPTV3_T_JBOD:  return "JBOD";
4466     case HPTV3_T_SPAN:  return "SPAN";
4467     case HPTV3_T_RAID0: return "RAID0";
4468     case HPTV3_T_RAID1: return "RAID1";
4469     case HPTV3_T_RAID3: return "RAID3";
4470     case HPTV3_T_RAID5: return "RAID5";
4471     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4472 			return buffer;
4473     }
4474 }
4475 
4476 static void
4477 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4478 {
4479     int i;
4480 
4481     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4482     kprintf("magic               0x%08x\n", meta->magic);
4483     kprintf("magic_0             0x%08x\n", meta->magic_0);
4484     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4485     kprintf("mode                0x%02x\n", meta->mode);
4486     kprintf("user_mode           0x%02x\n", meta->user_mode);
4487     kprintf("config_entries      0x%02x\n", meta->config_entries);
4488     for (i = 0; i < meta->config_entries; i++) {
4489 	kprintf("config %d:\n", i);
4490 	kprintf("    total_sectors       %ju\n",
4491 	       meta->configs[0].total_sectors +
4492 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4493 	kprintf("    type                %s\n",
4494 	       ata_raid_hptv3_type(meta->configs[i].type));
4495 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4496 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4497 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4498 	kprintf("    status              %b\n", meta->configs[i].status,
4499 	       "\20\2RAID5\1NEED_REBUILD\n");
4500 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4501 	kprintf("    rebuild_lba         %ju\n",
4502 	       meta->configs_high[0].rebuild_lba +
4503 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4504     }
4505     kprintf("name                <%.16s>\n", meta->name);
4506     kprintf("timestamp           0x%08x\n", meta->timestamp);
4507     kprintf("description         <%.16s>\n", meta->description);
4508     kprintf("creator             <%.16s>\n", meta->creator);
4509     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4510     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4511     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4512     kprintf("flags               %b\n", meta->flags,
4513 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4514     kprintf("=================================================\n");
4515 }
4516 
4517 static char *
4518 ata_raid_intel_type(int type)
4519 {
4520     static char buffer[16];
4521 
4522     switch (type) {
4523     case INTEL_T_RAID0: return "RAID0";
4524     case INTEL_T_RAID1: return "RAID1";
4525     case INTEL_T_RAID5: return "RAID5";
4526     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4527 			return buffer;
4528     }
4529 }
4530 
4531 static void
4532 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4533 {
4534     struct intel_raid_mapping *map;
4535     int i, j;
4536 
4537     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4538     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4539     kprintf("version             <%.6s>\n", meta->version);
4540     kprintf("checksum            0x%08x\n", meta->checksum);
4541     kprintf("config_size         0x%08x\n", meta->config_size);
4542     kprintf("config_id           0x%08x\n", meta->config_id);
4543     kprintf("generation          0x%08x\n", meta->generation);
4544     kprintf("total_disks         %u\n", meta->total_disks);
4545     kprintf("total_volumes       %u\n", meta->total_volumes);
4546     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4547     for (i = 0; i < meta->total_disks; i++ ) {
4548 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4549 	       meta->disk[i].serial, meta->disk[i].sectors,
4550 	       meta->disk[i].id, meta->disk[i].flags);
4551     }
4552     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4553     for (j = 0; j < meta->total_volumes; j++) {
4554 	kprintf("name                %.16s\n", map->name);
4555 	kprintf("total_sectors       %ju\n", map->total_sectors);
4556 	kprintf("state               %u\n", map->state);
4557 	kprintf("reserved            %u\n", map->reserved);
4558 	kprintf("offset              %u\n", map->offset);
4559 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4560 	kprintf("stripe_count        %u\n", map->stripe_count);
4561 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4562 	kprintf("status              %u\n", map->status);
4563 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4564 	kprintf("total_disks         %u\n", map->total_disks);
4565 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4566 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4567 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4568 	for (i = 0; i < map->total_disks; i++ ) {
4569 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4570 	}
4571 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4572     }
4573     kprintf("=================================================\n");
4574 }
4575 
4576 static char *
4577 ata_raid_ite_type(int type)
4578 {
4579     static char buffer[16];
4580 
4581     switch (type) {
4582     case ITE_T_RAID0:   return "RAID0";
4583     case ITE_T_RAID1:   return "RAID1";
4584     case ITE_T_RAID01:  return "RAID0+1";
4585     case ITE_T_SPAN:    return "SPAN";
4586     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4587 			return buffer;
4588     }
4589 }
4590 
4591 static void
4592 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4593 {
4594     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4595     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4596     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4597 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4598 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4599 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4600     kprintf("total_sectors       %jd\n", meta->total_sectors);
