xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 3e184884)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/devicestat.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 0, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154 
155     devstat_add_entry(&rdp->devstat, "ar", rdp->lun,
156 	DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS,
157 	DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
158 	DEVSTAT_PRIORITY_ARRAY);
159 
160     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
161     cdev->si_drv1 = rdp;
162     cdev->si_iosize_max = 128 * DEV_BSIZE;
163     rdp->cdev = cdev;
164 
165     bzero(&info, sizeof(info));
166     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
167     info.d_media_blocks = rdp->total_sectors;
168 
169     info.d_secpertrack = rdp->sectors;		/* optional */
170     info.d_nheads = rdp->heads;
171     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
172     info.d_secpercyl = rdp->sectors * rdp->heads;
173 
174     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
175 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
176 	   ata_raid_format(rdp), ata_raid_type(rdp),
177 	   buffer, ata_raid_flags(rdp));
178 
179     if (testing || bootverbose)
180 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
181 	       rdp->lun, rdp->total_sectors,
182 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
183 
184     for (disk = 0; disk < rdp->total_disks; disk++) {
185 	kprintf("ar%d: disk%d ", rdp->lun, disk);
186 	if (rdp->disks[disk].dev) {
187 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
188 		/* status of this disk in the array */
189 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
190 		    kprintf("READY ");
191 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
192 		    kprintf("SPARE ");
193 		else
194 		    kprintf("FREE  ");
195 
196 		/* what type of disk is this in the array */
197 		switch (rdp->type) {
198 		case AR_T_RAID1:
199 		case AR_T_RAID01:
200 		    if (disk < rdp->width)
201 			kprintf("(master) ");
202 		    else
203 			kprintf("(mirror) ");
204 		}
205 
206 		/* which physical disk is used */
207 		kprintf("using %s at ata%d-%s\n",
208 		       device_get_nameunit(rdp->disks[disk].dev),
209 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
210 		       (((struct ata_device *)
211 			 device_get_softc(rdp->disks[disk].dev))->unit ==
212 			 ATA_MASTER) ? "master" : "slave");
213 	    }
214 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
215 		kprintf("DOWN\n");
216 	    else
217 		kprintf("INVALID no RAID config on this subdisk\n");
218 	}
219 	else
220 	    kprintf("DOWN no device found for this subdisk\n");
221     }
222 
223     disk_setdiskinfo(&rdp->disk, &info);
224 }
225 
226 /*
227  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
228  * to the dev_ops way, because it's just chained from the generic ata ioctl.
229  */
230 static int
231 ata_raid_ioctl(u_long cmd, caddr_t data)
232 {
233     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
234     int *lun = (int *)data;
235     int error = EOPNOTSUPP;
236 
237     switch (cmd) {
238     case IOCATARAIDSTATUS:
239 	error = ata_raid_status(config);
240 	break;
241 
242     case IOCATARAIDCREATE:
243 	error = ata_raid_create(config);
244 	break;
245 
246     case IOCATARAIDDELETE:
247 	error = ata_raid_delete(*lun);
248 	break;
249 
250     case IOCATARAIDADDSPARE:
251 	error = ata_raid_addspare(config);
252 	break;
253 
254     case IOCATARAIDREBUILD:
255 	error = ata_raid_rebuild(*lun);
256 	break;
257     }
258     return error;
259 }
260 
261 static int
262 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
263 {
264     struct ata_request *request;
265     device_t dev;
266     int disk, error;
267 
268     error = 0;
269     bp->bio_driver_info = NULL;
270 
271     for (disk = 0; disk < rdp->total_disks; disk++) {
272 	if ((dev = rdp->disks[disk].dev) != NULL)
273 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
274     }
275     for (disk = 0; disk < rdp->total_disks; disk++) {
276 	if ((dev = rdp->disks[disk].dev) == NULL)
277 	    continue;
278 	if (!(request = ata_raid_init_request(rdp, bp)))
279 	    return ENOMEM;
280 	request->dev = dev;
281 	request->u.ata.command = ATA_FLUSHCACHE;
282 	request->u.ata.lba = 0;
283 	request->u.ata.count = 0;
284 	request->u.ata.feature = 0;
285 	request->timeout = 1;
286 	request->retries = 0;
287 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
288 	ata_queue_request(request);
289     }
290     return 0;
291 }
292 
293 /*
294  * XXX TGEN there are a lot of offset -> block number conversions going on
295  * here, which is suboptimal.
296  */
297 static int
298 ata_raid_strategy(struct dev_strategy_args *ap)
299 {
300     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
301     struct bio *bp = ap->a_bio;
302     struct buf *bbp = bp->bio_buf;
303     struct ata_request *request;
304     caddr_t data;
305     u_int64_t blkno, lba, blk = 0;
306     int count, chunk, drv, par = 0, change = 0;
307 
308     if (bbp->b_cmd == BUF_CMD_FLUSH) {
309 	int error;
310 
311 	error = ata_raid_flush(rdp, bp);
312 	if (error != 0) {
313 		bbp->b_flags |= B_ERROR;
314 		bbp->b_error = error;
315 		biodone(bp);
316 	}
317 	return(0);
318     }
319 
320     if (!(rdp->status & AR_S_READY) ||
321 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
322 	bbp->b_flags |= B_ERROR;
323 	bbp->b_error = EIO;
324 	biodone(bp);
325 	return(0);
326     }
327 
328     bbp->b_resid = bbp->b_bcount;
329     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
330 	 /* bio_offset is byte granularity, convert */
331 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
332 	 data = bbp->b_data;
333 	 count > 0;
334 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
335 
336 	switch (rdp->type) {
337 	case AR_T_RAID1:
338 	    drv = 0;
339 	    lba = blkno;
340 	    chunk = count;
341 	    break;
342 
343 	case AR_T_JBOD:
344 	case AR_T_SPAN:
345 	    drv = 0;
346 	    lba = blkno;
347 	    while (lba >= rdp->disks[drv].sectors)
348 		lba -= rdp->disks[drv++].sectors;
349 	    chunk = min(rdp->disks[drv].sectors - lba, count);
350 	    break;
351 
352 	case AR_T_RAID0:
353 	case AR_T_RAID01:
354 	    chunk = blkno % rdp->interleave;
355 	    drv = (blkno / rdp->interleave) % rdp->width;
356 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
357 	    chunk = min(count, rdp->interleave - chunk);
358 	    break;
359 
360 	case AR_T_RAID5:
361 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
362 	    par = rdp->width - 1 -
363 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
364 	    if (drv >= par)
365 		drv++;
366 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
367 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
368 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
369 	    break;
370 
371 	default:
372 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
373 	    bbp->b_flags |= B_ERROR;
374 	    bbp->b_error = EIO;
375 	    biodone(bp);
376 	    return(0);
377 	}
378 
379 	/* offset on all but "first on HPTv2" */
380 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
381 	    lba += rdp->offset_sectors;
382 
383 	if (!(request = ata_raid_init_request(rdp, bp))) {
384 	    bbp->b_flags |= B_ERROR;
385 	    bbp->b_error = EIO;
386 	    biodone(bp);
387 	    return(0);
388 	}
389 	request->data = data;
390 	request->bytecount = chunk * DEV_BSIZE;
391 	request->u.ata.lba = lba;
392 	request->u.ata.count = request->bytecount / DEV_BSIZE;
393 
394 	devstat_start_transaction(&rdp->devstat);
395 	switch (rdp->type) {
396 	case AR_T_JBOD:
397 	case AR_T_SPAN:
398 	case AR_T_RAID0:
399 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
400 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
401 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
402 		ata_raid_config_changed(rdp, 1);
403 		ata_free_request(request);
404 		bbp->b_flags |= B_ERROR;
405 		bbp->b_error = EIO;
406 		biodone(bp);
407 		return(0);
408 	    }
409 	    request->this = drv;
410 	    request->dev = rdp->disks[request->this].dev;
411 	    ata_raid_send_request(request);
412 	    break;
413 
414 	case AR_T_RAID1:
415 	case AR_T_RAID01:
416 	    if ((rdp->disks[drv].flags &
417 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
418 		!rdp->disks[drv].dev) {
419 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
420 		change = 1;
421 	    }
422 	    if ((rdp->disks[drv + rdp->width].flags &
423 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
424 		!rdp->disks[drv + rdp->width].dev) {
425 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
426 		change = 1;
427 	    }
428 	    if (change)
429 		ata_raid_config_changed(rdp, 1);
430 	    if (!(rdp->status & AR_S_READY)) {
431 		ata_free_request(request);
432 		bbp->b_flags |= B_ERROR;
433 		bbp->b_error = EIO;
434 		biodone(bp);
435 		return(0);
436 	    }
437 
438 	    if (rdp->status & AR_S_REBUILDING)
439 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
440 		      (rdp->interleave * (drv % rdp->width)) +
441 		      lba % rdp->interleave;;
442 
443 	    if (bbp->b_cmd == BUF_CMD_READ) {
444 		int src_online =
445 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
446 		int mir_online =
447 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
448 
449 		/* if mirror gone or close to last access on source */
450 		if (!mir_online ||
451 		    ((src_online) &&
452 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
453 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
454 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
455 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
456 		    rdp->toggle = 0;
457 		}
458 		/* if source gone or close to last access on mirror */
459 		else if (!src_online ||
460 			 ((mir_online) &&
461 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
462 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
463 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
464 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
465 		    drv += rdp->width;
466 		    rdp->toggle = 1;
467 		}
468 		/* not close to any previous access, toggle */
469 		else {
470 		    if (rdp->toggle)
471 			rdp->toggle = 0;
472 		    else {
473 			drv += rdp->width;
474 			rdp->toggle = 1;
475 		    }
476 		}
477 
478 		if ((rdp->status & AR_S_REBUILDING) &&
479 		    (blk <= rdp->rebuild_lba) &&
480 		    ((blk + chunk) > rdp->rebuild_lba)) {
481 		    struct ata_composite *composite;
482 		    struct ata_request *rebuild;
483 		    int this;
484 
485 		    /* figure out what part to rebuild */
486 		    if (drv < rdp->width)
487 			this = drv + rdp->width;
488 		    else
489 			this = drv - rdp->width;
490 
491 		    /* do we have a spare to rebuild on ? */
492 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
493 			if ((composite = ata_alloc_composite())) {
494 			    if ((rebuild = ata_alloc_request())) {
495 				rdp->rebuild_lba = blk + chunk;
496 				bcopy(request, rebuild,
497 				      sizeof(struct ata_request));
498 				rebuild->this = this;
499 				rebuild->dev = rdp->disks[this].dev;
500 				rebuild->flags &= ~ATA_R_READ;
501 				rebuild->flags |= ATA_R_WRITE;
502 				spin_init(&composite->lock);
503 				composite->residual = request->bytecount;
504 				composite->rd_needed |= (1 << drv);
505 				composite->wr_depend |= (1 << drv);
506 				composite->wr_needed |= (1 << this);
507 				composite->request[drv] = request;
508 				composite->request[this] = rebuild;
509 				request->composite = composite;
510 				rebuild->composite = composite;
511 				ata_raid_send_request(rebuild);
512 			    }
513 			    else {
514 				ata_free_composite(composite);
515 				kprintf("DOH! ata_alloc_request failed!\n");
516 			    }
517 			}
518 			else {
519 			    kprintf("DOH! ata_alloc_composite failed!\n");
520 			}
521 		    }
522 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
523 			/*
524 			 * if we got here we are a chunk of a RAID01 that
525 			 * does not need a rebuild, but we need to increment
526 			 * the rebuild_lba address to get the rebuild to
527 			 * move to the next chunk correctly
528 			 */
529 			rdp->rebuild_lba = blk + chunk;
530 		    }
531 		    else
532 			kprintf("DOH! we didn't find the rebuild part\n");
533 		}
534 	    }
535 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
536 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
537 		    ((rdp->status & AR_S_REBUILDING) &&
538 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
539 		     ((blk < rdp->rebuild_lba) ||
540 		      ((blk <= rdp->rebuild_lba) &&
541 		       ((blk + chunk) > rdp->rebuild_lba))))) {
542 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
543 			((rdp->status & AR_S_REBUILDING) &&
544 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
545 			 ((blk < rdp->rebuild_lba) ||
546 			  ((blk <= rdp->rebuild_lba) &&
547 			   ((blk + chunk) > rdp->rebuild_lba))))) {
548 			struct ata_request *mirror;
549 			struct ata_composite *composite;
550 			int this = drv + rdp->width;
551 
552 			if ((composite = ata_alloc_composite())) {
553 			    if ((mirror = ata_alloc_request())) {
554 				if ((blk <= rdp->rebuild_lba) &&
555 				    ((blk + chunk) > rdp->rebuild_lba))
556 				    rdp->rebuild_lba = blk + chunk;
557 				bcopy(request, mirror,
558 				      sizeof(struct ata_request));
559 				mirror->this = this;
560 				mirror->dev = rdp->disks[this].dev;
561 				spin_init(&composite->lock);
562 				composite->residual = request->bytecount;
563 				composite->wr_needed |= (1 << drv);
564 				composite->wr_needed |= (1 << this);
565 				composite->request[drv] = request;
566 				composite->request[this] = mirror;
567 				request->composite = composite;
568 				mirror->composite = composite;
569 				ata_raid_send_request(mirror);
570 				rdp->disks[this].last_lba =
571 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
572 				    chunk;
573 			    }
574 			    else {
575 				ata_free_composite(composite);
576 				kprintf("DOH! ata_alloc_request failed!\n");
577 			    }
578 			}
579 			else {
580 			    kprintf("DOH! ata_alloc_composite failed!\n");
581 			}
582 		    }
583 		    else
584 			drv += rdp->width;
585 		}
586 	    }
587 	    request->this = drv;
588 	    request->dev = rdp->disks[request->this].dev;
589 	    ata_raid_send_request(request);
590 	    rdp->disks[request->this].last_lba =
591 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
592 	    break;
593 
594 	case AR_T_RAID5:
595 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
596 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
597 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
598 		change = 1;
599 	    }
600 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
601 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
602 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
603 		change = 1;
604 	    }
605 	    if (change)
606 		ata_raid_config_changed(rdp, 1);
607 	    if (!(rdp->status & AR_S_READY)) {
608 		ata_free_request(request);
609 		bbp->b_flags |= B_ERROR;
610 		bbp->b_error = EIO;
611 		biodone(bp);
612 		return(0);
613 	    }
614 	    if (rdp->status & AR_S_DEGRADED) {
615 		/* do the XOR game if possible */
616 	    }
617 	    else {
618 		request->this = drv;
619 		request->dev = rdp->disks[request->this].dev;
620 		if (bbp->b_cmd == BUF_CMD_READ) {
621 		    ata_raid_send_request(request);
622 		}
623 		if (bbp->b_cmd == BUF_CMD_WRITE) {
624 		    ata_raid_send_request(request);
625 		    /* XXX TGEN no, I don't speak Danish either */
626 		    /*
627 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
628 		     * par kopi af request
629 		     * l�se orgdata fra drv
630 		     * skriv nydata til drv
631 		     * l�se parorgdata fra par
632 		     * skriv orgdata xor parorgdata xor nydata til par
633 		     */
634 		}
635 	    }
636 	    break;
637 
638 	default:
639 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
640 	}
641     }
642 
643     return(0);
644 }
645 
646 static void
647 ata_raid_done(struct ata_request *request)
648 {
649     struct ar_softc *rdp = request->driver;
650     struct ata_composite *composite = NULL;
651     struct bio *bp = request->bio;
652     struct buf *bbp = bp->bio_buf;
653     int i, mirror, finished = 0;
654 
655     if (bbp->b_cmd == BUF_CMD_FLUSH) {
656 	if (bbp->b_error == 0)
657 		bbp->b_error = request->result;
658 	ata_free_request(request);
659 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
660 	if ((intptr_t)bp->bio_driver_info == 0) {
661 		if (bbp->b_error)
662 			bbp->b_flags |= B_ERROR;
663 		biodone(bp);
664 	}
665 	return;
666     }
667 
668     switch (rdp->type) {
669     case AR_T_JBOD:
670     case AR_T_SPAN:
671     case AR_T_RAID0:
672 	if (request->result) {
673 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
674 	    ata_raid_config_changed(rdp, 1);
675 	    bbp->b_error = request->result;
676 	    finished = 1;
677 	}
678 	else {
679 	    bbp->b_resid -= request->donecount;
680 	    if (!bbp->b_resid)
681 		finished = 1;
682 	}
683 	break;
684 
685     case AR_T_RAID1:
686     case AR_T_RAID01:
687 	if (request->this < rdp->width)
688 	    mirror = request->this + rdp->width;
689 	else
690 	    mirror = request->this - rdp->width;
691 	if (request->result) {
692 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
693 	    ata_raid_config_changed(rdp, 1);
694 	}
695 	if (rdp->status & AR_S_READY) {
696 	    u_int64_t blk = 0;
697 
698 	    if (rdp->status & AR_S_REBUILDING)
699 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
700 		      rdp->interleave + (rdp->interleave *
701 		      (request->this % rdp->width)) +
702 		      request->u.ata.lba % rdp->interleave;
703 
704 	    if (bbp->b_cmd == BUF_CMD_READ) {
705 
706 		/* is this a rebuild composite */
707 		if ((composite = request->composite)) {
708 		    spin_lock(&composite->lock);
709 
710 		    /* handle the read part of a rebuild composite */
711 		    if (request->flags & ATA_R_READ) {
712 
713 			/* if read failed array is now broken */
714 			if (request->result) {
715 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
716 			    ata_raid_config_changed(rdp, 1);
717 			    bbp->b_error = request->result;
718 			    rdp->rebuild_lba = blk;
719 			    finished = 1;
720 			}
721 
722 			/* good data, update how far we've gotten */
723 			else {
724 			    bbp->b_resid -= request->donecount;
725 			    composite->residual -= request->donecount;
726 			    if (!composite->residual) {
727 				if (composite->wr_done & (1 << mirror))
728 				    finished = 1;
729 			    }
730 			}
731 		    }
732 
733 		    /* handle the write part of a rebuild composite */
734 		    else if (request->flags & ATA_R_WRITE) {
735 			if (composite->rd_done & (1 << mirror)) {
736 			    if (request->result) {
737 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
738 				rdp->rebuild_lba = blk;
739 			    }
740 			    if (!composite->residual)
741 				finished = 1;
742 			}
743 		    }
744 		    spin_unlock(&composite->lock);
745 		}
746 
747 		/* if read failed retry on the mirror */
748 		else if (request->result) {
749 		    request->dev = rdp->disks[mirror].dev;
750 		    request->flags &= ~ATA_R_TIMEOUT;
751 		    ata_raid_send_request(request);
752 		    return;
753 		}
754 
755 		/* we have good data */
756 		else {
757 		    bbp->b_resid -= request->donecount;
758 		    if (!bbp->b_resid)
759 			finished = 1;
760 		}
761 	    }
762 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
763 		/* do we have a mirror or rebuild to deal with ? */
764 		if ((composite = request->composite)) {
765 		    spin_lock(&composite->lock);
766 		    if (composite->wr_done & (1 << mirror)) {
767 			if (request->result) {
768 			    if (composite->request[mirror]->result) {
769 				kprintf("DOH! all disks failed and got here\n");
770 				bbp->b_error = EIO;
771 			    }
772 			    if (rdp->status & AR_S_REBUILDING) {
773 				rdp->rebuild_lba = blk;
774 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
775 			    }
776 			    bbp->b_resid -=
777 				composite->request[mirror]->donecount;
778 			    composite->residual -=
779 				composite->request[mirror]->donecount;
780 			}
781 			else {
782 			    bbp->b_resid -= request->donecount;
783 			    composite->residual -= request->donecount;
784 			}
785 			if (!composite->residual)
786 			    finished = 1;
787 		    }
788 		    spin_unlock(&composite->lock);
789 		}
790 		/* no mirror we are done */
791 		else {
792 		    bbp->b_resid -= request->donecount;
