xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision 9b5a9965)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.7 2007/06/17 03:54:07 y0netan1 Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 /*
257  * XXX TGEN there are a lot of offset -> block number conversions going on
258  * here, which is suboptimal.
259  */
260 static int
261 ata_raid_strategy(struct dev_strategy_args *ap)
262 {
263     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
264     struct bio *bp = ap->a_bio;
265     struct buf *bbp = bp->bio_buf;
266     struct ata_request *request;
267     caddr_t data;
268     u_int64_t blkno, lba, blk = 0;
269     int count, chunk, drv, par = 0, change = 0;
270 
271     if (!(rdp->status & AR_S_READY) ||
272 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
273 	bbp->b_flags |= B_ERROR;
274 	bbp->b_error = EIO;
275 	biodone(bp);
276 	return(0);
277     }
278 
279     bbp->b_resid = bbp->b_bcount;
280     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
281 	 /* bio_offset is byte granularity, convert */
282 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
283 	 data = bbp->b_data;
284 	 count > 0;
285 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
286 
287 	switch (rdp->type) {
288 	case AR_T_RAID1:
289 	    drv = 0;
290 	    lba = blkno;
291 	    chunk = count;
292 	    break;
293 
294 	case AR_T_JBOD:
295 	case AR_T_SPAN:
296 	    drv = 0;
297 	    lba = blkno;
298 	    while (lba >= rdp->disks[drv].sectors)
299 		lba -= rdp->disks[drv++].sectors;
300 	    chunk = min(rdp->disks[drv].sectors - lba, count);
301 	    break;
302 
303 	case AR_T_RAID0:
304 	case AR_T_RAID01:
305 	    chunk = blkno % rdp->interleave;
306 	    drv = (blkno / rdp->interleave) % rdp->width;
307 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
308 	    chunk = min(count, rdp->interleave - chunk);
309 	    break;
310 
311 	case AR_T_RAID5:
312 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
313 	    par = rdp->width - 1 -
314 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
315 	    if (drv >= par)
316 		drv++;
317 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
318 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
319 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
320 	    break;
321 
322 	default:
323 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
324 	    bbp->b_flags |= B_ERROR;
325 	    bbp->b_error = EIO;
326 	    biodone(bp);
327 	    return(0);
328 	}
329 
330 	/* offset on all but "first on HPTv2" */
331 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
332 	    lba += rdp->offset_sectors;
333 
334 	if (!(request = ata_raid_init_request(rdp, bp))) {
335 	    bbp->b_flags |= B_ERROR;
336 	    bbp->b_error = EIO;
337 	    biodone(bp);
338 	    return(0);
339 	}
340 	request->data = data;
341 	request->bytecount = chunk * DEV_BSIZE;
342 	request->u.ata.lba = lba;
343 	request->u.ata.count = request->bytecount / DEV_BSIZE;
344 
345 	switch (rdp->type) {
346 	case AR_T_JBOD:
347 	case AR_T_SPAN:
348 	case AR_T_RAID0:
349 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
350 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
351 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
352 		ata_raid_config_changed(rdp, 1);
353 		ata_free_request(request);
354 		bbp->b_flags |= B_ERROR;
355 		bbp->b_error = EIO;
356 		biodone(bp);
357 		return(0);
358 	    }
359 	    request->this = drv;
360 	    request->dev = rdp->disks[request->this].dev;
361 	    ata_raid_send_request(request);
362 	    break;
363 
364 	case AR_T_RAID1:
365 	case AR_T_RAID01:
366 	    if ((rdp->disks[drv].flags &
367 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
368 		!rdp->disks[drv].dev) {
369 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
370 		change = 1;
371 	    }
372 	    if ((rdp->disks[drv + rdp->width].flags &
373 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
374 		!rdp->disks[drv + rdp->width].dev) {
375 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
376 		change = 1;
377 	    }
378 	    if (change)
379 		ata_raid_config_changed(rdp, 1);
380 	    if (!(rdp->status & AR_S_READY)) {
381 		ata_free_request(request);
382 		bbp->b_flags |= B_ERROR;
383 		bbp->b_error = EIO;
384 		biodone(bp);
385 		return(0);
386 	    }
387 
388 	    if (rdp->status & AR_S_REBUILDING)
389 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
390 		      (rdp->interleave * (drv % rdp->width)) +
391 		      lba % rdp->interleave;;
392 
393 	    if (bbp->b_cmd == BUF_CMD_READ) {
394 		int src_online =
395 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
396 		int mir_online =
397 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
398 
399 		/* if mirror gone or close to last access on source */
400 		if (!mir_online ||
401 		    ((src_online) &&
402 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
403 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
404 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
405 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
406 		    rdp->toggle = 0;
407 		}
408 		/* if source gone or close to last access on mirror */
409 		else if (!src_online ||
410 			 ((mir_online) &&
411 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
412 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
413 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
414 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
415 		    drv += rdp->width;
416 		    rdp->toggle = 1;
417 		}
418 		/* not close to any previous access, toggle */
419 		else {
420 		    if (rdp->toggle)
421 			rdp->toggle = 0;
422 		    else {
423 			drv += rdp->width;
424 			rdp->toggle = 1;
425 		    }
426 		}
427 
428 		if ((rdp->status & AR_S_REBUILDING) &&
429 		    (blk <= rdp->rebuild_lba) &&
430 		    ((blk + chunk) > rdp->rebuild_lba)) {
431 		    struct ata_composite *composite;
432 		    struct ata_request *rebuild;
433 		    int this;
434 
435 		    /* figure out what part to rebuild */
436 		    if (drv < rdp->width)
437 			this = drv + rdp->width;
438 		    else
439 			this = drv - rdp->width;
440 
441 		    /* do we have a spare to rebuild on ? */
442 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
443 			if ((composite = ata_alloc_composite())) {
444 			    if ((rebuild = ata_alloc_request())) {
445 				rdp->rebuild_lba = blk + chunk;
446 				bcopy(request, rebuild,
447 				      sizeof(struct ata_request));
448 				rebuild->this = this;
449 				rebuild->dev = rdp->disks[this].dev;
450 				rebuild->flags &= ~ATA_R_READ;
451 				rebuild->flags |= ATA_R_WRITE;
452 				spin_init(&composite->lock);
453 				composite->residual = request->bytecount;
454 				composite->rd_needed |= (1 << drv);
455 				composite->wr_depend |= (1 << drv);
456 				composite->wr_needed |= (1 << this);
457 				composite->request[drv] = request;
458 				composite->request[this] = rebuild;
459 				request->composite = composite;
460 				rebuild->composite = composite;
461 				ata_raid_send_request(rebuild);
462 			    }
463 			    else {
464 				ata_free_composite(composite);
465 				kprintf("DOH! ata_alloc_request failed!\n");
466 			    }
467 			}
468 			else {
469 			    kprintf("DOH! ata_alloc_composite failed!\n");
470 			}
471 		    }
472 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
473 			/*
474 			 * if we got here we are a chunk of a RAID01 that
475 			 * does not need a rebuild, but we need to increment
476 			 * the rebuild_lba address to get the rebuild to
477 			 * move to the next chunk correctly
478 			 */
479 			rdp->rebuild_lba = blk + chunk;
480 		    }
481 		    else
482 			kprintf("DOH! we didn't find the rebuild part\n");
483 		}
484 	    }
485 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
486 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
487 		    ((rdp->status & AR_S_REBUILDING) &&
488 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
489 		     ((blk < rdp->rebuild_lba) ||
490 		      ((blk <= rdp->rebuild_lba) &&
491 		       ((blk + chunk) > rdp->rebuild_lba))))) {
492 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
493 			((rdp->status & AR_S_REBUILDING) &&
494 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
495 			 ((blk < rdp->rebuild_lba) ||
496 			  ((blk <= rdp->rebuild_lba) &&
497 			   ((blk + chunk) > rdp->rebuild_lba))))) {
498 			struct ata_request *mirror;
499 			struct ata_composite *composite;
500 			int this = drv + rdp->width;
501 
502 			if ((composite = ata_alloc_composite())) {
503 			    if ((mirror = ata_alloc_request())) {
504 				if ((blk <= rdp->rebuild_lba) &&
505 				    ((blk + chunk) > rdp->rebuild_lba))
506 				    rdp->rebuild_lba = blk + chunk;
507 				bcopy(request, mirror,
508 				      sizeof(struct ata_request));
509 				mirror->this = this;
510 				mirror->dev = rdp->disks[this].dev;
511 				spin_init(&composite->lock);
512 				composite->residual = request->bytecount;
513 				composite->wr_needed |= (1 << drv);
514 				composite->wr_needed |= (1 << this);
515 				composite->request[drv] = request;
516 				composite->request[this] = mirror;
517 				request->composite = composite;
518 				mirror->composite = composite;
519 				ata_raid_send_request(mirror);
520 				rdp->disks[this].last_lba =
521 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
522 				    chunk;
523 			    }
524 			    else {
525 				ata_free_composite(composite);
526 				kprintf("DOH! ata_alloc_request failed!\n");
527 			    }
528 			}
529 			else {
530 			    kprintf("DOH! ata_alloc_composite failed!\n");
531 			}
532 		    }
533 		    else
534 			drv += rdp->width;
535 		}
536 	    }
537 	    request->this = drv;
538 	    request->dev = rdp->disks[request->this].dev;
539 	    ata_raid_send_request(request);
540 	    rdp->disks[request->this].last_lba =
541 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
542 	    break;
543 
544 	case AR_T_RAID5:
545 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
546 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
547 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
548 		change = 1;
549 	    }
550 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
551 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
552 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
553 		change = 1;
554 	    }
555 	    if (change)
556 		ata_raid_config_changed(rdp, 1);
557 	    if (!(rdp->status & AR_S_READY)) {
558 		ata_free_request(request);
559 		bbp->b_flags |= B_ERROR;
560 		bbp->b_error = EIO;
561 		biodone(bp);
562 		return(0);
563 	    }
564 	    if (rdp->status & AR_S_DEGRADED) {
565 		/* do the XOR game if possible */
566 	    }
567 	    else {
568 		request->this = drv;
569 		request->dev = rdp->disks[request->this].dev;
570 		if (bbp->b_cmd == BUF_CMD_READ) {
571 		    ata_raid_send_request(request);
572 		}
573 		if (bbp->b_cmd == BUF_CMD_WRITE) {
574 		    ata_raid_send_request(request);
575 		    /* XXX TGEN no, I don't speak Danish either */
576 		    /*
577 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
578 		     * par kopi af request
579 		     * l�se orgdata fra drv
580 		     * skriv nydata til drv
581 		     * l�se parorgdata fra par
582 		     * skriv orgdata xor parorgdata xor nydata til par
583 		     */
584 		}
585 	    }
586 	    break;
587 
588 	default:
589 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
590 	}
591     }
592 
593     return(0);
594 }
595 
596 static void
597 ata_raid_done(struct ata_request *request)
598 {
599     struct ar_softc *rdp = request->driver;
600     struct ata_composite *composite = NULL;
601     struct bio *bp = request->bio;
602     struct buf *bbp = bp->bio_buf;
603     int i, mirror, finished = 0;
604 
605     switch (rdp->type) {
606     case AR_T_JBOD:
607     case AR_T_SPAN:
608     case AR_T_RAID0:
609 	if (request->result) {
610 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
611 	    ata_raid_config_changed(rdp, 1);
612 	    bbp->b_error = request->result;
613 	    finished = 1;
614 	}
615 	else {
616 	    bbp->b_resid -= request->donecount;
617 	    if (!bbp->b_resid)
618 		finished = 1;
619 	}
620 	break;
621 
622     case AR_T_RAID1:
623     case AR_T_RAID01:
624 	if (request->this < rdp->width)
625 	    mirror = request->this + rdp->width;
626 	else
627 	    mirror = request->this - rdp->width;
628 	if (request->result) {
629 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
630 	    ata_raid_config_changed(rdp, 1);
631 	}
632 	if (rdp->status & AR_S_READY) {
633 	    u_int64_t blk = 0;
634 
635 	    if (rdp->status & AR_S_REBUILDING)
636 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
637 		      rdp->interleave + (rdp->interleave *
638 		      (request->this % rdp->width)) +
639 		      request->u.ata.lba % rdp->interleave;
640 
641 	    if (bbp->b_cmd == BUF_CMD_READ) {
642 
643 		/* is this a rebuild composite */
644 		if ((composite = request->composite)) {
645 		    spin_lock_wr(&composite->lock);
646 
647 		    /* handle the read part of a rebuild composite */
648 		    if (request->flags & ATA_R_READ) {
649 
650 			/* if read failed array is now broken */
651 			if (request->result) {
652 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
653 			    ata_raid_config_changed(rdp, 1);
654 			    bbp->b_error = request->result;
655 			    rdp->rebuild_lba = blk;
656 			    finished = 1;
657 			}
658 
659 			/* good data, update how far we've gotten */
660 			else {
661 			    bbp->b_resid -= request->donecount;
662 			    composite->residual -= request->donecount;
663 			    if (!composite->residual) {
664 				if (composite->wr_done & (1 << mirror))
665 				    finished = 1;
666 			    }
667 			}
668 		    }
669 
670 		    /* handle the write part of a rebuild composite */
671 		    else if (request->flags & ATA_R_WRITE) {
672 			if (composite->rd_done & (1 << mirror)) {
673 			    if (request->result) {
674 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
675 				rdp->rebuild_lba = blk;
676 			    }
677 			    if (!composite->residual)
678 				finished = 1;
679 			}
680 		    }
681 		    spin_unlock_wr(&composite->lock);
682 		}
683 
684 		/* if read failed retry on the mirror */
685 		else if (request->result) {
686 		    request->dev = rdp->disks[mirror].dev;
687 		    request->flags &= ~ATA_R_TIMEOUT;
688 		    ata_raid_send_request(request);
689 		    return;
690 		}
691 
692 		/* we have good data */
693 		else {
694 		    bbp->b_resid -= request->donecount;
695 		    if (!bbp->b_resid)
696 			finished = 1;
697 		}
698 	    }
699 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
700 		/* do we have a mirror or rebuild to deal with ? */
701 		if ((composite = request->composite)) {
702 		    spin_lock_wr(&composite->lock);
703 		    if (composite->wr_done & (1 << mirror)) {
704 			if (request->result) {
705 			    if (composite->request[mirror]->result) {
706 				kprintf("DOH! all disks failed and got here\n");
707 				bbp->b_error = EIO;
708 			    }
709 			    if (rdp->status & AR_S_REBUILDING) {
710 				rdp->rebuild_lba = blk;
711 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
712 			    }
713 			    bbp->b_resid -=
714 				composite->request[mirror]->donecount;
715 			    composite->residual -=
716 				composite->request[mirror]->donecount;
717 			}
718 			else {
719 			    bbp->b_resid -= request->donecount;
720 			    composite->residual -= request->donecount;
721 			}
722 			if (!composite->residual)
723 			    finished = 1;
724 		    }
725 		    spin_unlock_wr(&composite->lock);
726 		}
727 		/* no mirror we are done */
728 		else {
729 		    bbp->b_resid -= request->donecount;
730 		    if (!bbp->b_resid)
731 			finished = 1;
732 		}
733 	    }
734 	}
735 	else {
736 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
737 	    bbp->b_error = request->result;
738 	    biodone(bp);
739 	}
740 	break;
741 
742     case AR_T_RAID5:
743 	if (request->result) {
744 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
745 	    ata_raid_config_changed(rdp, 1);
746 	    if (rdp->status & AR_S_READY) {
747 		if (bbp->b_cmd == BUF_CMD_READ) {
748 		    /* do the XOR game to recover data */
749 		}
750 		if (bbp->b_cmd == BUF_CMD_WRITE) {
751 		    /* if the parity failed we're OK sortof */
752 		    /* otherwise wee need to do the XOR long dance */
753 		}
754 		finished = 1;
755 	    }
756 	    else {
757 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
758 		bbp->b_error = request->result;
759 		biodone(bp);
760 	    }
761 	}
762 	else {
763 	    /* did we have an XOR game going ?? */
764 	    bbp->b_resid -= request->donecount;
765 	    if (!bbp->b_resid)
766 		finished = 1;
767 	}
768 	break;
769 
770     default:
771 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
772     }
773 
774     if (finished) {
775 	if ((rdp->status & AR_S_REBUILDING) &&
776 	    rdp->rebuild_lba >= rdp->total_sectors) {
777 	    int disk;
778 
779 	    for (disk = 0; disk < rdp->total_disks; disk++) {
780 		if ((rdp->disks[disk].flags &
781 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
782 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
783 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
784 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
785 		}
786 	    }
787 	    rdp->status &= ~AR_S_REBUILDING;
788 	    ata_raid_config_changed(rdp, 1);
789 	}
790 	if (!bbp->b_resid)
791 	    biodone(bp);
792     }
793 
794     if (composite) {
795 	if (finished) {
796 	    /* we are done with this composite, free all resources */
797 	    for (i = 0; i < 32; i++) {
798 		if (composite->rd_needed & (1 << i) ||
799 		    composite->wr_needed & (1 << i)) {
800 		    ata_free_request(composite->request[i]);
801 		}
802 	    }
803 	    spin_uninit(&composite->lock);
804 	    ata_free_composite(composite);
805 	}
806     }
807     else
808 	ata_free_request(request);
809 }
810 
811 static int
812 ata_raid_dump(struct dev_dump_args *ap)
813 {
814     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
815     struct buf dbuf;
816     vm_paddr_t addr = 0;
817     long blkcnt;
818     int dumppages = MAXDUMPPGS;
819     int error = 0;
820     int i, disk;
821 
822     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
823 
824     while (ap->a_count > 0) {
825 	caddr_t va = NULL;
826 
827 	if ((ap->a_count / blkcnt) < dumppages)
828 	    dumppages = ap->a_count / blkcnt;
829 
830 	for (i = 0; i < dumppages; ++i) {
831 	    vm_paddr_t a = addr + (i * PAGE_SIZE);
832 	    if (is_physical_memory(a))
833 		va = pmap_kenter_temporary(trunc_page(a), i);
834 	    else
835 		va = pmap_kenter_temporary(trunc_page(0), i);
836 	}
837 
838 	bzero(&dbuf, sizeof(struct buf));
839 	BUF_LOCKINIT(&dbuf);
840 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
841 	initbufbio(&dbuf);
842 	/* bio_offset is byte granularity, convert block granularity a_blkno */
843 	dbuf.b_bio1.bio_offset = (off_t)(ap->a_blkno << DEV_BSHIFT);
844 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
845 	dbuf.b_bcount = dumppages * PAGE_SIZE;
846 	dbuf.b_data = va;
847 	dbuf.b_cmd = BUF_CMD_WRITE;
848 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
849 	/* wait for completion, unlock the buffer, check status */
850 	if (biowait(&dbuf)) {
851 	    BUF_UNLOCK(&dbuf);
852 	    return(dbuf.b_error ? dbuf.b_error : EIO);
853 	}
854 	BUF_UNLOCK(&dbuf);
855 
856 	if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
857 	    return(EINTR);
858 
859 	ap->a_blkno += blkcnt * dumppages;
860 	ap->a_count -= blkcnt * dumppages;
861 	addr += PAGE_SIZE * dumppages;
862     }
863 
864     /* flush subdisk buffers to media */
865     for (disk = 0; disk < rdp->total_disks; disk++)
866 	if (rdp->disks[disk].dev)
867 	    error |= ata_controlcmd(rdp->disks[disk].dev, ATA_FLUSHCACHE, 0, 0,
868 				    0);
869     return (error ? EIO : 0);
870 }
871 
872 static void
873 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
874 {
875     int disk, count, status;
876 
877     spin_lock_wr(&rdp->lock);
878     /* set default all working mode */
879     status = rdp->status;
880     rdp->status &= ~AR_S_DEGRADED;
881     rdp->status |= AR_S_READY;
882 
883     /* make sure all lost drives are accounted for */
884     for (disk = 0; disk < rdp->total_disks; disk++) {
885 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
886 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
887     }
888 
889     /* depending on RAID type figure out our health status */
890     switch (rdp->type) {
891     case AR_T_JBOD:
892     case AR_T_SPAN:
893     case AR_T_RAID0:
894 	for (disk = 0; disk < rdp->total_disks; disk++)
895 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
896 		rdp->status &= ~AR_S_READY;
897 	break;
898 
899     case AR_T_RAID1:
900     case AR_T_RAID01:
901 	for (disk = 0; disk < rdp->width; disk++) {
902 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
903 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
904 		rdp->status &= ~AR_S_READY;
905 	    }
906 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
907 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
908 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
909 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
910 		rdp->status |= AR_S_DEGRADED;
911 	    }
912 	}
913 	break;
914 
915     case AR_T_RAID5:
916 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
917 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
918 		count++;
919 	}
920 	if (count) {
921 	    if (count > 1)
922 		rdp->status &= ~AR_S_READY;
923 	    else
924 		rdp->status |= AR_S_DEGRADED;
925 	}
926 	break;
927     default:
928 	rdp->status &= ~AR_S_READY;
929     }
930 
931     if (rdp->status != status) {
932 	if (!(rdp->status & AR_S_READY)) {
933 	    kprintf("ar%d: FAILURE - %s array broken\n",
934 		   rdp->lun, ata_raid_type(rdp));
935 	}
936 	else if (rdp->status & AR_S_DEGRADED) {
937 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
938 		kprintf("ar%d: WARNING - mirror", rdp->lun);
939 	    else
940 		kprintf("ar%d: WARNING - parity", rdp->lun);
941 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
942 		   ata_raid_type(rdp));
943 	}
944     }
945     spin_unlock_wr(&rdp->lock);
946     if (writeback)
947 	ata_raid_write_metadata(rdp);
948 
949 }
950 
951 static int
952 ata_raid_status(struct ata_ioc_raid_config *config)
953 {
954     struct ar_softc *rdp;
955     int i;
956 
957     if (!(rdp = ata_raid_arrays[config->lun]))
958 	return ENXIO;
959 
960     config->type = rdp->type;
961     config->total_disks = rdp->total_disks;
962     for (i = 0; i < rdp->total_disks; i++ ) {
963 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
964 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
965 	else
966 	    config->disks[i] = -1;
967     }
968     config->interleave = rdp->interleave;
969     config->status = rdp->status;
970     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
971     return 0;
972 }
973 
974 static int
975 ata_raid_create(struct ata_ioc_raid_config *config)
976 {
977     struct ar_softc *rdp;
978     device_t subdisk;
979     int array, disk;
980     int ctlr = 0, disk_size = 0, total_disks = 0;
981 
982     for (array = 0; array < MAX_ARRAYS; array++) {
983 	if (!ata_raid_arrays[array])
984 	    break;
985     }
986     if (array >= MAX_ARRAYS)
987 	return ENOSPC;
988 
989     if (!(rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
990 					 M_WAITOK | M_ZERO))) {
991 	kprintf("ar%d: no memory for metadata storage\n", array);
992 	return ENOMEM;
993     }
994 
995     for (disk = 0; disk < config->total_disks; disk++) {
996 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
997 					   config->disks[disk]))) {
998 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
999 
1000 	    /* is device already assigned to another array ? */
1001 	    if (ars->raid[rdp->volume]) {
1002 		config->disks[disk] = -1;
1003 		kfree(rdp, M_AR);
1004 		return EBUSY;
1005 	    }
1006 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1007 
1008 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1009 	    case ATA_HIGHPOINT_ID:
1010 		/*
1011 		 * we need some way to decide if it should be v2 or v3
1012 		 * for now just use v2 since the v3 BIOS knows how to
1013 		 * handle that as well.
