xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision bc3d4063)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.10 2008/06/27 01:24:46 dillon Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 /*
257  * XXX TGEN there are a lot of offset -> block number conversions going on
258  * here, which is suboptimal.
259  */
260 static int
261 ata_raid_strategy(struct dev_strategy_args *ap)
262 {
263     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
264     struct bio *bp = ap->a_bio;
265     struct buf *bbp = bp->bio_buf;
266     struct ata_request *request;
267     caddr_t data;
268     u_int64_t blkno, lba, blk = 0;
269     int count, chunk, drv, par = 0, change = 0;
270 
271     if (!(rdp->status & AR_S_READY) ||
272 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
273 	bbp->b_flags |= B_ERROR;
274 	bbp->b_error = EIO;
275 	biodone(bp);
276 	return(0);
277     }
278 
279     bbp->b_resid = bbp->b_bcount;
280     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
281 	 /* bio_offset is byte granularity, convert */
282 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
283 	 data = bbp->b_data;
284 	 count > 0;
285 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
286 
287 	switch (rdp->type) {
288 	case AR_T_RAID1:
289 	    drv = 0;
290 	    lba = blkno;
291 	    chunk = count;
292 	    break;
293 
294 	case AR_T_JBOD:
295 	case AR_T_SPAN:
296 	    drv = 0;
297 	    lba = blkno;
298 	    while (lba >= rdp->disks[drv].sectors)
299 		lba -= rdp->disks[drv++].sectors;
300 	    chunk = min(rdp->disks[drv].sectors - lba, count);
301 	    break;
302 
303 	case AR_T_RAID0:
304 	case AR_T_RAID01:
305 	    chunk = blkno % rdp->interleave;
306 	    drv = (blkno / rdp->interleave) % rdp->width;
307 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
308 	    chunk = min(count, rdp->interleave - chunk);
309 	    break;
310 
311 	case AR_T_RAID5:
312 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
313 	    par = rdp->width - 1 -
314 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
315 	    if (drv >= par)
316 		drv++;
317 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
318 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
319 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
320 	    break;
321 
322 	default:
323 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
324 	    bbp->b_flags |= B_ERROR;
325 	    bbp->b_error = EIO;
326 	    biodone(bp);
327 	    return(0);
328 	}
329 
330 	/* offset on all but "first on HPTv2" */
331 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
332 	    lba += rdp->offset_sectors;
333 
334 	if (!(request = ata_raid_init_request(rdp, bp))) {
335 	    bbp->b_flags |= B_ERROR;
336 	    bbp->b_error = EIO;
337 	    biodone(bp);
338 	    return(0);
339 	}
340 	request->data = data;
341 	request->bytecount = chunk * DEV_BSIZE;
342 	request->u.ata.lba = lba;
343 	request->u.ata.count = request->bytecount / DEV_BSIZE;
344 
345 	switch (rdp->type) {
346 	case AR_T_JBOD:
347 	case AR_T_SPAN:
348 	case AR_T_RAID0:
349 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
350 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
351 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
352 		ata_raid_config_changed(rdp, 1);
353 		ata_free_request(request);
354 		bbp->b_flags |= B_ERROR;
355 		bbp->b_error = EIO;
356 		biodone(bp);
357 		return(0);
358 	    }
359 	    request->this = drv;
360 	    request->dev = rdp->disks[request->this].dev;
361 	    ata_raid_send_request(request);
362 	    break;
363 
364 	case AR_T_RAID1:
365 	case AR_T_RAID01:
366 	    if ((rdp->disks[drv].flags &
367 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
368 		!rdp->disks[drv].dev) {
369 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
370 		change = 1;
371 	    }
372 	    if ((rdp->disks[drv + rdp->width].flags &
373 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
374 		!rdp->disks[drv + rdp->width].dev) {
375 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
376 		change = 1;
377 	    }
378 	    if (change)
379 		ata_raid_config_changed(rdp, 1);
380 	    if (!(rdp->status & AR_S_READY)) {
381 		ata_free_request(request);
382 		bbp->b_flags |= B_ERROR;
383 		bbp->b_error = EIO;
384 		biodone(bp);
385 		return(0);
386 	    }
387 
388 	    if (rdp->status & AR_S_REBUILDING)
389 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
390 		      (rdp->interleave * (drv % rdp->width)) +
391 		      lba % rdp->interleave;;
392 
393 	    if (bbp->b_cmd == BUF_CMD_READ) {
394 		int src_online =
395 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
396 		int mir_online =
397 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
398 
399 		/* if mirror gone or close to last access on source */
400 		if (!mir_online ||
401 		    ((src_online) &&
402 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
403 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
404 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
405 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
406 		    rdp->toggle = 0;
407 		}
408 		/* if source gone or close to last access on mirror */
409 		else if (!src_online ||
410 			 ((mir_online) &&
411 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
412 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
413 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
414 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
415 		    drv += rdp->width;
416 		    rdp->toggle = 1;
417 		}
418 		/* not close to any previous access, toggle */
419 		else {
420 		    if (rdp->toggle)
421 			rdp->toggle = 0;
422 		    else {
423 			drv += rdp->width;
424 			rdp->toggle = 1;
425 		    }
426 		}
427 
428 		if ((rdp->status & AR_S_REBUILDING) &&
429 		    (blk <= rdp->rebuild_lba) &&
430 		    ((blk + chunk) > rdp->rebuild_lba)) {
431 		    struct ata_composite *composite;
432 		    struct ata_request *rebuild;
433 		    int this;
434 
435 		    /* figure out what part to rebuild */
436 		    if (drv < rdp->width)
437 			this = drv + rdp->width;
438 		    else
439 			this = drv - rdp->width;
440 
441 		    /* do we have a spare to rebuild on ? */
442 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
443 			if ((composite = ata_alloc_composite())) {
444 			    if ((rebuild = ata_alloc_request())) {
445 				rdp->rebuild_lba = blk + chunk;
446 				bcopy(request, rebuild,
447 				      sizeof(struct ata_request));
448 				rebuild->this = this;
449 				rebuild->dev = rdp->disks[this].dev;
450 				rebuild->flags &= ~ATA_R_READ;
451 				rebuild->flags |= ATA_R_WRITE;
452 				spin_init(&composite->lock);
453 				composite->residual = request->bytecount;
454 				composite->rd_needed |= (1 << drv);
455 				composite->wr_depend |= (1 << drv);
456 				composite->wr_needed |= (1 << this);
457 				composite->request[drv] = request;
458 				composite->request[this] = rebuild;
459 				request->composite = composite;
460 				rebuild->composite = composite;
461 				ata_raid_send_request(rebuild);
462 			    }
463 			    else {
464 				ata_free_composite(composite);
465 				kprintf("DOH! ata_alloc_request failed!\n");
466 			    }
467 			}
468 			else {
469 			    kprintf("DOH! ata_alloc_composite failed!\n");
470 			}
471 		    }
472 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
473 			/*
474 			 * if we got here we are a chunk of a RAID01 that
475 			 * does not need a rebuild, but we need to increment
476 			 * the rebuild_lba address to get the rebuild to
477 			 * move to the next chunk correctly
478 			 */
479 			rdp->rebuild_lba = blk + chunk;
480 		    }
481 		    else
482 			kprintf("DOH! we didn't find the rebuild part\n");
483 		}
484 	    }
485 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
486 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
487 		    ((rdp->status & AR_S_REBUILDING) &&
488 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
489 		     ((blk < rdp->rebuild_lba) ||
490 		      ((blk <= rdp->rebuild_lba) &&
491 		       ((blk + chunk) > rdp->rebuild_lba))))) {
492 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
493 			((rdp->status & AR_S_REBUILDING) &&
494 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
495 			 ((blk < rdp->rebuild_lba) ||
496 			  ((blk <= rdp->rebuild_lba) &&
497 			   ((blk + chunk) > rdp->rebuild_lba))))) {
498 			struct ata_request *mirror;
499 			struct ata_composite *composite;
500 			int this = drv + rdp->width;
501 
502 			if ((composite = ata_alloc_composite())) {
503 			    if ((mirror = ata_alloc_request())) {
504 				if ((blk <= rdp->rebuild_lba) &&
505 				    ((blk + chunk) > rdp->rebuild_lba))
506 				    rdp->rebuild_lba = blk + chunk;
507 				bcopy(request, mirror,
508 				      sizeof(struct ata_request));
509 				mirror->this = this;
510 				mirror->dev = rdp->disks[this].dev;
511 				spin_init(&composite->lock);
512 				composite->residual = request->bytecount;
513 				composite->wr_needed |= (1 << drv);
514 				composite->wr_needed |= (1 << this);
515 				composite->request[drv] = request;
516 				composite->request[this] = mirror;
517 				request->composite = composite;
518 				mirror->composite = composite;
519 				ata_raid_send_request(mirror);
520 				rdp->disks[this].last_lba =
521 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
522 				    chunk;
523 			    }
524 			    else {
525 				ata_free_composite(composite);
526 				kprintf("DOH! ata_alloc_request failed!\n");
527 			    }
528 			}
529 			else {
530 			    kprintf("DOH! ata_alloc_composite failed!\n");
531 			}
532 		    }
533 		    else
534 			drv += rdp->width;
535 		}
536 	    }
537 	    request->this = drv;
538 	    request->dev = rdp->disks[request->this].dev;
539 	    ata_raid_send_request(request);
540 	    rdp->disks[request->this].last_lba =
541 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
542 	    break;
543 
544 	case AR_T_RAID5:
545 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
546 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
547 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
548 		change = 1;
549 	    }
550 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
551 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
552 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
553 		change = 1;
554 	    }
555 	    if (change)
556 		ata_raid_config_changed(rdp, 1);
557 	    if (!(rdp->status & AR_S_READY)) {
558 		ata_free_request(request);
559 		bbp->b_flags |= B_ERROR;
560 		bbp->b_error = EIO;
561 		biodone(bp);
562 		return(0);
563 	    }
564 	    if (rdp->status & AR_S_DEGRADED) {
565 		/* do the XOR game if possible */
566 	    }
567 	    else {
568 		request->this = drv;
569 		request->dev = rdp->disks[request->this].dev;
570 		if (bbp->b_cmd == BUF_CMD_READ) {
571 		    ata_raid_send_request(request);
572 		}
573 		if (bbp->b_cmd == BUF_CMD_WRITE) {
574 		    ata_raid_send_request(request);
575 		    /* XXX TGEN no, I don't speak Danish either */
576 		    /*
577 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
578 		     * par kopi af request
579 		     * l�se orgdata fra drv
580 		     * skriv nydata til drv
581 		     * l�se parorgdata fra par
582 		     * skriv orgdata xor parorgdata xor nydata til par
583 		     */
584 		}
585 	    }
586 	    break;
587 
588 	default:
589 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
590 	}
591     }
592 
593     return(0);
594 }
595 
596 static void
597 ata_raid_done(struct ata_request *request)
598 {
599     struct ar_softc *rdp = request->driver;
600     struct ata_composite *composite = NULL;
601     struct bio *bp = request->bio;
602     struct buf *bbp = bp->bio_buf;
603     int i, mirror, finished = 0;
604 
605     switch (rdp->type) {
606     case AR_T_JBOD:
607     case AR_T_SPAN:
608     case AR_T_RAID0:
609 	if (request->result) {
610 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
611 	    ata_raid_config_changed(rdp, 1);
612 	    bbp->b_error = request->result;
613 	    finished = 1;
614 	}
615 	else {
616 	    bbp->b_resid -= request->donecount;
617 	    if (!bbp->b_resid)
618 		finished = 1;
619 	}
620 	break;
621 
622     case AR_T_RAID1:
623     case AR_T_RAID01:
624 	if (request->this < rdp->width)
625 	    mirror = request->this + rdp->width;
626 	else
627 	    mirror = request->this - rdp->width;
628 	if (request->result) {
629 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
630 	    ata_raid_config_changed(rdp, 1);
631 	}
632 	if (rdp->status & AR_S_READY) {
633 	    u_int64_t blk = 0;
634 
635 	    if (rdp->status & AR_S_REBUILDING)
636 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
637 		      rdp->interleave + (rdp->interleave *
638 		      (request->this % rdp->width)) +
639 		      request->u.ata.lba % rdp->interleave;
640 
641 	    if (bbp->b_cmd == BUF_CMD_READ) {
642 
643 		/* is this a rebuild composite */
644 		if ((composite = request->composite)) {
645 		    spin_lock_wr(&composite->lock);
646 
647 		    /* handle the read part of a rebuild composite */
648 		    if (request->flags & ATA_R_READ) {
649 
650 			/* if read failed array is now broken */
651 			if (request->result) {
652 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
653 			    ata_raid_config_changed(rdp, 1);
654 			    bbp->b_error = request->result;
655 			    rdp->rebuild_lba = blk;
656 			    finished = 1;
657 			}
658 
659 			/* good data, update how far we've gotten */
660 			else {
661 			    bbp->b_resid -= request->donecount;
662 			    composite->residual -= request->donecount;
663 			    if (!composite->residual) {
664 				if (composite->wr_done & (1 << mirror))
665 				    finished = 1;
666 			    }
667 			}
668 		    }
669 
670 		    /* handle the write part of a rebuild composite */
671 		    else if (request->flags & ATA_R_WRITE) {
672 			if (composite->rd_done & (1 << mirror)) {
673 			    if (request->result) {
674 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
675 				rdp->rebuild_lba = blk;
676 			    }
677 			    if (!composite->residual)
678 				finished = 1;
679 			}
680 		    }
681 		    spin_unlock_wr(&composite->lock);
682 		}
683 
684 		/* if read failed retry on the mirror */
685 		else if (request->result) {
686 		    request->dev = rdp->disks[mirror].dev;
687 		    request->flags &= ~ATA_R_TIMEOUT;
688 		    ata_raid_send_request(request);
689 		    return;
690 		}
691 
692 		/* we have good data */
693 		else {
694 		    bbp->b_resid -= request->donecount;
695 		    if (!bbp->b_resid)
696 			finished = 1;
697 		}
698 	    }
699 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
700 		/* do we have a mirror or rebuild to deal with ? */
701 		if ((composite = request->composite)) {
702 		    spin_lock_wr(&composite->lock);
703 		    if (composite->wr_done & (1 << mirror)) {
704 			if (request->result) {
705 			    if (composite->request[mirror]->result) {
706 				kprintf("DOH! all disks failed and got here\n");
707 				bbp->b_error = EIO;
708 			    }
709 			    if (rdp->status & AR_S_REBUILDING) {
710 				rdp->rebuild_lba = blk;
711 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
712 			    }
713 			    bbp->b_resid -=
714 				composite->request[mirror]->donecount;
715 			    composite->residual -=
716 				composite->request[mirror]->donecount;
717 			}
718 			else {
719 			    bbp->b_resid -= request->donecount;
720 			    composite->residual -= request->donecount;
721 			}
722 			if (!composite->residual)
723 			    finished = 1;
724 		    }
725 		    spin_unlock_wr(&composite->lock);
726 		}
727 		/* no mirror we are done */
728 		else {
729 		    bbp->b_resid -= request->donecount;
730 		    if (!bbp->b_resid)
731 			finished = 1;
732 		}
733 	    }
734 	}
735 	else {
736 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
737 	    bbp->b_error = request->result;
738 	    biodone(bp);
739 	}
740 	break;
741 
742     case AR_T_RAID5:
743 	if (request->result) {
744 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
745 	    ata_raid_config_changed(rdp, 1);
746 	    if (rdp->status & AR_S_READY) {
747 		if (bbp->b_cmd == BUF_CMD_READ) {
748 		    /* do the XOR game to recover data */
749 		}
750 		if (bbp->b_cmd == BUF_CMD_WRITE) {
751 		    /* if the parity failed we're OK sortof */
752 		    /* otherwise wee need to do the XOR long dance */
753 		}
754 		finished = 1;
755 	    }
756 	    else {
757 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
758 		bbp->b_error = request->result;
759 		biodone(bp);
760 	    }
761 	}
762 	else {
763 	    /* did we have an XOR game going ?? */
764 	    bbp->b_resid -= request->donecount;
765 	    if (!bbp->b_resid)
766 		finished = 1;
767 	}
768 	break;
769 
770     default:
771 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
772     }
773 
774     if (finished) {
775 	if ((rdp->status & AR_S_REBUILDING) &&
776 	    rdp->rebuild_lba >= rdp->total_sectors) {
777 	    int disk;
778 
779 	    for (disk = 0; disk < rdp->total_disks; disk++) {
780 		if ((rdp->disks[disk].flags &
781 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
782 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
783 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
784 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
785 		}
786 	    }
787 	    rdp->status &= ~AR_S_REBUILDING;
788 	    ata_raid_config_changed(rdp, 1);
789 	}
790 	if (!bbp->b_resid)
791 	    biodone(bp);
792     }
793 
794     if (composite) {
795 	if (finished) {
796 	    /* we are done with this composite, free all resources */
797 	    for (i = 0; i < 32; i++) {
798 		if (composite->rd_needed & (1 << i) ||
799 		    composite->wr_needed & (1 << i)) {
800 		    ata_free_request(composite->request[i]);
801 		}
802 	    }
803 	    spin_uninit(&composite->lock);
804 	    ata_free_composite(composite);
805 	}
806     }
807     else
808 	ata_free_request(request);
809 }
810 
811 static int
812 ata_raid_dump(struct dev_dump_args *ap)
813 {
814     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
815     struct buf dbuf;
816     vm_paddr_t addr = 0;
817     long blkcnt;
818     int dumppages = MAXDUMPPGS;
819     int error = 0;
820     int i, disk;
821 
822     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
823 
824     while (ap->a_count > 0) {
825 	caddr_t va = NULL;
826 
827 	if ((ap->a_count / blkcnt) < dumppages)
828 	    dumppages = ap->a_count / blkcnt;
829 
830 	for (i = 0; i < dumppages; ++i) {
831 	    vm_paddr_t a = addr + (i * PAGE_SIZE);
832 	    if (is_physical_memory(a))
833 		va = pmap_kenter_temporary(trunc_page(a), i);
834 	    else
835 		va = pmap_kenter_temporary(trunc_page(0), i);
836 	}
837 
838 	bzero(&dbuf, sizeof(struct buf));
839 	BUF_LOCKINIT(&dbuf);
840 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
841 	initbufbio(&dbuf);
842 	/* bio_offset is byte granularity, convert block granularity a_blkno */
843 	dbuf.b_bio1.bio_offset = (off_t)(ap->a_blkno << DEV_BSHIFT);
844 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
845 	dbuf.b_bcount = dumppages * PAGE_SIZE;
846 	dbuf.b_data = va;
847 	dbuf.b_cmd = BUF_CMD_WRITE;
848 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
849 	/* wait for completion, unlock the buffer, check status */
850 	if (biowait(&dbuf)) {
851 	    BUF_UNLOCK(&dbuf);
852 	    return(dbuf.b_error ? dbuf.b_error : EIO);
853 	}
854 	BUF_UNLOCK(&dbuf);
855 
856 	if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
857 	    return(EINTR);
858 
859 	ap->a_blkno += blkcnt * dumppages;
860 	ap->a_count -= blkcnt * dumppages;
861 	addr += PAGE_SIZE * dumppages;
862     }
863 
864     /* flush subdisk buffers to media */
865     for (disk = 0; disk < rdp->total_disks; disk++)
866 	if (rdp->disks[disk].dev)
867 	    error |= ata_controlcmd(rdp->disks[disk].dev, ATA_FLUSHCACHE, 0, 0,
868 				    0);
869     return (error ? EIO : 0);
870 }
871 
872 static void
873 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
874 {
875     int disk, count, status;
876 
877     spin_lock_wr(&rdp->lock);
878     /* set default all working mode */
879     status = rdp->status;
880     rdp->status &= ~AR_S_DEGRADED;
881     rdp->status |= AR_S_READY;
882 
883     /* make sure all lost drives are accounted for */
884     for (disk = 0; disk < rdp->total_disks; disk++) {
885 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
886 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
887     }
888 
889     /* depending on RAID type figure out our health status */
890     switch (rdp->type) {
891     case AR_T_JBOD:
892     case AR_T_SPAN:
893     case AR_T_RAID0:
894 	for (disk = 0; disk < rdp->total_disks; disk++)
895 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
896 		rdp->status &= ~AR_S_READY;
897 	break;
898 
899     case AR_T_RAID1:
900     case AR_T_RAID01:
901 	for (disk = 0; disk < rdp->width; disk++) {
902 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
903 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
904 		rdp->status &= ~AR_S_READY;
905 	    }
906 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
907 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
908 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
909 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
910 		rdp->status |= AR_S_DEGRADED;
911 	    }
912 	}
913 	break;
914 
915     case AR_T_RAID5:
916 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
917 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
918 		count++;
919 	}
920 	if (count) {
921 	    if (count > 1)
922 		rdp->status &= ~AR_S_READY;
923 	    else
924 		rdp->status |= AR_S_DEGRADED;
925 	}
926 	break;
927     default:
928 	rdp->status &= ~AR_S_READY;
929     }
930 
931     /*
932      * Note that when the array breaks so comes up broken we
933      * force a write of the array config to the remaining
934      * drives so that the generation will be incremented past
935      * those of the missing or failed drives (in all cases).
