xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision d438c7c2)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.5 2007/02/08 21:48:24 tgen Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     cdev_t cdev;
137     char buffer[32];
138     int disk;
139 
140     spin_init(&rdp->lock);
141     ata_raid_config_changed(rdp, writeback);
142 
143     /* sanitize arrays total_size % (width * interleave) == 0 */
144     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
145 	rdp->type == AR_T_RAID5) {
146 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
147 			     (rdp->interleave * rdp->width);
148 	ksprintf(buffer, " (stripe %d KB)",
149 		(rdp->interleave * DEV_BSIZE) / 1024);
150     }
151     else
152 	buffer[0] = '\0';
153     /* XXX TGEN add devstats? */
154     cdev = disk_create(rdp->lun, &rdp->disk, 0, &ar_ops);
155     cdev->si_drv1 = rdp;
156     cdev->si_iosize_max = 128 * DEV_BSIZE;
157     rdp->cdev = cdev;
158     bzero(&rdp->disk.d_label, sizeof(struct disklabel));
159     rdp->disk.d_label.d_secsize = DEV_BSIZE;
160     rdp->disk.d_label.d_nsectors = rdp->sectors;
161     rdp->disk.d_label.d_ntracks = rdp->heads;
162     rdp->disk.d_label.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
163     rdp->disk.d_label.d_secpercyl = rdp->sectors * rdp->heads;
164     rdp->disk.d_label.d_secperunit = rdp->total_sectors;
165 
166     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
167 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
168 	   ata_raid_format(rdp), ata_raid_type(rdp),
169 	   buffer, ata_raid_flags(rdp));
170 
171     if (testing || bootverbose)
172 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
173 	       rdp->lun, rdp->total_sectors,
174 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
175 
176     for (disk = 0; disk < rdp->total_disks; disk++) {
177 	kprintf("ar%d: disk%d ", rdp->lun, disk);
178 	if (rdp->disks[disk].dev) {
179 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
180 		/* status of this disk in the array */
181 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
182 		    kprintf("READY ");
183 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
184 		    kprintf("SPARE ");
185 		else
186 		    kprintf("FREE  ");
187 
188 		/* what type of disk is this in the array */
189 		switch (rdp->type) {
190 		case AR_T_RAID1:
191 		case AR_T_RAID01:
192 		    if (disk < rdp->width)
193 			kprintf("(master) ");
194 		    else
195 			kprintf("(mirror) ");
196 		}
197 
198 		/* which physical disk is used */
199 		kprintf("using %s at ata%d-%s\n",
200 		       device_get_nameunit(rdp->disks[disk].dev),
201 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
202 		       (((struct ata_device *)
203 			 device_get_softc(rdp->disks[disk].dev))->unit ==
204 			 ATA_MASTER) ? "master" : "slave");
205 	    }
206 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
207 		kprintf("DOWN\n");
208 	    else
209 		kprintf("INVALID no RAID config on this subdisk\n");
210 	}
211 	else
212 	    kprintf("DOWN no device found for this subdisk\n");
213     }
214 }
215 
216 /*
217  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
218  * to the dev_ops way, because it's just chained from the generic ata ioctl.
219  */
220 static int
221 ata_raid_ioctl(u_long cmd, caddr_t data)
222 {
223     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
224     int *lun = (int *)data;
225     int error = EOPNOTSUPP;
226 
227     switch (cmd) {
228     case IOCATARAIDSTATUS:
229 	error = ata_raid_status(config);
230 	break;
231 
232     case IOCATARAIDCREATE:
233 	error = ata_raid_create(config);
234 	break;
235 
236     case IOCATARAIDDELETE:
237 	error = ata_raid_delete(*lun);
238 	break;
239 
240     case IOCATARAIDADDSPARE:
241 	error = ata_raid_addspare(config);
242 	break;
243 
244     case IOCATARAIDREBUILD:
245 	error = ata_raid_rebuild(*lun);
246 	break;
247     }
248     return error;
249 }
250 
251 /*
252  * XXX TGEN there are a lot of offset -> block number conversions going on
253  * here, which is suboptimal.
254  */
255 static int
256 ata_raid_strategy(struct dev_strategy_args *ap)
257 {
258     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
259     struct bio *bp = ap->a_bio;
260     struct buf *bbp = bp->bio_buf;
261     struct ata_request *request;
262     caddr_t data;
263     u_int64_t blkno, lba, blk = 0;
264     int count, chunk, drv, par = 0, change = 0;
265 
266     if (!(rdp->status & AR_S_READY) ||
267 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
268 	bbp->b_flags |= B_ERROR;
269 	bbp->b_error = EIO;
270 	biodone(bp);
271 	return(0);
272     }
273 
274     bbp->b_resid = bbp->b_bcount;
275     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
276 	 /* bio_offset is byte granularity, convert */
277 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
278 	 data = bbp->b_data;
279 	 count > 0;
280 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
281 
282 	switch (rdp->type) {
283 	case AR_T_RAID1:
284 	    drv = 0;
285 	    lba = blkno;
286 	    chunk = count;
287 	    break;
288 
289 	case AR_T_JBOD:
290 	case AR_T_SPAN:
291 	    drv = 0;
292 	    lba = blkno;
293 	    while (lba >= rdp->disks[drv].sectors)
294 		lba -= rdp->disks[drv++].sectors;
295 	    chunk = min(rdp->disks[drv].sectors - lba, count);
296 	    break;
297 
298 	case AR_T_RAID0:
299 	case AR_T_RAID01:
300 	    chunk = blkno % rdp->interleave;
301 	    drv = (blkno / rdp->interleave) % rdp->width;
302 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
303 	    chunk = min(count, rdp->interleave - chunk);
304 	    break;
305 
306 	case AR_T_RAID5:
307 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
308 	    par = rdp->width - 1 -
309 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
310 	    if (drv >= par)
311 		drv++;
312 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
313 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
314 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
315 	    break;
316 
317 	default:
318 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
319 	    bbp->b_flags |= B_ERROR;
320 	    bbp->b_error = EIO;
321 	    biodone(bp);
322 	    return(0);
323 	}
324 
325 	/* offset on all but "first on HPTv2" */
326 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
327 	    lba += rdp->offset_sectors;
328 
329 	if (!(request = ata_raid_init_request(rdp, bp))) {
330 	    bbp->b_flags |= B_ERROR;
331 	    bbp->b_error = EIO;
332 	    biodone(bp);
333 	    return(0);
334 	}
335 	request->data = data;
336 	request->bytecount = chunk * DEV_BSIZE;
337 	request->u.ata.lba = lba;
338 	request->u.ata.count = request->bytecount / DEV_BSIZE;
339 
340 	switch (rdp->type) {
341 	case AR_T_JBOD:
342 	case AR_T_SPAN:
343 	case AR_T_RAID0:
344 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
345 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
346 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
347 		ata_raid_config_changed(rdp, 1);
348 		ata_free_request(request);
349 		bbp->b_flags |= B_ERROR;
350 		bbp->b_error = EIO;
351 		biodone(bp);
352 		return(0);
353 	    }
354 	    request->this = drv;
355 	    request->dev = rdp->disks[request->this].dev;
356 	    ata_raid_send_request(request);
357 	    break;
358 
359 	case AR_T_RAID1:
360 	case AR_T_RAID01:
361 	    if ((rdp->disks[drv].flags &
362 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
363 		!rdp->disks[drv].dev) {
364 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
365 		change = 1;
366 	    }
367 	    if ((rdp->disks[drv + rdp->width].flags &
368 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
369 		!rdp->disks[drv + rdp->width].dev) {
370 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
371 		change = 1;
372 	    }
373 	    if (change)
374 		ata_raid_config_changed(rdp, 1);
375 	    if (!(rdp->status & AR_S_READY)) {
376 		ata_free_request(request);
377 		bbp->b_flags |= B_ERROR;
378 		bbp->b_error = EIO;
379 		biodone(bp);
380 		return(0);
381 	    }
382 
383 	    if (rdp->status & AR_S_REBUILDING)
384 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
385 		      (rdp->interleave * (drv % rdp->width)) +
386 		      lba % rdp->interleave;;
387 
388 	    if (bbp->b_cmd == BUF_CMD_READ) {
389 		int src_online =
390 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
391 		int mir_online =
392 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
393 
394 		/* if mirror gone or close to last access on source */
395 		if (!mir_online ||
396 		    ((src_online) &&
397 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
398 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
399 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
400 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
401 		    rdp->toggle = 0;
402 		}
403 		/* if source gone or close to last access on mirror */
404 		else if (!src_online ||
405 			 ((mir_online) &&
406 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
407 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
408 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
409 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
410 		    drv += rdp->width;
411 		    rdp->toggle = 1;
412 		}
413 		/* not close to any previous access, toggle */
414 		else {
415 		    if (rdp->toggle)
416 			rdp->toggle = 0;
417 		    else {
418 			drv += rdp->width;
419 			rdp->toggle = 1;
420 		    }
421 		}
422 
423 		if ((rdp->status & AR_S_REBUILDING) &&
424 		    (blk <= rdp->rebuild_lba) &&
425 		    ((blk + chunk) > rdp->rebuild_lba)) {
426 		    struct ata_composite *composite;
427 		    struct ata_request *rebuild;
428 		    int this;
429 
430 		    /* figure out what part to rebuild */
431 		    if (drv < rdp->width)
432 			this = drv + rdp->width;
433 		    else
434 			this = drv - rdp->width;
435 
436 		    /* do we have a spare to rebuild on ? */
437 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
438 			if ((composite = ata_alloc_composite())) {
439 			    if ((rebuild = ata_alloc_request())) {
440 				rdp->rebuild_lba = blk + chunk;
441 				bcopy(request, rebuild,
442 				      sizeof(struct ata_request));
443 				rebuild->this = this;
444 				rebuild->dev = rdp->disks[this].dev;
445 				rebuild->flags &= ~ATA_R_READ;
446 				rebuild->flags |= ATA_R_WRITE;
447 				spin_init(&composite->lock);
448 				composite->residual = request->bytecount;
449 				composite->rd_needed |= (1 << drv);
450 				composite->wr_depend |= (1 << drv);
451 				composite->wr_needed |= (1 << this);
452 				composite->request[drv] = request;
453 				composite->request[this] = rebuild;
454 				request->composite = composite;
455 				rebuild->composite = composite;
456 				ata_raid_send_request(rebuild);
457 			    }
458 			    else {
459 				ata_free_composite(composite);
460 				kprintf("DOH! ata_alloc_request failed!\n");
461 			    }
462 			}
463 			else {
464 			    kprintf("DOH! ata_alloc_composite failed!\n");
465 			}
466 		    }
467 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
468 			/*
469 			 * if we got here we are a chunk of a RAID01 that
470 			 * does not need a rebuild, but we need to increment
471 			 * the rebuild_lba address to get the rebuild to
472 			 * move to the next chunk correctly
473 			 */
474 			rdp->rebuild_lba = blk + chunk;
475 		    }
476 		    else
477 			kprintf("DOH! we didn't find the rebuild part\n");
478 		}
479 	    }
480 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
481 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
482 		    ((rdp->status & AR_S_REBUILDING) &&
483 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
484 		     ((blk < rdp->rebuild_lba) ||
485 		      ((blk <= rdp->rebuild_lba) &&
486 		       ((blk + chunk) > rdp->rebuild_lba))))) {
487 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