1014 		 */
1015 		ctlr = AR_F_HPTV2_RAID;
1016 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1017 		break;
1018 
1019 	    case ATA_INTEL_ID:
1020 		ctlr = AR_F_INTEL_RAID;
1021 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1022 		break;
1023 
1024 	    case ATA_ITE_ID:
1025 		ctlr = AR_F_ITE_RAID;
1026 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1027 		break;
1028 
1029 	    case ATA_JMICRON_ID:
1030 		ctlr = AR_F_JMICRON_RAID;
1031 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1032 		break;
1033 
1034 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1035 	    case ATA_PROMISE_ID:
1036 		ctlr = AR_F_PROMISE_RAID;
1037 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1038 		break;
1039 
1040 	    case ATA_SIS_ID:
1041 		ctlr = AR_F_SIS_RAID;
1042 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1043 		break;
1044 
1045 	    case ATA_ATI_ID:
1046 	    case ATA_VIA_ID:
1047 		ctlr = AR_F_VIA_RAID;
1048 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1049 		break;
1050 
1051 	    default:
1052 		/* XXX SOS
1053 		 * right, so here we are, we have an ATA chip and we want
1054 		 * to create a RAID and store the metadata.
1055 		 * we need to find a way to tell what kind of metadata this
1056 		 * hardware's BIOS might be using (good ideas are welcomed)
1057 		 * for now we just use our own native FreeBSD format.
1058 		 * the only way to get support for the BIOS format is to
1059 		 * setup the RAID from there, in that case we pickup the
1060 		 * metadata format from the disks (if we support it).
1061 		 */
1062 		kprintf("WARNING!! - not able to determine metadata format\n"
1063 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1064 		       "If that is not what you want, use the BIOS to "
1065 		       "create the array\n");
1066 		ctlr = AR_F_FREEBSD_RAID;
1067 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1068 		break;
1069 	    }
1070 
1071 	    /* we need all disks to be of the same format */
1072 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1073 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1074 		kfree(rdp, M_AR);
1075 		return EXDEV;
1076 	    }
1077 	    else
1078 		rdp->format = ctlr;
1079 
1080 	    /* use the smallest disk of the lots size */
1081 	    /* gigabyte boundry ??? XXX SOS */
1082 	    if (disk_size)
1083 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1084 	    else
1085 		disk_size = rdp->disks[disk].sectors;
1086 	    rdp->disks[disk].flags =
1087 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1088 
1089 	    total_disks++;
1090 	}
1091 	else {
1092 	    config->disks[disk] = -1;
1093 	    kfree(rdp, M_AR);
1094 	    return ENXIO;
1095 	}
1096     }
1097 
1098     if (total_disks != config->total_disks) {
1099 	kfree(rdp, M_AR);
1100 	return ENODEV;
1101     }
1102 
1103     switch (config->type) {
1104     case AR_T_JBOD:
1105     case AR_T_SPAN:
1106     case AR_T_RAID0:
1107 	break;
1108 
1109     case AR_T_RAID1:
1110 	if (total_disks != 2) {
1111 	    kfree(rdp, M_AR);
1112 	    return EPERM;
1113 	}
1114 	break;
1115 
1116     case AR_T_RAID01:
1117 	if (total_disks % 2 != 0) {
1118 	    kfree(rdp, M_AR);
1119 	    return EPERM;
1120 	}
1121 	break;
1122 
1123     case AR_T_RAID5:
1124 	if (total_disks < 3) {
1125 	    kfree(rdp, M_AR);
1126 	    return EPERM;
1127 	}
1128 	break;
1129 
1130     default:
1131 	kfree(rdp, M_AR);
1132 	return EOPNOTSUPP;
1133     }
1134     rdp->type = config->type;
1135     rdp->lun = array;
1136     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1137 	rdp->type == AR_T_RAID5) {
1138 	int bit = 0;
1139 
1140 	while (config->interleave >>= 1)
1141 	    bit++;
1142 	rdp->interleave = 1 << bit;
1143     }
1144     rdp->offset_sectors = 0;
1145 
1146     /* values that depend on metadata format */
1147     switch (rdp->format) {
1148     case AR_F_ADAPTEC_RAID:
1149 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1150 	break;
1151 
1152     case AR_F_HPTV2_RAID:
1153 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1154 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1155 	break;
1156 
1157     case AR_F_HPTV3_RAID:
1158 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1159 	break;
1160 
1161     case AR_F_INTEL_RAID:
1162 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1163 	break;
1164 
1165     case AR_F_ITE_RAID:
1166 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1167 	break;
1168 
1169     case AR_F_JMICRON_RAID:
1170 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1171 	break;
1172 
1173     case AR_F_LSIV2_RAID:
1174 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1175 	break;
1176 
1177     case AR_F_LSIV3_RAID:
1178 	rdp->interleave = min(max(2, rdp->interleave), 256);
1179 	break;
1180 
1181     case AR_F_PROMISE_RAID:
1182 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1183 	break;
1184 
1185     case AR_F_SII_RAID:
1186 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1187 	break;
1188 
1189     case AR_F_SIS_RAID:
1190 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1191 	break;
1192 
1193     case AR_F_VIA_RAID:
1194 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1195 	break;
1196     }
1197 
1198     rdp->total_disks = total_disks;
1199     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1200     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1201     rdp->heads = 255;
1202     rdp->sectors = 63;
1203     rdp->cylinders = rdp->total_sectors / (255 * 63);
1204     rdp->rebuild_lba = 0;
1205     rdp->status |= AR_S_READY;
1206 
1207     /* we are committed to this array, grap the subdisks */
1208     for (disk = 0; disk < config->total_disks; disk++) {
1209 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1210 					   config->disks[disk]))) {
1211 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1212 
1213 	    ars->raid[rdp->volume] = rdp;
1214 	    ars->disk_number[rdp->volume] = disk;
1215 	}
1216     }
1217     ata_raid_attach(rdp, 1);
1218     ata_raid_arrays[array] = rdp;
1219     config->lun = array;
1220     return 0;
1221 }
1222 
1223 static int
1224 ata_raid_delete(int array)
1225 {
1226     struct ar_softc *rdp;
1227     device_t subdisk;
1228     int disk;
1229 
1230     if (!(rdp = ata_raid_arrays[array]))
1231 	return ENXIO;
1232 
1233     rdp->status &= ~AR_S_READY;
1234     disk_destroy(&rdp->disk);
1235 
1236     for (disk = 0; disk < rdp->total_disks; disk++) {
1237 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1238 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1239 		     device_get_unit(rdp->disks[disk].dev)))) {
1240 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1241 
1242 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1243 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1244 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1245 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1246 		ars->raid[rdp->volume] = NULL;
1247 		ars->disk_number[rdp->volume] = -1;
1248 	    }
1249 	    rdp->disks[disk].flags = 0;
1250 	}
1251     }
1252     ata_raid_wipe_metadata(rdp);
1253     ata_raid_arrays[array] = NULL;
1254     kfree(rdp, M_AR);
1255     return 0;
1256 }
1257 
1258 static int
1259 ata_raid_addspare(struct ata_ioc_raid_config *config)
1260 {
1261     struct ar_softc *rdp;
1262     device_t subdisk;
1263     int disk;
1264 
1265     if (!(rdp = ata_raid_arrays[config->lun]))
1266 	return ENXIO;
1267     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1268 	return ENXIO;
1269     if (rdp->status & AR_S_REBUILDING)
1270 	return EBUSY;
1271     switch (rdp->type) {
1272     case AR_T_RAID1:
1273     case AR_T_RAID01:
1274     case AR_T_RAID5:
1275 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1276 
1277 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1278 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1279 		continue;
1280 
1281 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1282 					       config->disks[0] ))) {
1283 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1284 
1285 		if (ars->raid[rdp->volume])
1286 		    return EBUSY;
1287 
1288 		/* XXX SOS validate size etc etc */
1289 		ars->raid[rdp->volume] = rdp;
1290 		ars->disk_number[rdp->volume] = disk;
1291 		rdp->disks[disk].dev = device_get_parent(subdisk);
1292 		rdp->disks[disk].flags =
1293 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1294 
1295 		device_printf(rdp->disks[disk].dev,
1296 			      "inserted into ar%d disk%d as spare\n",
1297 			      rdp->lun, disk);
1298 		ata_raid_config_changed(rdp, 1);
1299 		return 0;
1300 	    }
1301 	}
1302 	return ENXIO;
1303 
1304     default:
1305 	return EPERM;
1306     }
1307 }
1308 
1309 static int
1310 ata_raid_rebuild(int array)
1311 {
1312     struct ar_softc *rdp;
1313     int disk, count;
1314 
1315     if (!(rdp = ata_raid_arrays[array]))
1316 	return ENXIO;
1317     /* XXX SOS we should lock the rdp softc here */
1318     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1319 	return ENXIO;
1320     if (rdp->status & AR_S_REBUILDING)
1321 	return EBUSY;
1322 
1323     switch (rdp->type) {
1324     case AR_T_RAID1:
1325     case AR_T_RAID01:
1326     case AR_T_RAID5:
1327 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1328 	    if (((rdp->disks[disk].flags &
1329 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1330 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1331 		rdp->disks[disk].dev) {
1332 		count++;
1333 	    }
1334 	}
1335 
1336 	if (count) {
1337 	    rdp->rebuild_lba = 0;
1338 	    rdp->status |= AR_S_REBUILDING;
1339 	    return 0;
1340 	}
1341 	return EIO;
1342 
1343     default:
1344 	return EPERM;
1345     }
1346 }
1347 
1348 static int
1349 ata_raid_read_metadata(device_t subdisk)
1350 {
1351     devclass_t pci_devclass = devclass_find("pci");
1352     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1353 
1354     /* prioritize vendor native metadata layout if possible */
1355     if (devclass == pci_devclass) {
1356 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1357 	case ATA_HIGHPOINT_ID:
1358 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1359 		return 0;
1360 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1361 		return 0;
1362 	    break;
1363 
1364 	case ATA_INTEL_ID:
1365 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1366 		return 0;
1367 	    break;
1368 
1369 	case ATA_ITE_ID:
1370 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1371 		return 0;
1372 	    break;
1373 
1374 	case ATA_JMICRON_ID:
1375 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1376 		return 0;
1377 	    break;
1378 
1379 	case ATA_NVIDIA_ID:
1380 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1381 		return 0;
1382 	    break;
1383 
1384 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1385 	case ATA_PROMISE_ID:
1386 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1387 		return 0;
1388 	    break;
1389 
1390 	case ATA_ATI_ID:
1391 	case ATA_SILICON_IMAGE_ID:
1392 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1393 		return 0;
1394 	    break;
1395 
1396 	case ATA_SIS_ID:
1397 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1398 		return 0;
1399 	    break;
1400 
1401 	case ATA_VIA_ID:
1402 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1403 		return 0;
1404 	    break;
1405 	}
1406     }
1407 
1408     /* handle controllers that have multiple layout possibilities */
1409     /* NOTE: the order of these are not insignificant */
1410 
1411     /* Adaptec HostRAID */
1412     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1413 	return 0;
1414 
1415     /* LSILogic v3 and v2 */
1416     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1417 	return 0;
1418     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1419 	return 0;
1420 
1421     /* if none of the above matched, try FreeBSD native format */
1422     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1423 }
1424 
1425 static int
1426 ata_raid_write_metadata(struct ar_softc *rdp)
1427 {
1428     switch (rdp->format) {
1429     case AR_F_FREEBSD_RAID:
1430     case AR_F_PROMISE_RAID:
1431 	return ata_raid_promise_write_meta(rdp);
1432 
1433     case AR_F_HPTV3_RAID:
1434     case AR_F_HPTV2_RAID:
1435 	/*
1436 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1437 	 * this is handy since we cannot know what version BIOS is on there
1438 	 */
1439 	return ata_raid_hptv2_write_meta(rdp);
1440 
1441     case AR_F_INTEL_RAID:
1442 	return ata_raid_intel_write_meta(rdp);
1443 
1444     case AR_F_JMICRON_RAID:
1445 	return ata_raid_jmicron_write_meta(rdp);
1446 
1447     case AR_F_SIS_RAID:
1448 	return ata_raid_sis_write_meta(rdp);
1449 
1450     case AR_F_VIA_RAID:
1451 	return ata_raid_via_write_meta(rdp);
1452 #if 0
1453     case AR_F_HPTV3_RAID:
1454 	return ata_raid_hptv3_write_meta(rdp);
1455 
1456     case AR_F_ADAPTEC_RAID:
1457 	return ata_raid_adaptec_write_meta(rdp);
1458 
1459     case AR_F_ITE_RAID:
1460 	return ata_raid_ite_write_meta(rdp);
1461 
1462     case AR_F_LSIV2_RAID:
1463 	return ata_raid_lsiv2_write_meta(rdp);
1464 
1465     case AR_F_LSIV3_RAID:
1466 	return ata_raid_lsiv3_write_meta(rdp);
1467 
1468     case AR_F_NVIDIA_RAID:
1469 	return ata_raid_nvidia_write_meta(rdp);
1470 
1471     case AR_F_SII_RAID:
1472 	return ata_raid_sii_write_meta(rdp);
1473 
1474 #endif
1475     default:
1476 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1477 	       rdp->lun, ata_raid_format(rdp));
1478     }
1479     return -1;
1480 }
1481 
1482 static int
1483 ata_raid_wipe_metadata(struct ar_softc *rdp)
1484 {
1485     int disk, error = 0;
1486     u_int64_t lba;
1487     u_int32_t size;
1488     u_int8_t *meta;
1489 
1490     for (disk = 0; disk < rdp->total_disks; disk++) {
1491 	if (rdp->disks[disk].dev) {
1492 	    switch (rdp->format) {
1493 	    case AR_F_ADAPTEC_RAID:
1494 		lba = ADP_LBA(rdp->disks[disk].dev);
1495 		size = sizeof(struct adaptec_raid_conf);
1496 		break;
1497 
1498 	    case AR_F_HPTV2_RAID:
1499 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1500 		size = sizeof(struct hptv2_raid_conf);
1501 		break;
1502 
1503 	    case AR_F_HPTV3_RAID:
1504 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1505 		size = sizeof(struct hptv3_raid_conf);
1506 		break;
1507 
1508 	    case AR_F_INTEL_RAID:
1509 		lba = INTEL_LBA(rdp->disks[disk].dev);
1510 		size = 3 * 512;         /* XXX SOS */
1511 		break;
1512 
1513 	    case AR_F_ITE_RAID:
1514 		lba = ITE_LBA(rdp->disks[disk].dev);
1515 		size = sizeof(struct ite_raid_conf);
1516 		break;
1517 
1518 	    case AR_F_JMICRON_RAID:
1519 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1520 		size = sizeof(struct jmicron_raid_conf);
1521 		break;
1522 
1523 	    case AR_F_LSIV2_RAID:
1524 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1525 		size = sizeof(struct lsiv2_raid_conf);
1526 		break;
1527 
1528 	    case AR_F_LSIV3_RAID:
1529 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1530 		size = sizeof(struct lsiv3_raid_conf);
1531 		break;
1532 
1533 	    case AR_F_NVIDIA_RAID:
1534 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1535 		size = sizeof(struct nvidia_raid_conf);
1536 		break;
1537 
1538 	    case AR_F_FREEBSD_RAID:
1539 	    case AR_F_PROMISE_RAID:
1540 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1541 		size = sizeof(struct promise_raid_conf);
1542 		break;
1543 
1544 	    case AR_F_SII_RAID:
1545 		lba = SII_LBA(rdp->disks[disk].dev);
1546 		size = sizeof(struct sii_raid_conf);
1547 		break;
1548 
1549 	    case AR_F_SIS_RAID:
1550 		lba = SIS_LBA(rdp->disks[disk].dev);
1551 		size = sizeof(struct sis_raid_conf);
1552 		break;
1553 
1554 	    case AR_F_VIA_RAID:
1555 		lba = VIA_LBA(rdp->disks[disk].dev);
1556 		size = sizeof(struct via_raid_conf);
1557 		break;
1558 
1559 	    default:
1560 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1561 		       rdp->lun, ata_raid_format(rdp));
1562 		return ENXIO;
1563 	    }
1564 	    if (!(meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO)))
1565 		return ENOMEM;
1566 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1567 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1568 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1569 		error = EIO;
1570 	    }
1571 	    kfree(meta, M_AR);
1572 	}
1573     }
1574     return error;
1575 }
1576 
1577 /* Adaptec HostRAID Metadata */
1578 static int
1579 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1580 {
1581     struct ata_raid_subdisk *ars = device_get_softc(dev);
1582     device_t parent = device_get_parent(dev);
1583     struct adaptec_raid_conf *meta;
1584     struct ar_softc *raid;
1585     int array, disk, retval = 0;
1586 
1587     if (!(meta = (struct adaptec_raid_conf *)
1588 	  kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1589 	return ENOMEM;
1590 
1591     if (ata_raid_rw(parent, ADP_LBA(parent),
1592 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1593 	if (testing || bootverbose)
1594 	    device_printf(parent, "Adaptec read metadata failed\n");
1595 	goto adaptec_out;
1596     }
1597 
1598     /* check if this is a Adaptec RAID struct */
1599     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1600 	if (testing || bootverbose)
1601 	    device_printf(parent, "Adaptec check1 failed\n");
1602 	goto adaptec_out;
1603     }
1604 
1605     if (testing || bootverbose)
1606 	ata_raid_adaptec_print_meta(meta);
1607 
1608     /* now convert Adaptec metadata into our generic form */
1609     for (array = 0; array < MAX_ARRAYS; array++) {
1610 	if (!raidp[array]) {
1611 	    raidp[array] =
1612 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1613 					  M_WAITOK | M_ZERO);
1614 	    if (!raidp[array]) {
1615 		device_printf(parent, "failed to allocate metadata storage\n");
1616 		goto adaptec_out;
1617 	    }
1618 	}
1619 	raid = raidp[array];
1620 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1621 	    continue;
1622 
1623 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1624 	    continue;
1625 
1626 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1627 	    switch (meta->configs[0].type) {
1628 	    case ADP_T_RAID0:
1629 		raid->magic_0 = meta->configs[0].magic_0;
1630 		raid->type = AR_T_RAID0;
1631 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1632 		raid->width = be16toh(meta->configs[0].total_disks);
1633 		break;
1634 
1635 	    case ADP_T_RAID1:
1636 		raid->magic_0 = meta->configs[0].magic_0;
1637 		raid->type = AR_T_RAID1;
1638 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1639 		break;
1640 
1641 	    default:
1642 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1643 			      meta->configs[0].type);
1644 		kfree(raidp[array], M_AR);
1645 		raidp[array] = NULL;
1646 		goto adaptec_out;
1647 	    }
1648 
1649 	    raid->format = AR_F_ADAPTEC_RAID;
1650 	    raid->generation = be32toh(meta->generation);
1651 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1652 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1653 	    raid->heads = 255;
1654 	    raid->sectors = 63;
1655 	    raid->cylinders = raid->total_sectors / (63 * 255);
1656 	    raid->offset_sectors = 0;
1657 	    raid->rebuild_lba = 0;
1658 	    raid->lun = array;
1659 	    strncpy(raid->name, meta->configs[0].name,
1660 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1661 
1662 	    /* clear out any old info */
1663 	    if (raid->generation) {
1664 		for (disk = 0; disk < raid->total_disks; disk++) {
1665 		    raid->disks[disk].dev = NULL;
1666 		    raid->disks[disk].flags = 0;
1667 		}
1668 	    }
1669 	}
1670 	if (be32toh(meta->generation) >= raid->generation) {
1671 	    struct ata_device *atadev = device_get_softc(parent);
1672 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1673 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1674 			      ATA_DEV(atadev->unit);