936      */
937     if (rdp->status != status) {
938 	if (!(rdp->status & AR_S_READY)) {
939 	    kprintf("ar%d: FAILURE - %s array broken\n",
940 		   rdp->lun, ata_raid_type(rdp));
941 	    writeback = 1;
942 	}
943 	else if (rdp->status & AR_S_DEGRADED) {
944 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
945 		kprintf("ar%d: WARNING - mirror", rdp->lun);
946 	    else
947 		kprintf("ar%d: WARNING - parity", rdp->lun);
948 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
949 		   ata_raid_type(rdp));
950 	    writeback = 1;
951 	}
952     }
953     spin_unlock_wr(&rdp->lock);
954     if (writeback)
955 	ata_raid_write_metadata(rdp);
956 
957 }
958 
959 static int
960 ata_raid_status(struct ata_ioc_raid_config *config)
961 {
962     struct ar_softc *rdp;
963     int i;
964 
965     if (!(rdp = ata_raid_arrays[config->lun]))
966 	return ENXIO;
967 
968     config->type = rdp->type;
969     config->total_disks = rdp->total_disks;
970     for (i = 0; i < rdp->total_disks; i++ ) {
971 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
972 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
973 	else
974 	    config->disks[i] = -1;
975     }
976     config->interleave = rdp->interleave;
977     config->status = rdp->status;
978     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
979     return 0;
980 }
981 
982 static int
983 ata_raid_create(struct ata_ioc_raid_config *config)
984 {
985     struct ar_softc *rdp;
986     device_t subdisk;
987     int array, disk;
988     int ctlr = 0, disk_size = 0, total_disks = 0;
989 
990     for (array = 0; array < MAX_ARRAYS; array++) {
991 	if (!ata_raid_arrays[array])
992 	    break;
993     }
994     if (array >= MAX_ARRAYS)
995 	return ENOSPC;
996 
997     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
998 	M_WAITOK | M_ZERO);
999 
1000     for (disk = 0; disk < config->total_disks; disk++) {
1001 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1002 					   config->disks[disk]))) {
1003 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1004 
1005 	    /* is device already assigned to another array ? */
1006 	    if (ars->raid[rdp->volume]) {
1007 		config->disks[disk] = -1;
1008 		kfree(rdp, M_AR);
1009 		return EBUSY;
1010 	    }
1011 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1012 
1013 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1014 	    case ATA_HIGHPOINT_ID:
1015 		/*
1016 		 * we need some way to decide if it should be v2 or v3
1017 		 * for now just use v2 since the v3 BIOS knows how to
1018 		 * handle that as well.
1019 		 */
1020 		ctlr = AR_F_HPTV2_RAID;
1021 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1022 		break;
1023 
1024 	    case ATA_INTEL_ID:
1025 		ctlr = AR_F_INTEL_RAID;
1026 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1027 		break;
1028 
1029 	    case ATA_ITE_ID:
1030 		ctlr = AR_F_ITE_RAID;
1031 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1032 		break;
1033 
1034 	    case ATA_JMICRON_ID:
1035 		ctlr = AR_F_JMICRON_RAID;
1036 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1037 		break;
1038 
1039 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1040 	    case ATA_PROMISE_ID:
1041 		ctlr = AR_F_PROMISE_RAID;
1042 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1043 		break;
1044 
1045 	    case ATA_SIS_ID:
1046 		ctlr = AR_F_SIS_RAID;
1047 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1048 		break;
1049 
1050 	    case ATA_ATI_ID:
1051 	    case ATA_VIA_ID:
1052 		ctlr = AR_F_VIA_RAID;
1053 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1054 		break;
1055 
1056 	    default:
1057 		/* XXX SOS
1058 		 * right, so here we are, we have an ATA chip and we want
1059 		 * to create a RAID and store the metadata.
1060 		 * we need to find a way to tell what kind of metadata this
1061 		 * hardware's BIOS might be using (good ideas are welcomed)
1062 		 * for now we just use our own native FreeBSD format.
1063 		 * the only way to get support for the BIOS format is to
1064 		 * setup the RAID from there, in that case we pickup the
1065 		 * metadata format from the disks (if we support it).
1066 		 */
1067 		kprintf("WARNING!! - not able to determine metadata format\n"
1068 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1069 		       "If that is not what you want, use the BIOS to "
1070 		       "create the array\n");
1071 		ctlr = AR_F_FREEBSD_RAID;
1072 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1073 		break;
1074 	    }
1075 
1076 	    /* we need all disks to be of the same format */
1077 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1078 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1079 		kfree(rdp, M_AR);
1080 		return EXDEV;
1081 	    }
1082 	    else
1083 		rdp->format = ctlr;
1084 
1085 	    /* use the smallest disk of the lots size */
1086 	    /* gigabyte boundry ??? XXX SOS */
1087 	    if (disk_size)
1088 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1089 	    else
1090 		disk_size = rdp->disks[disk].sectors;
1091 	    rdp->disks[disk].flags =
1092 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1093 
1094 	    total_disks++;
1095 	}
1096 	else {
1097 	    config->disks[disk] = -1;
1098 	    kfree(rdp, M_AR);
1099 	    return ENXIO;
1100 	}
1101     }
1102 
1103     if (total_disks != config->total_disks) {
1104 	kfree(rdp, M_AR);
1105 	return ENODEV;
1106     }
1107 
1108     switch (config->type) {
1109     case AR_T_JBOD:
1110     case AR_T_SPAN:
1111     case AR_T_RAID0:
1112 	break;
1113 
1114     case AR_T_RAID1:
1115 	if (total_disks != 2) {
1116 	    kfree(rdp, M_AR);
1117 	    return EPERM;
1118 	}
1119 	break;
1120 
1121     case AR_T_RAID01:
1122 	if (total_disks % 2 != 0) {
1123 	    kfree(rdp, M_AR);
1124 	    return EPERM;
1125 	}
1126 	break;
1127 
1128     case AR_T_RAID5:
1129 	if (total_disks < 3) {
1130 	    kfree(rdp, M_AR);
1131 	    return EPERM;
1132 	}
1133 	break;
1134 
1135     default:
1136 	kfree(rdp, M_AR);
1137 	return EOPNOTSUPP;
1138     }
1139     rdp->type = config->type;
1140     rdp->lun = array;
1141     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1142 	rdp->type == AR_T_RAID5) {
1143 	int bit = 0;
1144 
1145 	while (config->interleave >>= 1)
1146 	    bit++;
1147 	rdp->interleave = 1 << bit;
1148     }
1149     rdp->offset_sectors = 0;
1150 
1151     /* values that depend on metadata format */
1152     switch (rdp->format) {
1153     case AR_F_ADAPTEC_RAID:
1154 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1155 	break;
1156 
1157     case AR_F_HPTV2_RAID:
1158 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1159 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1160 	break;
1161 
1162     case AR_F_HPTV3_RAID:
1163 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1164 	break;
1165 
1166     case AR_F_INTEL_RAID:
1167 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1168 	break;
1169 
1170     case AR_F_ITE_RAID:
1171 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1172 	break;
1173 
1174     case AR_F_JMICRON_RAID:
1175 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1176 	break;
1177 
1178     case AR_F_LSIV2_RAID:
1179 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1180 	break;
1181 
1182     case AR_F_LSIV3_RAID:
1183 	rdp->interleave = min(max(2, rdp->interleave), 256);
1184 	break;
1185 
1186     case AR_F_PROMISE_RAID:
1187 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1188 	break;
1189 
1190     case AR_F_SII_RAID:
1191 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1192 	break;
1193 
1194     case AR_F_SIS_RAID:
1195 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1196 	break;
1197 
1198     case AR_F_VIA_RAID:
1199 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1200 	break;
1201     }
1202 
1203     rdp->total_disks = total_disks;
1204     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1205     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1206     rdp->heads = 255;
1207     rdp->sectors = 63;
1208     rdp->cylinders = rdp->total_sectors / (255 * 63);
1209     rdp->rebuild_lba = 0;
1210     rdp->status |= AR_S_READY;
1211 
1212     /* we are committed to this array, grap the subdisks */
1213     for (disk = 0; disk < config->total_disks; disk++) {
1214 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1215 					   config->disks[disk]))) {
1216 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1217 
1218 	    ars->raid[rdp->volume] = rdp;
1219 	    ars->disk_number[rdp->volume] = disk;
1220 	}
1221     }
1222     ata_raid_attach(rdp, 1);
1223     ata_raid_arrays[array] = rdp;
1224     config->lun = array;
1225     return 0;
1226 }
1227 
1228 static int
1229 ata_raid_delete(int array)
1230 {
1231     struct ar_softc *rdp;
1232     device_t subdisk;
1233     int disk;
1234 
1235     if (!(rdp = ata_raid_arrays[array]))
1236 	return ENXIO;
1237 
1238     rdp->status &= ~AR_S_READY;
1239     disk_destroy(&rdp->disk);
1240 
1241     for (disk = 0; disk < rdp->total_disks; disk++) {
1242 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1243 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1244 		     device_get_unit(rdp->disks[disk].dev)))) {
1245 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1246 
1247 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1248 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1249 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1250 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1251 		ars->raid[rdp->volume] = NULL;
1252 		ars->disk_number[rdp->volume] = -1;
1253 	    }
1254 	    rdp->disks[disk].flags = 0;
1255 	}
1256     }
1257     ata_raid_wipe_metadata(rdp);
1258     ata_raid_arrays[array] = NULL;
1259     kfree(rdp, M_AR);
1260     return 0;
1261 }
1262 
1263 static int
1264 ata_raid_addspare(struct ata_ioc_raid_config *config)
1265 {
1266     struct ar_softc *rdp;
1267     device_t subdisk;
1268     int disk;
1269 
1270     if (!(rdp = ata_raid_arrays[config->lun]))
1271 	return ENXIO;
1272     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1273 	return ENXIO;
1274     if (rdp->status & AR_S_REBUILDING)
1275 	return EBUSY;
1276     switch (rdp->type) {
1277     case AR_T_RAID1:
1278     case AR_T_RAID01:
1279     case AR_T_RAID5:
1280 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1281 
1282 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1283 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1284 		continue;
1285 
1286 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1287 					       config->disks[0] ))) {
1288 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1289 
1290 		if (ars->raid[rdp->volume])
1291 		    return EBUSY;
1292 
1293 		/* XXX SOS validate size etc etc */
1294 		ars->raid[rdp->volume] = rdp;
1295 		ars->disk_number[rdp->volume] = disk;
1296 		rdp->disks[disk].dev = device_get_parent(subdisk);
1297 		rdp->disks[disk].flags =
1298 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1299 
1300 		device_printf(rdp->disks[disk].dev,
1301 			      "inserted into ar%d disk%d as spare\n",
1302 			      rdp->lun, disk);
1303 		ata_raid_config_changed(rdp, 1);
1304 		return 0;
1305 	    }
1306 	}
1307 	return ENXIO;
1308 
1309     default:
1310 	return EPERM;
1311     }
1312 }
1313 
1314 static int
1315 ata_raid_rebuild(int array)
1316 {
1317     struct ar_softc *rdp;
1318     int disk, count;
1319 
1320     if (!(rdp = ata_raid_arrays[array]))
1321 	return ENXIO;
1322     /* XXX SOS we should lock the rdp softc here */
1323     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1324 	return ENXIO;
1325     if (rdp->status & AR_S_REBUILDING)
1326 	return EBUSY;
1327 
1328     switch (rdp->type) {
1329     case AR_T_RAID1:
1330     case AR_T_RAID01:
1331     case AR_T_RAID5:
1332 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1333 	    if (((rdp->disks[disk].flags &
1334 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1335 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1336 		rdp->disks[disk].dev) {
1337 		count++;
1338 	    }
1339 	}
1340 
1341 	if (count) {
1342 	    rdp->rebuild_lba = 0;
1343 	    rdp->status |= AR_S_REBUILDING;
1344 	    return 0;
1345 	}
1346 	return EIO;
1347 
1348     default:
1349 	return EPERM;
1350     }
1351 }
1352 
1353 static int
1354 ata_raid_read_metadata(device_t subdisk)
1355 {
1356     devclass_t pci_devclass = devclass_find("pci");
1357     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1358 
1359     /* prioritize vendor native metadata layout if possible */
1360     if (devclass == pci_devclass) {
1361 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1362 	case ATA_HIGHPOINT_ID:
1363 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1364 		return 0;
1365 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1366 		return 0;
1367 	    break;
1368 
1369 	case ATA_INTEL_ID:
1370 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1371 		return 0;
1372 	    break;
1373 
1374 	case ATA_ITE_ID:
1375 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1376 		return 0;
1377 	    break;
1378 
1379 	case ATA_JMICRON_ID:
1380 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1381 		return 0;
1382 	    break;
1383 
1384 	case ATA_NVIDIA_ID:
1385 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1386 		return 0;
1387 	    break;
1388 
1389 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1390 	case ATA_PROMISE_ID:
1391 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1392 		return 0;
1393 	    break;
1394 
1395 	case ATA_ATI_ID:
1396 	case ATA_SILICON_IMAGE_ID:
1397 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1398 		return 0;
1399 	    break;
1400 
1401 	case ATA_SIS_ID:
1402 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1403 		return 0;
1404 	    break;
1405 
1406 	case ATA_VIA_ID:
1407 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1408 		return 0;
1409 	    break;
1410 	}
1411     }
1412 
1413     /* handle controllers that have multiple layout possibilities */
1414     /* NOTE: the order of these are not insignificant */
1415 
1416     /* Adaptec HostRAID */
1417     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1418 	return 0;
1419 
1420     /* LSILogic v3 and v2 */
1421     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1422 	return 0;
1423     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1424 	return 0;
1425 
1426     /* if none of the above matched, try FreeBSD native format */
1427     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1428 }
1429 
1430 static int
1431 ata_raid_write_metadata(struct ar_softc *rdp)
1432 {
1433     switch (rdp->format) {
1434     case AR_F_FREEBSD_RAID:
1435     case AR_F_PROMISE_RAID:
1436 	return ata_raid_promise_write_meta(rdp);
1437 
1438     case AR_F_HPTV3_RAID:
1439     case AR_F_HPTV2_RAID:
1440 	/*
1441 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1442 	 * this is handy since we cannot know what version BIOS is on there
1443 	 */
1444 	return ata_raid_hptv2_write_meta(rdp);
1445 
1446     case AR_F_INTEL_RAID:
1447 	return ata_raid_intel_write_meta(rdp);
1448 
1449     case AR_F_JMICRON_RAID:
1450 	return ata_raid_jmicron_write_meta(rdp);
1451 
1452     case AR_F_SIS_RAID:
1453 	return ata_raid_sis_write_meta(rdp);
1454 
1455     case AR_F_VIA_RAID:
1456 	return ata_raid_via_write_meta(rdp);
1457 #if 0
1458     case AR_F_HPTV3_RAID:
1459 	return ata_raid_hptv3_write_meta(rdp);
1460 
1461     case AR_F_ADAPTEC_RAID:
1462 	return ata_raid_adaptec_write_meta(rdp);
1463 
1464     case AR_F_ITE_RAID:
1465 	return ata_raid_ite_write_meta(rdp);
1466 
1467     case AR_F_LSIV2_RAID:
1468 	return ata_raid_lsiv2_write_meta(rdp);
1469 
1470     case AR_F_LSIV3_RAID:
1471 	return ata_raid_lsiv3_write_meta(rdp);
1472 
1473     case AR_F_NVIDIA_RAID:
1474 	return ata_raid_nvidia_write_meta(rdp);
1475 
1476     case AR_F_SII_RAID:
1477 	return ata_raid_sii_write_meta(rdp);
1478 
1479 #endif
1480     default:
1481 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1482 	       rdp->lun, ata_raid_format(rdp));
1483     }
1484     return -1;
1485 }
1486 
1487 static int
1488 ata_raid_wipe_metadata(struct ar_softc *rdp)
1489 {
1490     int disk, error = 0;
1491     u_int64_t lba;
1492     u_int32_t size;
1493     u_int8_t *meta;
1494 
1495     for (disk = 0; disk < rdp->total_disks; disk++) {
1496 	if (rdp->disks[disk].dev) {
1497 	    switch (rdp->format) {
1498 	    case AR_F_ADAPTEC_RAID:
1499 		lba = ADP_LBA(rdp->disks[disk].dev);
1500 		size = sizeof(struct adaptec_raid_conf);
1501 		break;
1502 
1503 	    case AR_F_HPTV2_RAID:
1504 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1505 		size = sizeof(struct hptv2_raid_conf);
1506 		break;
1507 
1508 	    case AR_F_HPTV3_RAID:
1509 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1510 		size = sizeof(struct hptv3_raid_conf);
1511 		break;
1512 
1513 	    case AR_F_INTEL_RAID:
1514 		lba = INTEL_LBA(rdp->disks[disk].dev);
1515 		size = 3 * 512;         /* XXX SOS */
1516 		break;
1517 
1518 	    case AR_F_ITE_RAID:
1519 		lba = ITE_LBA(rdp->disks[disk].dev);
1520 		size = sizeof(struct ite_raid_conf);
1521 		break;
1522 
1523 	    case AR_F_JMICRON_RAID:
1524 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1525 		size = sizeof(struct jmicron_raid_conf);
1526 		break;
1527 
1528 	    case AR_F_LSIV2_RAID:
1529 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1530 		size = sizeof(struct lsiv2_raid_conf);
1531 		break;
1532 
1533 	    case AR_F_LSIV3_RAID:
1534 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1535 		size = sizeof(struct lsiv3_raid_conf);
1536 		break;
1537 
1538 	    case AR_F_NVIDIA_RAID:
1539 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1540 		size = sizeof(struct nvidia_raid_conf);
1541 		break;
1542 
1543 	    case AR_F_FREEBSD_RAID:
1544 	    case AR_F_PROMISE_RAID:
1545 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1546 		size = sizeof(struct promise_raid_conf);
1547 		break;
1548 
1549 	    case AR_F_SII_RAID:
1550 		lba = SII_LBA(rdp->disks[disk].dev);
1551 		size = sizeof(struct sii_raid_conf);
1552 		break;
1553 
1554 	    case AR_F_SIS_RAID:
1555 		lba = SIS_LBA(rdp->disks[disk].dev);
1556 		size = sizeof(struct sis_raid_conf);
1557 		break;
1558 
1559 	    case AR_F_VIA_RAID:
1560 		lba = VIA_LBA(rdp->disks[disk].dev);
1561 		size = sizeof(struct via_raid_conf);
1562 		break;
1563 
1564 	    default:
1565 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1566 		       rdp->lun, ata_raid_format(rdp));
1567 		return ENXIO;
1568 	    }
1569 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1570 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1571 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1572 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1573 		error = EIO;
1574 	    }
1575 	    kfree(meta, M_AR);
1576 	}
1577     }
1578     return error;
1579 }
1580 
1581 /* Adaptec HostRAID Metadata */
1582 static int
1583 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1584 {
1585     struct ata_raid_subdisk *ars = device_get_softc(dev);
1586     device_t parent = device_get_parent(dev);
1587     struct adaptec_raid_conf *meta;
1588     struct ar_softc *raid;
1589     int array, disk, retval = 0;
1590 
1591     meta = (struct adaptec_raid_conf *)
1592 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1593 
1594     if (ata_raid_rw(parent, ADP_LBA(parent),
1595 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1596 	if (testing || bootverbose)
1597 	    device_printf(parent, "Adaptec read metadata failed\n");
1598 	goto adaptec_out;
1599     }
1600 
1601     /* check if this is a Adaptec RAID struct */
1602     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1603 	if (testing || bootverbose)