4601     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4602     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4603     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4604 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4605 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4606 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4607     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4608     kprintf("array_width         %u\n", meta->array_width);
4609     kprintf("disk_number         %u\n", meta->disk_number);
4610     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4611     kprintf("=================================================\n");
4612 }
4613 
4614 static char *
4615 ata_raid_jmicron_type(int type)
4616 {
4617     static char buffer[16];
4618 
4619     switch (type) {
4620     case JM_T_RAID0:	return "RAID0";
4621     case JM_T_RAID1:	return "RAID1";
4622     case JM_T_RAID01:	return "RAID0+1";
4623     case JM_T_JBOD:	return "JBOD";
4624     case JM_T_RAID5:	return "RAID5";
4625     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4626 			return buffer;
4627     }
4628 }
4629 
4630 static void
4631 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4632 {
4633     int i;
4634 
4635     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4636     kprintf("signature           %.2s\n", meta->signature);
4637     kprintf("version             0x%04x\n", meta->version);
4638     kprintf("checksum            0x%04x\n", meta->checksum);
4639     kprintf("disk_id             0x%08x\n", meta->disk_id);
4640     kprintf("offset              0x%08x\n", meta->offset);
4641     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4642     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4643     kprintf("name                %.16s\n", meta->name);
4644     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4645     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4646     kprintf("flags               0x%04x\n", meta->flags);
4647     kprintf("spare:\n");
4648     for (i=0; i < 2 && meta->spare[i]; i++)
4649 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4650     kprintf("disks:\n");
4651     for (i=0; i < 8 && meta->disks[i]; i++)
4652 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4653     kprintf("=================================================\n");
4654 }
4655 
4656 static char *
4657 ata_raid_lsiv2_type(int type)
4658 {
4659     static char buffer[16];
4660 
4661     switch (type) {
4662     case LSIV2_T_RAID0: return "RAID0";
4663     case LSIV2_T_RAID1: return "RAID1";
4664     case LSIV2_T_SPARE: return "SPARE";
4665     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4666 			return buffer;
4667     }
4668 }
4669 
4670 static void
4671 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4672 {
4673     int i;
4674 
4675     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4676     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4677     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4678     kprintf("flags               0x%02x\n", meta->flags);
4679     kprintf("version             0x%04x\n", meta->version);
4680     kprintf("config_entries      0x%02x\n", meta->config_entries);
4681     kprintf("raid_count          0x%02x\n", meta->raid_count);
4682     kprintf("total_disks         0x%02x\n", meta->total_disks);
4683     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4684     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4685     for (i = 0; i < meta->config_entries; i++) {
4686 	kprintf("    type             %s\n",
4687 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4688 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4689 	kprintf("    stripe_sectors   %u\n",
4690 	       meta->configs[i].raid.stripe_sectors);
4691 	kprintf("    array_width      %u\n",
4692 	       meta->configs[i].raid.array_width);
4693 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4694 	kprintf("    config_offset    %u\n",
4695 	       meta->configs[i].raid.config_offset);
4696 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4697 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4698 	kprintf("    total_sectors    %u\n",
4699 	       meta->configs[i].raid.total_sectors);
4700     }
4701     kprintf("disk_number         0x%02x\n", meta->disk_number);
4702     kprintf("raid_number         0x%02x\n", meta->raid_number);
4703     kprintf("timestamp           0x%08x\n", meta->timestamp);
4704     kprintf("=================================================\n");
4705 }
4706 
4707 static char *
4708 ata_raid_lsiv3_type(int type)
4709 {
4710     static char buffer[16];
4711 
4712     switch (type) {
4713     case LSIV3_T_RAID0: return "RAID0";
4714     case LSIV3_T_RAID1: return "RAID1";
4715     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4716 			return buffer;
4717     }
4718 }
4719 
4720 static void
4721 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4722 {
4723     int i;
4724 
4725     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4726     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4727     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4728     kprintf("version             0x%04x\n", meta->version);
4729     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4730     kprintf("RAID configs:\n");
4731     for (i = 0; i < 8; i++) {
4732 	if (meta->raid[i].total_disks) {
4733 	    kprintf("%02d  stripe_pages       %u\n", i,
4734 		   meta->raid[i].stripe_pages);
4735 	    kprintf("%02d  type               %s\n", i,
4736 		   ata_raid_lsiv3_type(meta->raid[i].type));
4737 	    kprintf("%02d  total_disks        %u\n", i,
4738 		   meta->raid[i].total_disks);
4739 	    kprintf("%02d  array_width        %u\n", i,
4740 		   meta->raid[i].array_width);
4741 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4742 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4743 	    kprintf("%02d  device             0x%02x\n", i,
4744 		   meta->raid[i].device);
4745 	}
4746     }