1675 
1676 	    raid->disks[disk_number].dev = parent;
1677 	    raid->disks[disk_number].sectors =
1678 		be32toh(meta->configs[disk_number + 1].sectors);
1679 	    raid->disks[disk_number].flags =
1680 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1681 	    ars->raid[raid->volume] = raid;
1682 	    ars->disk_number[raid->volume] = disk_number;
1683 	    retval = 1;
1684 	}
1685 	break;
1686     }
1687 
1688 adaptec_out:
1689     kfree(meta, M_AR);
1690     return retval;
1691 }
1692 
1693 /* Highpoint V2 RocketRAID Metadata */
1694 static int
1695 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1696 {
1697     struct ata_raid_subdisk *ars = device_get_softc(dev);
1698     device_t parent = device_get_parent(dev);
1699     struct hptv2_raid_conf *meta;
1700     struct ar_softc *raid = NULL;
1701     int array, disk_number = 0, retval = 0;
1702 
1703     if (!(meta = (struct hptv2_raid_conf *)
1704 	  kmalloc(sizeof(struct hptv2_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1705 	return ENOMEM;
1706 
1707     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1708 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1709 	if (testing || bootverbose)
1710 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1711 	goto hptv2_out;
1712     }
1713 
1714     /* check if this is a HighPoint v2 RAID struct */
1715     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1716 	if (testing || bootverbose)
1717 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1718 	goto hptv2_out;
1719     }
1720 
1721     /* is this disk defined, or an old leftover/spare ? */
1722     if (!meta->magic_0) {
1723 	if (testing || bootverbose)
1724 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1725 	goto hptv2_out;
1726     }
1727 
1728     if (testing || bootverbose)
1729 	ata_raid_hptv2_print_meta(meta);
1730 
1731     /* now convert HighPoint (v2) metadata into our generic form */
1732     for (array = 0; array < MAX_ARRAYS; array++) {
1733 	if (!raidp[array]) {
1734 	    raidp[array] =
1735 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1736 					  M_WAITOK | M_ZERO);
1737 	    if (!raidp[array]) {
1738 		device_printf(parent, "failed to allocate metadata storage\n");
1739 		goto hptv2_out;
1740 	    }
1741 	}
1742 	raid = raidp[array];
1743 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1744 	    continue;
1745 
1746 	switch (meta->type) {
1747 	case HPTV2_T_RAID0:
1748 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1749 		(HPTV2_O_RAID0|HPTV2_O_OK))
1750 		goto highpoint_raid1;
1751 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1752 		goto highpoint_raid01;
1753 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1754 		continue;
1755 	    raid->magic_0 = meta->magic_0;
1756 	    raid->type = AR_T_RAID0;
1757 	    raid->interleave = 1 << meta->stripe_shift;
1758 	    disk_number = meta->disk_number;
1759 	    if (!(meta->order & HPTV2_O_OK))
1760 		meta->magic = 0;        /* mark bad */
1761 	    break;
1762 
1763 	case HPTV2_T_RAID1:
1764 highpoint_raid1:
1765 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1766 		continue;
1767 	    raid->magic_0 = meta->magic_0;
1768 	    raid->type = AR_T_RAID1;
1769 	    disk_number = (meta->disk_number > 0);
1770 	    break;
1771 
1772 	case HPTV2_T_RAID01_RAID0:
1773 highpoint_raid01:
1774 	    if (meta->order & HPTV2_O_RAID0) {
1775 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1776 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1777 		    continue;
1778 		raid->magic_0 = meta->magic_0;
1779 		raid->magic_1 = meta->magic_1;
1780 		raid->type = AR_T_RAID01;
1781 		raid->interleave = 1 << meta->stripe_shift;
1782 		disk_number = meta->disk_number;
1783 	    }
1784 	    else {
1785 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1786 		    continue;
1787 		raid->magic_1 = meta->magic_1;
1788 		raid->type = AR_T_RAID01;
1789 		raid->interleave = 1 << meta->stripe_shift;
1790 		disk_number = meta->disk_number + meta->array_width;
1791 		if (!(meta->order & HPTV2_O_RAID1))
1792 		    meta->magic = 0;    /* mark bad */
1793 	    }
1794 	    break;
1795 
1796 	case HPTV2_T_SPAN:
1797 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1798 		continue;
1799 	    raid->magic_0 = meta->magic_0;
1800 	    raid->type = AR_T_SPAN;
1801 	    disk_number = meta->disk_number;
1802 	    break;
1803 
1804 	default:
1805 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1806 			  meta->type);
1807 	    kfree(raidp[array], M_AR);
1808 	    raidp[array] = NULL;
1809 	    goto hptv2_out;
1810 	}
1811 
1812 	raid->format |= AR_F_HPTV2_RAID;
1813 	raid->disks[disk_number].dev = parent;
1814 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1815 	raid->lun = array;
1816 	strncpy(raid->name, meta->name_1,
1817 		min(sizeof(raid->name), sizeof(meta->name_1)));
1818 	if (meta->magic == HPTV2_MAGIC_OK) {
1819 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1820 	    raid->width = meta->array_width;
1821 	    raid->total_sectors = meta->total_sectors;
1822 	    raid->heads = 255;
1823 	    raid->sectors = 63;
1824 	    raid->cylinders = raid->total_sectors / (63 * 255);
1825 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1826 	    raid->rebuild_lba = meta->rebuild_lba;
1827 	    raid->disks[disk_number].sectors =
1828 		raid->total_sectors / raid->width;
1829 	}
1830 	else
1831 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1832 
1833 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1834 	    raid->total_disks = raid->width;
1835 	if (disk_number >= raid->total_disks)
1836 	    raid->total_disks = disk_number + 1;
1837 	ars->raid[raid->volume] = raid;
1838 	ars->disk_number[raid->volume] = disk_number;
1839 	retval = 1;
1840 	break;
1841     }
1842 
1843 hptv2_out:
1844     kfree(meta, M_AR);
1845     return retval;
1846 }
1847 
1848 static int
1849 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1850 {
1851     struct hptv2_raid_conf *meta;
1852     struct timeval timestamp;
1853     int disk, error = 0;
1854 
1855     if (!(meta = (struct hptv2_raid_conf *)
1856 	  kmalloc(sizeof(struct hptv2_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
1857 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
1858 	return ENOMEM;
1859     }
1860 
1861     microtime(&timestamp);
1862     rdp->magic_0 = timestamp.tv_sec + 2;
1863     rdp->magic_1 = timestamp.tv_sec;
1864 
1865     for (disk = 0; disk < rdp->total_disks; disk++) {
1866 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1867 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1868 	    meta->magic = HPTV2_MAGIC_OK;
1869 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1870 	    meta->magic_0 = rdp->magic_0;
1871 	    if (strlen(rdp->name))
1872 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1873 	    else
1874 		strcpy(meta->name_1, "FreeBSD");
1875 	}
1876 	meta->disk_number = disk;
1877 
1878 	switch (rdp->type) {
1879 	case AR_T_RAID0:
1880 	    meta->type = HPTV2_T_RAID0;
1881 	    strcpy(meta->name_2, "RAID 0");
1882 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1883 		meta->order = HPTV2_O_OK;
1884 	    break;
1885 
1886 	case AR_T_RAID1:
1887 	    meta->type = HPTV2_T_RAID0;
1888 	    strcpy(meta->name_2, "RAID 1");
1889 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1890 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1891 	    break;
1892 
1893 	case AR_T_RAID01:
1894 	    meta->type = HPTV2_T_RAID01_RAID0;
1895 	    strcpy(meta->name_2, "RAID 0+1");
1896 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1897 		if (disk < rdp->width) {
1898 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1899 		    meta->magic_0 = rdp->magic_0 - 1;
1900 		}
1901 		else {
1902 		    meta->order = HPTV2_O_RAID1;
1903 		    meta->disk_number -= rdp->width;
1904 		}
1905 	    }
1906 	    else
1907 		meta->magic_0 = rdp->magic_0 - 1;
1908 	    meta->magic_1 = rdp->magic_1;
1909 	    break;
1910 
1911 	case AR_T_SPAN:
1912 	    meta->type = HPTV2_T_SPAN;
1913 	    strcpy(meta->name_2, "SPAN");
1914 	    break;
1915 	default:
1916 	    kfree(meta, M_AR);
1917 	    return ENODEV;
1918 	}
1919 
1920 	meta->array_width = rdp->width;
1921 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1922 	meta->total_sectors = rdp->total_sectors;
1923 	meta->rebuild_lba = rdp->rebuild_lba;
1924 	if (testing || bootverbose)
1925 	    ata_raid_hptv2_print_meta(meta);
1926 	if (rdp->disks[disk].dev) {
1927 	    if (ata_raid_rw(rdp->disks[disk].dev,
1928 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1929 			    sizeof(struct promise_raid_conf),
1930 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1931 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1932 		error = EIO;
1933 	    }
1934 	}
1935     }
1936     kfree(meta, M_AR);
1937     return error;
1938 }
1939 
1940 /* Highpoint V3 RocketRAID Metadata */
1941 static int
1942 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1943 {
1944     struct ata_raid_subdisk *ars = device_get_softc(dev);
1945     device_t parent = device_get_parent(dev);
1946     struct hptv3_raid_conf *meta;
1947     struct ar_softc *raid = NULL;
1948     int array, disk_number, retval = 0;
1949 
1950     if (!(meta = (struct hptv3_raid_conf *)
1951 	  kmalloc(sizeof(struct hptv3_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1952 	return ENOMEM;
1953 
1954     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1955 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1956 	if (testing || bootverbose)
1957 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1958 	goto hptv3_out;
1959     }
1960 
1961     /* check if this is a HighPoint v3 RAID struct */
1962     if (meta->magic != HPTV3_MAGIC) {
1963 	if (testing || bootverbose)
1964 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
1965 	goto hptv3_out;
1966     }
1967 
1968     /* check if there are any config_entries */
1969     if (meta->config_entries < 1) {
1970 	if (testing || bootverbose)
1971 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
1972 	goto hptv3_out;
1973     }
1974 
1975     if (testing || bootverbose)
1976 	ata_raid_hptv3_print_meta(meta);
1977 
1978     /* now convert HighPoint (v3) metadata into our generic form */
1979     for (array = 0; array < MAX_ARRAYS; array++) {
1980 	if (!raidp[array]) {
1981 	    raidp[array] =
1982 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1983 					  M_WAITOK | M_ZERO);
1984 	    if (!raidp[array]) {
1985 		device_printf(parent, "failed to allocate metadata storage\n");
1986 		goto hptv3_out;
1987 	    }
1988 	}
1989 	raid = raidp[array];
1990 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
1991 	    continue;
1992 
1993 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
1994 	    continue;
1995 
1996 	switch (meta->configs[0].type) {
1997 	case HPTV3_T_RAID0:
1998 	    raid->type = AR_T_RAID0;
1999 	    raid->width = meta->configs[0].total_disks;
2000 	    disk_number = meta->configs[0].disk_number;
2001 	    break;
2002 
2003 	case HPTV3_T_RAID1:
2004 	    raid->type = AR_T_RAID1;
2005 	    raid->width = meta->configs[0].total_disks / 2;
2006 	    disk_number = meta->configs[0].disk_number;
2007 	    break;
2008 
2009 	case HPTV3_T_RAID5:
2010 	    raid->type = AR_T_RAID5;
2011 	    raid->width = meta->configs[0].total_disks;
2012 	    disk_number = meta->configs[0].disk_number;
2013 	    break;
2014 
2015 	case HPTV3_T_SPAN:
2016 	    raid->type = AR_T_SPAN;
2017 	    raid->width = meta->configs[0].total_disks;
2018 	    disk_number = meta->configs[0].disk_number;
2019 	    break;
2020 
2021 	default:
2022 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2023 			  meta->configs[0].type);
2024 	    kfree(raidp[array], M_AR);
2025 	    raidp[array] = NULL;
2026 	    goto hptv3_out;
2027 	}
2028 	if (meta->config_entries == 2) {
2029 	    switch (meta->configs[1].type) {
2030 	    case HPTV3_T_RAID1:
2031 		if (raid->type == AR_T_RAID0) {
2032 		    raid->type = AR_T_RAID01;
2033 		    disk_number = meta->configs[1].disk_number +
2034 				  (meta->configs[0].disk_number << 1);
2035 		    break;
2036 		}
2037 	    default:
2038 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2039 			      meta->configs[1].type);
2040 		kfree(raidp[array], M_AR);
2041 		raidp[array] = NULL;
2042 		goto hptv3_out;
2043 	    }
2044 	}
2045 
2046 	raid->magic_0 = meta->magic_0;
2047 	raid->format = AR_F_HPTV3_RAID;
2048 	raid->generation = meta->timestamp;
2049 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2050 	raid->total_disks = meta->configs[0].total_disks +
2051 	    meta->configs[1].total_disks;
2052 	raid->total_sectors = meta->configs[0].total_sectors +
2053 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2054 	raid->heads = 255;
2055 	raid->sectors = 63;
2056 	raid->cylinders = raid->total_sectors / (63 * 255);
2057 	raid->offset_sectors = 0;
2058 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2059 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2060 	raid->lun = array;
2061 	strncpy(raid->name, meta->name,
2062 		min(sizeof(raid->name), sizeof(meta->name)));
2063 	raid->disks[disk_number].sectors = raid->total_sectors /
2064 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2065 	raid->disks[disk_number].dev = parent;
2066 	raid->disks[disk_number].flags =
2067 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2068 	ars->raid[raid->volume] = raid;
2069 	ars->disk_number[raid->volume] = disk_number;
2070 	retval = 1;
2071 	break;
2072     }
2073 
2074 hptv3_out:
2075     kfree(meta, M_AR);
2076     return retval;
2077 }
2078 
2079 /* Intel MatrixRAID Metadata */
2080 static int
2081 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2082 {
2083     struct ata_raid_subdisk *ars = device_get_softc(dev);
2084     device_t parent = device_get_parent(dev);
2085     struct intel_raid_conf *meta;
2086     struct intel_raid_mapping *map;
2087     struct ar_softc *raid = NULL;
2088     u_int32_t checksum, *ptr;
2089     int array, count, disk, volume = 1, retval = 0;
2090     char *tmp;
2091 
2092     if (!(meta = (struct intel_raid_conf *)
2093 	  kmalloc(1536, M_AR, M_WAITOK | M_ZERO)))
2094 	return ENOMEM;
2095 
2096     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2097 	if (testing || bootverbose)
2098 	    device_printf(parent, "Intel read metadata failed\n");
2099 	goto intel_out;
2100     }
2101     tmp = (char *)meta;
2102     bcopy(tmp, tmp+1024, 512);
2103     bcopy(tmp+512, tmp, 1024);
2104     bzero(tmp+1024, 512);
2105 
2106     /* check if this is a Intel RAID struct */
2107     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2108 	if (testing || bootverbose)
2109 	    device_printf(parent, "Intel check1 failed\n");
2110 	goto intel_out;
2111     }
2112 
2113     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2114 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2115 	checksum += *ptr++;
2116     }
2117     checksum -= meta->checksum;
2118     if (checksum != meta->checksum) {
2119 	if (testing || bootverbose)
2120 	    device_printf(parent, "Intel check2 failed\n");
2121 	goto intel_out;
2122     }
2123 
2124     if (testing || bootverbose)
2125 	ata_raid_intel_print_meta(meta);
2126 
2127     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2128 
2129     /* now convert Intel metadata into our generic form */
2130     for (array = 0; array < MAX_ARRAYS; array++) {
2131 	if (!raidp[array]) {
2132 	    raidp[array] =
2133 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2134 					  M_WAITOK | M_ZERO);
2135 	    if (!raidp[array]) {
2136 		device_printf(parent, "failed to allocate metadata storage\n");
2137 		goto intel_out;
2138 	    }
2139 	}
2140 	raid = raidp[array];
2141 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2142 	    continue;
2143 
2144 	if ((raid->format & AR_F_INTEL_RAID) &&
2145 	    (raid->magic_0 != meta->config_id))
2146 	    continue;
2147 
2148 	/*
2149 	 * update our knowledge about the array config based on generation
2150 	 * NOTE: there can be multiple volumes on a disk set
2151 	 */
2152 	if (!meta->generation || meta->generation > raid->generation) {
2153 	    switch (map->type) {
2154 	    case INTEL_T_RAID0:
2155 		raid->type = AR_T_RAID0;
2156 		raid->width = map->total_disks;
2157 		break;
2158 
2159 	    case INTEL_T_RAID1:
2160 		if (map->total_disks == 4)
2161 		    raid->type = AR_T_RAID01;
2162 		else
2163 		    raid->type = AR_T_RAID1;
2164 		raid->width = map->total_disks / 2;
2165 		break;
2166 
2167 	    case INTEL_T_RAID5:
2168 		raid->type = AR_T_RAID5;
2169 		raid->width = map->total_disks;
2170 		break;
2171 
2172 	    default:
2173 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2174 			      map->type);
2175 		kfree(raidp[array], M_AR);
2176 		raidp[array] = NULL;
2177 		goto intel_out;
2178 	    }
2179 
2180 	    switch (map->status) {
2181 	    case INTEL_S_READY:
2182 		raid->status = AR_S_READY;
2183 		break;
2184 	    case INTEL_S_DEGRADED:
2185 		raid->status |= AR_S_DEGRADED;
2186 		break;
2187 	    case INTEL_S_DISABLED:
2188 	    case INTEL_S_FAILURE:
2189 		raid->status = 0;
2190 	    }
2191 
2192 	    raid->magic_0 = meta->config_id;
2193 	    raid->format = AR_F_INTEL_RAID;
2194 	    raid->generation = meta->generation;
2195 	    raid->interleave = map->stripe_sectors;
2196 	    raid->total_disks = map->total_disks;
2197 	    raid->total_sectors = map->total_sectors;
2198 	    raid->heads = 255;
2199 	    raid->sectors = 63;
2200 	    raid->cylinders = raid->total_sectors / (63 * 255);
2201 	    raid->offset_sectors = map->offset;
2202 	    raid->rebuild_lba = 0;
2203 	    raid->lun = array;
2204 	    raid->volume = volume - 1;
2205 	    strncpy(raid->name, map->name,
2206 		    min(sizeof(raid->name), sizeof(map->name)));
2207 
2208 	    /* clear out any old info */
2209 	    for (disk = 0; disk < raid->total_disks; disk++) {
2210 		raid->disks[disk].dev = NULL;
2211 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2212 		      raid->disks[disk].serial,
2213 		      sizeof(raid->disks[disk].serial));
2214 		raid->disks[disk].sectors =
2215 		    meta->disk[map->disk_idx[disk]].sectors;
2216 		raid->disks[disk].flags = 0;
2217 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2218 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2219 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2220 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2221 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2222 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2223 		    raid->disks[disk].flags |= AR_DF_SPARE;
2224 		}
2225 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2226 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2227 	    }
2228 	}
2229 	if (meta->generation >= raid->generation) {
2230 	    for (disk = 0; disk < raid->total_disks; disk++) {
2231 		struct ata_device *atadev = device_get_softc(parent);
2232 
2233 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2234 		    sizeof(raid->disks[disk].serial))) {
2235 		    raid->disks[disk].dev = parent;
2236 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2237 		    ars->raid[raid->volume] = raid;
2238 		    ars->disk_number[raid->volume] = disk;
2239 		    retval = 1;
2240 		}
2241 	    }
2242 	}
2243 	else
2244 	    goto intel_out;
2245 
2246 	if (retval) {
2247 	    if (volume < meta->total_volumes) {
2248 		map = (struct intel_raid_mapping *)
2249 		      &map->disk_idx[map->total_disks];
2250 		volume++;
2251 		retval = 0;
2252 		continue;
2253 	    }
2254 	    break;
2255 	}
2256 	else {
2257 	    kfree(raidp[array], M_AR);
2258 	    raidp[array] = NULL;
2259 	    if (volume == 2)
2260 		retval = 1;
2261 	}
2262     }
2263 
2264 intel_out:
2265     kfree(meta, M_AR);
2266     return retval;
2267 }
2268 
2269 static int