793 		    if (!bbp->b_resid)
794 			finished = 1;
795 		}
796 	    }
797 	}
798 	else {
799 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
800 	    bbp->b_error = request->result;
801 	    biodone(bp);
802 	}
803 	break;
804 
805     case AR_T_RAID5:
806 	if (request->result) {
807 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
808 	    ata_raid_config_changed(rdp, 1);
809 	    if (rdp->status & AR_S_READY) {
810 		if (bbp->b_cmd == BUF_CMD_READ) {
811 		    /* do the XOR game to recover data */
812 		}
813 		if (bbp->b_cmd == BUF_CMD_WRITE) {
814 		    /* if the parity failed we're OK sortof */
815 		    /* otherwise wee need to do the XOR long dance */
816 		}
817 		finished = 1;
818 	    }
819 	    else {
820 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
821 		bbp->b_error = request->result;
822 		biodone(bp);
823 	    }
824 	}
825 	else {
826 	    /* did we have an XOR game going ?? */
827 	    bbp->b_resid -= request->donecount;
828 	    if (!bbp->b_resid)
829 		finished = 1;
830 	}
831 	break;
832 
833     default:
834 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
835     }
836     devstat_end_transaction_buf(&rdp->devstat, bbp);
837 
838     if (finished) {
839 	if ((rdp->status & AR_S_REBUILDING) &&
840 	    rdp->rebuild_lba >= rdp->total_sectors) {
841 	    int disk;
842 
843 	    for (disk = 0; disk < rdp->total_disks; disk++) {
844 		if ((rdp->disks[disk].flags &
845 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
846 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
847 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
848 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
849 		}
850 	    }
851 	    rdp->status &= ~AR_S_REBUILDING;
852 	    ata_raid_config_changed(rdp, 1);
853 	}
854 	if (!bbp->b_resid)
855 	    biodone(bp);
856     }
857 
858     if (composite) {
859 	if (finished) {
860 	    /* we are done with this composite, free all resources */
861 	    for (i = 0; i < 32; i++) {
862 		if (composite->rd_needed & (1 << i) ||
863 		    composite->wr_needed & (1 << i)) {
864 		    ata_free_request(composite->request[i]);
865 		}
866 	    }
867 	    spin_uninit(&composite->lock);
868 	    ata_free_composite(composite);
869 	}
870     }
871     else
872 	ata_free_request(request);
873 }
874 
875 static int
876 ata_raid_dump(struct dev_dump_args *ap)
877 {
878 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
879 	struct buf dbuf;
880 	int error = 0;
881 	int disk;
882 
883 	if (ap->a_length == 0) {
884 		/* flush subdisk buffers to media */
885 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
886 			if (rdp->disks[disk].dev) {
887 				error |= ata_controlcmd(rdp->disks[disk].dev,
888 						ATA_FLUSHCACHE, 0, 0, 0);
889 			}
890 		}
891 		return (error ? EIO : 0);
892 	}
893 
894 	bzero(&dbuf, sizeof(struct buf));
895 	initbufbio(&dbuf);
896 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
897 	/* bio_offset is byte granularity, convert block granularity a_blkno */
898 	dbuf.b_bio1.bio_offset = ap->a_offset;
899 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
900 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
901 	dbuf.b_bio1.bio_done = biodone_sync;
902 	dbuf.b_bcount = ap->a_length;
903 	dbuf.b_data = ap->a_virtual;
904 	dbuf.b_cmd = BUF_CMD_WRITE;
905 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
906 	/* wait for completion, unlock the buffer, check status */
907 	if (biowait(&dbuf.b_bio1, "dumpw")) {
908 	    BUF_UNLOCK(&dbuf);
909 	    return(dbuf.b_error ? dbuf.b_error : EIO);
910 	}
911 	BUF_UNLOCK(&dbuf);
912 	uninitbufbio(&dbuf);
913 
914 	return 0;
915 }
916 
917 static void
918 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
919 {
920     int disk, count, status;
921 
922     spin_lock(&rdp->lock);
923     /* set default all working mode */
924     status = rdp->status;
925     rdp->status &= ~AR_S_DEGRADED;
926     rdp->status |= AR_S_READY;
927 
928     /* make sure all lost drives are accounted for */
929     for (disk = 0; disk < rdp->total_disks; disk++) {
930 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
931 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
932     }
933 
934     /* depending on RAID type figure out our health status */
935     switch (rdp->type) {
936     case AR_T_JBOD:
937     case AR_T_SPAN:
938     case AR_T_RAID0:
939 	for (disk = 0; disk < rdp->total_disks; disk++)
940 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
941 		rdp->status &= ~AR_S_READY;
942 	break;
943 
944     case AR_T_RAID1:
945     case AR_T_RAID01:
946 	for (disk = 0; disk < rdp->width; disk++) {
947 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
948 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
949 		rdp->status &= ~AR_S_READY;
950 	    }
951 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
952 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
953 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
954 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
955 		rdp->status |= AR_S_DEGRADED;
956 	    }
957 	}
958 	break;
959 
960     case AR_T_RAID5:
961 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
962 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
963 		count++;
964 	}
965 	if (count) {
966 	    if (count > 1)
967 		rdp->status &= ~AR_S_READY;
968 	    else
969 		rdp->status |= AR_S_DEGRADED;
970 	}
971 	break;
972     default:
973 	rdp->status &= ~AR_S_READY;
974     }
975 
976     /*
977      * Note that when the array breaks so comes up broken we
978      * force a write of the array config to the remaining
979      * drives so that the generation will be incremented past
980      * those of the missing or failed drives (in all cases).
981      */
982     if (rdp->status != status) {
983 	if (!(rdp->status & AR_S_READY)) {
984 	    kprintf("ar%d: FAILURE - %s array broken\n",
985 		   rdp->lun, ata_raid_type(rdp));
986 	    writeback = 1;
987 	}
988 	else if (rdp->status & AR_S_DEGRADED) {
989 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
990 		kprintf("ar%d: WARNING - mirror", rdp->lun);
991 	    else
992 		kprintf("ar%d: WARNING - parity", rdp->lun);
993 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
994 		   ata_raid_type(rdp));
995 	    writeback = 1;
996 	}
997     }
998     spin_unlock(&rdp->lock);
999     if (writeback)
1000 	ata_raid_write_metadata(rdp);
1001 
1002 }
1003 
1004 static int
1005 ata_raid_status(struct ata_ioc_raid_config *config)
1006 {
1007     struct ar_softc *rdp;
1008     int i;
1009 
1010     if (!(rdp = ata_raid_arrays[config->lun]))
1011 	return ENXIO;
1012 
1013     config->type = rdp->type;
1014     config->total_disks = rdp->total_disks;
1015     for (i = 0; i < rdp->total_disks; i++ ) {
1016 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1017 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1018 	else
1019 	    config->disks[i] = -1;
1020     }
1021     config->interleave = rdp->interleave;
1022     config->status = rdp->status;
1023     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1024     return 0;
1025 }
1026 
1027 static int
1028 ata_raid_create(struct ata_ioc_raid_config *config)
1029 {
1030     struct ar_softc *rdp;
1031     device_t subdisk;
1032     int array, disk;
1033     int ctlr = 0, disk_size = 0, total_disks = 0;
1034     device_t gpdev;
1035 
1036     for (array = 0; array < MAX_ARRAYS; array++) {
1037 	if (!ata_raid_arrays[array])
1038 	    break;
1039     }
1040     if (array >= MAX_ARRAYS)
1041 	return ENOSPC;
1042 
1043     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1044 	M_WAITOK | M_ZERO);
1045 
1046     for (disk = 0; disk < config->total_disks; disk++) {
1047 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1048 					   config->disks[disk]))) {
1049 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1050 
1051 	    /* is device already assigned to another array ? */
1052 	    if (ars->raid[rdp->volume]) {
1053 		config->disks[disk] = -1;
1054 		kfree(rdp, M_AR);
1055 		return EBUSY;
1056 	    }
1057 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1058 
1059 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1060 
1061 	    switch (pci_get_vendor(gpdev)) {
1062 	    case ATA_HIGHPOINT_ID:
1063 		/*
1064 		 * we need some way to decide if it should be v2 or v3
1065 		 * for now just use v2 since the v3 BIOS knows how to
1066 		 * handle that as well.
1067 		 */
1068 		ctlr = AR_F_HPTV2_RAID;
1069 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1070 		break;
1071 
1072 	    case ATA_INTEL_ID:
1073 		ctlr = AR_F_INTEL_RAID;
1074 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1075 		break;
1076 
1077 	    case ATA_ITE_ID:
1078 		ctlr = AR_F_ITE_RAID;
1079 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1080 		break;
1081 
1082 	    case ATA_JMICRON_ID:
1083 		ctlr = AR_F_JMICRON_RAID;
1084 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1085 		break;
1086 
1087 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1088 	    case ATA_PROMISE_ID:
1089 		ctlr = AR_F_PROMISE_RAID;
1090 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1091 		break;
1092 
1093 	    case ATA_SIS_ID:
1094 		ctlr = AR_F_SIS_RAID;
1095 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1096 		break;
1097 
1098 	    case ATA_ATI_ID:
1099 	    case ATA_VIA_ID:
1100 		ctlr = AR_F_VIA_RAID;
1101 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1102 		break;
1103 
1104 	    default:
1105 		/* XXX SOS
1106 		 * right, so here we are, we have an ATA chip and we want
1107 		 * to create a RAID and store the metadata.
1108 		 * we need to find a way to tell what kind of metadata this
1109 		 * hardware's BIOS might be using (good ideas are welcomed)
1110 		 * for now we just use our own native FreeBSD format.
1111 		 * the only way to get support for the BIOS format is to
1112 		 * setup the RAID from there, in that case we pickup the
1113 		 * metadata format from the disks (if we support it).
1114 		 */
1115 		kprintf("WARNING!! - not able to determine metadata format\n"
1116 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1117 		       "If that is not what you want, use the BIOS to "
1118 		       "create the array\n");
1119 		ctlr = AR_F_FREEBSD_RAID;
1120 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1121 		break;
1122 	    }
1123 
1124 	    /* we need all disks to be of the same format */
1125 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1126 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1127 		kfree(rdp, M_AR);
1128 		return EXDEV;
1129 	    }
1130 	    else
1131 		rdp->format = ctlr;
1132 
1133 	    /* use the smallest disk of the lots size */
1134 	    /* gigabyte boundry ??? XXX SOS */
1135 	    if (disk_size)
1136 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1137 	    else
1138 		disk_size = rdp->disks[disk].sectors;
1139 	    rdp->disks[disk].flags =
1140 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1141 
1142 	    total_disks++;
1143 	}
1144 	else {
1145 	    config->disks[disk] = -1;
1146 	    kfree(rdp, M_AR);
1147 	    return ENXIO;
1148 	}
1149     }
1150 
1151     if (total_disks != config->total_disks) {
1152 	kfree(rdp, M_AR);
1153 	return ENODEV;
1154     }
1155 
1156     switch (config->type) {
1157     case AR_T_JBOD:
1158     case AR_T_SPAN:
1159     case AR_T_RAID0:
1160 	break;
1161 
1162     case AR_T_RAID1:
1163 	if (total_disks != 2) {
1164 	    kfree(rdp, M_AR);
1165 	    return EPERM;
1166 	}
1167 	break;
1168 
1169     case AR_T_RAID01:
1170 	if (total_disks % 2 != 0) {
1171 	    kfree(rdp, M_AR);
1172 	    return EPERM;
1173 	}
1174 	break;
1175 
1176     case AR_T_RAID5:
1177 	if (total_disks < 3) {
1178 	    kfree(rdp, M_AR);
1179 	    return EPERM;
1180 	}
1181 	break;
1182 
1183     default:
1184 	kfree(rdp, M_AR);
1185 	return EOPNOTSUPP;
1186     }
1187     rdp->type = config->type;
1188     rdp->lun = array;
1189     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1190 	rdp->type == AR_T_RAID5) {
1191 	int bit = 0;
1192 
1193 	while (config->interleave >>= 1)
1194 	    bit++;
1195 	rdp->interleave = 1 << bit;
1196     }
1197     rdp->offset_sectors = 0;
1198 
1199     /* values that depend on metadata format */
1200     switch (rdp->format) {
1201     case AR_F_ADAPTEC_RAID:
1202 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1203 	break;
1204 
1205     case AR_F_HPTV2_RAID:
1206 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1207 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1208 	break;
1209 
1210     case AR_F_HPTV3_RAID:
1211 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1212 	break;
1213 
1214     case AR_F_INTEL_RAID:
1215 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1216 	break;
1217 
1218     case AR_F_ITE_RAID:
1219 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1220 	break;
1221 
1222     case AR_F_JMICRON_RAID:
1223 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1224 	break;
1225 
1226     case AR_F_LSIV2_RAID:
1227 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1228 	break;
1229 
1230     case AR_F_LSIV3_RAID:
1231 	rdp->interleave = min(max(2, rdp->interleave), 256);
1232 	break;
1233 
1234     case AR_F_PROMISE_RAID:
1235 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1236 	break;
1237 
1238     case AR_F_SII_RAID:
1239 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1240 	break;
1241 
1242     case AR_F_SIS_RAID:
1243 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1244 	break;
1245 
1246     case AR_F_VIA_RAID:
1247 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1248 	break;
1249     }
1250 
1251     rdp->total_disks = total_disks;
1252     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1253     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1254     rdp->heads = 255;
1255     rdp->sectors = 63;
1256     rdp->cylinders = rdp->total_sectors / (255 * 63);
1257     rdp->rebuild_lba = 0;
1258     rdp->status |= AR_S_READY;
1259 
1260     /* we are committed to this array, grap the subdisks */
1261     for (disk = 0; disk < config->total_disks; disk++) {
1262 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1263 					   config->disks[disk]))) {
1264 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1265 
1266 	    ars->raid[rdp->volume] = rdp;
1267 	    ars->disk_number[rdp->volume] = disk;
1268 	}
1269     }
1270     ata_raid_attach(rdp, 1);
1271     ata_raid_arrays[array] = rdp;
1272     config->lun = array;
1273     return 0;
1274 }
1275 
1276 static int
1277 ata_raid_delete(int array)
1278 {
1279     struct ar_softc *rdp;
1280     device_t subdisk;
1281     int disk;
1282 
1283     if (!(rdp = ata_raid_arrays[array]))
1284 	return ENXIO;
1285 
1286     rdp->status &= ~AR_S_READY;
1287     disk_destroy(&rdp->disk);
1288     devstat_remove_entry(&rdp->devstat);
1289 
1290     for (disk = 0; disk < rdp->total_disks; disk++) {
1291 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1292 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1293 		     device_get_unit(rdp->disks[disk].dev)))) {
1294 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1295 
1296 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1297 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1298 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1299 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1300 		ars->raid[rdp->volume] = NULL;
1301 		ars->disk_number[rdp->volume] = -1;
1302 	    }
1303 	    rdp->disks[disk].flags = 0;
1304 	}
1305     }
1306     ata_raid_wipe_metadata(rdp);
1307     ata_raid_arrays[array] = NULL;
1308     kfree(rdp, M_AR);
1309     return 0;
1310 }
1311 
1312 static int
1313 ata_raid_addspare(struct ata_ioc_raid_config *config)
1314 {
1315     struct ar_softc *rdp;
1316     device_t subdisk;
1317     int disk;
1318 
1319     if (!(rdp = ata_raid_arrays[config->lun]))
1320 	return ENXIO;
1321     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1322 	return ENXIO;
1323     if (rdp->status & AR_S_REBUILDING)
1324 	return EBUSY;
1325     switch (rdp->type) {
1326     case AR_T_RAID1:
1327     case AR_T_RAID01:
1328     case AR_T_RAID5:
1329 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1330 
1331 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1332 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1333 		continue;
1334 
1335 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1336 					       config->disks[0] ))) {
1337 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1338 
1339 		if (ars->raid[rdp->volume])
1340 		    return EBUSY;
1341 
1342 		/* XXX SOS validate size etc etc */
1343 		ars->raid[rdp->volume] = rdp;
1344 		ars->disk_number[rdp->volume] = disk;
1345 		rdp->disks[disk].dev = device_get_parent(subdisk);
1346 		rdp->disks[disk].flags =
1347 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1348 
1349 		device_printf(rdp->disks[disk].dev,
1350 			      "inserted into ar%d disk%d as spare\n",
1351 			      rdp->lun, disk);
1352 		ata_raid_config_changed(rdp, 1);
1353 		return 0;
1354 	    }
1355 	}
1356 	return ENXIO;
1357 
1358     default:
1359 	return EPERM;
1360     }
1361 }
1362 
1363 static int
1364 ata_raid_rebuild(int array)
1365 {
1366     struct ar_softc *rdp;
1367     int disk, count;
1368 
1369     if (!(rdp = ata_raid_arrays[array]))
1370 	return ENXIO;
1371     /* XXX SOS we should lock the rdp softc here */
1372     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1373 	return ENXIO;
1374     if (rdp->status & AR_S_REBUILDING)
1375 	return EBUSY;
1376 
1377     switch (rdp->type) {
1378     case AR_T_RAID1:
1379     case AR_T_RAID01:
1380     case AR_T_RAID5:
1381 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1382 	    if (((rdp->disks[disk].flags &
1383 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1384 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1385 		rdp->disks[disk].dev) {
1386 		count++;
1387 	    }
1388 	}
1389 
1390 	if (count) {
1391 	    rdp->rebuild_lba = 0;
1392 	    rdp->status |= AR_S_REBUILDING;
1393 	    return 0;
1394 	}
1395 	return EIO;
1396 
1397     default:
1398 	return EPERM;
1399     }
1400 }
1401 
1402 static int
1403 ata_raid_read_metadata(device_t subdisk)
1404 {
1405     devclass_t pci_devclass = devclass_find("pci");
1406     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1407     device_t gpdev;
1408     uint16_t vendor;
1409 
1410     /* prioritize vendor native metadata layout if possible */
1411     if (devclass == pci_devclass) {
1412 	gpdev = device_get_parent(subdisk);
1413 	gpdev = GRANDPARENT(gpdev);
1414 	vendor = pci_get_vendor(gpdev);
1415 
1416 	switch (vendor) {
1417 	case ATA_HIGHPOINT_ID:
1418 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1419 		return 0;
1420 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1421 		return 0;
1422 	    break;
1423 
1424 	case ATA_INTEL_ID:
1425 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1426 		return 0;
1427 	    break;
1428 
1429 	case ATA_ITE_ID:
1430 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1431 		return 0;
1432 	    break;
1433 
1434 	case ATA_JMICRON_ID:
1435 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1436 		return 0;
1437 	    break;
1438 
1439 	case ATA_NVIDIA_ID:
1440 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1441 		return 0;
1442 	    break;
1443 
1444 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1445 	case ATA_PROMISE_ID:
1446 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1447 		return 0;
1448 	    break;
1449 
1450 	case ATA_ATI_ID:
1451 	case ATA_SILICON_IMAGE_ID:
1452 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1453 		return 0;
1454 	    break;
1455 
1456 	case ATA_SIS_ID:
1457 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1458 		return 0;
1459 	    break;
1460 
1461 	case ATA_VIA_ID:
1462 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1463 		return 0;
1464 	    break;
1465 	}
1466     }
1467 
1468     /* handle controllers that have multiple layout possibilities */
1469     /* NOTE: the order of these are not insignificant */
1470 
1471     /* Adaptec HostRAID */
1472     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1473 	return 0;
1474 
1475     /* LSILogic v3 and v2 */
1476     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1477 	return 0;
1478     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1479 	return 0;
1480 
1481     /* if none of the above matched, try FreeBSD native format */
1482     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1483 }
1484 
1485 static int
1486 ata_raid_write_metadata(struct ar_softc *rdp)
1487 {