488 			((rdp->status & AR_S_REBUILDING) &&
489 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
490 			 ((blk < rdp->rebuild_lba) ||
491 			  ((blk <= rdp->rebuild_lba) &&
492 			   ((blk + chunk) > rdp->rebuild_lba))))) {
493 			struct ata_request *mirror;
494 			struct ata_composite *composite;
495 			int this = drv + rdp->width;
496 
497 			if ((composite = ata_alloc_composite())) {
498 			    if ((mirror = ata_alloc_request())) {
499 				if ((blk <= rdp->rebuild_lba) &&
500 				    ((blk + chunk) > rdp->rebuild_lba))
501 				    rdp->rebuild_lba = blk + chunk;
502 				bcopy(request, mirror,
503 				      sizeof(struct ata_request));
504 				mirror->this = this;
505 				mirror->dev = rdp->disks[this].dev;
506 				spin_init(&composite->lock);
507 				composite->residual = request->bytecount;
508 				composite->wr_needed |= (1 << drv);
509 				composite->wr_needed |= (1 << this);
510 				composite->request[drv] = request;
511 				composite->request[this] = mirror;
512 				request->composite = composite;
513 				mirror->composite = composite;
514 				ata_raid_send_request(mirror);
515 				rdp->disks[this].last_lba =
516 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
517 				    chunk;
518 			    }
519 			    else {
520 				ata_free_composite(composite);
521 				kprintf("DOH! ata_alloc_request failed!\n");
522 			    }
523 			}
524 			else {
525 			    kprintf("DOH! ata_alloc_composite failed!\n");
526 			}
527 		    }
528 		    else
529 			drv += rdp->width;
530 		}
531 	    }
532 	    request->this = drv;
533 	    request->dev = rdp->disks[request->this].dev;
534 	    ata_raid_send_request(request);
535 	    rdp->disks[request->this].last_lba =
536 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSIZE) + chunk;
537 	    break;
538 
539 	case AR_T_RAID5:
540 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
541 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
542 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
543 		change = 1;
544 	    }
545 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
546 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
547 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
548 		change = 1;
549 	    }
550 	    if (change)
551 		ata_raid_config_changed(rdp, 1);
552 	    if (!(rdp->status & AR_S_READY)) {
553 		ata_free_request(request);
554 		bbp->b_flags |= B_ERROR;
555 		bbp->b_error = EIO;
556 		biodone(bp);
557 		return(0);
558 	    }
559 	    if (rdp->status & AR_S_DEGRADED) {
560 		/* do the XOR game if possible */
561 	    }
562 	    else {
563 		request->this = drv;
564 		request->dev = rdp->disks[request->this].dev;
565 		if (bbp->b_cmd == BUF_CMD_READ) {
566 		    ata_raid_send_request(request);
567 		}
568 		if (bbp->b_cmd == BUF_CMD_WRITE) {
569 		    ata_raid_send_request(request);
570 		    /* XXX TGEN no, I don't speak Danish either */
571 		    /*
572 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
573 		     * par kopi af request
574 		     * l�se orgdata fra drv
575 		     * skriv nydata til drv
576 		     * l�se parorgdata fra par
577 		     * skriv orgdata xor parorgdata xor nydata til par
578 		     */
579 		}
580 	    }
581 	    break;
582 
583 	default:
584 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
585 	}
586     }
587 
588     return(0);
589 }
590 
591 static void
592 ata_raid_done(struct ata_request *request)
593 {
594     struct ar_softc *rdp = request->driver;
595     struct ata_composite *composite = NULL;
596     struct bio *bp = request->bio;
597     struct buf *bbp = bp->bio_buf;
598     int i, mirror, finished = 0;
599 
600     switch (rdp->type) {
601     case AR_T_JBOD:
602     case AR_T_SPAN:
603     case AR_T_RAID0:
604 	if (request->result) {
605 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
606 	    ata_raid_config_changed(rdp, 1);
607 	    bbp->b_error = request->result;
608 	    finished = 1;
609 	}
610 	else {
611 	    bbp->b_resid -= request->donecount;
612 	    if (!bbp->b_resid)
613 		finished = 1;
614 	}
615 	break;
616 
617     case AR_T_RAID1:
618     case AR_T_RAID01:
619 	if (request->this < rdp->width)
620 	    mirror = request->this + rdp->width;
621 	else
622 	    mirror = request->this - rdp->width;
623 	if (request->result) {
624 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
625 	    ata_raid_config_changed(rdp, 1);
626 	}
627 	if (rdp->status & AR_S_READY) {
628 	    u_int64_t blk = 0;
629 
630 	    if (rdp->status & AR_S_REBUILDING)
631 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
632 		      rdp->interleave + (rdp->interleave *
633 		      (request->this % rdp->width)) +
634 		      request->u.ata.lba % rdp->interleave;
635 
636 	    if (bbp->b_cmd == BUF_CMD_READ) {
637 
638 		/* is this a rebuild composite */
639 		if ((composite = request->composite)) {
640 		    spin_lock_wr(&composite->lock);
641 
642 		    /* handle the read part of a rebuild composite */
643 		    if (request->flags & ATA_R_READ) {
644 
645 			/* if read failed array is now broken */
646 			if (request->result) {
647 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
648 			    ata_raid_config_changed(rdp, 1);
649 			    bbp->b_error = request->result;
650 			    rdp->rebuild_lba = blk;
651 			    finished = 1;
652 			}
653 
654 			/* good data, update how far we've gotten */
655 			else {
656 			    bbp->b_resid -= request->donecount;
657 			    composite->residual -= request->donecount;
658 			    if (!composite->residual) {
659 				if (composite->wr_done & (1 << mirror))
660 				    finished = 1;
661 			    }
662 			}
663 		    }
664 
665 		    /* handle the write part of a rebuild composite */
666 		    else if (request->flags & ATA_R_WRITE) {
667 			if (composite->rd_done & (1 << mirror)) {
668 			    if (request->result) {
669 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
670 				rdp->rebuild_lba = blk;
671 			    }
672 			    if (!composite->residual)
673 				finished = 1;
674 			}
675 		    }
676 		    spin_unlock_wr(&composite->lock);
677 		}
678 
679 		/* if read failed retry on the mirror */
680 		else if (request->result) {
681 		    request->dev = rdp->disks[mirror].dev;
682 		    request->flags &= ~ATA_R_TIMEOUT;
683 		    ata_raid_send_request(request);
684 		    return;
685 		}
686 
687 		/* we have good data */
688 		else {
689 		    bbp->b_resid -= request->donecount;
690 		    if (!bbp->b_resid)
691 			finished = 1;
692 		}
693 	    }
694 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
695 		/* do we have a mirror or rebuild to deal with ? */
696 		if ((composite = request->composite)) {
697 		    spin_lock_wr(&composite->lock);
698 		    if (composite->wr_done & (1 << mirror)) {
699 			if (request->result) {
700 			    if (composite->request[mirror]->result) {
701 				kprintf("DOH! all disks failed and got here\n");
702 				bbp->b_error = EIO;
703 			    }
704 			    if (rdp->status & AR_S_REBUILDING) {
705 				rdp->rebuild_lba = blk;
706 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
707 			    }
708 			    bbp->b_resid -=
709 				composite->request[mirror]->donecount;
710 			    composite->residual -=
711 				composite->request[mirror]->donecount;
712 			}
713 			else {
714 			    bbp->b_resid -= request->donecount;
715 			    composite->residual -= request->donecount;
716 			}
717 			if (!composite->residual)
718 			    finished = 1;
719 		    }
720 		    spin_unlock_wr(&composite->lock);
721 		}
722 		/* no mirror we are done */
723 		else {
724 		    bbp->b_resid -= request->donecount;
725 		    if (!bbp->b_resid)
726 			finished = 1;
727 		}
728 	    }
729 	}
730 	else {
731 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
732 	    bbp->b_error = request->result;
733 	    biodone(bp);
734 	}
735 	break;
736 
737     case AR_T_RAID5:
738 	if (request->result) {
739 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
740 	    ata_raid_config_changed(rdp, 1);
741 	    if (rdp->status & AR_S_READY) {
742 		if (bbp->b_cmd == BUF_CMD_READ) {
743 		    /* do the XOR game to recover data */
744 		}
745 		if (bbp->b_cmd == BUF_CMD_WRITE) {
746 		    /* if the parity failed we're OK sortof */
747 		    /* otherwise wee need to do the XOR long dance */
748 		}
749 		finished = 1;
750 	    }
751 	    else {
752 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
753 		bbp->b_error = request->result;
754 		biodone(bp);
755 	    }
756 	}
757 	else {
758 	    /* did we have an XOR game going ?? */
759 	    bbp->b_resid -= request->donecount;
760 	    if (!bbp->b_resid)
761 		finished = 1;
762 	}
763 	break;
764 
765     default:
766 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
767     }
768 
769     if (finished) {
770 	if ((rdp->status & AR_S_REBUILDING) &&
771 	    rdp->rebuild_lba >= rdp->total_sectors) {
772 	    int disk;
773 
774 	    for (disk = 0; disk < rdp->total_disks; disk++) {
775 		if ((rdp->disks[disk].flags &
776 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
777 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
778 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
779 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
780 		}
781 	    }
782 	    rdp->status &= ~AR_S_REBUILDING;
783 	    ata_raid_config_changed(rdp, 1);
784 	}
785 	if (!bbp->b_resid)
786 	    biodone(bp);
787     }
788 
789     if (composite) {
790 	if (finished) {
791 	    /* we are done with this composite, free all resources */
792 	    for (i = 0; i < 32; i++) {
793 		if (composite->rd_needed & (1 << i) ||
794 		    composite->wr_needed & (1 << i)) {
795 		    ata_free_request(composite->request[i]);
796 		}
797 	    }
798 	    spin_uninit(&composite->lock);
799 	    ata_free_composite(composite);
800 	}
801     }
802     else
803 	ata_free_request(request);
804 }
805 
806 static int
807 ata_raid_dump(struct dev_dump_args *ap)
808 {
809     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
810     struct buf dbuf;
811     vm_paddr_t addr = 0;
812     long blkcnt;
813     int dumppages = MAXDUMPPGS;
814     int error = 0;
815     int i, disk;
816 
817     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
818 
819     while (ap->a_count > 0) {
820 	caddr_t va = NULL;
821 
822 	if ((ap->a_count / blkcnt) < dumppages)
823 	    dumppages = ap->a_count / blkcnt;
824 
825 	for (i = 0; i < dumppages; ++i) {
826 	    vm_paddr_t a = addr + (i * PAGE_SIZE);
827 	    if (is_physical_memory(a))
828 		va = pmap_kenter_temporary(trunc_page(a), i);
829 	    else
830 		va = pmap_kenter_temporary(trunc_page(0), i);
831 	}
832 
833 	bzero(&dbuf, sizeof(struct buf));
834 	BUF_LOCKINIT(&dbuf);
835 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
836 	initbufbio(&dbuf);
837 	/* bio_offset is byte granularity, convert block granularity a_blkno */
838 	dbuf.b_bio1.bio_offset = (off_t)(ap->a_blkno << DEV_BSHIFT);
839 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
840 	dbuf.b_bcount = dumppages * PAGE_SIZE;
841 	dbuf.b_data = va;
842 	dbuf.b_cmd = BUF_CMD_WRITE;
843 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
844 	/* wait for completion, unlock the buffer, check status */
845 	if (biowait(&dbuf)) {
846 	    BUF_UNLOCK(&dbuf);
847 	    return(dbuf.b_error ? dbuf.b_error : EIO);
848 	}
849 	BUF_UNLOCK(&dbuf);
850 
851 	if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
852 	    return(EINTR);
853 
854 	ap->a_blkno += blkcnt * dumppages;
855 	ap->a_count -= blkcnt * dumppages;
856 	addr += PAGE_SIZE * dumppages;
857     }
858 
859     /* flush subdisk buffers to media */
860     for (disk = 0; disk < rdp->total_disks; disk++)
861 	if (rdp->disks[disk].dev)
862 	    error |= ata_controlcmd(rdp->disks[disk].dev, ATA_FLUSHCACHE, 0, 0,
863 				    0);
864     return (error ? EIO : 0);
865 }
866 
867 static void
868 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
