xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 89be26e1)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/devicestat.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 0, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154 
155     devstat_add_entry(&rdp->devstat, "ar", rdp->lun,
156 	DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS,
157 	DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
158 	DEVSTAT_PRIORITY_ARRAY);
159 
160     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
161     cdev->si_drv1 = rdp;
162     cdev->si_iosize_max = 128 * DEV_BSIZE;
163     rdp->cdev = cdev;
164 
165     bzero(&info, sizeof(info));
166     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
167     info.d_media_blocks = rdp->total_sectors;
168 
169     info.d_secpertrack = rdp->sectors;		/* optional */
170     info.d_nheads = rdp->heads;
171     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
172     info.d_secpercyl = rdp->sectors * rdp->heads;
173 
174     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
175 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
176 	   ata_raid_format(rdp), ata_raid_type(rdp),
177 	   buffer, ata_raid_flags(rdp));
178 
179     if (testing || bootverbose)
180 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
181 	       rdp->lun, rdp->total_sectors,
182 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
183 
184     for (disk = 0; disk < rdp->total_disks; disk++) {
185 	kprintf("ar%d: disk%d ", rdp->lun, disk);
186 	if (rdp->disks[disk].dev) {
187 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
188 		/* status of this disk in the array */
189 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
190 		    kprintf("READY ");
191 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
192 		    kprintf("SPARE ");
193 		else
194 		    kprintf("FREE  ");
195 
196 		/* what type of disk is this in the array */
197 		switch (rdp->type) {
198 		case AR_T_RAID1:
199 		case AR_T_RAID01:
200 		    if (disk < rdp->width)
201 			kprintf("(master) ");
202 		    else
203 			kprintf("(mirror) ");
204 		}
205 
206 		/* which physical disk is used */
207 		kprintf("using %s at ata%d-%s\n",
208 		       device_get_nameunit(rdp->disks[disk].dev),
209 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
210 		       (((struct ata_device *)
211 			 device_get_softc(rdp->disks[disk].dev))->unit ==
212 			 ATA_MASTER) ? "master" : "slave");
213 	    }
214 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
215 		kprintf("DOWN\n");
216 	    else
217 		kprintf("INVALID no RAID config on this subdisk\n");
218 	}
219 	else
220 	    kprintf("DOWN no device found for this subdisk\n");
221     }
222 
223     disk_setdiskinfo(&rdp->disk, &info);
224 }
225 
226 /*
227  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
228  * to the dev_ops way, because it's just chained from the generic ata ioctl.
229  */
230 static int
231 ata_raid_ioctl(u_long cmd, caddr_t data)
232 {
233     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
234     int *lun = (int *)data;
235     int error = EOPNOTSUPP;
236 
237     switch (cmd) {
238     case IOCATARAIDSTATUS:
239 	error = ata_raid_status(config);
240 	break;
241 
242     case IOCATARAIDCREATE:
243 	error = ata_raid_create(config);
244 	break;
245 
246     case IOCATARAIDDELETE:
247 	error = ata_raid_delete(*lun);
248 	break;
249 
250     case IOCATARAIDADDSPARE:
251 	error = ata_raid_addspare(config);
252 	break;
253 
254     case IOCATARAIDREBUILD:
255 	error = ata_raid_rebuild(*lun);
256 	break;
257     }
258     return error;
259 }
260 
261 static int
262 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
263 {
264     struct ata_request *request;
265     device_t dev;
266     int disk;
267 
268     bp->bio_driver_info = NULL;
269 
270     for (disk = 0; disk < rdp->total_disks; disk++) {
271 	if ((dev = rdp->disks[disk].dev) != NULL)
272 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
273     }
274     for (disk = 0; disk < rdp->total_disks; disk++) {
275 	if ((dev = rdp->disks[disk].dev) == NULL)
276 	    continue;
277 	if (!(request = ata_raid_init_request(rdp, bp)))
278 	    return ENOMEM;
279 	request->dev = dev;
280 	request->u.ata.command = ATA_FLUSHCACHE;
281 	request->u.ata.lba = 0;
282 	request->u.ata.count = 0;
283 	request->u.ata.feature = 0;
284 	request->timeout = 1;
285 	request->retries = 0;
286 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
287 	ata_queue_request(request);
288     }
289     return 0;
290 }
291 
292 /*
293  * XXX TGEN there are a lot of offset -> block number conversions going on
294  * here, which is suboptimal.
295  */
296 static int
297 ata_raid_strategy(struct dev_strategy_args *ap)
298 {
299     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
300     struct bio *bp = ap->a_bio;
301     struct buf *bbp = bp->bio_buf;
302     struct ata_request *request;
303     caddr_t data;
304     u_int64_t blkno, lba, blk = 0;
305     int count, chunk, drv, par = 0, change = 0;
306 
307     if (bbp->b_cmd == BUF_CMD_FLUSH) {
308 	int error;
309 
310 	error = ata_raid_flush(rdp, bp);
311 	if (error != 0) {
312 		bbp->b_flags |= B_ERROR;
313 		bbp->b_error = error;
314 		biodone(bp);
315 	}
316 	return(0);
317     }
318 
319     if (!(rdp->status & AR_S_READY) ||
320 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
321 	bbp->b_flags |= B_ERROR;
322 	bbp->b_error = EIO;
323 	biodone(bp);
324 	return(0);
325     }
326 
327     bbp->b_resid = bbp->b_bcount;
328     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
329 	 /* bio_offset is byte granularity, convert */
330 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
331 	 data = bbp->b_data;
332 	 count > 0;
333 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
334 
335 	switch (rdp->type) {
336 	case AR_T_RAID1:
337 	    drv = 0;
338 	    lba = blkno;
339 	    chunk = count;
340 	    break;
341 
342 	case AR_T_JBOD:
343 	case AR_T_SPAN:
344 	    drv = 0;
345 	    lba = blkno;
346 	    while (lba >= rdp->disks[drv].sectors)
347 		lba -= rdp->disks[drv++].sectors;
348 	    chunk = min(rdp->disks[drv].sectors - lba, count);
349 	    break;
350 
351 	case AR_T_RAID0:
352 	case AR_T_RAID01:
353 	    chunk = blkno % rdp->interleave;
354 	    drv = (blkno / rdp->interleave) % rdp->width;
355 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
356 	    chunk = min(count, rdp->interleave - chunk);
357 	    break;
358 
359 	case AR_T_RAID5:
360 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
361 	    par = rdp->width - 1 -
362 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
363 	    if (drv >= par)
364 		drv++;
365 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
366 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
367 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
368 	    break;
369 
370 	default:
371 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
372 	    bbp->b_flags |= B_ERROR;
373 	    bbp->b_error = EIO;
374 	    biodone(bp);
375 	    return(0);
376 	}
377 
378 	/* offset on all but "first on HPTv2" */
379 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
380 	    lba += rdp->offset_sectors;
381 
382 	if (!(request = ata_raid_init_request(rdp, bp))) {
383 	    bbp->b_flags |= B_ERROR;
384 	    bbp->b_error = EIO;
385 	    biodone(bp);
386 	    return(0);
387 	}
388 	request->data = data;
389 	request->bytecount = chunk * DEV_BSIZE;
390 	request->u.ata.lba = lba;
391 	request->u.ata.count = request->bytecount / DEV_BSIZE;
392 
393 	devstat_start_transaction(&rdp->devstat);
394 	switch (rdp->type) {
395 	case AR_T_JBOD:
396 	case AR_T_SPAN:
397 	case AR_T_RAID0:
398 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
399 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
400 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
401 		ata_raid_config_changed(rdp, 1);
402 		ata_free_request(request);
403 		bbp->b_flags |= B_ERROR;
404 		bbp->b_error = EIO;
405 		biodone(bp);
406 		return(0);
407 	    }
408 	    request->this = drv;
409 	    request->dev = rdp->disks[request->this].dev;
410 	    ata_raid_send_request(request);
411 	    break;
412 
413 	case AR_T_RAID1:
414 	case AR_T_RAID01:
415 	    if ((rdp->disks[drv].flags &
416 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
417 		!rdp->disks[drv].dev) {
418 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
419 		change = 1;
420 	    }
421 	    if ((rdp->disks[drv + rdp->width].flags &
422 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
423 		!rdp->disks[drv + rdp->width].dev) {
424 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
425 		change = 1;
426 	    }
427 	    if (change)
428 		ata_raid_config_changed(rdp, 1);
429 	    if (!(rdp->status & AR_S_READY)) {
430 		ata_free_request(request);
431 		bbp->b_flags |= B_ERROR;
432 		bbp->b_error = EIO;
433 		biodone(bp);
434 		return(0);
435 	    }
436 
437 	    if (rdp->status & AR_S_REBUILDING)
438 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
439 		      (rdp->interleave * (drv % rdp->width)) +
440 		      lba % rdp->interleave;
441 
442 	    if (bbp->b_cmd == BUF_CMD_READ) {
443 		int src_online =
444 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
445 		int mir_online =
446 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
447 
448 		/* if mirror gone or close to last access on source */
449 		if (!mir_online ||
450 		    ((src_online) &&
451 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
452 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
453 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
454 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
455 		    rdp->toggle = 0;
456 		}
457 		/* if source gone or close to last access on mirror */
458 		else if (!src_online ||
459 			 ((mir_online) &&
460 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
461 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
462 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
463 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
464 		    drv += rdp->width;
465 		    rdp->toggle = 1;
466 		}
467 		/* not close to any previous access, toggle */
468 		else {
469 		    if (rdp->toggle)
470 			rdp->toggle = 0;
471 		    else {
472 			drv += rdp->width;
473 			rdp->toggle = 1;
474 		    }
475 		}
476 
477 		if ((rdp->status & AR_S_REBUILDING) &&
478 		    (blk <= rdp->rebuild_lba) &&
479 		    ((blk + chunk) > rdp->rebuild_lba)) {
480 		    struct ata_composite *composite;
481 		    struct ata_request *rebuild;
482 		    int this;
483 
484 		    /* figure out what part to rebuild */
485 		    if (drv < rdp->width)
486 			this = drv + rdp->width;
487 		    else
488 			this = drv - rdp->width;
489 
490 		    /* do we have a spare to rebuild on ? */
491 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
492 			if ((composite = ata_alloc_composite())) {
493 			    if ((rebuild = ata_alloc_request())) {
494 				rdp->rebuild_lba = blk + chunk;
495 				bcopy(request, rebuild,
496 				      sizeof(struct ata_request));
497 				rebuild->this = this;
498 				rebuild->dev = rdp->disks[this].dev;
499 				rebuild->flags &= ~ATA_R_READ;
500 				rebuild->flags |= ATA_R_WRITE;
501 				spin_init(&composite->lock);
502 				composite->residual = request->bytecount;
503 				composite->rd_needed |= (1 << drv);
504 				composite->wr_depend |= (1 << drv);
505 				composite->wr_needed |= (1 << this);
506 				composite->request[drv] = request;
507 				composite->request[this] = rebuild;
508 				request->composite = composite;
509 				rebuild->composite = composite;
510 				ata_raid_send_request(rebuild);
511 			    }
512 			    else {
513 				ata_free_composite(composite);
514 				kprintf("DOH! ata_alloc_request failed!\n");
515 			    }
516 			}
517 			else {
518 			    kprintf("DOH! ata_alloc_composite failed!\n");
519 			}
520 		    }
521 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
522 			/*
523 			 * if we got here we are a chunk of a RAID01 that
524 			 * does not need a rebuild, but we need to increment
525 			 * the rebuild_lba address to get the rebuild to
526 			 * move to the next chunk correctly
527 			 */
528 			rdp->rebuild_lba = blk + chunk;
529 		    }
530 		    else
531 			kprintf("DOH! we didn't find the rebuild part\n");
532 		}
533 	    }
534 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
535 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
536 		    ((rdp->status & AR_S_REBUILDING) &&
537 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
538 		     ((blk < rdp->rebuild_lba) ||
539 		      ((blk <= rdp->rebuild_lba) &&
540 		       ((blk + chunk) > rdp->rebuild_lba))))) {
541 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
542 			((rdp->status & AR_S_REBUILDING) &&
543 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
544 			 ((blk < rdp->rebuild_lba) ||
545 			  ((blk <= rdp->rebuild_lba) &&
546 			   ((blk + chunk) > rdp->rebuild_lba))))) {
547 			struct ata_request *mirror;
548 			struct ata_composite *composite;
549 			int this = drv + rdp->width;
550 
551 			if ((composite = ata_alloc_composite())) {
552 			    if ((mirror = ata_alloc_request())) {
553 				if ((blk <= rdp->rebuild_lba) &&
554 				    ((blk + chunk) > rdp->rebuild_lba))
555 				    rdp->rebuild_lba = blk + chunk;
556 				bcopy(request, mirror,
557 				      sizeof(struct ata_request));
558 				mirror->this = this;
559 				mirror->dev = rdp->disks[this].dev;
560 				spin_init(&composite->lock);
561 				composite->residual = request->bytecount;
562 				composite->wr_needed |= (1 << drv);
563 				composite->wr_needed |= (1 << this);
564 				composite->request[drv] = request;
565 				composite->request[this] = mirror;
566 				request->composite = composite;
567 				mirror->composite = composite;
568 				ata_raid_send_request(mirror);
569 				rdp->disks[this].last_lba =
570 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
571 				    chunk;
572 			    }
573 			    else {
574 				ata_free_composite(composite);
575 				kprintf("DOH! ata_alloc_request failed!\n");
576 			    }
577 			}
578 			else {
579 			    kprintf("DOH! ata_alloc_composite failed!\n");
580 			}
581 		    }
582 		    else
583 			drv += rdp->width;
584 		}
585 	    }
586 	    request->this = drv;
587 	    request->dev = rdp->disks[request->this].dev;
588 	    ata_raid_send_request(request);
589 	    rdp->disks[request->this].last_lba =
590 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
591 	    break;
592 
593 	case AR_T_RAID5:
594 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
595 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
596 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
597 		change = 1;
598 	    }
599 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
600 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
601 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
602 		change = 1;
603 	    }
604 	    if (change)
605 		ata_raid_config_changed(rdp, 1);
606 	    if (!(rdp->status & AR_S_READY)) {
607 		ata_free_request(request);
608 		bbp->b_flags |= B_ERROR;
609 		bbp->b_error = EIO;
610 		biodone(bp);
611 		return(0);
612 	    }
613 	    if (rdp->status & AR_S_DEGRADED) {
614 		/* do the XOR game if possible */
615 	    }
616 	    else {
617 		request->this = drv;
618 		request->dev = rdp->disks[request->this].dev;
619 		if (bbp->b_cmd == BUF_CMD_READ) {
620 		    ata_raid_send_request(request);
621 		}
622 		if (bbp->b_cmd == BUF_CMD_WRITE) {
623 		    ata_raid_send_request(request);
624 		    /* XXX TGEN no, I don't speak Danish either */
625 		    /*
626 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
627 		     * par kopi af request
628 		     * l�se orgdata fra drv
629 		     * skriv nydata til drv
630 		     * l�se parorgdata fra par
631 		     * skriv orgdata xor parorgdata xor nydata til par
632 		     */
633 		}
634 	    }
635 	    break;
636 
637 	default:
638 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
639 	}
640     }
641 
642     return(0);
643 }
644 
645 static void
646 ata_raid_done(struct ata_request *request)
647 {
648     struct ar_softc *rdp = request->driver;
649     struct ata_composite *composite = NULL;
650     struct bio *bp = request->bio;
651     struct buf *bbp = bp->bio_buf;
652     int i, mirror, finished = 0;
653 
654     if (bbp->b_cmd == BUF_CMD_FLUSH) {
655 	if (bbp->b_error == 0)
656 		bbp->b_error = request->result;
657 	ata_free_request(request);
658 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
659 	if ((intptr_t)bp->bio_driver_info == 0) {
660 		if (bbp->b_error)
661 			bbp->b_flags |= B_ERROR;
662 		biodone(bp);
663 	}
664 	return;
665     }
666 
667     switch (rdp->type) {
668     case AR_T_JBOD:
669     case AR_T_SPAN:
670     case AR_T_RAID0:
671 	if (request->result) {
672 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
673 	    ata_raid_config_changed(rdp, 1);
674 	    bbp->b_error = request->result;
675 	    finished = 1;
676 	}
677 	else {
678 	    bbp->b_resid -= request->donecount;
679 	    if (!bbp->b_resid)
680 		finished = 1;
681 	}
682 	break;
683 
684     case AR_T_RAID1:
685     case AR_T_RAID01:
686 	if (request->this < rdp->width)
687 	    mirror = request->this + rdp->width;
688 	else
689 	    mirror = request->this - rdp->width;
690 	if (request->result) {
691 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
692 	    ata_raid_config_changed(rdp, 1);
693 	}
694 	if (rdp->status & AR_S_READY) {
695 	    u_int64_t blk = 0;
696 
697 	    if (rdp->status & AR_S_REBUILDING)
698 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
699 		      rdp->interleave + (rdp->interleave *
700 		      (request->this % rdp->width)) +
701 		      request->u.ata.lba % rdp->interleave;
702 
703 	    if (bbp->b_cmd == BUF_CMD_READ) {
704 
705 		/* is this a rebuild composite */
706 		if ((composite = request->composite)) {
707 		    spin_lock(&composite->lock);
708 
709 		    /* handle the read part of a rebuild composite */
710 		    if (request->flags & ATA_R_READ) {
711 
712 			/* if read failed array is now broken */
713 			if (request->result) {
714 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
715 			    ata_raid_config_changed(rdp, 1);
716 			    bbp->b_error = request->result;
717 			    rdp->rebuild_lba = blk;
718 			    finished = 1;
719 			}
720 
721 			/* good data, update how far we've gotten */
722 			else {
723 			    bbp->b_resid -= request->donecount;
724 			    composite->residual -= request->donecount;
725 			    if (!composite->residual) {
726 				if (composite->wr_done & (1 << mirror))
727 				    finished = 1;
728 			    }
729 			}
730 		    }
731 
732 		    /* handle the write part of a rebuild composite */
733 		    else if (request->flags & ATA_R_WRITE) {
734 			if (composite->rd_done & (1 << mirror)) {
735 			    if (request->result) {
736 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
737 				rdp->rebuild_lba = blk;
738 			    }
739 			    if (!composite->residual)
740 				finished = 1;
741 			}
742 		    }
743 		    spin_unlock(&composite->lock);
744 		}
745 
746 		/* if read failed retry on the mirror */
747 		else if (request->result) {
748 		    request->dev = rdp->disks[mirror].dev;
749 		    request->flags &= ~ATA_R_TIMEOUT;
750 		    ata_raid_send_request(request);
751 		    return;
752 		}
753 
754 		/* we have good data */
755 		else {
756 		    bbp->b_resid -= request->donecount;
757 		    if (!bbp->b_resid)
758 			finished = 1;
759 		}
760 	    }
761 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
762 		/* do we have a mirror or rebuild to deal with ? */
763 		if ((composite = request->composite)) {
764 		    spin_lock(&composite->lock);
765 		    if (composite->wr_done & (1 << mirror)) {
766 			if (request->result) {
767 			    if (composite->request[mirror]->result) {
768 				kprintf("DOH! all disks failed and got here\n");
769 				bbp->b_error = EIO;
770 			    }
771 			    if (rdp->status & AR_S_REBUILDING) {
772 				rdp->rebuild_lba = blk;
773 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
774 			    }
775 			    bbp->b_resid -=
776 				composite->request[mirror]->donecount;
777 			    composite->residual -=
778 				composite->request[mirror]->donecount;
779 			}
780 			else {
781 			    bbp->b_resid -= request->donecount;
782 			    composite->residual -= request->donecount;
783 			}
784 			if (!composite->residual)
785 			    finished = 1;
786 		    }
787 		    spin_unlock(&composite->lock);
788 		}
789 		/* no mirror we are done */
790 		else {
791 		    bbp->b_resid -= request->donecount;
792 		    if (!bbp->b_resid)
