xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 9243051b)
1 /*-
2  * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/devicestat.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/lock.h>
44 #include <sys/module.h>
45 #include <sys/nata.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 0, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_status *status);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     lockinit(&rdp->lock, "ataraidattach", 0, 0);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154 
155     devstat_add_entry(&rdp->devstat, "ar", rdp->lun,
156 	DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS,
157 	DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
158 	DEVSTAT_PRIORITY_ARRAY);
159 
160     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
161     cdev->si_drv1 = rdp;
162     cdev->si_iosize_max = 128 * DEV_BSIZE;
163     rdp->cdev = cdev;
164 
165     bzero(&info, sizeof(info));
166     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
167     info.d_media_blocks = rdp->total_sectors;
168 
169     info.d_secpertrack = rdp->sectors;		/* optional */
170     info.d_nheads = rdp->heads;
171     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
172     info.d_secpercyl = rdp->sectors * rdp->heads;
173 
174     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
175 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
176 	   ata_raid_format(rdp), ata_raid_type(rdp),
177 	   buffer, ata_raid_flags(rdp));
178 
179     if (testing || bootverbose)
180 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
181 	       rdp->lun, rdp->total_sectors,
182 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
183 
184     for (disk = 0; disk < rdp->total_disks; disk++) {
185 	kprintf("ar%d: disk%d ", rdp->lun, disk);
186 	if (rdp->disks[disk].dev) {
187 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
188 		/* status of this disk in the array */
189 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
190 		    kprintf("READY ");
191 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
192 		    kprintf("SPARE ");
193 		else
194 		    kprintf("FREE  ");
195 
196 		/* what type of disk is this in the array */
197 		switch (rdp->type) {
198 		case AR_T_RAID1:
199 		case AR_T_RAID01:
200 		    if (disk < rdp->width)
201 			kprintf("(master) ");
202 		    else
203 			kprintf("(mirror) ");
204 		}
205 
206 		/* which physical disk is used */
207 		kprintf("using %s at ata%d-%s\n",
208 		       device_get_nameunit(rdp->disks[disk].dev),
209 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
210 		       (((struct ata_device *)
211 			 device_get_softc(rdp->disks[disk].dev))->unit ==
212 			 ATA_MASTER) ? "master" : "slave");
213 	    }
214 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
215 		kprintf("DOWN\n");
216 	    else
217 		kprintf("INVALID no RAID config on this subdisk\n");
218 	}
219 	else
220 	    kprintf("DOWN no device found for this subdisk\n");
221     }
222 
223     disk_setdiskinfo(&rdp->disk, &info);
224 }
225 
226 /*
227  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
228  * to the dev_ops way, because it's just chained from the generic ata ioctl.
229  */
230 static int
231 ata_raid_ioctl(u_long cmd, caddr_t data)
232 {
233     struct ata_ioc_raid_status *status = (struct ata_ioc_raid_status *)data;
234     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
235     int *lun = (int *)data;
236     int error = EOPNOTSUPP;
237 
238     switch (cmd) {
239     case IOCATARAIDSTATUS:
240 	error = ata_raid_status(status);
241 	break;
242 
243     case IOCATARAIDCREATE:
244 	error = ata_raid_create(config);
245 	break;
246 
247     case IOCATARAIDDELETE:
248 	error = ata_raid_delete(*lun);
249 	break;
250 
251     case IOCATARAIDADDSPARE:
252 	error = ata_raid_addspare(config);
253 	break;
254 
255     case IOCATARAIDREBUILD:
256 	error = ata_raid_rebuild(*lun);
257 	break;
258     }
259     return error;
260 }
261 
262 static int
263 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
264 {
265     struct ata_request *request;
266     device_t dev;
267     int disk;
268 
269     bp->bio_driver_info = NULL;
270 
271     for (disk = 0; disk < rdp->total_disks; disk++) {
272 	if ((dev = rdp->disks[disk].dev) != NULL)
273 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
274     }
275     for (disk = 0; disk < rdp->total_disks; disk++) {
276 	if ((dev = rdp->disks[disk].dev) == NULL)
277 	    continue;
278 	if (!(request = ata_raid_init_request(rdp, bp)))
279 	    return ENOMEM;
280 	request->dev = dev;
281 	request->u.ata.command = ATA_FLUSHCACHE;
282 	request->u.ata.lba = 0;
283 	request->u.ata.count = 0;
284 	request->u.ata.feature = 0;
285 	request->timeout = 1;
286 	request->retries = 0;
287 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
288 	ata_queue_request(request);
289     }
290     return 0;
291 }
292 
293 /*
294  * XXX TGEN there are a lot of offset -> block number conversions going on
295  * here, which is suboptimal.
296  */
297 static int
298 ata_raid_strategy(struct dev_strategy_args *ap)
299 {
300     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
301     struct bio *bp = ap->a_bio;
302     struct buf *bbp = bp->bio_buf;
303     struct ata_request *request;
304     caddr_t data;
305     u_int64_t blkno, lba, blk = 0;
306     int count, chunk, drv, par = 0, change = 0;
307 
308     if (bbp->b_cmd == BUF_CMD_FLUSH) {
309 	int error;
310 
311 	error = ata_raid_flush(rdp, bp);
312 	if (error != 0) {
313 		bbp->b_flags |= B_ERROR;
314 		bbp->b_error = error;
315 		biodone(bp);
316 	}
317 	return(0);
318     }
319 
320     if (!(rdp->status & AR_S_READY) ||
321 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
322 	bbp->b_flags |= B_ERROR;
323 	bbp->b_error = EIO;
324 	biodone(bp);
325 	return(0);
326     }
327 
328     bbp->b_resid = bbp->b_bcount;
329     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
330 	 /* bio_offset is byte granularity, convert */
331 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
332 	 data = bbp->b_data;
333 	 count > 0;
334 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
335 
336 	switch (rdp->type) {
337 	case AR_T_RAID1:
338 	    drv = 0;
339 	    lba = blkno;
340 	    chunk = count;
341 	    break;
342 
343 	case AR_T_JBOD:
344 	case AR_T_SPAN:
345 	    drv = 0;
346 	    lba = blkno;
347 	    while (lba >= rdp->disks[drv].sectors)
348 		lba -= rdp->disks[drv++].sectors;
349 	    chunk = min(rdp->disks[drv].sectors - lba, count);
350 	    break;
351 
352 	case AR_T_RAID0:
353 	case AR_T_RAID01:
354 	    chunk = blkno % rdp->interleave;
355 	    drv = (blkno / rdp->interleave) % rdp->width;
356 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
357 	    chunk = min(count, rdp->interleave - chunk);
358 	    break;
359 
360 	case AR_T_RAID5:
361 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
362 	    par = rdp->width - 1 -
363 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
364 	    if (drv >= par)
365 		drv++;
366 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
367 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
368 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
369 	    break;
370 
371 	default:
372 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
373 	    bbp->b_flags |= B_ERROR;
374 	    bbp->b_error = EIO;
375 	    biodone(bp);
376 	    return(0);
377 	}
378 
379 	/* offset on all but "first on HPTv2" */
380 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
381 	    lba += rdp->offset_sectors;
382 
383 	if (!(request = ata_raid_init_request(rdp, bp))) {
384 	    bbp->b_flags |= B_ERROR;
385 	    bbp->b_error = EIO;
386 	    biodone(bp);
387 	    return(0);
388 	}
389 	request->data = data;
390 	request->bytecount = chunk * DEV_BSIZE;
391 	request->u.ata.lba = lba;
392 	request->u.ata.count = request->bytecount / DEV_BSIZE;
393 
394 	devstat_start_transaction(&rdp->devstat);
395 	switch (rdp->type) {
396 	case AR_T_JBOD:
397 	case AR_T_SPAN:
398 	case AR_T_RAID0:
399 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
400 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
401 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
402 		ata_raid_config_changed(rdp, 1);
403 		ata_free_request(request);
404 		bbp->b_flags |= B_ERROR;
405 		bbp->b_error = EIO;
406 		biodone(bp);
407 		return(0);
408 	    }
409 	    request->this = drv;
410 	    request->dev = rdp->disks[request->this].dev;
411 	    ata_raid_send_request(request);
412 	    break;
413 
414 	case AR_T_RAID1:
415 	case AR_T_RAID01:
416 	    if ((rdp->disks[drv].flags &
417 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
418 		!rdp->disks[drv].dev) {
419 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
420 		change = 1;
421 	    }
422 	    if ((rdp->disks[drv + rdp->width].flags &
423 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
424 		!rdp->disks[drv + rdp->width].dev) {
425 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
426 		change = 1;
427 	    }
428 	    if (change)
429 		ata_raid_config_changed(rdp, 1);
430 	    if (!(rdp->status & AR_S_READY)) {
431 		ata_free_request(request);
432 		bbp->b_flags |= B_ERROR;
433 		bbp->b_error = EIO;
434 		biodone(bp);
435 		return(0);
436 	    }
437 
438 	    if (rdp->status & AR_S_REBUILDING)
439 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
440 		      (rdp->interleave * (drv % rdp->width)) +
441 		      lba % rdp->interleave;
442 
443 	    if (bbp->b_cmd == BUF_CMD_READ) {
444 		int src_online =
445 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
446 		int mir_online =
447 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
448 
449 		/* if mirror gone or close to last access on source */
450 		if (!mir_online ||
451 		    ((src_online) &&
452 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
453 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
454 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
455 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
456 		    rdp->toggle = 0;
457 		}
458 		/* if source gone or close to last access on mirror */
459 		else if (!src_online ||
460 			 ((mir_online) &&
461 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
462 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
463 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
464 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
465 		    drv += rdp->width;
466 		    rdp->toggle = 1;
467 		}
468 		/* not close to any previous access, toggle */
469 		else {
470 		    if (rdp->toggle)
471 			rdp->toggle = 0;
472 		    else {
473 			drv += rdp->width;
474 			rdp->toggle = 1;
475 		    }
476 		}
477 
478 		if ((rdp->status & AR_S_REBUILDING) &&
479 		    (blk <= rdp->rebuild_lba) &&
480 		    ((blk + chunk) > rdp->rebuild_lba)) {
481 		    struct ata_composite *composite;
482 		    struct ata_request *rebuild;
483 		    int this;
484 
485 		    /* figure out what part to rebuild */
486 		    if (drv < rdp->width)
487 			this = drv + rdp->width;
488 		    else
489 			this = drv - rdp->width;
490 
491 		    /* do we have a spare to rebuild on ? */
492 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
493 			if ((composite = ata_alloc_composite())) {
494 			    if ((rebuild = ata_alloc_request())) {
495 				rdp->rebuild_lba = blk + chunk;
496 				bcopy(request, rebuild,
497 				      sizeof(struct ata_request));
498 				rebuild->this = this;
499 				rebuild->dev = rdp->disks[this].dev;
500 				rebuild->flags &= ~ATA_R_READ;
501 				rebuild->flags |= ATA_R_WRITE;
502 				lockinit(&composite->lock, "ardfspare", 0, 0);
503 				composite->residual = request->bytecount;
504 				composite->rd_needed |= (1 << drv);
505 				composite->wr_depend |= (1 << drv);
506 				composite->wr_needed |= (1 << this);
507 				composite->request[drv] = request;
508 				composite->request[this] = rebuild;
509 				request->composite = composite;
510 				rebuild->composite = composite;
511 				ata_raid_send_request(rebuild);
512 			    }
513 			    else {
514 				ata_free_composite(composite);
515 				kprintf("DOH! ata_alloc_request failed!\n");
516 			    }
517 			}
518 			else {
519 			    kprintf("DOH! ata_alloc_composite failed!\n");
520 			}
521 		    }
522 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
523 			/*
524 			 * if we got here we are a chunk of a RAID01 that
525 			 * does not need a rebuild, but we need to increment
526 			 * the rebuild_lba address to get the rebuild to
527 			 * move to the next chunk correctly
528 			 */
529 			rdp->rebuild_lba = blk + chunk;
530 		    }
531 		    else
532 			kprintf("DOH! we didn't find the rebuild part\n");
533 		}
534 	    }
535 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
536 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
537 		    ((rdp->status & AR_S_REBUILDING) &&
538 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
539 		     ((blk < rdp->rebuild_lba) ||
540 		      ((blk <= rdp->rebuild_lba) &&
541 		       ((blk + chunk) > rdp->rebuild_lba))))) {
542 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
543 			((rdp->status & AR_S_REBUILDING) &&
544 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
545 			 ((blk < rdp->rebuild_lba) ||
546 			  ((blk <= rdp->rebuild_lba) &&
547 			   ((blk + chunk) > rdp->rebuild_lba))))) {
548 			struct ata_request *mirror;
549 			struct ata_composite *composite;
550 			int this = drv + rdp->width;
551 
552 			if ((composite = ata_alloc_composite())) {
553 			    if ((mirror = ata_alloc_request())) {
554 				if ((blk <= rdp->rebuild_lba) &&
555 				    ((blk + chunk) > rdp->rebuild_lba))
556 				    rdp->rebuild_lba = blk + chunk;
557 				bcopy(request, mirror,
558 				      sizeof(struct ata_request));
559 				mirror->this = this;
560 				mirror->dev = rdp->disks[this].dev;
561 				lockinit(&composite->lock, "ardfonline", 0, 0);
562 				composite->residual = request->bytecount;
563 				composite->wr_needed |= (1 << drv);
564 				composite->wr_needed |= (1 << this);
565 				composite->request[drv] = request;
566 				composite->request[this] = mirror;
567 				request->composite = composite;
568 				mirror->composite = composite;
569 				ata_raid_send_request(mirror);
570 				rdp->disks[this].last_lba =
571 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
572 				    chunk;
573 			    }
574 			    else {
575 				ata_free_composite(composite);
576 				kprintf("DOH! ata_alloc_request failed!\n");
577 			    }
578 			}
579 			else {
580 			    kprintf("DOH! ata_alloc_composite failed!\n");
581 			}
582 		    }
583 		    else
584 			drv += rdp->width;
585 		}
586 	    }
587 	    request->this = drv;
588 	    request->dev = rdp->disks[request->this].dev;
589 	    ata_raid_send_request(request);
590 	    rdp->disks[request->this].last_lba =
591 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
592 	    break;
593 
594 	case AR_T_RAID5:
595 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
596 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
597 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
598 		change = 1;
599 	    }
600 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
601 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
602 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
603 		change = 1;
604 	    }
605 	    if (change)
606 		ata_raid_config_changed(rdp, 1);
607 	    if (!(rdp->status & AR_S_READY)) {
608 		ata_free_request(request);
609 		bbp->b_flags |= B_ERROR;
610 		bbp->b_error = EIO;
611 		biodone(bp);
612 		return(0);
613 	    }
614 	    if (rdp->status & AR_S_DEGRADED) {
615 		/* do the XOR game if possible */
616 	    }
617 	    else {
618 		request->this = drv;
619 		request->dev = rdp->disks[request->this].dev;
620 		if (bbp->b_cmd == BUF_CMD_READ) {
621 		    ata_raid_send_request(request);
622 		}
623 		if (bbp->b_cmd == BUF_CMD_WRITE) {
624 		    ata_raid_send_request(request);
625 		    /* XXX TGEN no, I don't speak Danish either */
626 		    /*
627 		     * sikre at læs-modify-skriv til hver disk er atomarisk.