1488     switch (rdp->format) {
1489     case AR_F_FREEBSD_RAID:
1490     case AR_F_PROMISE_RAID:
1491 	return ata_raid_promise_write_meta(rdp);
1492 
1493     case AR_F_HPTV3_RAID:
1494     case AR_F_HPTV2_RAID:
1495 	/*
1496 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1497 	 * this is handy since we cannot know what version BIOS is on there
1498 	 */
1499 	return ata_raid_hptv2_write_meta(rdp);
1500 
1501     case AR_F_INTEL_RAID:
1502 	return ata_raid_intel_write_meta(rdp);
1503 
1504     case AR_F_JMICRON_RAID:
1505 	return ata_raid_jmicron_write_meta(rdp);
1506 
1507     case AR_F_SIS_RAID:
1508 	return ata_raid_sis_write_meta(rdp);
1509 
1510     case AR_F_VIA_RAID:
1511 	return ata_raid_via_write_meta(rdp);
1512 #if 0
1513     case AR_F_HPTV3_RAID:
1514 	return ata_raid_hptv3_write_meta(rdp);
1515 
1516     case AR_F_ADAPTEC_RAID:
1517 	return ata_raid_adaptec_write_meta(rdp);
1518 
1519     case AR_F_ITE_RAID:
1520 	return ata_raid_ite_write_meta(rdp);
1521 
1522     case AR_F_LSIV2_RAID:
1523 	return ata_raid_lsiv2_write_meta(rdp);
1524 
1525     case AR_F_LSIV3_RAID:
1526 	return ata_raid_lsiv3_write_meta(rdp);
1527 
1528     case AR_F_NVIDIA_RAID:
1529 	return ata_raid_nvidia_write_meta(rdp);
1530 
1531     case AR_F_SII_RAID:
1532 	return ata_raid_sii_write_meta(rdp);
1533 
1534 #endif
1535     default:
1536 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1537 	       rdp->lun, ata_raid_format(rdp));
1538     }
1539     return -1;
1540 }
1541 
1542 static int
1543 ata_raid_wipe_metadata(struct ar_softc *rdp)
1544 {
1545     int disk, error = 0;
1546     u_int64_t lba;
1547     u_int32_t size;
1548     u_int8_t *meta;
1549 
1550     for (disk = 0; disk < rdp->total_disks; disk++) {
1551 	if (rdp->disks[disk].dev) {
1552 	    switch (rdp->format) {
1553 	    case AR_F_ADAPTEC_RAID:
1554 		lba = ADP_LBA(rdp->disks[disk].dev);
1555 		size = sizeof(struct adaptec_raid_conf);
1556 		break;
1557 
1558 	    case AR_F_HPTV2_RAID:
1559 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1560 		size = sizeof(struct hptv2_raid_conf);
1561 		break;
1562 
1563 	    case AR_F_HPTV3_RAID:
1564 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1565 		size = sizeof(struct hptv3_raid_conf);
1566 		break;
1567 
1568 	    case AR_F_INTEL_RAID:
1569 		lba = INTEL_LBA(rdp->disks[disk].dev);
1570 		size = 3 * 512;         /* XXX SOS */
1571 		break;
1572 
1573 	    case AR_F_ITE_RAID:
1574 		lba = ITE_LBA(rdp->disks[disk].dev);
1575 		size = sizeof(struct ite_raid_conf);
1576 		break;
1577 
1578 	    case AR_F_JMICRON_RAID:
1579 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1580 		size = sizeof(struct jmicron_raid_conf);
1581 		break;
1582 
1583 	    case AR_F_LSIV2_RAID:
1584 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1585 		size = sizeof(struct lsiv2_raid_conf);
1586 		break;
1587 
1588 	    case AR_F_LSIV3_RAID:
1589 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1590 		size = sizeof(struct lsiv3_raid_conf);
1591 		break;
1592 
1593 	    case AR_F_NVIDIA_RAID:
1594 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1595 		size = sizeof(struct nvidia_raid_conf);
1596 		break;
1597 
1598 	    case AR_F_FREEBSD_RAID:
1599 	    case AR_F_PROMISE_RAID:
1600 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1601 		size = sizeof(struct promise_raid_conf);
1602 		break;
1603 
1604 	    case AR_F_SII_RAID:
1605 		lba = SII_LBA(rdp->disks[disk].dev);
1606 		size = sizeof(struct sii_raid_conf);
1607 		break;
1608 
1609 	    case AR_F_SIS_RAID:
1610 		lba = SIS_LBA(rdp->disks[disk].dev);
1611 		size = sizeof(struct sis_raid_conf);
1612 		break;
1613 
1614 	    case AR_F_VIA_RAID:
1615 		lba = VIA_LBA(rdp->disks[disk].dev);
1616 		size = sizeof(struct via_raid_conf);
1617 		break;
1618 
1619 	    default:
1620 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1621 		       rdp->lun, ata_raid_format(rdp));
1622 		return ENXIO;
1623 	    }
1624 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1625 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1626 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1627 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1628 		error = EIO;
1629 	    }
1630 	    kfree(meta, M_AR);
1631 	}
1632     }
1633     return error;
1634 }
1635 
1636 /* Adaptec HostRAID Metadata */
1637 static int
1638 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1639 {
1640     struct ata_raid_subdisk *ars = device_get_softc(dev);
1641     device_t parent = device_get_parent(dev);
1642     struct adaptec_raid_conf *meta;
1643     struct ar_softc *raid;
1644     int array, disk, retval = 0;
1645 
1646     meta = (struct adaptec_raid_conf *)
1647 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1648 
1649     if (ata_raid_rw(parent, ADP_LBA(parent),
1650 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1651 	if (testing || bootverbose)
1652 	    device_printf(parent, "Adaptec read metadata failed\n");
1653 	goto adaptec_out;
1654     }
1655 
1656     /* check if this is a Adaptec RAID struct */
1657     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1658 	if (testing || bootverbose)
1659 	    device_printf(parent, "Adaptec check1 failed\n");
1660 	goto adaptec_out;
1661     }
1662 
1663     if (testing || bootverbose)
1664 	ata_raid_adaptec_print_meta(meta);
1665 
1666     /* now convert Adaptec metadata into our generic form */
1667     for (array = 0; array < MAX_ARRAYS; array++) {
1668 	if (!raidp[array]) {
1669 	    raidp[array] =
1670 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1671 					  M_WAITOK | M_ZERO);
1672 	}
1673 	raid = raidp[array];
1674 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1675 	    continue;
1676 
1677 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1678 	    continue;
1679 
1680 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1681 	    switch (meta->configs[0].type) {
1682 	    case ADP_T_RAID0:
1683 		raid->magic_0 = meta->configs[0].magic_0;
1684 		raid->type = AR_T_RAID0;
1685 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1686 		raid->width = be16toh(meta->configs[0].total_disks);
1687 		break;
1688 
1689 	    case ADP_T_RAID1:
1690 		raid->magic_0 = meta->configs[0].magic_0;
1691 		raid->type = AR_T_RAID1;
1692 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1693 		break;
1694 
1695 	    default:
1696 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1697 			      meta->configs[0].type);
1698 		kfree(raidp[array], M_AR);
1699 		raidp[array] = NULL;
1700 		goto adaptec_out;
1701 	    }
1702 
1703 	    raid->format = AR_F_ADAPTEC_RAID;
1704 	    raid->generation = be32toh(meta->generation);
1705 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1706 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1707 	    raid->heads = 255;
1708 	    raid->sectors = 63;
1709 	    raid->cylinders = raid->total_sectors / (63 * 255);
1710 	    raid->offset_sectors = 0;
1711 	    raid->rebuild_lba = 0;
1712 	    raid->lun = array;
1713 	    strncpy(raid->name, meta->configs[0].name,
1714 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1715 
1716 	    /* clear out any old info */
1717 	    if (raid->generation) {
1718 		for (disk = 0; disk < raid->total_disks; disk++) {
1719 		    raid->disks[disk].dev = NULL;
1720 		    raid->disks[disk].flags = 0;
1721 		}
1722 	    }
1723 	}
1724 	if (be32toh(meta->generation) >= raid->generation) {
1725 	    struct ata_device *atadev = device_get_softc(parent);
1726 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1727 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1728 			      ATA_DEV(atadev->unit);
1729 
1730 	    raid->disks[disk_number].dev = parent;
1731 	    raid->disks[disk_number].sectors =
1732 		be32toh(meta->configs[disk_number + 1].sectors);
1733 	    raid->disks[disk_number].flags =
1734 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1735 	    ars->raid[raid->volume] = raid;
1736 	    ars->disk_number[raid->volume] = disk_number;
1737 	    retval = 1;
1738 	}
1739 	break;
1740     }
1741 
1742 adaptec_out:
1743     kfree(meta, M_AR);
1744     return retval;
1745 }
1746 
1747 /* Highpoint V2 RocketRAID Metadata */
1748 static int
1749 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1750 {
1751     struct ata_raid_subdisk *ars = device_get_softc(dev);
1752     device_t parent = device_get_parent(dev);
1753     struct hptv2_raid_conf *meta;
1754     struct ar_softc *raid = NULL;
1755     int array, disk_number = 0, retval = 0;
1756 
1757     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1758 	M_AR, M_WAITOK | M_ZERO);
1759 
1760     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1761 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1762 	if (testing || bootverbose)
1763 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1764 	goto hptv2_out;
1765     }
1766 
1767     /* check if this is a HighPoint v2 RAID struct */
1768     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1769 	if (testing || bootverbose)
1770 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1771 	goto hptv2_out;
1772     }
1773 
1774     /* is this disk defined, or an old leftover/spare ? */
1775     if (!meta->magic_0) {
1776 	if (testing || bootverbose)
1777 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1778 	goto hptv2_out;
1779     }
1780 
1781     if (testing || bootverbose)
1782 	ata_raid_hptv2_print_meta(meta);
1783 
1784     /* now convert HighPoint (v2) metadata into our generic form */
1785     for (array = 0; array < MAX_ARRAYS; array++) {
1786 	if (!raidp[array]) {
1787 	    raidp[array] =
1788 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1789 					  M_WAITOK | M_ZERO);
1790 	}
1791 	raid = raidp[array];
1792 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1793 	    continue;
1794 
1795 	switch (meta->type) {
1796 	case HPTV2_T_RAID0:
1797 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1798 		(HPTV2_O_RAID0|HPTV2_O_OK))
1799 		goto highpoint_raid1;
1800 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1801 		goto highpoint_raid01;
1802 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1803 		continue;
1804 	    raid->magic_0 = meta->magic_0;
1805 	    raid->type = AR_T_RAID0;
1806 	    raid->interleave = 1 << meta->stripe_shift;
1807 	    disk_number = meta->disk_number;
1808 	    if (!(meta->order & HPTV2_O_OK))
1809 		meta->magic = 0;        /* mark bad */
1810 	    break;
1811 
1812 	case HPTV2_T_RAID1:
1813 highpoint_raid1:
1814 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1815 		continue;
1816 	    raid->magic_0 = meta->magic_0;
1817 	    raid->type = AR_T_RAID1;
1818 	    disk_number = (meta->disk_number > 0);
1819 	    break;
1820 
1821 	case HPTV2_T_RAID01_RAID0:
1822 highpoint_raid01:
1823 	    if (meta->order & HPTV2_O_RAID0) {
1824 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1825 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1826 		    continue;
1827 		raid->magic_0 = meta->magic_0;
1828 		raid->magic_1 = meta->magic_1;
1829 		raid->type = AR_T_RAID01;
1830 		raid->interleave = 1 << meta->stripe_shift;
1831 		disk_number = meta->disk_number;
1832 	    }
1833 	    else {
1834 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1835 		    continue;
1836 		raid->magic_1 = meta->magic_1;
1837 		raid->type = AR_T_RAID01;
1838 		raid->interleave = 1 << meta->stripe_shift;
1839 		disk_number = meta->disk_number + meta->array_width;
1840 		if (!(meta->order & HPTV2_O_RAID1))
1841 		    meta->magic = 0;    /* mark bad */
1842 	    }
1843 	    break;
1844 
1845 	case HPTV2_T_SPAN:
1846 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1847 		continue;
1848 	    raid->magic_0 = meta->magic_0;
1849 	    raid->type = AR_T_SPAN;
1850 	    disk_number = meta->disk_number;
1851 	    break;
1852 
1853 	default:
1854 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1855 			  meta->type);
1856 	    kfree(raidp[array], M_AR);
1857 	    raidp[array] = NULL;
1858 	    goto hptv2_out;
1859 	}
1860 
1861 	raid->format |= AR_F_HPTV2_RAID;
1862 	raid->disks[disk_number].dev = parent;
1863 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1864 	raid->lun = array;
1865 	strncpy(raid->name, meta->name_1,
1866 		min(sizeof(raid->name), sizeof(meta->name_1)));
1867 	if (meta->magic == HPTV2_MAGIC_OK) {
1868 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1869 	    raid->width = meta->array_width;
1870 	    raid->total_sectors = meta->total_sectors;
1871 	    raid->heads = 255;
1872 	    raid->sectors = 63;
1873 	    raid->cylinders = raid->total_sectors / (63 * 255);
1874 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1875 	    raid->rebuild_lba = meta->rebuild_lba;
1876 	    raid->disks[disk_number].sectors =
1877 		raid->total_sectors / raid->width;
1878 	}
1879 	else
1880 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1881 
1882 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1883 	    raid->total_disks = raid->width;
1884 	if (disk_number >= raid->total_disks)
1885 	    raid->total_disks = disk_number + 1;
1886 	ars->raid[raid->volume] = raid;
1887 	ars->disk_number[raid->volume] = disk_number;
1888 	retval = 1;
1889 	break;
1890     }
1891 
1892 hptv2_out:
1893     kfree(meta, M_AR);
1894     return retval;
1895 }
1896 
1897 static int
1898 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1899 {
1900     struct hptv2_raid_conf *meta;
1901     struct timeval timestamp;
1902     int disk, error = 0;
1903 
1904     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1905 	M_AR, M_WAITOK | M_ZERO);
1906 
1907     microtime(&timestamp);
1908     rdp->magic_0 = timestamp.tv_sec + 2;
1909     rdp->magic_1 = timestamp.tv_sec;
1910 
1911     for (disk = 0; disk < rdp->total_disks; disk++) {
1912 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1913 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1914 	    meta->magic = HPTV2_MAGIC_OK;
1915 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1916 	    meta->magic_0 = rdp->magic_0;
1917 	    if (strlen(rdp->name))
1918 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1919 	    else
1920 		strcpy(meta->name_1, "FreeBSD");
1921 	}
1922 	meta->disk_number = disk;
1923 
1924 	switch (rdp->type) {
1925 	case AR_T_RAID0:
1926 	    meta->type = HPTV2_T_RAID0;
1927 	    strcpy(meta->name_2, "RAID 0");
1928 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1929 		meta->order = HPTV2_O_OK;
1930 	    break;
1931 
1932 	case AR_T_RAID1:
1933 	    meta->type = HPTV2_T_RAID0;
1934 	    strcpy(meta->name_2, "RAID 1");
1935 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1936 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1937 	    break;
1938 
1939 	case AR_T_RAID01:
1940 	    meta->type = HPTV2_T_RAID01_RAID0;
1941 	    strcpy(meta->name_2, "RAID 0+1");
1942 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1943 		if (disk < rdp->width) {
1944 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1945 		    meta->magic_0 = rdp->magic_0 - 1;
1946 		}
1947 		else {
1948 		    meta->order = HPTV2_O_RAID1;
1949 		    meta->disk_number -= rdp->width;
1950 		}
1951 	    }
1952 	    else
1953 		meta->magic_0 = rdp->magic_0 - 1;
1954 	    meta->magic_1 = rdp->magic_1;
1955 	    break;
1956 
1957 	case AR_T_SPAN:
1958 	    meta->type = HPTV2_T_SPAN;
1959 	    strcpy(meta->name_2, "SPAN");
1960 	    break;
1961 	default:
1962 	    kfree(meta, M_AR);
1963 	    return ENODEV;
1964 	}
1965 
1966 	meta->array_width = rdp->width;
1967 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1968 	meta->total_sectors = rdp->total_sectors;
1969 	meta->rebuild_lba = rdp->rebuild_lba;
1970 	if (testing || bootverbose)
1971 	    ata_raid_hptv2_print_meta(meta);
1972 	if (rdp->disks[disk].dev) {
1973 	    if (ata_raid_rw(rdp->disks[disk].dev,
1974 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1975 			    sizeof(struct promise_raid_conf),
1976 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1977 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1978 		error = EIO;
1979 	    }
1980 	}
1981     }
1982     kfree(meta, M_AR);
1983     return error;
1984 }
1985 
1986 /* Highpoint V3 RocketRAID Metadata */
1987 static int
1988 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1989 {
1990     struct ata_raid_subdisk *ars = device_get_softc(dev);
1991     device_t parent = device_get_parent(dev);
1992     struct hptv3_raid_conf *meta;
1993     struct ar_softc *raid = NULL;
1994     int array, disk_number, retval = 0;
1995 
1996     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1997 	M_AR, M_WAITOK | M_ZERO);
1998 
1999     if (ata_raid_rw(parent, HPTV3_LBA(parent),
2000 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2001 	if (testing || bootverbose)
2002 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2003 	goto hptv3_out;
2004     }
2005 
2006     /* check if this is a HighPoint v3 RAID struct */
2007     if (meta->magic != HPTV3_MAGIC) {
2008 	if (testing || bootverbose)
2009 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2010 	goto hptv3_out;
2011     }
2012 
2013     /* check if there are any config_entries */
2014     if (meta->config_entries < 1) {
2015 	if (testing || bootverbose)
2016 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2017 	goto hptv3_out;
2018     }
2019 
2020     if (testing || bootverbose)
2021 	ata_raid_hptv3_print_meta(meta);
2022 
2023     /* now convert HighPoint (v3) metadata into our generic form */
2024     for (array = 0; array < MAX_ARRAYS; array++) {
2025 	if (!raidp[array]) {
2026 	    raidp[array] =
2027 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2028 					  M_WAITOK | M_ZERO);
2029 	}
2030 	raid = raidp[array];
2031 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2032 	    continue;
2033 
2034 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2035 	    continue;
2036 
2037 	switch (meta->configs[0].type) {
2038 	case HPTV3_T_RAID0:
2039 	    raid->type = AR_T_RAID0;
2040 	    raid->width = meta->configs[0].total_disks;
2041 	    disk_number = meta->configs[0].disk_number;
2042 	    break;
2043 
2044 	case HPTV3_T_RAID1:
2045 	    raid->type = AR_T_RAID1;
2046 	    raid->width = meta->configs[0].total_disks / 2;
2047 	    disk_number = meta->configs[0].disk_number;
2048 	    break;
2049 
2050 	case HPTV3_T_RAID5:
2051 	    raid->type = AR_T_RAID5;
2052 	    raid->width = meta->configs[0].total_disks;
2053 	    disk_number = meta->configs[0].disk_number;
2054 	    break;
2055 
2056 	case HPTV3_T_SPAN:
2057 	    raid->type = AR_T_SPAN;
2058 	    raid->width = meta->configs[0].total_disks;
2059 	    disk_number = meta->configs[0].disk_number;
2060 	    break;
2061 
2062 	default:
2063 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2064 			  meta->configs[0].type);
2065 	    kfree(raidp[array], M_AR);
2066 	    raidp[array] = NULL;
2067 	    goto hptv3_out;
2068 	}
2069 	if (meta->config_entries == 2) {
2070 	    switch (meta->configs[1].type) {
2071 	    case HPTV3_T_RAID1:
2072 		if (raid->type == AR_T_RAID0) {
2073 		    raid->type = AR_T_RAID01;
2074 		    disk_number = meta->configs[1].disk_number +
2075 				  (meta->configs[0].disk_number << 1);
2076 		    break;
2077 		}
2078 	    default:
2079 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2080 			      meta->configs[1].type);
2081 		kfree(raidp[array], M_AR);
2082 		raidp[array] = NULL;
2083 		goto hptv3_out;
2084 	    }
2085 	}
2086 
2087 	raid->magic_0 = meta->magic_0;
2088 	raid->format = AR_F_HPTV3_RAID;
2089 	raid->generation = meta->timestamp;
2090 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2091 	raid->total_disks = meta->configs[0].total_disks +
2092 	    meta->configs[1].total_disks;
2093 	raid->total_sectors = meta->configs[0].total_sectors +
2094 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2095 	raid->heads = 255;
2096 	raid->sectors = 63;
2097 	raid->cylinders = raid->total_sectors / (63 * 255);
2098 	raid->offset_sectors = 0;
2099 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2100 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2101 	raid->lun = array;
2102 	strncpy(raid->name, meta->name,
2103 		min(sizeof(raid->name), sizeof(meta->name)));
2104 	raid->disks[disk_number].sectors = raid->total_sectors /
2105 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2106 	raid->disks[disk_number].dev = parent;
2107 	raid->disks[disk_number].flags =
2108 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2109 	ars->raid[raid->volume] = raid;
2110 	ars->disk_number[raid->volume] = disk_number;
2111 	retval = 1;
2112 	break;
2113     }
2114 
2115 hptv3_out:
2116     kfree(meta, M_AR);