793 			finished = 1;
794 		}
795 	    }
796 	}
797 	else {
798 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
799 	    bbp->b_error = request->result;
800 	    biodone(bp);
801 	}
802 	break;
803 
804     case AR_T_RAID5:
805 	if (request->result) {
806 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
807 	    ata_raid_config_changed(rdp, 1);
808 	    if (rdp->status & AR_S_READY) {
809 		if (bbp->b_cmd == BUF_CMD_READ) {
810 		    /* do the XOR game to recover data */
811 		}
812 		if (bbp->b_cmd == BUF_CMD_WRITE) {
813 		    /* if the parity failed we're OK sortof */
814 		    /* otherwise wee need to do the XOR long dance */
815 		}
816 		finished = 1;
817 	    }
818 	    else {
819 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
820 		bbp->b_error = request->result;
821 		biodone(bp);
822 	    }
823 	}
824 	else {
825 	    /* did we have an XOR game going ?? */
826 	    bbp->b_resid -= request->donecount;
827 	    if (!bbp->b_resid)
828 		finished = 1;
829 	}
830 	break;
831 
832     default:
833 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
834     }
835 
836     devstat_end_transaction_buf(&rdp->devstat, bbp);
837     if (finished) {
838 	if ((rdp->status & AR_S_REBUILDING) &&
839 	    rdp->rebuild_lba >= rdp->total_sectors) {
840 	    int disk;
841 
842 	    for (disk = 0; disk < rdp->total_disks; disk++) {
843 		if ((rdp->disks[disk].flags &
844 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
845 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
846 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
847 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
848 		}
849 	    }
850 	    rdp->status &= ~AR_S_REBUILDING;
851 	    ata_raid_config_changed(rdp, 1);
852 	}
853 	if (!bbp->b_resid)
854 	    biodone(bp);
855     }
856 
857     if (composite) {
858 	if (finished) {
859 	    /* we are done with this composite, free all resources */
860 	    for (i = 0; i < 32; i++) {
861 		if (composite->rd_needed & (1 << i) ||
862 		    composite->wr_needed & (1 << i)) {
863 		    ata_free_request(composite->request[i]);
864 		}
865 	    }
866 	    spin_uninit(&composite->lock);
867 	    ata_free_composite(composite);
868 	}
869     }
870     else
871 	ata_free_request(request);
872 }
873 
874 static int
875 ata_raid_dump(struct dev_dump_args *ap)
876 {
877 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
878 	struct buf dbuf;
879 	int error = 0;
880 	int disk;
881 
882 	if (ap->a_length == 0) {
883 		/* flush subdisk buffers to media */
884 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
885 			if (rdp->disks[disk].dev) {
886 				error |= ata_controlcmd(rdp->disks[disk].dev,
887 						ATA_FLUSHCACHE, 0, 0, 0);
888 			}
889 		}
890 		return (error ? EIO : 0);
891 	}
892 
893 	bzero(&dbuf, sizeof(struct buf));
894 	initbufbio(&dbuf);
895 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
896 	/* bio_offset is byte granularity, convert block granularity a_blkno */
897 	dbuf.b_bio1.bio_offset = ap->a_offset;
898 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
899 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
900 	dbuf.b_bio1.bio_done = biodone_sync;
901 	dbuf.b_bcount = ap->a_length;
902 	dbuf.b_data = ap->a_virtual;
903 	dbuf.b_cmd = BUF_CMD_WRITE;
904 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
905 	/* wait for completion, unlock the buffer, check status */
906 	if (biowait(&dbuf.b_bio1, "dumpw")) {
907 	    BUF_UNLOCK(&dbuf);
908 	    return(dbuf.b_error ? dbuf.b_error : EIO);
909 	}
910 	BUF_UNLOCK(&dbuf);
911 	uninitbufbio(&dbuf);
912 
913 	return 0;
914 }
915 
916 static void
917 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
918 {
919     int disk, count, status;
920 
921     spin_lock(&rdp->lock);
922     /* set default all working mode */
923     status = rdp->status;
924     rdp->status &= ~AR_S_DEGRADED;
925     rdp->status |= AR_S_READY;
926 
927     /* make sure all lost drives are accounted for */
928     for (disk = 0; disk < rdp->total_disks; disk++) {
929 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
930 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
931     }
932 
933     /* depending on RAID type figure out our health status */
934     switch (rdp->type) {
935     case AR_T_JBOD:
936     case AR_T_SPAN:
937     case AR_T_RAID0:
938 	for (disk = 0; disk < rdp->total_disks; disk++)
939 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
940 		rdp->status &= ~AR_S_READY;
941 	break;
942 
943     case AR_T_RAID1:
944     case AR_T_RAID01:
945 	for (disk = 0; disk < rdp->width; disk++) {
946 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
947 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
948 		rdp->status &= ~AR_S_READY;
949 	    }
950 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
951 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
952 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
953 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
954 		rdp->status |= AR_S_DEGRADED;
955 	    }
956 	}
957 	break;
958 
959     case AR_T_RAID5:
960 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
961 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
962 		count++;
963 	}
964 	if (count) {
965 	    if (count > 1)
966 		rdp->status &= ~AR_S_READY;
967 	    else
968 		rdp->status |= AR_S_DEGRADED;
969 	}
970 	break;
971     default:
972 	rdp->status &= ~AR_S_READY;
973     }
974 
975     /*
976      * Note that when the array breaks so comes up broken we
977      * force a write of the array config to the remaining
978      * drives so that the generation will be incremented past
979      * those of the missing or failed drives (in all cases).
980      */
981     if (rdp->status != status) {
982 	if (!(rdp->status & AR_S_READY)) {
983 	    kprintf("ar%d: FAILURE - %s array broken\n",
984 		   rdp->lun, ata_raid_type(rdp));
985 	    writeback = 1;
986 	}
987 	else if (rdp->status & AR_S_DEGRADED) {
988 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
989 		kprintf("ar%d: WARNING - mirror", rdp->lun);
990 	    else
991 		kprintf("ar%d: WARNING - parity", rdp->lun);
992 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
993 		   ata_raid_type(rdp));
994 	    writeback = 1;
995 	}
996     }
997     spin_unlock(&rdp->lock);
998     if (writeback)
999 	ata_raid_write_metadata(rdp);
1000 
1001 }
1002 
1003 static int
1004 ata_raid_status(struct ata_ioc_raid_config *config)
1005 {
1006     struct ar_softc *rdp;
1007     int i;
1008 
1009     if (!(rdp = ata_raid_arrays[config->lun]))
1010 	return ENXIO;
1011 
1012     config->type = rdp->type;
1013     config->total_disks = rdp->total_disks;
1014     for (i = 0; i < rdp->total_disks; i++ ) {
1015 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1016 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1017 	else
1018 	    config->disks[i] = -1;
1019     }
1020     config->interleave = rdp->interleave;
1021     config->status = rdp->status;
1022     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1023     return 0;
1024 }
1025 
1026 static int
1027 ata_raid_create(struct ata_ioc_raid_config *config)
1028 {
1029     struct ar_softc *rdp;
1030     device_t subdisk;
1031     int array, disk;
1032     int ctlr = 0, disk_size = 0, total_disks = 0;
1033     device_t gpdev;
1034 
1035     for (array = 0; array < MAX_ARRAYS; array++) {
1036 	if (!ata_raid_arrays[array])
1037 	    break;
1038     }
1039     if (array >= MAX_ARRAYS)
1040 	return ENOSPC;
1041 
1042     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1043 	M_WAITOK | M_ZERO);
1044 
1045     for (disk = 0; disk < config->total_disks; disk++) {
1046 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1047 					   config->disks[disk]))) {
1048 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1049 
1050 	    /* is device already assigned to another array ? */
1051 	    if (ars->raid[rdp->volume]) {
1052 		config->disks[disk] = -1;
1053 		kfree(rdp, M_AR);
1054 		return EBUSY;
1055 	    }
1056 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1057 
1058 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1059 
1060 	    switch (pci_get_vendor(gpdev)) {
1061 	    case ATA_HIGHPOINT_ID:
1062 		/*
1063 		 * we need some way to decide if it should be v2 or v3
1064 		 * for now just use v2 since the v3 BIOS knows how to
1065 		 * handle that as well.
1066 		 */
1067 		ctlr = AR_F_HPTV2_RAID;
1068 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1069 		break;
1070 
1071 	    case ATA_INTEL_ID:
1072 		ctlr = AR_F_INTEL_RAID;
1073 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1074 		break;
1075 
1076 	    case ATA_ITE_ID:
1077 		ctlr = AR_F_ITE_RAID;
1078 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1079 		break;
1080 
1081 	    case ATA_JMICRON_ID:
1082 		ctlr = AR_F_JMICRON_RAID;
1083 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1084 		break;
1085 
1086 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1087 	    case ATA_PROMISE_ID:
1088 		ctlr = AR_F_PROMISE_RAID;
1089 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1090 		break;
1091 
1092 	    case ATA_SIS_ID:
1093 		ctlr = AR_F_SIS_RAID;
1094 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1095 		break;
1096 
1097 	    case ATA_ATI_ID:
1098 	    case ATA_VIA_ID:
1099 		ctlr = AR_F_VIA_RAID;
1100 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1101 		break;
1102 
1103 	    default:
1104 		/* XXX SOS
1105 		 * right, so here we are, we have an ATA chip and we want
1106 		 * to create a RAID and store the metadata.
1107 		 * we need to find a way to tell what kind of metadata this
1108 		 * hardware's BIOS might be using (good ideas are welcomed)
1109 		 * for now we just use our own native FreeBSD format.
1110 		 * the only way to get support for the BIOS format is to
1111 		 * setup the RAID from there, in that case we pickup the
1112 		 * metadata format from the disks (if we support it).
1113 		 */
1114 		kprintf("WARNING!! - not able to determine metadata format\n"
1115 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1116 		       "If that is not what you want, use the BIOS to "
1117 		       "create the array\n");
1118 		ctlr = AR_F_FREEBSD_RAID;
1119 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1120 		break;
1121 	    }
1122 
1123 	    /* we need all disks to be of the same format */
1124 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1125 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1126 		kfree(rdp, M_AR);
1127 		return EXDEV;
1128 	    }
1129 	    else
1130 		rdp->format = ctlr;
1131 
1132 	    /* use the smallest disk of the lots size */
1133 	    /* gigabyte boundry ??? XXX SOS */
1134 	    if (disk_size)
1135 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1136 	    else
1137 		disk_size = rdp->disks[disk].sectors;
1138 	    rdp->disks[disk].flags =
1139 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1140 
1141 	    total_disks++;
1142 	}
1143 	else {
1144 	    config->disks[disk] = -1;
1145 	    kfree(rdp, M_AR);
1146 	    return ENXIO;
1147 	}
1148     }
1149 
1150     if (total_disks != config->total_disks) {
1151 	kfree(rdp, M_AR);
1152 	return ENODEV;
1153     }
1154 
1155     switch (config->type) {
1156     case AR_T_JBOD:
1157     case AR_T_SPAN:
1158     case AR_T_RAID0:
1159 	break;
1160 
1161     case AR_T_RAID1:
1162 	if (total_disks != 2) {
1163 	    kfree(rdp, M_AR);
1164 	    return EPERM;
1165 	}
1166 	break;
1167 
1168     case AR_T_RAID01:
1169 	if (total_disks % 2 != 0) {
1170 	    kfree(rdp, M_AR);
1171 	    return EPERM;
1172 	}
1173 	break;
1174 
1175     case AR_T_RAID5:
1176 	if (total_disks < 3) {
1177 	    kfree(rdp, M_AR);
1178 	    return EPERM;
1179 	}
1180 	break;
1181 
1182     default:
1183 	kfree(rdp, M_AR);
1184 	return EOPNOTSUPP;
1185     }
1186     rdp->type = config->type;
1187     rdp->lun = array;
1188     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1189 	rdp->type == AR_T_RAID5) {
1190 	int bit = 0;
1191 
1192 	while (config->interleave >>= 1)
1193 	    bit++;
1194 	rdp->interleave = 1 << bit;
1195     }
1196     rdp->offset_sectors = 0;
1197 
1198     /* values that depend on metadata format */
1199     switch (rdp->format) {
1200     case AR_F_ADAPTEC_RAID:
1201 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1202 	break;
1203 
1204     case AR_F_HPTV2_RAID:
1205 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1206 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1207 	break;
1208 
1209     case AR_F_HPTV3_RAID:
1210 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1211 	break;
1212 
1213     case AR_F_INTEL_RAID:
1214 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1215 	break;
1216 
1217     case AR_F_ITE_RAID:
1218 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1219 	break;
1220 
1221     case AR_F_JMICRON_RAID:
1222 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1223 	break;
1224 
1225     case AR_F_LSIV2_RAID:
1226 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1227 	break;
1228 
1229     case AR_F_LSIV3_RAID:
1230 	rdp->interleave = min(max(2, rdp->interleave), 256);
1231 	break;
1232 
1233     case AR_F_PROMISE_RAID:
1234 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1235 	break;
1236 
1237     case AR_F_SII_RAID:
1238 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1239 	break;
1240 
1241     case AR_F_SIS_RAID:
1242 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1243 	break;
1244 
1245     case AR_F_VIA_RAID:
1246 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1247 	break;
1248     }
1249 
1250     rdp->total_disks = total_disks;
1251     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1252     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1253     rdp->heads = 255;
1254     rdp->sectors = 63;
1255     rdp->cylinders = rdp->total_sectors / (255 * 63);
1256     rdp->rebuild_lba = 0;
1257     rdp->status |= AR_S_READY;
1258 
1259     /* we are committed to this array, grap the subdisks */
1260     for (disk = 0; disk < config->total_disks; disk++) {
1261 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1262 					   config->disks[disk]))) {
1263 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1264 
1265 	    ars->raid[rdp->volume] = rdp;
1266 	    ars->disk_number[rdp->volume] = disk;
1267 	}
1268     }
1269     ata_raid_attach(rdp, 1);
1270     ata_raid_arrays[array] = rdp;
1271     config->lun = array;
1272     return 0;
1273 }
1274 
1275 static int
1276 ata_raid_delete(int array)
1277 {
1278     struct ar_softc *rdp;
1279     device_t subdisk;
1280     int disk;
1281 
1282     if (!(rdp = ata_raid_arrays[array]))
1283 	return ENXIO;
1284 
1285     rdp->status &= ~AR_S_READY;
1286     disk_destroy(&rdp->disk);
1287     devstat_remove_entry(&rdp->devstat);
1288 
1289     for (disk = 0; disk < rdp->total_disks; disk++) {
1290 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1291 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1292 		     device_get_unit(rdp->disks[disk].dev)))) {
1293 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1294 
1295 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1296 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1297 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1298 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1299 		ars->raid[rdp->volume] = NULL;
1300 		ars->disk_number[rdp->volume] = -1;
1301 	    }
1302 	    rdp->disks[disk].flags = 0;
1303 	}
1304     }
1305     ata_raid_wipe_metadata(rdp);
1306     ata_raid_arrays[array] = NULL;
1307     kfree(rdp, M_AR);
1308     return 0;
1309 }
1310 
1311 static int
1312 ata_raid_addspare(struct ata_ioc_raid_config *config)
1313 {
1314     struct ar_softc *rdp;
1315     device_t subdisk;
1316     int disk;
1317 
1318     if (!(rdp = ata_raid_arrays[config->lun]))
1319 	return ENXIO;
1320     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1321 	return ENXIO;
1322     if (rdp->status & AR_S_REBUILDING)
1323 	return EBUSY;
1324     switch (rdp->type) {
1325     case AR_T_RAID1:
1326     case AR_T_RAID01:
1327     case AR_T_RAID5:
1328 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1329 
1330 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1331 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1332 		continue;
1333 
1334 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1335 					       config->disks[0] ))) {
1336 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1337 
1338 		if (ars->raid[rdp->volume])
1339 		    return EBUSY;
1340 
1341 		/* XXX SOS validate size etc etc */
1342 		ars->raid[rdp->volume] = rdp;
1343 		ars->disk_number[rdp->volume] = disk;
1344 		rdp->disks[disk].dev = device_get_parent(subdisk);
1345 		rdp->disks[disk].flags =
1346 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1347 
1348 		device_printf(rdp->disks[disk].dev,
1349 			      "inserted into ar%d disk%d as spare\n",
1350 			      rdp->lun, disk);
1351 		ata_raid_config_changed(rdp, 1);
1352 		return 0;
1353 	    }
1354 	}
1355 	return ENXIO;
1356 
1357     default:
1358 	return EPERM;
1359     }
1360 }
1361 
1362 static int
1363 ata_raid_rebuild(int array)
1364 {
1365     struct ar_softc *rdp;
1366     int disk, count;
1367 
1368     if (!(rdp = ata_raid_arrays[array]))
1369 	return ENXIO;
1370     /* XXX SOS we should lock the rdp softc here */
1371     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1372 	return ENXIO;
1373     if (rdp->status & AR_S_REBUILDING)
1374 	return EBUSY;
1375 
1376     switch (rdp->type) {
1377     case AR_T_RAID1:
1378     case AR_T_RAID01:
1379     case AR_T_RAID5:
1380 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1381 	    if (((rdp->disks[disk].flags &
1382 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1383 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1384 		rdp->disks[disk].dev) {
1385 		count++;
1386 	    }
1387 	}
1388 
1389 	if (count) {
1390 	    rdp->rebuild_lba = 0;
1391 	    rdp->status |= AR_S_REBUILDING;
1392 	    return 0;
1393 	}
1394 	return EIO;
1395 
1396     default:
1397 	return EPERM;
1398     }
1399 }
1400 
1401 static int
1402 ata_raid_read_metadata(device_t subdisk)
1403 {
1404     devclass_t pci_devclass = devclass_find("pci");
1405     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1406     device_t gpdev;
1407     uint16_t vendor;
1408 
1409     /* prioritize vendor native metadata layout if possible */
1410     if (devclass == pci_devclass) {
1411 	gpdev = device_get_parent(subdisk);
1412 	gpdev = GRANDPARENT(gpdev);
1413 	vendor = pci_get_vendor(gpdev);
1414 
1415 	switch (vendor) {
1416 	case ATA_HIGHPOINT_ID:
1417 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1418 		return 0;
1419 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1420 		return 0;
1421 	    break;
1422 
1423 	case ATA_INTEL_ID:
1424 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1425 		return 0;
1426 	    break;
1427 
1428 	case ATA_ITE_ID:
1429 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1430 		return 0;
1431 	    break;
1432 
1433 	case ATA_JMICRON_ID:
1434 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1435 		return 0;
1436 	    break;
1437 
1438 	case ATA_NVIDIA_ID:
1439 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1440 		return 0;
1441 	    break;
1442 
1443 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1444 	case ATA_PROMISE_ID:
1445 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1446 		return 0;
1447 	    break;
1448 
1449 	case ATA_ATI_ID:
1450 	case ATA_SILICON_IMAGE_ID:
1451 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1452 		return 0;
1453 	    break;
1454 
1455 	case ATA_SIS_ID:
1456 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1457 		return 0;
1458 	    break;
1459 
1460 	case ATA_VIA_ID:
1461 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1462 		return 0;
1463 	    break;
1464 	}
1465     }
1466 
1467     /* handle controllers that have multiple layout possibilities */
1468     /* NOTE: the order of these are not insignificant */
1469 
1470     /* Adaptec HostRAID */
1471     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1472 	return 0;
1473 
1474     /* LSILogic v3 and v2 */
1475     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1476 	return 0;
1477     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1478 	return 0;
1479 
1480     /* if none of the above matched, try FreeBSD native format */
1481     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1482 }
1483 
1484 static int
1485 ata_raid_write_metadata(struct ar_softc *rdp)
1486 {
1487     switch (rdp->format) {