1604 	    device_printf(parent, "Adaptec check1 failed\n");
1605 	goto adaptec_out;
1606     }
1607 
1608     if (testing || bootverbose)
1609 	ata_raid_adaptec_print_meta(meta);
1610 
1611     /* now convert Adaptec metadata into our generic form */
1612     for (array = 0; array < MAX_ARRAYS; array++) {
1613 	if (!raidp[array]) {
1614 	    raidp[array] =
1615 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1616 					  M_WAITOK | M_ZERO);
1617 	}
1618 	raid = raidp[array];
1619 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1620 	    continue;
1621 
1622 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1623 	    continue;
1624 
1625 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1626 	    switch (meta->configs[0].type) {
1627 	    case ADP_T_RAID0:
1628 		raid->magic_0 = meta->configs[0].magic_0;
1629 		raid->type = AR_T_RAID0;
1630 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1631 		raid->width = be16toh(meta->configs[0].total_disks);
1632 		break;
1633 
1634 	    case ADP_T_RAID1:
1635 		raid->magic_0 = meta->configs[0].magic_0;
1636 		raid->type = AR_T_RAID1;
1637 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1638 		break;
1639 
1640 	    default:
1641 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1642 			      meta->configs[0].type);
1643 		kfree(raidp[array], M_AR);
1644 		raidp[array] = NULL;
1645 		goto adaptec_out;
1646 	    }
1647 
1648 	    raid->format = AR_F_ADAPTEC_RAID;
1649 	    raid->generation = be32toh(meta->generation);
1650 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1651 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1652 	    raid->heads = 255;
1653 	    raid->sectors = 63;
1654 	    raid->cylinders = raid->total_sectors / (63 * 255);
1655 	    raid->offset_sectors = 0;
1656 	    raid->rebuild_lba = 0;
1657 	    raid->lun = array;
1658 	    strncpy(raid->name, meta->configs[0].name,
1659 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1660 
1661 	    /* clear out any old info */
1662 	    if (raid->generation) {
1663 		for (disk = 0; disk < raid->total_disks; disk++) {
1664 		    raid->disks[disk].dev = NULL;
1665 		    raid->disks[disk].flags = 0;
1666 		}
1667 	    }
1668 	}
1669 	if (be32toh(meta->generation) >= raid->generation) {
1670 	    struct ata_device *atadev = device_get_softc(parent);
1671 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1672 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1673 			      ATA_DEV(atadev->unit);
1674 
1675 	    raid->disks[disk_number].dev = parent;
1676 	    raid->disks[disk_number].sectors =
1677 		be32toh(meta->configs[disk_number + 1].sectors);
1678 	    raid->disks[disk_number].flags =
1679 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1680 	    ars->raid[raid->volume] = raid;
1681 	    ars->disk_number[raid->volume] = disk_number;
1682 	    retval = 1;
1683 	}
1684 	break;
1685     }
1686 
1687 adaptec_out:
1688     kfree(meta, M_AR);
1689     return retval;
1690 }
1691 
1692 /* Highpoint V2 RocketRAID Metadata */
1693 static int
1694 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1695 {
1696     struct ata_raid_subdisk *ars = device_get_softc(dev);
1697     device_t parent = device_get_parent(dev);
1698     struct hptv2_raid_conf *meta;
1699     struct ar_softc *raid = NULL;
1700     int array, disk_number = 0, retval = 0;
1701 
1702     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1703 	M_AR, M_WAITOK | M_ZERO);
1704 
1705     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1706 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1707 	if (testing || bootverbose)
1708 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1709 	goto hptv2_out;
1710     }
1711 
1712     /* check if this is a HighPoint v2 RAID struct */
1713     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1714 	if (testing || bootverbose)
1715 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1716 	goto hptv2_out;
1717     }
1718 
1719     /* is this disk defined, or an old leftover/spare ? */
1720     if (!meta->magic_0) {
1721 	if (testing || bootverbose)
1722 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1723 	goto hptv2_out;
1724     }
1725 
1726     if (testing || bootverbose)
1727 	ata_raid_hptv2_print_meta(meta);
1728 
1729     /* now convert HighPoint (v2) metadata into our generic form */
1730     for (array = 0; array < MAX_ARRAYS; array++) {
1731 	if (!raidp[array]) {
1732 	    raidp[array] =
1733 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1734 					  M_WAITOK | M_ZERO);
1735 	}
1736 	raid = raidp[array];
1737 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1738 	    continue;
1739 
1740 	switch (meta->type) {
1741 	case HPTV2_T_RAID0:
1742 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1743 		(HPTV2_O_RAID0|HPTV2_O_OK))
1744 		goto highpoint_raid1;
1745 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1746 		goto highpoint_raid01;
1747 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1748 		continue;
1749 	    raid->magic_0 = meta->magic_0;
1750 	    raid->type = AR_T_RAID0;
1751 	    raid->interleave = 1 << meta->stripe_shift;
1752 	    disk_number = meta->disk_number;
1753 	    if (!(meta->order & HPTV2_O_OK))
1754 		meta->magic = 0;        /* mark bad */
1755 	    break;
1756 
1757 	case HPTV2_T_RAID1:
1758 highpoint_raid1:
1759 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1760 		continue;
1761 	    raid->magic_0 = meta->magic_0;
1762 	    raid->type = AR_T_RAID1;
1763 	    disk_number = (meta->disk_number > 0);
1764 	    break;
1765 
1766 	case HPTV2_T_RAID01_RAID0:
1767 highpoint_raid01:
1768 	    if (meta->order & HPTV2_O_RAID0) {
1769 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1770 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1771 		    continue;
1772 		raid->magic_0 = meta->magic_0;
1773 		raid->magic_1 = meta->magic_1;
1774 		raid->type = AR_T_RAID01;
1775 		raid->interleave = 1 << meta->stripe_shift;
1776 		disk_number = meta->disk_number;
1777 	    }
1778 	    else {
1779 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1780 		    continue;
1781 		raid->magic_1 = meta->magic_1;
1782 		raid->type = AR_T_RAID01;
1783 		raid->interleave = 1 << meta->stripe_shift;
1784 		disk_number = meta->disk_number + meta->array_width;
1785 		if (!(meta->order & HPTV2_O_RAID1))
1786 		    meta->magic = 0;    /* mark bad */
1787 	    }
1788 	    break;
1789 
1790 	case HPTV2_T_SPAN:
1791 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1792 		continue;
1793 	    raid->magic_0 = meta->magic_0;
1794 	    raid->type = AR_T_SPAN;
1795 	    disk_number = meta->disk_number;
1796 	    break;
1797 
1798 	default:
1799 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1800 			  meta->type);
1801 	    kfree(raidp[array], M_AR);
1802 	    raidp[array] = NULL;
1803 	    goto hptv2_out;
1804 	}
1805 
1806 	raid->format |= AR_F_HPTV2_RAID;
1807 	raid->disks[disk_number].dev = parent;
1808 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1809 	raid->lun = array;
1810 	strncpy(raid->name, meta->name_1,
1811 		min(sizeof(raid->name), sizeof(meta->name_1)));
1812 	if (meta->magic == HPTV2_MAGIC_OK) {
1813 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1814 	    raid->width = meta->array_width;
1815 	    raid->total_sectors = meta->total_sectors;
1816 	    raid->heads = 255;
1817 	    raid->sectors = 63;
1818 	    raid->cylinders = raid->total_sectors / (63 * 255);
1819 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1820 	    raid->rebuild_lba = meta->rebuild_lba;
1821 	    raid->disks[disk_number].sectors =
1822 		raid->total_sectors / raid->width;
1823 	}
1824 	else
1825 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1826 
1827 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1828 	    raid->total_disks = raid->width;
1829 	if (disk_number >= raid->total_disks)
1830 	    raid->total_disks = disk_number + 1;
1831 	ars->raid[raid->volume] = raid;
1832 	ars->disk_number[raid->volume] = disk_number;
1833 	retval = 1;
1834 	break;
1835     }
1836 
1837 hptv2_out:
1838     kfree(meta, M_AR);
1839     return retval;
1840 }
1841 
1842 static int
1843 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1844 {
1845     struct hptv2_raid_conf *meta;
1846     struct timeval timestamp;
1847     int disk, error = 0;
1848 
1849     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1850 	M_AR, M_WAITOK | M_ZERO);
1851 
1852     microtime(&timestamp);
1853     rdp->magic_0 = timestamp.tv_sec + 2;
1854     rdp->magic_1 = timestamp.tv_sec;
1855 
1856     for (disk = 0; disk < rdp->total_disks; disk++) {
1857 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1858 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1859 	    meta->magic = HPTV2_MAGIC_OK;
1860 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1861 	    meta->magic_0 = rdp->magic_0;
1862 	    if (strlen(rdp->name))
1863 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1864 	    else
1865 		strcpy(meta->name_1, "FreeBSD");
1866 	}
1867 	meta->disk_number = disk;
1868 
1869 	switch (rdp->type) {
1870 	case AR_T_RAID0:
1871 	    meta->type = HPTV2_T_RAID0;
1872 	    strcpy(meta->name_2, "RAID 0");
1873 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1874 		meta->order = HPTV2_O_OK;
1875 	    break;
1876 
1877 	case AR_T_RAID1:
1878 	    meta->type = HPTV2_T_RAID0;
1879 	    strcpy(meta->name_2, "RAID 1");
1880 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1881 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1882 	    break;
1883 
1884 	case AR_T_RAID01:
1885 	    meta->type = HPTV2_T_RAID01_RAID0;
1886 	    strcpy(meta->name_2, "RAID 0+1");
1887 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1888 		if (disk < rdp->width) {
1889 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1890 		    meta->magic_0 = rdp->magic_0 - 1;
1891 		}
1892 		else {
1893 		    meta->order = HPTV2_O_RAID1;
1894 		    meta->disk_number -= rdp->width;
1895 		}
1896 	    }
1897 	    else
1898 		meta->magic_0 = rdp->magic_0 - 1;
1899 	    meta->magic_1 = rdp->magic_1;
1900 	    break;
1901 
1902 	case AR_T_SPAN:
1903 	    meta->type = HPTV2_T_SPAN;
1904 	    strcpy(meta->name_2, "SPAN");
1905 	    break;
1906 	default:
1907 	    kfree(meta, M_AR);
1908 	    return ENODEV;
1909 	}
1910 
1911 	meta->array_width = rdp->width;
1912 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1913 	meta->total_sectors = rdp->total_sectors;
1914 	meta->rebuild_lba = rdp->rebuild_lba;
1915 	if (testing || bootverbose)
1916 	    ata_raid_hptv2_print_meta(meta);
1917 	if (rdp->disks[disk].dev) {
1918 	    if (ata_raid_rw(rdp->disks[disk].dev,
1919 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1920 			    sizeof(struct promise_raid_conf),
1921 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1922 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1923 		error = EIO;
1924 	    }
1925 	}
1926     }
1927     kfree(meta, M_AR);
1928     return error;
1929 }
1930 
1931 /* Highpoint V3 RocketRAID Metadata */
1932 static int
1933 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1934 {
1935     struct ata_raid_subdisk *ars = device_get_softc(dev);
1936     device_t parent = device_get_parent(dev);
1937     struct hptv3_raid_conf *meta;
1938     struct ar_softc *raid = NULL;
1939     int array, disk_number, retval = 0;
1940 
1941     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1942 	M_AR, M_WAITOK | M_ZERO);
1943 
1944     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1945 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1946 	if (testing || bootverbose)
1947 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1948 	goto hptv3_out;
1949     }
1950 
1951     /* check if this is a HighPoint v3 RAID struct */
1952     if (meta->magic != HPTV3_MAGIC) {
1953 	if (testing || bootverbose)
1954 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
1955 	goto hptv3_out;
1956     }
1957 
1958     /* check if there are any config_entries */
1959     if (meta->config_entries < 1) {
1960 	if (testing || bootverbose)
1961 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
1962 	goto hptv3_out;
1963     }
1964 
1965     if (testing || bootverbose)
1966 	ata_raid_hptv3_print_meta(meta);
1967 
1968     /* now convert HighPoint (v3) metadata into our generic form */
1969     for (array = 0; array < MAX_ARRAYS; array++) {
1970 	if (!raidp[array]) {
1971 	    raidp[array] =
1972 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1973 					  M_WAITOK | M_ZERO);
1974 	}
1975 	raid = raidp[array];
1976 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
1977 	    continue;
1978 
1979 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
1980 	    continue;
1981 
1982 	switch (meta->configs[0].type) {
1983 	case HPTV3_T_RAID0:
1984 	    raid->type = AR_T_RAID0;
1985 	    raid->width = meta->configs[0].total_disks;
1986 	    disk_number = meta->configs[0].disk_number;
1987 	    break;
1988 
1989 	case HPTV3_T_RAID1:
1990 	    raid->type = AR_T_RAID1;
1991 	    raid->width = meta->configs[0].total_disks / 2;
1992 	    disk_number = meta->configs[0].disk_number;
1993 	    break;
1994 
1995 	case HPTV3_T_RAID5:
1996 	    raid->type = AR_T_RAID5;
1997 	    raid->width = meta->configs[0].total_disks;
1998 	    disk_number = meta->configs[0].disk_number;
1999 	    break;
2000 
2001 	case HPTV3_T_SPAN:
2002 	    raid->type = AR_T_SPAN;
2003 	    raid->width = meta->configs[0].total_disks;
2004 	    disk_number = meta->configs[0].disk_number;
2005 	    break;
2006 
2007 	default:
2008 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2009 			  meta->configs[0].type);
2010 	    kfree(raidp[array], M_AR);
2011 	    raidp[array] = NULL;
2012 	    goto hptv3_out;
2013 	}
2014 	if (meta->config_entries == 2) {
2015 	    switch (meta->configs[1].type) {
2016 	    case HPTV3_T_RAID1:
2017 		if (raid->type == AR_T_RAID0) {
2018 		    raid->type = AR_T_RAID01;
2019 		    disk_number = meta->configs[1].disk_number +
2020 				  (meta->configs[0].disk_number << 1);
2021 		    break;
2022 		}
2023 	    default:
2024 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2025 			      meta->configs[1].type);
2026 		kfree(raidp[array], M_AR);
2027 		raidp[array] = NULL;
2028 		goto hptv3_out;
2029 	    }
2030 	}
2031 
2032 	raid->magic_0 = meta->magic_0;
2033 	raid->format = AR_F_HPTV3_RAID;
2034 	raid->generation = meta->timestamp;
2035 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2036 	raid->total_disks = meta->configs[0].total_disks +
2037 	    meta->configs[1].total_disks;
2038 	raid->total_sectors = meta->configs[0].total_sectors +
2039 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2040 	raid->heads = 255;
2041 	raid->sectors = 63;
2042 	raid->cylinders = raid->total_sectors / (63 * 255);
2043 	raid->offset_sectors = 0;
2044 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2045 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2046 	raid->lun = array;
2047 	strncpy(raid->name, meta->name,
2048 		min(sizeof(raid->name), sizeof(meta->name)));
2049 	raid->disks[disk_number].sectors = raid->total_sectors /
2050 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2051 	raid->disks[disk_number].dev = parent;
2052 	raid->disks[disk_number].flags =
2053 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2054 	ars->raid[raid->volume] = raid;
2055 	ars->disk_number[raid->volume] = disk_number;
2056 	retval = 1;
2057 	break;
2058     }
2059 
2060 hptv3_out:
2061     kfree(meta, M_AR);
2062     return retval;
2063 }
2064 
2065 /* Intel MatrixRAID Metadata */
2066 static int
2067 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2068 {
2069     struct ata_raid_subdisk *ars = device_get_softc(dev);
2070     device_t parent = device_get_parent(dev);
2071     struct intel_raid_conf *meta;
2072     struct intel_raid_mapping *map;
2073     struct ar_softc *raid = NULL;
2074     u_int32_t checksum, *ptr;
2075     int array, count, disk, volume = 1, retval = 0;
2076     char *tmp;
2077 
2078     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2079 
2080     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2081 	if (testing || bootverbose)
2082 	    device_printf(parent, "Intel read metadata failed\n");
2083 	goto intel_out;
2084     }
2085     tmp = (char *)meta;
2086     bcopy(tmp, tmp+1024, 512);
2087     bcopy(tmp+512, tmp, 1024);
2088     bzero(tmp+1024, 512);
2089 
2090     /* check if this is a Intel RAID struct */
2091     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2092 	if (testing || bootverbose)
2093 	    device_printf(parent, "Intel check1 failed\n");
2094 	goto intel_out;
2095     }
2096 
2097     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2098 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2099 	checksum += *ptr++;
2100     }
2101     checksum -= meta->checksum;
2102     if (checksum != meta->checksum) {
2103 	if (testing || bootverbose)
2104 	    device_printf(parent, "Intel check2 failed\n");
2105 	goto intel_out;
2106     }
2107 
2108     if (testing || bootverbose)
2109 	ata_raid_intel_print_meta(meta);
2110 
2111     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2112 
2113     /* now convert Intel metadata into our generic form */
2114     for (array = 0; array < MAX_ARRAYS; array++) {
2115 	if (!raidp[array]) {
2116 	    raidp[array] =
2117 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2118 					  M_WAITOK | M_ZERO);
2119 	}
2120 	raid = raidp[array];
2121 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2122 	    continue;
2123 
2124 	if ((raid->format & AR_F_INTEL_RAID) &&
2125 	    (raid->magic_0 != meta->config_id))
2126 	    continue;
2127 
2128 	/*
2129 	 * update our knowledge about the array config based on generation
2130 	 * NOTE: there can be multiple volumes on a disk set
2131 	 */
2132 	if (!meta->generation || meta->generation > raid->generation) {
2133 	    switch (map->type) {
2134 	    case INTEL_T_RAID0:
2135 		raid->type = AR_T_RAID0;
2136 		raid->width = map->total_disks;
2137 		break;
2138 
2139 	    case INTEL_T_RAID1:
2140 		if (map->total_disks == 4)
2141 		    raid->type = AR_T_RAID01;
2142 		else
2143 		    raid->type = AR_T_RAID1;
2144 		raid->width = map->total_disks / 2;
2145 		break;
2146 
2147 	    case INTEL_T_RAID5:
2148 		raid->type = AR_T_RAID5;
2149 		raid->width = map->total_disks;
2150 		break;
2151 
2152 	    default:
2153 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2154 			      map->type);
2155 		kfree(raidp[array], M_AR);
2156 		raidp[array] = NULL;
2157 		goto intel_out;
2158 	    }
2159 
2160 	    switch (map->status) {
2161 	    case INTEL_S_READY:
2162 		raid->status = AR_S_READY;
2163 		break;
2164 	    case INTEL_S_DEGRADED:
2165 		raid->status |= AR_S_DEGRADED;
2166 		break;
2167 	    case INTEL_S_DISABLED:
2168 	    case INTEL_S_FAILURE:
2169 		raid->status = 0;
2170 	    }
2171 
2172 	    raid->magic_0 = meta->config_id;
2173 	    raid->format = AR_F_INTEL_RAID;
2174 	    raid->generation = meta->generation;
2175 	    raid->interleave = map->stripe_sectors;
2176 	    raid->total_disks = map->total_disks;
2177 	    raid->total_sectors = map->total_sectors;
2178 	    raid->heads = 255;
2179 	    raid->sectors = 63;
2180 	    raid->cylinders = raid->total_sectors / (63 * 255);
2181 	    raid->offset_sectors = map->offset;
2182 	    raid->rebuild_lba = 0;
2183 	    raid->lun = array;
2184 	    raid->volume = volume - 1;
2185 	    strncpy(raid->name, map->name,
2186 		    min(sizeof(raid->name), sizeof(map->name)));
2187 
2188 	    /* clear out any old info */
2189 	    for (disk = 0; disk < raid->total_disks; disk++) {
2190 		raid->disks[disk].dev = NULL;
2191 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2192 		      raid->disks[disk].serial,