4747     kprintf("DISK configs:\n");
4748     for (i = 0; i < 6; i++) {
4749 	    if (meta->disk[i].disk_sectors) {
4750 	    kprintf("%02d  disk_sectors       %u\n", i,
4751 		   meta->disk[i].disk_sectors);
4752 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4753 	}
4754     }
4755     kprintf("device              0x%02x\n", meta->device);
4756     kprintf("timestamp           0x%08x\n", meta->timestamp);
4757     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4758     kprintf("=================================================\n");
4759 }
4760 
4761 static char *
4762 ata_raid_nvidia_type(int type)
4763 {
4764     static char buffer[16];
4765 
4766     switch (type) {
4767     case NV_T_SPAN:     return "SPAN";
4768     case NV_T_RAID0:    return "RAID0";
4769     case NV_T_RAID1:    return "RAID1";
4770     case NV_T_RAID3:    return "RAID3";
4771     case NV_T_RAID5:    return "RAID5";
4772     case NV_T_RAID01:   return "RAID0+1";
4773     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4774 			return buffer;
4775     }
4776 }
4777 
4778 static void
4779 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4780 {
4781     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4782     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4783     kprintf("config_size         %d\n", meta->config_size);
4784     kprintf("checksum            0x%08x\n", meta->checksum);
4785     kprintf("version             0x%04x\n", meta->version);
4786     kprintf("disk_number         %d\n", meta->disk_number);
4787     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4788     kprintf("total_sectors       %d\n", meta->total_sectors);
4789     kprintf("sectors_size        %d\n", meta->sector_size);
4790     kprintf("serial              %.16s\n", meta->serial);
4791     kprintf("revision            %.4s\n", meta->revision);
4792     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4793     kprintf("magic_0             0x%08x\n", meta->magic_0);
4794     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4795     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4796     kprintf("flags               0x%02x\n", meta->flags);
4797     kprintf("array_width         %d\n", meta->array_width);
4798     kprintf("total_disks         %d\n", meta->total_disks);
4799     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4800     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4801     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4802     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4803     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4804     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4805     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4806     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4807     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4808     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4809     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4810     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4811     kprintf("status              0x%08x\n", meta->status);
4812     kprintf("=================================================\n");
4813 }
4814 
4815 static char *
4816 ata_raid_promise_type(int type)
4817 {
4818     static char buffer[16];
4819 
4820     switch (type) {
4821     case PR_T_RAID0:    return "RAID0";
4822     case PR_T_RAID1:    return "RAID1";
4823     case PR_T_RAID3:    return "RAID3";
4824     case PR_T_RAID5:    return "RAID5";
4825     case PR_T_SPAN:     return "SPAN";
4826     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4827 			return buffer;
4828     }
4829 }
4830 
4831 static void
4832 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4833 {
4834     int i;
4835 
4836     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4837     kprintf("promise_id          <%s>\n", meta->promise_id);
4838     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4839     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4840     kprintf("magic_1             0x%04x\n", meta->magic_1);
4841     kprintf("magic_2             0x%08x\n", meta->magic_2);
4842     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4843 		meta->raid.integrity, "\20\10VALID\n" );
4844     kprintf("flags               0x%02x %b\n",
4845 	   meta->raid.flags, meta->raid.flags,
4846 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4847 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4848     kprintf("disk_number         %d\n", meta->raid.disk_number);
4849     kprintf("channel             0x%02x\n", meta->raid.channel);
4850     kprintf("device              0x%02x\n", meta->raid.device);
4851     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4852     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4853     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4854     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4855     kprintf("generation          0x%04x\n", meta->raid.generation);
4856     kprintf("status              0x%02x %b\n",
4857 	    meta->raid.status, meta->raid.status,
4858 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4859     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4860     kprintf("total_disks         %u\n", meta->raid.total_disks);
4861     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4862     kprintf("array_width         %u\n", meta->raid.array_width);
4863     kprintf("array_number        %u\n", meta->raid.array_number);
4864     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4865     kprintf("cylinders           %u\n", meta->raid.cylinders);
4866     kprintf("heads               %u\n", meta->raid.heads);
4867     kprintf("sectors             %u\n", meta->raid.sectors);
4868     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4869     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4870     for (i = 0; i < 8; i++) {
4871 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4872 	       i, meta->raid.disk[i].flags,