1488     case AR_F_FREEBSD_RAID:
1489     case AR_F_PROMISE_RAID:
1490 	return ata_raid_promise_write_meta(rdp);
1491 
1492     case AR_F_HPTV3_RAID:
1493     case AR_F_HPTV2_RAID:
1494 	/*
1495 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1496 	 * this is handy since we cannot know what version BIOS is on there
1497 	 */
1498 	return ata_raid_hptv2_write_meta(rdp);
1499 
1500     case AR_F_INTEL_RAID:
1501 	return ata_raid_intel_write_meta(rdp);
1502 
1503     case AR_F_JMICRON_RAID:
1504 	return ata_raid_jmicron_write_meta(rdp);
1505 
1506     case AR_F_SIS_RAID:
1507 	return ata_raid_sis_write_meta(rdp);
1508 
1509     case AR_F_VIA_RAID:
1510 	return ata_raid_via_write_meta(rdp);
1511 #if 0
1512     case AR_F_HPTV3_RAID:
1513 	return ata_raid_hptv3_write_meta(rdp);
1514 
1515     case AR_F_ADAPTEC_RAID:
1516 	return ata_raid_adaptec_write_meta(rdp);
1517 
1518     case AR_F_ITE_RAID:
1519 	return ata_raid_ite_write_meta(rdp);
1520 
1521     case AR_F_LSIV2_RAID:
1522 	return ata_raid_lsiv2_write_meta(rdp);
1523 
1524     case AR_F_LSIV3_RAID:
1525 	return ata_raid_lsiv3_write_meta(rdp);
1526 
1527     case AR_F_NVIDIA_RAID:
1528 	return ata_raid_nvidia_write_meta(rdp);
1529 
1530     case AR_F_SII_RAID:
1531 	return ata_raid_sii_write_meta(rdp);
1532 
1533 #endif
1534     default:
1535 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1536 	       rdp->lun, ata_raid_format(rdp));
1537     }
1538     return -1;
1539 }
1540 
1541 static int
1542 ata_raid_wipe_metadata(struct ar_softc *rdp)
1543 {
1544     int disk, error = 0;
1545     u_int64_t lba;
1546     u_int32_t size;
1547     u_int8_t *meta;
1548 
1549     for (disk = 0; disk < rdp->total_disks; disk++) {
1550 	if (rdp->disks[disk].dev) {
1551 	    switch (rdp->format) {
1552 	    case AR_F_ADAPTEC_RAID:
1553 		lba = ADP_LBA(rdp->disks[disk].dev);
1554 		size = sizeof(struct adaptec_raid_conf);
1555 		break;
1556 
1557 	    case AR_F_HPTV2_RAID:
1558 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1559 		size = sizeof(struct hptv2_raid_conf);
1560 		break;
1561 
1562 	    case AR_F_HPTV3_RAID:
1563 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1564 		size = sizeof(struct hptv3_raid_conf);
1565 		break;
1566 
1567 	    case AR_F_INTEL_RAID:
1568 		lba = INTEL_LBA(rdp->disks[disk].dev);
1569 		size = 3 * 512;         /* XXX SOS */
1570 		break;
1571 
1572 	    case AR_F_ITE_RAID:
1573 		lba = ITE_LBA(rdp->disks[disk].dev);
1574 		size = sizeof(struct ite_raid_conf);
1575 		break;
1576 
1577 	    case AR_F_JMICRON_RAID:
1578 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1579 		size = sizeof(struct jmicron_raid_conf);
1580 		break;
1581 
1582 	    case AR_F_LSIV2_RAID:
1583 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1584 		size = sizeof(struct lsiv2_raid_conf);
1585 		break;
1586 
1587 	    case AR_F_LSIV3_RAID:
1588 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1589 		size = sizeof(struct lsiv3_raid_conf);
1590 		break;
1591 
1592 	    case AR_F_NVIDIA_RAID:
1593 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1594 		size = sizeof(struct nvidia_raid_conf);
1595 		break;
1596 
1597 	    case AR_F_FREEBSD_RAID:
1598 	    case AR_F_PROMISE_RAID:
1599 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1600 		size = sizeof(struct promise_raid_conf);
1601 		break;
1602 
1603 	    case AR_F_SII_RAID:
1604 		lba = SII_LBA(rdp->disks[disk].dev);
1605 		size = sizeof(struct sii_raid_conf);
1606 		break;
1607 
1608 	    case AR_F_SIS_RAID:
1609 		lba = SIS_LBA(rdp->disks[disk].dev);
1610 		size = sizeof(struct sis_raid_conf);
1611 		break;
1612 
1613 	    case AR_F_VIA_RAID:
1614 		lba = VIA_LBA(rdp->disks[disk].dev);
1615 		size = sizeof(struct via_raid_conf);
1616 		break;
1617 
1618 	    default:
1619 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1620 		       rdp->lun, ata_raid_format(rdp));
1621 		return ENXIO;
1622 	    }
1623 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1624 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1625 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1626 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1627 		error = EIO;
1628 	    }
1629 	    kfree(meta, M_AR);
1630 	}
1631     }
1632     return error;
1633 }
1634 
1635 /* Adaptec HostRAID Metadata */
1636 static int
1637 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1638 {
1639     struct ata_raid_subdisk *ars = device_get_softc(dev);
1640     device_t parent = device_get_parent(dev);
1641     struct adaptec_raid_conf *meta;
1642     struct ar_softc *raid;
1643     int array, disk, retval = 0;
1644 
1645     meta = (struct adaptec_raid_conf *)
1646 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1647 
1648     if (ata_raid_rw(parent, ADP_LBA(parent),
1649 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1650 	if (testing || bootverbose)
1651 	    device_printf(parent, "Adaptec read metadata failed\n");
1652 	goto adaptec_out;
1653     }
1654 
1655     /* check if this is a Adaptec RAID struct */
1656     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1657 	if (testing || bootverbose)
1658 	    device_printf(parent, "Adaptec check1 failed\n");
1659 	goto adaptec_out;
1660     }
1661 
1662     if (testing || bootverbose)
1663 	ata_raid_adaptec_print_meta(meta);
1664 
1665     /* now convert Adaptec metadata into our generic form */
1666     for (array = 0; array < MAX_ARRAYS; array++) {
1667 	if (!raidp[array]) {
1668 	    raidp[array] =
1669 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1670 					  M_WAITOK | M_ZERO);
1671 	}
1672 	raid = raidp[array];
1673 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1674 	    continue;
1675 
1676 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1677 	    continue;
1678 
1679 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1680 	    switch (meta->configs[0].type) {
1681 	    case ADP_T_RAID0:
1682 		raid->magic_0 = meta->configs[0].magic_0;
1683 		raid->type = AR_T_RAID0;
1684 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1685 		raid->width = be16toh(meta->configs[0].total_disks);
1686 		break;
1687 
1688 	    case ADP_T_RAID1:
1689 		raid->magic_0 = meta->configs[0].magic_0;
1690 		raid->type = AR_T_RAID1;
1691 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1692 		break;
1693 
1694 	    default:
1695 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1696 			      meta->configs[0].type);
1697 		kfree(raidp[array], M_AR);
1698 		raidp[array] = NULL;
1699 		goto adaptec_out;
1700 	    }
1701 
1702 	    raid->format = AR_F_ADAPTEC_RAID;
1703 	    raid->generation = be32toh(meta->generation);
1704 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1705 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1706 	    raid->heads = 255;
1707 	    raid->sectors = 63;
1708 	    raid->cylinders = raid->total_sectors / (63 * 255);
1709 	    raid->offset_sectors = 0;
1710 	    raid->rebuild_lba = 0;
1711 	    raid->lun = array;
1712 	    strncpy(raid->name, meta->configs[0].name,
1713 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1714 
1715 	    /* clear out any old info */
1716 	    if (raid->generation) {
1717 		for (disk = 0; disk < raid->total_disks; disk++) {
1718 		    raid->disks[disk].dev = NULL;
1719 		    raid->disks[disk].flags = 0;
1720 		}
1721 	    }
1722 	}
1723 	if (be32toh(meta->generation) >= raid->generation) {
1724 	    struct ata_device *atadev = device_get_softc(parent);
1725 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1726 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1727 			      ATA_DEV(atadev->unit);
1728 
1729 	    raid->disks[disk_number].dev = parent;
1730 	    raid->disks[disk_number].sectors =
1731 		be32toh(meta->configs[disk_number + 1].sectors);
1732 	    raid->disks[disk_number].flags =
1733 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1734 	    ars->raid[raid->volume] = raid;
1735 	    ars->disk_number[raid->volume] = disk_number;
1736 	    retval = 1;
1737 	}
1738 	break;
1739     }
1740 
1741 adaptec_out:
1742     kfree(meta, M_AR);
1743     return retval;
1744 }
1745 
1746 /* Highpoint V2 RocketRAID Metadata */
1747 static int
1748 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1749 {
1750     struct ata_raid_subdisk *ars = device_get_softc(dev);
1751     device_t parent = device_get_parent(dev);
1752     struct hptv2_raid_conf *meta;
1753     struct ar_softc *raid = NULL;
1754     int array, disk_number = 0, retval = 0;
1755 
1756     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1757 	M_AR, M_WAITOK | M_ZERO);
1758 
1759     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1760 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1761 	if (testing || bootverbose)
1762 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1763 	goto hptv2_out;
1764     }
1765 
1766     /* check if this is a HighPoint v2 RAID struct */
1767     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1768 	if (testing || bootverbose)
1769 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1770 	goto hptv2_out;
1771     }
1772 
1773     /* is this disk defined, or an old leftover/spare ? */
1774     if (!meta->magic_0) {
1775 	if (testing || bootverbose)
1776 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1777 	goto hptv2_out;
1778     }
1779 
1780     if (testing || bootverbose)
1781 	ata_raid_hptv2_print_meta(meta);
1782 
1783     /* now convert HighPoint (v2) metadata into our generic form */
1784     for (array = 0; array < MAX_ARRAYS; array++) {
1785 	if (!raidp[array]) {
1786 	    raidp[array] =
1787 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1788 					  M_WAITOK | M_ZERO);
1789 	}
1790 	raid = raidp[array];
1791 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1792 	    continue;
1793 
1794 	switch (meta->type) {
1795 	case HPTV2_T_RAID0:
1796 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1797 		(HPTV2_O_RAID0|HPTV2_O_OK))
1798 		goto highpoint_raid1;
1799 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1800 		goto highpoint_raid01;
1801 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1802 		continue;
1803 	    raid->magic_0 = meta->magic_0;
1804 	    raid->type = AR_T_RAID0;
1805 	    raid->interleave = 1 << meta->stripe_shift;
1806 	    disk_number = meta->disk_number;
1807 	    if (!(meta->order & HPTV2_O_OK))
1808 		meta->magic = 0;        /* mark bad */
1809 	    break;
1810 
1811 	case HPTV2_T_RAID1:
1812 highpoint_raid1:
1813 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1814 		continue;
1815 	    raid->magic_0 = meta->magic_0;
1816 	    raid->type = AR_T_RAID1;
1817 	    disk_number = (meta->disk_number > 0);
1818 	    break;
1819 
1820 	case HPTV2_T_RAID01_RAID0:
1821 highpoint_raid01:
1822 	    if (meta->order & HPTV2_O_RAID0) {
1823 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1824 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1825 		    continue;
1826 		raid->magic_0 = meta->magic_0;
1827 		raid->magic_1 = meta->magic_1;
1828 		raid->type = AR_T_RAID01;
1829 		raid->interleave = 1 << meta->stripe_shift;
1830 		disk_number = meta->disk_number;
1831 	    }
1832 	    else {
1833 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1834 		    continue;
1835 		raid->magic_1 = meta->magic_1;
1836 		raid->type = AR_T_RAID01;
1837 		raid->interleave = 1 << meta->stripe_shift;
1838 		disk_number = meta->disk_number + meta->array_width;
1839 		if (!(meta->order & HPTV2_O_RAID1))
1840 		    meta->magic = 0;    /* mark bad */
1841 	    }
1842 	    break;
1843 
1844 	case HPTV2_T_SPAN:
1845 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1846 		continue;
1847 	    raid->magic_0 = meta->magic_0;
1848 	    raid->type = AR_T_SPAN;
1849 	    disk_number = meta->disk_number;
1850 	    break;
1851 
1852 	default:
1853 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1854 			  meta->type);
1855 	    kfree(raidp[array], M_AR);
1856 	    raidp[array] = NULL;
1857 	    goto hptv2_out;
1858 	}
1859 
1860 	raid->format |= AR_F_HPTV2_RAID;
1861 	raid->disks[disk_number].dev = parent;
1862 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1863 	raid->lun = array;
1864 	strncpy(raid->name, meta->name_1,
1865 		min(sizeof(raid->name), sizeof(meta->name_1)));
1866 	if (meta->magic == HPTV2_MAGIC_OK) {
1867 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1868 	    raid->width = meta->array_width;
1869 	    raid->total_sectors = meta->total_sectors;
1870 	    raid->heads = 255;
1871 	    raid->sectors = 63;
1872 	    raid->cylinders = raid->total_sectors / (63 * 255);
1873 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1874 	    raid->rebuild_lba = meta->rebuild_lba;
1875 	    raid->disks[disk_number].sectors =
1876 		raid->total_sectors / raid->width;
1877 	}
1878 	else
1879 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1880 
1881 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1882 	    raid->total_disks = raid->width;
1883 	if (disk_number >= raid->total_disks)
1884 	    raid->total_disks = disk_number + 1;
1885 	ars->raid[raid->volume] = raid;
1886 	ars->disk_number[raid->volume] = disk_number;
1887 	retval = 1;
1888 	break;
1889     }
1890 
1891 hptv2_out:
1892     kfree(meta, M_AR);
1893     return retval;
1894 }
1895 
1896 static int
1897 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1898 {
1899     struct hptv2_raid_conf *meta;
1900     struct timeval timestamp;
1901     int disk, error = 0;
1902 
1903     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1904 	M_AR, M_WAITOK | M_ZERO);
1905 
1906     microtime(&timestamp);
1907     rdp->magic_0 = timestamp.tv_sec + 2;
1908     rdp->magic_1 = timestamp.tv_sec;
1909 
1910     for (disk = 0; disk < rdp->total_disks; disk++) {
1911 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1912 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1913 	    meta->magic = HPTV2_MAGIC_OK;
1914 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1915 	    meta->magic_0 = rdp->magic_0;
1916 	    if (strlen(rdp->name))
1917 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1918 	    else
1919 		strcpy(meta->name_1, "FreeBSD");
1920 	}
1921 	meta->disk_number = disk;
1922 
1923 	switch (rdp->type) {
1924 	case AR_T_RAID0:
1925 	    meta->type = HPTV2_T_RAID0;
1926 	    strcpy(meta->name_2, "RAID 0");
1927 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1928 		meta->order = HPTV2_O_OK;
1929 	    break;
1930 
1931 	case AR_T_RAID1:
1932 	    meta->type = HPTV2_T_RAID0;
1933 	    strcpy(meta->name_2, "RAID 1");
1934 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1935 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1936 	    break;
1937 
1938 	case AR_T_RAID01:
1939 	    meta->type = HPTV2_T_RAID01_RAID0;
1940 	    strcpy(meta->name_2, "RAID 0+1");
1941 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1942 		if (disk < rdp->width) {
1943 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1944 		    meta->magic_0 = rdp->magic_0 - 1;
1945 		}
1946 		else {
1947 		    meta->order = HPTV2_O_RAID1;
1948 		    meta->disk_number -= rdp->width;
1949 		}
1950 	    }
1951 	    else
1952 		meta->magic_0 = rdp->magic_0 - 1;
1953 	    meta->magic_1 = rdp->magic_1;
1954 	    break;
1955 
1956 	case AR_T_SPAN:
1957 	    meta->type = HPTV2_T_SPAN;
1958 	    strcpy(meta->name_2, "SPAN");
1959 	    break;
1960 	default:
1961 	    kfree(meta, M_AR);
1962 	    return ENODEV;
1963 	}
1964 
1965 	meta->array_width = rdp->width;
1966 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1967 	meta->total_sectors = rdp->total_sectors;
1968 	meta->rebuild_lba = rdp->rebuild_lba;
1969 	if (testing || bootverbose)
1970 	    ata_raid_hptv2_print_meta(meta);
1971 	if (rdp->disks[disk].dev) {
1972 	    if (ata_raid_rw(rdp->disks[disk].dev,
1973 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1974 			    sizeof(struct promise_raid_conf),
1975 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1976 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1977 		error = EIO;
1978 	    }
1979 	}
1980     }
1981     kfree(meta, M_AR);
1982     return error;
1983 }
1984 
1985 /* Highpoint V3 RocketRAID Metadata */
1986 static int
1987 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1988 {
1989     struct ata_raid_subdisk *ars = device_get_softc(dev);
1990     device_t parent = device_get_parent(dev);
1991     struct hptv3_raid_conf *meta;
1992     struct ar_softc *raid = NULL;
1993     int array, disk_number, retval = 0;
1994 
1995     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1996 	M_AR, M_WAITOK | M_ZERO);
1997 
1998     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1999 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2000 	if (testing || bootverbose)
2001 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2002 	goto hptv3_out;
2003     }
2004 
2005     /* check if this is a HighPoint v3 RAID struct */
2006     if (meta->magic != HPTV3_MAGIC) {
2007 	if (testing || bootverbose)
2008 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2009 	goto hptv3_out;
2010     }
2011 
2012     /* check if there are any config_entries */
2013     if (meta->config_entries < 1) {
2014 	if (testing || bootverbose)
2015 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2016 	goto hptv3_out;
2017     }
2018 
2019     if (testing || bootverbose)
2020 	ata_raid_hptv3_print_meta(meta);
2021 
2022     /* now convert HighPoint (v3) metadata into our generic form */
2023     for (array = 0; array < MAX_ARRAYS; array++) {
2024 	if (!raidp[array]) {
2025 	    raidp[array] =
2026 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2027 					  M_WAITOK | M_ZERO);
2028 	}
2029 	raid = raidp[array];
2030 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2031 	    continue;
2032 
2033 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2034 	    continue;
2035 
2036 	switch (meta->configs[0].type) {
2037 	case HPTV3_T_RAID0:
2038 	    raid->type = AR_T_RAID0;
2039 	    raid->width = meta->configs[0].total_disks;
2040 	    disk_number = meta->configs[0].disk_number;
2041 	    break;
2042 
2043 	case HPTV3_T_RAID1:
2044 	    raid->type = AR_T_RAID1;
2045 	    raid->width = meta->configs[0].total_disks / 2;
2046 	    disk_number = meta->configs[0].disk_number;
2047 	    break;
2048 
2049 	case HPTV3_T_RAID5:
2050 	    raid->type = AR_T_RAID5;
2051 	    raid->width = meta->configs[0].total_disks;
2052 	    disk_number = meta->configs[0].disk_number;
2053 	    break;
2054 
2055 	case HPTV3_T_SPAN:
2056 	    raid->type = AR_T_SPAN;
2057 	    raid->width = meta->configs[0].total_disks;
2058 	    disk_number = meta->configs[0].disk_number;
2059 	    break;
2060 
2061 	default:
2062 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2063 			  meta->configs[0].type);
2064 	    kfree(raidp[array], M_AR);
2065 	    raidp[array] = NULL;
2066 	    goto hptv3_out;
2067 	}
2068 	if (meta->config_entries == 2) {
2069 	    switch (meta->configs[1].type) {
2070 	    case HPTV3_T_RAID1:
2071 		if (raid->type == AR_T_RAID0) {
2072 		    raid->type = AR_T_RAID01;
2073 		    disk_number = meta->configs[1].disk_number +
2074 				  (meta->configs[0].disk_number << 1);
2075 		    break;
2076 		}
2077 	    default:
2078 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2079 			      meta->configs[1].type);
2080 		kfree(raidp[array], M_AR);
2081 		raidp[array] = NULL;
2082 		goto hptv3_out;
2083 	    }
2084 	}
2085 
2086 	raid->magic_0 = meta->magic_0;
2087 	raid->format = AR_F_HPTV3_RAID;
2088 	raid->generation = meta->timestamp;
2089 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2090 	raid->total_disks = meta->configs[0].total_disks +
2091 	    meta->configs[1].total_disks;
2092 	raid->total_sectors = meta->configs[0].total_sectors +
2093 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2094 	raid->heads = 255;
2095 	raid->sectors = 63;
2096 	raid->cylinders = raid->total_sectors / (63 * 255);
2097 	raid->offset_sectors = 0;
2098 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2099 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2100 	raid->lun = array;
2101 	strncpy(raid->name, meta->name,
2102 		min(sizeof(raid->name), sizeof(meta->name)));
2103 	raid->disks[disk_number].sectors = raid->total_sectors /
2104 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2105 	raid->disks[disk_number].dev = parent;
2106 	raid->disks[disk_number].flags =
2107 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2108 	ars->raid[raid->volume] = raid;
2109 	ars->disk_number[raid->volume] = disk_number;
2110 	retval = 1;
2111 	break;
2112     }
2113 
2114 hptv3_out:
2115     kfree(meta, M_AR);