2193 		      sizeof(raid->disks[disk].serial));
2194 		raid->disks[disk].sectors =
2195 		    meta->disk[map->disk_idx[disk]].sectors;
2196 		raid->disks[disk].flags = 0;
2197 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2198 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2199 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2200 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2201 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2202 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2203 		    raid->disks[disk].flags |= AR_DF_SPARE;
2204 		}
2205 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2206 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2207 	    }
2208 	}
2209 	if (meta->generation >= raid->generation) {
2210 	    for (disk = 0; disk < raid->total_disks; disk++) {
2211 		struct ata_device *atadev = device_get_softc(parent);
2212 
2213 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2214 		    sizeof(raid->disks[disk].serial))) {
2215 		    raid->disks[disk].dev = parent;
2216 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2217 		    ars->raid[raid->volume] = raid;
2218 		    ars->disk_number[raid->volume] = disk;
2219 		    retval = 1;
2220 		}
2221 	    }
2222 	}
2223 	else
2224 	    goto intel_out;
2225 
2226 	if (retval) {
2227 	    if (volume < meta->total_volumes) {
2228 		map = (struct intel_raid_mapping *)
2229 		      &map->disk_idx[map->total_disks];
2230 		volume++;
2231 		retval = 0;
2232 		continue;
2233 	    }
2234 	    break;
2235 	}
2236 	else {
2237 	    kfree(raidp[array], M_AR);
2238 	    raidp[array] = NULL;
2239 	    if (volume == 2)
2240 		retval = 1;
2241 	}
2242     }
2243 
2244 intel_out:
2245     kfree(meta, M_AR);
2246     return retval;
2247 }
2248 
2249 static int
2250 ata_raid_intel_write_meta(struct ar_softc *rdp)
2251 {
2252     struct intel_raid_conf *meta;
2253     struct intel_raid_mapping *map;
2254     struct timeval timestamp;
2255     u_int32_t checksum, *ptr;
2256     int count, disk, error = 0;
2257     char *tmp;
2258 
2259     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2260 
2261     rdp->generation++;
2262 
2263     /* Generate a new config_id if none exists */
2264     if (!rdp->magic_0) {
2265 	microtime(&timestamp);
2266 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2267     }
2268 
2269     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2270     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2271     meta->config_id = rdp->magic_0;
2272     meta->generation = rdp->generation;
2273     meta->total_disks = rdp->total_disks;
2274     meta->total_volumes = 1;                                    /* XXX SOS */
2275     for (disk = 0; disk < rdp->total_disks; disk++) {
2276 	if (rdp->disks[disk].dev) {
2277 	    struct ata_channel *ch =
2278 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2279 	    struct ata_device *atadev =
2280 		device_get_softc(rdp->disks[disk].dev);
2281 
2282 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2283 		  sizeof(rdp->disks[disk].serial));
2284 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2285 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2286 	}
2287 	else
2288 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2289 	meta->disk[disk].flags = 0;
2290 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2291 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2292 	else {
2293 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2294 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2295 	    else
2296 		meta->disk[disk].flags |= INTEL_F_DOWN;
2297 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2298 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2299 	}
2300     }
2301     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2302 
2303     bcopy(rdp->name, map->name, sizeof(rdp->name));
2304     map->total_sectors = rdp->total_sectors;
2305     map->state = 12;                                            /* XXX SOS */
2306     map->offset = rdp->offset_sectors;
2307     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2308     map->stripe_sectors =  rdp->interleave;
2309     map->disk_sectors = rdp->total_sectors / rdp->width;
2310     map->status = INTEL_S_READY;                                /* XXX SOS */
2311     switch (rdp->type) {
2312     case AR_T_RAID0:
2313 	map->type = INTEL_T_RAID0;
2314 	break;
2315     case AR_T_RAID1:
2316 	map->type = INTEL_T_RAID1;
2317 	break;
2318     case AR_T_RAID01:
2319 	map->type = INTEL_T_RAID1;
2320 	break;
2321     case AR_T_RAID5:
2322 	map->type = INTEL_T_RAID5;
2323 	break;
2324     default:
2325 	kfree(meta, M_AR);
2326 	return ENODEV;
2327     }
2328     map->total_disks = rdp->total_disks;
2329     map->magic[0] = 0x02;
2330     map->magic[1] = 0xff;
2331     map->magic[2] = 0x01;
2332     for (disk = 0; disk < rdp->total_disks; disk++)
2333 	map->disk_idx[disk] = disk;
2334 
2335     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2336     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2337 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2338 	checksum += *ptr++;
2339     }
2340     meta->checksum = checksum;
2341 
2342     if (testing || bootverbose)
2343 	ata_raid_intel_print_meta(meta);
2344 
2345     tmp = (char *)meta;
2346     bcopy(tmp, tmp+1024, 512);
2347     bcopy(tmp+512, tmp, 1024);
2348     bzero(tmp+1024, 512);
2349 
2350     for (disk = 0; disk < rdp->total_disks; disk++) {
2351 	if (rdp->disks[disk].dev) {
2352 	    if (ata_raid_rw(rdp->disks[disk].dev,
2353 			    INTEL_LBA(rdp->disks[disk].dev),
2354 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2355 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2356 		error = EIO;
2357 	    }
2358 	}
2359     }
2360     kfree(meta, M_AR);
2361     return error;
2362 }
2363 
2364 
2365 /* Integrated Technology Express Metadata */
2366 static int
2367 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2368 {
2369     struct ata_raid_subdisk *ars = device_get_softc(dev);
2370     device_t parent = device_get_parent(dev);
2371     struct ite_raid_conf *meta;
2372     struct ar_softc *raid = NULL;
2373     int array, disk_number, count, retval = 0;
2374     u_int16_t *ptr;
2375 
2376     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2377 	M_WAITOK | M_ZERO);
2378 
2379     if (ata_raid_rw(parent, ITE_LBA(parent),
2380 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2381 	if (testing || bootverbose)
2382 	    device_printf(parent, "ITE read metadata failed\n");
2383 	goto ite_out;
2384     }
2385 
2386     /* check if this is a ITE RAID struct */
2387     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2388 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2389 	ptr[count] = be16toh(ptr[count]);
2390 
2391     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2392 	if (testing || bootverbose)
2393 	    device_printf(parent, "ITE check1 failed\n");
2394 	goto ite_out;
2395     }
2396 
2397     if (testing || bootverbose)
2398 	ata_raid_ite_print_meta(meta);
2399 
2400     /* now convert ITE metadata into our generic form */
2401     for (array = 0; array < MAX_ARRAYS; array++) {
2402 	if ((raid = raidp[array])) {
2403 	    if (raid->format != AR_F_ITE_RAID)
2404 		continue;
2405 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2406 		continue;
2407 	}
2408 
2409 	/* if we dont have a disks timestamp the RAID is invalidated */
2410 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2411 	    goto ite_out;
2412 
2413 	if (!raid) {
2414 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2415 						     M_AR, M_WAITOK | M_ZERO);
2416 	}
2417 
2418 	switch (meta->type) {
2419 	case ITE_T_RAID0:
2420 	    raid->type = AR_T_RAID0;
2421 	    raid->width = meta->array_width;
2422 	    raid->total_disks = meta->array_width;
2423 	    disk_number = meta->disk_number;
2424 	    break;
2425 
2426 	case ITE_T_RAID1:
2427 	    raid->type = AR_T_RAID1;
2428 	    raid->width = 1;
2429 	    raid->total_disks = 2;
2430 	    disk_number = meta->disk_number;
2431 	    break;
2432 
2433 	case ITE_T_RAID01:
2434 	    raid->type = AR_T_RAID01;
2435 	    raid->width = meta->array_width;
2436 	    raid->total_disks = 4;
2437 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2438 			  ((meta->disk_number & 0x01) << 1);
2439 	    break;
2440 
2441 	case ITE_T_SPAN:
2442 	    raid->type = AR_T_SPAN;
2443 	    raid->width = 1;
2444 	    raid->total_disks = meta->array_width;
2445 	    disk_number = meta->disk_number;
2446 	    break;
2447 
2448 	default:
2449 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2450 	    kfree(raidp[array], M_AR);
2451 	    raidp[array] = NULL;
2452 	    goto ite_out;
2453 	}
2454 
2455 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2456 	raid->format = AR_F_ITE_RAID;
2457 	raid->generation = 0;
2458 	raid->interleave = meta->stripe_sectors;
2459 	raid->total_sectors = meta->total_sectors;
2460 	raid->heads = 255;
2461 	raid->sectors = 63;
2462 	raid->cylinders = raid->total_sectors / (63 * 255);
2463 	raid->offset_sectors = 0;
2464 	raid->rebuild_lba = 0;
2465 	raid->lun = array;
2466 
2467 	raid->disks[disk_number].dev = parent;
2468 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2469 	raid->disks[disk_number].flags =
2470 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2471 	ars->raid[raid->volume] = raid;
2472 	ars->disk_number[raid->volume] = disk_number;
2473 	retval = 1;
2474 	break;
2475     }
2476 ite_out:
2477     kfree(meta, M_AR);
2478     return retval;
2479 }
2480 
2481 /* JMicron Technology Corp Metadata */
2482 static int
2483 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2484 {
2485     struct ata_raid_subdisk *ars = device_get_softc(dev);
2486     device_t parent = device_get_parent(dev);
2487     struct jmicron_raid_conf *meta;
2488     struct ar_softc *raid = NULL;
2489     u_int16_t checksum, *ptr;
2490     u_int64_t disk_size;
2491     int count, array, disk, total_disks, retval = 0;
2492 
2493     meta = (struct jmicron_raid_conf *)
2494 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2495 
2496     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2497 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2498 	if (testing || bootverbose)
2499 	    device_printf(parent,
2500 			  "JMicron read metadata failed\n");
2501     }
2502 
2503     /* check for JMicron signature */
2504     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2505 	if (testing || bootverbose)
2506 	    device_printf(parent, "JMicron check1 failed\n");
2507 	goto jmicron_out;
2508     }
2509 
2510     /* calculate checksum and compare for valid */
2511     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2512 	checksum += *ptr++;
2513     if (checksum) {
2514 	if (testing || bootverbose)
2515 	    device_printf(parent, "JMicron check2 failed\n");
2516 	goto jmicron_out;
2517     }
2518 
2519     if (testing || bootverbose)
2520 	ata_raid_jmicron_print_meta(meta);
2521 
2522     /* now convert JMicron meta into our generic form */
2523     for (array = 0; array < MAX_ARRAYS; array++) {
2524 jmicron_next:
2525 	if (!raidp[array]) {
2526 	    raidp[array] =
2527 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2528 					  M_WAITOK | M_ZERO);
2529 	}
2530 	raid = raidp[array];
2531 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2532 	    continue;
2533 
2534 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2535 	    if (meta->disks[disk]) {
2536 		if (raid->format == AR_F_JMICRON_RAID) {
2537 		    if (bcmp(&meta->disks[disk],
2538 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2539 			array++;
2540 			goto jmicron_next;
2541 		    }
2542 		}
2543 		else
2544 		    bcopy(&meta->disks[disk],
2545 			  raid->disks[disk].serial, sizeof(u_int32_t));
2546 		total_disks++;
2547 	    }
2548 	}
2549 	/* handle spares XXX SOS */
2550 
2551 	switch (meta->type) {
2552 	case JM_T_RAID0:
2553 	    raid->type = AR_T_RAID0;
2554 	    raid->width = total_disks;
2555 	    break;
2556 
2557 	case JM_T_RAID1:
2558 	    raid->type = AR_T_RAID1;
2559 	    raid->width = 1;
2560 	    break;
2561 
2562 	case JM_T_RAID01:
2563 	    raid->type = AR_T_RAID01;
2564 	    raid->width = total_disks / 2;
2565 	    break;
2566 
2567 	case JM_T_RAID5:
2568 	    raid->type = AR_T_RAID5;
2569 	    raid->width = total_disks;
2570 	    break;
2571 
2572 	case JM_T_JBOD:
2573 	    raid->type = AR_T_SPAN;
2574 	    raid->width = 1;
2575 	    break;
2576 
2577 	default:
2578 	    device_printf(parent,
2579 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2580 	    kfree(raidp[array], M_AR);
2581 	    raidp[array] = NULL;
2582 	    goto jmicron_out;
2583 	}
2584 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2585 	raid->format = AR_F_JMICRON_RAID;
2586 	strncpy(raid->name, meta->name, sizeof(meta->name));
2587 	raid->generation = 0;
2588 	raid->interleave = 2 << meta->stripe_shift;
2589 	raid->total_disks = total_disks;
2590 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2591 	raid->heads = 255;
2592 	raid->sectors = 63;
2593 	raid->cylinders = raid->total_sectors / (63 * 255);
2594 	raid->offset_sectors = meta->offset * 16;
2595 	raid->rebuild_lba = 0;
2596 	raid->lun = array;
2597 
2598 	for (disk = 0; disk < raid->total_disks; disk++) {
2599 	    if (meta->disks[disk] == meta->disk_id) {
2600 		raid->disks[disk].dev = parent;
2601 		raid->disks[disk].sectors = disk_size;
2602 		raid->disks[disk].flags =
2603 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2604 		ars->raid[raid->volume] = raid;
2605 		ars->disk_number[raid->volume] = disk;
2606 		retval = 1;
2607 		break;
2608 	    }
2609 	}
2610 	break;
2611     }
2612 jmicron_out:
2613     kfree(meta, M_AR);
2614     return retval;
2615 }
2616 
2617 static int
2618 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2619 {
2620     struct jmicron_raid_conf *meta;
2621     u_int64_t disk_sectors;
2622     int disk, error = 0;
2623 
2624     meta = (struct jmicron_raid_conf *)
2625 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2626 
2627     rdp->generation++;
2628     switch (rdp->type) {
2629     case AR_T_JBOD:
2630 	meta->type = JM_T_JBOD;
2631 	break;
2632 
2633     case AR_T_RAID0:
2634 	meta->type = JM_T_RAID0;
2635 	break;
2636 
2637     case AR_T_RAID1:
2638 	meta->type = JM_T_RAID1;
2639 	break;
2640 
2641     case AR_T_RAID5:
2642 	meta->type = JM_T_RAID5;
2643 	break;
2644 
2645     case AR_T_RAID01:
2646 	meta->type = JM_T_RAID01;
2647 	break;
2648 
2649     default:
2650 	kfree(meta, M_AR);
2651 	return ENODEV;
2652     }
2653     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2654     meta->version = JMICRON_VERSION;
2655     meta->offset = rdp->offset_sectors / 16;
2656     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2657     meta->disk_sectors_low = disk_sectors & 0xffff;
2658     meta->disk_sectors_high = disk_sectors >> 16;
2659     strncpy(meta->name, rdp->name, sizeof(meta->name));
2660     meta->stripe_shift = ffs(rdp->interleave) - 2;
2661 
2662     for (disk = 0; disk < rdp->total_disks; disk++) {
2663 	if (rdp->disks[disk].serial[0])
2664 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2665 	else
2666 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2667     }
2668 
2669     for (disk = 0; disk < rdp->total_disks; disk++) {
2670 	if (rdp->disks[disk].dev) {
2671 	    u_int16_t checksum = 0, *ptr;
2672 	    int count;
2673 
2674 	    meta->disk_id = meta->disks[disk];
2675 	    meta->checksum = 0;
2676 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2677 		checksum += *ptr++;
2678 	    meta->checksum -= checksum;
2679 
2680 	    if (testing || bootverbose)
2681 		ata_raid_jmicron_print_meta(meta);
2682 
2683 	    if (ata_raid_rw(rdp->disks[disk].dev,
2684 			    JMICRON_LBA(rdp->disks[disk].dev),
2685 			    meta, sizeof(struct jmicron_raid_conf),
2686 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2687 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2688 		error = EIO;
2689 	    }
2690 	}
2691     }
2692     /* handle spares XXX SOS */
2693 
2694     kfree(meta, M_AR);
2695     return error;
2696 }
2697 
2698 /* LSILogic V2 MegaRAID Metadata */
2699 static int
2700 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2701 {
2702     struct ata_raid_subdisk *ars = device_get_softc(dev);
2703     device_t parent = device_get_parent(dev);
2704     struct lsiv2_raid_conf *meta;
2705     struct ar_softc *raid = NULL;
2706     int array, retval = 0;
2707 
2708     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2709 	M_AR, M_WAITOK | M_ZERO);
2710 
2711     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2712 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2713 	if (testing || bootverbose)
2714 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2715 	goto lsiv2_out;
2716     }
2717 
2718     /* check if this is a LSI RAID struct */
2719     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2720 	if (testing || bootverbose)
2721 	    device_printf(parent, "LSI (v2) check1 failed\n");
2722 	goto lsiv2_out;
2723     }
2724 
2725     if (testing || bootverbose)
2726 	ata_raid_lsiv2_print_meta(meta);
2727 
2728     /* now convert LSI (v2) config meta into our generic form */
2729     for (array = 0; array < MAX_ARRAYS; array++) {
2730 	int raid_entry, conf_entry;
2731 
2732 	if (!raidp[array + meta->raid_number]) {
2733 	    raidp[array + meta->raid_number] =
2734 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2735 					  M_WAITOK | M_ZERO);
2736 	}
2737 	raid = raidp[array + meta->raid_number];
2738 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2739 	    continue;
2740 
2741 	if (raid->magic_0 &&
2742 	    ((raid->magic_0 != meta->timestamp) ||
2743 	     (raid->magic_1 != meta->raid_number)))
2744 	    continue;
2745 
2746 	array += meta->raid_number;
2747 
2748 	raid_entry = meta->raid_number;
2749 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2750 		     meta->disk_number - 1;
2751 
2752 	switch (meta->configs[raid_entry].raid.type) {
2753 	case LSIV2_T_RAID0:
2754 	    raid->magic_0 = meta->timestamp;
2755 	    raid->magic_1 = meta->raid_number;
2756 	    raid->type = AR_T_RAID0;
2757 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2758 	    raid->width = meta->configs[raid_entry].raid.array_width;
2759 	    break;
2760 
2761 	case LSIV2_T_RAID1:
2762 	    raid->magic_0 = meta->timestamp;
2763 	    raid->magic_1 = meta->raid_number;
2764 	    raid->type = AR_T_RAID1;
2765 	    raid->width = meta->configs[raid_entry].raid.array_width;
2766 	    break;
2767 
2768 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2769 	    raid->magic_0 = meta->timestamp;
2770 	    raid->magic_1 = meta->raid_number;
2771 	    raid->type = AR_T_RAID01;
2772 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2773 	    raid->width = meta->configs[raid_entry].raid.array_width;
2774 	    break;
2775 
2776 	default:
2777 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2778 			  meta->configs[raid_entry].raid.type);
2779 	    kfree(raidp[array], M_AR);
2780 	    raidp[array] = NULL;
2781 	    goto lsiv2_out;
2782 	}
2783 
2784 	raid->format = AR_F_LSIV2_RAID;
2785 	raid->generation = 0;
2786 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2787 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2788 	raid->heads = 255;
2789 	raid->sectors = 63;
2790 	raid->cylinders = raid->total_sectors / (63 * 255);
2791 	raid->offset_sectors = 0;
2792 	raid->rebuild_lba = 0;
2793 	raid->lun = array;
2794 
2795 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2796 	    raid->disks[meta->disk_number].dev = parent;
2797 	    raid->disks[meta->disk_number].sectors =