869 {
870     int disk, count, status;
871 
872     spin_lock_wr(&rdp->lock);
873     /* set default all working mode */
874     status = rdp->status;
875     rdp->status &= ~AR_S_DEGRADED;
876     rdp->status |= AR_S_READY;
877 
878     /* make sure all lost drives are accounted for */
879     for (disk = 0; disk < rdp->total_disks; disk++) {
880 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
881 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
882     }
883 
884     /* depending on RAID type figure out our health status */
885     switch (rdp->type) {
886     case AR_T_JBOD:
887     case AR_T_SPAN:
888     case AR_T_RAID0:
889 	for (disk = 0; disk < rdp->total_disks; disk++)
890 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
891 		rdp->status &= ~AR_S_READY;
892 	break;
893 
894     case AR_T_RAID1:
895     case AR_T_RAID01:
896 	for (disk = 0; disk < rdp->width; disk++) {
897 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
898 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
899 		rdp->status &= ~AR_S_READY;
900 	    }
901 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
902 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
903 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
904 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
905 		rdp->status |= AR_S_DEGRADED;
906 	    }
907 	}
908 	break;
909 
910     case AR_T_RAID5:
911 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
912 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
913 		count++;
914 	}
915 	if (count) {
916 	    if (count > 1)
917 		rdp->status &= ~AR_S_READY;
918 	    else
919 		rdp->status |= AR_S_DEGRADED;
920 	}
921 	break;
922     default:
923 	rdp->status &= ~AR_S_READY;
924     }
925 
926     if (rdp->status != status) {
927 	if (!(rdp->status & AR_S_READY)) {
928 	    kprintf("ar%d: FAILURE - %s array broken\n",
929 		   rdp->lun, ata_raid_type(rdp));
930 	}
931 	else if (rdp->status & AR_S_DEGRADED) {
932 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
933 		kprintf("ar%d: WARNING - mirror", rdp->lun);
934 	    else
935 		kprintf("ar%d: WARNING - parity", rdp->lun);
936 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
937 		   ata_raid_type(rdp));
938 	}
939     }
940     spin_unlock_wr(&rdp->lock);
941     if (writeback)
942 	ata_raid_write_metadata(rdp);
943 
944 }
945 
946 static int
947 ata_raid_status(struct ata_ioc_raid_config *config)
948 {
949     struct ar_softc *rdp;
950     int i;
951 
952     if (!(rdp = ata_raid_arrays[config->lun]))
953 	return ENXIO;
954 
955     config->type = rdp->type;
956     config->total_disks = rdp->total_disks;
957     for (i = 0; i < rdp->total_disks; i++ ) {
958 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
959 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
960 	else
961 	    config->disks[i] = -1;
962     }
963     config->interleave = rdp->interleave;
964     config->status = rdp->status;
965     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
966     return 0;
967 }
968 
969 static int
970 ata_raid_create(struct ata_ioc_raid_config *config)
971 {
972     struct ar_softc *rdp;
973     device_t subdisk;
974     int array, disk;
975     int ctlr = 0, disk_size = 0, total_disks = 0;
976 
977     for (array = 0; array < MAX_ARRAYS; array++) {
978 	if (!ata_raid_arrays[array])
979 	    break;
980     }
981     if (array >= MAX_ARRAYS)
982 	return ENOSPC;
983 
984     if (!(rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
985 					 M_WAITOK | M_ZERO))) {
986 	kprintf("ar%d: no memory for metadata storage\n", array);
987 	return ENOMEM;
988     }
989 
990     for (disk = 0; disk < config->total_disks; disk++) {
991 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
992 					   config->disks[disk]))) {
993 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
994 
995 	    /* is device already assigned to another array ? */
996 	    if (ars->raid[rdp->volume]) {
997 		config->disks[disk] = -1;
998 		kfree(rdp, M_AR);
999 		return EBUSY;
1000 	    }
1001 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1002 
1003 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1004 	    case ATA_HIGHPOINT_ID:
1005 		/*
1006 		 * we need some way to decide if it should be v2 or v3
1007 		 * for now just use v2 since the v3 BIOS knows how to
1008 		 * handle that as well.
1009 		 */
1010 		ctlr = AR_F_HPTV2_RAID;
1011 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1012 		break;
1013 
1014 	    case ATA_INTEL_ID:
1015 		ctlr = AR_F_INTEL_RAID;
1016 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1017 		break;
1018 
1019 	    case ATA_ITE_ID:
1020 		ctlr = AR_F_ITE_RAID;
1021 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1022 		break;
1023 
1024 	    case ATA_JMICRON_ID:
1025 		ctlr = AR_F_JMICRON_RAID;
1026 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1027 		break;
1028 
1029 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1030 	    case ATA_PROMISE_ID:
1031 		ctlr = AR_F_PROMISE_RAID;
1032 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1033 		break;
1034 
1035 	    case ATA_SIS_ID:
1036 		ctlr = AR_F_SIS_RAID;
1037 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1038 		break;
1039 
1040 	    case ATA_ATI_ID:
1041 	    case ATA_VIA_ID:
1042 		ctlr = AR_F_VIA_RAID;
1043 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1044 		break;
1045 
1046 	    default:
1047 		/* XXX SOS
1048 		 * right, so here we are, we have an ATA chip and we want
1049 		 * to create a RAID and store the metadata.
1050 		 * we need to find a way to tell what kind of metadata this
1051 		 * hardware's BIOS might be using (good ideas are welcomed)
1052 		 * for now we just use our own native FreeBSD format.
1053 		 * the only way to get support for the BIOS format is to
1054 		 * setup the RAID from there, in that case we pickup the
1055 		 * metadata format from the disks (if we support it).
1056 		 */
1057 		kprintf("WARNING!! - not able to determine metadata format\n"
1058 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1059 		       "If that is not what you want, use the BIOS to "
1060 		       "create the array\n");
1061 		ctlr = AR_F_FREEBSD_RAID;
1062 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1063 		break;
1064 	    }
1065 
1066 	    /* we need all disks to be of the same format */
1067 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1068 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1069 		kfree(rdp, M_AR);
1070 		return EXDEV;
1071 	    }
1072 	    else
1073 		rdp->format = ctlr;
1074 
1075 	    /* use the smallest disk of the lots size */
1076 	    /* gigabyte boundry ??? XXX SOS */
1077 	    if (disk_size)
1078 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1079 	    else
1080 		disk_size = rdp->disks[disk].sectors;
1081 	    rdp->disks[disk].flags =
1082 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1083 
1084 	    total_disks++;
1085 	}
1086 	else {
1087 	    config->disks[disk] = -1;
1088 	    kfree(rdp, M_AR);
1089 	    return ENXIO;
1090 	}
1091     }
1092 
1093     if (total_disks != config->total_disks) {
1094 	kfree(rdp, M_AR);
1095 	return ENODEV;
1096     }
1097 
1098     switch (config->type) {
1099     case AR_T_JBOD:
1100     case AR_T_SPAN:
1101     case AR_T_RAID0:
1102 	break;
1103 
1104     case AR_T_RAID1:
1105 	if (total_disks != 2) {
1106 	    kfree(rdp, M_AR);
1107 	    return EPERM;
1108 	}
1109 	break;
1110 
1111     case AR_T_RAID01:
1112 	if (total_disks % 2 != 0) {
1113 	    kfree(rdp, M_AR);
1114 	    return EPERM;
1115 	}
1116 	break;
1117 
1118     case AR_T_RAID5:
1119 	if (total_disks < 3) {
1120 	    kfree(rdp, M_AR);
1121 	    return EPERM;
1122 	}
1123 	break;
1124 
1125     default:
1126 	kfree(rdp, M_AR);
1127 	return EOPNOTSUPP;
1128     }
1129     rdp->type = config->type;
1130     rdp->lun = array;
1131     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1132 	rdp->type == AR_T_RAID5) {
1133 	int bit = 0;
1134 
1135 	while (config->interleave >>= 1)
1136 	    bit++;
1137 	rdp->interleave = 1 << bit;
1138     }
1139     rdp->offset_sectors = 0;
1140 
1141     /* values that depend on metadata format */
1142     switch (rdp->format) {
1143     case AR_F_ADAPTEC_RAID:
1144 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1145 	break;
1146 
1147     case AR_F_HPTV2_RAID:
1148 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1149 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1150 	break;
1151 
1152     case AR_F_HPTV3_RAID:
1153 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1154 	break;
1155 
1156     case AR_F_INTEL_RAID:
1157 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1158 	break;
1159 
1160     case AR_F_ITE_RAID:
1161 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1162 	break;
1163 
1164     case AR_F_JMICRON_RAID:
1165 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1166 	break;
1167 
1168     case AR_F_LSIV2_RAID:
1169 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1170 	break;
1171 
1172     case AR_F_LSIV3_RAID:
1173 	rdp->interleave = min(max(2, rdp->interleave), 256);
1174 	break;
1175 
1176     case AR_F_PROMISE_RAID:
1177 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1178 	break;
1179 
1180     case AR_F_SII_RAID:
1181 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1182 	break;
1183 
1184     case AR_F_SIS_RAID:
1185 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1186 	break;
1187 
1188     case AR_F_VIA_RAID:
1189 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1190 	break;
1191     }
1192 
1193     rdp->total_disks = total_disks;
1194     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1195     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1196     rdp->heads = 255;
1197     rdp->sectors = 63;
1198     rdp->cylinders = rdp->total_sectors / (255 * 63);
1199     rdp->rebuild_lba = 0;
1200     rdp->status |= AR_S_READY;
1201 
1202     /* we are committed to this array, grap the subdisks */
1203     for (disk = 0; disk < config->total_disks; disk++) {
1204 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1205 					   config->disks[disk]))) {
1206 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1207 
1208 	    ars->raid[rdp->volume] = rdp;
1209 	    ars->disk_number[rdp->volume] = disk;
1210 	}
1211     }
1212     ata_raid_attach(rdp, 1);
1213     ata_raid_arrays[array] = rdp;
1214     config->lun = array;
1215     return 0;
1216 }
1217 
1218 static int
1219 ata_raid_delete(int array)
1220 {
1221     struct ar_softc *rdp;
1222     device_t subdisk;
1223     int disk;
1224 
1225     if (!(rdp = ata_raid_arrays[array]))
1226 	return ENXIO;
1227 
1228     rdp->status &= ~AR_S_READY;
1229     disk_destroy(&rdp->disk);
1230 
1231     for (disk = 0; disk < rdp->total_disks; disk++) {
1232 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1233 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1234 		     device_get_unit(rdp->disks[disk].dev)))) {
1235 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1236 
1237 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1238 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1239 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1240 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1241 		ars->raid[rdp->volume] = NULL;
1242 		ars->disk_number[rdp->volume] = -1;
1243 	    }
1244 	    rdp->disks[disk].flags = 0;
1245 	}
1246     }
1247     ata_raid_wipe_metadata(rdp);
1248     ata_raid_arrays[array] = NULL;
1249     kfree(rdp, M_AR);
1250     return 0;
1251 }
1252 
1253 static int
1254 ata_raid_addspare(struct ata_ioc_raid_config *config)
1255 {
1256     struct ar_softc *rdp;
1257     device_t subdisk;
1258     int disk;
1259 
1260     if (!(rdp = ata_raid_arrays[config->lun]))
1261 	return ENXIO;