2117     return retval;
2118 }
2119 
2120 /* Intel MatrixRAID Metadata */
2121 static int
2122 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2123 {
2124     struct ata_raid_subdisk *ars = device_get_softc(dev);
2125     device_t parent = device_get_parent(dev);
2126     struct intel_raid_conf *meta;
2127     struct intel_raid_mapping *map;
2128     struct ar_softc *raid = NULL;
2129     u_int32_t checksum, *ptr;
2130     int array, count, disk, volume = 1, retval = 0;
2131     char *tmp;
2132 
2133     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2134 
2135     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2136 	if (testing || bootverbose)
2137 	    device_printf(parent, "Intel read metadata failed\n");
2138 	goto intel_out;
2139     }
2140     tmp = (char *)meta;
2141     bcopy(tmp, tmp+1024, 512);
2142     bcopy(tmp+512, tmp, 1024);
2143     bzero(tmp+1024, 512);
2144 
2145     /* check if this is a Intel RAID struct */
2146     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2147 	if (testing || bootverbose)
2148 	    device_printf(parent, "Intel check1 failed\n");
2149 	goto intel_out;
2150     }
2151 
2152     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2153 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2154 	checksum += *ptr++;
2155     }
2156     checksum -= meta->checksum;
2157     if (checksum != meta->checksum) {
2158 	if (testing || bootverbose)
2159 	    device_printf(parent, "Intel check2 failed\n");
2160 	goto intel_out;
2161     }
2162 
2163     if (testing || bootverbose)
2164 	ata_raid_intel_print_meta(meta);
2165 
2166     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2167 
2168     /* now convert Intel metadata into our generic form */
2169     for (array = 0; array < MAX_ARRAYS; array++) {
2170 	if (!raidp[array]) {
2171 	    raidp[array] =
2172 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2173 					  M_WAITOK | M_ZERO);
2174 	}
2175 	raid = raidp[array];
2176 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2177 	    continue;
2178 
2179 	if ((raid->format & AR_F_INTEL_RAID) &&
2180 	    (raid->magic_0 != meta->config_id))
2181 	    continue;
2182 
2183 	/*
2184 	 * update our knowledge about the array config based on generation
2185 	 * NOTE: there can be multiple volumes on a disk set
2186 	 */
2187 	if (!meta->generation || meta->generation > raid->generation) {
2188 	    switch (map->type) {
2189 	    case INTEL_T_RAID0:
2190 		raid->type = AR_T_RAID0;
2191 		raid->width = map->total_disks;
2192 		break;
2193 
2194 	    case INTEL_T_RAID1:
2195 		if (map->total_disks == 4)
2196 		    raid->type = AR_T_RAID01;
2197 		else
2198 		    raid->type = AR_T_RAID1;
2199 		raid->width = map->total_disks / 2;
2200 		break;
2201 
2202 	    case INTEL_T_RAID5:
2203 		raid->type = AR_T_RAID5;
2204 		raid->width = map->total_disks;
2205 		break;
2206 
2207 	    default:
2208 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2209 			      map->type);
2210 		kfree(raidp[array], M_AR);
2211 		raidp[array] = NULL;
2212 		goto intel_out;
2213 	    }
2214 
2215 	    switch (map->status) {
2216 	    case INTEL_S_READY:
2217 		raid->status = AR_S_READY;
2218 		break;
2219 	    case INTEL_S_DEGRADED:
2220 		raid->status |= AR_S_DEGRADED;
2221 		break;
2222 	    case INTEL_S_DISABLED:
2223 	    case INTEL_S_FAILURE:
2224 		raid->status = 0;
2225 	    }
2226 
2227 	    raid->magic_0 = meta->config_id;
2228 	    raid->format = AR_F_INTEL_RAID;
2229 	    raid->generation = meta->generation;
2230 	    raid->interleave = map->stripe_sectors;
2231 	    raid->total_disks = map->total_disks;
2232 	    raid->total_sectors = map->total_sectors;
2233 	    raid->heads = 255;
2234 	    raid->sectors = 63;
2235 	    raid->cylinders = raid->total_sectors / (63 * 255);
2236 	    raid->offset_sectors = map->offset;
2237 	    raid->rebuild_lba = 0;
2238 	    raid->lun = array;
2239 	    raid->volume = volume - 1;
2240 	    strncpy(raid->name, map->name,
2241 		    min(sizeof(raid->name), sizeof(map->name)));
2242 
2243 	    /* clear out any old info */
2244 	    for (disk = 0; disk < raid->total_disks; disk++) {
2245 		raid->disks[disk].dev = NULL;
2246 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2247 		      raid->disks[disk].serial,
2248 		      sizeof(raid->disks[disk].serial));
2249 		raid->disks[disk].sectors =
2250 		    meta->disk[map->disk_idx[disk]].sectors;
2251 		raid->disks[disk].flags = 0;
2252 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2253 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2254 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2255 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2256 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2257 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2258 		    raid->disks[disk].flags |= AR_DF_SPARE;
2259 		}
2260 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2261 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2262 	    }
2263 	}
2264 	if (meta->generation >= raid->generation) {
2265 	    for (disk = 0; disk < raid->total_disks; disk++) {
2266 		struct ata_device *atadev = device_get_softc(parent);
2267 
2268 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2269 		    sizeof(raid->disks[disk].serial))) {
2270 		    raid->disks[disk].dev = parent;
2271 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2272 		    ars->raid[raid->volume] = raid;
2273 		    ars->disk_number[raid->volume] = disk;
2274 		    retval = 1;
2275 		}
2276 	    }
2277 	}
2278 	else
2279 	    goto intel_out;
2280 
2281 	if (retval) {
2282 	    if (volume < meta->total_volumes) {
2283 		map = (struct intel_raid_mapping *)
2284 		      &map->disk_idx[map->total_disks];
2285 		volume++;
2286 		retval = 0;
2287 		continue;
2288 	    }
2289 	    break;
2290 	}
2291 	else {
2292 	    kfree(raidp[array], M_AR);
2293 	    raidp[array] = NULL;
2294 	    if (volume == 2)
2295 		retval = 1;
2296 	}
2297     }
2298 
2299 intel_out:
2300     kfree(meta, M_AR);
2301     return retval;
2302 }
2303 
2304 static int
2305 ata_raid_intel_write_meta(struct ar_softc *rdp)
2306 {
2307     struct intel_raid_conf *meta;
2308     struct intel_raid_mapping *map;
2309     struct timeval timestamp;
2310     u_int32_t checksum, *ptr;
2311     int count, disk, error = 0;
2312     char *tmp;
2313 
2314     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2315 
2316     rdp->generation++;
2317 
2318     /* Generate a new config_id if none exists */
2319     if (!rdp->magic_0) {
2320 	microtime(&timestamp);
2321 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2322     }
2323 
2324     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2325     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2326     meta->config_id = rdp->magic_0;
2327     meta->generation = rdp->generation;
2328     meta->total_disks = rdp->total_disks;
2329     meta->total_volumes = 1;                                    /* XXX SOS */
2330     for (disk = 0; disk < rdp->total_disks; disk++) {
2331 	if (rdp->disks[disk].dev) {
2332 	    struct ata_channel *ch =
2333 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2334 	    struct ata_device *atadev =
2335 		device_get_softc(rdp->disks[disk].dev);
2336 
2337 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2338 		  sizeof(rdp->disks[disk].serial));
2339 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2340 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2341 	}
2342 	else
2343 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2344 	meta->disk[disk].flags = 0;
2345 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2346 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2347 	else {
2348 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2349 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2350 	    else
2351 		meta->disk[disk].flags |= INTEL_F_DOWN;
2352 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2353 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2354 	}
2355     }
2356     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2357 
2358     bcopy(rdp->name, map->name, sizeof(rdp->name));
2359     map->total_sectors = rdp->total_sectors;
2360     map->state = 12;                                            /* XXX SOS */
2361     map->offset = rdp->offset_sectors;
2362     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2363     map->stripe_sectors =  rdp->interleave;
2364     map->disk_sectors = rdp->total_sectors / rdp->width;
2365     map->status = INTEL_S_READY;                                /* XXX SOS */
2366     switch (rdp->type) {
2367     case AR_T_RAID0:
2368 	map->type = INTEL_T_RAID0;
2369 	break;
2370     case AR_T_RAID1:
2371 	map->type = INTEL_T_RAID1;
2372 	break;
2373     case AR_T_RAID01:
2374 	map->type = INTEL_T_RAID1;
2375 	break;
2376     case AR_T_RAID5:
2377 	map->type = INTEL_T_RAID5;
2378 	break;
2379     default:
2380 	kfree(meta, M_AR);
2381 	return ENODEV;
2382     }
2383     map->total_disks = rdp->total_disks;
2384     map->magic[0] = 0x02;
2385     map->magic[1] = 0xff;
2386     map->magic[2] = 0x01;
2387     for (disk = 0; disk < rdp->total_disks; disk++)
2388 	map->disk_idx[disk] = disk;
2389 
2390     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2391     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2392 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2393 	checksum += *ptr++;
2394     }
2395     meta->checksum = checksum;
2396 
2397     if (testing || bootverbose)
2398 	ata_raid_intel_print_meta(meta);
2399 
2400     tmp = (char *)meta;
2401     bcopy(tmp, tmp+1024, 512);
2402     bcopy(tmp+512, tmp, 1024);
2403     bzero(tmp+1024, 512);
2404 
2405     for (disk = 0; disk < rdp->total_disks; disk++) {
2406 	if (rdp->disks[disk].dev) {
2407 	    if (ata_raid_rw(rdp->disks[disk].dev,
2408 			    INTEL_LBA(rdp->disks[disk].dev),
2409 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2410 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2411 		error = EIO;
2412 	    }
2413 	}
2414     }
2415     kfree(meta, M_AR);
2416     return error;
2417 }
2418 
2419 
2420 /* Integrated Technology Express Metadata */
2421 static int
2422 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2423 {
2424     struct ata_raid_subdisk *ars = device_get_softc(dev);
2425     device_t parent = device_get_parent(dev);
2426     struct ite_raid_conf *meta;
2427     struct ar_softc *raid = NULL;
2428     int array, disk_number, count, retval = 0;
2429     u_int16_t *ptr;
2430 
2431     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2432 	M_WAITOK | M_ZERO);
2433 
2434     if (ata_raid_rw(parent, ITE_LBA(parent),
2435 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2436 	if (testing || bootverbose)
2437 	    device_printf(parent, "ITE read metadata failed\n");
2438 	goto ite_out;
2439     }
2440 
2441     /* check if this is a ITE RAID struct */
2442     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2443 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2444 	ptr[count] = be16toh(ptr[count]);
2445 
2446     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2447 	if (testing || bootverbose)
2448 	    device_printf(parent, "ITE check1 failed\n");
2449 	goto ite_out;
2450     }
2451 
2452     if (testing || bootverbose)
2453 	ata_raid_ite_print_meta(meta);
2454 
2455     /* now convert ITE metadata into our generic form */
2456     for (array = 0; array < MAX_ARRAYS; array++) {
2457 	if ((raid = raidp[array])) {
2458 	    if (raid->format != AR_F_ITE_RAID)
2459 		continue;
2460 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2461 		continue;
2462 	}
2463 
2464 	/* if we dont have a disks timestamp the RAID is invalidated */
2465 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2466 	    goto ite_out;
2467 
2468 	if (!raid) {
2469 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2470 						     M_AR, M_WAITOK | M_ZERO);
2471 	}
2472 
2473 	switch (meta->type) {
2474 	case ITE_T_RAID0:
2475 	    raid->type = AR_T_RAID0;
2476 	    raid->width = meta->array_width;
2477 	    raid->total_disks = meta->array_width;
2478 	    disk_number = meta->disk_number;
2479 	    break;
2480 
2481 	case ITE_T_RAID1:
2482 	    raid->type = AR_T_RAID1;
2483 	    raid->width = 1;
2484 	    raid->total_disks = 2;
2485 	    disk_number = meta->disk_number;
2486 	    break;
2487 
2488 	case ITE_T_RAID01:
2489 	    raid->type = AR_T_RAID01;
2490 	    raid->width = meta->array_width;
2491 	    raid->total_disks = 4;
2492 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2493 			  ((meta->disk_number & 0x01) << 1);
2494 	    break;
2495 
2496 	case ITE_T_SPAN:
2497 	    raid->type = AR_T_SPAN;
2498 	    raid->width = 1;
2499 	    raid->total_disks = meta->array_width;
2500 	    disk_number = meta->disk_number;
2501 	    break;
2502 
2503 	default:
2504 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2505 	    kfree(raidp[array], M_AR);
2506 	    raidp[array] = NULL;
2507 	    goto ite_out;
2508 	}
2509 
2510 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2511 	raid->format = AR_F_ITE_RAID;
2512 	raid->generation = 0;
2513 	raid->interleave = meta->stripe_sectors;
2514 	raid->total_sectors = meta->total_sectors;
2515 	raid->heads = 255;
2516 	raid->sectors = 63;
2517 	raid->cylinders = raid->total_sectors / (63 * 255);
2518 	raid->offset_sectors = 0;
2519 	raid->rebuild_lba = 0;
2520 	raid->lun = array;
2521 
2522 	raid->disks[disk_number].dev = parent;
2523 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2524 	raid->disks[disk_number].flags =
2525 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2526 	ars->raid[raid->volume] = raid;
2527 	ars->disk_number[raid->volume] = disk_number;
2528 	retval = 1;
2529 	break;
2530     }
2531 ite_out:
2532     kfree(meta, M_AR);
2533     return retval;
2534 }
2535 
2536 /* JMicron Technology Corp Metadata */
2537 static int
2538 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2539 {
2540     struct ata_raid_subdisk *ars = device_get_softc(dev);
2541     device_t parent = device_get_parent(dev);
2542     struct jmicron_raid_conf *meta;
2543     struct ar_softc *raid = NULL;
2544     u_int16_t checksum, *ptr;
2545     u_int64_t disk_size;
2546     int count, array, disk, total_disks, retval = 0;
2547 
2548     meta = (struct jmicron_raid_conf *)
2549 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2550 
2551     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2552 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2553 	if (testing || bootverbose)
2554 	    device_printf(parent,
2555 			  "JMicron read metadata failed\n");
2556     }
2557 
2558     /* check for JMicron signature */
2559     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2560 	if (testing || bootverbose)
2561 	    device_printf(parent, "JMicron check1 failed\n");
2562 	goto jmicron_out;
2563     }
2564 
2565     /* calculate checksum and compare for valid */
2566     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2567 	checksum += *ptr++;
2568     if (checksum) {
2569 	if (testing || bootverbose)
2570 	    device_printf(parent, "JMicron check2 failed\n");
2571 	goto jmicron_out;
2572     }
2573 
2574     if (testing || bootverbose)
2575 	ata_raid_jmicron_print_meta(meta);
2576 
2577     /* now convert JMicron meta into our generic form */
2578     for (array = 0; array < MAX_ARRAYS; array++) {
2579 jmicron_next:
2580 	if (!raidp[array]) {
2581 	    raidp[array] =
2582 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2583 					  M_WAITOK | M_ZERO);
2584 	}
2585 	raid = raidp[array];
2586 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2587 	    continue;
2588 
2589 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2590 	    if (meta->disks[disk]) {
2591 		if (raid->format == AR_F_JMICRON_RAID) {
2592 		    if (bcmp(&meta->disks[disk],
2593 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2594 			array++;
2595 			goto jmicron_next;
2596 		    }
2597 		}
2598 		else
2599 		    bcopy(&meta->disks[disk],
2600 			  raid->disks[disk].serial, sizeof(u_int32_t));
2601 		total_disks++;
2602 	    }
2603 	}
2604 	/* handle spares XXX SOS */
2605 
2606 	switch (meta->type) {
2607 	case JM_T_RAID0:
2608 	    raid->type = AR_T_RAID0;
2609 	    raid->width = total_disks;
2610 	    break;
2611 
2612 	case JM_T_RAID1:
2613 	    raid->type = AR_T_RAID1;
2614 	    raid->width = 1;
2615 	    break;
2616 
2617 	case JM_T_RAID01:
2618 	    raid->type = AR_T_RAID01;
2619 	    raid->width = total_disks / 2;
2620 	    break;
2621 
2622 	case JM_T_RAID5:
2623 	    raid->type = AR_T_RAID5;
2624 	    raid->width = total_disks;
2625 	    break;
2626 
2627 	case JM_T_JBOD:
2628 	    raid->type = AR_T_SPAN;
2629 	    raid->width = 1;
2630 	    break;
2631 
2632 	default:
2633 	    device_printf(parent,
2634 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2635 	    kfree(raidp[array], M_AR);
2636 	    raidp[array] = NULL;
2637 	    goto jmicron_out;
2638 	}
2639 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2640 	raid->format = AR_F_JMICRON_RAID;
2641 	strncpy(raid->name, meta->name, sizeof(meta->name));
2642 	raid->generation = 0;
2643 	raid->interleave = 2 << meta->stripe_shift;
2644 	raid->total_disks = total_disks;
2645 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2646 	raid->heads = 255;
2647 	raid->sectors = 63;
2648 	raid->cylinders = raid->total_sectors / (63 * 255);
2649 	raid->offset_sectors = meta->offset * 16;
2650 	raid->rebuild_lba = 0;
2651 	raid->lun = array;
2652 
2653 	for (disk = 0; disk < raid->total_disks; disk++) {
2654 	    if (meta->disks[disk] == meta->disk_id) {
2655 		raid->disks[disk].dev = parent;
2656 		raid->disks[disk].sectors = disk_size;
2657 		raid->disks[disk].flags =
2658 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2659 		ars->raid[raid->volume] = raid;
2660 		ars->disk_number[raid->volume] = disk;
2661 		retval = 1;
2662 		break;
2663 	    }
2664 	}
2665 	break;
2666     }
2667 jmicron_out:
2668     kfree(meta, M_AR);
2669     return retval;
2670 }
2671 
2672 static int
2673 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2674 {
2675     struct jmicron_raid_conf *meta;
2676     u_int64_t disk_sectors;
2677     int disk, error = 0;
2678 
2679     meta = (struct jmicron_raid_conf *)
2680 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2681 
2682     rdp->generation++;
2683     switch (rdp->type) {
2684     case AR_T_JBOD:
2685 	meta->type = JM_T_JBOD;
2686 	break;
2687 
2688     case AR_T_RAID0:
2689 	meta->type = JM_T_RAID0;
2690 	break;
2691 
2692     case AR_T_RAID1:
2693 	meta->type = JM_T_RAID1;
2694 	break;
2695 
2696     case AR_T_RAID5:
2697 	meta->type = JM_T_RAID5;
2698 	break;
2699 
2700     case AR_T_RAID01:
2701 	meta->type = JM_T_RAID01;
2702 	break;
2703 
2704     default:
2705 	kfree(meta, M_AR);
2706 	return ENODEV;
2707     }
2708     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2709     meta->version = JMICRON_VERSION;
2710     meta->offset = rdp->offset_sectors / 16;
2711     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2712     meta->disk_sectors_low = disk_sectors & 0xffff;
2713     meta->disk_sectors_high = disk_sectors >> 16;
2714     strncpy(meta->name, rdp->name, sizeof(meta->name));
2715     meta->stripe_shift = ffs(rdp->interleave) - 2;
2716 
2717     for (disk = 0; disk < rdp->total_disks; disk++) {
2718 	if (rdp->disks[disk].serial[0])
2719 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2720 	else
2721 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2722     }
2723 
2724     for (disk = 0; disk < rdp->total_disks; disk++) {
2725 	if (rdp->disks[disk].dev) {
2726 	    u_int16_t checksum = 0, *ptr;
2727 	    int count;
2728 
2729 	    meta->disk_id = meta->disks[disk];
2730 	    meta->checksum = 0;
2731 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2732 		checksum += *ptr++;
2733 	    meta->checksum -= checksum;
2734 
2735 	    if (testing || bootverbose)
2736 		ata_raid_jmicron_print_meta(meta);
2737 
2738 	    if (ata_raid_rw(rdp->disks[disk].dev,
2739 			    JMICRON_LBA(rdp->disks[disk].dev),
2740 			    meta, sizeof(struct jmicron_raid_conf),
2741 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2742 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2743 		error = EIO;
2744 	    }
2745 	}
2746     }
2747     /* handle spares XXX SOS */
2748 
2749     kfree(meta, M_AR);
2750     return error;
2751 }
2752 
2753 /* LSILogic V2 MegaRAID Metadata */
2754 static int
2755 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2756 {
2757     struct ata_raid_subdisk *ars = device_get_softc(dev);