628 		     * par kopi af request
629 		     * læse orgdata fra drv
630 		     * skriv nydata til drv
631 		     * læse parorgdata fra par
632 		     * skriv orgdata xor parorgdata xor nydata til par
633 		     */
634 		}
635 	    }
636 	    break;
637 
638 	default:
639 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
640 	}
641     }
642 
643     return(0);
644 }
645 
646 static void
647 ata_raid_done(struct ata_request *request)
648 {
649     struct ar_softc *rdp = request->driver;
650     struct ata_composite *composite = NULL;
651     struct bio *bp = request->bio;
652     struct buf *bbp = bp->bio_buf;
653     int i, mirror, finished = 0;
654 
655     if (bbp->b_cmd == BUF_CMD_FLUSH) {
656 	if (bbp->b_error == 0)
657 		bbp->b_error = request->result;
658 	ata_free_request(request);
659 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
660 	if ((intptr_t)bp->bio_driver_info == 0) {
661 		if (bbp->b_error)
662 			bbp->b_flags |= B_ERROR;
663 		biodone(bp);
664 	}
665 	return;
666     }
667 
668     switch (rdp->type) {
669     case AR_T_JBOD:
670     case AR_T_SPAN:
671     case AR_T_RAID0:
672 	if (request->result) {
673 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
674 	    ata_raid_config_changed(rdp, 1);
675 	    bbp->b_error = request->result;
676 	    finished = 1;
677 	}
678 	else {
679 	    bbp->b_resid -= request->donecount;
680 	    if (!bbp->b_resid)
681 		finished = 1;
682 	}
683 	break;
684 
685     case AR_T_RAID1:
686     case AR_T_RAID01:
687 	if (request->this < rdp->width)
688 	    mirror = request->this + rdp->width;
689 	else
690 	    mirror = request->this - rdp->width;
691 	if (request->result) {
692 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
693 	    ata_raid_config_changed(rdp, 1);
694 	}
695 	if (rdp->status & AR_S_READY) {
696 	    u_int64_t blk = 0;
697 
698 	    if (rdp->status & AR_S_REBUILDING)
699 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
700 		      rdp->interleave + (rdp->interleave *
701 		      (request->this % rdp->width)) +
702 		      request->u.ata.lba % rdp->interleave;
703 
704 	    if (bbp->b_cmd == BUF_CMD_READ) {
705 
706 		/* is this a rebuild composite */
707 		if ((composite = request->composite)) {
708 		    lockmgr(&composite->lock, LK_EXCLUSIVE);
709 
710 		    /* handle the read part of a rebuild composite */
711 		    if (request->flags & ATA_R_READ) {
712 
713 			/* if read failed array is now broken */
714 			if (request->result) {
715 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
716 			    ata_raid_config_changed(rdp, 1);
717 			    bbp->b_error = request->result;
718 			    rdp->rebuild_lba = blk;
719 			    finished = 1;
720 			}
721 
722 			/* good data, update how far we've gotten */
723 			else {
724 			    bbp->b_resid -= request->donecount;
725 			    composite->residual -= request->donecount;
726 			    if (!composite->residual) {
727 				if (composite->wr_done & (1 << mirror))
728 				    finished = 1;
729 			    }
730 			}
731 		    }
732 
733 		    /* handle the write part of a rebuild composite */
734 		    else if (request->flags & ATA_R_WRITE) {
735 			if (composite->rd_done & (1 << mirror)) {
736 			    if (request->result) {
737 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
738 				rdp->rebuild_lba = blk;
739 			    }
740 			    if (!composite->residual)
741 				finished = 1;
742 			}
743 		    }
744 		    lockmgr(&composite->lock, LK_RELEASE);
745 		}
746 
747 		/* if read failed retry on the mirror */
748 		else if (request->result) {
749 		    request->dev = rdp->disks[mirror].dev;
750 		    request->flags &= ~ATA_R_TIMEOUT;
751 		    ata_raid_send_request(request);
752 		    return;
753 		}
754 
755 		/* we have good data */
756 		else {
757 		    bbp->b_resid -= request->donecount;
758 		    if (!bbp->b_resid)
759 			finished = 1;
760 		}
761 	    }
762 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
763 		/* do we have a mirror or rebuild to deal with ? */
764 		if ((composite = request->composite)) {
765 		    lockmgr(&composite->lock, LK_EXCLUSIVE);
766 		    if (composite->wr_done & (1 << mirror)) {
767 			if (request->result) {
768 			    if (composite->request[mirror]->result) {
769 				kprintf("DOH! all disks failed and got here\n");
770 				bbp->b_error = EIO;
771 			    }
772 			    if (rdp->status & AR_S_REBUILDING) {
773 				rdp->rebuild_lba = blk;
774 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
775 			    }
776 			    bbp->b_resid -=
777 				composite->request[mirror]->donecount;
778 			    composite->residual -=
779 				composite->request[mirror]->donecount;
780 			}
781 			else {
782 			    bbp->b_resid -= request->donecount;
783 			    composite->residual -= request->donecount;
784 			}
785 			if (!composite->residual)
786 			    finished = 1;
787 		    }
788 		    lockmgr(&composite->lock, LK_RELEASE);
789 		}
790 		/* no mirror we are done */
791 		else {
792 		    bbp->b_resid -= request->donecount;
793 		    if (!bbp->b_resid)
794 			finished = 1;
795 		}
796 	    }
797 	}
798 	else {
799 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
800 	    bbp->b_error = request->result;
801 	    biodone(bp);
802 	}
803 	break;
804 
805     case AR_T_RAID5:
806 	if (request->result) {
807 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
808 	    ata_raid_config_changed(rdp, 1);
809 	    if (rdp->status & AR_S_READY) {
810 		if (bbp->b_cmd == BUF_CMD_READ) {
811 		    /* do the XOR game to recover data */
812 		}
813 		if (bbp->b_cmd == BUF_CMD_WRITE) {
814 		    /* if the parity failed we're OK sortof */
815 		    /* otherwise wee need to do the XOR long dance */
816 		}
817 		finished = 1;
818 	    }
819 	    else {
820 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
821 		bbp->b_error = request->result;
822 		biodone(bp);
823 	    }
824 	}
825 	else {
826 	    /* did we have an XOR game going ?? */
827 	    bbp->b_resid -= request->donecount;
828 	    if (!bbp->b_resid)
829 		finished = 1;
830 	}
831 	break;
832 
833     default:
834 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
835     }
836 
837     if (finished) {
838 	if ((rdp->status & AR_S_REBUILDING) &&
839 	    rdp->rebuild_lba >= rdp->total_sectors) {
840 	    int disk;
841 
842 	    for (disk = 0; disk < rdp->total_disks; disk++) {
843 		if ((rdp->disks[disk].flags &
844 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
845 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
846 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
847 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
848 		}
849 	    }
850 	    rdp->status &= ~AR_S_REBUILDING;
851 	    ata_raid_config_changed(rdp, 1);
852 	}
853 	devstat_end_transaction_buf(&rdp->devstat, bbp);
854 	if (!bbp->b_resid)
855 	    biodone(bp);
856     }
857 
858     if (composite) {
859 	if (finished) {
860 	    /* we are done with this composite, free all resources */
861 	    for (i = 0; i < 32; i++) {
862 		if (composite->rd_needed & (1 << i) ||
863 		    composite->wr_needed & (1 << i)) {
864 		    ata_free_request(composite->request[i]);
865 		}
866 	    }
867 	    lockuninit(&composite->lock);
868 	    ata_free_composite(composite);
869 	}
870     }
871     else
872 	ata_free_request(request);
873 }
874 
875 static int
876 ata_raid_dump(struct dev_dump_args *ap)
877 {
878 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
879 	struct buf dbuf;
880 	int error = 0;
881 	int disk;
882 
883 	if (ap->a_length == 0) {
884 		/* flush subdisk buffers to media */
885 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
886 			if (rdp->disks[disk].dev) {
887 				error |= ata_controlcmd(rdp->disks[disk].dev,
888 						ATA_FLUSHCACHE, 0, 0, 0);
889 			}
890 		}
891 		return (error ? EIO : 0);
892 	}
893 
894 	bzero(&dbuf, sizeof(struct buf));
895 	initbufbio(&dbuf);
896 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
897 	/* bio_offset is byte granularity, convert block granularity a_blkno */
898 	dbuf.b_bio1.bio_offset = ap->a_offset;
899 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
900 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
901 	dbuf.b_bio1.bio_done = biodone_sync;
902 	dbuf.b_bcount = ap->a_length;
903 	dbuf.b_data = ap->a_virtual;
904 	dbuf.b_cmd = BUF_CMD_WRITE;
905 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
906 	/* wait for completion, unlock the buffer, check status */
907 	if (biowait(&dbuf.b_bio1, "dumpw")) {
908 	    BUF_UNLOCK(&dbuf);
909 	    return(dbuf.b_error ? dbuf.b_error : EIO);
910 	}
911 	BUF_UNLOCK(&dbuf);
912 	uninitbufbio(&dbuf);
913 
914 	return 0;
915 }
916 
917 static void
918 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
919 {
920     int disk, count, status;
921 
922     lockmgr(&rdp->lock, LK_EXCLUSIVE);
923 
924     /* set default all working mode */
925     status = rdp->status;
926     rdp->status &= ~AR_S_DEGRADED;
927     rdp->status |= AR_S_READY;
928 
929     /* make sure all lost drives are accounted for */
930     for (disk = 0; disk < rdp->total_disks; disk++) {
931 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
932 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
933     }
934 
935     /* depending on RAID type figure out our health status */
936     switch (rdp->type) {
937     case AR_T_JBOD:
938     case AR_T_SPAN:
939     case AR_T_RAID0:
940 	for (disk = 0; disk < rdp->total_disks; disk++)
941 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
942 		rdp->status &= ~AR_S_READY;
943 	break;
944 
945     case AR_T_RAID1:
946     case AR_T_RAID01:
947 	for (disk = 0; disk < rdp->width; disk++) {
948 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
949 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
950 		rdp->status &= ~AR_S_READY;
951 	    }
952 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
953 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
954 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
955 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
956 		rdp->status |= AR_S_DEGRADED;
957 	    }
958 	}
959 	break;
960 
961     case AR_T_RAID5:
962 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
963 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
964 		count++;
965 	}
966 	if (count) {
967 	    if (count > 1)
968 		rdp->status &= ~AR_S_READY;
969 	    else
970 		rdp->status |= AR_S_DEGRADED;
971 	}
972 	break;
973     default:
974 	rdp->status &= ~AR_S_READY;
975     }
976 
977     /*
978      * Note that when the array breaks so comes up broken we
979      * force a write of the array config to the remaining
980      * drives so that the generation will be incremented past
981      * those of the missing or failed drives (in all cases).
982      */
983     if (rdp->status != status) {
984 
985 	/* raid status has changed, update metadata */
986 	writeback = 1;
987 
988 	/* announce we have trouble ahead */
989 	if (!(rdp->status & AR_S_READY)) {
990 	    kprintf("ar%d: FAILURE - %s array broken\n",
991 		   rdp->lun, ata_raid_type(rdp));
992 	}
993 	else if (rdp->status & AR_S_DEGRADED) {
994 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
995 		kprintf("ar%d: WARNING - mirror", rdp->lun);
996 	    else
997 		kprintf("ar%d: WARNING - parity", rdp->lun);
998 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
999 		   ata_raid_type(rdp));
1000 	}
1001     }
1002     lockmgr(&rdp->lock, LK_RELEASE);
1003     if (writeback)
1004 	ata_raid_write_metadata(rdp);
1005 
1006 }
1007 
1008 static int
1009 ata_raid_status(struct ata_ioc_raid_status *status)
1010 {
1011     struct ar_softc *rdp;
1012     int i;
1013 
1014     if (!(rdp = ata_raid_arrays[status->lun]))
1015 	return ENXIO;
1016 
1017     status->type = rdp->type;
1018     status->total_disks = rdp->total_disks;
1019     for (i = 0; i < rdp->total_disks; i++ ) {
1020 	status->disks[i].state = 0;
1021 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev) {
1022 	    status->disks[i].lun = device_get_unit(rdp->disks[i].dev);
1023 	    if (rdp->disks[i].flags & AR_DF_PRESENT)
1024 		status->disks[i].state |= AR_DISK_PRESENT;
1025 	    if (rdp->disks[i].flags & AR_DF_ONLINE)
1026 		status->disks[i].state |= AR_DISK_ONLINE;
1027 	    if (rdp->disks[i].flags & AR_DF_SPARE)
1028 		status->disks[i].state |= AR_DISK_SPARE;
1029 	} else
1030 	    status->disks[i].lun = -1;
1031     }
1032     status->interleave = rdp->interleave;
1033     status->status = rdp->status;
1034     status->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1035     return 0;
1036 }
1037 
1038 static int
1039 ata_raid_create(struct ata_ioc_raid_config *config)
1040 {
1041     struct ar_softc *rdp;
1042     device_t subdisk;
1043     int array, disk;
1044     int ctlr = 0, total_disks = 0;
1045     u_int disk_size = 0;
1046 
1047     for (array = 0; array < MAX_ARRAYS; array++) {
1048 	if (!ata_raid_arrays[array])
1049 	    break;
1050     }
1051     if (array >= MAX_ARRAYS)
1052 	return ENOSPC;
1053 
1054     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1055 	M_WAITOK | M_ZERO);
1056 
1057     for (disk = 0; disk < config->total_disks; disk++) {
1058 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1059 					   config->disks[disk]))) {
1060 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1061 
1062 	    /* is device already assigned to another array ? */
1063 	    if (ars->raid[rdp->volume]) {
1064 		config->disks[disk] = -1;
1065 		kfree(rdp, M_AR);
1066 		return EBUSY;
1067 	    }
1068 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1069 
1070 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1071 	    case ATA_HIGHPOINT_ID:
1072 		/*
1073 		 * we need some way to decide if it should be v2 or v3
1074 		 * for now just use v2 since the v3 BIOS knows how to
1075 		 * handle that as well.
1076 		 */
1077 		ctlr = AR_F_HPTV2_RAID;
1078 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1079 		break;
1080 
1081 	    case ATA_INTEL_ID:
1082 		ctlr = AR_F_INTEL_RAID;
1083 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1084 		break;
1085 
1086 	    case ATA_ITE_ID:
1087 		ctlr = AR_F_ITE_RAID;
1088 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1089 		break;
1090 
1091 	    case ATA_JMICRON_ID:
1092 		ctlr = AR_F_JMICRON_RAID;
1093 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1094 		break;
1095 
1096 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1097 	    case ATA_PROMISE_ID:
1098 		ctlr = AR_F_PROMISE_RAID;
1099 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1100 		break;
1101 
1102 	    case ATA_SIS_ID:
1103 		ctlr = AR_F_SIS_RAID;
1104 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1105 		break;
1106 
1107 	    case ATA_ATI_ID:
1108 	    case ATA_VIA_ID:
1109 		ctlr = AR_F_VIA_RAID;
1110 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1111 		break;
1112 
1113 	    default:
1114 		/* XXX SOS
1115 		 * right, so here we are, we have an ATA chip and we want
1116 		 * to create a RAID and store the metadata.
1117 		 * we need to find a way to tell what kind of metadata this
1118 		 * hardware's BIOS might be using (good ideas are welcomed)
1119 		 * for now we just use our own native FreeBSD format.
1120 		 * the only way to get support for the BIOS format is to
1121 		 * setup the RAID from there, in that case we pickup the
1122 		 * metadata format from the disks (if we support it).
1123 		 */
1124 		kprintf("WARNING!! - not able to determine metadata format\n"
1125 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1126 		       "If that is not what you want, use the BIOS to "
1127 		       "create the array\n");
1128 		ctlr = AR_F_FREEBSD_RAID;
1129 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1130 		break;
1131 	    }
1132 
1133 	    /* we need all disks to be of the same format */
1134 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1135 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1136 		kfree(rdp, M_AR);
1137 		return EXDEV;
1138 	    }
1139 	    else
1140 		rdp->format = ctlr;
1141 
1142 	    /* use the smallest disk of the lots size */
1143 	    /* gigabyte boundry ??? XXX SOS */
1144 	    if (disk_size)
1145 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1146 	    else
1147 		disk_size = rdp->disks[disk].sectors;
1148 	    rdp->disks[disk].flags =
1149 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1150 
1151 	    total_disks++;
1152 	}
1153 	else {
1154 	    config->disks[disk] = -1;
1155 	    kfree(rdp, M_AR);
1156 	    return ENXIO;
1157 	}
1158     }
1159 
1160     if (total_disks != config->total_disks) {
1161 	kfree(rdp, M_AR);
1162 	return ENODEV;
1163     }
1164 
1165     switch (config->type) {
1166     case AR_T_JBOD:
1167     case AR_T_SPAN:
1168     case AR_T_RAID0:
1169 	break;
1170 
1171     case AR_T_RAID1:
1172 	if (total_disks != 2) {
1173 	    kfree(rdp, M_AR);
1174 	    return EPERM;
1175 	}
1176 	break;
1177 
1178     case AR_T_RAID01:
1179 	if (total_disks % 2 != 0) {
1180 	    kfree(rdp, M_AR);
1181 	    return EPERM;
1182 	}
1183 	break;
1184 
1185     case AR_T_RAID5:
1186 	if (total_disks < 3) {
1187 	    kfree(rdp, M_AR);
1188 	    return EPERM;
1189 	}
1190 	break;
1191 
1192     default:
1193 	kfree(rdp, M_AR);
1194 	return EOPNOTSUPP;
1195     }
1196     rdp->type = config->type;
1197     rdp->lun = array;
1198     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1199 	rdp->type == AR_T_RAID5) {
1200 	int bit = 0;
1201 
1202 	while (config->interleave >>= 1)
1203 	    bit++;
1204 	rdp->interleave = 1 << bit;
1205     }
1206     rdp->offset_sectors = 0;
1207 
1208     /* values that depend on metadata format */
1209     switch (rdp->format) {
1210     case AR_F_ADAPTEC_RAID:
1211 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1212 	break;
1213 
1214     case AR_F_HPTV2_RAID:
1215 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1216 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1217 	break;
1218 
1219     case AR_F_HPTV3_RAID:
1220 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1221 	break;
1222 
1223     case AR_F_INTEL_RAID:
1224 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1225 	break;
1226 
1227     case AR_F_ITE_RAID:
1228 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1229 	break;
1230 
1231     case AR_F_JMICRON_RAID:
1232 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1233 	break;
1234 
1235     case AR_F_LSIV2_RAID:
1236 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1237 	break;
1238 
1239     case AR_F_LSIV3_RAID:
1240 	rdp->interleave = min(max(2, rdp->interleave), 256);
1241 	break;
1242 
1243     case AR_F_PROMISE_RAID:
1244 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1245 	break;
1246 
1247     case AR_F_SII_RAID:
1248 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1249 	break;
1250 
1251     case AR_F_SIS_RAID:
1252 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1253 	break;
1254 
1255     case AR_F_VIA_RAID:
1256 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1257 	break;
1258     }
1259 
1260     rdp->total_disks = total_disks;
1261     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1262     rdp->total_sectors =
1263 	(uint64_t)disk_size * (rdp->width - (rdp->type == AR_RAID5));
1264     rdp->heads = 255;
1265     rdp->sectors = 63;
1266     rdp->cylinders = rdp->total_sectors / (255 * 63);
1267     rdp->rebuild_lba = 0;
1268     rdp->status |= AR_S_READY;
1269 
1270     /* we are committed to this array, grap the subdisks */
1271     for (disk = 0; disk < config->total_disks; disk++) {
1272 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1273 					   config->disks[disk]))) {
1274 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1275 
1276 	    ars->raid[rdp->volume] = rdp;
1277 	    ars->disk_number[rdp->volume] = disk;
1278 	}
1279     }
1280     ata_raid_attach(rdp, 1);
1281     ata_raid_arrays[array] = rdp;
1282     config->lun = array;
1283     return 0;
1284 }
1285 
1286 static int
1287 ata_raid_delete(int array)
1288 {
1289     struct ar_softc *rdp;
1290     device_t subdisk;
1291     int disk;
1292 
1293     if (!(rdp = ata_raid_arrays[array]))
1294 	return ENXIO;
1295 
1296     rdp->status &= ~AR_S_READY;
1297     disk_destroy(&rdp->disk);
1298     devstat_remove_entry(&rdp->devstat);
1299 
1300     for (disk = 0; disk < rdp->total_disks; disk++) {
1301 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1302 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1303 		     device_get_unit(rdp->disks[disk].dev)))) {
1304 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1305 
1306 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1307 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1308 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1309 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1310 		ars->raid[rdp->volume] = NULL;
1311 		ars->disk_number[rdp->volume] = -1;
1312 	    }
1313 	    rdp->disks[disk].flags = 0;
1314 	}
1315     }
1316     ata_raid_wipe_metadata(rdp);
1317     ata_raid_arrays[array] = NULL;
1318     kfree(rdp, M_AR);
1319     return 0;
1320 }
1321 
1322 static int
1323 ata_raid_addspare(struct ata_ioc_raid_config *config)
1324 {
1325     struct ar_softc *rdp;
1326     device_t subdisk;
1327     int disk;
1328 
1329     if (!(rdp = ata_raid_arrays[config->lun]))
1330 	return ENXIO;
1331     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1332 	return ENXIO;
1333     if (rdp->status & AR_S_REBUILDING)
1334 	return EBUSY;
1335     switch (rdp->type) {
1336     case AR_T_RAID1:
1337     case AR_T_RAID01:
1338     case AR_T_RAID5:
1339 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1340 
1341 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1342 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1343 		continue;
1344 
1345 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1346 					       config->disks[0] ))) {
1347 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1348 
1349 		if (ars->raid[rdp->volume])
1350 		    return EBUSY;
1351 
1352 		/* XXX SOS validate size etc etc */
1353 		ars->raid[rdp->volume] = rdp;
1354 		ars->disk_number[rdp->volume] = disk;
1355 		rdp->disks[disk].dev = device_get_parent(subdisk);
1356 		rdp->disks[disk].flags =
1357 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1358 
1359 		device_printf(rdp->disks[disk].dev,
1360 			      "inserted into ar%d disk%d as spare\n",
1361 			      rdp->lun, disk);
1362 		ata_raid_config_changed(rdp, 1);
1363 		return 0;
1364 	    }
1365 	}
1366 	return ENXIO;
1367 
1368     default:
1369 	return EPERM;
1370     }
1371 }
1372 
1373 static int
1374 ata_raid_rebuild(int array)
1375 {
1376     struct ar_softc *rdp;
1377     int disk, count;
1378 
1379     if (!(rdp = ata_raid_arrays[array]))
1380 	return ENXIO;
1381     /* XXX SOS we should lock the rdp softc here */
1382     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1383 	return ENXIO;
1384     if (rdp->status & AR_S_REBUILDING)
1385 	return EBUSY;
1386 
1387     switch (rdp->type) {
1388     case AR_T_RAID1:
1389     case AR_T_RAID01:
1390     case AR_T_RAID5:
1391 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1392 	    if (((rdp->disks[disk].flags &
1393 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1394 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1395 		rdp->disks[disk].dev) {
1396 		count++;
1397 	    }
1398 	}
1399 
1400 	if (count) {
1401 	    rdp->rebuild_lba = 0;
1402 	    rdp->status |= AR_S_REBUILDING;
1403 	    return 0;
1404 	}
1405 	return EIO;
1406 
1407     default:
1408 	return EPERM;
1409     }
1410 }
1411 
1412 static int
1413 ata_raid_read_metadata(device_t subdisk)
1414 {
1415     devclass_t pci_devclass = devclass_find("pci");
1416     devclass_t atapci_devclass = devclass_find("atapci");
1417     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1418 
1419     /* prioritize vendor native metadata layout if possible */
1420     if (devclass == pci_devclass || devclass == atapci_devclass) {
1421 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1422 	case ATA_HIGHPOINT_ID:
1423 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1424 		return 0;
1425 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1426 		return 0;
1427 	    break;
1428 
1429 	case ATA_INTEL_ID:
1430 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1431 		return 0;
1432 	    break;
1433 
1434 	case ATA_ITE_ID:
1435 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1436 		return 0;
1437 	    break;
1438 
1439 	case ATA_JMICRON_ID:
1440 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1441 		return 0;
1442 	    break;
1443 
1444 	case ATA_NVIDIA_ID:
1445 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1446 		return 0;
1447 	    break;
1448 
1449 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1450 	case ATA_PROMISE_ID:
1451 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1452 		return 0;
1453 	    break;
1454 
1455 	case ATA_ATI_ID:
1456 	case ATA_SILICON_IMAGE_ID:
1457 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1458 		return 0;
1459 	    break;
1460 
1461 	case ATA_SIS_ID:
1462 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1463 		return 0;
1464 	    break;
1465 
1466 	case ATA_VIA_ID:
1467 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1468 		return 0;
1469 	    break;
1470 	}
1471     }
1472 
1473     /* handle controllers that have multiple layout possibilities */
1474     /* NOTE: the order of these are not insignificant */
1475 
1476     /* Adaptec HostRAID */
1477     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1478 	return 0;
1479 
1480     /* LSILogic v3 and v2 */
1481     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1482 	return 0;
1483     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1484 	return 0;
1485 
1486     /* if none of the above matched, try FreeBSD native format */
1487     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1488 }
1489 
1490 static int
1491 ata_raid_write_metadata(struct ar_softc *rdp)
1492 {
1493     switch (rdp->format) {
1494     case AR_F_FREEBSD_RAID:
1495     case AR_F_PROMISE_RAID:
1496 	return ata_raid_promise_write_meta(rdp);
1497 
1498     case AR_F_HPTV3_RAID:
1499     case AR_F_HPTV2_RAID:
1500 	/*
1501 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1502 	 * this is handy since we cannot know what version BIOS is on there
1503 	 */
1504 	return ata_raid_hptv2_write_meta(rdp);
1505 
1506     case AR_F_INTEL_RAID:
1507 	return ata_raid_intel_write_meta(rdp);
1508 
1509     case AR_F_JMICRON_RAID:
1510 	return ata_raid_jmicron_write_meta(rdp);
1511 
1512     case AR_F_SIS_RAID:
1513 	return ata_raid_sis_write_meta(rdp);
1514 
1515     case AR_F_VIA_RAID:
1516 	return ata_raid_via_write_meta(rdp);
1517 #if 0
1518     case AR_F_HPTV3_RAID:
1519 	return ata_raid_hptv3_write_meta(rdp);
1520 
1521     case AR_F_ADAPTEC_RAID:
1522 	return ata_raid_adaptec_write_meta(rdp);
1523 
1524     case AR_F_ITE_RAID:
1525 	return ata_raid_ite_write_meta(rdp);
1526 
1527     case AR_F_LSIV2_RAID:
1528 	return ata_raid_lsiv2_write_meta(rdp);
1529 
1530     case AR_F_LSIV3_RAID:
1531 	return ata_raid_lsiv3_write_meta(rdp);
1532 
1533     case AR_F_NVIDIA_RAID:
1534 	return ata_raid_nvidia_write_meta(rdp);
1535 
1536     case AR_F_SII_RAID:
1537 	return ata_raid_sii_write_meta(rdp);
1538 
1539 #endif
1540     default:
1541 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1542 	       rdp->lun, ata_raid_format(rdp));
1543     }
1544     return -1;
1545 }
1546 
1547 static int
1548 ata_raid_wipe_metadata(struct ar_softc *rdp)
1549 {
1550     int disk, error = 0;
1551     u_int64_t lba;
1552     u_int32_t size;
1553     u_int8_t *meta;
1554 
1555     for (disk = 0; disk < rdp->total_disks; disk++) {
1556 	if (rdp->disks[disk].dev) {
1557 	    switch (rdp->format) {
1558 	    case AR_F_ADAPTEC_RAID:
1559 		lba = ADP_LBA(rdp->disks[disk].dev);
1560 		size = sizeof(struct adaptec_raid_conf);
1561 		break;
1562 
1563 	    case AR_F_HPTV2_RAID:
1564 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1565 		size = sizeof(struct hptv2_raid_conf);
1566 		break;
1567 
1568 	    case AR_F_HPTV3_RAID:
1569 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1570 		size = sizeof(struct hptv3_raid_conf);
1571 		break;
1572 
1573 	    case AR_F_INTEL_RAID:
1574 		lba = INTEL_LBA(rdp->disks[disk].dev);
1575 		size = 3 * 512;         /* XXX SOS */
1576 		break;
1577 
1578 	    case AR_F_ITE_RAID:
1579 		lba = ITE_LBA(rdp->disks[disk].dev);
1580 		size = sizeof(struct ite_raid_conf);
1581 		break;
1582 
1583 	    case AR_F_JMICRON_RAID:
1584 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1585 		size = sizeof(struct jmicron_raid_conf);
1586 		break;
1587 
1588 	    case AR_F_LSIV2_RAID:
1589 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1590 		size = sizeof(struct lsiv2_raid_conf);
1591 		break;
1592 
1593 	    case AR_F_LSIV3_RAID:
1594 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1595 		size = sizeof(struct lsiv3_raid_conf);
1596 		break;
1597 
1598 	    case AR_F_NVIDIA_RAID:
1599 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1600 		size = sizeof(struct nvidia_raid_conf);
1601 		break;
1602 
1603 	    case AR_F_FREEBSD_RAID:
1604 	    case AR_F_PROMISE_RAID:
1605 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1606 		size = sizeof(struct promise_raid_conf);
1607 		break;
1608 
1609 	    case AR_F_SII_RAID:
1610 		lba = SII_LBA(rdp->disks[disk].dev);
1611 		size = sizeof(struct sii_raid_conf);
1612 		break;
1613 
1614 	    case AR_F_SIS_RAID:
1615 		lba = SIS_LBA(rdp->disks[disk].dev);
1616 		size = sizeof(struct sis_raid_conf);
1617 		break;
1618 
1619 	    case AR_F_VIA_RAID:
1620 		lba = VIA_LBA(rdp->disks[disk].dev);
1621 		size = sizeof(struct via_raid_conf);
1622 		break;
1623 
1624 	    default:
1625 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1626 		       rdp->lun, ata_raid_format(rdp));
1627 		return ENXIO;
1628 	    }
1629 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1630 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1631 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1632 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1633 		error = EIO;
1634 	    }
1635 	    kfree(meta, M_AR);
1636 	}
1637     }
1638     return error;
1639 }
1640 
1641 /* Adaptec HostRAID Metadata */
1642 static int
1643 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1644 {
1645     struct ata_raid_subdisk *ars = device_get_softc(dev);
1646     device_t parent = device_get_parent(dev);
1647     struct adaptec_raid_conf *meta;
1648     struct ar_softc *raid;
1649     int array, disk, retval = 0;
1650 
1651     meta = (struct adaptec_raid_conf *)
1652 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1653 
1654     if (ata_raid_rw(parent, ADP_LBA(parent),
1655 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1656 	if (testing || bootverbose)
1657 	    device_printf(parent, "Adaptec read metadata failed\n");
1658 	goto adaptec_out;
1659     }
1660 
1661     /* check if this is a Adaptec RAID struct */
1662     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1663 	if (testing || bootverbose)
1664 	    device_printf(parent, "Adaptec check1 failed\n");
1665 	goto adaptec_out;
1666     }
1667 
1668     if (testing || bootverbose)
1669 	ata_raid_adaptec_print_meta(meta);
1670 
1671     /* now convert Adaptec metadata into our generic form */
1672     for (array = 0; array < MAX_ARRAYS; array++) {
1673 	if (!raidp[array]) {
1674 	    raidp[array] =
1675 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1676 					  M_WAITOK | M_ZERO);
1677 	}
1678 	raid = raidp[array];
1679 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1680 	    continue;
1681 
1682 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1683 	    continue;
1684 
1685 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1686 	    switch (meta->configs[0].type) {
1687 	    case ADP_T_RAID0:
1688 		raid->magic_0 = meta->configs[0].magic_0;
1689 		raid->type = AR_T_RAID0;
1690 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1691 		raid->width = be16toh(meta->configs[0].total_disks);
1692 		break;
1693 
1694 	    case ADP_T_RAID1:
1695 		raid->magic_0 = meta->configs[0].magic_0;
1696 		raid->type = AR_T_RAID1;
1697 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1698 		break;
1699 
1700 	    default:
1701 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1702 			      meta->configs[0].type);
1703 		kfree(raidp[array], M_AR);
1704 		raidp[array] = NULL;
1705 		goto adaptec_out;
1706 	    }
1707 
1708 	    raid->format = AR_F_ADAPTEC_RAID;
1709 	    raid->generation = be32toh(meta->generation);
1710 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1711 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1712 	    raid->heads = 255;
1713 	    raid->sectors = 63;
1714 	    raid->cylinders = raid->total_sectors / (63 * 255);
1715 	    raid->offset_sectors = 0;
1716 	    raid->rebuild_lba = 0;
1717 	    raid->lun = array;
1718 	    strncpy(raid->name, meta->configs[0].name,
1719 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1720 
1721 	    /* clear out any old info */
1722 	    if (raid->generation) {
1723 		for (disk = 0; disk < raid->total_disks; disk++) {
1724 		    raid->disks[disk].dev = NULL;
1725 		    raid->disks[disk].flags = 0;
1726 		}
1727 	    }
1728 	}
1729 	if (be32toh(meta->generation) >= raid->generation) {
1730 	    struct ata_device *atadev = device_get_softc(parent);
1731 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1732 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1733 			      ATA_DEV(atadev->unit);
1734 
1735 	    raid->disks[disk_number].dev = parent;
1736 	    raid->disks[disk_number].sectors =
1737 		be32toh(meta->configs[disk_number + 1].sectors);
1738 	    raid->disks[disk_number].flags =
1739 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1740 	    ars->raid[raid->volume] = raid;
1741 	    ars->disk_number[raid->volume] = disk_number;
1742 	    retval = 1;
1743 	}
1744 	break;
1745     }
1746 
1747 adaptec_out:
1748     kfree(meta, M_AR);
1749     return retval;
1750 }
1751 
1752 /* Highpoint V2 RocketRAID Metadata */
1753 static int
1754 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1755 {
1756     struct ata_raid_subdisk *ars = device_get_softc(dev);
1757     device_t parent = device_get_parent(dev);
1758     struct hptv2_raid_conf *meta;
1759     struct ar_softc *raid = NULL;
1760     int array, disk_number = 0, retval = 0;
1761 
1762     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1763 	M_AR, M_WAITOK | M_ZERO);
1764 
1765     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1766 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1767 	if (testing || bootverbose)
1768 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1769 	goto hptv2_out;
1770     }
1771 
1772     /* check if this is a HighPoint v2 RAID struct */
1773     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1774 	if (testing || bootverbose)
1775 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1776 	goto hptv2_out;
1777     }
1778 
1779     /* is this disk defined, or an old leftover/spare ? */
1780     if (!meta->magic_0) {
1781 	if (testing || bootverbose)
1782 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1783 	goto hptv2_out;
1784     }
1785 
1786     if (testing || bootverbose)
1787 	ata_raid_hptv2_print_meta(meta);
1788 
1789     /* now convert HighPoint (v2) metadata into our generic form */
1790     for (array = 0; array < MAX_ARRAYS; array++) {
1791 	if (!raidp[array]) {
1792 	    raidp[array] =
1793 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1794 					  M_WAITOK | M_ZERO);
1795 	}
1796 	raid = raidp[array];
1797 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1798 	    continue;
1799 
1800 	switch (meta->type) {
1801 	case HPTV2_T_RAID0:
1802 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1803 		(HPTV2_O_RAID0|HPTV2_O_OK))
1804 		goto highpoint_raid1;
1805 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1806 		goto highpoint_raid01;
1807 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1808 		continue;
1809 	    raid->magic_0 = meta->magic_0;
1810 	    raid->type = AR_T_RAID0;
1811 	    raid->interleave = 1 << meta->stripe_shift;
1812 	    disk_number = meta->disk_number;
1813 	    if (!(meta->order & HPTV2_O_OK))
1814 		meta->magic = 0;        /* mark bad */
1815 	    break;
1816 
1817 	case HPTV2_T_RAID1:
1818 highpoint_raid1:
1819 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1820 		continue;
1821 	    raid->magic_0 = meta->magic_0;
1822 	    raid->type = AR_T_RAID1;
1823 	    disk_number = (meta->disk_number > 0);
1824 	    break;
1825 
1826 	case HPTV2_T_RAID01_RAID0:
1827 highpoint_raid01:
1828 	    if (meta->order & HPTV2_O_RAID0) {
1829 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1830 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1831 		    continue;
1832 		raid->magic_0 = meta->magic_0;
1833 		raid->magic_1 = meta->magic_1;
1834 		raid->type = AR_T_RAID01;
1835 		raid->interleave = 1 << meta->stripe_shift;
1836 		disk_number = meta->disk_number;
1837 	    }
1838 	    else {
1839 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1840 		    continue;
1841 		raid->magic_1 = meta->magic_1;
1842 		raid->type = AR_T_RAID01;
1843 		raid->interleave = 1 << meta->stripe_shift;
1844 		disk_number = meta->disk_number + meta->array_width;
1845 		if (!(meta->order & HPTV2_O_RAID1))
1846 		    meta->magic = 0;    /* mark bad */
1847 	    }
1848 	    break;
1849 
1850 	case HPTV2_T_SPAN:
1851 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1852 		continue;
1853 	    raid->magic_0 = meta->magic_0;
1854 	    raid->type = AR_T_SPAN;
1855 	    disk_number = meta->disk_number;
1856 	    break;
1857 
1858 	default:
1859 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1860 			  meta->type);
1861 	    kfree(raidp[array], M_AR);
1862 	    raidp[array] = NULL;
1863 	    goto hptv2_out;
1864 	}
1865 
1866 	raid->format |= AR_F_HPTV2_RAID;
1867 	raid->disks[disk_number].dev = parent;
1868 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1869 	raid->lun = array;
1870 	strncpy(raid->name, meta->name_1,
1871 		min(sizeof(raid->name), sizeof(meta->name_1)));
1872 	if (meta->magic == HPTV2_MAGIC_OK) {
1873 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1874 	    raid->width = meta->array_width;
1875 	    raid->total_sectors = meta->total_sectors;
1876 	    raid->heads = 255;
1877 	    raid->sectors = 63;
1878 	    raid->cylinders = raid->total_sectors / (63 * 255);
1879 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1880 	    raid->rebuild_lba = meta->rebuild_lba;
1881 	    raid->disks[disk_number].sectors =
1882 		raid->total_sectors / raid->width;
1883 	}
1884 	else
1885 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1886 
1887 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1888 	    raid->total_disks = raid->width;
1889 	if (disk_number >= raid->total_disks)
1890 	    raid->total_disks = disk_number + 1;
1891 	ars->raid[raid->volume] = raid;
1892 	ars->disk_number[raid->volume] = disk_number;
1893 	retval = 1;
1894 	break;
1895     }
1896 
1897 hptv2_out:
1898     kfree(meta, M_AR);
1899     return retval;
1900 }
1901 
1902 static int
1903 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1904 {
1905     struct hptv2_raid_conf *meta;
1906     struct timeval timestamp;
1907     int disk, error = 0;
1908 
1909     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1910 	M_AR, M_WAITOK | M_ZERO);
1911 
1912     microtime(&timestamp);
1913     rdp->magic_0 = timestamp.tv_sec + 2;
1914     rdp->magic_1 = timestamp.tv_sec;
1915 
1916     for (disk = 0; disk < rdp->total_disks; disk++) {
1917 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1918 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1919 	    meta->magic = HPTV2_MAGIC_OK;
1920 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1921 	    meta->magic_0 = rdp->magic_0;
1922 	    if (strlen(rdp->name))
1923 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1924 	    else
1925 		strcpy(meta->name_1, "FreeBSD");
1926 	}
1927 	meta->disk_number = disk;
1928 
1929 	switch (rdp->type) {
1930 	case AR_T_RAID0:
1931 	    meta->type = HPTV2_T_RAID0;
1932 	    strcpy(meta->name_2, "RAID 0");
1933 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1934 		meta->order = HPTV2_O_OK;
1935 	    break;
1936 
1937 	case AR_T_RAID1:
1938 	    meta->type = HPTV2_T_RAID0;
1939 	    strcpy(meta->name_2, "RAID 1");
1940 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1941 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1942 	    break;
1943 
1944 	case AR_T_RAID01:
1945 	    meta->type = HPTV2_T_RAID01_RAID0;
1946 	    strcpy(meta->name_2, "RAID 0+1");
1947 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1948 		if (disk < rdp->width) {
1949 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1950 		    meta->magic_0 = rdp->magic_0 - 1;
1951 		}
1952 		else {
1953 		    meta->order = HPTV2_O_RAID1;
1954 		    meta->disk_number -= rdp->width;
1955 		}
1956 	    }
1957 	    else
1958 		meta->magic_0 = rdp->magic_0 - 1;
1959 	    meta->magic_1 = rdp->magic_1;
1960 	    break;
1961 
1962 	case AR_T_SPAN:
1963 	    meta->type = HPTV2_T_SPAN;
1964 	    strcpy(meta->name_2, "SPAN");
1965 	    break;
1966 	default:
1967 	    kfree(meta, M_AR);
1968 	    return ENODEV;
1969 	}
1970 
1971 	meta->array_width = rdp->width;
1972 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1973 	meta->total_sectors = rdp->total_sectors;
1974 	meta->rebuild_lba = rdp->rebuild_lba;
1975 	if (testing || bootverbose)
1976 	    ata_raid_hptv2_print_meta(meta);
1977 	if (rdp->disks[disk].dev) {
1978 	    if (ata_raid_rw(rdp->disks[disk].dev,
1979 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1980 			    sizeof(struct promise_raid_conf),
1981 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1982 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1983 		error = EIO;
1984 	    }
1985 	}
1986     }
1987     kfree(meta, M_AR);
1988     return error;
1989 }
1990 
1991 /* Highpoint V3 RocketRAID Metadata */
1992 static int
1993 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1994 {
1995     struct ata_raid_subdisk *ars = device_get_softc(dev);
1996     device_t parent = device_get_parent(dev);
1997     struct hptv3_raid_conf *meta;
1998     struct ar_softc *raid = NULL;
1999     int array, disk_number, retval = 0;
2000 
2001     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
2002 	M_AR, M_WAITOK | M_ZERO);
2003 
2004     if (ata_raid_rw(parent, HPTV3_LBA(parent),
2005 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2006 	if (testing || bootverbose)
2007 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2008 	goto hptv3_out;
2009     }
2010 
2011     /* check if this is a HighPoint v3 RAID struct */
2012     if (meta->magic != HPTV3_MAGIC) {
2013 	if (testing || bootverbose)