2270 ata_raid_intel_write_meta(struct ar_softc *rdp)
2271 {
2272     struct intel_raid_conf *meta;
2273     struct intel_raid_mapping *map;
2274     struct timeval timestamp;
2275     u_int32_t checksum, *ptr;
2276     int count, disk, error = 0;
2277     char *tmp;
2278 
2279     if (!(meta = (struct intel_raid_conf *)
2280 	  kmalloc(1536, M_AR, M_WAITOK | M_ZERO))) {
2281 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
2282 	return ENOMEM;
2283     }
2284 
2285     rdp->generation++;
2286     microtime(&timestamp);
2287 
2288     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2289     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2290     meta->config_id = timestamp.tv_sec;
2291     meta->generation = rdp->generation;
2292     meta->total_disks = rdp->total_disks;
2293     meta->total_volumes = 1;                                    /* XXX SOS */
2294     for (disk = 0; disk < rdp->total_disks; disk++) {
2295 	if (rdp->disks[disk].dev) {
2296 	    struct ata_channel *ch =
2297 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2298 	    struct ata_device *atadev =
2299 		device_get_softc(rdp->disks[disk].dev);
2300 
2301 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2302 		  sizeof(rdp->disks[disk].serial));
2303 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2304 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2305 	}
2306 	else
2307 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2308 	meta->disk[disk].flags = 0;
2309 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2310 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2311 	else {
2312 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2313 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2314 	    else
2315 		meta->disk[disk].flags |= INTEL_F_DOWN;
2316 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2317 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2318 	}
2319     }
2320     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2321 
2322     bcopy(rdp->name, map->name, sizeof(rdp->name));
2323     map->total_sectors = rdp->total_sectors;
2324     map->state = 12;                                            /* XXX SOS */
2325     map->offset = rdp->offset_sectors;
2326     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2327     map->stripe_sectors =  rdp->interleave;
2328     map->disk_sectors = rdp->total_sectors / rdp->width;
2329     map->status = INTEL_S_READY;                                /* XXX SOS */
2330     switch (rdp->type) {
2331     case AR_T_RAID0:
2332 	map->type = INTEL_T_RAID0;
2333 	break;
2334     case AR_T_RAID1:
2335 	map->type = INTEL_T_RAID1;
2336 	break;
2337     case AR_T_RAID01:
2338 	map->type = INTEL_T_RAID1;
2339 	break;
2340     case AR_T_RAID5:
2341 	map->type = INTEL_T_RAID5;
2342 	break;
2343     default:
2344 	kfree(meta, M_AR);
2345 	return ENODEV;
2346     }
2347     map->total_disks = rdp->total_disks;
2348     map->magic[0] = 0x02;
2349     map->magic[1] = 0xff;
2350     map->magic[2] = 0x01;
2351     for (disk = 0; disk < rdp->total_disks; disk++)
2352 	map->disk_idx[disk] = disk;
2353 
2354     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2355     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2356 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2357 	checksum += *ptr++;
2358     }
2359     meta->checksum = checksum;
2360 
2361     if (testing || bootverbose)
2362 	ata_raid_intel_print_meta(meta);
2363 
2364     tmp = (char *)meta;
2365     bcopy(tmp, tmp+1024, 512);
2366     bcopy(tmp+512, tmp, 1024);
2367     bzero(tmp+1024, 512);
2368 
2369     for (disk = 0; disk < rdp->total_disks; disk++) {
2370 	if (rdp->disks[disk].dev) {
2371 	    if (ata_raid_rw(rdp->disks[disk].dev,
2372 			    INTEL_LBA(rdp->disks[disk].dev),
2373 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2374 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2375 		error = EIO;
2376 	    }
2377 	}
2378     }
2379     kfree(meta, M_AR);
2380     return error;
2381 }
2382 
2383 
2384 /* Integrated Technology Express Metadata */
2385 static int
2386 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2387 {
2388     struct ata_raid_subdisk *ars = device_get_softc(dev);
2389     device_t parent = device_get_parent(dev);
2390     struct ite_raid_conf *meta;
2391     struct ar_softc *raid = NULL;
2392     int array, disk_number, count, retval = 0;
2393     u_int16_t *ptr;
2394 
2395     if (!(meta = (struct ite_raid_conf *)
2396 	  kmalloc(sizeof(struct ite_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2397 	return ENOMEM;
2398 
2399     if (ata_raid_rw(parent, ITE_LBA(parent),
2400 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2401 	if (testing || bootverbose)
2402 	    device_printf(parent, "ITE read metadata failed\n");
2403 	goto ite_out;
2404     }
2405 
2406     /* check if this is a ITE RAID struct */
2407     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2408 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2409 	ptr[count] = be16toh(ptr[count]);
2410 
2411     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2412 	if (testing || bootverbose)
2413 	    device_printf(parent, "ITE check1 failed\n");
2414 	goto ite_out;
2415     }
2416 
2417     if (testing || bootverbose)
2418 	ata_raid_ite_print_meta(meta);
2419 
2420     /* now convert ITE metadata into our generic form */
2421     for (array = 0; array < MAX_ARRAYS; array++) {
2422 	if ((raid = raidp[array])) {
2423 	    if (raid->format != AR_F_ITE_RAID)
2424 		continue;
2425 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2426 		continue;
2427 	}
2428 
2429 	/* if we dont have a disks timestamp the RAID is invalidated */
2430 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2431 	    goto ite_out;
2432 
2433 	if (!raid) {
2434 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2435 						     M_AR, M_WAITOK | M_ZERO);
2436 	    if (!(raid = raidp[array])) {
2437 		device_printf(parent, "failed to allocate metadata storage\n");
2438 		goto ite_out;
2439 	    }
2440 	}
2441 
2442 	switch (meta->type) {
2443 	case ITE_T_RAID0:
2444 	    raid->type = AR_T_RAID0;
2445 	    raid->width = meta->array_width;
2446 	    raid->total_disks = meta->array_width;
2447 	    disk_number = meta->disk_number;
2448 	    break;
2449 
2450 	case ITE_T_RAID1:
2451 	    raid->type = AR_T_RAID1;
2452 	    raid->width = 1;
2453 	    raid->total_disks = 2;
2454 	    disk_number = meta->disk_number;
2455 	    break;
2456 
2457 	case ITE_T_RAID01:
2458 	    raid->type = AR_T_RAID01;
2459 	    raid->width = meta->array_width;
2460 	    raid->total_disks = 4;
2461 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2462 			  ((meta->disk_number & 0x01) << 1);
2463 	    break;
2464 
2465 	case ITE_T_SPAN:
2466 	    raid->type = AR_T_SPAN;
2467 	    raid->width = 1;
2468 	    raid->total_disks = meta->array_width;
2469 	    disk_number = meta->disk_number;
2470 	    break;
2471 
2472 	default:
2473 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2474 	    kfree(raidp[array], M_AR);
2475 	    raidp[array] = NULL;
2476 	    goto ite_out;
2477 	}
2478 
2479 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2480 	raid->format = AR_F_ITE_RAID;
2481 	raid->generation = 0;
2482 	raid->interleave = meta->stripe_sectors;
2483 	raid->total_sectors = meta->total_sectors;
2484 	raid->heads = 255;
2485 	raid->sectors = 63;
2486 	raid->cylinders = raid->total_sectors / (63 * 255);
2487 	raid->offset_sectors = 0;
2488 	raid->rebuild_lba = 0;
2489 	raid->lun = array;
2490 
2491 	raid->disks[disk_number].dev = parent;
2492 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2493 	raid->disks[disk_number].flags =
2494 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2495 	ars->raid[raid->volume] = raid;
2496 	ars->disk_number[raid->volume] = disk_number;
2497 	retval = 1;
2498 	break;
2499     }
2500 ite_out:
2501     kfree(meta, M_AR);
2502     return retval;
2503 }
2504 
2505 /* JMicron Technology Corp Metadata */
2506 static int
2507 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2508 {
2509     struct ata_raid_subdisk *ars = device_get_softc(dev);
2510     device_t parent = device_get_parent(dev);
2511     struct jmicron_raid_conf *meta;
2512     struct ar_softc *raid = NULL;
2513     u_int16_t checksum, *ptr;
2514     u_int64_t disk_size;
2515     int count, array, disk, total_disks, retval = 0;
2516 
2517     if (!(meta = (struct jmicron_raid_conf *)
2518 	  kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2519 	return ENOMEM;
2520 
2521     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2522 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2523 	if (testing || bootverbose)
2524 	    device_printf(parent,
2525 			  "JMicron read metadata failed\n");
2526     }
2527 
2528     /* check for JMicron signature */
2529     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2530 	if (testing || bootverbose)
2531 	    device_printf(parent, "JMicron check1 failed\n");
2532 	goto jmicron_out;
2533     }
2534 
2535     /* calculate checksum and compare for valid */
2536     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2537 	checksum += *ptr++;
2538     if (checksum) {
2539 	if (testing || bootverbose)
2540 	    device_printf(parent, "JMicron check2 failed\n");
2541 	goto jmicron_out;
2542     }
2543 
2544     if (testing || bootverbose)
2545 	ata_raid_jmicron_print_meta(meta);
2546 
2547     /* now convert JMicron meta into our generic form */
2548     for (array = 0; array < MAX_ARRAYS; array++) {
2549 jmicron_next:
2550 	if (!raidp[array]) {
2551 	    raidp[array] =
2552 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2553 					  M_WAITOK | M_ZERO);
2554 	    if (!raidp[array]) {
2555 		device_printf(parent, "failed to allocate metadata storage\n");
2556 		goto jmicron_out;
2557 	    }
2558 	}
2559 	raid = raidp[array];
2560 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2561 	    continue;
2562 
2563 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2564 	    if (meta->disks[disk]) {
2565 		if (raid->format == AR_F_JMICRON_RAID) {
2566 		    if (bcmp(&meta->disks[disk],
2567 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2568 			array++;
2569 			goto jmicron_next;
2570 		    }
2571 		}
2572 		else
2573 		    bcopy(&meta->disks[disk],
2574 			  raid->disks[disk].serial, sizeof(u_int32_t));
2575 		total_disks++;
2576 	    }
2577 	}
2578 	/* handle spares XXX SOS */
2579 
2580 	switch (meta->type) {
2581 	case JM_T_RAID0:
2582 	    raid->type = AR_T_RAID0;
2583 	    raid->width = total_disks;
2584 	    break;
2585 
2586 	case JM_T_RAID1:
2587 	    raid->type = AR_T_RAID1;
2588 	    raid->width = 1;
2589 	    break;
2590 
2591 	case JM_T_RAID01:
2592 	    raid->type = AR_T_RAID01;
2593 	    raid->width = total_disks / 2;
2594 	    break;
2595 
2596 	case JM_T_RAID5:
2597 	    raid->type = AR_T_RAID5;
2598 	    raid->width = total_disks;
2599 	    break;
2600 
2601 	case JM_T_JBOD:
2602 	    raid->type = AR_T_SPAN;
2603 	    raid->width = 1;
2604 	    break;
2605 
2606 	default:
2607 	    device_printf(parent,
2608 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2609 	    kfree(raidp[array], M_AR);
2610 	    raidp[array] = NULL;
2611 	    goto jmicron_out;
2612 	}
2613 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2614 	raid->format = AR_F_JMICRON_RAID;
2615 	strncpy(raid->name, meta->name, sizeof(meta->name));
2616 	raid->generation = 0;
2617 	raid->interleave = 2 << meta->stripe_shift;
2618 	raid->total_disks = total_disks;
2619 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2620 	raid->heads = 255;
2621 	raid->sectors = 63;
2622 	raid->cylinders = raid->total_sectors / (63 * 255);
2623 	raid->offset_sectors = meta->offset * 16;
2624 	raid->rebuild_lba = 0;
2625 	raid->lun = array;
2626 
2627 	for (disk = 0; disk < raid->total_disks; disk++) {
2628 	    if (meta->disks[disk] == meta->disk_id) {
2629 		raid->disks[disk].dev = parent;
2630 		raid->disks[disk].sectors = disk_size;
2631 		raid->disks[disk].flags =
2632 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2633 		ars->raid[raid->volume] = raid;
2634 		ars->disk_number[raid->volume] = disk;
2635 		retval = 1;
2636 		break;
2637 	    }
2638 	}
2639 	break;
2640     }
2641 jmicron_out:
2642     kfree(meta, M_AR);
2643     return retval;
2644 }
2645 
2646 static int
2647 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2648 {
2649     struct jmicron_raid_conf *meta;
2650     u_int64_t disk_sectors;
2651     int disk, error = 0;
2652 
2653     if (!(meta = (struct jmicron_raid_conf *)
2654 	  kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
2655 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
2656 	return ENOMEM;
2657     }
2658 
2659     rdp->generation++;
2660     switch (rdp->type) {
2661     case AR_T_JBOD:
2662 	meta->type = JM_T_JBOD;
2663 	break;
2664 
2665     case AR_T_RAID0:
2666 	meta->type = JM_T_RAID0;
2667 	break;
2668 
2669     case AR_T_RAID1:
2670 	meta->type = JM_T_RAID1;
2671 	break;
2672 
2673     case AR_T_RAID5:
2674 	meta->type = JM_T_RAID5;
2675 	break;
2676 
2677     case AR_T_RAID01:
2678 	meta->type = JM_T_RAID01;
2679 	break;
2680 
2681     default:
2682 	kfree(meta, M_AR);
2683 	return ENODEV;
2684     }
2685     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2686     meta->version = JMICRON_VERSION;
2687     meta->offset = rdp->offset_sectors / 16;
2688     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2689     meta->disk_sectors_low = disk_sectors & 0xffff;
2690     meta->disk_sectors_high = disk_sectors >> 16;
2691     strncpy(meta->name, rdp->name, sizeof(meta->name));
2692     meta->stripe_shift = ffs(rdp->interleave) - 2;
2693 
2694     for (disk = 0; disk < rdp->total_disks; disk++) {
2695 	if (rdp->disks[disk].serial[0])
2696 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2697 	else
2698 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2699     }
2700 
2701     for (disk = 0; disk < rdp->total_disks; disk++) {
2702 	if (rdp->disks[disk].dev) {
2703 	    u_int16_t checksum = 0, *ptr;
2704 	    int count;
2705 
2706 	    meta->disk_id = meta->disks[disk];
2707 	    meta->checksum = 0;
2708 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2709 		checksum += *ptr++;
2710 	    meta->checksum -= checksum;
2711 
2712 	    if (testing || bootverbose)
2713 		ata_raid_jmicron_print_meta(meta);
2714 
2715 	    if (ata_raid_rw(rdp->disks[disk].dev,
2716 			    JMICRON_LBA(rdp->disks[disk].dev),
2717 			    meta, sizeof(struct jmicron_raid_conf),
2718 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2719 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2720 		error = EIO;
2721 	    }
2722 	}
2723     }
2724     /* handle spares XXX SOS */
2725 
2726     kfree(meta, M_AR);
2727     return error;
2728 }
2729 
2730 /* LSILogic V2 MegaRAID Metadata */
2731 static int
2732 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2733 {
2734     struct ata_raid_subdisk *ars = device_get_softc(dev);
2735     device_t parent = device_get_parent(dev);
2736     struct lsiv2_raid_conf *meta;
2737     struct ar_softc *raid = NULL;
2738     int array, retval = 0;
2739 
2740     if (!(meta = (struct lsiv2_raid_conf *)
2741 	  kmalloc(sizeof(struct lsiv2_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2742 	return ENOMEM;
2743 
2744     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2745 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2746 	if (testing || bootverbose)
2747 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2748 	goto lsiv2_out;
2749     }
2750 
2751     /* check if this is a LSI RAID struct */
2752     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2753 	if (testing || bootverbose)
2754 	    device_printf(parent, "LSI (v2) check1 failed\n");
2755 	goto lsiv2_out;
2756     }
2757 
2758     if (testing || bootverbose)
2759 	ata_raid_lsiv2_print_meta(meta);
2760 
2761     /* now convert LSI (v2) config meta into our generic form */
2762     for (array = 0; array < MAX_ARRAYS; array++) {
2763 	int raid_entry, conf_entry;
2764 
2765 	if (!raidp[array + meta->raid_number]) {
2766 	    raidp[array + meta->raid_number] =
2767 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2768 					  M_WAITOK | M_ZERO);
2769 	    if (!raidp[array + meta->raid_number]) {
2770 		device_printf(parent, "failed to allocate metadata storage\n");
2771 		goto lsiv2_out;
2772 	    }
2773 	}
2774 	raid = raidp[array + meta->raid_number];
2775 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2776 	    continue;
2777 
2778 	if (raid->magic_0 &&
2779 	    ((raid->magic_0 != meta->timestamp) ||
2780 	     (raid->magic_1 != meta->raid_number)))
2781 	    continue;
2782 
2783 	array += meta->raid_number;
2784 
2785 	raid_entry = meta->raid_number;
2786 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2787 		     meta->disk_number - 1;
2788 
2789 	switch (meta->configs[raid_entry].raid.type) {
2790 	case LSIV2_T_RAID0:
2791 	    raid->magic_0 = meta->timestamp;
2792 	    raid->magic_1 = meta->raid_number;
2793 	    raid->type = AR_T_RAID0;
2794 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2795 	    raid->width = meta->configs[raid_entry].raid.array_width;
2796 	    break;
2797 
2798 	case LSIV2_T_RAID1:
2799 	    raid->magic_0 = meta->timestamp;
2800 	    raid->magic_1 = meta->raid_number;
2801 	    raid->type = AR_T_RAID1;
2802 	    raid->width = meta->configs[raid_entry].raid.array_width;
2803 	    break;
2804 
2805 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2806 	    raid->magic_0 = meta->timestamp;
2807 	    raid->magic_1 = meta->raid_number;
2808 	    raid->type = AR_T_RAID01;
2809 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2810 	    raid->width = meta->configs[raid_entry].raid.array_width;
2811 	    break;
2812 
2813 	default:
2814 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2815 			  meta->configs[raid_entry].raid.type);
2816 	    kfree(raidp[array], M_AR);
2817 	    raidp[array] = NULL;
2818 	    goto lsiv2_out;
2819 	}
2820 
2821 	raid->format = AR_F_LSIV2_RAID;
2822 	raid->generation = 0;
2823 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2824 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2825 	raid->heads = 255;
2826 	raid->sectors = 63;
2827 	raid->cylinders = raid->total_sectors / (63 * 255);
2828 	raid->offset_sectors = 0;
2829 	raid->rebuild_lba = 0;
2830 	raid->lun = array;
2831 
2832 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2833 	    raid->disks[meta->disk_number].dev = parent;
2834 	    raid->disks[meta->disk_number].sectors =
2835 		meta->configs[conf_entry].disk.disk_sectors;
2836 	    raid->disks[meta->disk_number].flags =
2837 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2838 	    ars->raid[raid->volume] = raid;
2839 	    ars->disk_number[raid->volume] = meta->disk_number;
2840 	    retval = 1;
2841 	}
2842 	else
2843 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2844 
2845 	break;
2846     }
2847 
2848 lsiv2_out:
2849     kfree(meta, M_AR);
2850     return retval;
2851 }
2852 
2853 /* LSILogic V3 MegaRAID Metadata */
2854 static int
2855 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2856 {
2857     struct ata_raid_subdisk *ars = device_get_softc(dev);
2858     device_t parent = device_get_parent(dev);
2859     struct lsiv3_raid_conf *meta;
2860     struct ar_softc *raid = NULL;
2861     u_int8_t checksum, *ptr;
2862     int array, entry, count, disk_number, retval = 0;
2863 
2864     if (!(meta = (struct lsiv3_raid_conf *)
2865 	  kmalloc(sizeof(struct lsiv3_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2866 	return ENOMEM;
2867 
2868     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2869 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2870 	if (testing || bootverbose)