2116     return retval;
2117 }
2118 
2119 /* Intel MatrixRAID Metadata */
2120 static int
2121 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2122 {
2123     struct ata_raid_subdisk *ars = device_get_softc(dev);
2124     device_t parent = device_get_parent(dev);
2125     struct intel_raid_conf *meta;
2126     struct intel_raid_mapping *map;
2127     struct ar_softc *raid = NULL;
2128     u_int32_t checksum, *ptr;
2129     int array, count, disk, volume = 1, retval = 0;
2130     char *tmp;
2131 
2132     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2133 
2134     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2135 	if (testing || bootverbose)
2136 	    device_printf(parent, "Intel read metadata failed\n");
2137 	goto intel_out;
2138     }
2139     tmp = (char *)meta;
2140     bcopy(tmp, tmp+1024, 512);
2141     bcopy(tmp+512, tmp, 1024);
2142     bzero(tmp+1024, 512);
2143 
2144     /* check if this is a Intel RAID struct */
2145     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2146 	if (testing || bootverbose)
2147 	    device_printf(parent, "Intel check1 failed\n");
2148 	goto intel_out;
2149     }
2150 
2151     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2152 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2153 	checksum += *ptr++;
2154     }
2155     checksum -= meta->checksum;
2156     if (checksum != meta->checksum) {
2157 	if (testing || bootverbose)
2158 	    device_printf(parent, "Intel check2 failed\n");
2159 	goto intel_out;
2160     }
2161 
2162     if (testing || bootverbose)
2163 	ata_raid_intel_print_meta(meta);
2164 
2165     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2166 
2167     /* now convert Intel metadata into our generic form */
2168     for (array = 0; array < MAX_ARRAYS; array++) {
2169 	if (!raidp[array]) {
2170 	    raidp[array] =
2171 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2172 					  M_WAITOK | M_ZERO);
2173 	}
2174 	raid = raidp[array];
2175 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2176 	    continue;
2177 
2178 	if ((raid->format & AR_F_INTEL_RAID) &&
2179 	    (raid->magic_0 != meta->config_id))
2180 	    continue;
2181 
2182 	/*
2183 	 * update our knowledge about the array config based on generation
2184 	 * NOTE: there can be multiple volumes on a disk set
2185 	 */
2186 	if (!meta->generation || meta->generation > raid->generation) {
2187 	    switch (map->type) {
2188 	    case INTEL_T_RAID0:
2189 		raid->type = AR_T_RAID0;
2190 		raid->width = map->total_disks;
2191 		break;
2192 
2193 	    case INTEL_T_RAID1:
2194 		if (map->total_disks == 4)
2195 		    raid->type = AR_T_RAID01;
2196 		else
2197 		    raid->type = AR_T_RAID1;
2198 		raid->width = map->total_disks / 2;
2199 		break;
2200 
2201 	    case INTEL_T_RAID5:
2202 		raid->type = AR_T_RAID5;
2203 		raid->width = map->total_disks;
2204 		break;
2205 
2206 	    default:
2207 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2208 			      map->type);
2209 		kfree(raidp[array], M_AR);
2210 		raidp[array] = NULL;
2211 		goto intel_out;
2212 	    }
2213 
2214 	    switch (map->status) {
2215 	    case INTEL_S_READY:
2216 		raid->status = AR_S_READY;
2217 		break;
2218 	    case INTEL_S_DEGRADED:
2219 		raid->status |= AR_S_DEGRADED;
2220 		break;
2221 	    case INTEL_S_DISABLED:
2222 	    case INTEL_S_FAILURE:
2223 		raid->status = 0;
2224 	    }
2225 
2226 	    raid->magic_0 = meta->config_id;
2227 	    raid->format = AR_F_INTEL_RAID;
2228 	    raid->generation = meta->generation;
2229 	    raid->interleave = map->stripe_sectors;
2230 	    raid->total_disks = map->total_disks;
2231 	    raid->total_sectors = map->total_sectors;
2232 	    raid->heads = 255;
2233 	    raid->sectors = 63;
2234 	    raid->cylinders = raid->total_sectors / (63 * 255);
2235 	    raid->offset_sectors = map->offset;
2236 	    raid->rebuild_lba = 0;
2237 	    raid->lun = array;
2238 	    raid->volume = volume - 1;
2239 	    strncpy(raid->name, map->name,
2240 		    min(sizeof(raid->name), sizeof(map->name)));
2241 
2242 	    /* clear out any old info */
2243 	    for (disk = 0; disk < raid->total_disks; disk++) {
2244 		raid->disks[disk].dev = NULL;
2245 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2246 		      raid->disks[disk].serial,
2247 		      sizeof(raid->disks[disk].serial));
2248 		raid->disks[disk].sectors =
2249 		    meta->disk[map->disk_idx[disk]].sectors;
2250 		raid->disks[disk].flags = 0;
2251 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2252 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2253 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2254 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2255 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2256 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2257 		    raid->disks[disk].flags |= AR_DF_SPARE;
2258 		}
2259 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2260 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2261 	    }
2262 	}
2263 	if (meta->generation >= raid->generation) {
2264 	    for (disk = 0; disk < raid->total_disks; disk++) {
2265 		struct ata_device *atadev = device_get_softc(parent);
2266 
2267 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2268 		    sizeof(raid->disks[disk].serial))) {
2269 		    raid->disks[disk].dev = parent;
2270 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2271 		    ars->raid[raid->volume] = raid;
2272 		    ars->disk_number[raid->volume] = disk;
2273 		    retval = 1;
2274 		}
2275 	    }
2276 	}
2277 	else
2278 	    goto intel_out;
2279 
2280 	if (retval) {
2281 	    if (volume < meta->total_volumes) {
2282 		map = (struct intel_raid_mapping *)
2283 		      &map->disk_idx[map->total_disks];
2284 		volume++;
2285 		retval = 0;
2286 		continue;
2287 	    }
2288 	    break;
2289 	}
2290 	else {
2291 	    kfree(raidp[array], M_AR);
2292 	    raidp[array] = NULL;
2293 	    if (volume == 2)
2294 		retval = 1;
2295 	}
2296     }
2297 
2298 intel_out:
2299     kfree(meta, M_AR);
2300     return retval;
2301 }
2302 
2303 static int
2304 ata_raid_intel_write_meta(struct ar_softc *rdp)
2305 {
2306     struct intel_raid_conf *meta;
2307     struct intel_raid_mapping *map;
2308     struct timeval timestamp;
2309     u_int32_t checksum, *ptr;
2310     int count, disk, error = 0;
2311     char *tmp;
2312 
2313     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2314 
2315     rdp->generation++;
2316 
2317     /* Generate a new config_id if none exists */
2318     if (!rdp->magic_0) {
2319 	microtime(&timestamp);
2320 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2321     }
2322 
2323     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2324     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2325     meta->config_id = rdp->magic_0;
2326     meta->generation = rdp->generation;
2327     meta->total_disks = rdp->total_disks;
2328     meta->total_volumes = 1;                                    /* XXX SOS */
2329     for (disk = 0; disk < rdp->total_disks; disk++) {
2330 	if (rdp->disks[disk].dev) {
2331 	    struct ata_channel *ch =
2332 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2333 	    struct ata_device *atadev =
2334 		device_get_softc(rdp->disks[disk].dev);
2335 
2336 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2337 		  sizeof(rdp->disks[disk].serial));
2338 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2339 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2340 	}
2341 	else
2342 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2343 	meta->disk[disk].flags = 0;
2344 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2345 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2346 	else {
2347 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2348 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2349 	    else
2350 		meta->disk[disk].flags |= INTEL_F_DOWN;
2351 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2352 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2353 	}
2354     }
2355     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2356 
2357     bcopy(rdp->name, map->name, sizeof(rdp->name));
2358     map->total_sectors = rdp->total_sectors;
2359     map->state = 12;                                            /* XXX SOS */
2360     map->offset = rdp->offset_sectors;
2361     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2362     map->stripe_sectors =  rdp->interleave;
2363     map->disk_sectors = rdp->total_sectors / rdp->width;
2364     map->status = INTEL_S_READY;                                /* XXX SOS */
2365     switch (rdp->type) {
2366     case AR_T_RAID0:
2367 	map->type = INTEL_T_RAID0;
2368 	break;
2369     case AR_T_RAID1:
2370 	map->type = INTEL_T_RAID1;
2371 	break;
2372     case AR_T_RAID01:
2373 	map->type = INTEL_T_RAID1;
2374 	break;
2375     case AR_T_RAID5:
2376 	map->type = INTEL_T_RAID5;
2377 	break;
2378     default:
2379 	kfree(meta, M_AR);
2380 	return ENODEV;
2381     }
2382     map->total_disks = rdp->total_disks;
2383     map->magic[0] = 0x02;
2384     map->magic[1] = 0xff;
2385     map->magic[2] = 0x01;
2386     for (disk = 0; disk < rdp->total_disks; disk++)
2387 	map->disk_idx[disk] = disk;
2388 
2389     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2390     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2391 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2392 	checksum += *ptr++;
2393     }
2394     meta->checksum = checksum;
2395 
2396     if (testing || bootverbose)
2397 	ata_raid_intel_print_meta(meta);
2398 
2399     tmp = (char *)meta;
2400     bcopy(tmp, tmp+1024, 512);
2401     bcopy(tmp+512, tmp, 1024);
2402     bzero(tmp+1024, 512);
2403 
2404     for (disk = 0; disk < rdp->total_disks; disk++) {
2405 	if (rdp->disks[disk].dev) {
2406 	    if (ata_raid_rw(rdp->disks[disk].dev,
2407 			    INTEL_LBA(rdp->disks[disk].dev),
2408 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2409 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2410 		error = EIO;
2411 	    }
2412 	}
2413     }
2414     kfree(meta, M_AR);
2415     return error;
2416 }
2417 
2418 
2419 /* Integrated Technology Express Metadata */
2420 static int
2421 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2422 {
2423     struct ata_raid_subdisk *ars = device_get_softc(dev);
2424     device_t parent = device_get_parent(dev);
2425     struct ite_raid_conf *meta;
2426     struct ar_softc *raid = NULL;
2427     int array, disk_number, count, retval = 0;
2428     u_int16_t *ptr;
2429 
2430     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2431 	M_WAITOK | M_ZERO);
2432 
2433     if (ata_raid_rw(parent, ITE_LBA(parent),
2434 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2435 	if (testing || bootverbose)
2436 	    device_printf(parent, "ITE read metadata failed\n");
2437 	goto ite_out;
2438     }
2439 
2440     /* check if this is a ITE RAID struct */
2441     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2442 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2443 	ptr[count] = be16toh(ptr[count]);
2444 
2445     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2446 	if (testing || bootverbose)
2447 	    device_printf(parent, "ITE check1 failed\n");
2448 	goto ite_out;
2449     }
2450 
2451     if (testing || bootverbose)
2452 	ata_raid_ite_print_meta(meta);
2453 
2454     /* now convert ITE metadata into our generic form */
2455     for (array = 0; array < MAX_ARRAYS; array++) {
2456 	if ((raid = raidp[array])) {
2457 	    if (raid->format != AR_F_ITE_RAID)
2458 		continue;
2459 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2460 		continue;
2461 	}
2462 
2463 	/* if we dont have a disks timestamp the RAID is invalidated */
2464 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2465 	    goto ite_out;
2466 
2467 	if (!raid) {
2468 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2469 						     M_AR, M_WAITOK | M_ZERO);
2470 	}
2471 
2472 	switch (meta->type) {
2473 	case ITE_T_RAID0:
2474 	    raid->type = AR_T_RAID0;
2475 	    raid->width = meta->array_width;
2476 	    raid->total_disks = meta->array_width;
2477 	    disk_number = meta->disk_number;
2478 	    break;
2479 
2480 	case ITE_T_RAID1:
2481 	    raid->type = AR_T_RAID1;
2482 	    raid->width = 1;
2483 	    raid->total_disks = 2;
2484 	    disk_number = meta->disk_number;
2485 	    break;
2486 
2487 	case ITE_T_RAID01:
2488 	    raid->type = AR_T_RAID01;
2489 	    raid->width = meta->array_width;
2490 	    raid->total_disks = 4;
2491 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2492 			  ((meta->disk_number & 0x01) << 1);
2493 	    break;
2494 
2495 	case ITE_T_SPAN:
2496 	    raid->type = AR_T_SPAN;
2497 	    raid->width = 1;
2498 	    raid->total_disks = meta->array_width;
2499 	    disk_number = meta->disk_number;
2500 	    break;
2501 
2502 	default:
2503 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2504 	    kfree(raidp[array], M_AR);
2505 	    raidp[array] = NULL;
2506 	    goto ite_out;
2507 	}
2508 
2509 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2510 	raid->format = AR_F_ITE_RAID;
2511 	raid->generation = 0;
2512 	raid->interleave = meta->stripe_sectors;
2513 	raid->total_sectors = meta->total_sectors;
2514 	raid->heads = 255;
2515 	raid->sectors = 63;
2516 	raid->cylinders = raid->total_sectors / (63 * 255);
2517 	raid->offset_sectors = 0;
2518 	raid->rebuild_lba = 0;
2519 	raid->lun = array;
2520 
2521 	raid->disks[disk_number].dev = parent;
2522 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2523 	raid->disks[disk_number].flags =
2524 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2525 	ars->raid[raid->volume] = raid;
2526 	ars->disk_number[raid->volume] = disk_number;
2527 	retval = 1;
2528 	break;
2529     }
2530 ite_out:
2531     kfree(meta, M_AR);
2532     return retval;
2533 }
2534 
2535 /* JMicron Technology Corp Metadata */
2536 static int
2537 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2538 {
2539     struct ata_raid_subdisk *ars = device_get_softc(dev);
2540     device_t parent = device_get_parent(dev);
2541     struct jmicron_raid_conf *meta;
2542     struct ar_softc *raid = NULL;
2543     u_int16_t checksum, *ptr;
2544     u_int64_t disk_size;
2545     int count, array, disk, total_disks, retval = 0;
2546 
2547     meta = (struct jmicron_raid_conf *)
2548 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2549 
2550     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2551 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2552 	if (testing || bootverbose)
2553 	    device_printf(parent,
2554 			  "JMicron read metadata failed\n");
2555     }
2556 
2557     /* check for JMicron signature */
2558     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2559 	if (testing || bootverbose)
2560 	    device_printf(parent, "JMicron check1 failed\n");
2561 	goto jmicron_out;
2562     }
2563 
2564     /* calculate checksum and compare for valid */
2565     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2566 	checksum += *ptr++;
2567     if (checksum) {
2568 	if (testing || bootverbose)
2569 	    device_printf(parent, "JMicron check2 failed\n");
2570 	goto jmicron_out;
2571     }
2572 
2573     if (testing || bootverbose)
2574 	ata_raid_jmicron_print_meta(meta);
2575 
2576     /* now convert JMicron meta into our generic form */
2577     for (array = 0; array < MAX_ARRAYS; array++) {
2578 jmicron_next:
2579 	if (!raidp[array]) {
2580 	    raidp[array] =
2581 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2582 					  M_WAITOK | M_ZERO);
2583 	}
2584 	raid = raidp[array];
2585 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2586 	    continue;
2587 
2588 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2589 	    if (meta->disks[disk]) {
2590 		if (raid->format == AR_F_JMICRON_RAID) {
2591 		    if (bcmp(&meta->disks[disk],
2592 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2593 			array++;
2594 			goto jmicron_next;
2595 		    }
2596 		}
2597 		else
2598 		    bcopy(&meta->disks[disk],
2599 			  raid->disks[disk].serial, sizeof(u_int32_t));
2600 		total_disks++;
2601 	    }
2602 	}
2603 	/* handle spares XXX SOS */
2604 
2605 	switch (meta->type) {
2606 	case JM_T_RAID0:
2607 	    raid->type = AR_T_RAID0;
2608 	    raid->width = total_disks;
2609 	    break;
2610 
2611 	case JM_T_RAID1:
2612 	    raid->type = AR_T_RAID1;
2613 	    raid->width = 1;
2614 	    break;
2615 
2616 	case JM_T_RAID01:
2617 	    raid->type = AR_T_RAID01;
2618 	    raid->width = total_disks / 2;
2619 	    break;
2620 
2621 	case JM_T_RAID5:
2622 	    raid->type = AR_T_RAID5;
2623 	    raid->width = total_disks;
2624 	    break;
2625 
2626 	case JM_T_JBOD:
2627 	    raid->type = AR_T_SPAN;
2628 	    raid->width = 1;
2629 	    break;
2630 
2631 	default:
2632 	    device_printf(parent,
2633 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2634 	    kfree(raidp[array], M_AR);
2635 	    raidp[array] = NULL;
2636 	    goto jmicron_out;
2637 	}
2638 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2639 	raid->format = AR_F_JMICRON_RAID;
2640 	strncpy(raid->name, meta->name, sizeof(meta->name));
2641 	raid->generation = 0;
2642 	raid->interleave = 2 << meta->stripe_shift;
2643 	raid->total_disks = total_disks;
2644 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2645 	raid->heads = 255;
2646 	raid->sectors = 63;
2647 	raid->cylinders = raid->total_sectors / (63 * 255);
2648 	raid->offset_sectors = meta->offset * 16;
2649 	raid->rebuild_lba = 0;
2650 	raid->lun = array;
2651 
2652 	for (disk = 0; disk < raid->total_disks; disk++) {
2653 	    if (meta->disks[disk] == meta->disk_id) {
2654 		raid->disks[disk].dev = parent;
2655 		raid->disks[disk].sectors = disk_size;
2656 		raid->disks[disk].flags =
2657 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2658 		ars->raid[raid->volume] = raid;
2659 		ars->disk_number[raid->volume] = disk;
2660 		retval = 1;
2661 		break;
2662 	    }
2663 	}
2664 	break;
2665     }
2666 jmicron_out:
2667     kfree(meta, M_AR);
2668     return retval;
2669 }
2670 
2671 static int
2672 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2673 {
2674     struct jmicron_raid_conf *meta;
2675     u_int64_t disk_sectors;
2676     int disk, error = 0;
2677 
2678     meta = (struct jmicron_raid_conf *)
2679 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2680 
2681     rdp->generation++;
2682     switch (rdp->type) {
2683     case AR_T_JBOD:
2684 	meta->type = JM_T_JBOD;
2685 	break;
2686 
2687     case AR_T_RAID0:
2688 	meta->type = JM_T_RAID0;
2689 	break;
2690 
2691     case AR_T_RAID1:
2692 	meta->type = JM_T_RAID1;
2693 	break;
2694 
2695     case AR_T_RAID5:
2696 	meta->type = JM_T_RAID5;
2697 	break;
2698 
2699     case AR_T_RAID01:
2700 	meta->type = JM_T_RAID01;
2701 	break;
2702 
2703     default:
2704 	kfree(meta, M_AR);
2705 	return ENODEV;
2706     }
2707     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2708     meta->version = JMICRON_VERSION;
2709     meta->offset = rdp->offset_sectors / 16;
2710     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2711     meta->disk_sectors_low = disk_sectors & 0xffff;
2712     meta->disk_sectors_high = disk_sectors >> 16;
2713     strncpy(meta->name, rdp->name, sizeof(meta->name));
2714     meta->stripe_shift = ffs(rdp->interleave) - 2;
2715 
2716     for (disk = 0; disk < rdp->total_disks; disk++) {
2717 	if (rdp->disks[disk].serial[0])
2718 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2719 	else
2720 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2721     }
2722 
2723     for (disk = 0; disk < rdp->total_disks; disk++) {
2724 	if (rdp->disks[disk].dev) {
2725 	    u_int16_t checksum = 0, *ptr;
2726 	    int count;
2727 
2728 	    meta->disk_id = meta->disks[disk];
2729 	    meta->checksum = 0;
2730 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2731 		checksum += *ptr++;
2732 	    meta->checksum -= checksum;
2733 
2734 	    if (testing || bootverbose)
2735 		ata_raid_jmicron_print_meta(meta);
2736 
2737 	    if (ata_raid_rw(rdp->disks[disk].dev,
2738 			    JMICRON_LBA(rdp->disks[disk].dev),
2739 			    meta, sizeof(struct jmicron_raid_conf),
2740 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2741 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2742 		error = EIO;
2743 	    }
2744 	}
2745     }
2746     /* handle spares XXX SOS */
2747 
2748     kfree(meta, M_AR);
2749     return error;
2750 }
2751 
2752 /* LSILogic V2 MegaRAID Metadata */
2753 static int
2754 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2755 {
2756     struct ata_raid_subdisk *ars = device_get_softc(dev);