2014 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2015 	goto hptv3_out;
2016     }
2017 
2018     /* check if there are any config_entries */
2019     if (meta->config_entries < 1) {
2020 	if (testing || bootverbose)
2021 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2022 	goto hptv3_out;
2023     }
2024 
2025     if (testing || bootverbose)
2026 	ata_raid_hptv3_print_meta(meta);
2027 
2028     /* now convert HighPoint (v3) metadata into our generic form */
2029     for (array = 0; array < MAX_ARRAYS; array++) {
2030 	if (!raidp[array]) {
2031 	    raidp[array] =
2032 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2033 					  M_WAITOK | M_ZERO);
2034 	}
2035 	raid = raidp[array];
2036 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2037 	    continue;
2038 
2039 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2040 	    continue;
2041 
2042 	switch (meta->configs[0].type) {
2043 	case HPTV3_T_RAID0:
2044 	    raid->type = AR_T_RAID0;
2045 	    raid->width = meta->configs[0].total_disks;
2046 	    disk_number = meta->configs[0].disk_number;
2047 	    break;
2048 
2049 	case HPTV3_T_RAID1:
2050 	    raid->type = AR_T_RAID1;
2051 	    raid->width = meta->configs[0].total_disks / 2;
2052 	    disk_number = meta->configs[0].disk_number;
2053 	    break;
2054 
2055 	case HPTV3_T_RAID5:
2056 	    raid->type = AR_T_RAID5;
2057 	    raid->width = meta->configs[0].total_disks;
2058 	    disk_number = meta->configs[0].disk_number;
2059 	    break;
2060 
2061 	case HPTV3_T_SPAN:
2062 	    raid->type = AR_T_SPAN;
2063 	    raid->width = meta->configs[0].total_disks;
2064 	    disk_number = meta->configs[0].disk_number;
2065 	    break;
2066 
2067 	default:
2068 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2069 			  meta->configs[0].type);
2070 	    kfree(raidp[array], M_AR);
2071 	    raidp[array] = NULL;
2072 	    goto hptv3_out;
2073 	}
2074 	if (meta->config_entries == 2) {
2075 	    switch (meta->configs[1].type) {
2076 	    case HPTV3_T_RAID1:
2077 		if (raid->type == AR_T_RAID0) {
2078 		    raid->type = AR_T_RAID01;
2079 		    disk_number = meta->configs[1].disk_number +
2080 				  (meta->configs[0].disk_number << 1);
2081 		    break;
2082 		}
2083 	    default:
2084 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2085 			      meta->configs[1].type);
2086 		kfree(raidp[array], M_AR);
2087 		raidp[array] = NULL;
2088 		goto hptv3_out;
2089 	    }
2090 	}
2091 
2092 	raid->magic_0 = meta->magic_0;
2093 	raid->format = AR_F_HPTV3_RAID;
2094 	raid->generation = meta->timestamp;
2095 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2096 	raid->total_disks = meta->configs[0].total_disks +
2097 	    meta->configs[1].total_disks;
2098 	raid->total_sectors = meta->configs[0].total_sectors +
2099 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2100 	raid->heads = 255;
2101 	raid->sectors = 63;
2102 	raid->cylinders = raid->total_sectors / (63 * 255);
2103 	raid->offset_sectors = 0;
2104 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2105 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2106 	raid->lun = array;
2107 	strncpy(raid->name, meta->name,
2108 		min(sizeof(raid->name), sizeof(meta->name)));
2109 	raid->disks[disk_number].sectors = raid->total_sectors /
2110 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2111 	raid->disks[disk_number].dev = parent;
2112 	raid->disks[disk_number].flags =
2113 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2114 	ars->raid[raid->volume] = raid;
2115 	ars->disk_number[raid->volume] = disk_number;
2116 	retval = 1;
2117 	break;
2118     }
2119 
2120 hptv3_out:
2121     kfree(meta, M_AR);
2122     return retval;
2123 }
2124 
2125 /* Intel MatrixRAID Metadata */
2126 static int
2127 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2128 {
2129     struct ata_raid_subdisk *ars = device_get_softc(dev);
2130     device_t parent = device_get_parent(dev);
2131     struct intel_raid_conf *meta;
2132     struct intel_raid_mapping *map;
2133     struct ar_softc *raid = NULL;
2134     u_int32_t checksum, *ptr;
2135     int array, count, disk, volume = 1, retval = 0;
2136     char *tmp;
2137 
2138     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2139 
2140     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2141 	if (testing || bootverbose)
2142 	    device_printf(parent, "Intel read metadata failed\n");
2143 	goto intel_out;
2144     }
2145     tmp = (char *)meta;
2146     bcopy(tmp, tmp+1024, 512);
2147     bcopy(tmp+512, tmp, 1024);
2148     bzero(tmp+1024, 512);
2149 
2150     /* check if this is a Intel RAID struct */
2151     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2152 	if (testing || bootverbose)
2153 	    device_printf(parent, "Intel check1 failed\n");
2154 	goto intel_out;
2155     }
2156 
2157     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2158 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2159 	checksum += *ptr++;
2160     }
2161     checksum -= meta->checksum;
2162     if (checksum != meta->checksum) {
2163 	if (testing || bootverbose)
2164 	    device_printf(parent, "Intel check2 failed\n");
2165 	goto intel_out;
2166     }
2167 
2168     if (testing || bootverbose)
2169 	ata_raid_intel_print_meta(meta);
2170 
2171     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2172 
2173     /* now convert Intel metadata into our generic form */
2174     for (array = 0; array < MAX_ARRAYS; array++) {
2175 	if (!raidp[array]) {
2176 	    raidp[array] =
2177 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2178 					  M_WAITOK | M_ZERO);
2179 	}
2180 	raid = raidp[array];
2181 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2182 	    continue;
2183 
2184 	if ((raid->format & AR_F_INTEL_RAID) &&
2185 	    (raid->magic_0 != meta->config_id))
2186 	    continue;
2187 
2188 	/*
2189 	 * update our knowledge about the array config based on generation
2190 	 * NOTE: there can be multiple volumes on a disk set
2191 	 */
2192 	if (!meta->generation || meta->generation > raid->generation) {
2193 	    switch (map->type) {
2194 	    case INTEL_T_RAID0:
2195 		raid->type = AR_T_RAID0;
2196 		raid->width = map->total_disks;
2197 		break;
2198 
2199 	    case INTEL_T_RAID1:
2200 		if (map->total_disks == 4)
2201 		    raid->type = AR_T_RAID01;
2202 		else
2203 		    raid->type = AR_T_RAID1;
2204 		raid->width = map->total_disks / 2;
2205 		break;
2206 
2207 	    case INTEL_T_RAID5:
2208 		raid->type = AR_T_RAID5;
2209 		raid->width = map->total_disks;
2210 		break;
2211 
2212 	    default:
2213 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2214 			      map->type);
2215 		kfree(raidp[array], M_AR);
2216 		raidp[array] = NULL;
2217 		goto intel_out;
2218 	    }
2219 
2220 	    switch (map->status) {
2221 	    case INTEL_S_READY:
2222 		raid->status = AR_S_READY;
2223 		break;
2224 	    case INTEL_S_DEGRADED:
2225 		raid->status |= AR_S_DEGRADED;
2226 		break;
2227 	    case INTEL_S_DISABLED:
2228 	    case INTEL_S_FAILURE:
2229 		raid->status = 0;
2230 	    }
2231 
2232 	    raid->magic_0 = meta->config_id;
2233 	    raid->format = AR_F_INTEL_RAID;
2234 	    raid->generation = meta->generation;
2235 	    raid->interleave = map->stripe_sectors;
2236 	    raid->total_disks = map->total_disks;
2237 	    raid->total_sectors = map->total_sectors;
2238 	    raid->heads = 255;
2239 	    raid->sectors = 63;
2240 	    raid->cylinders = raid->total_sectors / (63 * 255);
2241 	    raid->offset_sectors = map->offset;
2242 	    raid->rebuild_lba = 0;
2243 	    raid->lun = array;
2244 	    raid->volume = volume - 1;
2245 	    strncpy(raid->name, map->name,
2246 		    min(sizeof(raid->name), sizeof(map->name)));
2247 
2248 	    /* clear out any old info */
2249 	    for (disk = 0; disk < raid->total_disks; disk++) {
2250 		u_int disk_idx = map->disk_idx[disk] & 0xffff;
2251 
2252 		raid->disks[disk].dev = NULL;
2253 		bcopy(meta->disk[disk_idx].serial,
2254 		      raid->disks[disk].serial,
2255 		      sizeof(raid->disks[disk].serial));
2256 		raid->disks[disk].sectors =
2257 		    meta->disk[disk_idx].sectors;
2258 		raid->disks[disk].flags = 0;
2259 		if (meta->disk[disk_idx].flags & INTEL_F_ONLINE)
2260 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2261 		if (meta->disk[disk_idx].flags & INTEL_F_ASSIGNED)
2262 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2263 		if (meta->disk[disk_idx].flags & INTEL_F_SPARE) {
2264 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2265 		    raid->disks[disk].flags |= AR_DF_SPARE;
2266 		}
2267 		if (meta->disk[disk_idx].flags & INTEL_F_DOWN)
2268 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2269 	    }
2270 	}
2271 	if (meta->generation >= raid->generation) {
2272 	    for (disk = 0; disk < raid->total_disks; disk++) {
2273 		struct ata_device *atadev = device_get_softc(parent);
2274 		int len;
2275 
2276 		for (len = 0; len < sizeof(atadev->param.serial); len++) {
2277 		    if (atadev->param.serial[len] < 0x20)
2278 			break;
2279 		}
2280 		len = (len > sizeof(raid->disks[disk].serial)) ?
2281 		    len - sizeof(raid->disks[disk].serial) : 0;
2282 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial + len,
2283 		    sizeof(raid->disks[disk].serial))) {
2284 		    raid->disks[disk].dev = parent;
2285 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2286 		    ars->raid[raid->volume] = raid;
2287 		    ars->disk_number[raid->volume] = disk;
2288 		    retval = 1;
2289 		}
2290 	    }
2291 	}
2292 	else
2293 	    goto intel_out;
2294 
2295 	if (retval) {
2296 	    if (volume < meta->total_volumes) {
2297 		map = (struct intel_raid_mapping *)
2298 		      &map->disk_idx[map->total_disks];
2299 		volume++;
2300 		retval = 0;
2301 		continue;
2302 	    }
2303 	    break;
2304 	}
2305 	else {
2306 	    kfree(raidp[array], M_AR);
2307 	    raidp[array] = NULL;
2308 	    if (volume == 2)
2309 		retval = 1;
2310 	}
2311     }
2312 
2313 intel_out:
2314     kfree(meta, M_AR);
2315     return retval;
2316 }
2317 
2318 static int
2319 ata_raid_intel_write_meta(struct ar_softc *rdp)
2320 {
2321     struct intel_raid_conf *meta;
2322     struct intel_raid_mapping *map;
2323     struct timeval timestamp;
2324     u_int32_t checksum, *ptr;
2325     int count, disk, error = 0;
2326     char *tmp;
2327 
2328     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2329 
2330     rdp->generation++;
2331 
2332     /* Generate a new config_id if none exists */
2333     if (!rdp->magic_0) {
2334 	microtime(&timestamp);
2335 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2336     }
2337 
2338     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2339     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2340     meta->config_id = rdp->magic_0;
2341     meta->generation = rdp->generation;
2342     meta->total_disks = rdp->total_disks;
2343     meta->total_volumes = 1;                                    /* XXX SOS */
2344     for (disk = 0; disk < rdp->total_disks; disk++) {
2345 	if (rdp->disks[disk].dev) {
2346 	    struct ata_channel *ch =
2347 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2348 	    struct ata_device *atadev =
2349 		device_get_softc(rdp->disks[disk].dev);
2350 	    int len;
2351 
2352 	    for (len = 0; len < sizeof(atadev->param.serial); len++) {
2353 		if (atadev->param.serial[len] < 0x20)
2354 		    break;
2355 	    }
2356 	    len = (len > sizeof(rdp->disks[disk].serial)) ?
2357 	        len - sizeof(rdp->disks[disk].serial) : 0;
2358 	    bcopy(atadev->param.serial + len, meta->disk[disk].serial,
2359 		  sizeof(rdp->disks[disk].serial));
2360 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2361 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2362 	}
2363 	else
2364 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2365 	meta->disk[disk].flags = 0;
2366 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2367 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2368 	else {
2369 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2370 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2371 	    else
2372 		meta->disk[disk].flags |= INTEL_F_DOWN;
2373 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2374 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2375 	}
2376     }
2377     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2378 
2379     bcopy(rdp->name, map->name, sizeof(rdp->name));
2380     map->total_sectors = rdp->total_sectors;
2381     map->state = 12;                                            /* XXX SOS */
2382     map->offset = rdp->offset_sectors;
2383     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2384     map->stripe_sectors =  rdp->interleave;
2385     map->disk_sectors = rdp->total_sectors / rdp->width;
2386     map->status = INTEL_S_READY;                                /* XXX SOS */
2387     switch (rdp->type) {
2388     case AR_T_RAID0:
2389 	map->type = INTEL_T_RAID0;
2390 	break;
2391     case AR_T_RAID1:
2392 	map->type = INTEL_T_RAID1;
2393 	break;
2394     case AR_T_RAID01:
2395 	map->type = INTEL_T_RAID1;
2396 	break;
2397     case AR_T_RAID5:
2398 	map->type = INTEL_T_RAID5;
2399 	break;
2400     default:
2401 	kfree(meta, M_AR);
2402 	return ENODEV;
2403     }
2404     map->total_disks = rdp->total_disks;
2405     map->magic[0] = 0x02;
2406     map->magic[1] = 0xff;
2407     map->magic[2] = 0x01;
2408     for (disk = 0; disk < rdp->total_disks; disk++)
2409 	map->disk_idx[disk] = disk;
2410 
2411     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2412     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2413 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2414 	checksum += *ptr++;
2415     }
2416     meta->checksum = checksum;
2417 
2418     if (testing || bootverbose)
2419 	ata_raid_intel_print_meta(meta);
2420 
2421     tmp = (char *)meta;
2422     bcopy(tmp, tmp+1024, 512);
2423     bcopy(tmp+512, tmp, 1024);
2424     bzero(tmp+1024, 512);
2425 
2426     for (disk = 0; disk < rdp->total_disks; disk++) {
2427 	if (rdp->disks[disk].dev) {
2428 	    if (ata_raid_rw(rdp->disks[disk].dev,
2429 			    INTEL_LBA(rdp->disks[disk].dev),
2430 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2431 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2432 		error = EIO;
2433 	    }
2434 	}
2435     }
2436     kfree(meta, M_AR);
2437     return error;
2438 }
2439 
2440 
2441 /* Integrated Technology Express Metadata */
2442 static int
2443 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2444 {
2445     struct ata_raid_subdisk *ars = device_get_softc(dev);
2446     device_t parent = device_get_parent(dev);
2447     struct ite_raid_conf *meta;
2448     struct ar_softc *raid = NULL;
2449     int array, disk_number, count, retval = 0;
2450     u_int16_t *ptr;
2451 
2452     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2453 	M_WAITOK | M_ZERO);
2454 
2455     if (ata_raid_rw(parent, ITE_LBA(parent),
2456 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2457 	if (testing || bootverbose)
2458 	    device_printf(parent, "ITE read metadata failed\n");
2459 	goto ite_out;
2460     }
2461 
2462     /* check if this is a ITE RAID struct */
2463     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2464 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2465 	ptr[count] = be16toh(ptr[count]);
2466 
2467     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2468 	if (testing || bootverbose)
2469 	    device_printf(parent, "ITE check1 failed\n");
2470 	goto ite_out;
2471     }
2472 
2473     if (testing || bootverbose)
2474 	ata_raid_ite_print_meta(meta);
2475 
2476     /* now convert ITE metadata into our generic form */
2477     for (array = 0; array < MAX_ARRAYS; array++) {
2478 	if ((raid = raidp[array])) {
2479 	    if (raid->format != AR_F_ITE_RAID)
2480 		continue;
2481 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2482 		continue;
2483 	}
2484 
2485 	/* if we dont have a disks timestamp the RAID is invalidated */
2486 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2487 	    goto ite_out;
2488 
2489 	if (!raid) {
2490 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2491 						     M_AR, M_WAITOK | M_ZERO);
2492 	}
2493 
2494 	switch (meta->type) {
2495 	case ITE_T_RAID0:
2496 	    raid->type = AR_T_RAID0;
2497 	    raid->width = meta->array_width;
2498 	    raid->total_disks = meta->array_width;
2499 	    disk_number = meta->disk_number;
2500 	    break;
2501 
2502 	case ITE_T_RAID1:
2503 	    raid->type = AR_T_RAID1;
2504 	    raid->width = 1;
2505 	    raid->total_disks = 2;
2506 	    disk_number = meta->disk_number;
2507 	    break;
2508 
2509 	case ITE_T_RAID01:
2510 	    raid->type = AR_T_RAID01;
2511 	    raid->width = meta->array_width;
2512 	    raid->total_disks = 4;
2513 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2514 			  ((meta->disk_number & 0x01) << 1);
2515 	    break;
2516 
2517 	case ITE_T_SPAN:
2518 	    raid->type = AR_T_SPAN;
2519 	    raid->width = 1;
2520 	    raid->total_disks = meta->array_width;
2521 	    disk_number = meta->disk_number;
2522 	    break;
2523 
2524 	default:
2525 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2526 	    kfree(raidp[array], M_AR);
2527 	    raidp[array] = NULL;
2528 	    goto ite_out;
2529 	}
2530 
2531 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2532 	raid->format = AR_F_ITE_RAID;
2533 	raid->generation = 0;
2534 	raid->interleave = meta->stripe_sectors;
2535 	raid->total_sectors = meta->total_sectors;
2536 	raid->heads = 255;
2537 	raid->sectors = 63;
2538 	raid->cylinders = raid->total_sectors / (63 * 255);
2539 	raid->offset_sectors = 0;
2540 	raid->rebuild_lba = 0;
2541 	raid->lun = array;
2542 
2543 	raid->disks[disk_number].dev = parent;
2544 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2545 	raid->disks[disk_number].flags =
2546 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2547 	ars->raid[raid->volume] = raid;
2548 	ars->disk_number[raid->volume] = disk_number;
2549 	retval = 1;
2550 	break;
2551     }
2552 ite_out:
2553     kfree(meta, M_AR);
2554     return retval;
2555 }
2556 
2557 /* JMicron Technology Corp Metadata */
2558 static int
2559 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2560 {
2561     struct ata_raid_subdisk *ars = device_get_softc(dev);
2562     device_t parent = device_get_parent(dev);
2563     struct jmicron_raid_conf *meta;
2564     struct ar_softc *raid = NULL;
2565     u_int16_t checksum, *ptr;
2566     u_int64_t disk_size;
2567     int count, array, disk, total_disks, retval = 0;
2568 
2569     meta = (struct jmicron_raid_conf *)
2570 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2571 
2572     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2573 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2574 	if (testing || bootverbose)
2575 	    device_printf(parent,
2576 			  "JMicron read metadata failed\n");
2577     }
2578 
2579     /* check for JMicron signature */
2580     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2581 	if (testing || bootverbose)
2582 	    device_printf(parent, "JMicron check1 failed\n");
2583 	goto jmicron_out;
2584     }
2585 
2586     /* calculate checksum and compare for valid */
2587     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2588 	checksum += *ptr++;
2589     if (checksum) {
2590 	if (testing || bootverbose)
2591 	    device_printf(parent, "JMicron check2 failed\n");
2592 	goto jmicron_out;
2593     }
2594 
2595     if (testing || bootverbose)
2596 	ata_raid_jmicron_print_meta(meta);
2597 
2598     /* now convert JMicron meta into our generic form */
2599     for (array = 0; array < MAX_ARRAYS; array++) {
2600 jmicron_next:
2601 	if (!raidp[array]) {
2602 	    raidp[array] =
2603 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2604 					  M_WAITOK | M_ZERO);
2605 	}
2606 	raid = raidp[array];
2607 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2608 	    continue;
2609 
2610 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2611 	    if (meta->disks[disk]) {
2612 		if (raid->format == AR_F_JMICRON_RAID) {
2613 		    if (bcmp(&meta->disks[disk],
2614 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2615 			array++;
2616 			goto jmicron_next;
2617 		    }
2618 		}
2619 		else
2620 		    bcopy(&meta->disks[disk],
2621 			  raid->disks[disk].serial, sizeof(u_int32_t));
2622 		total_disks++;
2623 	    }
2624 	}
2625 	/* handle spares XXX SOS */
2626 
2627 	switch (meta->type) {
2628 	case JM_T_RAID0:
2629 	    raid->type = AR_T_RAID0;
2630 	    raid->width = total_disks;
2631 	    break;
2632 
2633 	case JM_T_RAID1:
2634 	    raid->type = AR_T_RAID1;
2635 	    raid->width = 1;
2636 	    break;
2637 
2638 	case JM_T_RAID01:
2639 	    raid->type = AR_T_RAID01;
2640 	    raid->width = total_disks / 2;
2641 	    break;
2642 
2643 	case JM_T_RAID5:
2644 	    raid->type = AR_T_RAID5;
2645 	    raid->width = total_disks;
2646 	    break;
2647 
2648 	case JM_T_JBOD:
2649 	    raid->type = AR_T_SPAN;
2650 	    raid->width = 1;
2651 	    break;
2652 
2653 	default:
2654 	    device_printf(parent,
2655 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2656 	    kfree(raidp[array], M_AR);
2657 	    raidp[array] = NULL;
2658 	    goto jmicron_out;
2659 	}
2660 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2661 	raid->format = AR_F_JMICRON_RAID;
2662 	strncpy(raid->name, meta->name, sizeof(meta->name));
2663 	raid->generation = 0;
2664 	raid->interleave = 2 << meta->stripe_shift;
2665 	raid->total_disks = total_disks;