2871 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2872 	goto lsiv3_out;
2873     }
2874 
2875     /* check if this is a LSI RAID struct */
2876     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2877 	if (testing || bootverbose)
2878 	    device_printf(parent, "LSI (v3) check1 failed\n");
2879 	goto lsiv3_out;
2880     }
2881 
2882     /* check if the checksum is OK */
2883     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2884 	checksum += *ptr++;
2885     if (checksum) {
2886 	if (testing || bootverbose)
2887 	    device_printf(parent, "LSI (v3) check2 failed\n");
2888 	goto lsiv3_out;
2889     }
2890 
2891     if (testing || bootverbose)
2892 	ata_raid_lsiv3_print_meta(meta);
2893 
2894     /* now convert LSI (v3) config meta into our generic form */
2895     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2896 	if (!raidp[array]) {
2897 	    raidp[array] =
2898 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2899 					  M_WAITOK | M_ZERO);
2900 	    if (!raidp[array]) {
2901 		device_printf(parent, "failed to allocate metadata storage\n");
2902 		goto lsiv3_out;
2903 	    }
2904 	}
2905 	raid = raidp[array];
2906 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2907 	    array++;
2908 	    continue;
2909 	}
2910 
2911 	if ((raid->format == AR_F_LSIV3_RAID) &&
2912 	    (raid->magic_0 != meta->timestamp)) {
2913 	    array++;
2914 	    continue;
2915 	}
2916 
2917 	switch (meta->raid[entry].total_disks) {
2918 	case 0:
2919 	    entry++;
2920 	    continue;
2921 	case 1:
2922 	    if (meta->raid[entry].device == meta->device) {
2923 		disk_number = 0;
2924 		break;
2925 	    }
2926 	    if (raid->format)
2927 		array++;
2928 	    entry++;
2929 	    continue;
2930 	case 2:
2931 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2932 	    break;
2933 	default:
2934 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2935 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2936 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2937 	    break;
2938 	}
2939 
2940 	switch (meta->raid[entry].type) {
2941 	case LSIV3_T_RAID0:
2942 	    raid->type = AR_T_RAID0;
2943 	    raid->width = meta->raid[entry].total_disks;
2944 	    break;
2945 
2946 	case LSIV3_T_RAID1:
2947 	    raid->type = AR_T_RAID1;
2948 	    raid->width = meta->raid[entry].array_width;
2949 	    break;
2950 
2951 	default:
2952 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2953 			  meta->raid[entry].type);
2954 	    kfree(raidp[array], M_AR);
2955 	    raidp[array] = NULL;
2956 	    entry++;
2957 	    continue;
2958 	}
2959 
2960 	raid->magic_0 = meta->timestamp;
2961 	raid->format = AR_F_LSIV3_RAID;
2962 	raid->generation = 0;
2963 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2964 	raid->total_disks = meta->raid[entry].total_disks;
2965 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2966 	raid->heads = 255;
2967 	raid->sectors = 63;
2968 	raid->cylinders = raid->total_sectors / (63 * 255);
2969 	raid->offset_sectors = meta->raid[entry].offset;
2970 	raid->rebuild_lba = 0;
2971 	raid->lun = array;
2972 
2973 	raid->disks[disk_number].dev = parent;
2974 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2975 	raid->disks[disk_number].flags =
2976 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2977 	ars->raid[raid->volume] = raid;
2978 	ars->disk_number[raid->volume] = disk_number;
2979 	retval = 1;
2980 	entry++;
2981 	array++;
2982     }
2983 
2984 lsiv3_out:
2985     kfree(meta, M_AR);
2986     return retval;
2987 }
2988 
2989 /* nVidia MediaShield Metadata */
2990 static int
2991 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2992 {
2993     struct ata_raid_subdisk *ars = device_get_softc(dev);
2994     device_t parent = device_get_parent(dev);
2995     struct nvidia_raid_conf *meta;
2996     struct ar_softc *raid = NULL;
2997     u_int32_t checksum, *ptr;
2998     int array, count, retval = 0;
2999 
3000     if (!(meta = (struct nvidia_raid_conf *)
3001 	  kmalloc(sizeof(struct nvidia_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3002 	return ENOMEM;
3003 
3004     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3005 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3006 	if (testing || bootverbose)
3007 	    device_printf(parent, "nVidia read metadata failed\n");
3008 	goto nvidia_out;
3009     }
3010 
3011     /* check if this is a nVidia RAID struct */
3012     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3013 	if (testing || bootverbose)
3014 	    device_printf(parent, "nVidia check1 failed\n");
3015 	goto nvidia_out;
3016     }
3017 
3018     /* check if the checksum is OK */
3019     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3020 	 count < meta->config_size; count++)
3021 	checksum += *ptr++;
3022     if (checksum) {
3023 	if (testing || bootverbose)
3024 	    device_printf(parent, "nVidia check2 failed\n");
3025 	goto nvidia_out;
3026     }
3027 
3028     if (testing || bootverbose)
3029 	ata_raid_nvidia_print_meta(meta);
3030 
3031     /* now convert nVidia meta into our generic form */
3032     for (array = 0; array < MAX_ARRAYS; array++) {
3033 	if (!raidp[array]) {
3034 	    raidp[array] =
3035 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3036 					  M_WAITOK | M_ZERO);
3037 	    if (!raidp[array]) {
3038 		device_printf(parent, "failed to allocate metadata storage\n");
3039 		goto nvidia_out;
3040 	    }
3041 	}
3042 	raid = raidp[array];
3043 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3044 	    continue;
3045 
3046 	if (raid->format == AR_F_NVIDIA_RAID &&
3047 	    ((raid->magic_0 != meta->magic_1) ||
3048 	     (raid->magic_1 != meta->magic_2))) {
3049 	    continue;
3050 	}
3051 
3052 	switch (meta->type) {
3053 	case NV_T_SPAN:
3054 	    raid->type = AR_T_SPAN;
3055 	    break;
3056 
3057 	case NV_T_RAID0:
3058 	    raid->type = AR_T_RAID0;
3059 	    break;
3060 
3061 	case NV_T_RAID1:
3062 	    raid->type = AR_T_RAID1;
3063 	    break;
3064 
3065 	case NV_T_RAID5:
3066 	    raid->type = AR_T_RAID5;
3067 	    break;
3068 
3069 	case NV_T_RAID01:
3070 	    raid->type = AR_T_RAID01;
3071 	    break;
3072 
3073 	default:
3074 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3075 			  meta->type);
3076 	    kfree(raidp[array], M_AR);
3077 	    raidp[array] = NULL;
3078 	    goto nvidia_out;
3079 	}
3080 	raid->magic_0 = meta->magic_1;
3081 	raid->magic_1 = meta->magic_2;
3082 	raid->format = AR_F_NVIDIA_RAID;
3083 	raid->generation = 0;
3084 	raid->interleave = meta->stripe_sectors;
3085 	raid->width = meta->array_width;
3086 	raid->total_disks = meta->total_disks;
3087 	raid->total_sectors = meta->total_sectors;
3088 	raid->heads = 255;
3089 	raid->sectors = 63;
3090 	raid->cylinders = raid->total_sectors / (63 * 255);
3091 	raid->offset_sectors = 0;
3092 	raid->rebuild_lba = meta->rebuild_lba;
3093 	raid->lun = array;
3094 	raid->status = AR_S_READY;
3095 	if (meta->status & NV_S_DEGRADED)
3096 	    raid->status |= AR_S_DEGRADED;
3097 
3098 	raid->disks[meta->disk_number].dev = parent;
3099 	raid->disks[meta->disk_number].sectors =
3100 	    raid->total_sectors / raid->width;
3101 	raid->disks[meta->disk_number].flags =
3102 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3103 	ars->raid[raid->volume] = raid;
3104 	ars->disk_number[raid->volume] = meta->disk_number;
3105 	retval = 1;
3106 	break;
3107     }
3108 
3109 nvidia_out:
3110     kfree(meta, M_AR);
3111     return retval;
3112 }
3113 
3114 /* Promise FastTrak Metadata */
3115 static int
3116 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3117 {
3118     struct ata_raid_subdisk *ars = device_get_softc(dev);
3119     device_t parent = device_get_parent(dev);
3120     struct promise_raid_conf *meta;
3121     struct ar_softc *raid;
3122     u_int32_t checksum, *ptr;
3123     int array, count, disk, disksum = 0, retval = 0;
3124 
3125     if (!(meta = (struct promise_raid_conf *)
3126 	  kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3127 	return ENOMEM;
3128 
3129     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3130 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3131 	if (testing || bootverbose)
3132 	    device_printf(parent, "%s read metadata failed\n",
3133 			  native ? "FreeBSD" : "Promise");
3134 	goto promise_out;
3135     }
3136 
3137     /* check the signature */
3138     if (native) {
3139 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3140 	    if (testing || bootverbose)
3141 		device_printf(parent, "FreeBSD check1 failed\n");
3142 	    goto promise_out;
3143 	}
3144     }
3145     else {
3146 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3147 	    if (testing || bootverbose)
3148 		device_printf(parent, "Promise check1 failed\n");
3149 	    goto promise_out;
3150 	}
3151     }
3152 
3153     /* check if the checksum is OK */
3154     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3155 	checksum += *ptr++;
3156     if (checksum != *ptr) {
3157 	if (testing || bootverbose)
3158 	    device_printf(parent, "%s check2 failed\n",
3159 			  native ? "FreeBSD" : "Promise");
3160 	goto promise_out;
3161     }
3162 
3163     /* check on disk integrity status */
3164     if (meta->raid.integrity != PR_I_VALID) {
3165 	if (testing || bootverbose)
3166 	    device_printf(parent, "%s check3 failed\n",
3167 			  native ? "FreeBSD" : "Promise");
3168 	goto promise_out;
3169     }
3170 
3171     if (testing || bootverbose)
3172 	ata_raid_promise_print_meta(meta);
3173 
3174     /* now convert Promise metadata into our generic form */
3175     for (array = 0; array < MAX_ARRAYS; array++) {
3176 	if (!raidp[array]) {
3177 	    raidp[array] =
3178 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3179 					  M_WAITOK | M_ZERO);
3180 	    if (!raidp[array]) {
3181 		device_printf(parent, "failed to allocate metadata storage\n");
3182 		goto promise_out;
3183 	    }
3184 	}
3185 	raid = raidp[array];
3186 	if (raid->format &&
3187 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3188 	    continue;
3189 
3190 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3191 	    !(meta->raid.magic_1 == (raid->magic_1)))
3192 	    continue;
3193 
3194 	/* update our knowledge about the array config based on generation */
3195 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3196 	    switch (meta->raid.type) {
3197 	    case PR_T_SPAN:
3198 		raid->type = AR_T_SPAN;
3199 		break;
3200 
3201 	    case PR_T_JBOD:
3202 		raid->type = AR_T_JBOD;
3203 		break;
3204 
3205 	    case PR_T_RAID0:
3206 		raid->type = AR_T_RAID0;
3207 		break;
3208 
3209 	    case PR_T_RAID1:
3210 		raid->type = AR_T_RAID1;
3211 		if (meta->raid.array_width > 1)
3212 		    raid->type = AR_T_RAID01;
3213 		break;
3214 
3215 	    case PR_T_RAID5:
3216 		raid->type = AR_T_RAID5;
3217 		break;
3218 
3219 	    default:
3220 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3221 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3222 		kfree(raidp[array], M_AR);
3223 		raidp[array] = NULL;
3224 		goto promise_out;
3225 	    }
3226 	    raid->magic_1 = meta->raid.magic_1;
3227 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3228 	    raid->generation = meta->raid.generation;
3229 	    raid->interleave = 1 << meta->raid.stripe_shift;
3230 	    raid->width = meta->raid.array_width;
3231 	    raid->total_disks = meta->raid.total_disks;
3232 	    raid->heads = meta->raid.heads + 1;
3233 	    raid->sectors = meta->raid.sectors;
3234 	    raid->cylinders = meta->raid.cylinders + 1;
3235 	    raid->total_sectors = meta->raid.total_sectors;
3236 	    raid->offset_sectors = 0;
3237 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3238 	    raid->lun = array;
3239 	    if ((meta->raid.status &
3240 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3241 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3242 		raid->status |= AR_S_READY;
3243 		if (meta->raid.status & PR_S_DEGRADED)
3244 		    raid->status |= AR_S_DEGRADED;
3245 	    }
3246 	    else
3247 		raid->status &= ~AR_S_READY;
3248 
3249 	    /* convert disk flags to our internal types */
3250 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3251 		raid->disks[disk].dev = NULL;
3252 		raid->disks[disk].flags = 0;
3253 		*((u_int64_t *)(raid->disks[disk].serial)) =
3254 		    meta->raid.disk[disk].magic_0;
3255 		disksum += meta->raid.disk[disk].flags;
3256 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3257 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3258 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3259 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3260 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3261 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3262 		    raid->disks[disk].flags |= AR_DF_SPARE;
3263 		}
3264 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3265 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3266 	    }
3267 	    if (!disksum) {
3268 		device_printf(parent, "%s subdisks has no flags\n",
3269 			      native ? "FreeBSD" : "Promise");
3270 		kfree(raidp[array], M_AR);
3271 		raidp[array] = NULL;
3272 		goto promise_out;
3273 	    }
3274 	}
3275 	if (meta->raid.generation >= raid->generation) {
3276 	    int disk_number = meta->raid.disk_number;
3277 
3278 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3279 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3280 		raid->disks[disk_number].dev = parent;
3281 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3282 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3283 		if ((raid->disks[disk_number].flags &
3284 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3285 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3286 		    ars->raid[raid->volume] = raid;
3287 		    ars->disk_number[raid->volume] = disk_number;
3288 		    retval = 1;
3289 		}
3290 	    }
3291 	}
3292 	break;
3293     }
3294 
3295 promise_out:
3296     kfree(meta, M_AR);
3297     return retval;
3298 }
3299 
3300 static int
3301 ata_raid_promise_write_meta(struct ar_softc *rdp)
3302 {
3303     struct promise_raid_conf *meta;
3304     struct timeval timestamp;
3305     u_int32_t *ckptr;
3306     int count, disk, drive, error = 0;
3307 
3308     if (!(meta = (struct promise_raid_conf *)
3309 	  kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK))) {
3310 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3311 	return ENOMEM;
3312     }
3313 
3314     rdp->generation++;
3315     microtime(&timestamp);
3316 
3317     for (disk = 0; disk < rdp->total_disks; disk++) {
3318 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3319 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3320 	meta->dummy_0 = 0x00020000;
3321 	meta->raid.disk_number = disk;
3322 
3323 	if (rdp->disks[disk].dev) {
3324 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3325 	    struct ata_channel *ch =
3326 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3327 
3328 	    meta->raid.channel = ch->unit;
3329 	    meta->raid.device = ATA_DEV(atadev->unit);
3330 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3331 	    meta->raid.disk_offset = rdp->offset_sectors;
3332 	}
3333 	else {
3334 	    meta->raid.channel = 0;
3335 	    meta->raid.device = 0;
3336 	    meta->raid.disk_sectors = 0;
3337 	    meta->raid.disk_offset = 0;
3338 	}
3339 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3340 	meta->magic_1 = timestamp.tv_sec >> 16;
3341 	meta->magic_2 = timestamp.tv_sec;
3342 	meta->raid.integrity = PR_I_VALID;
3343 	meta->raid.magic_0 = meta->magic_0;
3344 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3345 	meta->raid.generation = rdp->generation;
3346 
3347 	if (rdp->status & AR_S_READY) {
3348 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3349 	    meta->raid.status =
3350 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3351 	    if (rdp->status & AR_S_DEGRADED)
3352 		meta->raid.status |= PR_S_DEGRADED;
3353 	    else
3354 		meta->raid.status |= PR_S_FUNCTIONAL;
3355 	}
3356 	else {
3357 	    meta->raid.flags = PR_F_DOWN;
3358 	    meta->raid.status = 0;
3359 	}
3360 
3361 	switch (rdp->type) {
3362 	case AR_T_RAID0:
3363 	    meta->raid.type = PR_T_RAID0;
3364 	    break;
3365 	case AR_T_RAID1:
3366 	    meta->raid.type = PR_T_RAID1;
3367 	    break;
3368 	case AR_T_RAID01:
3369 	    meta->raid.type = PR_T_RAID1;
3370 	    break;
3371 	case AR_T_RAID5:
3372 	    meta->raid.type = PR_T_RAID5;
3373 	    break;
3374 	case AR_T_SPAN:
3375 	    meta->raid.type = PR_T_SPAN;
3376 	    break;
3377 	case AR_T_JBOD:
3378 	    meta->raid.type = PR_T_JBOD;
3379 	    break;
3380 	default:
3381 	    kfree(meta, M_AR);
3382 	    return ENODEV;
3383 	}
3384 
3385 	meta->raid.total_disks = rdp->total_disks;
3386 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3387 	meta->raid.array_width = rdp->width;
3388 	meta->raid.array_number = rdp->lun;
3389 	meta->raid.total_sectors = rdp->total_sectors;
3390 	meta->raid.cylinders = rdp->cylinders - 1;
3391 	meta->raid.heads = rdp->heads - 1;
3392 	meta->raid.sectors = rdp->sectors;
3393 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3394 
3395 	bzero(&meta->raid.disk, 8 * 12);
3396 	for (drive = 0; drive < rdp->total_disks; drive++) {
3397 	    meta->raid.disk[drive].flags = 0;
3398 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3399 		meta->raid.disk[drive].flags |= PR_F_VALID;
3400 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3401 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3402 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3403 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3404 	    else
3405 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3406 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3407 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3408 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3409 	    meta->raid.disk[drive].dummy_0 = 0x0;
3410 	    if (rdp->disks[drive].dev) {
3411 		struct ata_channel *ch =
3412 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3413 		struct ata_device *atadev =
3414 		    device_get_softc(rdp->disks[drive].dev);
3415 
3416 		meta->raid.disk[drive].channel = ch->unit;
3417 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3418 	    }
3419 	    meta->raid.disk[drive].magic_0 =
3420 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3421 	}
3422 
3423 	if (rdp->disks[disk].dev) {
3424 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3425 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3426 		if (rdp->format == AR_F_FREEBSD_RAID)
3427 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3428 		else
3429 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3430 	    }
3431 	    else
3432 		bzero(meta->promise_id, sizeof(meta->promise_id));
3433 	    meta->checksum = 0;
3434 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3435 		meta->checksum += *ckptr++;
3436 	    if (testing || bootverbose)
3437 		ata_raid_promise_print_meta(meta);
3438 	    if (ata_raid_rw(rdp->disks[disk].dev,
3439 			    PROMISE_LBA(rdp->disks[disk].dev),
3440 			    meta, sizeof(struct promise_raid_conf),
3441 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3442 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3443 		error = EIO;
3444 	    }
3445 	}
3446     }
3447     kfree(meta, M_AR);
3448     return error;
3449 }
3450 
3451 /* Silicon Image Medley Metadata */
3452 static int
3453 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3454 {
3455     struct ata_raid_subdisk *ars = device_get_softc(dev);
3456     device_t parent = device_get_parent(dev);
3457     struct sii_raid_conf *meta;
3458     struct ar_softc *raid = NULL;
3459     u_int16_t checksum, *ptr;
3460     int array, count, disk, retval = 0;
3461 
3462     if (!(meta = (struct sii_raid_conf *)
3463 	  kmalloc(sizeof(struct sii_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3464 	return ENOMEM;