1262     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1263 	return ENXIO;
1264     if (rdp->status & AR_S_REBUILDING)
1265 	return EBUSY;
1266     switch (rdp->type) {
1267     case AR_T_RAID1:
1268     case AR_T_RAID01:
1269     case AR_T_RAID5:
1270 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1271 
1272 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1273 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1274 		continue;
1275 
1276 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1277 					       config->disks[0] ))) {
1278 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1279 
1280 		if (ars->raid[rdp->volume])
1281 		    return EBUSY;
1282 
1283 		/* XXX SOS validate size etc etc */
1284 		ars->raid[rdp->volume] = rdp;
1285 		ars->disk_number[rdp->volume] = disk;
1286 		rdp->disks[disk].dev = device_get_parent(subdisk);
1287 		rdp->disks[disk].flags =
1288 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1289 
1290 		device_printf(rdp->disks[disk].dev,
1291 			      "inserted into ar%d disk%d as spare\n",
1292 			      rdp->lun, disk);
1293 		ata_raid_config_changed(rdp, 1);
1294 		return 0;
1295 	    }
1296 	}
1297 	return ENXIO;
1298 
1299     default:
1300 	return EPERM;
1301     }
1302 }
1303 
1304 static int
1305 ata_raid_rebuild(int array)
1306 {
1307     struct ar_softc *rdp;
1308     int disk, count;
1309 
1310     if (!(rdp = ata_raid_arrays[array]))
1311 	return ENXIO;
1312     /* XXX SOS we should lock the rdp softc here */
1313     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1314 	return ENXIO;
1315     if (rdp->status & AR_S_REBUILDING)
1316 	return EBUSY;
1317 
1318     switch (rdp->type) {
1319     case AR_T_RAID1:
1320     case AR_T_RAID01:
1321     case AR_T_RAID5:
1322 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1323 	    if (((rdp->disks[disk].flags &
1324 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1325 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1326 		rdp->disks[disk].dev) {
1327 		count++;
1328 	    }
1329 	}
1330 
1331 	if (count) {
1332 	    rdp->rebuild_lba = 0;
1333 	    rdp->status |= AR_S_REBUILDING;
1334 	    return 0;
1335 	}
1336 	return EIO;
1337 
1338     default:
1339 	return EPERM;
1340     }
1341 }
1342 
1343 static int
1344 ata_raid_read_metadata(device_t subdisk)
1345 {
1346     devclass_t pci_devclass = devclass_find("pci");
1347     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1348 
1349     /* prioritize vendor native metadata layout if possible */
1350     if (devclass == pci_devclass) {
1351 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1352 	case ATA_HIGHPOINT_ID:
1353 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1354 		return 0;
1355 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1356 		return 0;
1357 	    break;
1358 
1359 	case ATA_INTEL_ID:
1360 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1361 		return 0;
1362 	    break;
1363 
1364 	case ATA_ITE_ID:
1365 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1366 		return 0;
1367 	    break;
1368 
1369 	case ATA_JMICRON_ID:
1370 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1371 		return 0;
1372 	    break;
1373 
1374 	case ATA_NVIDIA_ID:
1375 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1376 		return 0;
1377 	    break;
1378 
1379 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1380 	case ATA_PROMISE_ID:
1381 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1382 		return 0;
1383 	    break;
1384 
1385 	case ATA_ATI_ID:
1386 	case ATA_SILICON_IMAGE_ID:
1387 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1388 		return 0;
1389 	    break;
1390 
1391 	case ATA_SIS_ID:
1392 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1393 		return 0;
1394 	    break;
1395 
1396 	case ATA_VIA_ID:
1397 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1398 		return 0;
1399 	    break;
1400 	}
1401     }
1402 
1403     /* handle controllers that have multiple layout possibilities */
1404     /* NOTE: the order of these are not insignificant */
1405 
1406     /* Adaptec HostRAID */
1407     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1408 	return 0;
1409 
1410     /* LSILogic v3 and v2 */
1411     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1412 	return 0;
1413     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1414 	return 0;
1415 
1416     /* if none of the above matched, try FreeBSD native format */
1417     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1418 }
1419 
1420 static int
1421 ata_raid_write_metadata(struct ar_softc *rdp)
1422 {
1423     switch (rdp->format) {
1424     case AR_F_FREEBSD_RAID:
1425     case AR_F_PROMISE_RAID:
1426 	return ata_raid_promise_write_meta(rdp);
1427 
1428     case AR_F_HPTV3_RAID:
1429     case AR_F_HPTV2_RAID:
1430 	/*
1431 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1432 	 * this is handy since we cannot know what version BIOS is on there
1433 	 */
1434 	return ata_raid_hptv2_write_meta(rdp);
1435 
1436     case AR_F_INTEL_RAID:
1437 	return ata_raid_intel_write_meta(rdp);
1438 
1439     case AR_F_JMICRON_RAID:
1440 	return ata_raid_jmicron_write_meta(rdp);
1441 
1442     case AR_F_SIS_RAID:
1443 	return ata_raid_sis_write_meta(rdp);
1444 
1445     case AR_F_VIA_RAID:
1446 	return ata_raid_via_write_meta(rdp);
1447 #if 0
1448     case AR_F_HPTV3_RAID:
1449 	return ata_raid_hptv3_write_meta(rdp);
1450 
1451     case AR_F_ADAPTEC_RAID:
1452 	return ata_raid_adaptec_write_meta(rdp);
1453 
1454     case AR_F_ITE_RAID:
1455 	return ata_raid_ite_write_meta(rdp);
1456 
1457     case AR_F_LSIV2_RAID:
1458 	return ata_raid_lsiv2_write_meta(rdp);
1459 
1460     case AR_F_LSIV3_RAID:
1461 	return ata_raid_lsiv3_write_meta(rdp);
1462 
1463     case AR_F_NVIDIA_RAID:
1464 	return ata_raid_nvidia_write_meta(rdp);
1465 
1466     case AR_F_SII_RAID:
1467 	return ata_raid_sii_write_meta(rdp);
1468 
1469 #endif
1470     default:
1471 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1472 	       rdp->lun, ata_raid_format(rdp));
1473     }
1474     return -1;
1475 }
1476 
1477 static int
1478 ata_raid_wipe_metadata(struct ar_softc *rdp)
1479 {
1480     int disk, error = 0;
1481     u_int64_t lba;
1482     u_int32_t size;
1483     u_int8_t *meta;
1484 
1485     for (disk = 0; disk < rdp->total_disks; disk++) {
1486 	if (rdp->disks[disk].dev) {
1487 	    switch (rdp->format) {
1488 	    case AR_F_ADAPTEC_RAID:
1489 		lba = ADP_LBA(rdp->disks[disk].dev);
1490 		size = sizeof(struct adaptec_raid_conf);
1491 		break;
1492 
1493 	    case AR_F_HPTV2_RAID:
1494 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1495 		size = sizeof(struct hptv2_raid_conf);
1496 		break;
1497 
1498 	    case AR_F_HPTV3_RAID:
1499 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1500 		size = sizeof(struct hptv3_raid_conf);
1501 		break;
1502 
1503 	    case AR_F_INTEL_RAID:
1504 		lba = INTEL_LBA(rdp->disks[disk].dev);
1505 		size = 3 * 512;         /* XXX SOS */
1506 		break;
1507 
1508 	    case AR_F_ITE_RAID:
1509 		lba = ITE_LBA(rdp->disks[disk].dev);
1510 		size = sizeof(struct ite_raid_conf);
1511 		break;
1512 
1513 	    case AR_F_JMICRON_RAID:
1514 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1515 		size = sizeof(struct jmicron_raid_conf);
1516 		break;
1517 
1518 	    case AR_F_LSIV2_RAID:
1519 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1520 		size = sizeof(struct lsiv2_raid_conf);
1521 		break;
1522 
1523 	    case AR_F_LSIV3_RAID:
1524 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1525 		size = sizeof(struct lsiv3_raid_conf);
1526 		break;
1527 
1528 	    case AR_F_NVIDIA_RAID:
1529 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1530 		size = sizeof(struct nvidia_raid_conf);
1531 		break;
1532 
1533 	    case AR_F_FREEBSD_RAID:
1534 	    case AR_F_PROMISE_RAID:
1535 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1536 		size = sizeof(struct promise_raid_conf);
1537 		break;
1538 
1539 	    case AR_F_SII_RAID:
1540 		lba = SII_LBA(rdp->disks[disk].dev);
1541 		size = sizeof(struct sii_raid_conf);
1542 		break;
1543 
1544 	    case AR_F_SIS_RAID:
1545 		lba = SIS_LBA(rdp->disks[disk].dev);
1546 		size = sizeof(struct sis_raid_conf);
1547 		break;
1548 
1549 	    case AR_F_VIA_RAID:
1550 		lba = VIA_LBA(rdp->disks[disk].dev);
1551 		size = sizeof(struct via_raid_conf);
1552 		break;
1553 
1554 	    default:
1555 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1556 		       rdp->lun, ata_raid_format(rdp));
1557 		return ENXIO;
1558 	    }
1559 	    if (!(meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO)))
1560 		return ENOMEM;
1561 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1562 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1563 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1564 		error = EIO;
1565 	    }
1566 	    kfree(meta, M_AR);
1567 	}
1568     }
1569     return error;
1570 }
1571 
1572 /* Adaptec HostRAID Metadata */
1573 static int
1574 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1575 {
1576     struct ata_raid_subdisk *ars = device_get_softc(dev);
1577     device_t parent = device_get_parent(dev);
1578     struct adaptec_raid_conf *meta;
1579     struct ar_softc *raid;
1580     int array, disk, retval = 0;
1581 
1582     if (!(meta = (struct adaptec_raid_conf *)
1583 	  kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1584 	return ENOMEM;
1585 
1586     if (ata_raid_rw(parent, ADP_LBA(parent),
1587 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1588 	if (testing || bootverbose)
1589 	    device_printf(parent, "Adaptec read metadata failed\n");
1590 	goto adaptec_out;
1591     }
1592 
1593     /* check if this is a Adaptec RAID struct */
1594     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1595 	if (testing || bootverbose)
1596 	    device_printf(parent, "Adaptec check1 failed\n");
1597 	goto adaptec_out;
1598     }
1599 
1600     if (testing || bootverbose)
1601 	ata_raid_adaptec_print_meta(meta);
1602 
1603     /* now convert Adaptec metadata into our generic form */
1604     for (array = 0; array < MAX_ARRAYS; array++) {
1605 	if (!raidp[array]) {
1606 	    raidp[array] =
1607 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1608 					  M_WAITOK | M_ZERO);
1609 	    if (!raidp[array]) {
1610 		device_printf(parent, "failed to allocate metadata storage\n");
1611 		goto adaptec_out;
1612 	    }
1613 	}
1614 	raid = raidp[array];
1615 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1616 	    continue;
1617 
1618 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1619 	    continue;
1620 
1621 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1622 	    switch (meta->configs[0].type) {
1623 	    case ADP_T_RAID0:
1624 		raid->magic_0 = meta->configs[0].magic_0;
1625 		raid->type = AR_T_RAID0;
1626 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1627 		raid->width = be16toh(meta->configs[0].total_disks);
1628 		break;
1629 
1630 	    case ADP_T_RAID1:
1631 		raid->magic_0 = meta->configs[0].magic_0;
1632 		raid->type = AR_T_RAID1;
1633 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1634 		break;
1635 
1636 	    default:
1637 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1638 			      meta->configs[0].type);
1639 		kfree(raidp[array], M_AR);
1640 		raidp[array] = NULL;
1641 		goto adaptec_out;
1642 	    }
1643 
1644 	    raid->format = AR_F_ADAPTEC_RAID;
1645 	    raid->generation = be32toh(meta->generation);
1646 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1647 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1648 	    raid->heads = 255;
1649 	    raid->sectors = 63;
1650 	    raid->cylinders = raid->total_sectors / (63 * 255);
1651 	    raid->offset_sectors = 0;
1652 	    raid->rebuild_lba = 0;
1653 	    raid->lun = array;
1654 	    strncpy(raid->name, meta->configs[0].name,