2798 		meta->configs[conf_entry].disk.disk_sectors;
2799 	    raid->disks[meta->disk_number].flags =
2800 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2801 	    ars->raid[raid->volume] = raid;
2802 	    ars->disk_number[raid->volume] = meta->disk_number;
2803 	    retval = 1;
2804 	}
2805 	else
2806 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2807 
2808 	break;
2809     }
2810 
2811 lsiv2_out:
2812     kfree(meta, M_AR);
2813     return retval;
2814 }
2815 
2816 /* LSILogic V3 MegaRAID Metadata */
2817 static int
2818 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2819 {
2820     struct ata_raid_subdisk *ars = device_get_softc(dev);
2821     device_t parent = device_get_parent(dev);
2822     struct lsiv3_raid_conf *meta;
2823     struct ar_softc *raid = NULL;
2824     u_int8_t checksum, *ptr;
2825     int array, entry, count, disk_number, retval = 0;
2826 
2827     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2828 	M_AR, M_WAITOK | M_ZERO);
2829 
2830     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2831 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2832 	if (testing || bootverbose)
2833 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2834 	goto lsiv3_out;
2835     }
2836 
2837     /* check if this is a LSI RAID struct */
2838     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2839 	if (testing || bootverbose)
2840 	    device_printf(parent, "LSI (v3) check1 failed\n");
2841 	goto lsiv3_out;
2842     }
2843 
2844     /* check if the checksum is OK */
2845     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2846 	checksum += *ptr++;
2847     if (checksum) {
2848 	if (testing || bootverbose)
2849 	    device_printf(parent, "LSI (v3) check2 failed\n");
2850 	goto lsiv3_out;
2851     }
2852 
2853     if (testing || bootverbose)
2854 	ata_raid_lsiv3_print_meta(meta);
2855 
2856     /* now convert LSI (v3) config meta into our generic form */
2857     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2858 	if (!raidp[array]) {
2859 	    raidp[array] =
2860 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2861 					  M_WAITOK | M_ZERO);
2862 	}
2863 	raid = raidp[array];
2864 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2865 	    array++;
2866 	    continue;
2867 	}
2868 
2869 	if ((raid->format == AR_F_LSIV3_RAID) &&
2870 	    (raid->magic_0 != meta->timestamp)) {
2871 	    array++;
2872 	    continue;
2873 	}
2874 
2875 	switch (meta->raid[entry].total_disks) {
2876 	case 0:
2877 	    entry++;
2878 	    continue;
2879 	case 1:
2880 	    if (meta->raid[entry].device == meta->device) {
2881 		disk_number = 0;
2882 		break;
2883 	    }
2884 	    if (raid->format)
2885 		array++;
2886 	    entry++;
2887 	    continue;
2888 	case 2:
2889 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2890 	    break;
2891 	default:
2892 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2893 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2894 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2895 	    break;
2896 	}
2897 
2898 	switch (meta->raid[entry].type) {
2899 	case LSIV3_T_RAID0:
2900 	    raid->type = AR_T_RAID0;
2901 	    raid->width = meta->raid[entry].total_disks;
2902 	    break;
2903 
2904 	case LSIV3_T_RAID1:
2905 	    raid->type = AR_T_RAID1;
2906 	    raid->width = meta->raid[entry].array_width;
2907 	    break;
2908 
2909 	default:
2910 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2911 			  meta->raid[entry].type);
2912 	    kfree(raidp[array], M_AR);
2913 	    raidp[array] = NULL;
2914 	    entry++;
2915 	    continue;
2916 	}
2917 
2918 	raid->magic_0 = meta->timestamp;
2919 	raid->format = AR_F_LSIV3_RAID;
2920 	raid->generation = 0;
2921 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2922 	raid->total_disks = meta->raid[entry].total_disks;
2923 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2924 	raid->heads = 255;
2925 	raid->sectors = 63;
2926 	raid->cylinders = raid->total_sectors / (63 * 255);
2927 	raid->offset_sectors = meta->raid[entry].offset;
2928 	raid->rebuild_lba = 0;
2929 	raid->lun = array;
2930 
2931 	raid->disks[disk_number].dev = parent;
2932 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2933 	raid->disks[disk_number].flags =
2934 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2935 	ars->raid[raid->volume] = raid;
2936 	ars->disk_number[raid->volume] = disk_number;
2937 	retval = 1;
2938 	entry++;
2939 	array++;
2940     }
2941 
2942 lsiv3_out:
2943     kfree(meta, M_AR);
2944     return retval;
2945 }
2946 
2947 /* nVidia MediaShield Metadata */
2948 static int
2949 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2950 {
2951     struct ata_raid_subdisk *ars = device_get_softc(dev);
2952     device_t parent = device_get_parent(dev);
2953     struct nvidia_raid_conf *meta;
2954     struct ar_softc *raid = NULL;
2955     u_int32_t checksum, *ptr;
2956     int array, count, retval = 0;
2957 
2958     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
2959 	M_AR, M_WAITOK | M_ZERO);
2960 
2961     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
2962 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
2963 	if (testing || bootverbose)
2964 	    device_printf(parent, "nVidia read metadata failed\n");
2965 	goto nvidia_out;
2966     }
2967 
2968     /* check if this is a nVidia RAID struct */
2969     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
2970 	if (testing || bootverbose)
2971 	    device_printf(parent, "nVidia check1 failed\n");
2972 	goto nvidia_out;
2973     }
2974 
2975     /* check if the checksum is OK */
2976     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
2977 	 count < meta->config_size; count++)
2978 	checksum += *ptr++;
2979     if (checksum) {
2980 	if (testing || bootverbose)
2981 	    device_printf(parent, "nVidia check2 failed\n");
2982 	goto nvidia_out;
2983     }
2984 
2985     if (testing || bootverbose)
2986 	ata_raid_nvidia_print_meta(meta);
2987 
2988     /* now convert nVidia meta into our generic form */
2989     for (array = 0; array < MAX_ARRAYS; array++) {
2990 	if (!raidp[array]) {
2991 	    raidp[array] =
2992 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2993 					  M_WAITOK | M_ZERO);
2994 	}
2995 	raid = raidp[array];
2996 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
2997 	    continue;
2998 
2999 	if (raid->format == AR_F_NVIDIA_RAID &&
3000 	    ((raid->magic_0 != meta->magic_1) ||
3001 	     (raid->magic_1 != meta->magic_2))) {
3002 	    continue;
3003 	}
3004 
3005 	switch (meta->type) {
3006 	case NV_T_SPAN:
3007 	    raid->type = AR_T_SPAN;
3008 	    break;
3009 
3010 	case NV_T_RAID0:
3011 	    raid->type = AR_T_RAID0;
3012 	    break;
3013 
3014 	case NV_T_RAID1:
3015 	    raid->type = AR_T_RAID1;
3016 	    break;
3017 
3018 	case NV_T_RAID5:
3019 	    raid->type = AR_T_RAID5;
3020 	    break;
3021 
3022 	case NV_T_RAID01:
3023 	    raid->type = AR_T_RAID01;
3024 	    break;
3025 
3026 	default:
3027 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3028 			  meta->type);
3029 	    kfree(raidp[array], M_AR);
3030 	    raidp[array] = NULL;
3031 	    goto nvidia_out;
3032 	}
3033 	raid->magic_0 = meta->magic_1;
3034 	raid->magic_1 = meta->magic_2;
3035 	raid->format = AR_F_NVIDIA_RAID;
3036 	raid->generation = 0;
3037 	raid->interleave = meta->stripe_sectors;
3038 	raid->width = meta->array_width;
3039 	raid->total_disks = meta->total_disks;
3040 	raid->total_sectors = meta->total_sectors;
3041 	raid->heads = 255;
3042 	raid->sectors = 63;
3043 	raid->cylinders = raid->total_sectors / (63 * 255);
3044 	raid->offset_sectors = 0;
3045 	raid->rebuild_lba = meta->rebuild_lba;
3046 	raid->lun = array;
3047 	raid->status = AR_S_READY;
3048 	if (meta->status & NV_S_DEGRADED)
3049 	    raid->status |= AR_S_DEGRADED;
3050 
3051 	raid->disks[meta->disk_number].dev = parent;
3052 	raid->disks[meta->disk_number].sectors =
3053 	    raid->total_sectors / raid->width;
3054 	raid->disks[meta->disk_number].flags =
3055 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3056 	ars->raid[raid->volume] = raid;
3057 	ars->disk_number[raid->volume] = meta->disk_number;
3058 	retval = 1;
3059 	break;
3060     }
3061 
3062 nvidia_out:
3063     kfree(meta, M_AR);
3064     return retval;
3065 }
3066 
3067 /* Promise FastTrak Metadata */
3068 static int
3069 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3070 {
3071     struct ata_raid_subdisk *ars = device_get_softc(dev);
3072     device_t parent = device_get_parent(dev);
3073     struct promise_raid_conf *meta;
3074     struct ar_softc *raid;
3075     u_int32_t checksum, *ptr;
3076     int array, count, disk, disksum = 0, retval = 0;
3077 
3078     meta = (struct promise_raid_conf *)
3079 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3080 
3081     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3082 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3083 	if (testing || bootverbose)
3084 	    device_printf(parent, "%s read metadata failed\n",
3085 			  native ? "FreeBSD" : "Promise");
3086 	goto promise_out;
3087     }
3088 
3089     /* check the signature */
3090     if (native) {
3091 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3092 	    if (testing || bootverbose)
3093 		device_printf(parent, "FreeBSD check1 failed\n");
3094 	    goto promise_out;
3095 	}
3096     }
3097     else {
3098 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3099 	    if (testing || bootverbose)
3100 		device_printf(parent, "Promise check1 failed\n");
3101 	    goto promise_out;
3102 	}
3103     }
3104 
3105     /* check if the checksum is OK */
3106     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3107 	checksum += *ptr++;
3108     if (checksum != *ptr) {
3109 	if (testing || bootverbose)
3110 	    device_printf(parent, "%s check2 failed\n",
3111 			  native ? "FreeBSD" : "Promise");
3112 	goto promise_out;
3113     }
3114 
3115     /* check on disk integrity status */
3116     if (meta->raid.integrity != PR_I_VALID) {
3117 	if (testing || bootverbose)
3118 	    device_printf(parent, "%s check3 failed\n",
3119 			  native ? "FreeBSD" : "Promise");
3120 	goto promise_out;
3121     }
3122 
3123     if (testing || bootverbose)
3124 	ata_raid_promise_print_meta(meta);
3125 
3126     /* now convert Promise metadata into our generic form */
3127     for (array = 0; array < MAX_ARRAYS; array++) {
3128 	if (!raidp[array]) {
3129 	    raidp[array] =
3130 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3131 					  M_WAITOK | M_ZERO);
3132 	}
3133 	raid = raidp[array];
3134 	if (raid->format &&
3135 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3136 	    continue;
3137 
3138 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3139 	    !(meta->raid.magic_1 == (raid->magic_1)))
3140 	    continue;
3141 
3142 	/* update our knowledge about the array config based on generation */
3143 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3144 	    switch (meta->raid.type) {
3145 	    case PR_T_SPAN:
3146 		raid->type = AR_T_SPAN;
3147 		break;
3148 
3149 	    case PR_T_JBOD:
3150 		raid->type = AR_T_JBOD;
3151 		break;
3152 
3153 	    case PR_T_RAID0:
3154 		raid->type = AR_T_RAID0;
3155 		break;
3156 
3157 	    case PR_T_RAID1:
3158 		raid->type = AR_T_RAID1;
3159 		if (meta->raid.array_width > 1)
3160 		    raid->type = AR_T_RAID01;
3161 		break;
3162 
3163 	    case PR_T_RAID5:
3164 		raid->type = AR_T_RAID5;
3165 		break;
3166 
3167 	    default:
3168 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3169 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3170 		kfree(raidp[array], M_AR);
3171 		raidp[array] = NULL;
3172 		goto promise_out;
3173 	    }
3174 	    raid->magic_1 = meta->raid.magic_1;
3175 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3176 	    raid->generation = meta->raid.generation;
3177 	    raid->interleave = 1 << meta->raid.stripe_shift;
3178 	    raid->width = meta->raid.array_width;
3179 	    raid->total_disks = meta->raid.total_disks;
3180 	    raid->heads = meta->raid.heads + 1;
3181 	    raid->sectors = meta->raid.sectors;
3182 	    raid->cylinders = meta->raid.cylinders + 1;
3183 	    raid->total_sectors = meta->raid.total_sectors;
3184 	    raid->offset_sectors = 0;
3185 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3186 	    raid->lun = array;
3187 	    if ((meta->raid.status &
3188 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3189 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3190 		raid->status |= AR_S_READY;
3191 		if (meta->raid.status & PR_S_DEGRADED)
3192 		    raid->status |= AR_S_DEGRADED;
3193 	    }
3194 	    else
3195 		raid->status &= ~AR_S_READY;
3196 
3197 	    /* convert disk flags to our internal types */
3198 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3199 		raid->disks[disk].dev = NULL;
3200 		raid->disks[disk].flags = 0;
3201 		*((u_int64_t *)(raid->disks[disk].serial)) =
3202 		    meta->raid.disk[disk].magic_0;
3203 		disksum += meta->raid.disk[disk].flags;
3204 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3205 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3206 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3207 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3208 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3209 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3210 		    raid->disks[disk].flags |= AR_DF_SPARE;
3211 		}
3212 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3213 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3214 	    }
3215 	    if (!disksum) {
3216 		device_printf(parent, "%s subdisks has no flags\n",
3217 			      native ? "FreeBSD" : "Promise");
3218 		kfree(raidp[array], M_AR);
3219 		raidp[array] = NULL;
3220 		goto promise_out;
3221 	    }
3222 	}
3223 	if (meta->raid.generation >= raid->generation) {
3224 	    int disk_number = meta->raid.disk_number;
3225 
3226 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3227 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3228 		raid->disks[disk_number].dev = parent;
3229 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3230 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3231 		if ((raid->disks[disk_number].flags &
3232 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3233 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3234 		    ars->raid[raid->volume] = raid;
3235 		    ars->disk_number[raid->volume] = disk_number;
3236 		    retval = 1;
3237 		}
3238 	    }
3239 	}
3240 	break;
3241     }
3242 
3243 promise_out:
3244     kfree(meta, M_AR);
3245     return retval;
3246 }
3247 
3248 static int
3249 ata_raid_promise_write_meta(struct ar_softc *rdp)
3250 {
3251     struct promise_raid_conf *meta;
3252     struct timeval timestamp;
3253     u_int32_t *ckptr;
3254     int count, disk, drive, error = 0;
3255 
3256     meta = (struct promise_raid_conf *)
3257 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3258 
3259     rdp->generation++;
3260     microtime(&timestamp);
3261 
3262     for (disk = 0; disk < rdp->total_disks; disk++) {
3263 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3264 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3265 	meta->dummy_0 = 0x00020000;
3266 	meta->raid.disk_number = disk;
3267 
3268 	if (rdp->disks[disk].dev) {
3269 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3270 	    struct ata_channel *ch =
3271 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3272 
3273 	    meta->raid.channel = ch->unit;
3274 	    meta->raid.device = ATA_DEV(atadev->unit);
3275 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3276 	    meta->raid.disk_offset = rdp->offset_sectors;
3277 	}
3278 	else {
3279 	    meta->raid.channel = 0;
3280 	    meta->raid.device = 0;
3281 	    meta->raid.disk_sectors = 0;
3282 	    meta->raid.disk_offset = 0;
3283 	}
3284 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3285 	meta->magic_1 = timestamp.tv_sec >> 16;
3286 	meta->magic_2 = timestamp.tv_sec;
3287 	meta->raid.integrity = PR_I_VALID;
3288 	meta->raid.magic_0 = meta->magic_0;
3289 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3290 	meta->raid.generation = rdp->generation;
3291 
3292 	if (rdp->status & AR_S_READY) {
3293 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3294 	    meta->raid.status =
3295 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3296 	    if (rdp->status & AR_S_DEGRADED)
3297 		meta->raid.status |= PR_S_DEGRADED;
3298 	    else
3299 		meta->raid.status |= PR_S_FUNCTIONAL;
3300 	}
3301 	else {
3302 	    meta->raid.flags = PR_F_DOWN;
3303 	    meta->raid.status = 0;
3304 	}
3305 
3306 	switch (rdp->type) {
3307 	case AR_T_RAID0:
3308 	    meta->raid.type = PR_T_RAID0;
3309 	    break;
3310 	case AR_T_RAID1:
3311 	    meta->raid.type = PR_T_RAID1;
3312 	    break;
3313 	case AR_T_RAID01:
3314 	    meta->raid.type = PR_T_RAID1;
3315 	    break;
3316 	case AR_T_RAID5:
3317 	    meta->raid.type = PR_T_RAID5;
3318 	    break;
3319 	case AR_T_SPAN:
3320 	    meta->raid.type = PR_T_SPAN;
3321 	    break;
3322 	case AR_T_JBOD:
3323 	    meta->raid.type = PR_T_JBOD;
3324 	    break;
3325 	default:
3326 	    kfree(meta, M_AR);
3327 	    return ENODEV;
3328 	}
3329 
3330 	meta->raid.total_disks = rdp->total_disks;
3331 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3332 	meta->raid.array_width = rdp->width;
3333 	meta->raid.array_number = rdp->lun;
3334 	meta->raid.total_sectors = rdp->total_sectors;
3335 	meta->raid.cylinders = rdp->cylinders - 1;
3336 	meta->raid.heads = rdp->heads - 1;
3337 	meta->raid.sectors = rdp->sectors;
3338 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3339 
3340 	bzero(&meta->raid.disk, 8 * 12);
3341 	for (drive = 0; drive < rdp->total_disks; drive++) {
3342 	    meta->raid.disk[drive].flags = 0;
3343 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3344 		meta->raid.disk[drive].flags |= PR_F_VALID;
3345 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3346 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3347 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3348 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3349 	    else
3350 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3351 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3352 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3353 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3354 	    meta->raid.disk[drive].dummy_0 = 0x0;
3355 	    if (rdp->disks[drive].dev) {
3356 		struct ata_channel *ch =
3357 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3358 		struct ata_device *atadev =
3359 		    device_get_softc(rdp->disks[drive].dev);
3360 
3361 		meta->raid.disk[drive].channel = ch->unit;
3362 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3363 	    }
3364 	    meta->raid.disk[drive].magic_0 =
3365 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3366 	}
3367 
3368 	if (rdp->disks[disk].dev) {
3369 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3370 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3371 		if (rdp->format == AR_F_FREEBSD_RAID)
3372 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3373 		else
3374 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3375 	    }
3376 	    else
3377 		bzero(meta->promise_id, sizeof(meta->promise_id));
3378 	    meta->checksum = 0;
3379 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3380 		meta->checksum += *ckptr++;
3381 	    if (testing || bootverbose)
3382 		ata_raid_promise_print_meta(meta);
3383 	    if (ata_raid_rw(rdp->disks[disk].dev,
3384 			    PROMISE_LBA(rdp->disks[disk].dev),
3385 			    meta, sizeof(struct promise_raid_conf),
3386 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3387 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3388 		error = EIO;