2666 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2667 	raid->heads = 255;
2668 	raid->sectors = 63;
2669 	raid->cylinders = raid->total_sectors / (63 * 255);
2670 	raid->offset_sectors = meta->offset * 16;
2671 	raid->rebuild_lba = 0;
2672 	raid->lun = array;
2673 
2674 	for (disk = 0; disk < raid->total_disks; disk++) {
2675 	    if (meta->disks[disk] == meta->disk_id) {
2676 		raid->disks[disk].dev = parent;
2677 		raid->disks[disk].sectors = disk_size;
2678 		raid->disks[disk].flags =
2679 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2680 		ars->raid[raid->volume] = raid;
2681 		ars->disk_number[raid->volume] = disk;
2682 		retval = 1;
2683 		break;
2684 	    }
2685 	}
2686 	break;
2687     }
2688 jmicron_out:
2689     kfree(meta, M_AR);
2690     return retval;
2691 }
2692 
2693 static int
2694 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2695 {
2696     struct jmicron_raid_conf *meta;
2697     u_int64_t disk_sectors;
2698     int disk, error = 0;
2699 
2700     meta = (struct jmicron_raid_conf *)
2701 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2702 
2703     rdp->generation++;
2704     switch (rdp->type) {
2705     case AR_T_JBOD:
2706 	meta->type = JM_T_JBOD;
2707 	break;
2708 
2709     case AR_T_RAID0:
2710 	meta->type = JM_T_RAID0;
2711 	break;
2712 
2713     case AR_T_RAID1:
2714 	meta->type = JM_T_RAID1;
2715 	break;
2716 
2717     case AR_T_RAID5:
2718 	meta->type = JM_T_RAID5;
2719 	break;
2720 
2721     case AR_T_RAID01:
2722 	meta->type = JM_T_RAID01;
2723 	break;
2724 
2725     default:
2726 	kfree(meta, M_AR);
2727 	return ENODEV;
2728     }
2729     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2730     meta->version = JMICRON_VERSION;
2731     meta->offset = rdp->offset_sectors / 16;
2732     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2733     meta->disk_sectors_low = disk_sectors & 0xffff;
2734     meta->disk_sectors_high = disk_sectors >> 16;
2735     strncpy(meta->name, rdp->name, sizeof(meta->name));
2736     meta->stripe_shift = ffs(rdp->interleave) - 2;
2737 
2738     for (disk = 0; disk < rdp->total_disks && disk < JM_MAX_DISKS; disk++) {
2739 	if (rdp->disks[disk].serial[0])
2740 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2741 	else
2742 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2743     }
2744 
2745     for (disk = 0; disk < rdp->total_disks; disk++) {
2746 	if (rdp->disks[disk].dev) {
2747 	    u_int16_t checksum = 0, *ptr;
2748 	    int count;
2749 
2750 	    meta->disk_id = meta->disks[disk];
2751 	    meta->checksum = 0;
2752 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2753 		checksum += *ptr++;
2754 	    meta->checksum -= checksum;
2755 
2756 	    if (testing || bootverbose)
2757 		ata_raid_jmicron_print_meta(meta);
2758 
2759 	    if (ata_raid_rw(rdp->disks[disk].dev,
2760 			    JMICRON_LBA(rdp->disks[disk].dev),
2761 			    meta, sizeof(struct jmicron_raid_conf),
2762 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2763 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2764 		error = EIO;
2765 	    }
2766 	}
2767     }
2768     /* handle spares XXX SOS */
2769 
2770     kfree(meta, M_AR);
2771     return error;
2772 }
2773 
2774 /* LSILogic V2 MegaRAID Metadata */
2775 static int
2776 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2777 {
2778     struct ata_raid_subdisk *ars = device_get_softc(dev);
2779     device_t parent = device_get_parent(dev);
2780     struct lsiv2_raid_conf *meta;
2781     struct ar_softc *raid = NULL;
2782     int array, retval = 0;
2783 
2784     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2785 	M_AR, M_WAITOK | M_ZERO);
2786 
2787     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2788 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2789 	if (testing || bootverbose)
2790 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2791 	goto lsiv2_out;
2792     }
2793 
2794     /* check if this is a LSI RAID struct */
2795     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2796 	if (testing || bootverbose)
2797 	    device_printf(parent, "LSI (v2) check1 failed\n");
2798 	goto lsiv2_out;
2799     }
2800 
2801     if (testing || bootverbose)
2802 	ata_raid_lsiv2_print_meta(meta);
2803 
2804     /* now convert LSI (v2) config meta into our generic form */
2805     for (array = 0; array < MAX_ARRAYS; array++) {
2806 	int raid_entry, conf_entry;
2807 
2808 	if (!raidp[array + meta->raid_number]) {
2809 	    raidp[array + meta->raid_number] =
2810 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2811 					  M_WAITOK | M_ZERO);
2812 	}
2813 	raid = raidp[array + meta->raid_number];
2814 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2815 	    continue;
2816 
2817 	if (raid->magic_0 &&
2818 	    ((raid->magic_0 != meta->timestamp) ||
2819 	     (raid->magic_1 != meta->raid_number)))
2820 	    continue;
2821 
2822 	array += meta->raid_number;
2823 
2824 	raid_entry = meta->raid_number;
2825 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2826 		     meta->disk_number - 1;
2827 
2828 	switch (meta->configs[raid_entry].raid.type) {
2829 	case LSIV2_T_RAID0:
2830 	    raid->magic_0 = meta->timestamp;
2831 	    raid->magic_1 = meta->raid_number;
2832 	    raid->type = AR_T_RAID0;
2833 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2834 	    raid->width = meta->configs[raid_entry].raid.array_width;
2835 	    break;
2836 
2837 	case LSIV2_T_RAID1:
2838 	    raid->magic_0 = meta->timestamp;
2839 	    raid->magic_1 = meta->raid_number;
2840 	    raid->type = AR_T_RAID1;
2841 	    raid->width = meta->configs[raid_entry].raid.array_width;
2842 	    break;
2843 
2844 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2845 	    raid->magic_0 = meta->timestamp;
2846 	    raid->magic_1 = meta->raid_number;
2847 	    raid->type = AR_T_RAID01;
2848 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2849 	    raid->width = meta->configs[raid_entry].raid.array_width;
2850 	    break;
2851 
2852 	default:
2853 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2854 			  meta->configs[raid_entry].raid.type);
2855 	    kfree(raidp[array], M_AR);
2856 	    raidp[array] = NULL;
2857 	    goto lsiv2_out;
2858 	}
2859 
2860 	raid->format = AR_F_LSIV2_RAID;
2861 	raid->generation = 0;
2862 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2863 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2864 	raid->heads = 255;
2865 	raid->sectors = 63;
2866 	raid->cylinders = raid->total_sectors / (63 * 255);
2867 	raid->offset_sectors = 0;
2868 	raid->rebuild_lba = 0;
2869 	raid->lun = array;
2870 
2871 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2872 	    raid->disks[meta->disk_number].dev = parent;
2873 	    raid->disks[meta->disk_number].sectors =
2874 		meta->configs[conf_entry].disk.disk_sectors;
2875 	    raid->disks[meta->disk_number].flags =
2876 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2877 	    ars->raid[raid->volume] = raid;
2878 	    ars->disk_number[raid->volume] = meta->disk_number;
2879 	    retval = 1;
2880 	}
2881 	else
2882 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2883 
2884 	break;
2885     }
2886 
2887 lsiv2_out:
2888     kfree(meta, M_AR);
2889     return retval;
2890 }
2891 
2892 /* LSILogic V3 MegaRAID Metadata */
2893 static int
2894 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2895 {
2896     struct ata_raid_subdisk *ars = device_get_softc(dev);
2897     device_t parent = device_get_parent(dev);
2898     struct lsiv3_raid_conf *meta;
2899     struct ar_softc *raid = NULL;
2900     u_int8_t checksum, *ptr;
2901     int array, entry, count, disk_number, retval = 0;
2902 
2903     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2904 	M_AR, M_WAITOK | M_ZERO);
2905 
2906     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2907 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2908 	if (testing || bootverbose)
2909 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2910 	goto lsiv3_out;
2911     }
2912 
2913     /* check if this is a LSI RAID struct */
2914     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2915 	if (testing || bootverbose)
2916 	    device_printf(parent, "LSI (v3) check1 failed\n");
2917 	goto lsiv3_out;
2918     }
2919 
2920     /* check if the checksum is OK */
2921     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2922 	checksum += *ptr++;
2923     if (checksum) {
2924 	if (testing || bootverbose)
2925 	    device_printf(parent, "LSI (v3) check2 failed\n");
2926 	goto lsiv3_out;
2927     }
2928 
2929     if (testing || bootverbose)
2930 	ata_raid_lsiv3_print_meta(meta);
2931 
2932     /* now convert LSI (v3) config meta into our generic form */
2933     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2934 	if (!raidp[array]) {
2935 	    raidp[array] =
2936 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2937 					  M_WAITOK | M_ZERO);
2938 	}
2939 	raid = raidp[array];
2940 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2941 	    array++;
2942 	    continue;
2943 	}
2944 
2945 	if ((raid->format == AR_F_LSIV3_RAID) &&
2946 	    (raid->magic_0 != meta->timestamp)) {
2947 	    array++;
2948 	    continue;
2949 	}
2950 
2951 	switch (meta->raid[entry].total_disks) {
2952 	case 0:
2953 	    entry++;
2954 	    continue;
2955 	case 1:
2956 	    if (meta->raid[entry].device == meta->device) {
2957 		disk_number = 0;
2958 		break;
2959 	    }
2960 	    if (raid->format)
2961 		array++;
2962 	    entry++;
2963 	    continue;
2964 	case 2:
2965 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2966 	    break;
2967 	default:
2968 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2969 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2970 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2971 	    break;
2972 	}
2973 
2974 	switch (meta->raid[entry].type) {
2975 	case LSIV3_T_RAID0:
2976 	    raid->type = AR_T_RAID0;
2977 	    raid->width = meta->raid[entry].total_disks;
2978 	    break;
2979 
2980 	case LSIV3_T_RAID1:
2981 	    raid->type = AR_T_RAID1;
2982 	    raid->width = meta->raid[entry].array_width;
2983 	    break;
2984 
2985 	default:
2986 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2987 			  meta->raid[entry].type);
2988 	    kfree(raidp[array], M_AR);
2989 	    raidp[array] = NULL;
2990 	    entry++;
2991 	    continue;
2992 	}
2993 
2994 	raid->magic_0 = meta->timestamp;
2995 	raid->format = AR_F_LSIV3_RAID;
2996 	raid->generation = 0;
2997 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2998 	raid->total_disks = meta->raid[entry].total_disks;
2999 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
3000 	raid->heads = 255;
3001 	raid->sectors = 63;
3002 	raid->cylinders = raid->total_sectors / (63 * 255);
3003 	raid->offset_sectors = meta->raid[entry].offset;
3004 	raid->rebuild_lba = 0;
3005 	raid->lun = array;
3006 
3007 	raid->disks[disk_number].dev = parent;
3008 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
3009 	raid->disks[disk_number].flags =
3010 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3011 	ars->raid[raid->volume] = raid;
3012 	ars->disk_number[raid->volume] = disk_number;
3013 	retval = 1;
3014 	entry++;
3015 	array++;
3016     }
3017 
3018 lsiv3_out:
3019     kfree(meta, M_AR);
3020     return retval;
3021 }
3022 
3023 /* nVidia MediaShield Metadata */
3024 static int
3025 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3026 {
3027     struct ata_raid_subdisk *ars = device_get_softc(dev);
3028     device_t parent = device_get_parent(dev);
3029     struct nvidia_raid_conf *meta;
3030     struct ar_softc *raid = NULL;
3031     u_int32_t checksum, *ptr;
3032     int array, count, retval = 0;
3033 
3034     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3035 	M_AR, M_WAITOK | M_ZERO);
3036 
3037     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3038 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3039 	if (testing || bootverbose)
3040 	    device_printf(parent, "nVidia read metadata failed\n");
3041 	goto nvidia_out;
3042     }
3043 
3044     /* check if this is a nVidia RAID struct */
3045     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3046 	if (testing || bootverbose)
3047 	    device_printf(parent, "nVidia check1 failed\n");
3048 	goto nvidia_out;
3049     }
3050 
3051     /* check if the checksum is OK */
3052     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3053 	 count < meta->config_size; count++)
3054 	checksum += *ptr++;
3055     if (checksum) {
3056 	if (testing || bootverbose)
3057 	    device_printf(parent, "nVidia check2 failed\n");
3058 	goto nvidia_out;
3059     }
3060 
3061     if (testing || bootverbose)
3062 	ata_raid_nvidia_print_meta(meta);
3063 
3064     /* now convert nVidia meta into our generic form */
3065     for (array = 0; array < MAX_ARRAYS; array++) {
3066 	if (!raidp[array]) {
3067 	    raidp[array] =
3068 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3069 					  M_WAITOK | M_ZERO);
3070 	}
3071 	raid = raidp[array];
3072 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3073 	    continue;
3074 
3075 	if (raid->format == AR_F_NVIDIA_RAID &&
3076 	    ((raid->magic_0 != meta->magic_1) ||
3077 	     (raid->magic_1 != meta->magic_2))) {
3078 	    continue;
3079 	}
3080 
3081 	switch (meta->type) {
3082 	case NV_T_SPAN:
3083 	    raid->type = AR_T_SPAN;
3084 	    break;
3085 
3086 	case NV_T_RAID0:
3087 	    raid->type = AR_T_RAID0;
3088 	    break;
3089 
3090 	case NV_T_RAID1:
3091 	    raid->type = AR_T_RAID1;
3092 	    break;
3093 
3094 	case NV_T_RAID5:
3095 	    raid->type = AR_T_RAID5;
3096 	    break;
3097 
3098 	case NV_T_RAID01:
3099 	    raid->type = AR_T_RAID01;
3100 	    break;
3101 
3102 	default:
3103 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3104 			  meta->type);
3105 	    kfree(raidp[array], M_AR);
3106 	    raidp[array] = NULL;
3107 	    goto nvidia_out;
3108 	}
3109 	raid->magic_0 = meta->magic_1;
3110 	raid->magic_1 = meta->magic_2;
3111 	raid->format = AR_F_NVIDIA_RAID;
3112 	raid->generation = 0;
3113 	raid->interleave = meta->stripe_sectors;
3114 	raid->width = meta->array_width;
3115 	raid->total_disks = meta->total_disks;
3116 	raid->total_sectors = meta->total_sectors;
3117 	raid->heads = 255;
3118 	raid->sectors = 63;
3119 	raid->cylinders = raid->total_sectors / (63 * 255);
3120 	raid->offset_sectors = 0;
3121 	raid->rebuild_lba = meta->rebuild_lba;
3122 	raid->lun = array;
3123 	raid->status = AR_S_READY;
3124 	if (meta->status & NV_S_DEGRADED)
3125 	    raid->status |= AR_S_DEGRADED;
3126 
3127 	raid->disks[meta->disk_number].dev = parent;
3128 	raid->disks[meta->disk_number].sectors =
3129 	    raid->total_sectors / raid->width;
3130 	raid->disks[meta->disk_number].flags =
3131 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3132 	ars->raid[raid->volume] = raid;
3133 	ars->disk_number[raid->volume] = meta->disk_number;
3134 	retval = 1;
3135 	break;
3136     }
3137 
3138 nvidia_out:
3139     kfree(meta, M_AR);
3140     return retval;
3141 }
3142 
3143 /* Promise FastTrak Metadata */
3144 static int
3145 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3146 {
3147     struct ata_raid_subdisk *ars = device_get_softc(dev);
3148     device_t parent = device_get_parent(dev);
3149     struct promise_raid_conf *meta;
3150     struct ar_softc *raid;
3151     u_int32_t checksum, *ptr;
3152     int array, count, disk, disksum = 0, retval = 0;
3153 
3154     meta = (struct promise_raid_conf *)
3155 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3156 
3157     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3158 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3159 	if (testing || bootverbose)
3160 	    device_printf(parent, "%s read metadata failed\n",
3161 			  native ? "FreeBSD" : "Promise");
3162 	goto promise_out;
3163     }
3164 
3165     /* check the signature */
3166     if (native) {
3167 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3168 	    if (testing || bootverbose)
3169 		device_printf(parent, "FreeBSD check1 failed\n");
3170 	    goto promise_out;
3171 	}
3172     }
3173     else {
3174 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3175 	    if (testing || bootverbose)
3176 		device_printf(parent, "Promise check1 failed\n");
3177 	    goto promise_out;
3178 	}
3179     }
3180 
3181     /* check if the checksum is OK */
3182     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3183 	checksum += *ptr++;
3184     if (checksum != *ptr) {
3185 	if (testing || bootverbose)
3186 	    device_printf(parent, "%s check2 failed\n",
3187 			  native ? "FreeBSD" : "Promise");
3188 	goto promise_out;
3189     }
3190 
3191     /* check on disk integrity status */
3192     if (meta->raid.integrity != PR_I_VALID) {
3193 	if (testing || bootverbose)
3194 	    device_printf(parent, "%s check3 failed\n",
3195 			  native ? "FreeBSD" : "Promise");
3196 	goto promise_out;
3197     }
3198 
3199     if (testing || bootverbose)
3200 	ata_raid_promise_print_meta(meta);
3201 
3202     /* now convert Promise metadata into our generic form */
3203     for (array = 0; array < MAX_ARRAYS; array++) {
3204 	if (!raidp[array]) {
3205 	    raidp[array] =
3206 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3207 					  M_WAITOK | M_ZERO);
3208 	}
3209 	raid = raidp[array];
3210 	if (raid->format &&
3211 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3212 	    continue;
3213 
3214 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3215 	    !(meta->raid.magic_1 == (raid->magic_1)))
3216 	    continue;
3217 
3218 	/* update our knowledge about the array config based on generation */
3219 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3220 	    switch (meta->raid.type) {
3221 	    case PR_T_SPAN:
3222 		raid->type = AR_T_SPAN;
3223 		break;
3224 
3225 	    case PR_T_JBOD:
3226 		raid->type = AR_T_JBOD;
3227 		break;
3228 
3229 	    case PR_T_RAID0:
3230 		raid->type = AR_T_RAID0;
3231 		break;
3232 
3233 	    case PR_T_RAID1:
3234 		raid->type = AR_T_RAID1;
3235 		if (meta->raid.array_width > 1)
3236 		    raid->type = AR_T_RAID01;
3237 		break;
3238 
3239 	    case PR_T_RAID5:
3240 		raid->type = AR_T_RAID5;
3241 		break;
3242 
3243 	    default:
3244 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3245 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3246 		kfree(raidp[array], M_AR);
3247 		raidp[array] = NULL;
3248 		goto promise_out;
3249 	    }
3250 	    raid->magic_1 = meta->raid.magic_1;
3251 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3252 	    raid->generation = meta->raid.generation;
3253 	    raid->interleave = 1 << meta->raid.stripe_shift;
3254 	    raid->width = meta->raid.array_width;
3255 	    raid->total_disks = meta->raid.total_disks;
3256 	    raid->heads = meta->raid.heads + 1;
3257 	    raid->sectors = meta->raid.sectors;
3258 	    raid->cylinders = meta->raid.cylinders + 1;
3259 	    raid->total_sectors = meta->raid.total_sectors;
3260 	    raid->offset_sectors = 0;
3261 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3262 	    raid->lun = array;
3263 	    if ((meta->raid.status &
3264 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3265 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3266 		raid->status |= AR_S_READY;
3267 		if (meta->raid.status & PR_S_DEGRADED)
3268 		    raid->status |= AR_S_DEGRADED;
3269 	    }
3270 	    else
3271 		raid->status &= ~AR_S_READY;
3272 
3273 	    /* convert disk flags to our internal types */
3274 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3275 		raid->disks[disk].dev = NULL;
3276 		raid->disks[disk].flags = 0;
3277 		*((u_int64_t *)(raid->disks[disk].serial)) =
3278 		    meta->raid.disk[disk].magic_0;
3279 		disksum += meta->raid.disk[disk].flags;
3280 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3281 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3282 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3283 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3284 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3285 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3286 		    raid->disks[disk].flags |= AR_DF_SPARE;
3287 		}
3288 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3289 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3290 	    }
3291 	    if (!disksum) {
3292 		device_printf(parent, "%s subdisks has no flags\n",
3293 			      native ? "FreeBSD" : "Promise");
3294 		kfree(raidp[array], M_AR);
3295 		raidp[array] = NULL;
3296 		goto promise_out;
3297 	    }
3298 	}
3299 	if (meta->raid.generation >= raid->generation) {
3300 	    int disk_number = meta->raid.disk_number;
3301 
3302 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3303 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3304 		raid->disks[disk_number].dev = parent;
3305 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3306 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3307 		if ((raid->disks[disk_number].flags &
3308 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3309 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3310 		    ars->raid[raid->volume] = raid;
3311 		    ars->disk_number[raid->volume] = disk_number;
3312 		    retval = 1;
3313 		}
3314 	    }
3315 	}
3316 	break;
3317     }
3318 
3319 promise_out:
3320     kfree(meta, M_AR);
3321     return retval;
3322 }
3323 
3324 static int
3325 ata_raid_promise_write_meta(struct ar_softc *rdp)
3326 {
3327     struct promise_raid_conf *meta;
3328     struct timeval timestamp;
3329     u_int32_t *ckptr;