1655 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1656 
1657 	    /* clear out any old info */
1658 	    if (raid->generation) {
1659 		for (disk = 0; disk < raid->total_disks; disk++) {
1660 		    raid->disks[disk].dev = NULL;
1661 		    raid->disks[disk].flags = 0;
1662 		}
1663 	    }
1664 	}
1665 	if (be32toh(meta->generation) >= raid->generation) {
1666 	    struct ata_device *atadev = device_get_softc(parent);
1667 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1668 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1669 			      ATA_DEV(atadev->unit);
1670 
1671 	    raid->disks[disk_number].dev = parent;
1672 	    raid->disks[disk_number].sectors =
1673 		be32toh(meta->configs[disk_number + 1].sectors);
1674 	    raid->disks[disk_number].flags =
1675 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1676 	    ars->raid[raid->volume] = raid;
1677 	    ars->disk_number[raid->volume] = disk_number;
1678 	    retval = 1;
1679 	}
1680 	break;
1681     }
1682 
1683 adaptec_out:
1684     kfree(meta, M_AR);
1685     return retval;
1686 }
1687 
1688 /* Highpoint V2 RocketRAID Metadata */
1689 static int
1690 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1691 {
1692     struct ata_raid_subdisk *ars = device_get_softc(dev);
1693     device_t parent = device_get_parent(dev);
1694     struct hptv2_raid_conf *meta;
1695     struct ar_softc *raid = NULL;
1696     int array, disk_number = 0, retval = 0;
1697 
1698     if (!(meta = (struct hptv2_raid_conf *)
1699 	  kmalloc(sizeof(struct hptv2_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1700 	return ENOMEM;
1701 
1702     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1703 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1704 	if (testing || bootverbose)
1705 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1706 	goto hptv2_out;
1707     }
1708 
1709     /* check if this is a HighPoint v2 RAID struct */
1710     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1711 	if (testing || bootverbose)
1712 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1713 	goto hptv2_out;
1714     }
1715 
1716     /* is this disk defined, or an old leftover/spare ? */
1717     if (!meta->magic_0) {
1718 	if (testing || bootverbose)
1719 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1720 	goto hptv2_out;
1721     }
1722 
1723     if (testing || bootverbose)
1724 	ata_raid_hptv2_print_meta(meta);
1725 
1726     /* now convert HighPoint (v2) metadata into our generic form */
1727     for (array = 0; array < MAX_ARRAYS; array++) {
1728 	if (!raidp[array]) {
1729 	    raidp[array] =
1730 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1731 					  M_WAITOK | M_ZERO);
1732 	    if (!raidp[array]) {
1733 		device_printf(parent, "failed to allocate metadata storage\n");
1734 		goto hptv2_out;
1735 	    }
1736 	}
1737 	raid = raidp[array];
1738 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1739 	    continue;
1740 
1741 	switch (meta->type) {
1742 	case HPTV2_T_RAID0:
1743 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1744 		(HPTV2_O_RAID0|HPTV2_O_OK))
1745 		goto highpoint_raid1;
1746 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1747 		goto highpoint_raid01;
1748 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1749 		continue;
1750 	    raid->magic_0 = meta->magic_0;
1751 	    raid->type = AR_T_RAID0;
1752 	    raid->interleave = 1 << meta->stripe_shift;
1753 	    disk_number = meta->disk_number;
1754 	    if (!(meta->order & HPTV2_O_OK))
1755 		meta->magic = 0;        /* mark bad */
1756 	    break;
1757 
1758 	case HPTV2_T_RAID1:
1759 highpoint_raid1:
1760 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1761 		continue;
1762 	    raid->magic_0 = meta->magic_0;
1763 	    raid->type = AR_T_RAID1;
1764 	    disk_number = (meta->disk_number > 0);
1765 	    break;
1766 
1767 	case HPTV2_T_RAID01_RAID0:
1768 highpoint_raid01:
1769 	    if (meta->order & HPTV2_O_RAID0) {
1770 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1771 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1772 		    continue;
1773 		raid->magic_0 = meta->magic_0;
1774 		raid->magic_1 = meta->magic_1;
1775 		raid->type = AR_T_RAID01;
1776 		raid->interleave = 1 << meta->stripe_shift;
1777 		disk_number = meta->disk_number;
1778 	    }
1779 	    else {
1780 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1781 		    continue;
1782 		raid->magic_1 = meta->magic_1;
1783 		raid->type = AR_T_RAID01;
1784 		raid->interleave = 1 << meta->stripe_shift;
1785 		disk_number = meta->disk_number + meta->array_width;
1786 		if (!(meta->order & HPTV2_O_RAID1))
1787 		    meta->magic = 0;    /* mark bad */
1788 	    }
1789 	    break;
1790 
1791 	case HPTV2_T_SPAN:
1792 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1793 		continue;
1794 	    raid->magic_0 = meta->magic_0;
1795 	    raid->type = AR_T_SPAN;
1796 	    disk_number = meta->disk_number;
1797 	    break;
1798 
1799 	default:
1800 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1801 			  meta->type);
1802 	    kfree(raidp[array], M_AR);
1803 	    raidp[array] = NULL;
1804 	    goto hptv2_out;
1805 	}
1806 
1807 	raid->format |= AR_F_HPTV2_RAID;
1808 	raid->disks[disk_number].dev = parent;
1809 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1810 	raid->lun = array;
1811 	strncpy(raid->name, meta->name_1,
1812 		min(sizeof(raid->name), sizeof(meta->name_1)));
1813 	if (meta->magic == HPTV2_MAGIC_OK) {
1814 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1815 	    raid->width = meta->array_width;
1816 	    raid->total_sectors = meta->total_sectors;
1817 	    raid->heads = 255;
1818 	    raid->sectors = 63;
1819 	    raid->cylinders = raid->total_sectors / (63 * 255);
1820 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1821 	    raid->rebuild_lba = meta->rebuild_lba;
1822 	    raid->disks[disk_number].sectors =
1823 		raid->total_sectors / raid->width;
1824 	}
1825 	else
1826 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1827 
1828 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1829 	    raid->total_disks = raid->width;
1830 	if (disk_number >= raid->total_disks)
1831 	    raid->total_disks = disk_number + 1;
1832 	ars->raid[raid->volume] = raid;
1833 	ars->disk_number[raid->volume] = disk_number;
1834 	retval = 1;
1835 	break;
1836     }
1837 
1838 hptv2_out:
1839     kfree(meta, M_AR);
1840     return retval;
1841 }
1842 
1843 static int
1844 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1845 {
1846     struct hptv2_raid_conf *meta;
1847     struct timeval timestamp;
1848     int disk, error = 0;
1849 
1850     if (!(meta = (struct hptv2_raid_conf *)
1851 	  kmalloc(sizeof(struct hptv2_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
1852 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
1853 	return ENOMEM;
1854     }
1855 
1856     microtime(&timestamp);
1857     rdp->magic_0 = timestamp.tv_sec + 2;
1858     rdp->magic_1 = timestamp.tv_sec;
1859 
1860     for (disk = 0; disk < rdp->total_disks; disk++) {
1861 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1862 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1863 	    meta->magic = HPTV2_MAGIC_OK;
1864 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1865 	    meta->magic_0 = rdp->magic_0;
1866 	    if (strlen(rdp->name))
1867 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1868 	    else
1869 		strcpy(meta->name_1, "FreeBSD");
1870 	}
1871 	meta->disk_number = disk;
1872 
1873 	switch (rdp->type) {
1874 	case AR_T_RAID0:
1875 	    meta->type = HPTV2_T_RAID0;
1876 	    strcpy(meta->name_2, "RAID 0");
1877 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1878 		meta->order = HPTV2_O_OK;
1879 	    break;
1880 
1881 	case AR_T_RAID1:
1882 	    meta->type = HPTV2_T_RAID0;
1883 	    strcpy(meta->name_2, "RAID 1");
1884 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1885 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1886 	    break;
1887 
1888 	case AR_T_RAID01:
1889 	    meta->type = HPTV2_T_RAID01_RAID0;
1890 	    strcpy(meta->name_2, "RAID 0+1");
1891 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1892 		if (disk < rdp->width) {
1893 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1894 		    meta->magic_0 = rdp->magic_0 - 1;
1895 		}
1896 		else {
1897 		    meta->order = HPTV2_O_RAID1;
1898 		    meta->disk_number -= rdp->width;
1899 		}
1900 	    }
1901 	    else
1902 		meta->magic_0 = rdp->magic_0 - 1;
1903 	    meta->magic_1 = rdp->magic_1;
1904 	    break;
1905 
1906 	case AR_T_SPAN:
1907 	    meta->type = HPTV2_T_SPAN;
1908 	    strcpy(meta->name_2, "SPAN");
1909 	    break;
1910 	default:
1911 	    kfree(meta, M_AR);
1912 	    return ENODEV;
1913 	}
1914 
1915 	meta->array_width = rdp->width;
1916 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1917 	meta->total_sectors = rdp->total_sectors;
1918 	meta->rebuild_lba = rdp->rebuild_lba;
1919 	if (testing || bootverbose)
1920 	    ata_raid_hptv2_print_meta(meta);
1921 	if (rdp->disks[disk].dev) {
1922 	    if (ata_raid_rw(rdp->disks[disk].dev,
1923 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1924 			    sizeof(struct promise_raid_conf),
1925 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1926 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1927 		error = EIO;
1928 	    }
1929 	}
1930     }
1931     kfree(meta, M_AR);
1932     return error;
1933 }
1934 
1935 /* Highpoint V3 RocketRAID Metadata */
1936 static int
1937 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1938 {
1939     struct ata_raid_subdisk *ars = device_get_softc(dev);
1940     device_t parent = device_get_parent(dev);
1941     struct hptv3_raid_conf *meta;
1942     struct ar_softc *raid = NULL;
1943     int array, disk_number, retval = 0;
1944 
1945     if (!(meta = (struct hptv3_raid_conf *)
1946 	  kmalloc(sizeof(struct hptv3_raid_conf), M_AR, M_WAITOK | M_ZERO)))
1947 	return ENOMEM;
1948 
1949     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1950 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1951 	if (testing || bootverbose)
1952 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1953 	goto hptv3_out;
1954     }
1955 
1956     /* check if this is a HighPoint v3 RAID struct */
1957     if (meta->magic != HPTV3_MAGIC) {
1958 	if (testing || bootverbose)
1959 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
1960 	goto hptv3_out;
1961     }
1962 
1963     /* check if there are any config_entries */
1964     if (meta->config_entries < 1) {
1965 	if (testing || bootverbose)
1966 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
1967 	goto hptv3_out;
1968     }
1969 
1970     if (testing || bootverbose)
1971 	ata_raid_hptv3_print_meta(meta);
1972 
1973     /* now convert HighPoint (v3) metadata into our generic form */
1974     for (array = 0; array < MAX_ARRAYS; array++) {
1975 	if (!raidp[array]) {
1976 	    raidp[array] =
1977 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1978 					  M_WAITOK | M_ZERO);
1979 	    if (!raidp[array]) {
1980 		device_printf(parent, "failed to allocate metadata storage\n");
1981 		goto hptv3_out;
1982 	    }
1983 	}
1984 	raid = raidp[array];
1985 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
1986 	    continue;
1987 
1988 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
1989 	    continue;
1990 
1991 	switch (meta->configs[0].type) {
1992 	case HPTV3_T_RAID0:
1993 	    raid->type = AR_T_RAID0;
1994 	    raid->width = meta->configs[0].total_disks;
1995 	    disk_number = meta->configs[0].disk_number;
1996 	    break;
1997 
1998 	case HPTV3_T_RAID1:
1999 	    raid->type = AR_T_RAID1;
2000 	    raid->width = meta->configs[0].total_disks / 2;
2001 	    disk_number = meta->configs[0].disk_number;
2002 	    break;
2003 
2004 	case HPTV3_T_RAID5:
2005 	    raid->type = AR_T_RAID5;