2757     device_t parent = device_get_parent(dev);
2758     struct lsiv2_raid_conf *meta;
2759     struct ar_softc *raid = NULL;
2760     int array, retval = 0;
2761 
2762     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2763 	M_AR, M_WAITOK | M_ZERO);
2764 
2765     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2766 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2767 	if (testing || bootverbose)
2768 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2769 	goto lsiv2_out;
2770     }
2771 
2772     /* check if this is a LSI RAID struct */
2773     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2774 	if (testing || bootverbose)
2775 	    device_printf(parent, "LSI (v2) check1 failed\n");
2776 	goto lsiv2_out;
2777     }
2778 
2779     if (testing || bootverbose)
2780 	ata_raid_lsiv2_print_meta(meta);
2781 
2782     /* now convert LSI (v2) config meta into our generic form */
2783     for (array = 0; array < MAX_ARRAYS; array++) {
2784 	int raid_entry, conf_entry;
2785 
2786 	if (!raidp[array + meta->raid_number]) {
2787 	    raidp[array + meta->raid_number] =
2788 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2789 					  M_WAITOK | M_ZERO);
2790 	}
2791 	raid = raidp[array + meta->raid_number];
2792 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2793 	    continue;
2794 
2795 	if (raid->magic_0 &&
2796 	    ((raid->magic_0 != meta->timestamp) ||
2797 	     (raid->magic_1 != meta->raid_number)))
2798 	    continue;
2799 
2800 	array += meta->raid_number;
2801 
2802 	raid_entry = meta->raid_number;
2803 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2804 		     meta->disk_number - 1;
2805 
2806 	switch (meta->configs[raid_entry].raid.type) {
2807 	case LSIV2_T_RAID0:
2808 	    raid->magic_0 = meta->timestamp;
2809 	    raid->magic_1 = meta->raid_number;
2810 	    raid->type = AR_T_RAID0;
2811 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2812 	    raid->width = meta->configs[raid_entry].raid.array_width;
2813 	    break;
2814 
2815 	case LSIV2_T_RAID1:
2816 	    raid->magic_0 = meta->timestamp;
2817 	    raid->magic_1 = meta->raid_number;
2818 	    raid->type = AR_T_RAID1;
2819 	    raid->width = meta->configs[raid_entry].raid.array_width;
2820 	    break;
2821 
2822 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2823 	    raid->magic_0 = meta->timestamp;
2824 	    raid->magic_1 = meta->raid_number;
2825 	    raid->type = AR_T_RAID01;
2826 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2827 	    raid->width = meta->configs[raid_entry].raid.array_width;
2828 	    break;
2829 
2830 	default:
2831 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2832 			  meta->configs[raid_entry].raid.type);
2833 	    kfree(raidp[array], M_AR);
2834 	    raidp[array] = NULL;
2835 	    goto lsiv2_out;
2836 	}
2837 
2838 	raid->format = AR_F_LSIV2_RAID;
2839 	raid->generation = 0;
2840 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2841 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2842 	raid->heads = 255;
2843 	raid->sectors = 63;
2844 	raid->cylinders = raid->total_sectors / (63 * 255);
2845 	raid->offset_sectors = 0;
2846 	raid->rebuild_lba = 0;
2847 	raid->lun = array;
2848 
2849 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2850 	    raid->disks[meta->disk_number].dev = parent;
2851 	    raid->disks[meta->disk_number].sectors =
2852 		meta->configs[conf_entry].disk.disk_sectors;
2853 	    raid->disks[meta->disk_number].flags =
2854 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2855 	    ars->raid[raid->volume] = raid;
2856 	    ars->disk_number[raid->volume] = meta->disk_number;
2857 	    retval = 1;
2858 	}
2859 	else
2860 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2861 
2862 	break;
2863     }
2864 
2865 lsiv2_out:
2866     kfree(meta, M_AR);
2867     return retval;
2868 }
2869 
2870 /* LSILogic V3 MegaRAID Metadata */
2871 static int
2872 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2873 {
2874     struct ata_raid_subdisk *ars = device_get_softc(dev);
2875     device_t parent = device_get_parent(dev);
2876     struct lsiv3_raid_conf *meta;
2877     struct ar_softc *raid = NULL;
2878     u_int8_t checksum, *ptr;
2879     int array, entry, count, disk_number, retval = 0;
2880 
2881     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2882 	M_AR, M_WAITOK | M_ZERO);
2883 
2884     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2885 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2886 	if (testing || bootverbose)
2887 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2888 	goto lsiv3_out;
2889     }
2890 
2891     /* check if this is a LSI RAID struct */
2892     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2893 	if (testing || bootverbose)
2894 	    device_printf(parent, "LSI (v3) check1 failed\n");
2895 	goto lsiv3_out;
2896     }
2897 
2898     /* check if the checksum is OK */
2899     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2900 	checksum += *ptr++;
2901     if (checksum) {
2902 	if (testing || bootverbose)
2903 	    device_printf(parent, "LSI (v3) check2 failed\n");
2904 	goto lsiv3_out;
2905     }
2906 
2907     if (testing || bootverbose)
2908 	ata_raid_lsiv3_print_meta(meta);
2909 
2910     /* now convert LSI (v3) config meta into our generic form */
2911     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2912 	if (!raidp[array]) {
2913 	    raidp[array] =
2914 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2915 					  M_WAITOK | M_ZERO);
2916 	}
2917 	raid = raidp[array];
2918 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2919 	    array++;
2920 	    continue;
2921 	}
2922 
2923 	if ((raid->format == AR_F_LSIV3_RAID) &&
2924 	    (raid->magic_0 != meta->timestamp)) {
2925 	    array++;
2926 	    continue;
2927 	}
2928 
2929 	switch (meta->raid[entry].total_disks) {
2930 	case 0:
2931 	    entry++;
2932 	    continue;
2933 	case 1:
2934 	    if (meta->raid[entry].device == meta->device) {
2935 		disk_number = 0;
2936 		break;
2937 	    }
2938 	    if (raid->format)
2939 		array++;
2940 	    entry++;
2941 	    continue;
2942 	case 2:
2943 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2944 	    break;
2945 	default:
2946 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2947 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2948 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2949 	    break;
2950 	}
2951 
2952 	switch (meta->raid[entry].type) {
2953 	case LSIV3_T_RAID0:
2954 	    raid->type = AR_T_RAID0;
2955 	    raid->width = meta->raid[entry].total_disks;
2956 	    break;
2957 
2958 	case LSIV3_T_RAID1:
2959 	    raid->type = AR_T_RAID1;
2960 	    raid->width = meta->raid[entry].array_width;
2961 	    break;
2962 
2963 	default:
2964 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2965 			  meta->raid[entry].type);
2966 	    kfree(raidp[array], M_AR);
2967 	    raidp[array] = NULL;
2968 	    entry++;
2969 	    continue;
2970 	}
2971 
2972 	raid->magic_0 = meta->timestamp;
2973 	raid->format = AR_F_LSIV3_RAID;
2974 	raid->generation = 0;
2975 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2976 	raid->total_disks = meta->raid[entry].total_disks;
2977 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2978 	raid->heads = 255;
2979 	raid->sectors = 63;
2980 	raid->cylinders = raid->total_sectors / (63 * 255);
2981 	raid->offset_sectors = meta->raid[entry].offset;
2982 	raid->rebuild_lba = 0;
2983 	raid->lun = array;
2984 
2985 	raid->disks[disk_number].dev = parent;
2986 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2987 	raid->disks[disk_number].flags =
2988 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2989 	ars->raid[raid->volume] = raid;
2990 	ars->disk_number[raid->volume] = disk_number;
2991 	retval = 1;
2992 	entry++;
2993 	array++;
2994     }
2995 
2996 lsiv3_out:
2997     kfree(meta, M_AR);
2998     return retval;
2999 }
3000 
3001 /* nVidia MediaShield Metadata */
3002 static int
3003 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3004 {
3005     struct ata_raid_subdisk *ars = device_get_softc(dev);
3006     device_t parent = device_get_parent(dev);
3007     struct nvidia_raid_conf *meta;
3008     struct ar_softc *raid = NULL;
3009     u_int32_t checksum, *ptr;
3010     int array, count, retval = 0;
3011 
3012     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3013 	M_AR, M_WAITOK | M_ZERO);
3014 
3015     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3016 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3017 	if (testing || bootverbose)
3018 	    device_printf(parent, "nVidia read metadata failed\n");
3019 	goto nvidia_out;
3020     }
3021 
3022     /* check if this is a nVidia RAID struct */
3023     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3024 	if (testing || bootverbose)
3025 	    device_printf(parent, "nVidia check1 failed\n");
3026 	goto nvidia_out;
3027     }
3028 
3029     /* check if the checksum is OK */
3030     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3031 	 count < meta->config_size; count++)
3032 	checksum += *ptr++;
3033     if (checksum) {
3034 	if (testing || bootverbose)
3035 	    device_printf(parent, "nVidia check2 failed\n");
3036 	goto nvidia_out;
3037     }
3038 
3039     if (testing || bootverbose)
3040 	ata_raid_nvidia_print_meta(meta);
3041 
3042     /* now convert nVidia meta into our generic form */
3043     for (array = 0; array < MAX_ARRAYS; array++) {
3044 	if (!raidp[array]) {
3045 	    raidp[array] =
3046 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3047 					  M_WAITOK | M_ZERO);
3048 	}
3049 	raid = raidp[array];
3050 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3051 	    continue;
3052 
3053 	if (raid->format == AR_F_NVIDIA_RAID &&
3054 	    ((raid->magic_0 != meta->magic_1) ||
3055 	     (raid->magic_1 != meta->magic_2))) {
3056 	    continue;
3057 	}
3058 
3059 	switch (meta->type) {
3060 	case NV_T_SPAN:
3061 	    raid->type = AR_T_SPAN;
3062 	    break;
3063 
3064 	case NV_T_RAID0:
3065 	    raid->type = AR_T_RAID0;
3066 	    break;
3067 
3068 	case NV_T_RAID1:
3069 	    raid->type = AR_T_RAID1;
3070 	    break;
3071 
3072 	case NV_T_RAID5:
3073 	    raid->type = AR_T_RAID5;
3074 	    break;
3075 
3076 	case NV_T_RAID01:
3077 	    raid->type = AR_T_RAID01;
3078 	    break;
3079 
3080 	default:
3081 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3082 			  meta->type);
3083 	    kfree(raidp[array], M_AR);
3084 	    raidp[array] = NULL;
3085 	    goto nvidia_out;
3086 	}
3087 	raid->magic_0 = meta->magic_1;
3088 	raid->magic_1 = meta->magic_2;
3089 	raid->format = AR_F_NVIDIA_RAID;
3090 	raid->generation = 0;
3091 	raid->interleave = meta->stripe_sectors;
3092 	raid->width = meta->array_width;
3093 	raid->total_disks = meta->total_disks;
3094 	raid->total_sectors = meta->total_sectors;
3095 	raid->heads = 255;
3096 	raid->sectors = 63;
3097 	raid->cylinders = raid->total_sectors / (63 * 255);
3098 	raid->offset_sectors = 0;
3099 	raid->rebuild_lba = meta->rebuild_lba;
3100 	raid->lun = array;
3101 	raid->status = AR_S_READY;
3102 	if (meta->status & NV_S_DEGRADED)
3103 	    raid->status |= AR_S_DEGRADED;
3104 
3105 	raid->disks[meta->disk_number].dev = parent;
3106 	raid->disks[meta->disk_number].sectors =
3107 	    raid->total_sectors / raid->width;
3108 	raid->disks[meta->disk_number].flags =
3109 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3110 	ars->raid[raid->volume] = raid;
3111 	ars->disk_number[raid->volume] = meta->disk_number;
3112 	retval = 1;
3113 	break;
3114     }
3115 
3116 nvidia_out:
3117     kfree(meta, M_AR);
3118     return retval;
3119 }
3120 
3121 /* Promise FastTrak Metadata */
3122 static int
3123 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3124 {
3125     struct ata_raid_subdisk *ars = device_get_softc(dev);
3126     device_t parent = device_get_parent(dev);
3127     struct promise_raid_conf *meta;
3128     struct ar_softc *raid;
3129     u_int32_t checksum, *ptr;
3130     int array, count, disk, disksum = 0, retval = 0;
3131 
3132     meta = (struct promise_raid_conf *)
3133 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3134 
3135     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3136 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3137 	if (testing || bootverbose)
3138 	    device_printf(parent, "%s read metadata failed\n",
3139 			  native ? "FreeBSD" : "Promise");
3140 	goto promise_out;
3141     }
3142 
3143     /* check the signature */
3144     if (native) {
3145 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3146 	    if (testing || bootverbose)
3147 		device_printf(parent, "FreeBSD check1 failed\n");
3148 	    goto promise_out;
3149 	}
3150     }
3151     else {
3152 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3153 	    if (testing || bootverbose)
3154 		device_printf(parent, "Promise check1 failed\n");
3155 	    goto promise_out;
3156 	}
3157     }
3158 
3159     /* check if the checksum is OK */
3160     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3161 	checksum += *ptr++;
3162     if (checksum != *ptr) {
3163 	if (testing || bootverbose)
3164 	    device_printf(parent, "%s check2 failed\n",
3165 			  native ? "FreeBSD" : "Promise");
3166 	goto promise_out;
3167     }
3168 
3169     /* check on disk integrity status */
3170     if (meta->raid.integrity != PR_I_VALID) {
3171 	if (testing || bootverbose)
3172 	    device_printf(parent, "%s check3 failed\n",
3173 			  native ? "FreeBSD" : "Promise");
3174 	goto promise_out;
3175     }
3176 
3177     if (testing || bootverbose)
3178 	ata_raid_promise_print_meta(meta);
3179 
3180     /* now convert Promise metadata into our generic form */
3181     for (array = 0; array < MAX_ARRAYS; array++) {
3182 	if (!raidp[array]) {
3183 	    raidp[array] =
3184 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3185 					  M_WAITOK | M_ZERO);
3186 	}
3187 	raid = raidp[array];
3188 	if (raid->format &&
3189 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3190 	    continue;
3191 
3192 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3193 	    !(meta->raid.magic_1 == (raid->magic_1)))
3194 	    continue;
3195 
3196 	/* update our knowledge about the array config based on generation */
3197 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3198 	    switch (meta->raid.type) {
3199 	    case PR_T_SPAN:
3200 		raid->type = AR_T_SPAN;
3201 		break;
3202 
3203 	    case PR_T_JBOD:
3204 		raid->type = AR_T_JBOD;
3205 		break;
3206 
3207 	    case PR_T_RAID0:
3208 		raid->type = AR_T_RAID0;
3209 		break;
3210 
3211 	    case PR_T_RAID1:
3212 		raid->type = AR_T_RAID1;
3213 		if (meta->raid.array_width > 1)
3214 		    raid->type = AR_T_RAID01;
3215 		break;
3216 
3217 	    case PR_T_RAID5:
3218 		raid->type = AR_T_RAID5;
3219 		break;
3220 
3221 	    default:
3222 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3223 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3224 		kfree(raidp[array], M_AR);
3225 		raidp[array] = NULL;
3226 		goto promise_out;
3227 	    }
3228 	    raid->magic_1 = meta->raid.magic_1;
3229 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3230 	    raid->generation = meta->raid.generation;
3231 	    raid->interleave = 1 << meta->raid.stripe_shift;
3232 	    raid->width = meta->raid.array_width;
3233 	    raid->total_disks = meta->raid.total_disks;
3234 	    raid->heads = meta->raid.heads + 1;
3235 	    raid->sectors = meta->raid.sectors;
3236 	    raid->cylinders = meta->raid.cylinders + 1;
3237 	    raid->total_sectors = meta->raid.total_sectors;
3238 	    raid->offset_sectors = 0;
3239 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3240 	    raid->lun = array;
3241 	    if ((meta->raid.status &
3242 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3243 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3244 		raid->status |= AR_S_READY;
3245 		if (meta->raid.status & PR_S_DEGRADED)
3246 		    raid->status |= AR_S_DEGRADED;
3247 	    }
3248 	    else
3249 		raid->status &= ~AR_S_READY;
3250 
3251 	    /* convert disk flags to our internal types */
3252 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3253 		raid->disks[disk].dev = NULL;
3254 		raid->disks[disk].flags = 0;
3255 		*((u_int64_t *)(raid->disks[disk].serial)) =
3256 		    meta->raid.disk[disk].magic_0;
3257 		disksum += meta->raid.disk[disk].flags;
3258 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3259 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3260 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3261 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3262 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3263 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3264 		    raid->disks[disk].flags |= AR_DF_SPARE;
3265 		}
3266 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3267 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3268 	    }
3269 	    if (!disksum) {
3270 		device_printf(parent, "%s subdisks has no flags\n",
3271 			      native ? "FreeBSD" : "Promise");
3272 		kfree(raidp[array], M_AR);
3273 		raidp[array] = NULL;
3274 		goto promise_out;
3275 	    }
3276 	}
3277 	if (meta->raid.generation >= raid->generation) {
3278 	    int disk_number = meta->raid.disk_number;
3279 
3280 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3281 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3282 		raid->disks[disk_number].dev = parent;
3283 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3284 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3285 		if ((raid->disks[disk_number].flags &
3286 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3287 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3288 		    ars->raid[raid->volume] = raid;
3289 		    ars->disk_number[raid->volume] = disk_number;
3290 		    retval = 1;
3291 		}
3292 	    }
3293 	}
3294 	break;
3295     }
3296 
3297 promise_out:
3298     kfree(meta, M_AR);
3299     return retval;
3300 }
3301 
3302 static int
3303 ata_raid_promise_write_meta(struct ar_softc *rdp)
3304 {
3305     struct promise_raid_conf *meta;
3306     struct timeval timestamp;
3307     u_int32_t *ckptr;
3308     int count, disk, drive, error = 0;
3309 
3310     meta = (struct promise_raid_conf *)
3311 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3312 
3313     rdp->generation++;
3314     microtime(&timestamp);
3315 
3316     for (disk = 0; disk < rdp->total_disks; disk++) {
3317 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3318 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3319 	meta->dummy_0 = 0x00020000;
3320 	meta->raid.disk_number = disk;
3321 
3322 	if (rdp->disks[disk].dev) {
3323 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3324 	    struct ata_channel *ch =
3325 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3326 
3327 	    meta->raid.channel = ch->unit;
3328 	    meta->raid.device = ATA_DEV(atadev->unit);
3329 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3330 	    meta->raid.disk_offset = rdp->offset_sectors;
3331 	}
3332 	else {
3333 	    meta->raid.channel = 0;
3334 	    meta->raid.device = 0;
3335 	    meta->raid.disk_sectors = 0;
3336 	    meta->raid.disk_offset = 0;
3337 	}
3338 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3339 	meta->magic_1 = timestamp.tv_sec >> 16;
3340 	meta->magic_2 = timestamp.tv_sec;
3341 	meta->raid.integrity = PR_I_VALID;
3342 	meta->raid.magic_0 = meta->magic_0;
3343 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3344 	meta->raid.generation = rdp->generation;
3345 
3346 	if (rdp->status & AR_S_READY) {
3347 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3348 	    meta->raid.status =
3349 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3350 	    if (rdp->status & AR_S_DEGRADED)
3351 		meta->raid.status |= PR_S_DEGRADED;
3352 	    else
3353 		meta->raid.status |= PR_S_FUNCTIONAL;
3354 	}
3355 	else {
3356 	    meta->raid.flags = PR_F_DOWN;
3357 	    meta->raid.status = 0;
3358 	}
3359 
3360 	switch (rdp->type) {
3361 	case AR_T_RAID0:
3362 	    meta->raid.type = PR_T_RAID0;
3363 	    break;
3364 	case AR_T_RAID1:
3365 	    meta->raid.type = PR_T_RAID1;
3366 	    break;
3367 	case AR_T_RAID01:
3368 	    meta->raid.type = PR_T_RAID1;
3369 	    break;
3370 	case AR_T_RAID5:
3371 	    meta->raid.type = PR_T_RAID5;
3372 	    break;
3373 	case AR_T_SPAN:
3374 	    meta->raid.type = PR_T_SPAN;
3375 	    break;
3376 	case AR_T_JBOD:
3377 	    meta->raid.type = PR_T_JBOD;
3378 	    break;
3379 	default:
3380 	    kfree(meta, M_AR);
3381 	    return ENODEV;
3382 	}
3383 
3384 	meta->raid.total_disks = rdp->total_disks;