3465 
3466     if (ata_raid_rw(parent, SII_LBA(parent),
3467 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3468 	if (testing || bootverbose)
3469 	    device_printf(parent, "Silicon Image read metadata failed\n");
3470 	goto sii_out;
3471     }
3472 
3473     /* check if this is a Silicon Image (Medley) RAID struct */
3474     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3475 	checksum += *ptr++;
3476     if (checksum) {
3477 	if (testing || bootverbose)
3478 	    device_printf(parent, "Silicon Image check1 failed\n");
3479 	goto sii_out;
3480     }
3481 
3482     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3483 	checksum += *ptr++;
3484     if (checksum != meta->checksum_1) {
3485 	if (testing || bootverbose)
3486 	    device_printf(parent, "Silicon Image check2 failed\n");
3487 	goto sii_out;
3488     }
3489 
3490     /* check verison */
3491     if (meta->version_major != 0x0002 ||
3492 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3493 	if (testing || bootverbose)
3494 	    device_printf(parent, "Silicon Image check3 failed\n");
3495 	goto sii_out;
3496     }
3497 
3498     if (testing || bootverbose)
3499 	ata_raid_sii_print_meta(meta);
3500 
3501     /* now convert Silicon Image meta into our generic form */
3502     for (array = 0; array < MAX_ARRAYS; array++) {
3503 	if (!raidp[array]) {
3504 	    raidp[array] =
3505 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3506 					  M_WAITOK | M_ZERO);
3507 	    if (!raidp[array]) {
3508 		device_printf(parent, "failed to allocate metadata storage\n");
3509 		goto sii_out;
3510 	    }
3511 	}
3512 	raid = raidp[array];
3513 	if (raid->format && (raid->format != AR_F_SII_RAID))
3514 	    continue;
3515 
3516 	if (raid->format == AR_F_SII_RAID &&
3517 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3518 	    continue;
3519 	}
3520 
3521 	/* update our knowledge about the array config based on generation */
3522 	if (!meta->generation || meta->generation > raid->generation) {
3523 	    switch (meta->type) {
3524 	    case SII_T_RAID0:
3525 		raid->type = AR_T_RAID0;
3526 		break;
3527 
3528 	    case SII_T_RAID1:
3529 		raid->type = AR_T_RAID1;
3530 		break;
3531 
3532 	    case SII_T_RAID01:
3533 		raid->type = AR_T_RAID01;
3534 		break;
3535 
3536 	    case SII_T_SPARE:
3537 		device_printf(parent, "Silicon Image SPARE disk\n");
3538 		kfree(raidp[array], M_AR);
3539 		raidp[array] = NULL;
3540 		goto sii_out;
3541 
3542 	    default:
3543 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3544 			      meta->type);
3545 		kfree(raidp[array], M_AR);
3546 		raidp[array] = NULL;
3547 		goto sii_out;
3548 	    }
3549 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3550 	    raid->format = AR_F_SII_RAID;
3551 	    raid->generation = meta->generation;
3552 	    raid->interleave = meta->stripe_sectors;
3553 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3554 	    raid->total_disks =
3555 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3556 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3557 	    raid->total_sectors = meta->total_sectors;
3558 	    raid->heads = 255;
3559 	    raid->sectors = 63;
3560 	    raid->cylinders = raid->total_sectors / (63 * 255);
3561 	    raid->offset_sectors = 0;
3562 	    raid->rebuild_lba = meta->rebuild_lba;
3563 	    raid->lun = array;
3564 	    strncpy(raid->name, meta->name,
3565 		    min(sizeof(raid->name), sizeof(meta->name)));
3566 
3567 	    /* clear out any old info */
3568 	    if (raid->generation) {
3569 		for (disk = 0; disk < raid->total_disks; disk++) {
3570 		    raid->disks[disk].dev = NULL;
3571 		    raid->disks[disk].flags = 0;
3572 		}
3573 	    }
3574 	}
3575 	if (meta->generation >= raid->generation) {
3576 	    /* XXX SOS add check for the right physical disk by serial# */
3577 	    if (meta->status & SII_S_READY) {
3578 		int disk_number = (raid->type == AR_T_RAID01) ?
3579 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3580 		    meta->disk_number;
3581 
3582 		raid->disks[disk_number].dev = parent;
3583 		raid->disks[disk_number].sectors =
3584 		    raid->total_sectors / raid->width;
3585 		raid->disks[disk_number].flags =
3586 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3587 		ars->raid[raid->volume] = raid;
3588 		ars->disk_number[raid->volume] = disk_number;
3589 		retval = 1;
3590 	    }
3591 	}
3592 	break;
3593     }
3594 
3595 sii_out:
3596     kfree(meta, M_AR);
3597     return retval;
3598 }
3599 
3600 /* Silicon Integrated Systems Metadata */
3601 static int
3602 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3603 {
3604     struct ata_raid_subdisk *ars = device_get_softc(dev);
3605     device_t parent = device_get_parent(dev);
3606     struct sis_raid_conf *meta;
3607     struct ar_softc *raid = NULL;
3608     int array, disk_number, drive, retval = 0;
3609 
3610     if (!(meta = (struct sis_raid_conf *)
3611 	  kmalloc(sizeof(struct sis_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3612 	return ENOMEM;
3613 
3614     if (ata_raid_rw(parent, SIS_LBA(parent),
3615 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3616 	if (testing || bootverbose)
3617 	    device_printf(parent,
3618 			  "Silicon Integrated Systems read metadata failed\n");
3619     }
3620 
3621     /* check for SiS magic */
3622     if (meta->magic != SIS_MAGIC) {
3623 	if (testing || bootverbose)
3624 	    device_printf(parent,
3625 			  "Silicon Integrated Systems check1 failed\n");
3626 	goto sis_out;
3627     }
3628 
3629     if (testing || bootverbose)
3630 	ata_raid_sis_print_meta(meta);
3631 
3632     /* now convert SiS meta into our generic form */
3633     for (array = 0; array < MAX_ARRAYS; array++) {
3634 	if (!raidp[array]) {
3635 	    raidp[array] =
3636 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3637 					  M_WAITOK | M_ZERO);
3638 	    if (!raidp[array]) {
3639 		device_printf(parent, "failed to allocate metadata storage\n");
3640 		goto sis_out;
3641 	    }
3642 	}
3643 
3644 	raid = raidp[array];
3645 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3646 	    continue;
3647 
3648 	if ((raid->format == AR_F_SIS_RAID) &&
3649 	    ((raid->magic_0 != meta->controller_pci_id) ||
3650 	     (raid->magic_1 != meta->timestamp))) {
3651 	    continue;
3652 	}
3653 
3654 	switch (meta->type_total_disks & SIS_T_MASK) {
3655 	case SIS_T_JBOD:
3656 	    raid->type = AR_T_JBOD;
3657 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3658 	    raid->total_sectors += SIS_LBA(parent);
3659 	    break;
3660 
3661 	case SIS_T_RAID0:
3662 	    raid->type = AR_T_RAID0;
3663 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3664 	    if (!raid->total_sectors ||
3665 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3666 		raid->total_sectors = raid->width * SIS_LBA(parent);
3667 	    break;
3668 
3669 	case SIS_T_RAID1:
3670 	    raid->type = AR_T_RAID1;
3671 	    raid->width = 1;
3672 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3673 		raid->total_sectors = SIS_LBA(parent);
3674 	    break;
3675 
3676 	default:
3677 	    device_printf(parent, "Silicon Integrated Systems "
3678 			  "unknown RAID type 0x%08x\n", meta->magic);
3679 	    kfree(raidp[array], M_AR);
3680 	    raidp[array] = NULL;
3681 	    goto sis_out;
3682 	}
3683 	raid->magic_0 = meta->controller_pci_id;
3684 	raid->magic_1 = meta->timestamp;
3685 	raid->format = AR_F_SIS_RAID;
3686 	raid->generation = 0;
3687 	raid->interleave = meta->stripe_sectors;
3688 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3689 	raid->heads = 255;
3690 	raid->sectors = 63;
3691 	raid->cylinders = raid->total_sectors / (63 * 255);
3692 	raid->offset_sectors = 0;
3693 	raid->rebuild_lba = 0;
3694 	raid->lun = array;
3695 	/* XXX SOS if total_disks > 2 this doesn't float */
3696 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3697 	    disk_number = 0;
3698 	else
3699 	    disk_number = 1;
3700 
3701 	for (drive = 0; drive < raid->total_disks; drive++) {
3702 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3703 	    if (drive == disk_number) {
3704 		raid->disks[disk_number].dev = parent;
3705 		raid->disks[disk_number].flags =
3706 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3707 		ars->raid[raid->volume] = raid;
3708 		ars->disk_number[raid->volume] = disk_number;
3709 	    }
3710 	}
3711 	retval = 1;
3712 	break;
3713     }
3714 
3715 sis_out:
3716     kfree(meta, M_AR);
3717     return retval;
3718 }
3719 
3720 static int
3721 ata_raid_sis_write_meta(struct ar_softc *rdp)
3722 {
3723     struct sis_raid_conf *meta;
3724     struct timeval timestamp;
3725     int disk, error = 0;
3726 
3727     if (!(meta = (struct sis_raid_conf *)
3728 	  kmalloc(sizeof(struct sis_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
3729 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3730 	return ENOMEM;
3731     }
3732 
3733     rdp->generation++;
3734     microtime(&timestamp);
3735 
3736     meta->magic = SIS_MAGIC;
3737     /* XXX SOS if total_disks > 2 this doesn't float */
3738     for (disk = 0; disk < rdp->total_disks; disk++) {
3739 	if (rdp->disks[disk].dev) {
3740 	    struct ata_channel *ch =
3741 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3742 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3743 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3744 
3745 	    meta->disks |= disk_number << ((1 - disk) << 2);
3746 	}
3747     }
3748     switch (rdp->type) {
3749     case AR_T_JBOD:
3750 	meta->type_total_disks = SIS_T_JBOD;
3751 	break;
3752 
3753     case AR_T_RAID0:
3754 	meta->type_total_disks = SIS_T_RAID0;
3755 	break;
3756 
3757     case AR_T_RAID1:
3758 	meta->type_total_disks = SIS_T_RAID1;
3759 	break;
3760 
3761     default:
3762 	kfree(meta, M_AR);
3763 	return ENODEV;
3764     }
3765     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3766     meta->stripe_sectors = rdp->interleave;
3767     meta->timestamp = timestamp.tv_sec;
3768 
3769     for (disk = 0; disk < rdp->total_disks; disk++) {
3770 	if (rdp->disks[disk].dev) {
3771 	    struct ata_channel *ch =
3772 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3773 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3774 
3775 	    meta->controller_pci_id =
3776 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3777 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3778 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3779 
3780 	    /* XXX SOS if total_disks > 2 this may not float */
3781 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3782 
3783 	    if (testing || bootverbose)
3784 		ata_raid_sis_print_meta(meta);
3785 
3786 	    if (ata_raid_rw(rdp->disks[disk].dev,
3787 			    SIS_LBA(rdp->disks[disk].dev),
3788 			    meta, sizeof(struct sis_raid_conf),
3789 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3790 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3791 		error = EIO;
3792 	    }
3793 	}
3794     }
3795     kfree(meta, M_AR);
3796     return error;
3797 }
3798 
3799 /* VIA Tech V-RAID Metadata */
3800 static int
3801 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3802 {
3803     struct ata_raid_subdisk *ars = device_get_softc(dev);
3804     device_t parent = device_get_parent(dev);
3805     struct via_raid_conf *meta;
3806     struct ar_softc *raid = NULL;
3807     u_int8_t checksum, *ptr;
3808     int array, count, disk, retval = 0;
3809 
3810     if (!(meta = (struct via_raid_conf *)
3811 	  kmalloc(sizeof(struct via_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3812 	return ENOMEM;
3813 
3814     if (ata_raid_rw(parent, VIA_LBA(parent),
3815 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3816 	if (testing || bootverbose)
3817 	    device_printf(parent, "VIA read metadata failed\n");
3818 	goto via_out;
3819     }
3820 
3821     /* check if this is a VIA RAID struct */
3822     if (meta->magic != VIA_MAGIC) {
3823 	if (testing || bootverbose)
3824 	    device_printf(parent, "VIA check1 failed\n");
3825 	goto via_out;
3826     }
3827 
3828     /* calculate checksum and compare for valid */
3829     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3830 	checksum += *ptr++;
3831     if (checksum != meta->checksum) {
3832 	if (testing || bootverbose)
3833 	    device_printf(parent, "VIA check2 failed\n");
3834 	goto via_out;
3835     }
3836 
3837     if (testing || bootverbose)
3838 	ata_raid_via_print_meta(meta);
3839 
3840     /* now convert VIA meta into our generic form */
3841     for (array = 0; array < MAX_ARRAYS; array++) {
3842 	if (!raidp[array]) {
3843 	    raidp[array] =
3844 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3845 					  M_WAITOK | M_ZERO);
3846 	    if (!raidp[array]) {
3847 		device_printf(parent, "failed to allocate metadata storage\n");
3848 		goto via_out;
3849 	    }
3850 	}
3851 	raid = raidp[array];
3852 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3853 	    continue;
3854 
3855 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3856 	    continue;
3857 
3858 	switch (meta->type & VIA_T_MASK) {
3859 	case VIA_T_RAID0:
3860 	    raid->type = AR_T_RAID0;
3861 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3862 	    if (!raid->total_sectors ||
3863 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3864 		raid->total_sectors = raid->width * meta->disk_sectors;
3865 	    break;
3866 
3867 	case VIA_T_RAID1:
3868 	    raid->type = AR_T_RAID1;
3869 	    raid->width = 1;
3870 	    raid->total_sectors = meta->disk_sectors;
3871 	    break;
3872 
3873 	case VIA_T_RAID01:
3874 	    raid->type = AR_T_RAID01;
3875 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3876 	    if (!raid->total_sectors ||
3877 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3878 		raid->total_sectors = raid->width * meta->disk_sectors;
3879 	    break;
3880 
3881 	case VIA_T_RAID5:
3882 	    raid->type = AR_T_RAID5;
3883 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3884 	    if (!raid->total_sectors ||
3885 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3886 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3887 	    break;
3888 
3889 	case VIA_T_SPAN:
3890 	    raid->type = AR_T_SPAN;
3891 	    raid->width = 1;
3892 	    raid->total_sectors += meta->disk_sectors;
3893 	    break;
3894 
3895 	default:
3896 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3897 	    kfree(raidp[array], M_AR);
3898 	    raidp[array] = NULL;
3899 	    goto via_out;
3900 	}
3901 	raid->magic_0 = meta->disks[0];
3902 	raid->format = AR_F_VIA_RAID;
3903 	raid->generation = 0;
3904 	raid->interleave =
3905 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3906 	for (count = 0, disk = 0; disk < 8; disk++)
3907 	    if (meta->disks[disk])
3908 		count++;
3909 	raid->total_disks = count;
3910 	raid->heads = 255;
3911 	raid->sectors = 63;
3912 	raid->cylinders = raid->total_sectors / (63 * 255);
3913 	raid->offset_sectors = 0;
3914 	raid->rebuild_lba = 0;
3915 	raid->lun = array;
3916 
3917 	for (disk = 0; disk < raid->total_disks; disk++) {
3918 	    if (meta->disks[disk] == meta->disk_id) {
3919 		raid->disks[disk].dev = parent;
3920 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3921 		      sizeof(u_int32_t));
3922 		raid->disks[disk].sectors = meta->disk_sectors;
3923 		raid->disks[disk].flags =
3924 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3925 		ars->raid[raid->volume] = raid;
3926 		ars->disk_number[raid->volume] = disk;
3927 		retval = 1;
3928 		break;
3929 	    }
3930 	}
3931 	break;
3932     }
3933 
3934 via_out:
3935     kfree(meta, M_AR);
3936     return retval;
3937 }
3938 
3939 static int
3940 ata_raid_via_write_meta(struct ar_softc *rdp)
3941 {
3942     struct via_raid_conf *meta;
3943     int disk, error = 0;
3944 
3945     if (!(meta = (struct via_raid_conf *)
3946 	  kmalloc(sizeof(struct via_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
3947 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3948 	return ENOMEM;
3949     }
3950 
3951     rdp->generation++;
3952 
3953     meta->magic = VIA_MAGIC;
3954     meta->dummy_0 = 0x02;
3955     switch (rdp->type) {
3956     case AR_T_SPAN:
3957 	meta->type = VIA_T_SPAN;
3958 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3959 	break;
3960 
3961     case AR_T_RAID0:
3962 	meta->type = VIA_T_RAID0;
3963 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3964 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3965 	break;
3966 
3967     case AR_T_RAID1:
3968 	meta->type = VIA_T_RAID1;
3969 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3970 	break;
3971 
3972     case AR_T_RAID5:
3973 	meta->type = VIA_T_RAID5;
3974 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3975 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3976 	break;
3977 
3978     case AR_T_RAID01:
3979 	meta->type = VIA_T_RAID01;
3980 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3981 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3982 	break;
3983 
3984     default:
3985 	kfree(meta, M_AR);
3986 	return ENODEV;
3987     }
3988     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3989     meta->disk_sectors =
3990 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3991     for (disk = 0; disk < rdp->total_disks; disk++)
3992 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3993 
3994     for (disk = 0; disk < rdp->total_disks; disk++) {
3995 	if (rdp->disks[disk].dev) {
3996 	    u_int8_t *ptr;
3997 	    int count;
3998 
3999 	    meta->disk_index = disk * sizeof(u_int32_t);
4000 	    if (rdp->type == AR_T_RAID01)
4001 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
4002 				   (meta->disk_index & ~0x08);
4003 	    meta->disk_id = meta->disks[disk];
4004 	    meta->checksum = 0;
4005 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
4006 		meta->checksum += *ptr++;
4007 
4008 	    if (testing || bootverbose)
4009 		ata_raid_via_print_meta(meta);
4010 
4011 	    if (ata_raid_rw(rdp->disks[disk].dev,
4012 			    VIA_LBA(rdp->disks[disk].dev),
4013 			    meta, sizeof(struct via_raid_conf),
4014 			    ATA_R_WRITE | ATA_R_DIRECT)) {
4015 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
4016 		error = EIO;
4017 	    }
4018 	}
4019     }
4020     kfree(meta, M_AR);
4021     return error;
4022 }
4023 
4024 static struct ata_request *
4025 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4026 {
4027     struct ata_request *request;
4028 
4029     if (!(request = ata_alloc_request())) {
4030 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4031 	return NULL;
4032     }
4033     request->timeout = 5;
4034     request->retries = 2;
4035     request->callback = ata_raid_done;
4036     request->driver = rdp;
4037     request->bio = bio;
4038     switch (request->bio->bio_buf->b_cmd) {
4039     case BUF_CMD_READ:
4040 	request->flags = ATA_R_READ;
4041 	break;
4042     case BUF_CMD_WRITE:
4043 	request->flags = ATA_R_WRITE;
4044 	break;
4045     default:
4046 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4047 	ata_free_request(request);
4048 #if 0
4049 	bio->bio_buf->b_flags |= B_ERROR;
4050 	bio->bio_buf->b_error = EIO;
4051 	biodone(bio);
4052 #endif /* 0 */
4053 	return(NULL);
4054     }
4055     return request;
4056 }
4057 
4058 static int
4059 ata_raid_send_request(struct ata_request *request)
4060 {
4061     struct ata_device *atadev = device_get_softc(request->dev);
4062 
4063     request->transfersize = min(request->bytecount, atadev->max_iosize);
4064     if (request->flags & ATA_R_READ) {
4065 	if (atadev->mode >= ATA_DMA) {
4066 	    request->flags |= ATA_R_DMA;
4067 	    request->u.ata.command = ATA_READ_DMA;
4068 	}
4069 	else if (atadev->max_iosize > DEV_BSIZE)
4070 	    request->u.ata.command = ATA_READ_MUL;
4071 	else
4072 	    request->u.ata.command = ATA_READ;
4073     }
4074     else if (request->flags & ATA_R_WRITE) {
4075 	if (atadev->mode >= ATA_DMA) {