2006 	    raid->width = meta->configs[0].total_disks;
2007 	    disk_number = meta->configs[0].disk_number;
2008 	    break;
2009 
2010 	case HPTV3_T_SPAN:
2011 	    raid->type = AR_T_SPAN;
2012 	    raid->width = meta->configs[0].total_disks;
2013 	    disk_number = meta->configs[0].disk_number;
2014 	    break;
2015 
2016 	default:
2017 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2018 			  meta->configs[0].type);
2019 	    kfree(raidp[array], M_AR);
2020 	    raidp[array] = NULL;
2021 	    goto hptv3_out;
2022 	}
2023 	if (meta->config_entries == 2) {
2024 	    switch (meta->configs[1].type) {
2025 	    case HPTV3_T_RAID1:
2026 		if (raid->type == AR_T_RAID0) {
2027 		    raid->type = AR_T_RAID01;
2028 		    disk_number = meta->configs[1].disk_number +
2029 				  (meta->configs[0].disk_number << 1);
2030 		    break;
2031 		}
2032 	    default:
2033 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2034 			      meta->configs[1].type);
2035 		kfree(raidp[array], M_AR);
2036 		raidp[array] = NULL;
2037 		goto hptv3_out;
2038 	    }
2039 	}
2040 
2041 	raid->magic_0 = meta->magic_0;
2042 	raid->format = AR_F_HPTV3_RAID;
2043 	raid->generation = meta->timestamp;
2044 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2045 	raid->total_disks = meta->configs[0].total_disks +
2046 	    meta->configs[1].total_disks;
2047 	raid->total_sectors = meta->configs[0].total_sectors +
2048 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2049 	raid->heads = 255;
2050 	raid->sectors = 63;
2051 	raid->cylinders = raid->total_sectors / (63 * 255);
2052 	raid->offset_sectors = 0;
2053 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2054 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2055 	raid->lun = array;
2056 	strncpy(raid->name, meta->name,
2057 		min(sizeof(raid->name), sizeof(meta->name)));
2058 	raid->disks[disk_number].sectors = raid->total_sectors /
2059 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2060 	raid->disks[disk_number].dev = parent;
2061 	raid->disks[disk_number].flags =
2062 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2063 	ars->raid[raid->volume] = raid;
2064 	ars->disk_number[raid->volume] = disk_number;
2065 	retval = 1;
2066 	break;
2067     }
2068 
2069 hptv3_out:
2070     kfree(meta, M_AR);
2071     return retval;
2072 }
2073 
2074 /* Intel MatrixRAID Metadata */
2075 static int
2076 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2077 {
2078     struct ata_raid_subdisk *ars = device_get_softc(dev);
2079     device_t parent = device_get_parent(dev);
2080     struct intel_raid_conf *meta;
2081     struct intel_raid_mapping *map;
2082     struct ar_softc *raid = NULL;
2083     u_int32_t checksum, *ptr;
2084     int array, count, disk, volume = 1, retval = 0;
2085     char *tmp;
2086 
2087     if (!(meta = (struct intel_raid_conf *)
2088 	  kmalloc(1536, M_AR, M_WAITOK | M_ZERO)))
2089 	return ENOMEM;
2090 
2091     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2092 	if (testing || bootverbose)
2093 	    device_printf(parent, "Intel read metadata failed\n");
2094 	goto intel_out;
2095     }
2096     tmp = (char *)meta;
2097     bcopy(tmp, tmp+1024, 512);
2098     bcopy(tmp+512, tmp, 1024);
2099     bzero(tmp+1024, 512);
2100 
2101     /* check if this is a Intel RAID struct */
2102     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2103 	if (testing || bootverbose)
2104 	    device_printf(parent, "Intel check1 failed\n");
2105 	goto intel_out;
2106     }
2107 
2108     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2109 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2110 	checksum += *ptr++;
2111     }
2112     checksum -= meta->checksum;
2113     if (checksum != meta->checksum) {
2114 	if (testing || bootverbose)
2115 	    device_printf(parent, "Intel check2 failed\n");
2116 	goto intel_out;
2117     }
2118 
2119     if (testing || bootverbose)
2120 	ata_raid_intel_print_meta(meta);
2121 
2122     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2123 
2124     /* now convert Intel metadata into our generic form */
2125     for (array = 0; array < MAX_ARRAYS; array++) {
2126 	if (!raidp[array]) {
2127 	    raidp[array] =
2128 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2129 					  M_WAITOK | M_ZERO);
2130 	    if (!raidp[array]) {
2131 		device_printf(parent, "failed to allocate metadata storage\n");
2132 		goto intel_out;
2133 	    }
2134 	}
2135 	raid = raidp[array];
2136 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2137 	    continue;
2138 
2139 	if ((raid->format & AR_F_INTEL_RAID) &&
2140 	    (raid->magic_0 != meta->config_id))
2141 	    continue;
2142 
2143 	/*
2144 	 * update our knowledge about the array config based on generation
2145 	 * NOTE: there can be multiple volumes on a disk set
2146 	 */
2147 	if (!meta->generation || meta->generation > raid->generation) {
2148 	    switch (map->type) {
2149 	    case INTEL_T_RAID0:
2150 		raid->type = AR_T_RAID0;
2151 		raid->width = map->total_disks;
2152 		break;
2153 
2154 	    case INTEL_T_RAID1:
2155 		if (map->total_disks == 4)
2156 		    raid->type = AR_T_RAID01;
2157 		else
2158 		    raid->type = AR_T_RAID1;
2159 		raid->width = map->total_disks / 2;
2160 		break;
2161 
2162 	    case INTEL_T_RAID5:
2163 		raid->type = AR_T_RAID5;
2164 		raid->width = map->total_disks;
2165 		break;
2166 
2167 	    default:
2168 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2169 			      map->type);
2170 		kfree(raidp[array], M_AR);
2171 		raidp[array] = NULL;
2172 		goto intel_out;
2173 	    }
2174 
2175 	    switch (map->status) {
2176 	    case INTEL_S_READY:
2177 		raid->status = AR_S_READY;
2178 		break;
2179 	    case INTEL_S_DEGRADED:
2180 		raid->status |= AR_S_DEGRADED;
2181 		break;
2182 	    case INTEL_S_DISABLED:
2183 	    case INTEL_S_FAILURE:
2184 		raid->status = 0;
2185 	    }
2186 
2187 	    raid->magic_0 = meta->config_id;
2188 	    raid->format = AR_F_INTEL_RAID;
2189 	    raid->generation = meta->generation;
2190 	    raid->interleave = map->stripe_sectors;
2191 	    raid->total_disks = map->total_disks;
2192 	    raid->total_sectors = map->total_sectors;
2193 	    raid->heads = 255;
2194 	    raid->sectors = 63;
2195 	    raid->cylinders = raid->total_sectors / (63 * 255);
2196 	    raid->offset_sectors = map->offset;
2197 	    raid->rebuild_lba = 0;
2198 	    raid->lun = array;
2199 	    raid->volume = volume - 1;
2200 	    strncpy(raid->name, map->name,
2201 		    min(sizeof(raid->name), sizeof(map->name)));
2202 
2203 	    /* clear out any old info */
2204 	    for (disk = 0; disk < raid->total_disks; disk++) {
2205 		raid->disks[disk].dev = NULL;
2206 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2207 		      raid->disks[disk].serial,
2208 		      sizeof(raid->disks[disk].serial));
2209 		raid->disks[disk].sectors =
2210 		    meta->disk[map->disk_idx[disk]].sectors;
2211 		raid->disks[disk].flags = 0;
2212 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2213 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2214 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2215 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2216 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2217 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2218 		    raid->disks[disk].flags |= AR_DF_SPARE;
2219 		}
2220 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2221 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2222 	    }
2223 	}
2224 	if (meta->generation >= raid->generation) {
2225 	    for (disk = 0; disk < raid->total_disks; disk++) {
2226 		struct ata_device *atadev = device_get_softc(parent);
2227 
2228 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2229 		    sizeof(raid->disks[disk].serial))) {
2230 		    raid->disks[disk].dev = parent;
2231 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2232 		    ars->raid[raid->volume] = raid;
2233 		    ars->disk_number[raid->volume] = disk;
2234 		    retval = 1;
2235 		}
2236 	    }
2237 	}
2238 	else
2239 	    goto intel_out;
2240 
2241 	if (retval) {
2242 	    if (volume < meta->total_volumes) {
2243 		map = (struct intel_raid_mapping *)
2244 		      &map->disk_idx[map->total_disks];
2245 		volume++;
2246 		retval = 0;
2247 		continue;
2248 	    }
2249 	    break;
2250 	}
2251 	else {
2252 	    kfree(raidp[array], M_AR);
2253 	    raidp[array] = NULL;
2254 	    if (volume == 2)
2255 		retval = 1;
2256 	}
2257     }
2258 
2259 intel_out:
2260     kfree(meta, M_AR);
2261     return retval;
2262 }
2263 
2264 static int
2265 ata_raid_intel_write_meta(struct ar_softc *rdp)
2266 {
2267     struct intel_raid_conf *meta;
2268     struct intel_raid_mapping *map;
2269     struct timeval timestamp;
2270     u_int32_t checksum, *ptr;
2271     int count, disk, error = 0;
2272     char *tmp;
2273 
2274     if (!(meta = (struct intel_raid_conf *)
2275 	  kmalloc(1536, M_AR, M_WAITOK | M_ZERO))) {
2276 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
2277 	return ENOMEM;
2278     }
2279 
2280     rdp->generation++;
2281     microtime(&timestamp);
2282 
2283     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2284     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2285     meta->config_id = timestamp.tv_sec;
2286     meta->generation = rdp->generation;
2287     meta->total_disks = rdp->total_disks;
2288     meta->total_volumes = 1;                                    /* XXX SOS */
2289     for (disk = 0; disk < rdp->total_disks; disk++) {
2290 	if (rdp->disks[disk].dev) {
2291 	    struct ata_channel *ch =
2292 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2293 	    struct ata_device *atadev =
2294 		device_get_softc(rdp->disks[disk].dev);
2295 
2296 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2297 		  sizeof(rdp->disks[disk].serial));
2298 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2299 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2300 	}
2301 	else
2302 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2303 	meta->disk[disk].flags = 0;
2304 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2305 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2306 	else {
2307 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2308 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2309 	    else
2310 		meta->disk[disk].flags |= INTEL_F_DOWN;
2311 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2312 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2313 	}
2314     }
2315     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2316 
2317     bcopy(rdp->name, map->name, sizeof(rdp->name));
2318     map->total_sectors = rdp->total_sectors;
2319     map->state = 12;                                            /* XXX SOS */
2320     map->offset = rdp->offset_sectors;
2321     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2322     map->stripe_sectors =  rdp->interleave;
2323     map->disk_sectors = rdp->total_sectors / rdp->width;
2324     map->status = INTEL_S_READY;                                /* XXX SOS */
2325     switch (rdp->type) {
2326     case AR_T_RAID0:
2327 	map->type = INTEL_T_RAID0;
2328 	break;
2329     case AR_T_RAID1:
2330 	map->type = INTEL_T_RAID1;
2331 	break;
2332     case AR_T_RAID01:
2333 	map->type = INTEL_T_RAID1;
2334 	break;
2335     case AR_T_RAID5:
2336 	map->type = INTEL_T_RAID5;
2337 	break;
2338     default:
2339 	kfree(meta, M_AR);
2340 	return ENODEV;
2341     }
2342     map->total_disks = rdp->total_disks;
2343     map->magic[0] = 0x02;
2344     map->magic[1] = 0xff;
2345     map->magic[2] = 0x01;
2346     for (disk = 0; disk < rdp->total_disks; disk++)
2347 	map->disk_idx[disk] = disk;
2348 
2349     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2350     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2351 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2352 	checksum += *ptr++;