3385 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3386 	meta->raid.array_width = rdp->width;
3387 	meta->raid.array_number = rdp->lun;
3388 	meta->raid.total_sectors = rdp->total_sectors;
3389 	meta->raid.cylinders = rdp->cylinders - 1;
3390 	meta->raid.heads = rdp->heads - 1;
3391 	meta->raid.sectors = rdp->sectors;
3392 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3393 
3394 	bzero(&meta->raid.disk, 8 * 12);
3395 	for (drive = 0; drive < rdp->total_disks; drive++) {
3396 	    meta->raid.disk[drive].flags = 0;
3397 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3398 		meta->raid.disk[drive].flags |= PR_F_VALID;
3399 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3400 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3401 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3402 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3403 	    else
3404 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3405 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3406 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3407 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3408 	    meta->raid.disk[drive].dummy_0 = 0x0;
3409 	    if (rdp->disks[drive].dev) {
3410 		struct ata_channel *ch =
3411 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3412 		struct ata_device *atadev =
3413 		    device_get_softc(rdp->disks[drive].dev);
3414 
3415 		meta->raid.disk[drive].channel = ch->unit;
3416 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3417 	    }
3418 	    meta->raid.disk[drive].magic_0 =
3419 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3420 	}
3421 
3422 	if (rdp->disks[disk].dev) {
3423 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3424 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3425 		if (rdp->format == AR_F_FREEBSD_RAID)
3426 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3427 		else
3428 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3429 	    }
3430 	    else
3431 		bzero(meta->promise_id, sizeof(meta->promise_id));
3432 	    meta->checksum = 0;
3433 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3434 		meta->checksum += *ckptr++;
3435 	    if (testing || bootverbose)
3436 		ata_raid_promise_print_meta(meta);
3437 	    if (ata_raid_rw(rdp->disks[disk].dev,
3438 			    PROMISE_LBA(rdp->disks[disk].dev),
3439 			    meta, sizeof(struct promise_raid_conf),
3440 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3441 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3442 		error = EIO;
3443 	    }
3444 	}
3445     }
3446     kfree(meta, M_AR);
3447     return error;
3448 }
3449 
3450 /* Silicon Image Medley Metadata */
3451 static int
3452 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3453 {
3454     struct ata_raid_subdisk *ars = device_get_softc(dev);
3455     device_t parent = device_get_parent(dev);
3456     struct sii_raid_conf *meta;
3457     struct ar_softc *raid = NULL;
3458     u_int16_t checksum, *ptr;
3459     int array, count, disk, retval = 0;
3460 
3461     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3462 	M_WAITOK | M_ZERO);
3463 
3464     if (ata_raid_rw(parent, SII_LBA(parent),
3465 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3466 	if (testing || bootverbose)
3467 	    device_printf(parent, "Silicon Image read metadata failed\n");
3468 	goto sii_out;
3469     }
3470 
3471     /* check if this is a Silicon Image (Medley) RAID struct */
3472     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3473 	checksum += *ptr++;
3474     if (checksum) {
3475 	if (testing || bootverbose)
3476 	    device_printf(parent, "Silicon Image check1 failed\n");
3477 	goto sii_out;
3478     }
3479 
3480     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3481 	checksum += *ptr++;
3482     if (checksum != meta->checksum_1) {
3483 	if (testing || bootverbose)
3484 	    device_printf(parent, "Silicon Image check2 failed\n");
3485 	goto sii_out;
3486     }
3487 
3488     /* check verison */
3489     if (meta->version_major != 0x0002 ||
3490 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3491 	if (testing || bootverbose)
3492 	    device_printf(parent, "Silicon Image check3 failed\n");
3493 	goto sii_out;
3494     }
3495 
3496     if (testing || bootverbose)
3497 	ata_raid_sii_print_meta(meta);
3498 
3499     /* now convert Silicon Image meta into our generic form */
3500     for (array = 0; array < MAX_ARRAYS; array++) {
3501 	if (!raidp[array]) {
3502 	    raidp[array] =
3503 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3504 					  M_WAITOK | M_ZERO);
3505 	}
3506 	raid = raidp[array];
3507 	if (raid->format && (raid->format != AR_F_SII_RAID))
3508 	    continue;
3509 
3510 	if (raid->format == AR_F_SII_RAID &&
3511 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3512 	    continue;
3513 	}
3514 
3515 	/* update our knowledge about the array config based on generation */
3516 	if (!meta->generation || meta->generation > raid->generation) {
3517 	    switch (meta->type) {
3518 	    case SII_T_RAID0:
3519 		raid->type = AR_T_RAID0;
3520 		break;
3521 
3522 	    case SII_T_RAID1:
3523 		raid->type = AR_T_RAID1;
3524 		break;
3525 
3526 	    case SII_T_RAID01:
3527 		raid->type = AR_T_RAID01;
3528 		break;
3529 
3530 	    case SII_T_SPARE:
3531 		device_printf(parent, "Silicon Image SPARE disk\n");
3532 		kfree(raidp[array], M_AR);
3533 		raidp[array] = NULL;
3534 		goto sii_out;
3535 
3536 	    default:
3537 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3538 			      meta->type);
3539 		kfree(raidp[array], M_AR);
3540 		raidp[array] = NULL;
3541 		goto sii_out;
3542 	    }
3543 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3544 	    raid->format = AR_F_SII_RAID;
3545 	    raid->generation = meta->generation;
3546 	    raid->interleave = meta->stripe_sectors;
3547 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3548 	    raid->total_disks =
3549 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3550 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3551 	    raid->total_sectors = meta->total_sectors;
3552 	    raid->heads = 255;
3553 	    raid->sectors = 63;
3554 	    raid->cylinders = raid->total_sectors / (63 * 255);
3555 	    raid->offset_sectors = 0;
3556 	    raid->rebuild_lba = meta->rebuild_lba;
3557 	    raid->lun = array;
3558 	    strncpy(raid->name, meta->name,
3559 		    min(sizeof(raid->name), sizeof(meta->name)));
3560 
3561 	    /* clear out any old info */
3562 	    if (raid->generation) {
3563 		for (disk = 0; disk < raid->total_disks; disk++) {
3564 		    raid->disks[disk].dev = NULL;
3565 		    raid->disks[disk].flags = 0;
3566 		}
3567 	    }
3568 	}
3569 	if (meta->generation >= raid->generation) {
3570 	    /* XXX SOS add check for the right physical disk by serial# */
3571 	    if (meta->status & SII_S_READY) {
3572 		int disk_number = (raid->type == AR_T_RAID01) ?
3573 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3574 		    meta->disk_number;
3575 
3576 		raid->disks[disk_number].dev = parent;
3577 		raid->disks[disk_number].sectors =
3578 		    raid->total_sectors / raid->width;
3579 		raid->disks[disk_number].flags =
3580 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3581 		ars->raid[raid->volume] = raid;
3582 		ars->disk_number[raid->volume] = disk_number;
3583 		retval = 1;
3584 	    }
3585 	}
3586 	break;
3587     }
3588 
3589 sii_out:
3590     kfree(meta, M_AR);
3591     return retval;
3592 }
3593 
3594 /* Silicon Integrated Systems Metadata */
3595 static int
3596 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3597 {
3598     struct ata_raid_subdisk *ars = device_get_softc(dev);
3599     device_t parent = device_get_parent(dev);
3600     struct sis_raid_conf *meta;
3601     struct ar_softc *raid = NULL;
3602     int array, disk_number, drive, retval = 0;
3603 
3604     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3605 	M_WAITOK | M_ZERO);
3606 
3607     if (ata_raid_rw(parent, SIS_LBA(parent),
3608 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3609 	if (testing || bootverbose)
3610 	    device_printf(parent,
3611 			  "Silicon Integrated Systems read metadata failed\n");
3612     }
3613 
3614     /* check for SiS magic */
3615     if (meta->magic != SIS_MAGIC) {
3616 	if (testing || bootverbose)
3617 	    device_printf(parent,
3618 			  "Silicon Integrated Systems check1 failed\n");
3619 	goto sis_out;
3620     }
3621 
3622     if (testing || bootverbose)
3623 	ata_raid_sis_print_meta(meta);
3624 
3625     /* now convert SiS meta into our generic form */
3626     for (array = 0; array < MAX_ARRAYS; array++) {
3627 	if (!raidp[array]) {
3628 	    raidp[array] =
3629 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3630 					  M_WAITOK | M_ZERO);
3631 	}
3632 
3633 	raid = raidp[array];
3634 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3635 	    continue;
3636 
3637 	if ((raid->format == AR_F_SIS_RAID) &&
3638 	    ((raid->magic_0 != meta->controller_pci_id) ||
3639 	     (raid->magic_1 != meta->timestamp))) {
3640 	    continue;
3641 	}
3642 
3643 	switch (meta->type_total_disks & SIS_T_MASK) {
3644 	case SIS_T_JBOD:
3645 	    raid->type = AR_T_JBOD;
3646 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3647 	    raid->total_sectors += SIS_LBA(parent);
3648 	    break;
3649 
3650 	case SIS_T_RAID0:
3651 	    raid->type = AR_T_RAID0;
3652 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3653 	    if (!raid->total_sectors ||
3654 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3655 		raid->total_sectors = raid->width * SIS_LBA(parent);
3656 	    break;
3657 
3658 	case SIS_T_RAID1:
3659 	    raid->type = AR_T_RAID1;
3660 	    raid->width = 1;
3661 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3662 		raid->total_sectors = SIS_LBA(parent);
3663 	    break;
3664 
3665 	default:
3666 	    device_printf(parent, "Silicon Integrated Systems "
3667 			  "unknown RAID type 0x%08x\n", meta->magic);
3668 	    kfree(raidp[array], M_AR);
3669 	    raidp[array] = NULL;
3670 	    goto sis_out;
3671 	}
3672 	raid->magic_0 = meta->controller_pci_id;
3673 	raid->magic_1 = meta->timestamp;
3674 	raid->format = AR_F_SIS_RAID;
3675 	raid->generation = 0;
3676 	raid->interleave = meta->stripe_sectors;
3677 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3678 	raid->heads = 255;
3679 	raid->sectors = 63;
3680 	raid->cylinders = raid->total_sectors / (63 * 255);
3681 	raid->offset_sectors = 0;
3682 	raid->rebuild_lba = 0;
3683 	raid->lun = array;
3684 	/* XXX SOS if total_disks > 2 this doesn't float */
3685 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3686 	    disk_number = 0;
3687 	else
3688 	    disk_number = 1;
3689 
3690 	for (drive = 0; drive < raid->total_disks; drive++) {
3691 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3692 	    if (drive == disk_number) {
3693 		raid->disks[disk_number].dev = parent;
3694 		raid->disks[disk_number].flags =
3695 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3696 		ars->raid[raid->volume] = raid;
3697 		ars->disk_number[raid->volume] = disk_number;
3698 	    }
3699 	}
3700 	retval = 1;
3701 	break;
3702     }
3703 
3704 sis_out:
3705     kfree(meta, M_AR);
3706     return retval;
3707 }
3708 
3709 static int
3710 ata_raid_sis_write_meta(struct ar_softc *rdp)
3711 {
3712     struct sis_raid_conf *meta;
3713     struct timeval timestamp;
3714     int disk, error = 0;
3715 
3716     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3717 	M_WAITOK | M_ZERO);
3718 
3719     rdp->generation++;
3720     microtime(&timestamp);
3721 
3722     meta->magic = SIS_MAGIC;
3723     /* XXX SOS if total_disks > 2 this doesn't float */
3724     for (disk = 0; disk < rdp->total_disks; disk++) {
3725 	if (rdp->disks[disk].dev) {
3726 	    struct ata_channel *ch =
3727 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3728 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3729 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3730 
3731 	    meta->disks |= disk_number << ((1 - disk) << 2);
3732 	}
3733     }
3734     switch (rdp->type) {
3735     case AR_T_JBOD:
3736 	meta->type_total_disks = SIS_T_JBOD;
3737 	break;
3738 
3739     case AR_T_RAID0:
3740 	meta->type_total_disks = SIS_T_RAID0;
3741 	break;
3742 
3743     case AR_T_RAID1:
3744 	meta->type_total_disks = SIS_T_RAID1;
3745 	break;
3746 
3747     default:
3748 	kfree(meta, M_AR);
3749 	return ENODEV;
3750     }
3751     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3752     meta->stripe_sectors = rdp->interleave;
3753     meta->timestamp = timestamp.tv_sec;
3754 
3755     for (disk = 0; disk < rdp->total_disks; disk++) {
3756 	if (rdp->disks[disk].dev) {
3757 	    struct ata_channel *ch =
3758 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3759 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3760 
3761 	    meta->controller_pci_id =
3762 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3763 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3764 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3765 
3766 	    /* XXX SOS if total_disks > 2 this may not float */
3767 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3768 
3769 	    if (testing || bootverbose)
3770 		ata_raid_sis_print_meta(meta);
3771 
3772 	    if (ata_raid_rw(rdp->disks[disk].dev,
3773 			    SIS_LBA(rdp->disks[disk].dev),
3774 			    meta, sizeof(struct sis_raid_conf),
3775 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3776 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3777 		error = EIO;
3778 	    }
3779 	}
3780     }
3781     kfree(meta, M_AR);
3782     return error;
3783 }
3784 
3785 /* VIA Tech V-RAID Metadata */
3786 static int
3787 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3788 {
3789     struct ata_raid_subdisk *ars = device_get_softc(dev);
3790     device_t parent = device_get_parent(dev);
3791     struct via_raid_conf *meta;
3792     struct ar_softc *raid = NULL;
3793     u_int8_t checksum, *ptr;
3794     int array, count, disk, retval = 0;
3795 
3796     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3797 	M_WAITOK | M_ZERO);
3798 
3799     if (ata_raid_rw(parent, VIA_LBA(parent),
3800 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3801 	if (testing || bootverbose)
3802 	    device_printf(parent, "VIA read metadata failed\n");
3803 	goto via_out;
3804     }
3805 
3806     /* check if this is a VIA RAID struct */
3807     if (meta->magic != VIA_MAGIC) {
3808 	if (testing || bootverbose)
3809 	    device_printf(parent, "VIA check1 failed\n");
3810 	goto via_out;
3811     }
3812 
3813     /* calculate checksum and compare for valid */
3814     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3815 	checksum += *ptr++;
3816     if (checksum != meta->checksum) {
3817 	if (testing || bootverbose)
3818 	    device_printf(parent, "VIA check2 failed\n");
3819 	goto via_out;
3820     }
3821 
3822     if (testing || bootverbose)
3823 	ata_raid_via_print_meta(meta);
3824 
3825     /* now convert VIA meta into our generic form */
3826     for (array = 0; array < MAX_ARRAYS; array++) {
3827 	if (!raidp[array]) {
3828 	    raidp[array] =
3829 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3830 					  M_WAITOK | M_ZERO);
3831 	}
3832 	raid = raidp[array];
3833 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3834 	    continue;
3835 
3836 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3837 	    continue;
3838 
3839 	switch (meta->type & VIA_T_MASK) {
3840 	case VIA_T_RAID0:
3841 	    raid->type = AR_T_RAID0;
3842 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3843 	    if (!raid->total_sectors ||
3844 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3845 		raid->total_sectors = raid->width * meta->disk_sectors;
3846 	    break;
3847 
3848 	case VIA_T_RAID1:
3849 	    raid->type = AR_T_RAID1;
3850 	    raid->width = 1;
3851 	    raid->total_sectors = meta->disk_sectors;
3852 	    break;
3853 
3854 	case VIA_T_RAID01:
3855 	    raid->type = AR_T_RAID01;
3856 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3857 	    if (!raid->total_sectors ||
3858 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3859 		raid->total_sectors = raid->width * meta->disk_sectors;
3860 	    break;
3861 
3862 	case VIA_T_RAID5:
3863 	    raid->type = AR_T_RAID5;
3864 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3865 	    if (!raid->total_sectors ||
3866 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3867 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3868 	    break;
3869 
3870 	case VIA_T_SPAN:
3871 	    raid->type = AR_T_SPAN;
3872 	    raid->width = 1;
3873 	    raid->total_sectors += meta->disk_sectors;
3874 	    break;
3875 
3876 	default:
3877 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3878 	    kfree(raidp[array], M_AR);
3879 	    raidp[array] = NULL;
3880 	    goto via_out;
3881 	}
3882 	raid->magic_0 = meta->disks[0];
3883 	raid->format = AR_F_VIA_RAID;
3884 	raid->generation = 0;
3885 	raid->interleave =
3886 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3887 	for (count = 0, disk = 0; disk < 8; disk++)
3888 	    if (meta->disks[disk])
3889 		count++;
3890 	raid->total_disks = count;
3891 	raid->heads = 255;
3892 	raid->sectors = 63;
3893 	raid->cylinders = raid->total_sectors / (63 * 255);
3894 	raid->offset_sectors = 0;
3895 	raid->rebuild_lba = 0;
3896 	raid->lun = array;
3897 
3898 	for (disk = 0; disk < raid->total_disks; disk++) {
3899 	    if (meta->disks[disk] == meta->disk_id) {
3900 		raid->disks[disk].dev = parent;
3901 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3902 		      sizeof(u_int32_t));
3903 		raid->disks[disk].sectors = meta->disk_sectors;
3904 		raid->disks[disk].flags =
3905 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3906 		ars->raid[raid->volume] = raid;
3907 		ars->disk_number[raid->volume] = disk;
3908 		retval = 1;
3909 		break;
3910 	    }
3911 	}
3912 	break;
3913     }
3914 
3915 via_out:
3916     kfree(meta, M_AR);
3917     return retval;
3918 }
3919 
3920 static int
3921 ata_raid_via_write_meta(struct ar_softc *rdp)
3922 {
3923     struct via_raid_conf *meta;
3924     int disk, error = 0;
3925 
3926     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3927 	M_WAITOK | M_ZERO);
3928 
3929     rdp->generation++;
3930 
3931     meta->magic = VIA_MAGIC;
3932     meta->dummy_0 = 0x02;
3933     switch (rdp->type) {
3934     case AR_T_SPAN:
3935 	meta->type = VIA_T_SPAN;
3936 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3937 	break;
3938 
3939     case AR_T_RAID0:
3940 	meta->type = VIA_T_RAID0;
3941 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3942 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3943 	break;
3944 
3945     case AR_T_RAID1:
3946 	meta->type = VIA_T_RAID1;
3947 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3948 	break;
3949 
3950     case AR_T_RAID5:
3951 	meta->type = VIA_T_RAID5;
3952 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3953 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3954 	break;
3955 
3956     case AR_T_RAID01:
3957 	meta->type = VIA_T_RAID01;
3958 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3959 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3960 	break;
3961 
3962     default:
3963 	kfree(meta, M_AR);
3964 	return ENODEV;
3965     }
3966     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3967     meta->disk_sectors =
3968 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3969     for (disk = 0; disk < rdp->total_disks; disk++)
3970 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3971 
3972     for (disk = 0; disk < rdp->total_disks; disk++) {
3973 	if (rdp->disks[disk].dev) {
3974 	    u_int8_t *ptr;
3975 	    int count;
3976 
3977 	    meta->disk_index = disk * sizeof(u_int32_t);
3978 	    if (rdp->type == AR_T_RAID01)
3979 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3980 				   (meta->disk_index & ~0x08);
3981 	    meta->disk_id = meta->disks[disk];
3982 	    meta->checksum = 0;
3983 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3984 		meta->checksum += *ptr++;
3985 
3986 	    if (testing || bootverbose)
3987 		ata_raid_via_print_meta(meta);
3988 
3989 	    if (ata_raid_rw(rdp->disks[disk].dev,
3990 			    VIA_LBA(rdp->disks[disk].dev),
3991 			    meta, sizeof(struct via_raid_conf),
3992 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3993 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3994 		error = EIO;
3995 	    }
3996 	}
3997     }
3998     kfree(meta, M_AR);
3999     return error;
4000 }
4001 
4002 static struct ata_request *
4003 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4004 {