4076 	    request->flags |= ATA_R_DMA;
4077 	    request->u.ata.command = ATA_WRITE_DMA;
4078 	}
4079 	else if (atadev->max_iosize > DEV_BSIZE)
4080 	    request->u.ata.command = ATA_WRITE_MUL;
4081 	else
4082 	    request->u.ata.command = ATA_WRITE;
4083     }
4084     else {
4085 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4086 	ata_free_request(request);
4087 	return EIO;
4088     }
4089     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4090     ata_queue_request(request);
4091     return 0;
4092 }
4093 
4094 static int
4095 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4096 {
4097     struct ata_device *atadev = device_get_softc(dev);
4098     struct ata_request *request;
4099     int error;
4100 
4101     if (bcount % DEV_BSIZE) {
4102 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4103 	return ENOMEM;
4104     }
4105 
4106     if (!(request = ata_alloc_request())) {
4107 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4108 	return ENOMEM;
4109     }
4110 
4111     /* setup request */
4112     request->dev = dev;
4113     request->timeout = 10;
4114     request->retries = 0;
4115     request->data = data;
4116     request->bytecount = bcount;
4117     request->transfersize = DEV_BSIZE;
4118     request->u.ata.lba = lba;
4119     request->u.ata.count = request->bytecount / DEV_BSIZE;
4120     request->flags = flags;
4121 
4122     if (flags & ATA_R_READ) {
4123 	if (atadev->mode >= ATA_DMA) {
4124 	    request->u.ata.command = ATA_READ_DMA;
4125 	    request->flags |= ATA_R_DMA;
4126 	}
4127 	else
4128 	    request->u.ata.command = ATA_READ;
4129 	ata_queue_request(request);
4130     }
4131     else if (flags & ATA_R_WRITE) {
4132 	if (atadev->mode >= ATA_DMA) {
4133 	    request->u.ata.command = ATA_WRITE_DMA;
4134 	    request->flags |= ATA_R_DMA;
4135 	}
4136 	else
4137 	    request->u.ata.command = ATA_WRITE;
4138 	ata_queue_request(request);
4139     }
4140     else {
4141 	device_printf(dev, "FAILURE - unknown IO operation\n");
4142 	request->result = EIO;
4143     }
4144     error = request->result;
4145     ata_free_request(request);
4146     return error;
4147 }
4148 
4149 /*
4150  * module handeling
4151  */
4152 static int
4153 ata_raid_subdisk_probe(device_t dev)
4154 {
4155     device_quiet(dev);
4156     return 0;
4157 }
4158 
4159 static int
4160 ata_raid_subdisk_attach(device_t dev)
4161 {
4162     struct ata_raid_subdisk *ars = device_get_softc(dev);
4163     int volume;
4164 
4165     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4166 	ars->raid[volume] = NULL;
4167 	ars->disk_number[volume] = -1;
4168     }
4169     ata_raid_read_metadata(dev);
4170     return 0;
4171 }
4172 
4173 static int
4174 ata_raid_subdisk_detach(device_t dev)
4175 {
4176     struct ata_raid_subdisk *ars = device_get_softc(dev);
4177     int volume;
4178 
4179     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4180 	if (ars->raid[volume]) {
4181 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4182 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4183 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4184 	    ata_raid_config_changed(ars->raid[volume], 1);
4185 	    ars->raid[volume] = NULL;
4186 	    ars->disk_number[volume] = -1;
4187 	}
4188     }
4189     return 0;
4190 }
4191 
4192 static device_method_t ata_raid_sub_methods[] = {
4193     /* device interface */
4194     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4195     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4196     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4197     { 0, 0 }
4198 };
4199 
4200 static driver_t ata_raid_sub_driver = {
4201     "subdisk",
4202     ata_raid_sub_methods,
4203     sizeof(struct ata_raid_subdisk)
4204 };
4205 
4206 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4207 
4208 static int
4209 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4210 {
4211     int i;
4212 
4213     switch (what) {
4214     case MOD_LOAD:
4215 	if (testing || bootverbose)
4216 	    kprintf("ATA PseudoRAID loaded\n");
4217 #if 0
4218 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4219 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4220 				M_AR, M_WAITOK | M_ZERO);
4221 	if (!ata_raid_arrays) {
4222 	    kprintf("ataraid: no memory for metadata storage\n");
4223 	    return ENOMEM;
4224 	}
4225 #endif
4226 	/* attach found PseudoRAID arrays */
4227 	for (i = 0; i < MAX_ARRAYS; i++) {
4228 	    struct ar_softc *rdp = ata_raid_arrays[i];
4229 
4230 	    if (!rdp || !rdp->format)
4231 		continue;
4232 	    if (testing || bootverbose)
4233 		ata_raid_print_meta(rdp);
4234 	    ata_raid_attach(rdp, 0);
4235 	}
4236 	ata_raid_ioctl_func = ata_raid_ioctl;
4237 	return 0;
4238 
4239     case MOD_UNLOAD:
4240 	/* detach found PseudoRAID arrays */
4241 	for (i = 0; i < MAX_ARRAYS; i++) {
4242 	    struct ar_softc *rdp = ata_raid_arrays[i];
4243 
4244 	    if (!rdp || !rdp->status)
4245 		continue;
4246 	    disk_destroy(&rdp->disk);
4247 	}
4248 	if (testing || bootverbose)
4249 	    kprintf("ATA PseudoRAID unloaded\n");
4250 #if 0
4251 	kfree(ata_raid_arrays, M_AR);
4252 #endif
4253 	ata_raid_ioctl_func = NULL;
4254 	return 0;
4255 
4256     default:
4257 	return EOPNOTSUPP;
4258     }
4259 }
4260 
4261 static moduledata_t ata_raid_moduledata =
4262     { "ataraid", ata_raid_module_event_handler, NULL };
4263 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4264 MODULE_VERSION(ataraid, 1);
4265 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4266 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4267 
4268 static char *
4269 ata_raid_format(struct ar_softc *rdp)
4270 {
4271     switch (rdp->format) {
4272     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4273     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4274     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4275     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4276     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4277     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4278     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4279     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4280     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4281     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4282     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4283     case AR_F_SII_RAID:         return "Silicon Image Medley";
4284     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4285     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4286     default:                    return "UNKNOWN";
4287     }
4288 }
4289 
4290 static char *
4291 ata_raid_type(struct ar_softc *rdp)
4292 {
4293     switch (rdp->type) {
4294     case AR_T_JBOD:     return "JBOD";
4295     case AR_T_SPAN:     return "SPAN";
4296     case AR_T_RAID0:    return "RAID0";
4297     case AR_T_RAID1:    return "RAID1";
4298     case AR_T_RAID3:    return "RAID3";
4299     case AR_T_RAID4:    return "RAID4";
4300     case AR_T_RAID5:    return "RAID5";
4301     case AR_T_RAID01:   return "RAID0+1";
4302     default:            return "UNKNOWN";
4303     }
4304 }
4305 
4306 static char *
4307 ata_raid_flags(struct ar_softc *rdp)
4308 {
4309     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4310     case AR_S_READY:                                    return "READY";
4311     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4312     case AR_S_READY | AR_S_REBUILDING:
4313     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4314     default:                                            return "BROKEN";
4315     }
4316 }
4317 
4318 /* debugging gunk */
4319 static void
4320 ata_raid_print_meta(struct ar_softc *raid)
4321 {
4322     int i;
4323 
4324     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4325     kprintf("=================================================\n");
4326     kprintf("format              %s\n", ata_raid_format(raid));
4327     kprintf("type                %s\n", ata_raid_type(raid));
4328     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4329 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4330     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4331     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4332     kprintf("generation          %u\n", raid->generation);
4333     kprintf("total_sectors       %ju\n", raid->total_sectors);
4334     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4335     kprintf("heads               %u\n", raid->heads);
4336     kprintf("sectors             %u\n", raid->sectors);
4337     kprintf("cylinders           %u\n", raid->cylinders);
4338     kprintf("width               %u\n", raid->width);
4339     kprintf("interleave          %u\n", raid->interleave);
4340     kprintf("total_disks         %u\n", raid->total_disks);
4341     for (i = 0; i < raid->total_disks; i++) {
4342 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4343 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4344 	if (raid->disks[i].dev) {
4345 	    kprintf("        ");
4346 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4347 			  raid->disks[i].sectors);
4348 	}
4349     }
4350     kprintf("=================================================\n");
4351 }
4352 
4353 static char *
4354 ata_raid_adaptec_type(int type)
4355 {
4356     static char buffer[16];
4357 
4358     switch (type) {
4359     case ADP_T_RAID0:   return "RAID0";
4360     case ADP_T_RAID1:   return "RAID1";
4361     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4362 			return buffer;
4363     }
4364 }
4365 
4366 static void
4367 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4368 {
4369     int i;
4370 
4371     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4372     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4373     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4374     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4375     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4376     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4377     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4378     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4379     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4380     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4381     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4382     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4383 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4384 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4385     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4386 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4387 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4388 
4389     for (i = 0; i < be16toh(meta->total_configs); i++) {
4390 	kprintf("    %d   total_disks  %u\n", i,
4391 	       be16toh(meta->configs[i].disk_number));
4392 	kprintf("    %d   generation   %u\n", i,
4393 	       be16toh(meta->configs[i].generation));
4394 	kprintf("    %d   magic_0      0x%08x\n", i,
4395 	       be32toh(meta->configs[i].magic_0));
4396 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4397 	kprintf("    %d   type         %s\n", i,
4398 	       ata_raid_adaptec_type(meta->configs[i].type));
4399 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4400 	kprintf("    %d   flags        %d\n", i,
4401 	       be32toh(meta->configs[i].flags));
4402 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4403 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4404 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4405 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4406 	kprintf("    %d   disk_number  %u\n", i,
4407 	       be32toh(meta->configs[i].disk_number));
4408 	kprintf("    %d   dummy_6      0x%08x\n", i,
4409 	       be32toh(meta->configs[i].dummy_6));
4410 	kprintf("    %d   sectors      %u\n", i,
4411 	       be32toh(meta->configs[i].sectors));
4412 	kprintf("    %d   stripe_shift %u\n", i,
4413 	       be16toh(meta->configs[i].stripe_shift));
4414 	kprintf("    %d   dummy_7      0x%08x\n", i,
4415 	       be32toh(meta->configs[i].dummy_7));
4416 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4417 	       be32toh(meta->configs[i].dummy_8[0]),
4418 	       be32toh(meta->configs[i].dummy_8[1]),
4419 	       be32toh(meta->configs[i].dummy_8[2]),
4420 	       be32toh(meta->configs[i].dummy_8[3]));
4421 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4422     }
4423     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4424     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4425     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4426     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4427     kprintf("=================================================\n");
4428 }
4429 
4430 static char *
4431 ata_raid_hptv2_type(int type)
4432 {
4433     static char buffer[16];
4434 
4435     switch (type) {
4436     case HPTV2_T_RAID0:         return "RAID0";
4437     case HPTV2_T_RAID1:         return "RAID1";
4438     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4439     case HPTV2_T_SPAN:          return "SPAN";
4440     case HPTV2_T_RAID_3:        return "RAID3";
4441     case HPTV2_T_RAID_5:        return "RAID5";
4442     case HPTV2_T_JBOD:          return "JBOD";
4443     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4444     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4445 			return buffer;
4446     }
4447 }
4448 
4449 static void
4450 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4451 {
4452     int i;
4453 
4454     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4455     kprintf("magic               0x%08x\n", meta->magic);
4456     kprintf("magic_0             0x%08x\n", meta->magic_0);
4457     kprintf("magic_1             0x%08x\n", meta->magic_1);
4458     kprintf("order               0x%08x\n", meta->order);
4459     kprintf("array_width         %u\n", meta->array_width);
4460     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4461     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4462     kprintf("disk_number         %u\n", meta->disk_number);
4463     kprintf("total_sectors       %u\n", meta->total_sectors);
4464     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4465     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4466     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4467     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4468     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4469     kprintf("log_index           0x%02x\n", meta->error_log_index);
4470     if (meta->error_log_entries) {
4471 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4472 	for (i = meta->error_log_index;
4473 	     i < meta->error_log_index + meta->error_log_entries; i++)
4474 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4475 		   meta->errorlog[i%32].timestamp,
4476 		   meta->errorlog[i%32].reason,
4477 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4478 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4479     }
4480     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4481     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4482     kprintf("name_1              <%.15s>\n", meta->name_1);
4483     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4484     kprintf("name_2              <%.15s>\n", meta->name_2);
4485     kprintf("=================================================\n");
4486 }
4487 
4488 static char *
4489 ata_raid_hptv3_type(int type)
4490 {
4491     static char buffer[16];
4492 
4493     switch (type) {
4494     case HPTV3_T_SPARE: return "SPARE";
4495     case HPTV3_T_JBOD:  return "JBOD";
4496     case HPTV3_T_SPAN:  return "SPAN";
4497     case HPTV3_T_RAID0: return "RAID0";
4498     case HPTV3_T_RAID1: return "RAID1";
4499     case HPTV3_T_RAID3: return "RAID3";
4500     case HPTV3_T_RAID5: return "RAID5";
4501     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4502 			return buffer;
4503     }
4504 }
4505 
4506 static void
4507 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4508 {
4509     int i;
4510 
4511     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4512     kprintf("magic               0x%08x\n", meta->magic);
4513     kprintf("magic_0             0x%08x\n", meta->magic_0);
4514     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4515     kprintf("mode                0x%02x\n", meta->mode);
4516     kprintf("user_mode           0x%02x\n", meta->user_mode);
4517     kprintf("config_entries      0x%02x\n", meta->config_entries);
4518     for (i = 0; i < meta->config_entries; i++) {
4519 	kprintf("config %d:\n", i);
4520 	kprintf("    total_sectors       %ju\n",
4521 	       meta->configs[0].total_sectors +
4522 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4523 	kprintf("    type                %s\n",
4524 	       ata_raid_hptv3_type(meta->configs[i].type));
4525 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4526 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4527 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4528 	kprintf("    status              %b\n", meta->configs[i].status,
4529 	       "\20\2RAID5\1NEED_REBUILD\n");
4530 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4531 	kprintf("    rebuild_lba         %ju\n",
4532 	       meta->configs_high[0].rebuild_lba +
4533 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4534     }
4535     kprintf("name                <%.16s>\n", meta->name);
4536     kprintf("timestamp           0x%08x\n", meta->timestamp);
4537     kprintf("description         <%.16s>\n", meta->description);
4538     kprintf("creator             <%.16s>\n", meta->creator);
4539     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4540     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4541     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4542     kprintf("flags               %b\n", meta->flags,
4543 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4544     kprintf("=================================================\n");
4545 }
4546 
4547 static char *
4548 ata_raid_intel_type(int type)
4549 {
4550     static char buffer[16];
4551 
4552     switch (type) {
4553     case INTEL_T_RAID0: return "RAID0";
4554     case INTEL_T_RAID1: return "RAID1";
4555     case INTEL_T_RAID5: return "RAID5";
4556     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4557 			return buffer;
4558     }
4559 }
4560 
4561 static void
4562 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4563 {
4564     struct intel_raid_mapping *map;
4565     int i, j;
4566 
4567     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4568     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4569     kprintf("version             <%.6s>\n", meta->version);
4570     kprintf("checksum            0x%08x\n", meta->checksum);
4571     kprintf("config_size         0x%08x\n", meta->config_size);
4572     kprintf("config_id           0x%08x\n", meta->config_id);
4573     kprintf("generation          0x%08x\n", meta->generation);
4574     kprintf("total_disks         %u\n", meta->total_disks);
4575     kprintf("total_volumes       %u\n", meta->total_volumes);
4576     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4577     for (i = 0; i < meta->total_disks; i++ ) {
4578 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4579 	       meta->disk[i].serial, meta->disk[i].sectors,
4580 	       meta->disk[i].id, meta->disk[i].flags);
4581     }
4582     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4583     for (j = 0; j < meta->total_volumes; j++) {
4584 	kprintf("name                %.16s\n", map->name);
4585 	kprintf("total_sectors       %ju\n", map->total_sectors);
4586 	kprintf("state               %u\n", map->state);