2353     }
2354     meta->checksum = checksum;
2355 
2356     if (testing || bootverbose)
2357 	ata_raid_intel_print_meta(meta);
2358 
2359     tmp = (char *)meta;
2360     bcopy(tmp, tmp+1024, 512);
2361     bcopy(tmp+512, tmp, 1024);
2362     bzero(tmp+1024, 512);
2363 
2364     for (disk = 0; disk < rdp->total_disks; disk++) {
2365 	if (rdp->disks[disk].dev) {
2366 	    if (ata_raid_rw(rdp->disks[disk].dev,
2367 			    INTEL_LBA(rdp->disks[disk].dev),
2368 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2369 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2370 		error = EIO;
2371 	    }
2372 	}
2373     }
2374     kfree(meta, M_AR);
2375     return error;
2376 }
2377 
2378 
2379 /* Integrated Technology Express Metadata */
2380 static int
2381 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2382 {
2383     struct ata_raid_subdisk *ars = device_get_softc(dev);
2384     device_t parent = device_get_parent(dev);
2385     struct ite_raid_conf *meta;
2386     struct ar_softc *raid = NULL;
2387     int array, disk_number, count, retval = 0;
2388     u_int16_t *ptr;
2389 
2390     if (!(meta = (struct ite_raid_conf *)
2391 	  kmalloc(sizeof(struct ite_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2392 	return ENOMEM;
2393 
2394     if (ata_raid_rw(parent, ITE_LBA(parent),
2395 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2396 	if (testing || bootverbose)
2397 	    device_printf(parent, "ITE read metadata failed\n");
2398 	goto ite_out;
2399     }
2400 
2401     /* check if this is a ITE RAID struct */
2402     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2403 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2404 	ptr[count] = be16toh(ptr[count]);
2405 
2406     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2407 	if (testing || bootverbose)
2408 	    device_printf(parent, "ITE check1 failed\n");
2409 	goto ite_out;
2410     }
2411 
2412     if (testing || bootverbose)
2413 	ata_raid_ite_print_meta(meta);
2414 
2415     /* now convert ITE metadata into our generic form */
2416     for (array = 0; array < MAX_ARRAYS; array++) {
2417 	if ((raid = raidp[array])) {
2418 	    if (raid->format != AR_F_ITE_RAID)
2419 		continue;
2420 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2421 		continue;
2422 	}
2423 
2424 	/* if we dont have a disks timestamp the RAID is invalidated */
2425 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2426 	    goto ite_out;
2427 
2428 	if (!raid) {
2429 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2430 						     M_AR, M_WAITOK | M_ZERO);
2431 	    if (!(raid = raidp[array])) {
2432 		device_printf(parent, "failed to allocate metadata storage\n");
2433 		goto ite_out;
2434 	    }
2435 	}
2436 
2437 	switch (meta->type) {
2438 	case ITE_T_RAID0:
2439 	    raid->type = AR_T_RAID0;
2440 	    raid->width = meta->array_width;
2441 	    raid->total_disks = meta->array_width;
2442 	    disk_number = meta->disk_number;
2443 	    break;
2444 
2445 	case ITE_T_RAID1:
2446 	    raid->type = AR_T_RAID1;
2447 	    raid->width = 1;
2448 	    raid->total_disks = 2;
2449 	    disk_number = meta->disk_number;
2450 	    break;
2451 
2452 	case ITE_T_RAID01:
2453 	    raid->type = AR_T_RAID01;
2454 	    raid->width = meta->array_width;
2455 	    raid->total_disks = 4;
2456 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2457 			  ((meta->disk_number & 0x01) << 1);
2458 	    break;
2459 
2460 	case ITE_T_SPAN:
2461 	    raid->type = AR_T_SPAN;
2462 	    raid->width = 1;
2463 	    raid->total_disks = meta->array_width;
2464 	    disk_number = meta->disk_number;
2465 	    break;
2466 
2467 	default:
2468 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2469 	    kfree(raidp[array], M_AR);
2470 	    raidp[array] = NULL;
2471 	    goto ite_out;
2472 	}
2473 
2474 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2475 	raid->format = AR_F_ITE_RAID;
2476 	raid->generation = 0;
2477 	raid->interleave = meta->stripe_sectors;
2478 	raid->total_sectors = meta->total_sectors;
2479 	raid->heads = 255;
2480 	raid->sectors = 63;
2481 	raid->cylinders = raid->total_sectors / (63 * 255);
2482 	raid->offset_sectors = 0;
2483 	raid->rebuild_lba = 0;
2484 	raid->lun = array;
2485 
2486 	raid->disks[disk_number].dev = parent;
2487 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2488 	raid->disks[disk_number].flags =
2489 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2490 	ars->raid[raid->volume] = raid;
2491 	ars->disk_number[raid->volume] = disk_number;
2492 	retval = 1;
2493 	break;
2494     }
2495 ite_out:
2496     kfree(meta, M_AR);
2497     return retval;
2498 }
2499 
2500 /* JMicron Technology Corp Metadata */
2501 static int
2502 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2503 {
2504     struct ata_raid_subdisk *ars = device_get_softc(dev);
2505     device_t parent = device_get_parent(dev);
2506     struct jmicron_raid_conf *meta;
2507     struct ar_softc *raid = NULL;
2508     u_int16_t checksum, *ptr;
2509     u_int64_t disk_size;
2510     int count, array, disk, total_disks, retval = 0;
2511 
2512     if (!(meta = (struct jmicron_raid_conf *)
2513 	  kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2514 	return ENOMEM;
2515 
2516     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2517 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2518 	if (testing || bootverbose)
2519 	    device_printf(parent,
2520 			  "JMicron read metadata failed\n");
2521     }
2522 
2523     /* check for JMicron signature */
2524     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2525 	if (testing || bootverbose)
2526 	    device_printf(parent, "JMicron check1 failed\n");
2527 	goto jmicron_out;
2528     }
2529 
2530     /* calculate checksum and compare for valid */
2531     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2532 	checksum += *ptr++;
2533     if (checksum) {
2534 	if (testing || bootverbose)
2535 	    device_printf(parent, "JMicron check2 failed\n");
2536 	goto jmicron_out;
2537     }
2538 
2539     if (testing || bootverbose)
2540 	ata_raid_jmicron_print_meta(meta);
2541 
2542     /* now convert JMicron meta into our generic form */
2543     for (array = 0; array < MAX_ARRAYS; array++) {
2544 jmicron_next:
2545 	if (!raidp[array]) {
2546 	    raidp[array] =
2547 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2548 					  M_WAITOK | M_ZERO);
2549 	    if (!raidp[array]) {
2550 		device_printf(parent, "failed to allocate metadata storage\n");
2551 		goto jmicron_out;
2552 	    }
2553 	}
2554 	raid = raidp[array];
2555 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2556 	    continue;
2557 
2558 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2559 	    if (meta->disks[disk]) {
2560 		if (raid->format == AR_F_JMICRON_RAID) {
2561 		    if (bcmp(&meta->disks[disk],
2562 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2563 			array++;
2564 			goto jmicron_next;
2565 		    }
2566 		}
2567 		else
2568 		    bcopy(&meta->disks[disk],
2569 			  raid->disks[disk].serial, sizeof(u_int32_t));
2570 		total_disks++;
2571 	    }
2572 	}
2573 	/* handle spares XXX SOS */
2574 
2575 	switch (meta->type) {
2576 	case JM_T_RAID0:
2577 	    raid->type = AR_T_RAID0;
2578 	    raid->width = total_disks;
2579 	    break;
2580 
2581 	case JM_T_RAID1:
2582 	    raid->type = AR_T_RAID1;
2583 	    raid->width = 1;
2584 	    break;
2585 
2586 	case JM_T_RAID01:
2587 	    raid->type = AR_T_RAID01;
2588 	    raid->width = total_disks / 2;
2589 	    break;
2590 
2591 	case JM_T_RAID5:
2592 	    raid->type = AR_T_RAID5;
2593 	    raid->width = total_disks;
2594 	    break;
2595 
2596 	case JM_T_JBOD:
2597 	    raid->type = AR_T_SPAN;
2598 	    raid->width = 1;
2599 	    break;
2600 
2601 	default:
2602 	    device_printf(parent,
2603 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2604 	    kfree(raidp[array], M_AR);
2605 	    raidp[array] = NULL;
2606 	    goto jmicron_out;
2607 	}
2608 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2609 	raid->format = AR_F_JMICRON_RAID;
2610 	strncpy(raid->name, meta->name, sizeof(meta->name));
2611 	raid->generation = 0;
2612 	raid->interleave = 2 << meta->stripe_shift;
2613 	raid->total_disks = total_disks;
2614 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2615 	raid->heads = 255;
2616 	raid->sectors = 63;
2617 	raid->cylinders = raid->total_sectors / (63 * 255);
2618 	raid->offset_sectors = meta->offset * 16;
2619 	raid->rebuild_lba = 0;
2620 	raid->lun = array;
2621 
2622 	for (disk = 0; disk < raid->total_disks; disk++) {
2623 	    if (meta->disks[disk] == meta->disk_id) {
2624 		raid->disks[disk].dev = parent;
2625 		raid->disks[disk].sectors = disk_size;
2626 		raid->disks[disk].flags =
2627 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2628 		ars->raid[raid->volume] = raid;
2629 		ars->disk_number[raid->volume] = disk;
2630 		retval = 1;
2631 		break;
2632 	    }
2633 	}
2634 	break;
2635     }
2636 jmicron_out:
2637     kfree(meta, M_AR);
2638     return retval;
2639 }
2640 
2641 static int
2642 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2643 {
2644     struct jmicron_raid_conf *meta;
2645     u_int64_t disk_sectors;
2646     int disk, error = 0;
2647 
2648     if (!(meta = (struct jmicron_raid_conf *)
2649 	  kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
2650 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
2651 	return ENOMEM;
2652     }
2653 
2654     rdp->generation++;
2655     switch (rdp->type) {
2656     case AR_T_JBOD:
2657 	meta->type = JM_T_JBOD;
2658 	break;
2659 
2660     case AR_T_RAID0:
2661 	meta->type = JM_T_RAID0;
2662 	break;
2663 
2664     case AR_T_RAID1:
2665 	meta->type = JM_T_RAID1;
2666 	break;
2667 
2668     case AR_T_RAID5:
2669 	meta->type = JM_T_RAID5;
2670 	break;
2671 
2672     case AR_T_RAID01:
2673 	meta->type = JM_T_RAID01;
2674 	break;
2675 
2676     default:
2677 	kfree(meta, M_AR);
2678 	return ENODEV;
2679     }
2680     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2681     meta->version = JMICRON_VERSION;
2682     meta->offset = rdp->offset_sectors / 16;
2683     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2684     meta->disk_sectors_low = disk_sectors & 0xffff;
2685     meta->disk_sectors_high = disk_sectors >> 16;
2686     strncpy(meta->name, rdp->name, sizeof(meta->name));
2687     meta->stripe_shift = ffs(rdp->interleave) - 2;
2688 
2689     for (disk = 0; disk < rdp->total_disks; disk++) {
2690 	if (rdp->disks[disk].serial[0])
2691 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2692 	else
2693 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2694     }
2695 
2696     for (disk = 0; disk < rdp->total_disks; disk++) {
2697 	if (rdp->disks[disk].dev) {
2698 	    u_int16_t checksum = 0, *ptr;
2699 	    int count;
2700 
2701 	    meta->disk_id = meta->disks[disk];
2702 	    meta->checksum = 0;
2703 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2704 		checksum += *ptr++;
2705 	    meta->checksum -= checksum;
2706 
2707 	    if (testing || bootverbose)
2708 		ata_raid_jmicron_print_meta(meta);
2709 
2710 	    if (ata_raid_rw(rdp->disks[disk].dev,
2711 			    JMICRON_LBA(rdp->disks[disk].dev),
2712 			    meta, sizeof(struct jmicron_raid_conf),
2713 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2714 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2715 		error = EIO;
2716 	    }
2717 	}
2718     }
2719     /* handle spares XXX SOS */
2720 
2721     kfree(meta, M_AR);
2722     return error;
2723 }
2724 
2725 /* LSILogic V2 MegaRAID Metadata */
2726 static int
2727 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2728 {
2729     struct ata_raid_subdisk *ars = device_get_softc(dev);
2730     device_t parent = device_get_parent(dev);
2731     struct lsiv2_raid_conf *meta;