4005     struct ata_request *request;
4006 
4007     if (!(request = ata_alloc_request())) {
4008 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4009 	return NULL;
4010     }
4011     request->timeout = ATA_DEFAULT_TIMEOUT;
4012     request->retries = 2;
4013     request->callback = ata_raid_done;
4014     request->driver = rdp;
4015     request->bio = bio;
4016     switch (request->bio->bio_buf->b_cmd) {
4017     case BUF_CMD_READ:
4018 	request->flags = ATA_R_READ;
4019 	break;
4020     case BUF_CMD_WRITE:
4021 	request->flags = ATA_R_WRITE;
4022 	break;
4023     case BUF_CMD_FLUSH:
4024 	request->flags = ATA_R_CONTROL;
4025 	break;
4026     default:
4027 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4028 	ata_free_request(request);
4029 #if 0
4030 	bio->bio_buf->b_flags |= B_ERROR;
4031 	bio->bio_buf->b_error = EIO;
4032 	biodone(bio);
4033 #endif /* 0 */
4034 	return(NULL);
4035     }
4036     return request;
4037 }
4038 
4039 static int
4040 ata_raid_send_request(struct ata_request *request)
4041 {
4042     struct ata_device *atadev = device_get_softc(request->dev);
4043 
4044     request->transfersize = min(request->bytecount, atadev->max_iosize);
4045     if (request->flags & ATA_R_READ) {
4046 	if (atadev->mode >= ATA_DMA) {
4047 	    request->flags |= ATA_R_DMA;
4048 	    request->u.ata.command = ATA_READ_DMA;
4049 	}
4050 	else if (atadev->max_iosize > DEV_BSIZE)
4051 	    request->u.ata.command = ATA_READ_MUL;
4052 	else
4053 	    request->u.ata.command = ATA_READ;
4054     }
4055     else if (request->flags & ATA_R_WRITE) {
4056 	if (atadev->mode >= ATA_DMA) {
4057 	    request->flags |= ATA_R_DMA;
4058 	    request->u.ata.command = ATA_WRITE_DMA;
4059 	}
4060 	else if (atadev->max_iosize > DEV_BSIZE)
4061 	    request->u.ata.command = ATA_WRITE_MUL;
4062 	else
4063 	    request->u.ata.command = ATA_WRITE;
4064     }
4065     else {
4066 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4067 	ata_free_request(request);
4068 	return EIO;
4069     }
4070     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4071     ata_queue_request(request);
4072     return 0;
4073 }
4074 
4075 static int
4076 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4077 {
4078     struct ata_device *atadev = device_get_softc(dev);
4079     struct ata_request *request;
4080     int error;
4081 
4082     if (bcount % DEV_BSIZE) {
4083 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4084 	return ENOMEM;
4085     }
4086 
4087     if (!(request = ata_alloc_request())) {
4088 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4089 	return ENOMEM;
4090     }
4091 
4092     /* setup request */
4093     request->dev = dev;
4094     request->timeout = 10;
4095     request->retries = 0;
4096     request->data = data;
4097     request->bytecount = bcount;
4098     request->transfersize = DEV_BSIZE;
4099     request->u.ata.lba = lba;
4100     request->u.ata.count = request->bytecount / DEV_BSIZE;
4101     request->flags = flags;
4102 
4103     if (flags & ATA_R_READ) {
4104 	if (atadev->mode >= ATA_DMA) {
4105 	    request->u.ata.command = ATA_READ_DMA;
4106 	    request->flags |= ATA_R_DMA;
4107 	}
4108 	else
4109 	    request->u.ata.command = ATA_READ;
4110 	ata_queue_request(request);
4111     }
4112     else if (flags & ATA_R_WRITE) {
4113 	if (atadev->mode >= ATA_DMA) {
4114 	    request->u.ata.command = ATA_WRITE_DMA;
4115 	    request->flags |= ATA_R_DMA;
4116 	}
4117 	else
4118 	    request->u.ata.command = ATA_WRITE;
4119 	ata_queue_request(request);
4120     }
4121     else {
4122 	device_printf(dev, "FAILURE - unknown IO operation\n");
4123 	request->result = EIO;
4124     }
4125     error = request->result;
4126     ata_free_request(request);
4127     return error;
4128 }
4129 
4130 /*
4131  * module handeling
4132  */
4133 static int
4134 ata_raid_subdisk_probe(device_t dev)
4135 {
4136     device_quiet(dev);
4137     return 0;
4138 }
4139 
4140 static int
4141 ata_raid_subdisk_attach(device_t dev)
4142 {
4143     struct ata_raid_subdisk *ars = device_get_softc(dev);
4144     int volume;
4145 
4146     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4147 	ars->raid[volume] = NULL;
4148 	ars->disk_number[volume] = -1;
4149     }
4150     ata_raid_read_metadata(dev);
4151     return 0;
4152 }
4153 
4154 static int
4155 ata_raid_subdisk_detach(device_t dev)
4156 {
4157     struct ata_raid_subdisk *ars = device_get_softc(dev);
4158     int volume;
4159 
4160     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4161 	if (ars->raid[volume]) {
4162 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4163 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4164 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4165 	    ata_raid_config_changed(ars->raid[volume], 1);
4166 	    ars->raid[volume] = NULL;
4167 	    ars->disk_number[volume] = -1;
4168 	}
4169     }
4170     return 0;
4171 }
4172 
4173 static device_method_t ata_raid_sub_methods[] = {
4174     /* device interface */
4175     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4176     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4177     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4178     DEVMETHOD_END
4179 };
4180 
4181 static driver_t ata_raid_sub_driver = {
4182     "subdisk",
4183     ata_raid_sub_methods,
4184     sizeof(struct ata_raid_subdisk)
4185 };
4186 
4187 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4188 
4189 static int
4190 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4191 {
4192     int i;
4193 
4194     switch (what) {
4195     case MOD_LOAD:
4196 	if (testing || bootverbose)
4197 	    kprintf("ATA PseudoRAID loaded\n");
4198 #if 0
4199 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4200 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4201 				M_AR, M_WAITOK | M_ZERO);
4202 #endif
4203 	/* attach found PseudoRAID arrays */
4204 	for (i = 0; i < MAX_ARRAYS; i++) {
4205 	    struct ar_softc *rdp = ata_raid_arrays[i];
4206 
4207 	    if (!rdp || !rdp->format)
4208 		continue;
4209 	    if (testing || bootverbose)
4210 		ata_raid_print_meta(rdp);
4211 	    ata_raid_attach(rdp, 0);
4212 	}
4213 	ata_raid_ioctl_func = ata_raid_ioctl;
4214 	return 0;
4215 
4216     case MOD_UNLOAD:
4217 	/* detach found PseudoRAID arrays */
4218 	for (i = 0; i < MAX_ARRAYS; i++) {
4219 	    struct ar_softc *rdp = ata_raid_arrays[i];
4220 
4221 	    if (!rdp || !rdp->status)
4222 		continue;
4223 	    disk_destroy(&rdp->disk);
4224 	}
4225 	if (testing || bootverbose)
4226 	    kprintf("ATA PseudoRAID unloaded\n");
4227 #if 0
4228 	kfree(ata_raid_arrays, M_AR);
4229 #endif
4230 	ata_raid_ioctl_func = NULL;
4231 	return 0;
4232 
4233     default:
4234 	return EOPNOTSUPP;
4235     }
4236 }
4237 
4238 static moduledata_t ata_raid_moduledata =
4239     { "ataraid", ata_raid_module_event_handler, NULL };
4240 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4241 MODULE_VERSION(ataraid, 1);
4242 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4243 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4244 
4245 static char *
4246 ata_raid_format(struct ar_softc *rdp)
4247 {
4248     switch (rdp->format) {
4249     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4250     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4251     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4252     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4253     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4254     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4255     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4256     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4257     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4258     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4259     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4260     case AR_F_SII_RAID:         return "Silicon Image Medley";
4261     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4262     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4263     default:                    return "UNKNOWN";
4264     }
4265 }
4266 
4267 static char *
4268 ata_raid_type(struct ar_softc *rdp)
4269 {
4270     switch (rdp->type) {
4271     case AR_T_JBOD:     return "JBOD";
4272     case AR_T_SPAN:     return "SPAN";
4273     case AR_T_RAID0:    return "RAID0";
4274     case AR_T_RAID1:    return "RAID1";
4275     case AR_T_RAID3:    return "RAID3";
4276     case AR_T_RAID4:    return "RAID4";
4277     case AR_T_RAID5:    return "RAID5";
4278     case AR_T_RAID01:   return "RAID0+1";
4279     default:            return "UNKNOWN";
4280     }
4281 }
4282 
4283 static char *
4284 ata_raid_flags(struct ar_softc *rdp)
4285 {
4286     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4287     case AR_S_READY:                                    return "READY";
4288     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4289     case AR_S_READY | AR_S_REBUILDING:
4290     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4291     default:                                            return "BROKEN";
4292     }
4293 }
4294 
4295 /* debugging gunk */
4296 static void
4297 ata_raid_print_meta(struct ar_softc *raid)
4298 {
4299     int i;
4300 
4301     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4302     kprintf("=================================================\n");
4303     kprintf("format              %s\n", ata_raid_format(raid));
4304     kprintf("type                %s\n", ata_raid_type(raid));
4305     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4306 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4307     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4308     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4309     kprintf("generation          %u\n", raid->generation);
4310     kprintf("total_sectors       %ju\n", raid->total_sectors);
4311     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4312     kprintf("heads               %u\n", raid->heads);
4313     kprintf("sectors             %u\n", raid->sectors);
4314     kprintf("cylinders           %u\n", raid->cylinders);
4315     kprintf("width               %u\n", raid->width);
4316     kprintf("interleave          %u\n", raid->interleave);
4317     kprintf("total_disks         %u\n", raid->total_disks);
4318     for (i = 0; i < raid->total_disks; i++) {
4319 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4320 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4321 	if (raid->disks[i].dev) {
4322 	    kprintf("        ");
4323 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4324 			  raid->disks[i].sectors);
4325 	}
4326     }
4327     kprintf("=================================================\n");
4328 }
4329 
4330 static char *
4331 ata_raid_adaptec_type(int type)
4332 {
4333     static char buffer[16];
4334 
4335     switch (type) {
4336     case ADP_T_RAID0:   return "RAID0";
4337     case ADP_T_RAID1:   return "RAID1";
4338     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4339 			return buffer;
4340     }
4341 }
4342 
4343 static void
4344 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4345 {
4346     int i;
4347 
4348     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4349     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4350     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4351     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4352     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4353     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4354     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4355     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4356     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4357     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4358     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4359     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4360 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4361 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4362     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4363 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4364 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4365 
4366     for (i = 0; i < be16toh(meta->total_configs); i++) {
4367 	kprintf("    %d   total_disks  %u\n", i,
4368 	       be16toh(meta->configs[i].disk_number));
4369 	kprintf("    %d   generation   %u\n", i,
4370 	       be16toh(meta->configs[i].generation));
4371 	kprintf("    %d   magic_0      0x%08x\n", i,
4372 	       be32toh(meta->configs[i].magic_0));
4373 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4374 	kprintf("    %d   type         %s\n", i,
4375 	       ata_raid_adaptec_type(meta->configs[i].type));
4376 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4377 	kprintf("    %d   flags        %d\n", i,
4378 	       be32toh(meta->configs[i].flags));
4379 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4380 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4381 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4382 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4383 	kprintf("    %d   disk_number  %u\n", i,
4384 	       be32toh(meta->configs[i].disk_number));
4385 	kprintf("    %d   dummy_6      0x%08x\n", i,
4386 	       be32toh(meta->configs[i].dummy_6));
4387 	kprintf("    %d   sectors      %u\n", i,
4388 	       be32toh(meta->configs[i].sectors));
4389 	kprintf("    %d   stripe_shift %u\n", i,
4390 	       be16toh(meta->configs[i].stripe_shift));
4391 	kprintf("    %d   dummy_7      0x%08x\n", i,
4392 	       be32toh(meta->configs[i].dummy_7));
4393 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4394 	       be32toh(meta->configs[i].dummy_8[0]),
4395 	       be32toh(meta->configs[i].dummy_8[1]),
4396 	       be32toh(meta->configs[i].dummy_8[2]),
4397 	       be32toh(meta->configs[i].dummy_8[3]));
4398 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4399     }
4400     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4401     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4402     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4403     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4404     kprintf("=================================================\n");
4405 }
4406 
4407 static char *
4408 ata_raid_hptv2_type(int type)
4409 {
4410     static char buffer[16];
4411 
4412     switch (type) {
4413     case HPTV2_T_RAID0:         return "RAID0";
4414     case HPTV2_T_RAID1:         return "RAID1";
4415     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4416     case HPTV2_T_SPAN:          return "SPAN";
4417     case HPTV2_T_RAID_3:        return "RAID3";
4418     case HPTV2_T_RAID_5:        return "RAID5";
4419     case HPTV2_T_JBOD:          return "JBOD";
4420     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4421     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4422 			return buffer;
4423     }
4424 }
4425 
4426 static void
4427 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4428 {
4429     int i;
4430 
4431     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4432     kprintf("magic               0x%08x\n", meta->magic);
4433     kprintf("magic_0             0x%08x\n", meta->magic_0);
4434     kprintf("magic_1             0x%08x\n", meta->magic_1);
4435     kprintf("order               0x%08x\n", meta->order);
4436     kprintf("array_width         %u\n", meta->array_width);
4437     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4438     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4439     kprintf("disk_number         %u\n", meta->disk_number);
4440     kprintf("total_sectors       %u\n", meta->total_sectors);
4441     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4442     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4443     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4444     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4445     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4446     kprintf("log_index           0x%02x\n", meta->error_log_index);
4447     if (meta->error_log_entries) {
4448 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4449 	for (i = meta->error_log_index;
4450 	     i < meta->error_log_index + meta->error_log_entries; i++)
4451 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4452 		   meta->errorlog[i%32].timestamp,
4453 		   meta->errorlog[i%32].reason,
4454 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4455 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4456     }
4457     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4458     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4459     kprintf("name_1              <%.15s>\n", meta->name_1);
4460     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4461     kprintf("name_2              <%.15s>\n", meta->name_2);
4462     kprintf("=================================================\n");
4463 }
4464 
4465 static char *
4466 ata_raid_hptv3_type(int type)
4467 {
4468     static char buffer[16];
4469 
4470     switch (type) {
4471     case HPTV3_T_SPARE: return "SPARE";
4472     case HPTV3_T_JBOD:  return "JBOD";
4473     case HPTV3_T_SPAN:  return "SPAN";
4474     case HPTV3_T_RAID0: return "RAID0";
4475     case HPTV3_T_RAID1: return "RAID1";
4476     case HPTV3_T_RAID3: return "RAID3";
4477     case HPTV3_T_RAID5: return "RAID5";
4478     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4479 			return buffer;
4480     }
4481 }
4482 
4483 static void
4484 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4485 {
4486     int i;
4487 
4488     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4489     kprintf("magic               0x%08x\n", meta->magic);
4490     kprintf("magic_0             0x%08x\n", meta->magic_0);
4491     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4492     kprintf("mode                0x%02x\n", meta->mode);
4493     kprintf("user_mode           0x%02x\n", meta->user_mode);
4494     kprintf("config_entries      0x%02x\n", meta->config_entries);
4495     for (i = 0; i < meta->config_entries; i++) {
4496 	kprintf("config %d:\n", i);
4497 	kprintf("    total_sectors       %ju\n",
4498 	       meta->configs[0].total_sectors +
4499 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4500 	kprintf("    type                %s\n",
4501 	       ata_raid_hptv3_type(meta->configs[i].type));
4502 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4503 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4504 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4505 	kprintf("    status              %b\n", meta->configs[i].status,
4506 	       "\20\2RAID5\1NEED_REBUILD\n");
4507 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4508 	kprintf("    rebuild_lba         %ju\n",
4509 	       meta->configs_high[0].rebuild_lba +
4510 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4511     }
4512     kprintf("name                <%.16s>\n", meta->name);
4513     kprintf("timestamp           0x%08x\n", meta->timestamp);
4514     kprintf("description         <%.16s>\n", meta->description);
4515     kprintf("creator             <%.16s>\n", meta->creator);
4516     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4517     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4518     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4519     kprintf("flags               %b\n", meta->flags,
4520 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4521     kprintf("=================================================\n");
4522 }
4523 
4524 static char *
4525 ata_raid_intel_type(int type)
4526 {
4527     static char buffer[16];
4528 
4529     switch (type) {
4530     case INTEL_T_RAID0: return "RAID0";
4531     case INTEL_T_RAID1: return "RAID1";
4532     case INTEL_T_RAID5: return "RAID5";
4533     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4534 			return buffer;
4535     }
4536 }
4537 
4538 static void
4539 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4540 {
4541     struct intel_raid_mapping *map;
4542     int i, j;
4543 
4544     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4545     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4546     kprintf("version             <%.6s>\n", meta->version);
4547     kprintf("checksum            0x%08x\n", meta->checksum);
4548     kprintf("config_size         0x%08x\n", meta->config_size);
4549     kprintf("config_id           0x%08x\n", meta->config_id);
4550     kprintf("generation          0x%08x\n", meta->generation);