4873 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4874 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4875 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4876 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4877     }
4878     kprintf("checksum            0x%08x\n", meta->checksum);
4879     kprintf("=================================================\n");
4880 }
4881 
4882 static char *
4883 ata_raid_sii_type(int type)
4884 {
4885     static char buffer[16];
4886 
4887     switch (type) {
4888     case SII_T_RAID0:   return "RAID0";
4889     case SII_T_RAID1:   return "RAID1";
4890     case SII_T_RAID01:  return "RAID0+1";
4891     case SII_T_SPARE:   return "SPARE";
4892     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4893 			return buffer;
4894     }
4895 }
4896 
4897 static void
4898 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4899 {
4900     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4901     kprintf("total_sectors       %ju\n", meta->total_sectors);
4902     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4903     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4904     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4905     kprintf("version_minor       0x%04x\n", meta->version_minor);
4906     kprintf("version_major       0x%04x\n", meta->version_major);
4907     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4908 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4909 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4910     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4911     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4912     kprintf("disk_number         %u\n", meta->disk_number);
4913     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4914     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4915     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4916     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4917     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4918     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4919     kprintf("generation          0x%08x\n", meta->generation);
4920     kprintf("status              0x%02x %b\n",
4921 	    meta->status, meta->status,
4922 	   "\20\1READY\n");
4923     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4924     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4925     kprintf("position            %02x\n", meta->position);
4926     kprintf("dummy_3             %04x\n", meta->dummy_3);
4927     kprintf("name                <%.16s>\n", meta->name);
4928     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4929     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4930     kprintf("=================================================\n");
4931 }
4932 
4933 static char *
4934 ata_raid_sis_type(int type)
4935 {
4936     static char buffer[16];
4937 
4938     switch (type) {
4939     case SIS_T_JBOD:    return "JBOD";
4940     case SIS_T_RAID0:   return "RAID0";
4941     case SIS_T_RAID1:   return "RAID1";
4942     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4943 			return buffer;
4944     }
4945 }
4946 
4947 static void
4948 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4949 {
4950     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4951     kprintf("magic               0x%04x\n", meta->magic);
4952     kprintf("disks               0x%02x\n", meta->disks);
4953     kprintf("type                %s\n",
4954 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4955     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4956     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4957     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4958     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4959     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4960     kprintf("timestamp           0x%08x\n", meta->timestamp);
4961     kprintf("model               %.40s\n", meta->model);
4962     kprintf("disk_number         %u\n", meta->disk_number);
4963     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4964 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4965     kprintf("=================================================\n");
4966 }
4967 
4968 static char *
4969 ata_raid_via_type(int type)
4970 {
4971     static char buffer[16];
4972 
4973     switch (type) {
4974     case VIA_T_RAID0:   return "RAID0";
4975     case VIA_T_RAID1:   return "RAID1";
4976     case VIA_T_RAID5:   return "RAID5";
4977     case VIA_T_RAID01:  return "RAID0+1";
4978     case VIA_T_SPAN:    return "SPAN";
4979     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4980 			return buffer;
4981     }
4982 }
4983 
4984 static void
4985 ata_raid_via_print_meta(struct via_raid_conf *meta)
4986 {
4987     int i;
4988 
4989     kprintf("*************** ATA VIA Metadata ****************\n");
4990     kprintf("magic               0x%02x\n", meta->magic);
4991     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4992     kprintf("type                %s\n",
4993 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4994     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4995     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4996     kprintf("disk_index          0x%02x\n", meta->disk_index);
4997     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4998     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4999     kprintf(" stripe_sectors     %d\n",
5000 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5001     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5002     kprintf("disk_id             0x%08x\n", meta->disk_id);
5003     kprintf("DISK#   disk_id\n");
5004     for (i = 0; i < 8; i++) {
5005 	if (meta->disks[i])
5006 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5007     }
5008     kprintf("checksum            0x%02x\n", meta->checksum);
5009     kprintf("=================================================\n");
5010 }
5011