3330     int count, disk, drive, error = 0;
3331 
3332     meta = (struct promise_raid_conf *)
3333 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3334 
3335     rdp->generation++;
3336     microtime(&timestamp);
3337 
3338     for (disk = 0; disk < rdp->total_disks; disk++) {
3339 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3340 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3341 	meta->dummy_0 = 0x00020000;
3342 	meta->raid.disk_number = disk;
3343 
3344 	if (rdp->disks[disk].dev) {
3345 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3346 	    struct ata_channel *ch =
3347 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3348 
3349 	    meta->raid.channel = ch->unit;
3350 	    meta->raid.device = ATA_DEV(atadev->unit);
3351 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3352 	    meta->raid.disk_offset = rdp->offset_sectors;
3353 	}
3354 	else {
3355 	    meta->raid.channel = 0;
3356 	    meta->raid.device = 0;
3357 	    meta->raid.disk_sectors = 0;
3358 	    meta->raid.disk_offset = 0;
3359 	}
3360 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3361 	meta->magic_1 = timestamp.tv_sec >> 16;
3362 	meta->magic_2 = timestamp.tv_sec;
3363 	meta->raid.integrity = PR_I_VALID;
3364 	meta->raid.magic_0 = meta->magic_0;
3365 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3366 	meta->raid.generation = rdp->generation;
3367 
3368 	if (rdp->status & AR_S_READY) {
3369 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3370 	    meta->raid.status =
3371 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3372 	    if (rdp->status & AR_S_DEGRADED)
3373 		meta->raid.status |= PR_S_DEGRADED;
3374 	    else
3375 		meta->raid.status |= PR_S_FUNCTIONAL;
3376 	}
3377 	else {
3378 	    meta->raid.flags = PR_F_DOWN;
3379 	    meta->raid.status = 0;
3380 	}
3381 
3382 	switch (rdp->type) {
3383 	case AR_T_RAID0:
3384 	    meta->raid.type = PR_T_RAID0;
3385 	    break;
3386 	case AR_T_RAID1:
3387 	    meta->raid.type = PR_T_RAID1;
3388 	    break;
3389 	case AR_T_RAID01:
3390 	    meta->raid.type = PR_T_RAID1;
3391 	    break;
3392 	case AR_T_RAID5:
3393 	    meta->raid.type = PR_T_RAID5;
3394 	    break;
3395 	case AR_T_SPAN:
3396 	    meta->raid.type = PR_T_SPAN;
3397 	    break;
3398 	case AR_T_JBOD:
3399 	    meta->raid.type = PR_T_JBOD;
3400 	    break;
3401 	default:
3402 	    kfree(meta, M_AR);
3403 	    return ENODEV;
3404 	}
3405 
3406 	meta->raid.total_disks = rdp->total_disks;
3407 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3408 	meta->raid.array_width = rdp->width;
3409 	meta->raid.array_number = rdp->lun;
3410 	meta->raid.total_sectors = rdp->total_sectors;
3411 	meta->raid.cylinders = rdp->cylinders - 1;
3412 	meta->raid.heads = rdp->heads - 1;
3413 	meta->raid.sectors = rdp->sectors;
3414 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3415 
3416 	bzero(&meta->raid.disk, 8 * 12);
3417 	for (drive = 0; drive < rdp->total_disks; drive++) {
3418 	    meta->raid.disk[drive].flags = 0;
3419 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3420 		meta->raid.disk[drive].flags |= PR_F_VALID;
3421 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3422 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3423 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3424 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3425 	    else
3426 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3427 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3428 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3429 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3430 	    meta->raid.disk[drive].dummy_0 = 0x0;
3431 	    if (rdp->disks[drive].dev) {
3432 		struct ata_channel *ch =
3433 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3434 		struct ata_device *atadev =
3435 		    device_get_softc(rdp->disks[drive].dev);
3436 
3437 		meta->raid.disk[drive].channel = ch->unit;
3438 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3439 	    }
3440 	    meta->raid.disk[drive].magic_0 =
3441 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3442 	}
3443 
3444 	if (rdp->disks[disk].dev) {
3445 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3446 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3447 		if (rdp->format == AR_F_FREEBSD_RAID)
3448 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3449 		else
3450 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3451 	    }
3452 	    else
3453 		bzero(meta->promise_id, sizeof(meta->promise_id));
3454 	    meta->checksum = 0;
3455 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3456 		meta->checksum += *ckptr++;
3457 	    if (testing || bootverbose)
3458 		ata_raid_promise_print_meta(meta);
3459 	    if (ata_raid_rw(rdp->disks[disk].dev,
3460 			    PROMISE_LBA(rdp->disks[disk].dev),
3461 			    meta, sizeof(struct promise_raid_conf),
3462 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3463 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3464 		error = EIO;
3465 	    }
3466 	}
3467     }
3468     kfree(meta, M_AR);
3469     return error;
3470 }
3471 
3472 /* Silicon Image Medley Metadata */
3473 static int
3474 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3475 {
3476     struct ata_raid_subdisk *ars = device_get_softc(dev);
3477     device_t parent = device_get_parent(dev);
3478     struct sii_raid_conf *meta;
3479     struct ar_softc *raid = NULL;
3480     u_int16_t checksum, *ptr;
3481     int array, count, disk, retval = 0;
3482 
3483     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3484 	M_WAITOK | M_ZERO);
3485 
3486     if (ata_raid_rw(parent, SII_LBA(parent),
3487 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3488 	if (testing || bootverbose)
3489 	    device_printf(parent, "Silicon Image read metadata failed\n");
3490 	goto sii_out;
3491     }
3492 
3493     /* check if this is a Silicon Image (Medley) RAID struct */
3494     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3495 	checksum += *ptr++;
3496     if (checksum) {
3497 	if (testing || bootverbose)
3498 	    device_printf(parent, "Silicon Image check1 failed\n");
3499 	goto sii_out;
3500     }
3501 
3502     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3503 	checksum += *ptr++;
3504     if (checksum != meta->checksum_1) {
3505 	if (testing || bootverbose)
3506 	    device_printf(parent, "Silicon Image check2 failed\n");
3507 	goto sii_out;
3508     }
3509 
3510     /* check verison */
3511     if (meta->version_major != 0x0002 ||
3512 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3513 	if (testing || bootverbose)
3514 	    device_printf(parent, "Silicon Image check3 failed\n");
3515 	goto sii_out;
3516     }
3517 
3518     if (testing || bootverbose)
3519 	ata_raid_sii_print_meta(meta);
3520 
3521     /* now convert Silicon Image meta into our generic form */
3522     for (array = 0; array < MAX_ARRAYS; array++) {
3523 	if (!raidp[array]) {
3524 	    raidp[array] =
3525 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3526 					  M_WAITOK | M_ZERO);
3527 	}
3528 	raid = raidp[array];
3529 	if (raid->format && (raid->format != AR_F_SII_RAID))
3530 	    continue;
3531 
3532 	if (raid->format == AR_F_SII_RAID &&
3533 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3534 	    continue;
3535 	}
3536 
3537 	/* update our knowledge about the array config based on generation */
3538 	if (!meta->generation || meta->generation > raid->generation) {
3539 	    switch (meta->type) {
3540 	    case SII_T_RAID0:
3541 		raid->type = AR_T_RAID0;
3542 		break;
3543 
3544 	    case SII_T_RAID1:
3545 		raid->type = AR_T_RAID1;
3546 		break;
3547 
3548 	    case SII_T_RAID01:
3549 		raid->type = AR_T_RAID01;
3550 		break;
3551 
3552 	    case SII_T_SPARE:
3553 		device_printf(parent, "Silicon Image SPARE disk\n");
3554 		kfree(raidp[array], M_AR);
3555 		raidp[array] = NULL;
3556 		goto sii_out;
3557 
3558 	    default:
3559 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3560 			      meta->type);
3561 		kfree(raidp[array], M_AR);
3562 		raidp[array] = NULL;
3563 		goto sii_out;
3564 	    }
3565 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3566 	    raid->format = AR_F_SII_RAID;
3567 	    raid->generation = meta->generation;
3568 	    raid->interleave = meta->stripe_sectors;
3569 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3570 	    raid->total_disks =
3571 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3572 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3573 	    raid->total_sectors = meta->total_sectors;
3574 	    raid->heads = 255;
3575 	    raid->sectors = 63;
3576 	    raid->cylinders = raid->total_sectors / (63 * 255);
3577 	    raid->offset_sectors = 0;
3578 	    raid->rebuild_lba = meta->rebuild_lba;
3579 	    raid->lun = array;
3580 	    strncpy(raid->name, meta->name,
3581 		    min(sizeof(raid->name), sizeof(meta->name)));
3582 
3583 	    /* clear out any old info */
3584 	    if (raid->generation) {
3585 		for (disk = 0; disk < raid->total_disks; disk++) {
3586 		    raid->disks[disk].dev = NULL;
3587 		    raid->disks[disk].flags = 0;
3588 		}
3589 	    }
3590 	}
3591 	if (meta->generation >= raid->generation) {
3592 	    /* XXX SOS add check for the right physical disk by serial# */
3593 	    if (meta->status & SII_S_READY) {
3594 		int disk_number = (raid->type == AR_T_RAID01) ?
3595 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3596 		    meta->disk_number;
3597 
3598 		raid->disks[disk_number].dev = parent;
3599 		raid->disks[disk_number].sectors =
3600 		    raid->total_sectors / raid->width;
3601 		raid->disks[disk_number].flags =
3602 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3603 		ars->raid[raid->volume] = raid;
3604 		ars->disk_number[raid->volume] = disk_number;
3605 		retval = 1;
3606 	    }
3607 	}
3608 	break;
3609     }
3610 
3611 sii_out:
3612     kfree(meta, M_AR);
3613     return retval;
3614 }
3615 
3616 /* Silicon Integrated Systems Metadata */
3617 static int
3618 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3619 {
3620     struct ata_raid_subdisk *ars = device_get_softc(dev);
3621     device_t parent = device_get_parent(dev);
3622     struct sis_raid_conf *meta;
3623     struct ar_softc *raid = NULL;
3624     int array, disk_number, drive, retval = 0;
3625 
3626     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3627 	M_WAITOK | M_ZERO);
3628 
3629     if (ata_raid_rw(parent, SIS_LBA(parent),
3630 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3631 	if (testing || bootverbose)
3632 	    device_printf(parent,
3633 			  "Silicon Integrated Systems read metadata failed\n");
3634     }
3635 
3636     /* check for SiS magic */
3637     if (meta->magic != SIS_MAGIC) {
3638 	if (testing || bootverbose)
3639 	    device_printf(parent,
3640 			  "Silicon Integrated Systems check1 failed\n");
3641 	goto sis_out;
3642     }
3643 
3644     if (testing || bootverbose)
3645 	ata_raid_sis_print_meta(meta);
3646 
3647     /* now convert SiS meta into our generic form */
3648     for (array = 0; array < MAX_ARRAYS; array++) {
3649 	if (!raidp[array]) {
3650 	    raidp[array] =
3651 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3652 					  M_WAITOK | M_ZERO);
3653 	}
3654 
3655 	raid = raidp[array];
3656 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3657 	    continue;
3658 
3659 	if ((raid->format == AR_F_SIS_RAID) &&
3660 	    ((raid->magic_0 != meta->controller_pci_id) ||
3661 	     (raid->magic_1 != meta->timestamp))) {
3662 	    continue;
3663 	}
3664 
3665 	switch (meta->type_total_disks & SIS_T_MASK) {
3666 	case SIS_T_JBOD:
3667 	    raid->type = AR_T_JBOD;
3668 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3669 	    raid->total_sectors += SIS_LBA(parent);
3670 	    break;
3671 
3672 	case SIS_T_RAID0:
3673 	    raid->type = AR_T_RAID0;
3674 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3675 	    if (!raid->total_sectors ||
3676 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3677 		raid->total_sectors = raid->width * SIS_LBA(parent);
3678 	    break;
3679 
3680 	case SIS_T_RAID1:
3681 	    raid->type = AR_T_RAID1;
3682 	    raid->width = 1;
3683 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3684 		raid->total_sectors = SIS_LBA(parent);
3685 	    break;
3686 
3687 	default:
3688 	    device_printf(parent, "Silicon Integrated Systems "
3689 			  "unknown RAID type 0x%08x\n", meta->magic);
3690 	    kfree(raidp[array], M_AR);
3691 	    raidp[array] = NULL;
3692 	    goto sis_out;
3693 	}
3694 	raid->magic_0 = meta->controller_pci_id;
3695 	raid->magic_1 = meta->timestamp;
3696 	raid->format = AR_F_SIS_RAID;
3697 	raid->generation = 0;
3698 	raid->interleave = meta->stripe_sectors;
3699 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3700 	raid->heads = 255;
3701 	raid->sectors = 63;
3702 	raid->cylinders = raid->total_sectors / (63 * 255);
3703 	raid->offset_sectors = 0;
3704 	raid->rebuild_lba = 0;
3705 	raid->lun = array;
3706 	/* XXX SOS if total_disks > 2 this doesn't float */
3707 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3708 	    disk_number = 0;
3709 	else
3710 	    disk_number = 1;
3711 
3712 	for (drive = 0; drive < raid->total_disks; drive++) {
3713 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3714 	    if (drive == disk_number) {
3715 		raid->disks[disk_number].dev = parent;
3716 		raid->disks[disk_number].flags =
3717 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3718 		ars->raid[raid->volume] = raid;
3719 		ars->disk_number[raid->volume] = disk_number;
3720 	    }
3721 	}
3722 	retval = 1;
3723 	break;
3724     }
3725 
3726 sis_out:
3727     kfree(meta, M_AR);
3728     return retval;
3729 }
3730 
3731 static int
3732 ata_raid_sis_write_meta(struct ar_softc *rdp)
3733 {
3734     struct sis_raid_conf *meta;
3735     struct timeval timestamp;
3736     int disk, error = 0;
3737 
3738     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3739 	M_WAITOK | M_ZERO);
3740 
3741     rdp->generation++;
3742     microtime(&timestamp);
3743 
3744     meta->magic = SIS_MAGIC;
3745     /* XXX SOS if total_disks > 2 this doesn't float */
3746     for (disk = 0; disk < rdp->total_disks; disk++) {
3747 	if (rdp->disks[disk].dev) {
3748 	    struct ata_channel *ch =
3749 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3750 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3751 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3752 
3753 	    meta->disks |= disk_number << ((1 - disk) << 2);
3754 	}
3755     }
3756     switch (rdp->type) {
3757     case AR_T_JBOD:
3758 	meta->type_total_disks = SIS_T_JBOD;
3759 	break;
3760 
3761     case AR_T_RAID0:
3762 	meta->type_total_disks = SIS_T_RAID0;
3763 	break;
3764 
3765     case AR_T_RAID1:
3766 	meta->type_total_disks = SIS_T_RAID1;
3767 	break;
3768 
3769     default:
3770 	kfree(meta, M_AR);
3771 	return ENODEV;
3772     }
3773     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3774     meta->stripe_sectors = rdp->interleave;
3775     meta->timestamp = timestamp.tv_sec;
3776 
3777     for (disk = 0; disk < rdp->total_disks; disk++) {
3778 	if (rdp->disks[disk].dev) {
3779 	    struct ata_channel *ch =
3780 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3781 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3782 
3783 	    meta->controller_pci_id =
3784 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3785 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3786 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3787 
3788 	    /* XXX SOS if total_disks > 2 this may not float */
3789 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3790 
3791 	    if (testing || bootverbose)
3792 		ata_raid_sis_print_meta(meta);
3793 
3794 	    if (ata_raid_rw(rdp->disks[disk].dev,
3795 			    SIS_LBA(rdp->disks[disk].dev),
3796 			    meta, sizeof(struct sis_raid_conf),
3797 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3798 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3799 		error = EIO;
3800 	    }
3801 	}
3802     }
3803     kfree(meta, M_AR);
3804     return error;
3805 }
3806 
3807 /* VIA Tech V-RAID Metadata */
3808 static int
3809 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3810 {
3811     struct ata_raid_subdisk *ars = device_get_softc(dev);
3812     device_t parent = device_get_parent(dev);
3813     struct via_raid_conf *meta;
3814     struct ar_softc *raid = NULL;
3815     u_int8_t checksum, *ptr;
3816     int array, count, disk, retval = 0;
3817 
3818     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3819 	M_WAITOK | M_ZERO);
3820 
3821     if (ata_raid_rw(parent, VIA_LBA(parent),
3822 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3823 	if (testing || bootverbose)
3824 	    device_printf(parent, "VIA read metadata failed\n");
3825 	goto via_out;
3826     }
3827 
3828     /* check if this is a VIA RAID struct */
3829     if (meta->magic != VIA_MAGIC) {
3830 	if (testing || bootverbose)
3831 	    device_printf(parent, "VIA check1 failed\n");
3832 	goto via_out;
3833     }
3834 
3835     /* calculate checksum and compare for valid */
3836     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3837 	checksum += *ptr++;
3838     if (checksum != meta->checksum) {
3839 	if (testing || bootverbose)
3840 	    device_printf(parent, "VIA check2 failed\n");
3841 	goto via_out;
3842     }
3843 
3844     if (testing || bootverbose)
3845 	ata_raid_via_print_meta(meta);
3846 
3847     /* now convert VIA meta into our generic form */
3848     for (array = 0; array < MAX_ARRAYS; array++) {
3849 	if (!raidp[array]) {
3850 	    raidp[array] =
3851 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3852 					  M_WAITOK | M_ZERO);
3853 	}
3854 	raid = raidp[array];
3855 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3856 	    continue;
3857 
3858 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3859 	    continue;
3860 
3861 	switch (meta->type & VIA_T_MASK) {
3862 	case VIA_T_RAID0:
3863 	    raid->type = AR_T_RAID0;
3864 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3865 	    if (!raid->total_sectors ||
3866 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3867 		raid->total_sectors = raid->width * meta->disk_sectors;
3868 	    break;
3869 
3870 	case VIA_T_RAID1:
3871 	    raid->type = AR_T_RAID1;
3872 	    raid->width = 1;
3873 	    raid->total_sectors = meta->disk_sectors;
3874 	    break;
3875 
3876 	case VIA_T_RAID01:
3877 	    raid->type = AR_T_RAID01;
3878 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3879 	    if (!raid->total_sectors ||
3880 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3881 		raid->total_sectors = raid->width * meta->disk_sectors;
3882 	    break;
3883 
3884 	case VIA_T_RAID5:
3885 	    raid->type = AR_T_RAID5;
3886 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3887 	    if (!raid->total_sectors ||
3888 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3889 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3890 	    break;
3891 
3892 	case VIA_T_SPAN:
3893 	    raid->type = AR_T_SPAN;
3894 	    raid->width = 1;
3895 	    raid->total_sectors += meta->disk_sectors;
3896 	    break;
3897 
3898 	default:
3899 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3900 	    kfree(raidp[array], M_AR);
3901 	    raidp[array] = NULL;
3902 	    goto via_out;
3903 	}
3904 	raid->magic_0 = meta->disks[0];
3905 	raid->format = AR_F_VIA_RAID;
3906 	raid->generation = 0;
3907 	raid->interleave =
3908 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3909 	for (count = 0, disk = 0; disk < 8; disk++)
3910 	    if (meta->disks[disk])
3911 		count++;
3912 	raid->total_disks = count;
3913 	raid->heads = 255;
3914 	raid->sectors = 63;
3915 	raid->cylinders = raid->total_sectors / (63 * 255);
3916 	raid->offset_sectors = 0;
3917 	raid->rebuild_lba = 0;
3918 	raid->lun = array;
3919 
3920 	for (disk = 0; disk < raid->total_disks; disk++) {
3921 	    if (meta->disks[disk] == meta->disk_id) {
3922 		raid->disks[disk].dev = parent;
3923 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3924 		      sizeof(u_int32_t));
3925 		raid->disks[disk].sectors = meta->disk_sectors;
3926 		raid->disks[disk].flags =
3927 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3928 		ars->raid[raid->volume] = raid;
3929 		ars->disk_number[raid->volume] = disk;
3930 		retval = 1;
3931 		break;
3932 	    }
3933 	}
3934 	break;
3935     }
3936 
3937 via_out:
3938     kfree(meta, M_AR);
3939     return retval;
3940 }
3941 
3942 static int
3943 ata_raid_via_write_meta(struct ar_softc *rdp)
3944 {
3945     struct via_raid_conf *meta;
3946     int disk, error = 0;
3947 
3948     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3949 	M_WAITOK | M_ZERO);
3950 
3951     rdp->generation++;
3952 
3953     meta->magic = VIA_MAGIC;
3954     meta->dummy_0 = 0x02;
3955     switch (rdp->type) {
3956     case AR_T_SPAN:
3957 	meta->type = VIA_T_SPAN;
3958 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3959 	break;
3960 
3961     case AR_T_RAID0:
3962 	meta->type = VIA_T_RAID0;
3963 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3964 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3965 	break;
3966 
3967     case AR_T_RAID1:
3968 	meta->type = VIA_T_RAID1;
3969 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3970 	break;
3971 
3972     case AR_T_RAID5:
3973 	meta->type = VIA_T_RAID5;
3974 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3975 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3976 	break;