2758     device_t parent = device_get_parent(dev);
2759     struct lsiv2_raid_conf *meta;
2760     struct ar_softc *raid = NULL;
2761     int array, retval = 0;
2762 
2763     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2764 	M_AR, M_WAITOK | M_ZERO);
2765 
2766     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2767 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2768 	if (testing || bootverbose)
2769 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2770 	goto lsiv2_out;
2771     }
2772 
2773     /* check if this is a LSI RAID struct */
2774     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2775 	if (testing || bootverbose)
2776 	    device_printf(parent, "LSI (v2) check1 failed\n");
2777 	goto lsiv2_out;
2778     }
2779 
2780     if (testing || bootverbose)
2781 	ata_raid_lsiv2_print_meta(meta);
2782 
2783     /* now convert LSI (v2) config meta into our generic form */
2784     for (array = 0; array < MAX_ARRAYS; array++) {
2785 	int raid_entry, conf_entry;
2786 
2787 	if (!raidp[array + meta->raid_number]) {
2788 	    raidp[array + meta->raid_number] =
2789 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2790 					  M_WAITOK | M_ZERO);
2791 	}
2792 	raid = raidp[array + meta->raid_number];
2793 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2794 	    continue;
2795 
2796 	if (raid->magic_0 &&
2797 	    ((raid->magic_0 != meta->timestamp) ||
2798 	     (raid->magic_1 != meta->raid_number)))
2799 	    continue;
2800 
2801 	array += meta->raid_number;
2802 
2803 	raid_entry = meta->raid_number;
2804 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2805 		     meta->disk_number - 1;
2806 
2807 	switch (meta->configs[raid_entry].raid.type) {
2808 	case LSIV2_T_RAID0:
2809 	    raid->magic_0 = meta->timestamp;
2810 	    raid->magic_1 = meta->raid_number;
2811 	    raid->type = AR_T_RAID0;
2812 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2813 	    raid->width = meta->configs[raid_entry].raid.array_width;
2814 	    break;
2815 
2816 	case LSIV2_T_RAID1:
2817 	    raid->magic_0 = meta->timestamp;
2818 	    raid->magic_1 = meta->raid_number;
2819 	    raid->type = AR_T_RAID1;
2820 	    raid->width = meta->configs[raid_entry].raid.array_width;
2821 	    break;
2822 
2823 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2824 	    raid->magic_0 = meta->timestamp;
2825 	    raid->magic_1 = meta->raid_number;
2826 	    raid->type = AR_T_RAID01;
2827 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2828 	    raid->width = meta->configs[raid_entry].raid.array_width;
2829 	    break;
2830 
2831 	default:
2832 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2833 			  meta->configs[raid_entry].raid.type);
2834 	    kfree(raidp[array], M_AR);
2835 	    raidp[array] = NULL;
2836 	    goto lsiv2_out;
2837 	}
2838 
2839 	raid->format = AR_F_LSIV2_RAID;
2840 	raid->generation = 0;
2841 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2842 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2843 	raid->heads = 255;
2844 	raid->sectors = 63;
2845 	raid->cylinders = raid->total_sectors / (63 * 255);
2846 	raid->offset_sectors = 0;
2847 	raid->rebuild_lba = 0;
2848 	raid->lun = array;
2849 
2850 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2851 	    raid->disks[meta->disk_number].dev = parent;
2852 	    raid->disks[meta->disk_number].sectors =
2853 		meta->configs[conf_entry].disk.disk_sectors;
2854 	    raid->disks[meta->disk_number].flags =
2855 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2856 	    ars->raid[raid->volume] = raid;
2857 	    ars->disk_number[raid->volume] = meta->disk_number;
2858 	    retval = 1;
2859 	}
2860 	else
2861 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2862 
2863 	break;
2864     }
2865 
2866 lsiv2_out:
2867     kfree(meta, M_AR);
2868     return retval;
2869 }
2870 
2871 /* LSILogic V3 MegaRAID Metadata */
2872 static int
2873 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2874 {
2875     struct ata_raid_subdisk *ars = device_get_softc(dev);
2876     device_t parent = device_get_parent(dev);
2877     struct lsiv3_raid_conf *meta;
2878     struct ar_softc *raid = NULL;
2879     u_int8_t checksum, *ptr;
2880     int array, entry, count, disk_number, retval = 0;
2881 
2882     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2883 	M_AR, M_WAITOK | M_ZERO);
2884 
2885     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2886 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2887 	if (testing || bootverbose)
2888 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2889 	goto lsiv3_out;
2890     }
2891 
2892     /* check if this is a LSI RAID struct */
2893     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2894 	if (testing || bootverbose)
2895 	    device_printf(parent, "LSI (v3) check1 failed\n");
2896 	goto lsiv3_out;
2897     }
2898 
2899     /* check if the checksum is OK */
2900     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2901 	checksum += *ptr++;
2902     if (checksum) {
2903 	if (testing || bootverbose)
2904 	    device_printf(parent, "LSI (v3) check2 failed\n");
2905 	goto lsiv3_out;
2906     }
2907 
2908     if (testing || bootverbose)
2909 	ata_raid_lsiv3_print_meta(meta);
2910 
2911     /* now convert LSI (v3) config meta into our generic form */
2912     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2913 	if (!raidp[array]) {
2914 	    raidp[array] =
2915 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2916 					  M_WAITOK | M_ZERO);
2917 	}
2918 	raid = raidp[array];
2919 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2920 	    array++;
2921 	    continue;
2922 	}
2923 
2924 	if ((raid->format == AR_F_LSIV3_RAID) &&
2925 	    (raid->magic_0 != meta->timestamp)) {
2926 	    array++;
2927 	    continue;
2928 	}
2929 
2930 	switch (meta->raid[entry].total_disks) {
2931 	case 0:
2932 	    entry++;
2933 	    continue;
2934 	case 1:
2935 	    if (meta->raid[entry].device == meta->device) {
2936 		disk_number = 0;
2937 		break;
2938 	    }
2939 	    if (raid->format)
2940 		array++;
2941 	    entry++;
2942 	    continue;
2943 	case 2:
2944 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2945 	    break;
2946 	default:
2947 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2948 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2949 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2950 	    break;
2951 	}
2952 
2953 	switch (meta->raid[entry].type) {
2954 	case LSIV3_T_RAID0:
2955 	    raid->type = AR_T_RAID0;
2956 	    raid->width = meta->raid[entry].total_disks;
2957 	    break;
2958 
2959 	case LSIV3_T_RAID1:
2960 	    raid->type = AR_T_RAID1;
2961 	    raid->width = meta->raid[entry].array_width;
2962 	    break;
2963 
2964 	default:
2965 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2966 			  meta->raid[entry].type);
2967 	    kfree(raidp[array], M_AR);
2968 	    raidp[array] = NULL;
2969 	    entry++;
2970 	    continue;
2971 	}
2972 
2973 	raid->magic_0 = meta->timestamp;
2974 	raid->format = AR_F_LSIV3_RAID;
2975 	raid->generation = 0;
2976 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2977 	raid->total_disks = meta->raid[entry].total_disks;
2978 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2979 	raid->heads = 255;
2980 	raid->sectors = 63;
2981 	raid->cylinders = raid->total_sectors / (63 * 255);
2982 	raid->offset_sectors = meta->raid[entry].offset;
2983 	raid->rebuild_lba = 0;
2984 	raid->lun = array;
2985 
2986 	raid->disks[disk_number].dev = parent;
2987 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2988 	raid->disks[disk_number].flags =
2989 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2990 	ars->raid[raid->volume] = raid;
2991 	ars->disk_number[raid->volume] = disk_number;
2992 	retval = 1;
2993 	entry++;
2994 	array++;
2995     }
2996 
2997 lsiv3_out:
2998     kfree(meta, M_AR);
2999     return retval;
3000 }
3001 
3002 /* nVidia MediaShield Metadata */
3003 static int
3004 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3005 {
3006     struct ata_raid_subdisk *ars = device_get_softc(dev);
3007     device_t parent = device_get_parent(dev);
3008     struct nvidia_raid_conf *meta;
3009     struct ar_softc *raid = NULL;
3010     u_int32_t checksum, *ptr;
3011     int array, count, retval = 0;
3012 
3013     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3014 	M_AR, M_WAITOK | M_ZERO);
3015 
3016     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3017 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3018 	if (testing || bootverbose)
3019 	    device_printf(parent, "nVidia read metadata failed\n");
3020 	goto nvidia_out;
3021     }
3022 
3023     /* check if this is a nVidia RAID struct */
3024     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3025 	if (testing || bootverbose)
3026 	    device_printf(parent, "nVidia check1 failed\n");
3027 	goto nvidia_out;
3028     }
3029 
3030     /* check if the checksum is OK */
3031     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3032 	 count < meta->config_size; count++)
3033 	checksum += *ptr++;
3034     if (checksum) {
3035 	if (testing || bootverbose)
3036 	    device_printf(parent, "nVidia check2 failed\n");
3037 	goto nvidia_out;
3038     }
3039 
3040     if (testing || bootverbose)
3041 	ata_raid_nvidia_print_meta(meta);
3042 
3043     /* now convert nVidia meta into our generic form */
3044     for (array = 0; array < MAX_ARRAYS; array++) {
3045 	if (!raidp[array]) {
3046 	    raidp[array] =
3047 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3048 					  M_WAITOK | M_ZERO);
3049 	}
3050 	raid = raidp[array];
3051 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3052 	    continue;
3053 
3054 	if (raid->format == AR_F_NVIDIA_RAID &&
3055 	    ((raid->magic_0 != meta->magic_1) ||
3056 	     (raid->magic_1 != meta->magic_2))) {
3057 	    continue;
3058 	}
3059 
3060 	switch (meta->type) {
3061 	case NV_T_SPAN:
3062 	    raid->type = AR_T_SPAN;
3063 	    break;
3064 
3065 	case NV_T_RAID0:
3066 	    raid->type = AR_T_RAID0;
3067 	    break;
3068 
3069 	case NV_T_RAID1:
3070 	    raid->type = AR_T_RAID1;
3071 	    break;
3072 
3073 	case NV_T_RAID5:
3074 	    raid->type = AR_T_RAID5;
3075 	    break;
3076 
3077 	case NV_T_RAID01:
3078 	    raid->type = AR_T_RAID01;
3079 	    break;
3080 
3081 	default:
3082 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3083 			  meta->type);
3084 	    kfree(raidp[array], M_AR);
3085 	    raidp[array] = NULL;
3086 	    goto nvidia_out;
3087 	}
3088 	raid->magic_0 = meta->magic_1;
3089 	raid->magic_1 = meta->magic_2;
3090 	raid->format = AR_F_NVIDIA_RAID;
3091 	raid->generation = 0;
3092 	raid->interleave = meta->stripe_sectors;
3093 	raid->width = meta->array_width;
3094 	raid->total_disks = meta->total_disks;
3095 	raid->total_sectors = meta->total_sectors;
3096 	raid->heads = 255;
3097 	raid->sectors = 63;
3098 	raid->cylinders = raid->total_sectors / (63 * 255);
3099 	raid->offset_sectors = 0;
3100 	raid->rebuild_lba = meta->rebuild_lba;
3101 	raid->lun = array;
3102 	raid->status = AR_S_READY;
3103 	if (meta->status & NV_S_DEGRADED)
3104 	    raid->status |= AR_S_DEGRADED;
3105 
3106 	raid->disks[meta->disk_number].dev = parent;
3107 	raid->disks[meta->disk_number].sectors =
3108 	    raid->total_sectors / raid->width;
3109 	raid->disks[meta->disk_number].flags =
3110 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3111 	ars->raid[raid->volume] = raid;
3112 	ars->disk_number[raid->volume] = meta->disk_number;
3113 	retval = 1;
3114 	break;
3115     }
3116 
3117 nvidia_out:
3118     kfree(meta, M_AR);
3119     return retval;
3120 }
3121 
3122 /* Promise FastTrak Metadata */
3123 static int
3124 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3125 {
3126     struct ata_raid_subdisk *ars = device_get_softc(dev);
3127     device_t parent = device_get_parent(dev);
3128     struct promise_raid_conf *meta;
3129     struct ar_softc *raid;
3130     u_int32_t checksum, *ptr;
3131     int array, count, disk, disksum = 0, retval = 0;
3132 
3133     meta = (struct promise_raid_conf *)
3134 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3135 
3136     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3137 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3138 	if (testing || bootverbose)
3139 	    device_printf(parent, "%s read metadata failed\n",
3140 			  native ? "FreeBSD" : "Promise");
3141 	goto promise_out;
3142     }
3143 
3144     /* check the signature */
3145     if (native) {
3146 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3147 	    if (testing || bootverbose)
3148 		device_printf(parent, "FreeBSD check1 failed\n");
3149 	    goto promise_out;
3150 	}
3151     }
3152     else {
3153 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3154 	    if (testing || bootverbose)
3155 		device_printf(parent, "Promise check1 failed\n");
3156 	    goto promise_out;
3157 	}
3158     }
3159 
3160     /* check if the checksum is OK */
3161     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3162 	checksum += *ptr++;
3163     if (checksum != *ptr) {
3164 	if (testing || bootverbose)
3165 	    device_printf(parent, "%s check2 failed\n",
3166 			  native ? "FreeBSD" : "Promise");
3167 	goto promise_out;
3168     }
3169 
3170     /* check on disk integrity status */
3171     if (meta->raid.integrity != PR_I_VALID) {
3172 	if (testing || bootverbose)
3173 	    device_printf(parent, "%s check3 failed\n",
3174 			  native ? "FreeBSD" : "Promise");
3175 	goto promise_out;
3176     }
3177 
3178     if (testing || bootverbose)
3179 	ata_raid_promise_print_meta(meta);
3180 
3181     /* now convert Promise metadata into our generic form */
3182     for (array = 0; array < MAX_ARRAYS; array++) {
3183 	if (!raidp[array]) {
3184 	    raidp[array] =
3185 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3186 					  M_WAITOK | M_ZERO);
3187 	}
3188 	raid = raidp[array];
3189 	if (raid->format &&
3190 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3191 	    continue;
3192 
3193 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3194 	    !(meta->raid.magic_1 == (raid->magic_1)))
3195 	    continue;
3196 
3197 	/* update our knowledge about the array config based on generation */
3198 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3199 	    switch (meta->raid.type) {
3200 	    case PR_T_SPAN:
3201 		raid->type = AR_T_SPAN;
3202 		break;
3203 
3204 	    case PR_T_JBOD:
3205 		raid->type = AR_T_JBOD;
3206 		break;
3207 
3208 	    case PR_T_RAID0:
3209 		raid->type = AR_T_RAID0;
3210 		break;
3211 
3212 	    case PR_T_RAID1:
3213 		raid->type = AR_T_RAID1;
3214 		if (meta->raid.array_width > 1)
3215 		    raid->type = AR_T_RAID01;
3216 		break;
3217 
3218 	    case PR_T_RAID5:
3219 		raid->type = AR_T_RAID5;
3220 		break;
3221 
3222 	    default:
3223 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3224 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3225 		kfree(raidp[array], M_AR);
3226 		raidp[array] = NULL;
3227 		goto promise_out;
3228 	    }
3229 	    raid->magic_1 = meta->raid.magic_1;
3230 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3231 	    raid->generation = meta->raid.generation;
3232 	    raid->interleave = 1 << meta->raid.stripe_shift;
3233 	    raid->width = meta->raid.array_width;
3234 	    raid->total_disks = meta->raid.total_disks;
3235 	    raid->heads = meta->raid.heads + 1;
3236 	    raid->sectors = meta->raid.sectors;
3237 	    raid->cylinders = meta->raid.cylinders + 1;
3238 	    raid->total_sectors = meta->raid.total_sectors;
3239 	    raid->offset_sectors = 0;
3240 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3241 	    raid->lun = array;
3242 	    if ((meta->raid.status &
3243 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3244 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3245 		raid->status |= AR_S_READY;
3246 		if (meta->raid.status & PR_S_DEGRADED)
3247 		    raid->status |= AR_S_DEGRADED;
3248 	    }
3249 	    else
3250 		raid->status &= ~AR_S_READY;
3251 
3252 	    /* convert disk flags to our internal types */
3253 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3254 		raid->disks[disk].dev = NULL;
3255 		raid->disks[disk].flags = 0;
3256 		*((u_int64_t *)(raid->disks[disk].serial)) =
3257 		    meta->raid.disk[disk].magic_0;
3258 		disksum += meta->raid.disk[disk].flags;
3259 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3260 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3261 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3262 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3263 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3264 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3265 		    raid->disks[disk].flags |= AR_DF_SPARE;
3266 		}
3267 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3268 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3269 	    }
3270 	    if (!disksum) {
3271 		device_printf(parent, "%s subdisks has no flags\n",
3272 			      native ? "FreeBSD" : "Promise");
3273 		kfree(raidp[array], M_AR);
3274 		raidp[array] = NULL;
3275 		goto promise_out;
3276 	    }
3277 	}
3278 	if (meta->raid.generation >= raid->generation) {
3279 	    int disk_number = meta->raid.disk_number;
3280 
3281 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3282 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3283 		raid->disks[disk_number].dev = parent;
3284 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3285 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3286 		if ((raid->disks[disk_number].flags &
3287 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3288 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3289 		    ars->raid[raid->volume] = raid;
3290 		    ars->disk_number[raid->volume] = disk_number;
3291 		    retval = 1;
3292 		}
3293 	    }
3294 	}
3295 	break;
3296     }
3297 
3298 promise_out:
3299     kfree(meta, M_AR);
3300     return retval;
3301 }
3302 
3303 static int
3304 ata_raid_promise_write_meta(struct ar_softc *rdp)
3305 {
3306     struct promise_raid_conf *meta;
3307     struct timeval timestamp;
3308     u_int32_t *ckptr;
3309     int count, disk, drive, error = 0;
3310 
3311     meta = (struct promise_raid_conf *)
3312 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3313 
3314     rdp->generation++;
3315     microtime(&timestamp);
3316 
3317     for (disk = 0; disk < rdp->total_disks; disk++) {
3318 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3319 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3320 	meta->dummy_0 = 0x00020000;
3321 	meta->raid.disk_number = disk;
3322 
3323 	if (rdp->disks[disk].dev) {
3324 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3325 	    struct ata_channel *ch =
3326 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3327 
3328 	    meta->raid.channel = ch->unit;
3329 	    meta->raid.device = ATA_DEV(atadev->unit);
3330 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3331 	    meta->raid.disk_offset = rdp->offset_sectors;
3332 	}
3333 	else {
3334 	    meta->raid.channel = 0;
3335 	    meta->raid.device = 0;
3336 	    meta->raid.disk_sectors = 0;
3337 	    meta->raid.disk_offset = 0;
3338 	}
3339 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3340 	meta->magic_1 = timestamp.tv_sec >> 16;
3341 	meta->magic_2 = timestamp.tv_sec;
3342 	meta->raid.integrity = PR_I_VALID;
3343 	meta->raid.magic_0 = meta->magic_0;
3344 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3345 	meta->raid.generation = rdp->generation;
3346 
3347 	if (rdp->status & AR_S_READY) {
3348 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3349 	    meta->raid.status =
3350 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3351 	    if (rdp->status & AR_S_DEGRADED)
3352 		meta->raid.status |= PR_S_DEGRADED;
3353 	    else
3354 		meta->raid.status |= PR_S_FUNCTIONAL;
3355 	}
3356 	else {
3357 	    meta->raid.flags = PR_F_DOWN;
3358 	    meta->raid.status = 0;
3359 	}
3360 
3361 	switch (rdp->type) {
3362 	case AR_T_RAID0:
3363 	    meta->raid.type = PR_T_RAID0;
3364 	    break;
3365 	case AR_T_RAID1:
3366 	    meta->raid.type = PR_T_RAID1;
3367 	    break;
3368 	case AR_T_RAID01:
3369 	    meta->raid.type = PR_T_RAID1;
3370 	    break;
3371 	case AR_T_RAID5:
3372 	    meta->raid.type = PR_T_RAID5;
3373 	    break;
3374 	case AR_T_SPAN:
3375 	    meta->raid.type = PR_T_SPAN;
3376 	    break;
3377 	case AR_T_JBOD:
3378 	    meta->raid.type = PR_T_JBOD;
3379 	    break;
3380 	default:
3381 	    kfree(meta, M_AR);
3382 	    return ENODEV;
3383 	}
3384 
3385 	meta->raid.total_disks = rdp->total_disks;