4587 	kprintf("reserved            %u\n", map->reserved);
4588 	kprintf("offset              %u\n", map->offset);
4589 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4590 	kprintf("stripe_count        %u\n", map->stripe_count);
4591 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4592 	kprintf("status              %u\n", map->status);
4593 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4594 	kprintf("total_disks         %u\n", map->total_disks);
4595 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4596 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4597 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4598 	for (i = 0; i < map->total_disks; i++ ) {
4599 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4600 	}
4601 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4602     }
4603     kprintf("=================================================\n");
4604 }
4605 
4606 static char *
4607 ata_raid_ite_type(int type)
4608 {
4609     static char buffer[16];
4610 
4611     switch (type) {
4612     case ITE_T_RAID0:   return "RAID0";
4613     case ITE_T_RAID1:   return "RAID1";
4614     case ITE_T_RAID01:  return "RAID0+1";
4615     case ITE_T_SPAN:    return "SPAN";
4616     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4617 			return buffer;
4618     }
4619 }
4620 
4621 static void
4622 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4623 {
4624     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4625     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4626     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4627 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4628 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4629 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4630     kprintf("total_sectors       %jd\n", meta->total_sectors);
4631     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4632     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4633     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4634 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4635 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4636 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4637     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4638     kprintf("array_width         %u\n", meta->array_width);
4639     kprintf("disk_number         %u\n", meta->disk_number);
4640     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4641     kprintf("=================================================\n");
4642 }
4643 
4644 static char *
4645 ata_raid_jmicron_type(int type)
4646 {
4647     static char buffer[16];
4648 
4649     switch (type) {
4650     case JM_T_RAID0:	return "RAID0";
4651     case JM_T_RAID1:	return "RAID1";
4652     case JM_T_RAID01:	return "RAID0+1";
4653     case JM_T_JBOD:	return "JBOD";
4654     case JM_T_RAID5:	return "RAID5";
4655     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4656 			return buffer;
4657     }
4658 }
4659 
4660 static void
4661 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4662 {
4663     int i;
4664 
4665     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4666     kprintf("signature           %.2s\n", meta->signature);
4667     kprintf("version             0x%04x\n", meta->version);
4668     kprintf("checksum            0x%04x\n", meta->checksum);
4669     kprintf("disk_id             0x%08x\n", meta->disk_id);
4670     kprintf("offset              0x%08x\n", meta->offset);
4671     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4672     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4673     kprintf("name                %.16s\n", meta->name);
4674     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4675     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4676     kprintf("flags               0x%04x\n", meta->flags);
4677     kprintf("spare:\n");
4678     for (i=0; i < 2 && meta->spare[i]; i++)
4679 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4680     kprintf("disks:\n");
4681     for (i=0; i < 8 && meta->disks[i]; i++)
4682 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4683     kprintf("=================================================\n");
4684 }
4685 
4686 static char *
4687 ata_raid_lsiv2_type(int type)
4688 {
4689     static char buffer[16];
4690 
4691     switch (type) {
4692     case LSIV2_T_RAID0: return "RAID0";
4693     case LSIV2_T_RAID1: return "RAID1";
4694     case LSIV2_T_SPARE: return "SPARE";
4695     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4696 			return buffer;
4697     }
4698 }
4699 
4700 static void
4701 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4702 {
4703     int i;
4704 
4705     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4706     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4707     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4708     kprintf("flags               0x%02x\n", meta->flags);
4709     kprintf("version             0x%04x\n", meta->version);
4710     kprintf("config_entries      0x%02x\n", meta->config_entries);
4711     kprintf("raid_count          0x%02x\n", meta->raid_count);
4712     kprintf("total_disks         0x%02x\n", meta->total_disks);
4713     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4714     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4715     for (i = 0; i < meta->config_entries; i++) {
4716 	kprintf("    type             %s\n",
4717 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4718 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4719 	kprintf("    stripe_sectors   %u\n",
4720 	       meta->configs[i].raid.stripe_sectors);
4721 	kprintf("    array_width      %u\n",
4722 	       meta->configs[i].raid.array_width);
4723 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4724 	kprintf("    config_offset    %u\n",
4725 	       meta->configs[i].raid.config_offset);
4726 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4727 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4728 	kprintf("    total_sectors    %u\n",
4729 	       meta->configs[i].raid.total_sectors);
4730     }
4731     kprintf("disk_number         0x%02x\n", meta->disk_number);
4732     kprintf("raid_number         0x%02x\n", meta->raid_number);
4733     kprintf("timestamp           0x%08x\n", meta->timestamp);
4734     kprintf("=================================================\n");
4735 }
4736 
4737 static char *
4738 ata_raid_lsiv3_type(int type)
4739 {
4740     static char buffer[16];
4741 
4742     switch (type) {
4743     case LSIV3_T_RAID0: return "RAID0";
4744     case LSIV3_T_RAID1: return "RAID1";
4745     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4746 			return buffer;
4747     }
4748 }
4749 
4750 static void
4751 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4752 {
4753     int i;
4754 
4755     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4756     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4757     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4758     kprintf("version             0x%04x\n", meta->version);
4759     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4760     kprintf("RAID configs:\n");
4761     for (i = 0; i < 8; i++) {
4762 	if (meta->raid[i].total_disks) {
4763 	    kprintf("%02d  stripe_pages       %u\n", i,
4764 		   meta->raid[i].stripe_pages);
4765 	    kprintf("%02d  type               %s\n", i,
4766 		   ata_raid_lsiv3_type(meta->raid[i].type));
4767 	    kprintf("%02d  total_disks        %u\n", i,
4768 		   meta->raid[i].total_disks);
4769 	    kprintf("%02d  array_width        %u\n", i,
4770 		   meta->raid[i].array_width);
4771 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4772 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4773 	    kprintf("%02d  device             0x%02x\n", i,
4774 		   meta->raid[i].device);
4775 	}
4776     }
4777     kprintf("DISK configs:\n");
4778     for (i = 0; i < 6; i++) {
4779 	    if (meta->disk[i].disk_sectors) {
4780 	    kprintf("%02d  disk_sectors       %u\n", i,
4781 		   meta->disk[i].disk_sectors);
4782 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4783 	}
4784     }
4785     kprintf("device              0x%02x\n", meta->device);
4786     kprintf("timestamp           0x%08x\n", meta->timestamp);
4787     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4788     kprintf("=================================================\n");
4789 }
4790 
4791 static char *
4792 ata_raid_nvidia_type(int type)
4793 {
4794     static char buffer[16];
4795 
4796     switch (type) {
4797     case NV_T_SPAN:     return "SPAN";
4798     case NV_T_RAID0:    return "RAID0";
4799     case NV_T_RAID1:    return "RAID1";
4800     case NV_T_RAID3:    return "RAID3";
4801     case NV_T_RAID5:    return "RAID5";
4802     case NV_T_RAID01:   return "RAID0+1";
4803     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4804 			return buffer;
4805     }
4806 }
4807 
4808 static void
4809 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4810 {
4811     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4812     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4813     kprintf("config_size         %d\n", meta->config_size);
4814     kprintf("checksum            0x%08x\n", meta->checksum);
4815     kprintf("version             0x%04x\n", meta->version);
4816     kprintf("disk_number         %d\n", meta->disk_number);
4817     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4818     kprintf("total_sectors       %d\n", meta->total_sectors);
4819     kprintf("sectors_size        %d\n", meta->sector_size);
4820     kprintf("serial              %.16s\n", meta->serial);
4821     kprintf("revision            %.4s\n", meta->revision);
4822     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4823     kprintf("magic_0             0x%08x\n", meta->magic_0);
4824     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4825     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4826     kprintf("flags               0x%02x\n", meta->flags);
4827     kprintf("array_width         %d\n", meta->array_width);
4828     kprintf("total_disks         %d\n", meta->total_disks);
4829     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4830     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4831     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4832     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4833     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4834     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4835     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4836     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4837     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4838     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4839     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4840     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4841     kprintf("status              0x%08x\n", meta->status);
4842     kprintf("=================================================\n");
4843 }
4844 
4845 static char *
4846 ata_raid_promise_type(int type)
4847 {
4848     static char buffer[16];
4849 
4850     switch (type) {
4851     case PR_T_RAID0:    return "RAID0";
4852     case PR_T_RAID1:    return "RAID1";
4853     case PR_T_RAID3:    return "RAID3";
4854     case PR_T_RAID5:    return "RAID5";
4855     case PR_T_SPAN:     return "SPAN";
4856     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4857 			return buffer;
4858     }
4859 }
4860 
4861 static void
4862 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4863 {
4864     int i;
4865 
4866     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4867     kprintf("promise_id          <%s>\n", meta->promise_id);
4868     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4869     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4870     kprintf("magic_1             0x%04x\n", meta->magic_1);
4871     kprintf("magic_2             0x%08x\n", meta->magic_2);
4872     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4873 		meta->raid.integrity, "\20\10VALID\n" );
4874     kprintf("flags               0x%02x %b\n",
4875 	   meta->raid.flags, meta->raid.flags,
4876 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4877 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4878     kprintf("disk_number         %d\n", meta->raid.disk_number);
4879     kprintf("channel             0x%02x\n", meta->raid.channel);
4880     kprintf("device              0x%02x\n", meta->raid.device);
4881     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4882     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4883     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4884     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4885     kprintf("generation          0x%04x\n", meta->raid.generation);
4886     kprintf("status              0x%02x %b\n",
4887 	    meta->raid.status, meta->raid.status,
4888 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4889     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4890     kprintf("total_disks         %u\n", meta->raid.total_disks);
4891     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4892     kprintf("array_width         %u\n", meta->raid.array_width);
4893     kprintf("array_number        %u\n", meta->raid.array_number);
4894     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4895     kprintf("cylinders           %u\n", meta->raid.cylinders);
4896     kprintf("heads               %u\n", meta->raid.heads);
4897     kprintf("sectors             %u\n", meta->raid.sectors);
4898     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4899     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4900     for (i = 0; i < 8; i++) {
4901 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4902 	       i, meta->raid.disk[i].flags,
4903 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4904 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4905 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4906 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4907     }
4908     kprintf("checksum            0x%08x\n", meta->checksum);
4909     kprintf("=================================================\n");
4910 }
4911 
4912 static char *
4913 ata_raid_sii_type(int type)
4914 {
4915     static char buffer[16];
4916 
4917     switch (type) {
4918     case SII_T_RAID0:   return "RAID0";
4919     case SII_T_RAID1:   return "RAID1";
4920     case SII_T_RAID01:  return "RAID0+1";
4921     case SII_T_SPARE:   return "SPARE";
4922     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4923 			return buffer;
4924     }
4925 }
4926 
4927 static void
4928 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4929 {
4930     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4931     kprintf("total_sectors       %ju\n", meta->total_sectors);
4932     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4933     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4934     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4935     kprintf("version_minor       0x%04x\n", meta->version_minor);
4936     kprintf("version_major       0x%04x\n", meta->version_major);
4937     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4938 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4939 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4940     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4941     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4942     kprintf("disk_number         %u\n", meta->disk_number);
4943     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4944     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4945     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4946     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4947     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4948     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4949     kprintf("generation          0x%08x\n", meta->generation);
4950     kprintf("status              0x%02x %b\n",
4951 	    meta->status, meta->status,
4952 	   "\20\1READY\n");
4953     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4954     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4955     kprintf("position            %02x\n", meta->position);
4956     kprintf("dummy_3             %04x\n", meta->dummy_3);
4957     kprintf("name                <%.16s>\n", meta->name);
4958     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4959     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4960     kprintf("=================================================\n");
4961 }
4962 
4963 static char *
4964 ata_raid_sis_type(int type)
4965 {
4966     static char buffer[16];
4967 
4968     switch (type) {
4969     case SIS_T_JBOD:    return "JBOD";
4970     case SIS_T_RAID0:   return "RAID0";
4971     case SIS_T_RAID1:   return "RAID1";
4972     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4973 			return buffer;
4974     }
4975 }
4976 
4977 static void
4978 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4979 {
4980     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4981     kprintf("magic               0x%04x\n", meta->magic);
4982     kprintf("disks               0x%02x\n", meta->disks);
4983     kprintf("type                %s\n",
4984 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4985     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4986     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4987     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4988     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4989     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4990     kprintf("timestamp           0x%08x\n", meta->timestamp);
4991     kprintf("model               %.40s\n", meta->model);
4992     kprintf("disk_number         %u\n", meta->disk_number);
4993     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4994 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4995     kprintf("=================================================\n");
4996 }
4997 
4998 static char *
4999 ata_raid_via_type(int type)
5000 {
5001     static char buffer[16];
5002 
5003     switch (type) {
5004     case VIA_T_RAID0:   return "RAID0";
5005     case VIA_T_RAID1:   return "RAID1";
5006     case VIA_T_RAID5:   return "RAID5";
5007     case VIA_T_RAID01:  return "RAID0+1";
5008     case VIA_T_SPAN:    return "SPAN";
5009     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
5010 			return buffer;
5011     }
5012 }
5013 
5014 static void
5015 ata_raid_via_print_meta(struct via_raid_conf *meta)
5016 {
5017     int i;
5018 
5019     kprintf("*************** ATA VIA Metadata ****************\n");
5020     kprintf("magic               0x%02x\n", meta->magic);
5021     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5022     kprintf("type                %s\n",
5023 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5024     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5025     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5026     kprintf("disk_index          0x%02x\n", meta->disk_index);
5027     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5028     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5029     kprintf(" stripe_sectors     %d\n",
5030 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5031     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5032     kprintf("disk_id             0x%08x\n", meta->disk_id);
5033     kprintf("DISK#   disk_id\n");
5034     for (i = 0; i < 8; i++) {
5035 	if (meta->disks[i])
5036 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5037     }
5038     kprintf("checksum            0x%02x\n", meta->checksum);
5039     kprintf("=================================================\n");
5040 }
5041