3977 
3978     case AR_T_RAID01:
3979 	meta->type = VIA_T_RAID01;
3980 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3981 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3982 	break;
3983 
3984     default:
3985 	kfree(meta, M_AR);
3986 	return ENODEV;
3987     }
3988     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3989     meta->disk_sectors =
3990 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3991     for (disk = 0; disk < rdp->total_disks; disk++)
3992 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3993 
3994     for (disk = 0; disk < rdp->total_disks; disk++) {
3995 	if (rdp->disks[disk].dev) {
3996 	    u_int8_t *ptr;
3997 	    int count;
3998 
3999 	    meta->disk_index = disk * sizeof(u_int32_t);
4000 	    if (rdp->type == AR_T_RAID01)
4001 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
4002 				   (meta->disk_index & ~0x08);
4003 	    meta->disk_id = meta->disks[disk];
4004 	    meta->checksum = 0;
4005 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
4006 		meta->checksum += *ptr++;
4007 
4008 	    if (testing || bootverbose)
4009 		ata_raid_via_print_meta(meta);
4010 
4011 	    if (ata_raid_rw(rdp->disks[disk].dev,
4012 			    VIA_LBA(rdp->disks[disk].dev),
4013 			    meta, sizeof(struct via_raid_conf),
4014 			    ATA_R_WRITE | ATA_R_DIRECT)) {
4015 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
4016 		error = EIO;
4017 	    }
4018 	}
4019     }
4020     kfree(meta, M_AR);
4021     return error;
4022 }
4023 
4024 static struct ata_request *
4025 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4026 {
4027     struct ata_request *request;
4028 
4029     if (!(request = ata_alloc_request())) {
4030 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4031 	return NULL;
4032     }
4033     request->timeout = ATA_DEFAULT_TIMEOUT;
4034     request->retries = 2;
4035     request->callback = ata_raid_done;
4036     request->driver = rdp;
4037     request->bio = bio;
4038     switch (request->bio->bio_buf->b_cmd) {
4039     case BUF_CMD_READ:
4040 	request->flags = ATA_R_READ;
4041 	break;
4042     case BUF_CMD_WRITE:
4043 	request->flags = ATA_R_WRITE;
4044 	break;
4045     case BUF_CMD_FLUSH:
4046 	request->flags = ATA_R_CONTROL;
4047 	break;
4048     default:
4049 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4050 	ata_free_request(request);
4051 #if 0
4052 	bio->bio_buf->b_flags |= B_ERROR;
4053 	bio->bio_buf->b_error = EIO;
4054 	biodone(bio);
4055 #endif /* 0 */
4056 	return(NULL);
4057     }
4058     return request;
4059 }
4060 
4061 static int
4062 ata_raid_send_request(struct ata_request *request)
4063 {
4064     struct ata_device *atadev = device_get_softc(request->dev);
4065 
4066     request->transfersize = min(request->bytecount, atadev->max_iosize);
4067     if (request->flags & ATA_R_READ) {
4068 	if (atadev->mode >= ATA_DMA) {
4069 	    request->flags |= ATA_R_DMA;
4070 	    request->u.ata.command = ATA_READ_DMA;
4071 	}
4072 	else if (atadev->max_iosize > DEV_BSIZE)
4073 	    request->u.ata.command = ATA_READ_MUL;
4074 	else
4075 	    request->u.ata.command = ATA_READ;
4076     }
4077     else if (request->flags & ATA_R_WRITE) {
4078 	if (atadev->mode >= ATA_DMA) {
4079 	    request->flags |= ATA_R_DMA;
4080 	    request->u.ata.command = ATA_WRITE_DMA;
4081 	}
4082 	else if (atadev->max_iosize > DEV_BSIZE)
4083 	    request->u.ata.command = ATA_WRITE_MUL;
4084 	else
4085 	    request->u.ata.command = ATA_WRITE;
4086     }
4087     else {
4088 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4089 	ata_free_request(request);
4090 	return EIO;
4091     }
4092     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4093     ata_queue_request(request);
4094     return 0;
4095 }
4096 
4097 static int
4098 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4099 {
4100     struct ata_device *atadev = device_get_softc(dev);
4101     struct ata_request *request;
4102     int error;
4103 
4104     if (bcount % DEV_BSIZE) {
4105 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4106 	return ENOMEM;
4107     }
4108 
4109     if (!(request = ata_alloc_request())) {
4110 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4111 	return ENOMEM;
4112     }
4113 
4114     /* setup request */
4115     request->dev = dev;
4116     request->timeout = 10;
4117     request->retries = 0;
4118     request->data = data;
4119     request->bytecount = bcount;
4120     request->transfersize = DEV_BSIZE;
4121     request->u.ata.lba = lba;
4122     request->u.ata.count = request->bytecount / DEV_BSIZE;
4123     request->flags = flags;
4124 
4125     if (flags & ATA_R_READ) {
4126 	if (atadev->mode >= ATA_DMA) {
4127 	    request->u.ata.command = ATA_READ_DMA;
4128 	    request->flags |= ATA_R_DMA;
4129 	}
4130 	else
4131 	    request->u.ata.command = ATA_READ;
4132 	ata_queue_request(request);
4133     }
4134     else if (flags & ATA_R_WRITE) {
4135 	if (atadev->mode >= ATA_DMA) {
4136 	    request->u.ata.command = ATA_WRITE_DMA;
4137 	    request->flags |= ATA_R_DMA;
4138 	}
4139 	else
4140 	    request->u.ata.command = ATA_WRITE;
4141 	ata_queue_request(request);
4142     }
4143     else {
4144 	device_printf(dev, "FAILURE - unknown IO operation\n");
4145 	request->result = EIO;
4146     }
4147     error = request->result;
4148     ata_free_request(request);
4149     return error;
4150 }
4151 
4152 /*
4153  * module handeling
4154  */
4155 static int
4156 ata_raid_subdisk_probe(device_t dev)
4157 {
4158     device_quiet(dev);
4159     return 0;
4160 }
4161 
4162 static int
4163 ata_raid_subdisk_attach(device_t dev)
4164 {
4165     struct ata_raid_subdisk *ars = device_get_softc(dev);
4166     int volume;
4167 
4168     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4169 	ars->raid[volume] = NULL;
4170 	ars->disk_number[volume] = -1;
4171     }
4172     ata_raid_read_metadata(dev);
4173     return 0;
4174 }
4175 
4176 static int
4177 ata_raid_subdisk_detach(device_t dev)
4178 {
4179     struct ata_raid_subdisk *ars = device_get_softc(dev);
4180     int volume;
4181 
4182     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4183 	if (ars->raid[volume]) {
4184 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4185 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4186 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4187 #if 0
4188 	    if (mtx_initialized(&ars->raid[volume]->lock))
4189 #endif
4190 		ata_raid_config_changed(ars->raid[volume], 1);
4191 	    ars->raid[volume] = NULL;
4192 	    ars->disk_number[volume] = -1;
4193 	}
4194     }
4195     return 0;
4196 }
4197 
4198 static device_method_t ata_raid_sub_methods[] = {
4199     /* device interface */
4200     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4201     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4202     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4203     DEVMETHOD_END
4204 };
4205 
4206 static driver_t ata_raid_sub_driver = {
4207     "subdisk",
4208     ata_raid_sub_methods,
4209     sizeof(struct ata_raid_subdisk)
4210 };
4211 
4212 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4213 
4214 static int
4215 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4216 {
4217     int i;
4218 
4219     switch (what) {
4220     case MOD_LOAD:
4221 	if (testing || bootverbose)
4222 	    kprintf("ATA PseudoRAID loaded\n");
4223 #if 0
4224 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4225 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4226 				M_AR, M_WAITOK | M_ZERO);
4227 #endif
4228 	/* attach found PseudoRAID arrays */
4229 	for (i = 0; i < MAX_ARRAYS; i++) {
4230 	    struct ar_softc *rdp = ata_raid_arrays[i];
4231 
4232 	    if (!rdp || !rdp->format)
4233 		continue;
4234 	    if (testing || bootverbose)
4235 		ata_raid_print_meta(rdp);
4236 	    ata_raid_attach(rdp, 0);
4237 	}
4238 	ata_raid_ioctl_func = ata_raid_ioctl;
4239 	return 0;
4240 
4241     case MOD_UNLOAD:
4242 	/* detach found PseudoRAID arrays */
4243 	for (i = 0; i < MAX_ARRAYS; i++) {
4244 	    struct ar_softc *rdp = ata_raid_arrays[i];
4245 
4246 	    if (!rdp || !rdp->status)
4247 		continue;
4248 #if 0
4249 	    if (mtx_initialized(&rdp->lock))
4250 		lockuninit(&rdp->lock);
4251 #endif
4252 	    disk_destroy(&rdp->disk);
4253 	}
4254 	if (testing || bootverbose)
4255 	    kprintf("ATA PseudoRAID unloaded\n");
4256 #if 0
4257 	kfree(ata_raid_arrays, M_AR);
4258 #endif
4259 	ata_raid_ioctl_func = NULL;
4260 	return 0;
4261 
4262     default:
4263 	return EOPNOTSUPP;
4264     }
4265 }
4266 
4267 static moduledata_t ata_raid_moduledata =
4268     { "ataraid", ata_raid_module_event_handler, NULL };
4269 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4270 MODULE_VERSION(ataraid, 1);
4271 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4272 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4273 
4274 static char *
4275 ata_raid_format(struct ar_softc *rdp)
4276 {
4277     switch (rdp->format) {
4278     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4279     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4280     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4281     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4282     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4283     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4284     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4285     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4286     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4287     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4288     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4289     case AR_F_SII_RAID:         return "Silicon Image Medley";
4290     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4291     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4292     default:                    return "UNKNOWN";
4293     }
4294 }
4295 
4296 static char *
4297 ata_raid_type(struct ar_softc *rdp)
4298 {
4299     switch (rdp->type) {
4300     case AR_T_JBOD:     return "JBOD";
4301     case AR_T_SPAN:     return "SPAN";
4302     case AR_T_RAID0:    return "RAID0";
4303     case AR_T_RAID1:    return "RAID1";
4304     case AR_T_RAID3:    return "RAID3";
4305     case AR_T_RAID4:    return "RAID4";
4306     case AR_T_RAID5:    return "RAID5";
4307     case AR_T_RAID01:   return "RAID0+1";
4308     default:            return "UNKNOWN";
4309     }
4310 }
4311 
4312 static char *
4313 ata_raid_flags(struct ar_softc *rdp)
4314 {
4315     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4316     case AR_S_READY:                                    return "READY";
4317     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4318     case AR_S_READY | AR_S_REBUILDING:
4319     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4320     default:                                            return "BROKEN";
4321     }
4322 }
4323 
4324 /* debugging gunk */
4325 static void
4326 ata_raid_print_meta(struct ar_softc *raid)
4327 {
4328     int i;
4329 
4330     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4331     kprintf("=================================================\n");
4332     kprintf("format              %s\n", ata_raid_format(raid));
4333     kprintf("type                %s\n", ata_raid_type(raid));
4334     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4335 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4336     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4337     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4338     kprintf("generation          %u\n", raid->generation);
4339     kprintf("total_sectors       %ju\n", raid->total_sectors);
4340     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4341     kprintf("heads               %u\n", raid->heads);
4342     kprintf("sectors             %u\n", raid->sectors);
4343     kprintf("cylinders           %u\n", raid->cylinders);
4344     kprintf("width               %u\n", raid->width);
4345     kprintf("interleave          %u\n", raid->interleave);
4346     kprintf("total_disks         %u\n", raid->total_disks);
4347     for (i = 0; i < raid->total_disks; i++) {
4348 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4349 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4350 	if (raid->disks[i].dev) {
4351 	    kprintf("        ");
4352 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4353 			  raid->disks[i].sectors);
4354 	}
4355     }
4356     kprintf("=================================================\n");
4357 }
4358 
4359 static char *
4360 ata_raid_adaptec_type(int type)
4361 {
4362     static char buffer[16];
4363 
4364     switch (type) {
4365     case ADP_T_RAID0:   return "RAID0";
4366     case ADP_T_RAID1:   return "RAID1";
4367     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4368 			return buffer;
4369     }
4370 }
4371 
4372 static void
4373 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4374 {
4375     int i;
4376 
4377     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4378     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4379     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4380     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4381     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4382     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4383     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4384     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4385     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4386     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4387     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4388     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4389 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4390 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4391     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4392 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4393 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4394 
4395     for (i = 0; i < be16toh(meta->total_configs); i++) {
4396 	kprintf("    %d   total_disks  %u\n", i,
4397 	       be16toh(meta->configs[i].disk_number));
4398 	kprintf("    %d   generation   %u\n", i,
4399 	       be16toh(meta->configs[i].generation));
4400 	kprintf("    %d   magic_0      0x%08x\n", i,
4401 	       be32toh(meta->configs[i].magic_0));
4402 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4403 	kprintf("    %d   type         %s\n", i,
4404 	       ata_raid_adaptec_type(meta->configs[i].type));
4405 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4406 	kprintf("    %d   flags        %d\n", i,
4407 	       be32toh(meta->configs[i].flags));
4408 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4409 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4410 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4411 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4412 	kprintf("    %d   disk_number  %u\n", i,
4413 	       be32toh(meta->configs[i].disk_number));
4414 	kprintf("    %d   dummy_6      0x%08x\n", i,
4415 	       be32toh(meta->configs[i].dummy_6));
4416 	kprintf("    %d   sectors      %u\n", i,
4417 	       be32toh(meta->configs[i].sectors));
4418 	kprintf("    %d   stripe_shift %u\n", i,
4419 	       be16toh(meta->configs[i].stripe_shift));
4420 	kprintf("    %d   dummy_7      0x%08x\n", i,
4421 	       be32toh(meta->configs[i].dummy_7));
4422 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4423 	       be32toh(meta->configs[i].dummy_8[0]),
4424 	       be32toh(meta->configs[i].dummy_8[1]),
4425 	       be32toh(meta->configs[i].dummy_8[2]),
4426 	       be32toh(meta->configs[i].dummy_8[3]));
4427 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4428     }
4429     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4430     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4431     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4432     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4433     kprintf("=================================================\n");
4434 }
4435 
4436 static char *
4437 ata_raid_hptv2_type(int type)
4438 {
4439     static char buffer[16];
4440 
4441     switch (type) {
4442     case HPTV2_T_RAID0:         return "RAID0";
4443     case HPTV2_T_RAID1:         return "RAID1";
4444     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4445     case HPTV2_T_SPAN:          return "SPAN";
4446     case HPTV2_T_RAID_3:        return "RAID3";
4447     case HPTV2_T_RAID_5:        return "RAID5";
4448     case HPTV2_T_JBOD:          return "JBOD";
4449     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4450     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4451 			return buffer;
4452     }
4453 }
4454 
4455 static void
4456 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4457 {
4458     int i;
4459 
4460     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4461     kprintf("magic               0x%08x\n", meta->magic);
4462     kprintf("magic_0             0x%08x\n", meta->magic_0);
4463     kprintf("magic_1             0x%08x\n", meta->magic_1);
4464     kprintf("order               0x%08x\n", meta->order);
4465     kprintf("array_width         %u\n", meta->array_width);
4466     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4467     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4468     kprintf("disk_number         %u\n", meta->disk_number);
4469     kprintf("total_sectors       %u\n", meta->total_sectors);
4470     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4471     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4472     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4473     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4474     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4475     kprintf("log_index           0x%02x\n", meta->error_log_index);
4476     if (meta->error_log_entries) {
4477 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4478 	for (i = meta->error_log_index;
4479 	     i < meta->error_log_index + meta->error_log_entries; i++)
4480 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4481 		   meta->errorlog[i%32].timestamp,
4482 		   meta->errorlog[i%32].reason,
4483 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4484 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4485     }
4486     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4487     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4488     kprintf("name_1              <%.15s>\n", meta->name_1);
4489     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4490     kprintf("name_2              <%.15s>\n", meta->name_2);
4491     kprintf("=================================================\n");
4492 }
4493 
4494 static char *
4495 ata_raid_hptv3_type(int type)
4496 {
4497     static char buffer[16];
4498 
4499     switch (type) {
4500     case HPTV3_T_SPARE: return "SPARE";
4501     case HPTV3_T_JBOD:  return "JBOD";
4502     case HPTV3_T_SPAN:  return "SPAN";
4503     case HPTV3_T_RAID0: return "RAID0";
4504     case HPTV3_T_RAID1: return "RAID1";
4505     case HPTV3_T_RAID3: return "RAID3";
4506     case HPTV3_T_RAID5: return "RAID5";
4507     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4508 			return buffer;
4509     }
4510 }
4511 
4512 static void
4513 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4514 {
4515     int i;
4516 
4517     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4518     kprintf("magic               0x%08x\n", meta->magic);
4519     kprintf("magic_0             0x%08x\n", meta->magic_0);
4520     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4521     kprintf("mode                0x%02x\n", meta->mode);
4522     kprintf("user_mode           0x%02x\n", meta->user_mode);
4523     kprintf("config_entries      0x%02x\n", meta->config_entries);
4524     for (i = 0; i < meta->config_entries; i++) {
4525 	kprintf("config %d:\n", i);
4526 	kprintf("    total_sectors       %ju\n",
4527 	       meta->configs[0].total_sectors +
4528 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4529 	kprintf("    type                %s\n",
4530 	       ata_raid_hptv3_type(meta->configs[i].type));
4531 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4532 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4533 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4534 	kprintf("    status              %b\n", meta->configs[i].status,
4535 	       "\20\2RAID5\1NEED_REBUILD\n");
4536 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4537 	kprintf("    rebuild_lba         %ju\n",
4538 	       meta->configs_high[0].rebuild_lba +
4539 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4540     }
4541     kprintf("name                <%.16s>\n", meta->name);
4542     kprintf("timestamp           0x%08x\n", meta->timestamp);
4543     kprintf("description         <%.16s>\n", meta->description);
4544     kprintf("creator             <%.16s>\n", meta->creator);
4545     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4546     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4547     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4548     kprintf("flags               %b\n", meta->flags,
4549 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4550     kprintf("=================================================\n");
4551 }
4552 
4553 static char *
4554 ata_raid_intel_type(int type)
4555 {
4556     static char buffer[16];