3386 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3387 	meta->raid.array_width = rdp->width;
3388 	meta->raid.array_number = rdp->lun;
3389 	meta->raid.total_sectors = rdp->total_sectors;
3390 	meta->raid.cylinders = rdp->cylinders - 1;
3391 	meta->raid.heads = rdp->heads - 1;
3392 	meta->raid.sectors = rdp->sectors;
3393 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3394 
3395 	bzero(&meta->raid.disk, 8 * 12);
3396 	for (drive = 0; drive < rdp->total_disks; drive++) {
3397 	    meta->raid.disk[drive].flags = 0;
3398 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3399 		meta->raid.disk[drive].flags |= PR_F_VALID;
3400 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3401 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3402 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3403 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3404 	    else
3405 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3406 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3407 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3408 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3409 	    meta->raid.disk[drive].dummy_0 = 0x0;
3410 	    if (rdp->disks[drive].dev) {
3411 		struct ata_channel *ch =
3412 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3413 		struct ata_device *atadev =
3414 		    device_get_softc(rdp->disks[drive].dev);
3415 
3416 		meta->raid.disk[drive].channel = ch->unit;
3417 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3418 	    }
3419 	    meta->raid.disk[drive].magic_0 =
3420 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3421 	}
3422 
3423 	if (rdp->disks[disk].dev) {
3424 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3425 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3426 		if (rdp->format == AR_F_FREEBSD_RAID)
3427 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3428 		else
3429 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3430 	    }
3431 	    else
3432 		bzero(meta->promise_id, sizeof(meta->promise_id));
3433 	    meta->checksum = 0;
3434 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3435 		meta->checksum += *ckptr++;
3436 	    if (testing || bootverbose)
3437 		ata_raid_promise_print_meta(meta);
3438 	    if (ata_raid_rw(rdp->disks[disk].dev,
3439 			    PROMISE_LBA(rdp->disks[disk].dev),
3440 			    meta, sizeof(struct promise_raid_conf),
3441 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3442 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3443 		error = EIO;
3444 	    }
3445 	}
3446     }
3447     kfree(meta, M_AR);
3448     return error;
3449 }
3450 
3451 /* Silicon Image Medley Metadata */
3452 static int
3453 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3454 {
3455     struct ata_raid_subdisk *ars = device_get_softc(dev);
3456     device_t parent = device_get_parent(dev);
3457     struct sii_raid_conf *meta;
3458     struct ar_softc *raid = NULL;
3459     u_int16_t checksum, *ptr;
3460     int array, count, disk, retval = 0;
3461 
3462     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3463 	M_WAITOK | M_ZERO);
3464 
3465     if (ata_raid_rw(parent, SII_LBA(parent),
3466 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3467 	if (testing || bootverbose)
3468 	    device_printf(parent, "Silicon Image read metadata failed\n");
3469 	goto sii_out;
3470     }
3471 
3472     /* check if this is a Silicon Image (Medley) RAID struct */
3473     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3474 	checksum += *ptr++;
3475     if (checksum) {
3476 	if (testing || bootverbose)
3477 	    device_printf(parent, "Silicon Image check1 failed\n");
3478 	goto sii_out;
3479     }
3480 
3481     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3482 	checksum += *ptr++;
3483     if (checksum != meta->checksum_1) {
3484 	if (testing || bootverbose)
3485 	    device_printf(parent, "Silicon Image check2 failed\n");
3486 	goto sii_out;
3487     }
3488 
3489     /* check verison */
3490     if (meta->version_major != 0x0002 ||
3491 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3492 	if (testing || bootverbose)
3493 	    device_printf(parent, "Silicon Image check3 failed\n");
3494 	goto sii_out;
3495     }
3496 
3497     if (testing || bootverbose)
3498 	ata_raid_sii_print_meta(meta);
3499 
3500     /* now convert Silicon Image meta into our generic form */
3501     for (array = 0; array < MAX_ARRAYS; array++) {
3502 	if (!raidp[array]) {
3503 	    raidp[array] =
3504 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3505 					  M_WAITOK | M_ZERO);
3506 	}
3507 	raid = raidp[array];
3508 	if (raid->format && (raid->format != AR_F_SII_RAID))
3509 	    continue;
3510 
3511 	if (raid->format == AR_F_SII_RAID &&
3512 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3513 	    continue;
3514 	}
3515 
3516 	/* update our knowledge about the array config based on generation */
3517 	if (!meta->generation || meta->generation > raid->generation) {
3518 	    switch (meta->type) {
3519 	    case SII_T_RAID0:
3520 		raid->type = AR_T_RAID0;
3521 		break;
3522 
3523 	    case SII_T_RAID1:
3524 		raid->type = AR_T_RAID1;
3525 		break;
3526 
3527 	    case SII_T_RAID01:
3528 		raid->type = AR_T_RAID01;
3529 		break;
3530 
3531 	    case SII_T_SPARE:
3532 		device_printf(parent, "Silicon Image SPARE disk\n");
3533 		kfree(raidp[array], M_AR);
3534 		raidp[array] = NULL;
3535 		goto sii_out;
3536 
3537 	    default:
3538 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3539 			      meta->type);
3540 		kfree(raidp[array], M_AR);
3541 		raidp[array] = NULL;
3542 		goto sii_out;
3543 	    }
3544 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3545 	    raid->format = AR_F_SII_RAID;
3546 	    raid->generation = meta->generation;
3547 	    raid->interleave = meta->stripe_sectors;
3548 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3549 	    raid->total_disks =
3550 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3551 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3552 	    raid->total_sectors = meta->total_sectors;
3553 	    raid->heads = 255;
3554 	    raid->sectors = 63;
3555 	    raid->cylinders = raid->total_sectors / (63 * 255);
3556 	    raid->offset_sectors = 0;
3557 	    raid->rebuild_lba = meta->rebuild_lba;
3558 	    raid->lun = array;
3559 	    strncpy(raid->name, meta->name,
3560 		    min(sizeof(raid->name), sizeof(meta->name)));
3561 
3562 	    /* clear out any old info */
3563 	    if (raid->generation) {
3564 		for (disk = 0; disk < raid->total_disks; disk++) {
3565 		    raid->disks[disk].dev = NULL;
3566 		    raid->disks[disk].flags = 0;
3567 		}
3568 	    }
3569 	}
3570 	if (meta->generation >= raid->generation) {
3571 	    /* XXX SOS add check for the right physical disk by serial# */
3572 	    if (meta->status & SII_S_READY) {
3573 		int disk_number = (raid->type == AR_T_RAID01) ?
3574 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3575 		    meta->disk_number;
3576 
3577 		raid->disks[disk_number].dev = parent;
3578 		raid->disks[disk_number].sectors =
3579 		    raid->total_sectors / raid->width;
3580 		raid->disks[disk_number].flags =
3581 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3582 		ars->raid[raid->volume] = raid;
3583 		ars->disk_number[raid->volume] = disk_number;
3584 		retval = 1;
3585 	    }
3586 	}
3587 	break;
3588     }
3589 
3590 sii_out:
3591     kfree(meta, M_AR);
3592     return retval;
3593 }
3594 
3595 /* Silicon Integrated Systems Metadata */
3596 static int
3597 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3598 {
3599     struct ata_raid_subdisk *ars = device_get_softc(dev);
3600     device_t parent = device_get_parent(dev);
3601     struct sis_raid_conf *meta;
3602     struct ar_softc *raid = NULL;
3603     int array, disk_number, drive, retval = 0;
3604 
3605     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3606 	M_WAITOK | M_ZERO);
3607 
3608     if (ata_raid_rw(parent, SIS_LBA(parent),
3609 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3610 	if (testing || bootverbose)
3611 	    device_printf(parent,
3612 			  "Silicon Integrated Systems read metadata failed\n");
3613     }
3614 
3615     /* check for SiS magic */
3616     if (meta->magic != SIS_MAGIC) {
3617 	if (testing || bootverbose)
3618 	    device_printf(parent,
3619 			  "Silicon Integrated Systems check1 failed\n");
3620 	goto sis_out;
3621     }
3622 
3623     if (testing || bootverbose)
3624 	ata_raid_sis_print_meta(meta);
3625 
3626     /* now convert SiS meta into our generic form */
3627     for (array = 0; array < MAX_ARRAYS; array++) {
3628 	if (!raidp[array]) {
3629 	    raidp[array] =
3630 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3631 					  M_WAITOK | M_ZERO);
3632 	}
3633 
3634 	raid = raidp[array];
3635 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3636 	    continue;
3637 
3638 	if ((raid->format == AR_F_SIS_RAID) &&
3639 	    ((raid->magic_0 != meta->controller_pci_id) ||
3640 	     (raid->magic_1 != meta->timestamp))) {
3641 	    continue;
3642 	}
3643 
3644 	switch (meta->type_total_disks & SIS_T_MASK) {
3645 	case SIS_T_JBOD:
3646 	    raid->type = AR_T_JBOD;
3647 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3648 	    raid->total_sectors += SIS_LBA(parent);
3649 	    break;
3650 
3651 	case SIS_T_RAID0:
3652 	    raid->type = AR_T_RAID0;
3653 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3654 	    if (!raid->total_sectors ||
3655 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3656 		raid->total_sectors = raid->width * SIS_LBA(parent);
3657 	    break;
3658 
3659 	case SIS_T_RAID1:
3660 	    raid->type = AR_T_RAID1;
3661 	    raid->width = 1;
3662 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3663 		raid->total_sectors = SIS_LBA(parent);
3664 	    break;
3665 
3666 	default:
3667 	    device_printf(parent, "Silicon Integrated Systems "
3668 			  "unknown RAID type 0x%08x\n", meta->magic);
3669 	    kfree(raidp[array], M_AR);
3670 	    raidp[array] = NULL;
3671 	    goto sis_out;
3672 	}
3673 	raid->magic_0 = meta->controller_pci_id;
3674 	raid->magic_1 = meta->timestamp;
3675 	raid->format = AR_F_SIS_RAID;
3676 	raid->generation = 0;
3677 	raid->interleave = meta->stripe_sectors;
3678 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3679 	raid->heads = 255;
3680 	raid->sectors = 63;
3681 	raid->cylinders = raid->total_sectors / (63 * 255);
3682 	raid->offset_sectors = 0;
3683 	raid->rebuild_lba = 0;
3684 	raid->lun = array;
3685 	/* XXX SOS if total_disks > 2 this doesn't float */
3686 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3687 	    disk_number = 0;
3688 	else
3689 	    disk_number = 1;
3690 
3691 	for (drive = 0; drive < raid->total_disks; drive++) {
3692 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3693 	    if (drive == disk_number) {
3694 		raid->disks[disk_number].dev = parent;
3695 		raid->disks[disk_number].flags =
3696 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3697 		ars->raid[raid->volume] = raid;
3698 		ars->disk_number[raid->volume] = disk_number;
3699 	    }
3700 	}
3701 	retval = 1;
3702 	break;
3703     }
3704 
3705 sis_out:
3706     kfree(meta, M_AR);
3707     return retval;
3708 }
3709 
3710 static int
3711 ata_raid_sis_write_meta(struct ar_softc *rdp)
3712 {
3713     struct sis_raid_conf *meta;
3714     struct timeval timestamp;
3715     int disk, error = 0;
3716 
3717     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3718 	M_WAITOK | M_ZERO);
3719 
3720     rdp->generation++;
3721     microtime(&timestamp);
3722 
3723     meta->magic = SIS_MAGIC;
3724     /* XXX SOS if total_disks > 2 this doesn't float */
3725     for (disk = 0; disk < rdp->total_disks; disk++) {
3726 	if (rdp->disks[disk].dev) {
3727 	    struct ata_channel *ch =
3728 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3729 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3730 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3731 
3732 	    meta->disks |= disk_number << ((1 - disk) << 2);
3733 	}
3734     }
3735     switch (rdp->type) {
3736     case AR_T_JBOD:
3737 	meta->type_total_disks = SIS_T_JBOD;
3738 	break;
3739 
3740     case AR_T_RAID0:
3741 	meta->type_total_disks = SIS_T_RAID0;
3742 	break;
3743 
3744     case AR_T_RAID1:
3745 	meta->type_total_disks = SIS_T_RAID1;
3746 	break;
3747 
3748     default:
3749 	kfree(meta, M_AR);
3750 	return ENODEV;
3751     }
3752     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3753     meta->stripe_sectors = rdp->interleave;
3754     meta->timestamp = timestamp.tv_sec;
3755 
3756     for (disk = 0; disk < rdp->total_disks; disk++) {
3757 	if (rdp->disks[disk].dev) {
3758 	    struct ata_channel *ch =
3759 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3760 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3761 
3762 	    meta->controller_pci_id =
3763 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3764 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3765 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3766 
3767 	    /* XXX SOS if total_disks > 2 this may not float */
3768 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3769 
3770 	    if (testing || bootverbose)
3771 		ata_raid_sis_print_meta(meta);
3772 
3773 	    if (ata_raid_rw(rdp->disks[disk].dev,
3774 			    SIS_LBA(rdp->disks[disk].dev),
3775 			    meta, sizeof(struct sis_raid_conf),
3776 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3777 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3778 		error = EIO;
3779 	    }
3780 	}
3781     }
3782     kfree(meta, M_AR);
3783     return error;
3784 }
3785 
3786 /* VIA Tech V-RAID Metadata */
3787 static int
3788 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3789 {
3790     struct ata_raid_subdisk *ars = device_get_softc(dev);
3791     device_t parent = device_get_parent(dev);
3792     struct via_raid_conf *meta;
3793     struct ar_softc *raid = NULL;
3794     u_int8_t checksum, *ptr;
3795     int array, count, disk, retval = 0;
3796 
3797     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3798 	M_WAITOK | M_ZERO);
3799 
3800     if (ata_raid_rw(parent, VIA_LBA(parent),
3801 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3802 	if (testing || bootverbose)
3803 	    device_printf(parent, "VIA read metadata failed\n");
3804 	goto via_out;
3805     }
3806 
3807     /* check if this is a VIA RAID struct */
3808     if (meta->magic != VIA_MAGIC) {
3809 	if (testing || bootverbose)
3810 	    device_printf(parent, "VIA check1 failed\n");
3811 	goto via_out;
3812     }
3813 
3814     /* calculate checksum and compare for valid */
3815     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3816 	checksum += *ptr++;
3817     if (checksum != meta->checksum) {
3818 	if (testing || bootverbose)
3819 	    device_printf(parent, "VIA check2 failed\n");
3820 	goto via_out;
3821     }
3822 
3823     if (testing || bootverbose)
3824 	ata_raid_via_print_meta(meta);
3825 
3826     /* now convert VIA meta into our generic form */
3827     for (array = 0; array < MAX_ARRAYS; array++) {
3828 	if (!raidp[array]) {
3829 	    raidp[array] =
3830 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3831 					  M_WAITOK | M_ZERO);
3832 	}
3833 	raid = raidp[array];
3834 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3835 	    continue;
3836 
3837 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3838 	    continue;
3839 
3840 	switch (meta->type & VIA_T_MASK) {
3841 	case VIA_T_RAID0:
3842 	    raid->type = AR_T_RAID0;
3843 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3844 	    if (!raid->total_sectors ||
3845 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3846 		raid->total_sectors = raid->width * meta->disk_sectors;
3847 	    break;
3848 
3849 	case VIA_T_RAID1:
3850 	    raid->type = AR_T_RAID1;
3851 	    raid->width = 1;
3852 	    raid->total_sectors = meta->disk_sectors;
3853 	    break;
3854 
3855 	case VIA_T_RAID01:
3856 	    raid->type = AR_T_RAID01;
3857 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3858 	    if (!raid->total_sectors ||
3859 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3860 		raid->total_sectors = raid->width * meta->disk_sectors;
3861 	    break;
3862 
3863 	case VIA_T_RAID5:
3864 	    raid->type = AR_T_RAID5;
3865 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3866 	    if (!raid->total_sectors ||
3867 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3868 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3869 	    break;
3870 
3871 	case VIA_T_SPAN:
3872 	    raid->type = AR_T_SPAN;
3873 	    raid->width = 1;
3874 	    raid->total_sectors += meta->disk_sectors;
3875 	    break;
3876 
3877 	default:
3878 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3879 	    kfree(raidp[array], M_AR);
3880 	    raidp[array] = NULL;
3881 	    goto via_out;
3882 	}
3883 	raid->magic_0 = meta->disks[0];
3884 	raid->format = AR_F_VIA_RAID;
3885 	raid->generation = 0;
3886 	raid->interleave =
3887 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3888 	for (count = 0, disk = 0; disk < 8; disk++)
3889 	    if (meta->disks[disk])
3890 		count++;
3891 	raid->total_disks = count;
3892 	raid->heads = 255;
3893 	raid->sectors = 63;
3894 	raid->cylinders = raid->total_sectors / (63 * 255);
3895 	raid->offset_sectors = 0;
3896 	raid->rebuild_lba = 0;
3897 	raid->lun = array;
3898 
3899 	for (disk = 0; disk < raid->total_disks; disk++) {
3900 	    if (meta->disks[disk] == meta->disk_id) {
3901 		raid->disks[disk].dev = parent;
3902 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3903 		      sizeof(u_int32_t));
3904 		raid->disks[disk].sectors = meta->disk_sectors;
3905 		raid->disks[disk].flags =
3906 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3907 		ars->raid[raid->volume] = raid;
3908 		ars->disk_number[raid->volume] = disk;
3909 		retval = 1;
3910 		break;
3911 	    }
3912 	}
3913 	break;
3914     }
3915 
3916 via_out:
3917     kfree(meta, M_AR);
3918     return retval;
3919 }
3920 
3921 static int
3922 ata_raid_via_write_meta(struct ar_softc *rdp)
3923 {
3924     struct via_raid_conf *meta;
3925     int disk, error = 0;
3926 
3927     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3928 	M_WAITOK | M_ZERO);
3929 
3930     rdp->generation++;
3931 
3932     meta->magic = VIA_MAGIC;
3933     meta->dummy_0 = 0x02;
3934     switch (rdp->type) {
3935     case AR_T_SPAN:
3936 	meta->type = VIA_T_SPAN;
3937 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3938 	break;
3939 
3940     case AR_T_RAID0:
3941 	meta->type = VIA_T_RAID0;
3942 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3943 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3944 	break;
3945 
3946     case AR_T_RAID1:
3947 	meta->type = VIA_T_RAID1;
3948 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3949 	break;
3950 
3951     case AR_T_RAID5:
3952 	meta->type = VIA_T_RAID5;
3953 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3954 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3955 	break;
3956 
3957     case AR_T_RAID01:
3958 	meta->type = VIA_T_RAID01;
3959 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3960 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3961 	break;
3962 
3963     default:
3964 	kfree(meta, M_AR);
3965 	return ENODEV;
3966     }
3967     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3968     meta->disk_sectors =
3969 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3970     for (disk = 0; disk < rdp->total_disks; disk++)
3971 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3972 
3973     for (disk = 0; disk < rdp->total_disks; disk++) {
3974 	if (rdp->disks[disk].dev) {
3975 	    u_int8_t *ptr;
3976 	    int count;
3977 
3978 	    meta->disk_index = disk * sizeof(u_int32_t);
3979 	    if (rdp->type == AR_T_RAID01)
3980 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3981 				   (meta->disk_index & ~0x08);
3982 	    meta->disk_id = meta->disks[disk];
3983 	    meta->checksum = 0;
3984 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3985 		meta->checksum += *ptr++;
3986 
3987 	    if (testing || bootverbose)
3988 		ata_raid_via_print_meta(meta);
3989 
3990 	    if (ata_raid_rw(rdp->disks[disk].dev,
3991 			    VIA_LBA(rdp->disks[disk].dev),
3992 			    meta, sizeof(struct via_raid_conf),
3993 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3994 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3995 		error = EIO;
3996 	    }
3997 	}
3998     }
3999     kfree(meta, M_AR);
4000     return error;
4001 }
4002 
4003 static struct ata_request *
4004 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4005 {