4551     kprintf("total_disks         %u\n", meta->total_disks);
4552     kprintf("total_volumes       %u\n", meta->total_volumes);
4553     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4554     for (i = 0; i < meta->total_disks; i++ ) {
4555 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4556 	       meta->disk[i].serial, meta->disk[i].sectors,
4557 	       meta->disk[i].id, meta->disk[i].flags);
4558     }
4559     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4560     for (j = 0; j < meta->total_volumes; j++) {
4561 	kprintf("name                %.16s\n", map->name);
4562 	kprintf("total_sectors       %ju\n", map->total_sectors);
4563 	kprintf("state               %u\n", map->state);
4564 	kprintf("reserved            %u\n", map->reserved);
4565 	kprintf("offset              %u\n", map->offset);
4566 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4567 	kprintf("stripe_count        %u\n", map->stripe_count);
4568 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4569 	kprintf("status              %u\n", map->status);
4570 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4571 	kprintf("total_disks         %u\n", map->total_disks);
4572 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4573 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4574 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4575 	for (i = 0; i < map->total_disks; i++ ) {
4576 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4577 	}
4578 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4579     }
4580     kprintf("=================================================\n");
4581 }
4582 
4583 static char *
4584 ata_raid_ite_type(int type)
4585 {
4586     static char buffer[16];
4587 
4588     switch (type) {
4589     case ITE_T_RAID0:   return "RAID0";
4590     case ITE_T_RAID1:   return "RAID1";
4591     case ITE_T_RAID01:  return "RAID0+1";
4592     case ITE_T_SPAN:    return "SPAN";
4593     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4594 			return buffer;
4595     }
4596 }
4597 
4598 static void
4599 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4600 {
4601     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4602     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4603     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4604 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4605 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4606 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4607     kprintf("total_sectors       %jd\n", meta->total_sectors);
4608     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4609     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4610     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4611 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4612 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4613 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4614     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4615     kprintf("array_width         %u\n", meta->array_width);
4616     kprintf("disk_number         %u\n", meta->disk_number);
4617     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4618     kprintf("=================================================\n");
4619 }
4620 
4621 static char *
4622 ata_raid_jmicron_type(int type)
4623 {
4624     static char buffer[16];
4625 
4626     switch (type) {
4627     case JM_T_RAID0:	return "RAID0";
4628     case JM_T_RAID1:	return "RAID1";
4629     case JM_T_RAID01:	return "RAID0+1";
4630     case JM_T_JBOD:	return "JBOD";
4631     case JM_T_RAID5:	return "RAID5";
4632     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4633 			return buffer;
4634     }
4635 }
4636 
4637 static void
4638 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4639 {
4640     int i;
4641 
4642     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4643     kprintf("signature           %.2s\n", meta->signature);
4644     kprintf("version             0x%04x\n", meta->version);
4645     kprintf("checksum            0x%04x\n", meta->checksum);
4646     kprintf("disk_id             0x%08x\n", meta->disk_id);
4647     kprintf("offset              0x%08x\n", meta->offset);
4648     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4649     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4650     kprintf("name                %.16s\n", meta->name);
4651     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4652     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4653     kprintf("flags               0x%04x\n", meta->flags);
4654     kprintf("spare:\n");
4655     for (i=0; i < 2 && meta->spare[i]; i++)
4656 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4657     kprintf("disks:\n");
4658     for (i=0; i < 8 && meta->disks[i]; i++)
4659 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4660     kprintf("=================================================\n");
4661 }
4662 
4663 static char *
4664 ata_raid_lsiv2_type(int type)
4665 {
4666     static char buffer[16];
4667 
4668     switch (type) {
4669     case LSIV2_T_RAID0: return "RAID0";
4670     case LSIV2_T_RAID1: return "RAID1";
4671     case LSIV2_T_SPARE: return "SPARE";
4672     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4673 			return buffer;
4674     }
4675 }
4676 
4677 static void
4678 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4679 {
4680     int i;
4681 
4682     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4683     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4684     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4685     kprintf("flags               0x%02x\n", meta->flags);
4686     kprintf("version             0x%04x\n", meta->version);
4687     kprintf("config_entries      0x%02x\n", meta->config_entries);
4688     kprintf("raid_count          0x%02x\n", meta->raid_count);
4689     kprintf("total_disks         0x%02x\n", meta->total_disks);
4690     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4691     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4692     for (i = 0; i < meta->config_entries; i++) {
4693 	kprintf("    type             %s\n",
4694 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4695 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4696 	kprintf("    stripe_sectors   %u\n",
4697 	       meta->configs[i].raid.stripe_sectors);
4698 	kprintf("    array_width      %u\n",
4699 	       meta->configs[i].raid.array_width);
4700 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4701 	kprintf("    config_offset    %u\n",
4702 	       meta->configs[i].raid.config_offset);
4703 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4704 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4705 	kprintf("    total_sectors    %u\n",
4706 	       meta->configs[i].raid.total_sectors);
4707     }
4708     kprintf("disk_number         0x%02x\n", meta->disk_number);
4709     kprintf("raid_number         0x%02x\n", meta->raid_number);
4710     kprintf("timestamp           0x%08x\n", meta->timestamp);
4711     kprintf("=================================================\n");
4712 }
4713 
4714 static char *
4715 ata_raid_lsiv3_type(int type)
4716 {
4717     static char buffer[16];
4718 
4719     switch (type) {
4720     case LSIV3_T_RAID0: return "RAID0";
4721     case LSIV3_T_RAID1: return "RAID1";
4722     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4723 			return buffer;
4724     }
4725 }
4726 
4727 static void
4728 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4729 {
4730     int i;
4731 
4732     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4733     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4734     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4735     kprintf("version             0x%04x\n", meta->version);
4736     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4737     kprintf("RAID configs:\n");
4738     for (i = 0; i < 8; i++) {
4739 	if (meta->raid[i].total_disks) {
4740 	    kprintf("%02d  stripe_pages       %u\n", i,
4741 		   meta->raid[i].stripe_pages);
4742 	    kprintf("%02d  type               %s\n", i,
4743 		   ata_raid_lsiv3_type(meta->raid[i].type));
4744 	    kprintf("%02d  total_disks        %u\n", i,
4745 		   meta->raid[i].total_disks);
4746 	    kprintf("%02d  array_width        %u\n", i,
4747 		   meta->raid[i].array_width);
4748 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4749 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4750 	    kprintf("%02d  device             0x%02x\n", i,
4751 		   meta->raid[i].device);
4752 	}
4753     }
4754     kprintf("DISK configs:\n");
4755     for (i = 0; i < 6; i++) {
4756 	    if (meta->disk[i].disk_sectors) {
4757 	    kprintf("%02d  disk_sectors       %u\n", i,
4758 		   meta->disk[i].disk_sectors);
4759 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4760 	}
4761     }
4762     kprintf("device              0x%02x\n", meta->device);
4763     kprintf("timestamp           0x%08x\n", meta->timestamp);
4764     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4765     kprintf("=================================================\n");
4766 }
4767 
4768 static char *
4769 ata_raid_nvidia_type(int type)
4770 {
4771     static char buffer[16];
4772 
4773     switch (type) {
4774     case NV_T_SPAN:     return "SPAN";
4775     case NV_T_RAID0:    return "RAID0";
4776     case NV_T_RAID1:    return "RAID1";
4777     case NV_T_RAID3:    return "RAID3";
4778     case NV_T_RAID5:    return "RAID5";
4779     case NV_T_RAID01:   return "RAID0+1";
4780     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4781 			return buffer;
4782     }
4783 }
4784 
4785 static void
4786 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4787 {
4788     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4789     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4790     kprintf("config_size         %u\n", meta->config_size);
4791     kprintf("checksum            0x%08x\n", meta->checksum);
4792     kprintf("version             0x%04x\n", meta->version);
4793     kprintf("disk_number         %u\n", meta->disk_number);
4794     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4795     kprintf("total_sectors       %u\n", meta->total_sectors);
4796     kprintf("sectors_size        %u\n", meta->sector_size);
4797     kprintf("serial              %.16s\n", meta->serial);
4798     kprintf("revision            %.4s\n", meta->revision);
4799     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4800     kprintf("magic_0             0x%08x\n", meta->magic_0);
4801     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4802     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4803     kprintf("flags               0x%02x\n", meta->flags);
4804     kprintf("array_width         %u\n", meta->array_width);
4805     kprintf("total_disks         %u\n", meta->total_disks);
4806     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4807     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4808     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4809     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4810     kprintf("stripe_bytes        %u\n", meta->stripe_bytes);
4811     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4812     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4813     kprintf("stripe_sizesectors  %u\n", meta->stripe_sizesectors);
4814     kprintf("stripe_sizebytes    %u\n", meta->stripe_sizebytes);
4815     kprintf("rebuild_lba         %u\n", meta->rebuild_lba);
4816     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4817     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4818     kprintf("status              0x%08x\n", meta->status);
4819     kprintf("=================================================\n");
4820 }
4821 
4822 static char *
4823 ata_raid_promise_type(int type)
4824 {
4825     static char buffer[16];
4826 
4827     switch (type) {
4828     case PR_T_RAID0:    return "RAID0";
4829     case PR_T_RAID1:    return "RAID1";
4830     case PR_T_RAID3:    return "RAID3";
4831     case PR_T_RAID5:    return "RAID5";
4832     case PR_T_SPAN:     return "SPAN";
4833     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4834 			return buffer;
4835     }
4836 }
4837 
4838 static void
4839 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4840 {
4841     int i;
4842 
4843     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4844     kprintf("promise_id          <%s>\n", meta->promise_id);
4845     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4846     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4847     kprintf("magic_1             0x%04x\n", meta->magic_1);
4848     kprintf("magic_2             0x%08x\n", meta->magic_2);
4849     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4850 		meta->raid.integrity, "\20\10VALID\n" );
4851     kprintf("flags               0x%02x %b\n",
4852 	   meta->raid.flags, meta->raid.flags,
4853 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4854 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4855     kprintf("disk_number         %d\n", meta->raid.disk_number);
4856     kprintf("channel             0x%02x\n", meta->raid.channel);
4857     kprintf("device              0x%02x\n", meta->raid.device);
4858     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4859     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4860     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4861     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4862     kprintf("generation          0x%04x\n", meta->raid.generation);
4863     kprintf("status              0x%02x %b\n",
4864 	    meta->raid.status, meta->raid.status,
4865 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4866     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4867     kprintf("total_disks         %u\n", meta->raid.total_disks);
4868     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4869     kprintf("array_width         %u\n", meta->raid.array_width);
4870     kprintf("array_number        %u\n", meta->raid.array_number);
4871     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4872     kprintf("cylinders           %u\n", meta->raid.cylinders);
4873     kprintf("heads               %u\n", meta->raid.heads);
4874     kprintf("sectors             %u\n", meta->raid.sectors);
4875     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4876     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4877     for (i = 0; i < 8; i++) {
4878 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4879 	       i, meta->raid.disk[i].flags,
4880 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4881 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4882 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4883 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4884     }
4885     kprintf("checksum            0x%08x\n", meta->checksum);
4886     kprintf("=================================================\n");
4887 }
4888 
4889 static char *
4890 ata_raid_sii_type(int type)
4891 {
4892     static char buffer[16];
4893 
4894     switch (type) {
4895     case SII_T_RAID0:   return "RAID0";
4896     case SII_T_RAID1:   return "RAID1";
4897     case SII_T_RAID01:  return "RAID0+1";
4898     case SII_T_SPARE:   return "SPARE";
4899     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4900 			return buffer;
4901     }
4902 }
4903 
4904 static void
4905 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4906 {
4907     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4908     kprintf("total_sectors       %ju\n", meta->total_sectors);
4909     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4910     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4911     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4912     kprintf("version_minor       0x%04x\n", meta->version_minor);
4913     kprintf("version_major       0x%04x\n", meta->version_major);
4914     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4915 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4916 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4917     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4918     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4919     kprintf("disk_number         %u\n", meta->disk_number);
4920     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4921     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4922     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4923     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4924     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4925     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4926     kprintf("generation          0x%08x\n", meta->generation);
4927     kprintf("status              0x%02x %b\n",
4928 	    meta->status, meta->status,
4929 	   "\20\1READY\n");
4930     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4931     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4932     kprintf("position            %02x\n", meta->position);
4933     kprintf("dummy_3             %04x\n", meta->dummy_3);
4934     kprintf("name                <%.16s>\n", meta->name);
4935     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4936     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4937     kprintf("=================================================\n");
4938 }
4939 
4940 static char *
4941 ata_raid_sis_type(int type)
4942 {
4943     static char buffer[16];
4944 
4945     switch (type) {
4946     case SIS_T_JBOD:    return "JBOD";
4947     case SIS_T_RAID0:   return "RAID0";
4948     case SIS_T_RAID1:   return "RAID1";
4949     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4950 			return buffer;
4951     }
4952 }
4953 
4954 static void
4955 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4956 {
4957     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4958     kprintf("magic               0x%04x\n", meta->magic);
4959     kprintf("disks               0x%02x\n", meta->disks);
4960     kprintf("type                %s\n",
4961 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4962     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4963     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4964     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4965     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4966     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4967     kprintf("timestamp           0x%08x\n", meta->timestamp);
4968     kprintf("model               %.40s\n", meta->model);
4969     kprintf("disk_number         %u\n", meta->disk_number);
4970     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4971 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4972     kprintf("=================================================\n");
4973 }
4974 
4975 static char *
4976 ata_raid_via_type(int type)
4977 {
4978     static char buffer[16];
4979 
4980     switch (type) {
4981     case VIA_T_RAID0:   return "RAID0";
4982     case VIA_T_RAID1:   return "RAID1";
4983     case VIA_T_RAID5:   return "RAID5";
4984     case VIA_T_RAID01:  return "RAID0+1";
4985     case VIA_T_SPAN:    return "SPAN";
4986     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4987 			return buffer;
4988     }
4989 }
4990 
4991 static void
4992 ata_raid_via_print_meta(struct via_raid_conf *meta)
4993 {
4994     int i;
4995 
4996     kprintf("*************** ATA VIA Metadata ****************\n");
4997     kprintf("magic               0x%02x\n", meta->magic);
4998     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4999     kprintf("type                %s\n",
5000 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5001     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5002     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5003     kprintf("disk_index          0x%02x\n", meta->disk_index);
5004     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5005     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5006     kprintf(" stripe_sectors     %d\n",
5007 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5008     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5009     kprintf("disk_id             0x%08x\n", meta->disk_id);
5010     kprintf("DISK#   disk_id\n");
5011     for (i = 0; i < 8; i++) {
5012 	if (meta->disks[i])
5013 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5014     }
5015     kprintf("checksum            0x%02x\n", meta->checksum);
5016     kprintf("=================================================\n");
5017 }
5018