4557 
4558     switch (type) {
4559     case INTEL_T_RAID0: return "RAID0";
4560     case INTEL_T_RAID1: return "RAID1";
4561     case INTEL_T_RAID5: return "RAID5";
4562     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4563 			return buffer;
4564     }
4565 }
4566 
4567 static void
4568 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4569 {
4570     struct intel_raid_mapping *map;
4571     int i, j;
4572 
4573     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4574     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4575     kprintf("version             <%.6s>\n", meta->version);
4576     kprintf("checksum            0x%08x\n", meta->checksum);
4577     kprintf("config_size         0x%08x\n", meta->config_size);
4578     kprintf("config_id           0x%08x\n", meta->config_id);
4579     kprintf("generation          0x%08x\n", meta->generation);
4580     kprintf("total_disks         %u\n", meta->total_disks);
4581     kprintf("total_volumes       %u\n", meta->total_volumes);
4582     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4583     for (i = 0; i < meta->total_disks; i++ ) {
4584 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4585 	       meta->disk[i].serial, meta->disk[i].sectors,
4586 	       meta->disk[i].id, meta->disk[i].flags);
4587     }
4588     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4589     for (j = 0; j < meta->total_volumes; j++) {
4590 	kprintf("name                %.16s\n", map->name);
4591 	kprintf("total_sectors       %ju\n", map->total_sectors);
4592 	kprintf("state               %u\n", map->state);
4593 	kprintf("reserved            %u\n", map->reserved);
4594 	kprintf("offset              %u\n", map->offset);
4595 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4596 	kprintf("stripe_count        %u\n", map->stripe_count);
4597 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4598 	kprintf("status              %u\n", map->status);
4599 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4600 	kprintf("total_disks         %u\n", map->total_disks);
4601 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4602 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4603 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4604 	for (i = 0; i < map->total_disks; i++ ) {
4605 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4606 	}
4607 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4608     }
4609     kprintf("=================================================\n");
4610 }
4611 
4612 static char *
4613 ata_raid_ite_type(int type)
4614 {
4615     static char buffer[16];
4616 
4617     switch (type) {
4618     case ITE_T_RAID0:   return "RAID0";
4619     case ITE_T_RAID1:   return "RAID1";
4620     case ITE_T_RAID01:  return "RAID0+1";
4621     case ITE_T_SPAN:    return "SPAN";
4622     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4623 			return buffer;
4624     }
4625 }
4626 
4627 static void
4628 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4629 {
4630     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4631     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4632     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4633 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4634 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4635 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4636     kprintf("total_sectors       %jd\n", meta->total_sectors);
4637     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4638     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4639     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4640 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4641 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4642 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4643     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4644     kprintf("array_width         %u\n", meta->array_width);
4645     kprintf("disk_number         %u\n", meta->disk_number);
4646     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4647     kprintf("=================================================\n");
4648 }
4649 
4650 static char *
4651 ata_raid_jmicron_type(int type)
4652 {
4653     static char buffer[16];
4654 
4655     switch (type) {
4656     case JM_T_RAID0:	return "RAID0";
4657     case JM_T_RAID1:	return "RAID1";
4658     case JM_T_RAID01:	return "RAID0+1";
4659     case JM_T_JBOD:	return "JBOD";
4660     case JM_T_RAID5:	return "RAID5";
4661     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4662 			return buffer;
4663     }
4664 }
4665 
4666 static void
4667 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4668 {
4669     int i;
4670 
4671     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4672     kprintf("signature           %.2s\n", meta->signature);
4673     kprintf("version             0x%04x\n", meta->version);
4674     kprintf("checksum            0x%04x\n", meta->checksum);
4675     kprintf("disk_id             0x%08x\n", meta->disk_id);
4676     kprintf("offset              0x%08x\n", meta->offset);
4677     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4678     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4679     kprintf("name                %.16s\n", meta->name);
4680     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4681     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4682     kprintf("flags               0x%04x\n", meta->flags);
4683     kprintf("spare:\n");
4684     for (i=0; i < 2 && meta->spare[i]; i++)
4685 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4686     kprintf("disks:\n");
4687     for (i=0; i < 8 && meta->disks[i]; i++)
4688 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4689     kprintf("=================================================\n");
4690 }
4691 
4692 static char *
4693 ata_raid_lsiv2_type(int type)
4694 {
4695     static char buffer[16];
4696 
4697     switch (type) {
4698     case LSIV2_T_RAID0: return "RAID0";
4699     case LSIV2_T_RAID1: return "RAID1";
4700     case LSIV2_T_SPARE: return "SPARE";
4701     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4702 			return buffer;
4703     }
4704 }
4705 
4706 static void
4707 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4708 {
4709     int i;
4710 
4711     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4712     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4713     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4714     kprintf("flags               0x%02x\n", meta->flags);
4715     kprintf("version             0x%04x\n", meta->version);
4716     kprintf("config_entries      0x%02x\n", meta->config_entries);
4717     kprintf("raid_count          0x%02x\n", meta->raid_count);
4718     kprintf("total_disks         0x%02x\n", meta->total_disks);
4719     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4720     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4721     for (i = 0; i < meta->config_entries; i++) {
4722 	kprintf("    type             %s\n",
4723 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4724 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4725 	kprintf("    stripe_sectors   %u\n",
4726 	       meta->configs[i].raid.stripe_sectors);
4727 	kprintf("    array_width      %u\n",
4728 	       meta->configs[i].raid.array_width);
4729 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4730 	kprintf("    config_offset    %u\n",
4731 	       meta->configs[i].raid.config_offset);
4732 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4733 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4734 	kprintf("    total_sectors    %u\n",
4735 	       meta->configs[i].raid.total_sectors);
4736     }
4737     kprintf("disk_number         0x%02x\n", meta->disk_number);
4738     kprintf("raid_number         0x%02x\n", meta->raid_number);
4739     kprintf("timestamp           0x%08x\n", meta->timestamp);
4740     kprintf("=================================================\n");
4741 }
4742 
4743 static char *
4744 ata_raid_lsiv3_type(int type)
4745 {
4746     static char buffer[16];
4747 
4748     switch (type) {
4749     case LSIV3_T_RAID0: return "RAID0";
4750     case LSIV3_T_RAID1: return "RAID1";
4751     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4752 			return buffer;
4753     }
4754 }
4755 
4756 static void
4757 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4758 {
4759     int i;
4760 
4761     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4762     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4763     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4764     kprintf("version             0x%04x\n", meta->version);
4765     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4766     kprintf("RAID configs:\n");
4767     for (i = 0; i < 8; i++) {
4768 	if (meta->raid[i].total_disks) {
4769 	    kprintf("%02d  stripe_pages       %u\n", i,
4770 		   meta->raid[i].stripe_pages);
4771 	    kprintf("%02d  type               %s\n", i,
4772 		   ata_raid_lsiv3_type(meta->raid[i].type));
4773 	    kprintf("%02d  total_disks        %u\n", i,
4774 		   meta->raid[i].total_disks);
4775 	    kprintf("%02d  array_width        %u\n", i,
4776 		   meta->raid[i].array_width);
4777 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4778 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4779 	    kprintf("%02d  device             0x%02x\n", i,
4780 		   meta->raid[i].device);
4781 	}
4782     }
4783     kprintf("DISK configs:\n");
4784     for (i = 0; i < 6; i++) {
4785 	    if (meta->disk[i].disk_sectors) {
4786 	    kprintf("%02d  disk_sectors       %u\n", i,
4787 		   meta->disk[i].disk_sectors);
4788 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4789 	}
4790     }
4791     kprintf("device              0x%02x\n", meta->device);
4792     kprintf("timestamp           0x%08x\n", meta->timestamp);
4793     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4794     kprintf("=================================================\n");
4795 }
4796 
4797 static char *
4798 ata_raid_nvidia_type(int type)
4799 {
4800     static char buffer[16];
4801 
4802     switch (type) {
4803     case NV_T_SPAN:     return "SPAN";
4804     case NV_T_RAID0:    return "RAID0";
4805     case NV_T_RAID1:    return "RAID1";
4806     case NV_T_RAID3:    return "RAID3";
4807     case NV_T_RAID5:    return "RAID5";
4808     case NV_T_RAID01:   return "RAID0+1";
4809     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4810 			return buffer;
4811     }
4812 }
4813 
4814 static void
4815 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4816 {
4817     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4818     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4819     kprintf("config_size         %u\n", meta->config_size);
4820     kprintf("checksum            0x%08x\n", meta->checksum);
4821     kprintf("version             0x%04x\n", meta->version);
4822     kprintf("disk_number         %u\n", meta->disk_number);
4823     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4824     kprintf("total_sectors       %u\n", meta->total_sectors);
4825     kprintf("sectors_size        %u\n", meta->sector_size);
4826     kprintf("serial              %.16s\n", meta->serial);
4827     kprintf("revision            %.4s\n", meta->revision);
4828     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4829     kprintf("magic_0             0x%08x\n", meta->magic_0);
4830     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4831     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4832     kprintf("flags               0x%02x\n", meta->flags);
4833     kprintf("array_width         %u\n", meta->array_width);
4834     kprintf("total_disks         %u\n", meta->total_disks);
4835     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4836     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4837     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4838     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4839     kprintf("stripe_bytes        %u\n", meta->stripe_bytes);
4840     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4841     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4842     kprintf("stripe_sizesectors  %u\n", meta->stripe_sizesectors);
4843     kprintf("stripe_sizebytes    %u\n", meta->stripe_sizebytes);
4844     kprintf("rebuild_lba         %u\n", meta->rebuild_lba);
4845     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4846     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4847     kprintf("status              0x%08x\n", meta->status);
4848     kprintf("=================================================\n");
4849 }
4850 
4851 static char *
4852 ata_raid_promise_type(int type)
4853 {
4854     static char buffer[16];
4855 
4856     switch (type) {
4857     case PR_T_RAID0:    return "RAID0";
4858     case PR_T_RAID1:    return "RAID1";
4859     case PR_T_RAID3:    return "RAID3";
4860     case PR_T_RAID5:    return "RAID5";
4861     case PR_T_SPAN:     return "SPAN";
4862     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4863 			return buffer;
4864     }
4865 }
4866 
4867 static void
4868 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4869 {
4870     int i;
4871 
4872     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4873     kprintf("promise_id          <%s>\n", meta->promise_id);
4874     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4875     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4876     kprintf("magic_1             0x%04x\n", meta->magic_1);
4877     kprintf("magic_2             0x%08x\n", meta->magic_2);
4878     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4879 		meta->raid.integrity, "\20\10VALID\n" );
4880     kprintf("flags               0x%02x %b\n",
4881 	   meta->raid.flags, meta->raid.flags,
4882 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4883 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4884     kprintf("disk_number         %d\n", meta->raid.disk_number);
4885     kprintf("channel             0x%02x\n", meta->raid.channel);
4886     kprintf("device              0x%02x\n", meta->raid.device);
4887     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4888     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4889     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4890     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4891     kprintf("generation          0x%04x\n", meta->raid.generation);
4892     kprintf("status              0x%02x %b\n",
4893 	    meta->raid.status, meta->raid.status,
4894 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4895     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4896     kprintf("total_disks         %u\n", meta->raid.total_disks);
4897     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4898     kprintf("array_width         %u\n", meta->raid.array_width);
4899     kprintf("array_number        %u\n", meta->raid.array_number);
4900     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4901     kprintf("cylinders           %u\n", meta->raid.cylinders);
4902     kprintf("heads               %u\n", meta->raid.heads);
4903     kprintf("sectors             %u\n", meta->raid.sectors);
4904     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4905     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4906     for (i = 0; i < 8; i++) {
4907 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4908 	       i, meta->raid.disk[i].flags,
4909 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4910 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4911 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4912 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4913     }
4914     kprintf("checksum            0x%08x\n", meta->checksum);
4915     kprintf("=================================================\n");
4916 }
4917 
4918 static char *
4919 ata_raid_sii_type(int type)
4920 {
4921     static char buffer[16];
4922 
4923     switch (type) {
4924     case SII_T_RAID0:   return "RAID0";
4925     case SII_T_RAID1:   return "RAID1";
4926     case SII_T_RAID01:  return "RAID0+1";
4927     case SII_T_SPARE:   return "SPARE";
4928     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4929 			return buffer;
4930     }
4931 }
4932 
4933 static void
4934 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4935 {
4936     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4937     kprintf("total_sectors       %ju\n", meta->total_sectors);
4938     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4939     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4940     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4941     kprintf("version_minor       0x%04x\n", meta->version_minor);
4942     kprintf("version_major       0x%04x\n", meta->version_major);
4943     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4944 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4945 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4946     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4947     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4948     kprintf("disk_number         %u\n", meta->disk_number);
4949     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4950     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4951     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4952     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4953     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4954     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4955     kprintf("generation          0x%08x\n", meta->generation);
4956     kprintf("status              0x%02x %b\n",
4957 	    meta->status, meta->status,
4958 	   "\20\1READY\n");
4959     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4960     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4961     kprintf("position            %02x\n", meta->position);
4962     kprintf("dummy_3             %04x\n", meta->dummy_3);
4963     kprintf("name                <%.16s>\n", meta->name);
4964     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4965     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4966     kprintf("=================================================\n");
4967 }
4968 
4969 static char *
4970 ata_raid_sis_type(int type)
4971 {
4972     static char buffer[16];
4973 
4974     switch (type) {
4975     case SIS_T_JBOD:    return "JBOD";
4976     case SIS_T_RAID0:   return "RAID0";
4977     case SIS_T_RAID1:   return "RAID1";
4978     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4979 			return buffer;
4980     }
4981 }
4982 
4983 static void
4984 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4985 {
4986     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4987     kprintf("magic               0x%04x\n", meta->magic);
4988     kprintf("disks               0x%02x\n", meta->disks);
4989     kprintf("type                %s\n",
4990 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4991     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4992     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4993     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4994     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4995     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4996     kprintf("timestamp           0x%08x\n", meta->timestamp);
4997     kprintf("model               %.40s\n", meta->model);
4998     kprintf("disk_number         %u\n", meta->disk_number);
4999     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
5000 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
5001     kprintf("=================================================\n");
5002 }
5003 
5004 static char *
5005 ata_raid_via_type(int type)
5006 {
5007     static char buffer[16];
5008 
5009     switch (type) {
5010     case VIA_T_RAID0:   return "RAID0";
5011     case VIA_T_RAID1:   return "RAID1";
5012     case VIA_T_RAID5:   return "RAID5";
5013     case VIA_T_RAID01:  return "RAID0+1";
5014     case VIA_T_SPAN:    return "SPAN";
5015     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
5016 			return buffer;
5017     }
5018 }
5019 
5020 static void
5021 ata_raid_via_print_meta(struct via_raid_conf *meta)
5022 {
5023     int i;
5024 
5025     kprintf("*************** ATA VIA Metadata ****************\n");
5026     kprintf("magic               0x%02x\n", meta->magic);
5027     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5028     kprintf("type                %s\n",
5029 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5030     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5031     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5032     kprintf("disk_index          0x%02x\n", meta->disk_index);
5033     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5034     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5035     kprintf(" stripe_sectors     %d\n",
5036 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5037     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5038     kprintf("disk_id             0x%08x\n", meta->disk_id);
5039     kprintf("DISK#   disk_id\n");
5040     for (i = 0; i < 8; i++) {
5041 	if (meta->disks[i])
5042 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5043     }
5044     kprintf("checksum            0x%02x\n", meta->checksum);
5045     kprintf("=================================================\n");
5046 }
5047