4006     struct ata_request *request;
4007 
4008     if (!(request = ata_alloc_request())) {
4009 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4010 	return NULL;
4011     }
4012     request->timeout = ATA_DEFAULT_TIMEOUT;
4013     request->retries = 2;
4014     request->callback = ata_raid_done;
4015     request->driver = rdp;
4016     request->bio = bio;
4017     switch (request->bio->bio_buf->b_cmd) {
4018     case BUF_CMD_READ:
4019 	request->flags = ATA_R_READ;
4020 	break;
4021     case BUF_CMD_WRITE:
4022 	request->flags = ATA_R_WRITE;
4023 	break;
4024     case BUF_CMD_FLUSH:
4025 	request->flags = ATA_R_CONTROL;
4026 	break;
4027     default:
4028 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4029 	ata_free_request(request);
4030 #if 0
4031 	bio->bio_buf->b_flags |= B_ERROR;
4032 	bio->bio_buf->b_error = EIO;
4033 	biodone(bio);
4034 #endif /* 0 */
4035 	return(NULL);
4036     }
4037     return request;
4038 }
4039 
4040 static int
4041 ata_raid_send_request(struct ata_request *request)
4042 {
4043     struct ata_device *atadev = device_get_softc(request->dev);
4044 
4045     request->transfersize = min(request->bytecount, atadev->max_iosize);
4046     if (request->flags & ATA_R_READ) {
4047 	if (atadev->mode >= ATA_DMA) {
4048 	    request->flags |= ATA_R_DMA;
4049 	    request->u.ata.command = ATA_READ_DMA;
4050 	}
4051 	else if (atadev->max_iosize > DEV_BSIZE)
4052 	    request->u.ata.command = ATA_READ_MUL;
4053 	else
4054 	    request->u.ata.command = ATA_READ;
4055     }
4056     else if (request->flags & ATA_R_WRITE) {
4057 	if (atadev->mode >= ATA_DMA) {
4058 	    request->flags |= ATA_R_DMA;
4059 	    request->u.ata.command = ATA_WRITE_DMA;
4060 	}
4061 	else if (atadev->max_iosize > DEV_BSIZE)
4062 	    request->u.ata.command = ATA_WRITE_MUL;
4063 	else
4064 	    request->u.ata.command = ATA_WRITE;
4065     }
4066     else {
4067 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4068 	ata_free_request(request);
4069 	return EIO;
4070     }
4071     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4072     ata_queue_request(request);
4073     return 0;
4074 }
4075 
4076 static int
4077 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4078 {
4079     struct ata_device *atadev = device_get_softc(dev);
4080     struct ata_request *request;
4081     int error;
4082 
4083     if (bcount % DEV_BSIZE) {
4084 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4085 	return ENOMEM;
4086     }
4087 
4088     if (!(request = ata_alloc_request())) {
4089 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4090 	return ENOMEM;
4091     }
4092 
4093     /* setup request */
4094     request->dev = dev;
4095     request->timeout = 10;
4096     request->retries = 0;
4097     request->data = data;
4098     request->bytecount = bcount;
4099     request->transfersize = DEV_BSIZE;
4100     request->u.ata.lba = lba;
4101     request->u.ata.count = request->bytecount / DEV_BSIZE;
4102     request->flags = flags;
4103 
4104     if (flags & ATA_R_READ) {
4105 	if (atadev->mode >= ATA_DMA) {
4106 	    request->u.ata.command = ATA_READ_DMA;
4107 	    request->flags |= ATA_R_DMA;
4108 	}
4109 	else
4110 	    request->u.ata.command = ATA_READ;
4111 	ata_queue_request(request);
4112     }
4113     else if (flags & ATA_R_WRITE) {
4114 	if (atadev->mode >= ATA_DMA) {
4115 	    request->u.ata.command = ATA_WRITE_DMA;
4116 	    request->flags |= ATA_R_DMA;
4117 	}
4118 	else
4119 	    request->u.ata.command = ATA_WRITE;
4120 	ata_queue_request(request);
4121     }
4122     else {
4123 	device_printf(dev, "FAILURE - unknown IO operation\n");
4124 	request->result = EIO;
4125     }
4126     error = request->result;
4127     ata_free_request(request);
4128     return error;
4129 }
4130 
4131 /*
4132  * module handeling
4133  */
4134 static int
4135 ata_raid_subdisk_probe(device_t dev)
4136 {
4137     device_quiet(dev);
4138     return 0;
4139 }
4140 
4141 static int
4142 ata_raid_subdisk_attach(device_t dev)
4143 {
4144     struct ata_raid_subdisk *ars = device_get_softc(dev);
4145     int volume;
4146 
4147     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4148 	ars->raid[volume] = NULL;
4149 	ars->disk_number[volume] = -1;
4150     }
4151     ata_raid_read_metadata(dev);
4152     return 0;
4153 }
4154 
4155 static int
4156 ata_raid_subdisk_detach(device_t dev)
4157 {
4158     struct ata_raid_subdisk *ars = device_get_softc(dev);
4159     int volume;
4160 
4161     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4162 	if (ars->raid[volume]) {
4163 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4164 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4165 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4166 	    ata_raid_config_changed(ars->raid[volume], 1);
4167 	    ars->raid[volume] = NULL;
4168 	    ars->disk_number[volume] = -1;
4169 	}
4170     }
4171     return 0;
4172 }
4173 
4174 static device_method_t ata_raid_sub_methods[] = {
4175     /* device interface */
4176     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4177     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4178     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4179     { 0, 0 }
4180 };
4181 
4182 static driver_t ata_raid_sub_driver = {
4183     "subdisk",
4184     ata_raid_sub_methods,
4185     sizeof(struct ata_raid_subdisk)
4186 };
4187 
4188 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4189 
4190 static int
4191 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4192 {
4193     int i;
4194 
4195     switch (what) {
4196     case MOD_LOAD:
4197 	if (testing || bootverbose)
4198 	    kprintf("ATA PseudoRAID loaded\n");
4199 #if 0
4200 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4201 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4202 				M_AR, M_WAITOK | M_ZERO);
4203 #endif
4204 	/* attach found PseudoRAID arrays */
4205 	for (i = 0; i < MAX_ARRAYS; i++) {
4206 	    struct ar_softc *rdp = ata_raid_arrays[i];
4207 
4208 	    if (!rdp || !rdp->format)
4209 		continue;
4210 	    if (testing || bootverbose)
4211 		ata_raid_print_meta(rdp);
4212 	    ata_raid_attach(rdp, 0);
4213 	}
4214 	ata_raid_ioctl_func = ata_raid_ioctl;
4215 	return 0;
4216 
4217     case MOD_UNLOAD:
4218 	/* detach found PseudoRAID arrays */
4219 	for (i = 0; i < MAX_ARRAYS; i++) {
4220 	    struct ar_softc *rdp = ata_raid_arrays[i];
4221 
4222 	    if (!rdp || !rdp->status)
4223 		continue;
4224 	    disk_destroy(&rdp->disk);
4225 	    devstat_remove_entry(&rdp->devstat);
4226 	}
4227 	if (testing || bootverbose)
4228 	    kprintf("ATA PseudoRAID unloaded\n");
4229 #if 0
4230 	kfree(ata_raid_arrays, M_AR);
4231 #endif
4232 	ata_raid_ioctl_func = NULL;
4233 	return 0;
4234 
4235     default:
4236 	return EOPNOTSUPP;
4237     }
4238 }
4239 
4240 static moduledata_t ata_raid_moduledata =
4241     { "ataraid", ata_raid_module_event_handler, NULL };
4242 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4243 MODULE_VERSION(ataraid, 1);
4244 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4245 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4246 
4247 static char *
4248 ata_raid_format(struct ar_softc *rdp)
4249 {
4250     switch (rdp->format) {
4251     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4252     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4253     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4254     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4255     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4256     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4257     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4258     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4259     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4260     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4261     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4262     case AR_F_SII_RAID:         return "Silicon Image Medley";
4263     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4264     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4265     default:                    return "UNKNOWN";
4266     }
4267 }
4268 
4269 static char *
4270 ata_raid_type(struct ar_softc *rdp)
4271 {
4272     switch (rdp->type) {
4273     case AR_T_JBOD:     return "JBOD";
4274     case AR_T_SPAN:     return "SPAN";
4275     case AR_T_RAID0:    return "RAID0";
4276     case AR_T_RAID1:    return "RAID1";
4277     case AR_T_RAID3:    return "RAID3";
4278     case AR_T_RAID4:    return "RAID4";
4279     case AR_T_RAID5:    return "RAID5";
4280     case AR_T_RAID01:   return "RAID0+1";
4281     default:            return "UNKNOWN";
4282     }
4283 }
4284 
4285 static char *
4286 ata_raid_flags(struct ar_softc *rdp)
4287 {
4288     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4289     case AR_S_READY:                                    return "READY";
4290     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4291     case AR_S_READY | AR_S_REBUILDING:
4292     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4293     default:                                            return "BROKEN";
4294     }
4295 }
4296 
4297 /* debugging gunk */
4298 static void
4299 ata_raid_print_meta(struct ar_softc *raid)
4300 {
4301     int i;
4302 
4303     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4304     kprintf("=================================================\n");
4305     kprintf("format              %s\n", ata_raid_format(raid));
4306     kprintf("type                %s\n", ata_raid_type(raid));
4307     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4308 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4309     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4310     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4311     kprintf("generation          %u\n", raid->generation);
4312     kprintf("total_sectors       %ju\n", raid->total_sectors);
4313     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4314     kprintf("heads               %u\n", raid->heads);
4315     kprintf("sectors             %u\n", raid->sectors);
4316     kprintf("cylinders           %u\n", raid->cylinders);
4317     kprintf("width               %u\n", raid->width);
4318     kprintf("interleave          %u\n", raid->interleave);
4319     kprintf("total_disks         %u\n", raid->total_disks);
4320     for (i = 0; i < raid->total_disks; i++) {
4321 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4322 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4323 	if (raid->disks[i].dev) {
4324 	    kprintf("        ");
4325 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4326 			  raid->disks[i].sectors);
4327 	}
4328     }
4329     kprintf("=================================================\n");
4330 }
4331 
4332 static char *
4333 ata_raid_adaptec_type(int type)
4334 {
4335     static char buffer[16];
4336 
4337     switch (type) {
4338     case ADP_T_RAID0:   return "RAID0";
4339     case ADP_T_RAID1:   return "RAID1";
4340     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4341 			return buffer;
4342     }
4343 }
4344 
4345 static void
4346 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4347 {
4348     int i;
4349 
4350     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4351     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4352     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4353     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4354     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4355     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4356     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4357     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4358     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4359     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4360     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4361     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4362 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4363 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4364     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4365 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4366 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4367 
4368     for (i = 0; i < be16toh(meta->total_configs); i++) {
4369 	kprintf("    %d   total_disks  %u\n", i,
4370 	       be16toh(meta->configs[i].disk_number));
4371 	kprintf("    %d   generation   %u\n", i,
4372 	       be16toh(meta->configs[i].generation));
4373 	kprintf("    %d   magic_0      0x%08x\n", i,
4374 	       be32toh(meta->configs[i].magic_0));
4375 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4376 	kprintf("    %d   type         %s\n", i,
4377 	       ata_raid_adaptec_type(meta->configs[i].type));
4378 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4379 	kprintf("    %d   flags        %d\n", i,
4380 	       be32toh(meta->configs[i].flags));
4381 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4382 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4383 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4384 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4385 	kprintf("    %d   disk_number  %u\n", i,
4386 	       be32toh(meta->configs[i].disk_number));
4387 	kprintf("    %d   dummy_6      0x%08x\n", i,
4388 	       be32toh(meta->configs[i].dummy_6));
4389 	kprintf("    %d   sectors      %u\n", i,
4390 	       be32toh(meta->configs[i].sectors));
4391 	kprintf("    %d   stripe_shift %u\n", i,
4392 	       be16toh(meta->configs[i].stripe_shift));
4393 	kprintf("    %d   dummy_7      0x%08x\n", i,
4394 	       be32toh(meta->configs[i].dummy_7));
4395 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4396 	       be32toh(meta->configs[i].dummy_8[0]),
4397 	       be32toh(meta->configs[i].dummy_8[1]),
4398 	       be32toh(meta->configs[i].dummy_8[2]),
4399 	       be32toh(meta->configs[i].dummy_8[3]));
4400 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4401     }
4402     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4403     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4404     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4405     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4406     kprintf("=================================================\n");
4407 }
4408 
4409 static char *
4410 ata_raid_hptv2_type(int type)
4411 {
4412     static char buffer[16];
4413 
4414     switch (type) {
4415     case HPTV2_T_RAID0:         return "RAID0";
4416     case HPTV2_T_RAID1:         return "RAID1";
4417     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4418     case HPTV2_T_SPAN:          return "SPAN";
4419     case HPTV2_T_RAID_3:        return "RAID3";
4420     case HPTV2_T_RAID_5:        return "RAID5";
4421     case HPTV2_T_JBOD:          return "JBOD";
4422     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4423     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4424 			return buffer;
4425     }
4426 }
4427 
4428 static void
4429 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4430 {
4431     int i;
4432 
4433     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4434     kprintf("magic               0x%08x\n", meta->magic);
4435     kprintf("magic_0             0x%08x\n", meta->magic_0);
4436     kprintf("magic_1             0x%08x\n", meta->magic_1);
4437     kprintf("order               0x%08x\n", meta->order);
4438     kprintf("array_width         %u\n", meta->array_width);
4439     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4440     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4441     kprintf("disk_number         %u\n", meta->disk_number);
4442     kprintf("total_sectors       %u\n", meta->total_sectors);
4443     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4444     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4445     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4446     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4447     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4448     kprintf("log_index           0x%02x\n", meta->error_log_index);
4449     if (meta->error_log_entries) {
4450 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4451 	for (i = meta->error_log_index;
4452 	     i < meta->error_log_index + meta->error_log_entries; i++)
4453 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4454 		   meta->errorlog[i%32].timestamp,
4455 		   meta->errorlog[i%32].reason,
4456 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4457 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4458     }
4459     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4460     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4461     kprintf("name_1              <%.15s>\n", meta->name_1);
4462     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4463     kprintf("name_2              <%.15s>\n", meta->name_2);
4464     kprintf("=================================================\n");
4465 }
4466 
4467 static char *
4468 ata_raid_hptv3_type(int type)
4469 {
4470     static char buffer[16];
4471 
4472     switch (type) {
4473     case HPTV3_T_SPARE: return "SPARE";
4474     case HPTV3_T_JBOD:  return "JBOD";
4475     case HPTV3_T_SPAN:  return "SPAN";
4476     case HPTV3_T_RAID0: return "RAID0";
4477     case HPTV3_T_RAID1: return "RAID1";
4478     case HPTV3_T_RAID3: return "RAID3";
4479     case HPTV3_T_RAID5: return "RAID5";
4480     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4481 			return buffer;
4482     }
4483 }
4484 
4485 static void
4486 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4487 {
4488     int i;
4489 
4490     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4491     kprintf("magic               0x%08x\n", meta->magic);
4492     kprintf("magic_0             0x%08x\n", meta->magic_0);
4493     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4494     kprintf("mode                0x%02x\n", meta->mode);
4495     kprintf("user_mode           0x%02x\n", meta->user_mode);
4496     kprintf("config_entries      0x%02x\n", meta->config_entries);
4497     for (i = 0; i < meta->config_entries; i++) {
4498 	kprintf("config %d:\n", i);
4499 	kprintf("    total_sectors       %ju\n",
4500 	       meta->configs[0].total_sectors +
4501 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4502 	kprintf("    type                %s\n",
4503 	       ata_raid_hptv3_type(meta->configs[i].type));
4504 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4505 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4506 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4507 	kprintf("    status              %b\n", meta->configs[i].status,
4508 	       "\20\2RAID5\1NEED_REBUILD\n");
4509 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4510 	kprintf("    rebuild_lba         %ju\n",
4511 	       meta->configs_high[0].rebuild_lba +
4512 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4513     }
4514     kprintf("name                <%.16s>\n", meta->name);
4515     kprintf("timestamp           0x%08x\n", meta->timestamp);
4516     kprintf("description         <%.16s>\n", meta->description);
4517     kprintf("creator             <%.16s>\n", meta->creator);
4518     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4519     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4520     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4521     kprintf("flags               %b\n", meta->flags,
4522 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4523     kprintf("=================================================\n");
4524 }
4525 
4526 static char *
4527 ata_raid_intel_type(int type)
4528 {
4529     static char buffer[16];
4530 
4531     switch (type) {
4532     case INTEL_T_RAID0: return "RAID0";
4533     case INTEL_T_RAID1: return "RAID1";
4534     case INTEL_T_RAID5: return "RAID5";
4535     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4536 			return buffer;
4537     }
4538 }
4539 
4540 static void
4541 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4542 {
4543     struct intel_raid_mapping *map;
4544     int i, j;
4545 
4546     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4547     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4548     kprintf("version             <%.6s>\n", meta->version);
4549     kprintf("checksum            0x%08x\n", meta->checksum);
4550     kprintf("config_size         0x%08x\n", meta->config_size);
4551     kprintf("config_id           0x%08x\n", meta->config_id);