3389 	    }
3390 	}
3391     }
3392     kfree(meta, M_AR);
3393     return error;
3394 }
3395 
3396 /* Silicon Image Medley Metadata */
3397 static int
3398 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3399 {
3400     struct ata_raid_subdisk *ars = device_get_softc(dev);
3401     device_t parent = device_get_parent(dev);
3402     struct sii_raid_conf *meta;
3403     struct ar_softc *raid = NULL;
3404     u_int16_t checksum, *ptr;
3405     int array, count, disk, retval = 0;
3406 
3407     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3408 	M_WAITOK | M_ZERO);
3409 
3410     if (ata_raid_rw(parent, SII_LBA(parent),
3411 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3412 	if (testing || bootverbose)
3413 	    device_printf(parent, "Silicon Image read metadata failed\n");
3414 	goto sii_out;
3415     }
3416 
3417     /* check if this is a Silicon Image (Medley) RAID struct */
3418     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3419 	checksum += *ptr++;
3420     if (checksum) {
3421 	if (testing || bootverbose)
3422 	    device_printf(parent, "Silicon Image check1 failed\n");
3423 	goto sii_out;
3424     }
3425 
3426     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3427 	checksum += *ptr++;
3428     if (checksum != meta->checksum_1) {
3429 	if (testing || bootverbose)
3430 	    device_printf(parent, "Silicon Image check2 failed\n");
3431 	goto sii_out;
3432     }
3433 
3434     /* check verison */
3435     if (meta->version_major != 0x0002 ||
3436 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3437 	if (testing || bootverbose)
3438 	    device_printf(parent, "Silicon Image check3 failed\n");
3439 	goto sii_out;
3440     }
3441 
3442     if (testing || bootverbose)
3443 	ata_raid_sii_print_meta(meta);
3444 
3445     /* now convert Silicon Image meta into our generic form */
3446     for (array = 0; array < MAX_ARRAYS; array++) {
3447 	if (!raidp[array]) {
3448 	    raidp[array] =
3449 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3450 					  M_WAITOK | M_ZERO);
3451 	}
3452 	raid = raidp[array];
3453 	if (raid->format && (raid->format != AR_F_SII_RAID))
3454 	    continue;
3455 
3456 	if (raid->format == AR_F_SII_RAID &&
3457 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3458 	    continue;
3459 	}
3460 
3461 	/* update our knowledge about the array config based on generation */
3462 	if (!meta->generation || meta->generation > raid->generation) {
3463 	    switch (meta->type) {
3464 	    case SII_T_RAID0:
3465 		raid->type = AR_T_RAID0;
3466 		break;
3467 
3468 	    case SII_T_RAID1:
3469 		raid->type = AR_T_RAID1;
3470 		break;
3471 
3472 	    case SII_T_RAID01:
3473 		raid->type = AR_T_RAID01;
3474 		break;
3475 
3476 	    case SII_T_SPARE:
3477 		device_printf(parent, "Silicon Image SPARE disk\n");
3478 		kfree(raidp[array], M_AR);
3479 		raidp[array] = NULL;
3480 		goto sii_out;
3481 
3482 	    default:
3483 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3484 			      meta->type);
3485 		kfree(raidp[array], M_AR);
3486 		raidp[array] = NULL;
3487 		goto sii_out;
3488 	    }
3489 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3490 	    raid->format = AR_F_SII_RAID;
3491 	    raid->generation = meta->generation;
3492 	    raid->interleave = meta->stripe_sectors;
3493 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3494 	    raid->total_disks =
3495 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3496 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3497 	    raid->total_sectors = meta->total_sectors;
3498 	    raid->heads = 255;
3499 	    raid->sectors = 63;
3500 	    raid->cylinders = raid->total_sectors / (63 * 255);
3501 	    raid->offset_sectors = 0;
3502 	    raid->rebuild_lba = meta->rebuild_lba;
3503 	    raid->lun = array;
3504 	    strncpy(raid->name, meta->name,
3505 		    min(sizeof(raid->name), sizeof(meta->name)));
3506 
3507 	    /* clear out any old info */
3508 	    if (raid->generation) {
3509 		for (disk = 0; disk < raid->total_disks; disk++) {
3510 		    raid->disks[disk].dev = NULL;
3511 		    raid->disks[disk].flags = 0;
3512 		}
3513 	    }
3514 	}
3515 	if (meta->generation >= raid->generation) {
3516 	    /* XXX SOS add check for the right physical disk by serial# */
3517 	    if (meta->status & SII_S_READY) {
3518 		int disk_number = (raid->type == AR_T_RAID01) ?
3519 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3520 		    meta->disk_number;
3521 
3522 		raid->disks[disk_number].dev = parent;
3523 		raid->disks[disk_number].sectors =
3524 		    raid->total_sectors / raid->width;
3525 		raid->disks[disk_number].flags =
3526 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3527 		ars->raid[raid->volume] = raid;
3528 		ars->disk_number[raid->volume] = disk_number;
3529 		retval = 1;
3530 	    }
3531 	}
3532 	break;
3533     }
3534 
3535 sii_out:
3536     kfree(meta, M_AR);
3537     return retval;
3538 }
3539 
3540 /* Silicon Integrated Systems Metadata */
3541 static int
3542 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3543 {
3544     struct ata_raid_subdisk *ars = device_get_softc(dev);
3545     device_t parent = device_get_parent(dev);
3546     struct sis_raid_conf *meta;
3547     struct ar_softc *raid = NULL;
3548     int array, disk_number, drive, retval = 0;
3549 
3550     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3551 	M_WAITOK | M_ZERO);
3552 
3553     if (ata_raid_rw(parent, SIS_LBA(parent),
3554 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3555 	if (testing || bootverbose)
3556 	    device_printf(parent,
3557 			  "Silicon Integrated Systems read metadata failed\n");
3558     }
3559 
3560     /* check for SiS magic */
3561     if (meta->magic != SIS_MAGIC) {
3562 	if (testing || bootverbose)
3563 	    device_printf(parent,
3564 			  "Silicon Integrated Systems check1 failed\n");
3565 	goto sis_out;
3566     }
3567 
3568     if (testing || bootverbose)
3569 	ata_raid_sis_print_meta(meta);
3570 
3571     /* now convert SiS meta into our generic form */
3572     for (array = 0; array < MAX_ARRAYS; array++) {
3573 	if (!raidp[array]) {
3574 	    raidp[array] =
3575 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3576 					  M_WAITOK | M_ZERO);
3577 	}
3578 
3579 	raid = raidp[array];
3580 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3581 	    continue;
3582 
3583 	if ((raid->format == AR_F_SIS_RAID) &&
3584 	    ((raid->magic_0 != meta->controller_pci_id) ||
3585 	     (raid->magic_1 != meta->timestamp))) {
3586 	    continue;
3587 	}
3588 
3589 	switch (meta->type_total_disks & SIS_T_MASK) {
3590 	case SIS_T_JBOD:
3591 	    raid->type = AR_T_JBOD;
3592 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3593 	    raid->total_sectors += SIS_LBA(parent);
3594 	    break;
3595 
3596 	case SIS_T_RAID0:
3597 	    raid->type = AR_T_RAID0;
3598 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3599 	    if (!raid->total_sectors ||
3600 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3601 		raid->total_sectors = raid->width * SIS_LBA(parent);
3602 	    break;
3603 
3604 	case SIS_T_RAID1:
3605 	    raid->type = AR_T_RAID1;
3606 	    raid->width = 1;
3607 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3608 		raid->total_sectors = SIS_LBA(parent);
3609 	    break;
3610 
3611 	default:
3612 	    device_printf(parent, "Silicon Integrated Systems "
3613 			  "unknown RAID type 0x%08x\n", meta->magic);
3614 	    kfree(raidp[array], M_AR);
3615 	    raidp[array] = NULL;
3616 	    goto sis_out;
3617 	}
3618 	raid->magic_0 = meta->controller_pci_id;
3619 	raid->magic_1 = meta->timestamp;
3620 	raid->format = AR_F_SIS_RAID;
3621 	raid->generation = 0;
3622 	raid->interleave = meta->stripe_sectors;
3623 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3624 	raid->heads = 255;
3625 	raid->sectors = 63;
3626 	raid->cylinders = raid->total_sectors / (63 * 255);
3627 	raid->offset_sectors = 0;
3628 	raid->rebuild_lba = 0;
3629 	raid->lun = array;
3630 	/* XXX SOS if total_disks > 2 this doesn't float */
3631 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3632 	    disk_number = 0;
3633 	else
3634 	    disk_number = 1;
3635 
3636 	for (drive = 0; drive < raid->total_disks; drive++) {
3637 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3638 	    if (drive == disk_number) {
3639 		raid->disks[disk_number].dev = parent;
3640 		raid->disks[disk_number].flags =
3641 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3642 		ars->raid[raid->volume] = raid;
3643 		ars->disk_number[raid->volume] = disk_number;
3644 	    }
3645 	}
3646 	retval = 1;
3647 	break;
3648     }
3649 
3650 sis_out:
3651     kfree(meta, M_AR);
3652     return retval;
3653 }
3654 
3655 static int
3656 ata_raid_sis_write_meta(struct ar_softc *rdp)
3657 {
3658     struct sis_raid_conf *meta;
3659     struct timeval timestamp;
3660     int disk, error = 0;
3661 
3662     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3663 	M_WAITOK | M_ZERO);
3664 
3665     rdp->generation++;
3666     microtime(&timestamp);
3667 
3668     meta->magic = SIS_MAGIC;
3669     /* XXX SOS if total_disks > 2 this doesn't float */
3670     for (disk = 0; disk < rdp->total_disks; disk++) {
3671 	if (rdp->disks[disk].dev) {
3672 	    struct ata_channel *ch =
3673 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3674 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3675 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3676 
3677 	    meta->disks |= disk_number << ((1 - disk) << 2);
3678 	}
3679     }
3680     switch (rdp->type) {
3681     case AR_T_JBOD:
3682 	meta->type_total_disks = SIS_T_JBOD;
3683 	break;
3684 
3685     case AR_T_RAID0:
3686 	meta->type_total_disks = SIS_T_RAID0;
3687 	break;
3688 
3689     case AR_T_RAID1:
3690 	meta->type_total_disks = SIS_T_RAID1;
3691 	break;
3692 
3693     default:
3694 	kfree(meta, M_AR);
3695 	return ENODEV;
3696     }
3697     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3698     meta->stripe_sectors = rdp->interleave;
3699     meta->timestamp = timestamp.tv_sec;
3700 
3701     for (disk = 0; disk < rdp->total_disks; disk++) {
3702 	if (rdp->disks[disk].dev) {
3703 	    struct ata_channel *ch =
3704 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3705 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3706 
3707 	    meta->controller_pci_id =
3708 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3709 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3710 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3711 
3712 	    /* XXX SOS if total_disks > 2 this may not float */
3713 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3714 
3715 	    if (testing || bootverbose)
3716 		ata_raid_sis_print_meta(meta);
3717 
3718 	    if (ata_raid_rw(rdp->disks[disk].dev,
3719 			    SIS_LBA(rdp->disks[disk].dev),
3720 			    meta, sizeof(struct sis_raid_conf),
3721 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3722 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3723 		error = EIO;
3724 	    }
3725 	}
3726     }
3727     kfree(meta, M_AR);
3728     return error;
3729 }
3730 
3731 /* VIA Tech V-RAID Metadata */
3732 static int
3733 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3734 {
3735     struct ata_raid_subdisk *ars = device_get_softc(dev);
3736     device_t parent = device_get_parent(dev);
3737     struct via_raid_conf *meta;
3738     struct ar_softc *raid = NULL;
3739     u_int8_t checksum, *ptr;
3740     int array, count, disk, retval = 0;
3741 
3742     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3743 	M_WAITOK | M_ZERO);
3744 
3745     if (ata_raid_rw(parent, VIA_LBA(parent),
3746 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3747 	if (testing || bootverbose)
3748 	    device_printf(parent, "VIA read metadata failed\n");
3749 	goto via_out;
3750     }
3751 
3752     /* check if this is a VIA RAID struct */
3753     if (meta->magic != VIA_MAGIC) {
3754 	if (testing || bootverbose)
3755 	    device_printf(parent, "VIA check1 failed\n");
3756 	goto via_out;
3757     }
3758 
3759     /* calculate checksum and compare for valid */
3760     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3761 	checksum += *ptr++;
3762     if (checksum != meta->checksum) {
3763 	if (testing || bootverbose)
3764 	    device_printf(parent, "VIA check2 failed\n");
3765 	goto via_out;
3766     }
3767 
3768     if (testing || bootverbose)
3769 	ata_raid_via_print_meta(meta);
3770 
3771     /* now convert VIA meta into our generic form */
3772     for (array = 0; array < MAX_ARRAYS; array++) {
3773 	if (!raidp[array]) {
3774 	    raidp[array] =
3775 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3776 					  M_WAITOK | M_ZERO);
3777 	}
3778 	raid = raidp[array];
3779 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3780 	    continue;
3781 
3782 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3783 	    continue;
3784 
3785 	switch (meta->type & VIA_T_MASK) {
3786 	case VIA_T_RAID0:
3787 	    raid->type = AR_T_RAID0;
3788 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3789 	    if (!raid->total_sectors ||
3790 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3791 		raid->total_sectors = raid->width * meta->disk_sectors;
3792 	    break;
3793 
3794 	case VIA_T_RAID1:
3795 	    raid->type = AR_T_RAID1;
3796 	    raid->width = 1;
3797 	    raid->total_sectors = meta->disk_sectors;
3798 	    break;
3799 
3800 	case VIA_T_RAID01:
3801 	    raid->type = AR_T_RAID01;
3802 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3803 	    if (!raid->total_sectors ||
3804 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3805 		raid->total_sectors = raid->width * meta->disk_sectors;
3806 	    break;
3807 
3808 	case VIA_T_RAID5:
3809 	    raid->type = AR_T_RAID5;
3810 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3811 	    if (!raid->total_sectors ||
3812 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3813 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3814 	    break;
3815 
3816 	case VIA_T_SPAN:
3817 	    raid->type = AR_T_SPAN;
3818 	    raid->width = 1;
3819 	    raid->total_sectors += meta->disk_sectors;
3820 	    break;
3821 
3822 	default:
3823 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3824 	    kfree(raidp[array], M_AR);
3825 	    raidp[array] = NULL;
3826 	    goto via_out;
3827 	}
3828 	raid->magic_0 = meta->disks[0];
3829 	raid->format = AR_F_VIA_RAID;
3830 	raid->generation = 0;
3831 	raid->interleave =
3832 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3833 	for (count = 0, disk = 0; disk < 8; disk++)
3834 	    if (meta->disks[disk])
3835 		count++;
3836 	raid->total_disks = count;
3837 	raid->heads = 255;
3838 	raid->sectors = 63;
3839 	raid->cylinders = raid->total_sectors / (63 * 255);
3840 	raid->offset_sectors = 0;
3841 	raid->rebuild_lba = 0;
3842 	raid->lun = array;
3843 
3844 	for (disk = 0; disk < raid->total_disks; disk++) {
3845 	    if (meta->disks[disk] == meta->disk_id) {
3846 		raid->disks[disk].dev = parent;
3847 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3848 		      sizeof(u_int32_t));
3849 		raid->disks[disk].sectors = meta->disk_sectors;
3850 		raid->disks[disk].flags =
3851 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3852 		ars->raid[raid->volume] = raid;
3853 		ars->disk_number[raid->volume] = disk;
3854 		retval = 1;
3855 		break;
3856 	    }
3857 	}
3858 	break;
3859     }
3860 
3861 via_out:
3862     kfree(meta, M_AR);
3863     return retval;
3864 }
3865 
3866 static int
3867 ata_raid_via_write_meta(struct ar_softc *rdp)
3868 {
3869     struct via_raid_conf *meta;
3870     int disk, error = 0;
3871 
3872     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3873 	M_WAITOK | M_ZERO);
3874 
3875     rdp->generation++;
3876 
3877     meta->magic = VIA_MAGIC;
3878     meta->dummy_0 = 0x02;
3879     switch (rdp->type) {
3880     case AR_T_SPAN:
3881 	meta->type = VIA_T_SPAN;
3882 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3883 	break;
3884 
3885     case AR_T_RAID0:
3886 	meta->type = VIA_T_RAID0;
3887 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3888 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3889 	break;
3890 
3891     case AR_T_RAID1:
3892 	meta->type = VIA_T_RAID1;
3893 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3894 	break;
3895 
3896     case AR_T_RAID5:
3897 	meta->type = VIA_T_RAID5;
3898 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3899 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3900 	break;
3901 
3902     case AR_T_RAID01:
3903 	meta->type = VIA_T_RAID01;
3904 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3905 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3906 	break;
3907 
3908     default:
3909 	kfree(meta, M_AR);
3910 	return ENODEV;
3911     }
3912     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3913     meta->disk_sectors =
3914 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3915     for (disk = 0; disk < rdp->total_disks; disk++)
3916 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3917 
3918     for (disk = 0; disk < rdp->total_disks; disk++) {
3919 	if (rdp->disks[disk].dev) {
3920 	    u_int8_t *ptr;
3921 	    int count;
3922 
3923 	    meta->disk_index = disk * sizeof(u_int32_t);
3924 	    if (rdp->type == AR_T_RAID01)
3925 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3926 				   (meta->disk_index & ~0x08);
3927 	    meta->disk_id = meta->disks[disk];
3928 	    meta->checksum = 0;
3929 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3930 		meta->checksum += *ptr++;
3931 
3932 	    if (testing || bootverbose)
3933 		ata_raid_via_print_meta(meta);
3934 
3935 	    if (ata_raid_rw(rdp->disks[disk].dev,
3936 			    VIA_LBA(rdp->disks[disk].dev),
3937 			    meta, sizeof(struct via_raid_conf),
3938 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3939 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3940 		error = EIO;
3941 	    }
3942 	}
3943     }
3944     kfree(meta, M_AR);
3945     return error;
3946 }
3947 
3948 static struct ata_request *
3949 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3950 {
3951     struct ata_request *request;
3952 
3953     if (!(request = ata_alloc_request())) {
3954 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
3955 	return NULL;
3956     }
3957     request->timeout = ATA_DEFAULT_TIMEOUT;
3958     request->retries = 2;
3959     request->callback = ata_raid_done;
3960     request->driver = rdp;
3961     request->bio = bio;
3962     switch (request->bio->bio_buf->b_cmd) {
3963     case BUF_CMD_READ:
3964 	request->flags = ATA_R_READ;
3965 	break;
3966     case BUF_CMD_WRITE:
3967 	request->flags = ATA_R_WRITE;
3968 	break;
3969     default:
3970 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
3971 	ata_free_request(request);
3972 #if 0
3973 	bio->bio_buf->b_flags |= B_ERROR;
3974 	bio->bio_buf->b_error = EIO;
3975 	biodone(bio);
3976 #endif /* 0 */
3977 	return(NULL);
3978     }
3979     return request;
3980 }
3981 
3982 static int
3983 ata_raid_send_request(struct ata_request *request)
3984 {
3985     struct ata_device *atadev = device_get_softc(request->dev);
3986 
3987     request->transfersize = min(request->bytecount, atadev->max_iosize);
3988     if (request->flags & ATA_R_READ) {
3989 	if (atadev->mode >= ATA_DMA) {
3990 	    request->flags |= ATA_R_DMA;
3991 	    request->u.ata.command = ATA_READ_DMA;
3992 	}
3993 	else if (atadev->max_iosize > DEV_BSIZE)
3994 	    request->u.ata.command = ATA_READ_MUL;
3995 	else
3996 	    request->u.ata.command = ATA_READ;
3997     }
3998     else if (request->flags & ATA_R_WRITE) {
3999 	if (atadev->mode >= ATA_DMA) {
4000 	    request->flags |= ATA_R_DMA;
4001 	    request->u.ata.command = ATA_WRITE_DMA;
4002 	}
4003 	else if (atadev->max_iosize > DEV_BSIZE)
4004 	    request->u.ata.command = ATA_WRITE_MUL;
4005 	else
4006 	    request->u.ata.command = ATA_WRITE;
4007     }
4008     else {
4009 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4010 	ata_free_request(request);
4011 	return EIO;
4012     }
4013     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4014     ata_queue_request(request);
4015     return 0;
4016 }
4017 
4018 static int
4019 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4020 {
4021     struct ata_device *atadev = device_get_softc(dev);
4022     struct ata_request *request;
4023     int error;
4024 
4025     if (bcount % DEV_BSIZE) {
4026 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4027 	return ENOMEM;
4028     }
4029 
4030     if (!(request = ata_alloc_request())) {
4031 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4032 	return ENOMEM;
4033     }
4034 
4035     /* setup request */
4036     request->dev = dev;
4037     request->timeout = 10;
4038     request->retries = 0;
4039     request->data = data;
4040     request->bytecount = bcount;
4041     request->transfersize = DEV_BSIZE;
4042     request->u.ata.lba = lba;
4043     request->u.ata.count = request->bytecount / DEV_BSIZE;
4044     request->flags = flags;
4045 
4046     if (flags & ATA_R_READ) {
4047 	if (atadev->mode >= ATA_DMA) {
4048 	    request->u.ata.command = ATA_READ_DMA;
4049 	    request->flags |= ATA_R_DMA;
4050 	}
4051 	else
4052 	    request->u.ata.command = ATA_READ;
4053 	ata_queue_request(request);
4054     }
4055     else if (flags & ATA_R_WRITE) {
4056 	if (atadev->mode >= ATA_DMA) {
4057 	    request->u.ata.command = ATA_WRITE_DMA;
4058 	    request->flags |= ATA_R_DMA;
4059 	}
4060 	else
4061 	    request->u.ata.command = ATA_WRITE;
4062 	ata_queue_request(request);
4063     }
4064     else {
4065 	device_printf(dev, "FAILURE - unknown IO operation\n");
4066 	request->result = EIO;
4067     }
4068     error = request->result;
4069     ata_free_request(request);
4070     return error;
4071 }
4072 
4073 /*
4074  * module handeling
4075  */
4076 static int
4077 ata_raid_subdisk_probe(device_t dev)
4078 {
4079     device_quiet(dev);
4080     return 0;
4081 }
4082 
4083 static int
4084 ata_raid_subdisk_attach(device_t dev)
4085 {
4086     struct ata_raid_subdisk *ars = device_get_softc(dev);
4087     int volume;
4088 
4089     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4090 	ars->raid[volume] = NULL;
4091 	ars->disk_number[volume] = -1;
4092     }
4093     ata_raid_read_metadata(dev);
4094     return 0;
4095 }
4096 
4097 static int
4098 ata_raid_subdisk_detach(device_t dev)
4099 {
4100     struct ata_raid_subdisk *ars = device_get_softc(dev);
4101     int volume;
4102 
4103     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4104 	if (ars->raid[volume]) {
4105 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4106 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4107 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4108 	    ata_raid_config_changed(ars->raid[volume], 1);
4109 	    ars->raid[volume] = NULL;
4110 	    ars->disk_number[volume] = -1;
4111 	}
4112     }
4113     return 0;
4114 }
4115 
4116 static device_method_t ata_raid_sub_methods[] = {
4117     /* device interface */
4118     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4119     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4120     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4121     { 0, 0 }
4122 };
4123 
4124 static driver_t ata_raid_sub_driver = {
4125     "subdisk",
4126     ata_raid_sub_methods,
4127     sizeof(struct ata_raid_subdisk)
4128 };
4129 
4130 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4131 
4132 static int
4133 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4134 {
4135     int i;
4136 
4137     switch (what) {
4138     case MOD_LOAD:
4139 	if (testing || bootverbose)
4140 	    kprintf("ATA PseudoRAID loaded\n");
4141 #if 0
4142 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4143 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4144 				M_AR, M_WAITOK | M_ZERO);
4145 #endif
4146 	/* attach found PseudoRAID arrays */
4147 	for (i = 0; i < MAX_ARRAYS; i++) {
4148 	    struct ar_softc *rdp = ata_raid_arrays[i];
4149 
4150 	    if (!rdp || !rdp->format)
4151 		continue;
4152 	    if (testing || bootverbose)
4153 		ata_raid_print_meta(rdp);
4154 	    ata_raid_attach(rdp, 0);
4155 	}
4156 	ata_raid_ioctl_func = ata_raid_ioctl;
4157 	return 0;
4158 
4159     case MOD_UNLOAD:
4160 	/* detach found PseudoRAID arrays */
4161 	for (i = 0; i < MAX_ARRAYS; i++) {
4162 	    struct ar_softc *rdp = ata_raid_arrays[i];
4163 
4164 	    if (!rdp || !rdp->status)
4165 		continue;
4166 	    disk_destroy(&rdp->disk);
4167 	}
4168 	if (testing || bootverbose)
4169 	    kprintf("ATA PseudoRAID unloaded\n");
4170 #if 0
4171 	kfree(ata_raid_arrays, M_AR);
4172 #endif
4173 	ata_raid_ioctl_func = NULL;
4174 	return 0;
4175 
4176     default:
4177 	return EOPNOTSUPP;
4178     }
4179 }
4180 
4181 static moduledata_t ata_raid_moduledata =
4182     { "ataraid", ata_raid_module_event_handler, NULL };
4183 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4184 MODULE_VERSION(ataraid, 1);
4185 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4186 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4187 
4188 static char *
4189 ata_raid_format(struct ar_softc *rdp)
4190 {
4191     switch (rdp->format) {
4192     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4193     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4194     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4195     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4196     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4197     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4198     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4199     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4200     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4201     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4202     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4203     case AR_F_SII_RAID:         return "Silicon Image Medley";
4204     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4205     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4206     default:                    return "UNKNOWN";
4207     }
4208 }
4209 
4210 static char *
4211 ata_raid_type(struct ar_softc *rdp)
4212 {
4213     switch (rdp->type) {
4214     case AR_T_JBOD:     return "JBOD";
4215     case AR_T_SPAN:     return "SPAN";
4216     case AR_T_RAID0:    return "RAID0";
4217     case AR_T_RAID1:    return "RAID1";
4218     case AR_T_RAID3:    return "RAID3";
4219     case AR_T_RAID4:    return "RAID4";
4220     case AR_T_RAID5:    return "RAID5";
4221     case AR_T_RAID01:   return "RAID0+1";
4222     default:            return "UNKNOWN";
4223     }
4224 }
4225 
4226 static char *
4227 ata_raid_flags(struct ar_softc *rdp)
4228 {
4229     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4230     case AR_S_READY:                                    return "READY";
4231     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4232     case AR_S_READY | AR_S_REBUILDING:
4233     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4234     default:                                            return "BROKEN";
4235     }
4236 }
4237 
4238 /* debugging gunk */
4239 static void
4240 ata_raid_print_meta(struct ar_softc *raid)
4241 {
4242     int i;
4243 
4244     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4245     kprintf("=================================================\n");
4246     kprintf("format              %s\n", ata_raid_format(raid));
4247     kprintf("type                %s\n", ata_raid_type(raid));
4248     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4249 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4250     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4251     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4252     kprintf("generation          %u\n", raid->generation);
4253     kprintf("total_sectors       %ju\n", raid->total_sectors);
4254     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4255     kprintf("heads               %u\n", raid->heads);
4256     kprintf("sectors             %u\n", raid->sectors);
4257     kprintf("cylinders           %u\n", raid->cylinders);
4258     kprintf("width               %u\n", raid->width);
4259     kprintf("interleave          %u\n", raid->interleave);
4260     kprintf("total_disks         %u\n", raid->total_disks);
4261     for (i = 0; i < raid->total_disks; i++) {
4262 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4263 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4264 	if (raid->disks[i].dev) {
4265 	    kprintf("        ");
4266 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4267 			  raid->disks[i].sectors);
4268 	}
4269     }
4270     kprintf("=================================================\n");
4271 }
4272 
4273 static char *
4274 ata_raid_adaptec_type(int type)
4275 {
4276     static char buffer[16];
4277 
4278     switch (type) {
4279     case ADP_T_RAID0:   return "RAID0";
4280     case ADP_T_RAID1:   return "RAID1";
4281     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4282 			return buffer;
4283     }
4284 }
4285 
4286 static void
4287 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4288 {
4289     int i;
4290 
4291     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4292     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4293     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4294     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4295     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4296     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4297     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4298     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4299     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4300     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4301     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4302     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4303 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4304 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4305     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4306 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4307 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4308 
4309     for (i = 0; i < be16toh(meta->total_configs); i++) {
4310 	kprintf("    %d   total_disks  %u\n", i,
4311 	       be16toh(meta->configs[i].disk_number));
4312 	kprintf("    %d   generation   %u\n", i,
4313 	       be16toh(meta->configs[i].generation));
4314 	kprintf("    %d   magic_0      0x%08x\n", i,
4315 	       be32toh(meta->configs[i].magic_0));
4316 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4317 	kprintf("    %d   type         %s\n", i,
4318 	       ata_raid_adaptec_type(meta->configs[i].type));
4319 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4320 	kprintf("    %d   flags        %d\n", i,
4321 	       be32toh(meta->configs[i].flags));
4322 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4323 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4324 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4325 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4326 	kprintf("    %d   disk_number  %u\n", i,
4327 	       be32toh(meta->configs[i].disk_number));
4328 	kprintf("    %d   dummy_6      0x%08x\n", i,
4329 	       be32toh(meta->configs[i].dummy_6));
4330 	kprintf("    %d   sectors      %u\n", i,
4331 	       be32toh(meta->configs[i].sectors));
4332 	kprintf("    %d   stripe_shift %u\n", i,
4333 	       be16toh(meta->configs[i].stripe_shift));
4334 	kprintf("    %d   dummy_7      0x%08x\n", i,
4335 	       be32toh(meta->configs[i].dummy_7));
4336 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4337 	       be32toh(meta->configs[i].dummy_8[0]),
4338 	       be32toh(meta->configs[i].dummy_8[1]),
4339 	       be32toh(meta->configs[i].dummy_8[2]),
4340 	       be32toh(meta->configs[i].dummy_8[3]));
4341 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4342     }
4343     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4344     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4345     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4346     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4347     kprintf("=================================================\n");
4348 }
4349 
4350 static char *
4351 ata_raid_hptv2_type(int type)
4352 {
4353     static char buffer[16];
4354 
4355     switch (type) {
4356     case HPTV2_T_RAID0:         return "RAID0";
4357     case HPTV2_T_RAID1:         return "RAID1";
4358     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4359     case HPTV2_T_SPAN:          return "SPAN";
4360     case HPTV2_T_RAID_3:        return "RAID3";
4361     case HPTV2_T_RAID_5:        return "RAID5";
4362     case HPTV2_T_JBOD:          return "JBOD";
4363     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4364     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4365 			return buffer;
4366     }
4367 }
4368 
4369 static void
4370 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4371 {
4372     int i;
4373 
4374     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4375     kprintf("magic               0x%08x\n", meta->magic);
4376     kprintf("magic_0             0x%08x\n", meta->magic_0);
4377     kprintf("magic_1             0x%08x\n", meta->magic_1);
4378     kprintf("order               0x%08x\n", meta->order);
4379     kprintf("array_width         %u\n", meta->array_width);
4380     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4381     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4382     kprintf("disk_number         %u\n", meta->disk_number);
4383     kprintf("total_sectors       %u\n", meta->total_sectors);
4384     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4385     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4386     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4387     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4388     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4389     kprintf("log_index           0x%02x\n", meta->error_log_index);
4390     if (meta->error_log_entries) {
4391 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4392 	for (i = meta->error_log_index;
4393 	     i < meta->error_log_index + meta->error_log_entries; i++)
4394 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4395 		   meta->errorlog[i%32].timestamp,
4396 		   meta->errorlog[i%32].reason,
4397 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4398 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4399     }
4400     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4401     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4402     kprintf("name_1              <%.15s>\n", meta->name_1);
4403     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4404     kprintf("name_2              <%.15s>\n", meta->name_2);
4405     kprintf("=================================================\n");
4406 }
4407 
4408 static char *
4409 ata_raid_hptv3_type(int type)
4410 {
4411     static char buffer[16];
4412 
4413     switch (type) {
4414     case HPTV3_T_SPARE: return "SPARE";
4415     case HPTV3_T_JBOD:  return "JBOD";
4416     case HPTV3_T_SPAN:  return "SPAN";
4417     case HPTV3_T_RAID0: return "RAID0";
4418     case HPTV3_T_RAID1: return "RAID1";
4419     case HPTV3_T_RAID3: return "RAID3";
4420     case HPTV3_T_RAID5: return "RAID5";
4421     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4422 			return buffer;
4423     }
4424 }
4425 
4426 static void
4427 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4428 {
4429     int i;
4430 
4431     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4432     kprintf("magic               0x%08x\n", meta->magic);
4433     kprintf("magic_0             0x%08x\n", meta->magic_0);
4434     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4435     kprintf("mode                0x%02x\n", meta->mode);
4436     kprintf("user_mode           0x%02x\n", meta->user_mode);
4437     kprintf("config_entries      0x%02x\n", meta->config_entries);
4438     for (i = 0; i < meta->config_entries; i++) {
4439 	kprintf("config %d:\n", i);
4440 	kprintf("    total_sectors       %ju\n",
4441 	       meta->configs[0].total_sectors +
4442 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4443 	kprintf("    type                %s\n",
4444 	       ata_raid_hptv3_type(meta->configs[i].type));
4445 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4446 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4447 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4448 	kprintf("    status              %b\n", meta->configs[i].status,
4449 	       "\20\2RAID5\1NEED_REBUILD\n");
4450 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4451 	kprintf("    rebuild_lba         %ju\n",
4452 	       meta->configs_high[0].rebuild_lba +
4453 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4454     }
4455     kprintf("name                <%.16s>\n", meta->name);
4456     kprintf("timestamp           0x%08x\n", meta->timestamp);
4457     kprintf("description         <%.16s>\n", meta->description);
4458     kprintf("creator             <%.16s>\n", meta->creator);
4459     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4460     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4461     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4462     kprintf("flags               %b\n", meta->flags,
4463 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4464     kprintf("=================================================\n");
4465 }
4466 
4467 static char *
4468 ata_raid_intel_type(int type)
4469 {
4470     static char buffer[16];
4471 
4472     switch (type) {
4473     case INTEL_T_RAID0: return "RAID0";
4474     case INTEL_T_RAID1: return "RAID1";
4475     case INTEL_T_RAID5: return "RAID5";
4476     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4477 			return buffer;
4478     }
4479 }
4480 
4481 static void
4482 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4483 {
4484     struct intel_raid_mapping *map;
4485     int i, j;
4486 
4487     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4488     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4489     kprintf("version             <%.6s>\n", meta->version);
4490     kprintf("checksum            0x%08x\n", meta->checksum);
4491     kprintf("config_size         0x%08x\n", meta->config_size);
4492     kprintf("config_id           0x%08x\n", meta->config_id);
4493     kprintf("generation          0x%08x\n", meta->generation);
4494     kprintf("total_disks         %u\n", meta->total_disks);
4495     kprintf("total_volumes       %u\n", meta->total_volumes);
4496     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4497     for (i = 0; i < meta->total_disks; i++ ) {
4498 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4499 	       meta->disk[i].serial, meta->disk[i].sectors,
4500 	       meta->disk[i].id, meta->disk[i].flags);
4501     }
4502     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4503     for (j = 0; j < meta->total_volumes; j++) {
4504 	kprintf("name                %.16s\n", map->name);
4505 	kprintf("total_sectors       %ju\n", map->total_sectors);
4506 	kprintf("state               %u\n", map->state);
4507 	kprintf("reserved            %u\n", map->reserved);
4508 	kprintf("offset              %u\n", map->offset);