4552     kprintf("generation          0x%08x\n", meta->generation);
4553     kprintf("total_disks         %u\n", meta->total_disks);
4554     kprintf("total_volumes       %u\n", meta->total_volumes);
4555     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4556     for (i = 0; i < meta->total_disks; i++ ) {
4557 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4558 	       meta->disk[i].serial, meta->disk[i].sectors,
4559 	       meta->disk[i].id, meta->disk[i].flags);
4560     }
4561     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4562     for (j = 0; j < meta->total_volumes; j++) {
4563 	kprintf("name                %.16s\n", map->name);
4564 	kprintf("total_sectors       %ju\n", map->total_sectors);
4565 	kprintf("state               %u\n", map->state);
4566 	kprintf("reserved            %u\n", map->reserved);
4567 	kprintf("offset              %u\n", map->offset);
4568 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4569 	kprintf("stripe_count        %u\n", map->stripe_count);
4570 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4571 	kprintf("status              %u\n", map->status);
4572 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4573 	kprintf("total_disks         %u\n", map->total_disks);
4574 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4575 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4576 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4577 	for (i = 0; i < map->total_disks; i++ ) {
4578 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4579 	}
4580 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4581     }
4582     kprintf("=================================================\n");
4583 }
4584 
4585 static char *
4586 ata_raid_ite_type(int type)
4587 {
4588     static char buffer[16];
4589 
4590     switch (type) {
4591     case ITE_T_RAID0:   return "RAID0";
4592     case ITE_T_RAID1:   return "RAID1";
4593     case ITE_T_RAID01:  return "RAID0+1";
4594     case ITE_T_SPAN:    return "SPAN";
4595     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4596 			return buffer;
4597     }
4598 }
4599 
4600 static void
4601 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4602 {
4603     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4604     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4605     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4606 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4607 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4608 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4609     kprintf("total_sectors       %jd\n", meta->total_sectors);
4610     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4611     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4612     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4613 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4614 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4615 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4616     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4617     kprintf("array_width         %u\n", meta->array_width);
4618     kprintf("disk_number         %u\n", meta->disk_number);
4619     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4620     kprintf("=================================================\n");
4621 }
4622 
4623 static char *
4624 ata_raid_jmicron_type(int type)
4625 {
4626     static char buffer[16];
4627 
4628     switch (type) {
4629     case JM_T_RAID0:	return "RAID0";
4630     case JM_T_RAID1:	return "RAID1";
4631     case JM_T_RAID01:	return "RAID0+1";
4632     case JM_T_JBOD:	return "JBOD";
4633     case JM_T_RAID5:	return "RAID5";
4634     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4635 			return buffer;
4636     }
4637 }
4638 
4639 static void
4640 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4641 {
4642     int i;
4643 
4644     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4645     kprintf("signature           %.2s\n", meta->signature);
4646     kprintf("version             0x%04x\n", meta->version);
4647     kprintf("checksum            0x%04x\n", meta->checksum);
4648     kprintf("disk_id             0x%08x\n", meta->disk_id);
4649     kprintf("offset              0x%08x\n", meta->offset);
4650     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4651     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4652     kprintf("name                %.16s\n", meta->name);
4653     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4654     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4655     kprintf("flags               0x%04x\n", meta->flags);
4656     kprintf("spare:\n");
4657     for (i=0; i < 2 && meta->spare[i]; i++)
4658 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4659     kprintf("disks:\n");
4660     for (i=0; i < 8 && meta->disks[i]; i++)
4661 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4662     kprintf("=================================================\n");
4663 }
4664 
4665 static char *
4666 ata_raid_lsiv2_type(int type)
4667 {
4668     static char buffer[16];
4669 
4670     switch (type) {
4671     case LSIV2_T_RAID0: return "RAID0";
4672     case LSIV2_T_RAID1: return "RAID1";
4673     case LSIV2_T_SPARE: return "SPARE";
4674     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4675 			return buffer;
4676     }
4677 }
4678 
4679 static void
4680 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4681 {
4682     int i;
4683 
4684     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4685     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4686     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4687     kprintf("flags               0x%02x\n", meta->flags);
4688     kprintf("version             0x%04x\n", meta->version);
4689     kprintf("config_entries      0x%02x\n", meta->config_entries);
4690     kprintf("raid_count          0x%02x\n", meta->raid_count);
4691     kprintf("total_disks         0x%02x\n", meta->total_disks);
4692     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4693     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4694     for (i = 0; i < meta->config_entries; i++) {
4695 	kprintf("    type             %s\n",
4696 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4697 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4698 	kprintf("    stripe_sectors   %u\n",
4699 	       meta->configs[i].raid.stripe_sectors);
4700 	kprintf("    array_width      %u\n",
4701 	       meta->configs[i].raid.array_width);
4702 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4703 	kprintf("    config_offset    %u\n",
4704 	       meta->configs[i].raid.config_offset);
4705 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4706 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4707 	kprintf("    total_sectors    %u\n",
4708 	       meta->configs[i].raid.total_sectors);
4709     }
4710     kprintf("disk_number         0x%02x\n", meta->disk_number);
4711     kprintf("raid_number         0x%02x\n", meta->raid_number);
4712     kprintf("timestamp           0x%08x\n", meta->timestamp);
4713     kprintf("=================================================\n");
4714 }
4715 
4716 static char *
4717 ata_raid_lsiv3_type(int type)
4718 {
4719     static char buffer[16];
4720 
4721     switch (type) {
4722     case LSIV3_T_RAID0: return "RAID0";
4723     case LSIV3_T_RAID1: return "RAID1";
4724     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4725 			return buffer;
4726     }
4727 }
4728 
4729 static void
4730 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4731 {
4732     int i;
4733 
4734     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4735     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4736     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4737     kprintf("version             0x%04x\n", meta->version);
4738     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4739     kprintf("RAID configs:\n");
4740     for (i = 0; i < 8; i++) {
4741 	if (meta->raid[i].total_disks) {
4742 	    kprintf("%02d  stripe_pages       %u\n", i,
4743 		   meta->raid[i].stripe_pages);
4744 	    kprintf("%02d  type               %s\n", i,
4745 		   ata_raid_lsiv3_type(meta->raid[i].type));
4746 	    kprintf("%02d  total_disks        %u\n", i,
4747 		   meta->raid[i].total_disks);
4748 	    kprintf("%02d  array_width        %u\n", i,
4749 		   meta->raid[i].array_width);
4750 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4751 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4752 	    kprintf("%02d  device             0x%02x\n", i,
4753 		   meta->raid[i].device);
4754 	}
4755     }
4756     kprintf("DISK configs:\n");
4757     for (i = 0; i < 6; i++) {
4758 	    if (meta->disk[i].disk_sectors) {
4759 	    kprintf("%02d  disk_sectors       %u\n", i,
4760 		   meta->disk[i].disk_sectors);
4761 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4762 	}
4763     }
4764     kprintf("device              0x%02x\n", meta->device);
4765     kprintf("timestamp           0x%08x\n", meta->timestamp);
4766     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4767     kprintf("=================================================\n");
4768 }
4769 
4770 static char *
4771 ata_raid_nvidia_type(int type)
4772 {
4773     static char buffer[16];
4774 
4775     switch (type) {
4776     case NV_T_SPAN:     return "SPAN";
4777     case NV_T_RAID0:    return "RAID0";
4778     case NV_T_RAID1:    return "RAID1";
4779     case NV_T_RAID3:    return "RAID3";
4780     case NV_T_RAID5:    return "RAID5";
4781     case NV_T_RAID01:   return "RAID0+1";
4782     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4783 			return buffer;
4784     }
4785 }
4786 
4787 static void
4788 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4789 {
4790     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4791     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4792     kprintf("config_size         %d\n", meta->config_size);
4793     kprintf("checksum            0x%08x\n", meta->checksum);
4794     kprintf("version             0x%04x\n", meta->version);
4795     kprintf("disk_number         %d\n", meta->disk_number);
4796     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4797     kprintf("total_sectors       %d\n", meta->total_sectors);
4798     kprintf("sectors_size        %d\n", meta->sector_size);
4799     kprintf("serial              %.16s\n", meta->serial);
4800     kprintf("revision            %.4s\n", meta->revision);
4801     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4802     kprintf("magic_0             0x%08x\n", meta->magic_0);
4803     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4804     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4805     kprintf("flags               0x%02x\n", meta->flags);
4806     kprintf("array_width         %d\n", meta->array_width);
4807     kprintf("total_disks         %d\n", meta->total_disks);
4808     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4809     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4810     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4811     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4812     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4813     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4814     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4815     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4816     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4817     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4818     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4819     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4820     kprintf("status              0x%08x\n", meta->status);
4821     kprintf("=================================================\n");
4822 }
4823 
4824 static char *
4825 ata_raid_promise_type(int type)
4826 {
4827     static char buffer[16];
4828 
4829     switch (type) {
4830     case PR_T_RAID0:    return "RAID0";
4831     case PR_T_RAID1:    return "RAID1";
4832     case PR_T_RAID3:    return "RAID3";
4833     case PR_T_RAID5:    return "RAID5";
4834     case PR_T_SPAN:     return "SPAN";
4835     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4836 			return buffer;
4837     }
4838 }
4839 
4840 static void
4841 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4842 {
4843     int i;
4844 
4845     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4846     kprintf("promise_id          <%s>\n", meta->promise_id);
4847     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4848     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4849     kprintf("magic_1             0x%04x\n", meta->magic_1);
4850     kprintf("magic_2             0x%08x\n", meta->magic_2);
4851     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4852 		meta->raid.integrity, "\20\10VALID\n" );
4853     kprintf("flags               0x%02x %b\n",
4854 	   meta->raid.flags, meta->raid.flags,
4855 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4856 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4857     kprintf("disk_number         %d\n", meta->raid.disk_number);
4858     kprintf("channel             0x%02x\n", meta->raid.channel);
4859     kprintf("device              0x%02x\n", meta->raid.device);
4860     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4861     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4862     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4863     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4864     kprintf("generation          0x%04x\n", meta->raid.generation);
4865     kprintf("status              0x%02x %b\n",
4866 	    meta->raid.status, meta->raid.status,
4867 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4868     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4869     kprintf("total_disks         %u\n", meta->raid.total_disks);
4870     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4871     kprintf("array_width         %u\n", meta->raid.array_width);
4872     kprintf("array_number        %u\n", meta->raid.array_number);
4873     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4874     kprintf("cylinders           %u\n", meta->raid.cylinders);
4875     kprintf("heads               %u\n", meta->raid.heads);
4876     kprintf("sectors             %u\n", meta->raid.sectors);
4877     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4878     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4879     for (i = 0; i < 8; i++) {
4880 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4881 	       i, meta->raid.disk[i].flags,
4882 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4883 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4884 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4885 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4886     }
4887     kprintf("checksum            0x%08x\n", meta->checksum);
4888     kprintf("=================================================\n");
4889 }
4890 
4891 static char *
4892 ata_raid_sii_type(int type)
4893 {
4894     static char buffer[16];
4895 
4896     switch (type) {
4897     case SII_T_RAID0:   return "RAID0";
4898     case SII_T_RAID1:   return "RAID1";
4899     case SII_T_RAID01:  return "RAID0+1";
4900     case SII_T_SPARE:   return "SPARE";
4901     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4902 			return buffer;
4903     }
4904 }
4905 
4906 static void
4907 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4908 {
4909     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4910     kprintf("total_sectors       %ju\n", meta->total_sectors);
4911     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4912     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4913     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4914     kprintf("version_minor       0x%04x\n", meta->version_minor);
4915     kprintf("version_major       0x%04x\n", meta->version_major);
4916     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4917 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4918 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4919     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4920     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4921     kprintf("disk_number         %u\n", meta->disk_number);
4922     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4923     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4924     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4925     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4926     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4927     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4928     kprintf("generation          0x%08x\n", meta->generation);
4929     kprintf("status              0x%02x %b\n",
4930 	    meta->status, meta->status,
4931 	   "\20\1READY\n");
4932     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4933     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4934     kprintf("position            %02x\n", meta->position);
4935     kprintf("dummy_3             %04x\n", meta->dummy_3);
4936     kprintf("name                <%.16s>\n", meta->name);
4937     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4938     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4939     kprintf("=================================================\n");
4940 }
4941 
4942 static char *
4943 ata_raid_sis_type(int type)
4944 {
4945     static char buffer[16];
4946 
4947     switch (type) {
4948     case SIS_T_JBOD:    return "JBOD";
4949     case SIS_T_RAID0:   return "RAID0";
4950     case SIS_T_RAID1:   return "RAID1";
4951     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4952 			return buffer;
4953     }
4954 }
4955 
4956 static void
4957 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4958 {
4959     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4960     kprintf("magic               0x%04x\n", meta->magic);
4961     kprintf("disks               0x%02x\n", meta->disks);
4962     kprintf("type                %s\n",
4963 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4964     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4965     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4966     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4967     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4968     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4969     kprintf("timestamp           0x%08x\n", meta->timestamp);
4970     kprintf("model               %.40s\n", meta->model);
4971     kprintf("disk_number         %u\n", meta->disk_number);
4972     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4973 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4974     kprintf("=================================================\n");
4975 }
4976 
4977 static char *
4978 ata_raid_via_type(int type)
4979 {
4980     static char buffer[16];
4981 
4982     switch (type) {
4983     case VIA_T_RAID0:   return "RAID0";
4984     case VIA_T_RAID1:   return "RAID1";
4985     case VIA_T_RAID5:   return "RAID5";
4986     case VIA_T_RAID01:  return "RAID0+1";
4987     case VIA_T_SPAN:    return "SPAN";
4988     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4989 			return buffer;
4990     }
4991 }
4992 
4993 static void
4994 ata_raid_via_print_meta(struct via_raid_conf *meta)
4995 {
4996     int i;
4997 
4998     kprintf("*************** ATA VIA Metadata ****************\n");
4999     kprintf("magic               0x%02x\n", meta->magic);
5000     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5001     kprintf("type                %s\n",
5002 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5003     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5004     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5005     kprintf("disk_index          0x%02x\n", meta->disk_index);
5006     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5007     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5008     kprintf(" stripe_sectors     %d\n",
5009 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5010     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5011     kprintf("disk_id             0x%08x\n", meta->disk_id);
5012     kprintf("DISK#   disk_id\n");
5013     for (i = 0; i < 8; i++) {
5014 	if (meta->disks[i])
5015 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5016     }
5017     kprintf("checksum            0x%02x\n", meta->checksum);
5018     kprintf("=================================================\n");
5019 }
5020