4509 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4510 	kprintf("stripe_count        %u\n", map->stripe_count);
4511 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4512 	kprintf("status              %u\n", map->status);
4513 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4514 	kprintf("total_disks         %u\n", map->total_disks);
4515 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4516 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4517 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4518 	for (i = 0; i < map->total_disks; i++ ) {
4519 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4520 	}
4521 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4522     }
4523     kprintf("=================================================\n");
4524 }
4525 
4526 static char *
4527 ata_raid_ite_type(int type)
4528 {
4529     static char buffer[16];
4530 
4531     switch (type) {
4532     case ITE_T_RAID0:   return "RAID0";
4533     case ITE_T_RAID1:   return "RAID1";
4534     case ITE_T_RAID01:  return "RAID0+1";
4535     case ITE_T_SPAN:    return "SPAN";
4536     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4537 			return buffer;
4538     }
4539 }
4540 
4541 static void
4542 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4543 {
4544     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4545     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4546     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4547 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4548 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4549 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4550     kprintf("total_sectors       %jd\n", meta->total_sectors);
4551     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4552     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4553     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4554 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4555 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4556 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4557     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4558     kprintf("array_width         %u\n", meta->array_width);
4559     kprintf("disk_number         %u\n", meta->disk_number);
4560     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4561     kprintf("=================================================\n");
4562 }
4563 
4564 static char *
4565 ata_raid_jmicron_type(int type)
4566 {
4567     static char buffer[16];
4568 
4569     switch (type) {
4570     case JM_T_RAID0:	return "RAID0";
4571     case JM_T_RAID1:	return "RAID1";
4572     case JM_T_RAID01:	return "RAID0+1";
4573     case JM_T_JBOD:	return "JBOD";
4574     case JM_T_RAID5:	return "RAID5";
4575     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4576 			return buffer;
4577     }
4578 }
4579 
4580 static void
4581 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4582 {
4583     int i;
4584 
4585     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4586     kprintf("signature           %.2s\n", meta->signature);
4587     kprintf("version             0x%04x\n", meta->version);
4588     kprintf("checksum            0x%04x\n", meta->checksum);
4589     kprintf("disk_id             0x%08x\n", meta->disk_id);
4590     kprintf("offset              0x%08x\n", meta->offset);
4591     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4592     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4593     kprintf("name                %.16s\n", meta->name);
4594     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4595     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4596     kprintf("flags               0x%04x\n", meta->flags);
4597     kprintf("spare:\n");
4598     for (i=0; i < 2 && meta->spare[i]; i++)
4599 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4600     kprintf("disks:\n");
4601     for (i=0; i < 8 && meta->disks[i]; i++)
4602 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4603     kprintf("=================================================\n");
4604 }
4605 
4606 static char *
4607 ata_raid_lsiv2_type(int type)
4608 {
4609     static char buffer[16];
4610 
4611     switch (type) {
4612     case LSIV2_T_RAID0: return "RAID0";
4613     case LSIV2_T_RAID1: return "RAID1";
4614     case LSIV2_T_SPARE: return "SPARE";
4615     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4616 			return buffer;
4617     }
4618 }
4619 
4620 static void
4621 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4622 {
4623     int i;
4624 
4625     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4626     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4627     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4628     kprintf("flags               0x%02x\n", meta->flags);
4629     kprintf("version             0x%04x\n", meta->version);
4630     kprintf("config_entries      0x%02x\n", meta->config_entries);
4631     kprintf("raid_count          0x%02x\n", meta->raid_count);
4632     kprintf("total_disks         0x%02x\n", meta->total_disks);
4633     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4634     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4635     for (i = 0; i < meta->config_entries; i++) {
4636 	kprintf("    type             %s\n",
4637 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4638 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4639 	kprintf("    stripe_sectors   %u\n",
4640 	       meta->configs[i].raid.stripe_sectors);
4641 	kprintf("    array_width      %u\n",
4642 	       meta->configs[i].raid.array_width);
4643 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4644 	kprintf("    config_offset    %u\n",
4645 	       meta->configs[i].raid.config_offset);
4646 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4647 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4648 	kprintf("    total_sectors    %u\n",
4649 	       meta->configs[i].raid.total_sectors);
4650     }
4651     kprintf("disk_number         0x%02x\n", meta->disk_number);
4652     kprintf("raid_number         0x%02x\n", meta->raid_number);
4653     kprintf("timestamp           0x%08x\n", meta->timestamp);
4654     kprintf("=================================================\n");
4655 }
4656 
4657 static char *
4658 ata_raid_lsiv3_type(int type)
4659 {
4660     static char buffer[16];
4661 
4662     switch (type) {
4663     case LSIV3_T_RAID0: return "RAID0";
4664     case LSIV3_T_RAID1: return "RAID1";
4665     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4666 			return buffer;
4667     }
4668 }
4669 
4670 static void
4671 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4672 {
4673     int i;
4674 
4675     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4676     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4677     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4678     kprintf("version             0x%04x\n", meta->version);
4679     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4680     kprintf("RAID configs:\n");
4681     for (i = 0; i < 8; i++) {
4682 	if (meta->raid[i].total_disks) {
4683 	    kprintf("%02d  stripe_pages       %u\n", i,
4684 		   meta->raid[i].stripe_pages);
4685 	    kprintf("%02d  type               %s\n", i,
4686 		   ata_raid_lsiv3_type(meta->raid[i].type));
4687 	    kprintf("%02d  total_disks        %u\n", i,
4688 		   meta->raid[i].total_disks);
4689 	    kprintf("%02d  array_width        %u\n", i,
4690 		   meta->raid[i].array_width);
4691 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4692 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4693 	    kprintf("%02d  device             0x%02x\n", i,
4694 		   meta->raid[i].device);
4695 	}
4696     }
4697     kprintf("DISK configs:\n");
4698     for (i = 0; i < 6; i++) {
4699 	    if (meta->disk[i].disk_sectors) {
4700 	    kprintf("%02d  disk_sectors       %u\n", i,
4701 		   meta->disk[i].disk_sectors);
4702 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4703 	}
4704     }
4705     kprintf("device              0x%02x\n", meta->device);
4706     kprintf("timestamp           0x%08x\n", meta->timestamp);
4707     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4708     kprintf("=================================================\n");
4709 }
4710 
4711 static char *
4712 ata_raid_nvidia_type(int type)
4713 {
4714     static char buffer[16];
4715 
4716     switch (type) {
4717     case NV_T_SPAN:     return "SPAN";
4718     case NV_T_RAID0:    return "RAID0";
4719     case NV_T_RAID1:    return "RAID1";
4720     case NV_T_RAID3:    return "RAID3";
4721     case NV_T_RAID5:    return "RAID5";
4722     case NV_T_RAID01:   return "RAID0+1";
4723     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4724 			return buffer;
4725     }
4726 }
4727 
4728 static void
4729 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4730 {
4731     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4732     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4733     kprintf("config_size         %d\n", meta->config_size);
4734     kprintf("checksum            0x%08x\n", meta->checksum);
4735     kprintf("version             0x%04x\n", meta->version);
4736     kprintf("disk_number         %d\n", meta->disk_number);
4737     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4738     kprintf("total_sectors       %d\n", meta->total_sectors);
4739     kprintf("sectors_size        %d\n", meta->sector_size);
4740     kprintf("serial              %.16s\n", meta->serial);
4741     kprintf("revision            %.4s\n", meta->revision);
4742     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4743     kprintf("magic_0             0x%08x\n", meta->magic_0);
4744     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4745     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4746     kprintf("flags               0x%02x\n", meta->flags);
4747     kprintf("array_width         %d\n", meta->array_width);
4748     kprintf("total_disks         %d\n", meta->total_disks);
4749     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4750     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4751     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4752     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4753     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4754     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4755     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4756     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4757     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4758     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4759     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4760     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4761     kprintf("status              0x%08x\n", meta->status);
4762     kprintf("=================================================\n");
4763 }
4764 
4765 static char *
4766 ata_raid_promise_type(int type)
4767 {
4768     static char buffer[16];
4769 
4770     switch (type) {
4771     case PR_T_RAID0:    return "RAID0";
4772     case PR_T_RAID1:    return "RAID1";
4773     case PR_T_RAID3:    return "RAID3";
4774     case PR_T_RAID5:    return "RAID5";
4775     case PR_T_SPAN:     return "SPAN";
4776     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4777 			return buffer;
4778     }
4779 }
4780 
4781 static void
4782 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4783 {
4784     int i;
4785 
4786     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4787     kprintf("promise_id          <%s>\n", meta->promise_id);
4788     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4789     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4790     kprintf("magic_1             0x%04x\n", meta->magic_1);
4791     kprintf("magic_2             0x%08x\n", meta->magic_2);
4792     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4793 		meta->raid.integrity, "\20\10VALID\n" );
4794     kprintf("flags               0x%02x %b\n",
4795 	   meta->raid.flags, meta->raid.flags,
4796 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4797 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4798     kprintf("disk_number         %d\n", meta->raid.disk_number);
4799     kprintf("channel             0x%02x\n", meta->raid.channel);
4800     kprintf("device              0x%02x\n", meta->raid.device);
4801     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4802     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4803     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4804     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4805     kprintf("generation          0x%04x\n", meta->raid.generation);
4806     kprintf("status              0x%02x %b\n",
4807 	    meta->raid.status, meta->raid.status,
4808 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4809     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4810     kprintf("total_disks         %u\n", meta->raid.total_disks);
4811     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4812     kprintf("array_width         %u\n", meta->raid.array_width);
4813     kprintf("array_number        %u\n", meta->raid.array_number);
4814     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4815     kprintf("cylinders           %u\n", meta->raid.cylinders);
4816     kprintf("heads               %u\n", meta->raid.heads);
4817     kprintf("sectors             %u\n", meta->raid.sectors);
4818     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4819     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4820     for (i = 0; i < 8; i++) {
4821 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4822 	       i, meta->raid.disk[i].flags,
4823 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4824 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4825 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4826 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4827     }
4828     kprintf("checksum            0x%08x\n", meta->checksum);
4829     kprintf("=================================================\n");
4830 }
4831 
4832 static char *
4833 ata_raid_sii_type(int type)
4834 {
4835     static char buffer[16];
4836 
4837     switch (type) {
4838     case SII_T_RAID0:   return "RAID0";
4839     case SII_T_RAID1:   return "RAID1";
4840     case SII_T_RAID01:  return "RAID0+1";
4841     case SII_T_SPARE:   return "SPARE";
4842     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4843 			return buffer;
4844     }
4845 }
4846 
4847 static void
4848 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4849 {
4850     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4851     kprintf("total_sectors       %ju\n", meta->total_sectors);
4852     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4853     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4854     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4855     kprintf("version_minor       0x%04x\n", meta->version_minor);
4856     kprintf("version_major       0x%04x\n", meta->version_major);
4857     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4858 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4859 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4860     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4861     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4862     kprintf("disk_number         %u\n", meta->disk_number);
4863     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4864     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4865     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4866     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4867     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4868     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4869     kprintf("generation          0x%08x\n", meta->generation);
4870     kprintf("status              0x%02x %b\n",
4871 	    meta->status, meta->status,
4872 	   "\20\1READY\n");
4873     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4874     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4875     kprintf("position            %02x\n", meta->position);
4876     kprintf("dummy_3             %04x\n", meta->dummy_3);
4877     kprintf("name                <%.16s>\n", meta->name);
4878     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4879     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4880     kprintf("=================================================\n");
4881 }
4882 
4883 static char *
4884 ata_raid_sis_type(int type)
4885 {
4886     static char buffer[16];
4887 
4888     switch (type) {
4889     case SIS_T_JBOD:    return "JBOD";
4890     case SIS_T_RAID0:   return "RAID0";
4891     case SIS_T_RAID1:   return "RAID1";
4892     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4893 			return buffer;
4894     }
4895 }
4896 
4897 static void
4898 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4899 {
4900     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4901     kprintf("magic               0x%04x\n", meta->magic);
4902     kprintf("disks               0x%02x\n", meta->disks);
4903     kprintf("type                %s\n",
4904 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4905     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4906     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4907     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4908     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4909     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4910     kprintf("timestamp           0x%08x\n", meta->timestamp);
4911     kprintf("model               %.40s\n", meta->model);
4912     kprintf("disk_number         %u\n", meta->disk_number);
4913     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4914 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4915     kprintf("=================================================\n");
4916 }
4917 
4918 static char *
4919 ata_raid_via_type(int type)
4920 {
4921     static char buffer[16];
4922 
4923     switch (type) {
4924     case VIA_T_RAID0:   return "RAID0";
4925     case VIA_T_RAID1:   return "RAID1";
4926     case VIA_T_RAID5:   return "RAID5";
4927     case VIA_T_RAID01:  return "RAID0+1";
4928     case VIA_T_SPAN:    return "SPAN";
4929     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4930 			return buffer;
4931     }
4932 }
4933 
4934 static void
4935 ata_raid_via_print_meta(struct via_raid_conf *meta)
4936 {
4937     int i;
4938 
4939     kprintf("*************** ATA VIA Metadata ****************\n");
4940     kprintf("magic               0x%02x\n", meta->magic);
4941     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4942     kprintf("type                %s\n",
4943 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4944     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4945     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4946     kprintf("disk_index          0x%02x\n", meta->disk_index);
4947     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4948     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4949     kprintf(" stripe_sectors     %d\n",
4950 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
4951     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
4952     kprintf("disk_id             0x%08x\n", meta->disk_id);
4953     kprintf("DISK#   disk_id\n");
4954     for (i = 0; i < 8; i++) {
4955 	if (meta->disks[i])
4956 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
4957     }
4958     kprintf("checksum            0x%02x\n", meta->checksum);
4959     kprintf("=================================================\n");
4960 }
4961