2732     struct ar_softc *raid = NULL;
2733     int array, retval = 0;
2734 
2735     if (!(meta = (struct lsiv2_raid_conf *)
2736 	  kmalloc(sizeof(struct lsiv2_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2737 	return ENOMEM;
2738 
2739     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2740 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2741 	if (testing || bootverbose)
2742 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2743 	goto lsiv2_out;
2744     }
2745 
2746     /* check if this is a LSI RAID struct */
2747     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2748 	if (testing || bootverbose)
2749 	    device_printf(parent, "LSI (v2) check1 failed\n");
2750 	goto lsiv2_out;
2751     }
2752 
2753     if (testing || bootverbose)
2754 	ata_raid_lsiv2_print_meta(meta);
2755 
2756     /* now convert LSI (v2) config meta into our generic form */
2757     for (array = 0; array < MAX_ARRAYS; array++) {
2758 	int raid_entry, conf_entry;
2759 
2760 	if (!raidp[array + meta->raid_number]) {
2761 	    raidp[array + meta->raid_number] =
2762 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2763 					  M_WAITOK | M_ZERO);
2764 	    if (!raidp[array + meta->raid_number]) {
2765 		device_printf(parent, "failed to allocate metadata storage\n");
2766 		goto lsiv2_out;
2767 	    }
2768 	}
2769 	raid = raidp[array + meta->raid_number];
2770 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2771 	    continue;
2772 
2773 	if (raid->magic_0 &&
2774 	    ((raid->magic_0 != meta->timestamp) ||
2775 	     (raid->magic_1 != meta->raid_number)))
2776 	    continue;
2777 
2778 	array += meta->raid_number;
2779 
2780 	raid_entry = meta->raid_number;
2781 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2782 		     meta->disk_number - 1;
2783 
2784 	switch (meta->configs[raid_entry].raid.type) {
2785 	case LSIV2_T_RAID0:
2786 	    raid->magic_0 = meta->timestamp;
2787 	    raid->magic_1 = meta->raid_number;
2788 	    raid->type = AR_T_RAID0;
2789 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2790 	    raid->width = meta->configs[raid_entry].raid.array_width;
2791 	    break;
2792 
2793 	case LSIV2_T_RAID1:
2794 	    raid->magic_0 = meta->timestamp;
2795 	    raid->magic_1 = meta->raid_number;
2796 	    raid->type = AR_T_RAID1;
2797 	    raid->width = meta->configs[raid_entry].raid.array_width;
2798 	    break;
2799 
2800 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2801 	    raid->magic_0 = meta->timestamp;
2802 	    raid->magic_1 = meta->raid_number;
2803 	    raid->type = AR_T_RAID01;
2804 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2805 	    raid->width = meta->configs[raid_entry].raid.array_width;
2806 	    break;
2807 
2808 	default:
2809 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2810 			  meta->configs[raid_entry].raid.type);
2811 	    kfree(raidp[array], M_AR);
2812 	    raidp[array] = NULL;
2813 	    goto lsiv2_out;
2814 	}
2815 
2816 	raid->format = AR_F_LSIV2_RAID;
2817 	raid->generation = 0;
2818 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2819 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2820 	raid->heads = 255;
2821 	raid->sectors = 63;
2822 	raid->cylinders = raid->total_sectors / (63 * 255);
2823 	raid->offset_sectors = 0;
2824 	raid->rebuild_lba = 0;
2825 	raid->lun = array;
2826 
2827 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2828 	    raid->disks[meta->disk_number].dev = parent;
2829 	    raid->disks[meta->disk_number].sectors =
2830 		meta->configs[conf_entry].disk.disk_sectors;
2831 	    raid->disks[meta->disk_number].flags =
2832 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2833 	    ars->raid[raid->volume] = raid;
2834 	    ars->disk_number[raid->volume] = meta->disk_number;
2835 	    retval = 1;
2836 	}
2837 	else
2838 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2839 
2840 	break;
2841     }
2842 
2843 lsiv2_out:
2844     kfree(meta, M_AR);
2845     return retval;
2846 }
2847 
2848 /* LSILogic V3 MegaRAID Metadata */
2849 static int
2850 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2851 {
2852     struct ata_raid_subdisk *ars = device_get_softc(dev);
2853     device_t parent = device_get_parent(dev);
2854     struct lsiv3_raid_conf *meta;
2855     struct ar_softc *raid = NULL;
2856     u_int8_t checksum, *ptr;
2857     int array, entry, count, disk_number, retval = 0;
2858 
2859     if (!(meta = (struct lsiv3_raid_conf *)
2860 	  kmalloc(sizeof(struct lsiv3_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2861 	return ENOMEM;
2862 
2863     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2864 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2865 	if (testing || bootverbose)
2866 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2867 	goto lsiv3_out;
2868     }
2869 
2870     /* check if this is a LSI RAID struct */
2871     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2872 	if (testing || bootverbose)
2873 	    device_printf(parent, "LSI (v3) check1 failed\n");
2874 	goto lsiv3_out;
2875     }
2876 
2877     /* check if the checksum is OK */
2878     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2879 	checksum += *ptr++;
2880     if (checksum) {
2881 	if (testing || bootverbose)
2882 	    device_printf(parent, "LSI (v3) check2 failed\n");
2883 	goto lsiv3_out;
2884     }
2885 
2886     if (testing || bootverbose)
2887 	ata_raid_lsiv3_print_meta(meta);
2888 
2889     /* now convert LSI (v3) config meta into our generic form */
2890     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2891 	if (!raidp[array]) {
2892 	    raidp[array] =
2893 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2894 					  M_WAITOK | M_ZERO);
2895 	    if (!raidp[array]) {
2896 		device_printf(parent, "failed to allocate metadata storage\n");
2897 		goto lsiv3_out;
2898 	    }
2899 	}
2900 	raid = raidp[array];
2901 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2902 	    array++;
2903 	    continue;
2904 	}
2905 
2906 	if ((raid->format == AR_F_LSIV3_RAID) &&
2907 	    (raid->magic_0 != meta->timestamp)) {
2908 	    array++;
2909 	    continue;
2910 	}
2911 
2912 	switch (meta->raid[entry].total_disks) {
2913 	case 0:
2914 	    entry++;
2915 	    continue;
2916 	case 1:
2917 	    if (meta->raid[entry].device == meta->device) {
2918 		disk_number = 0;
2919 		break;
2920 	    }
2921 	    if (raid->format)
2922 		array++;
2923 	    entry++;
2924 	    continue;
2925 	case 2:
2926 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2927 	    break;
2928 	default:
2929 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2930 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2931 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2932 	    break;
2933 	}
2934 
2935 	switch (meta->raid[entry].type) {
2936 	case LSIV3_T_RAID0:
2937 	    raid->type = AR_T_RAID0;
2938 	    raid->width = meta->raid[entry].total_disks;
2939 	    break;
2940 
2941 	case LSIV3_T_RAID1:
2942 	    raid->type = AR_T_RAID1;
2943 	    raid->width = meta->raid[entry].array_width;
2944 	    break;
2945 
2946 	default:
2947 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2948 			  meta->raid[entry].type);
2949 	    kfree(raidp[array], M_AR);
2950 	    raidp[array] = NULL;
2951 	    entry++;
2952 	    continue;
2953 	}
2954 
2955 	raid->magic_0 = meta->timestamp;
2956 	raid->format = AR_F_LSIV3_RAID;
2957 	raid->generation = 0;
2958 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2959 	raid->total_disks = meta->raid[entry].total_disks;
2960 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2961 	raid->heads = 255;
2962 	raid->sectors = 63;
2963 	raid->cylinders = raid->total_sectors / (63 * 255);
2964 	raid->offset_sectors = meta->raid[entry].offset;
2965 	raid->rebuild_lba = 0;
2966 	raid->lun = array;
2967 
2968 	raid->disks[disk_number].dev = parent;
2969 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2970 	raid->disks[disk_number].flags =
2971 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2972 	ars->raid[raid->volume] = raid;
2973 	ars->disk_number[raid->volume] = disk_number;
2974 	retval = 1;
2975 	entry++;
2976 	array++;
2977     }
2978 
2979 lsiv3_out:
2980     kfree(meta, M_AR);
2981     return retval;
2982 }
2983 
2984 /* nVidia MediaShield Metadata */
2985 static int
2986 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2987 {
2988     struct ata_raid_subdisk *ars = device_get_softc(dev);
2989     device_t parent = device_get_parent(dev);
2990     struct nvidia_raid_conf *meta;
2991     struct ar_softc *raid = NULL;
2992     u_int32_t checksum, *ptr;
2993     int array, count, retval = 0;
2994 
2995     if (!(meta = (struct nvidia_raid_conf *)
2996 	  kmalloc(sizeof(struct nvidia_raid_conf), M_AR, M_WAITOK | M_ZERO)))
2997 	return ENOMEM;
2998 
2999     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3000 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3001 	if (testing || bootverbose)
3002 	    device_printf(parent, "nVidia read metadata failed\n");
3003 	goto nvidia_out;
3004     }
3005 
3006     /* check if this is a nVidia RAID struct */
3007     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3008 	if (testing || bootverbose)
3009 	    device_printf(parent, "nVidia check1 failed\n");
3010 	goto nvidia_out;
3011     }
3012 
3013     /* check if the checksum is OK */
3014     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3015 	 count < meta->config_size; count++)
3016 	checksum += *ptr++;
3017     if (checksum) {
3018 	if (testing || bootverbose)
3019 	    device_printf(parent, "nVidia check2 failed\n");
3020 	goto nvidia_out;
3021     }
3022 
3023     if (testing || bootverbose)
3024 	ata_raid_nvidia_print_meta(meta);
3025 
3026     /* now convert nVidia meta into our generic form */
3027     for (array = 0; array < MAX_ARRAYS; array++) {
3028 	if (!raidp[array]) {
3029 	    raidp[array] =
3030 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3031 					  M_WAITOK | M_ZERO);
3032 	    if (!raidp[array]) {
3033 		device_printf(parent, "failed to allocate metadata storage\n");
3034 		goto nvidia_out;
3035 	    }
3036 	}
3037 	raid = raidp[array];
3038 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3039 	    continue;
3040 
3041 	if (raid->format == AR_F_NVIDIA_RAID &&
3042 	    ((raid->magic_0 != meta->magic_1) ||
3043 	     (raid->magic_1 != meta->magic_2))) {
3044 	    continue;
3045 	}
3046 
3047 	switch (meta->type) {
3048 	case NV_T_SPAN:
3049 	    raid->type = AR_T_SPAN;
3050 	    break;
3051 
3052 	case NV_T_RAID0:
3053 	    raid->type = AR_T_RAID0;
3054 	    break;
3055 
3056 	case NV_T_RAID1:
3057 	    raid->type = AR_T_RAID1;
3058 	    break;
3059 
3060 	case NV_T_RAID5:
3061 	    raid->type = AR_T_RAID5;
3062 	    break;
3063 
3064 	case NV_T_RAID01:
3065 	    raid->type = AR_T_RAID01;
3066 	    break;
3067 
3068 	default:
3069 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3070 			  meta->type);
3071 	    kfree(raidp[array], M_AR);
3072 	    raidp[array] = NULL;
3073 	    goto nvidia_out;
3074 	}
3075 	raid->magic_0 = meta->magic_1;
3076 	raid->magic_1 = meta->magic_2;
3077 	raid->format = AR_F_NVIDIA_RAID;
3078 	raid->generation = 0;
3079 	raid->interleave = meta->stripe_sectors;
3080 	raid->width = meta->array_width;
3081 	raid->total_disks = meta->total_disks;
3082 	raid->total_sectors = meta->total_sectors;
3083 	raid->heads = 255;
3084 	raid->sectors = 63;
3085 	raid->cylinders = raid->total_sectors / (63 * 255);
3086 	raid->offset_sectors = 0;
3087 	raid->rebuild_lba = meta->rebuild_lba;
3088 	raid->lun = array;
3089 	raid->status = AR_S_READY;
3090 	if (meta->status & NV_S_DEGRADED)
3091 	    raid->status |= AR_S_DEGRADED;
3092 
3093 	raid->disks[meta->disk_number].dev = parent;
3094 	raid->disks[meta->disk_number].sectors =
3095 	    raid->total_sectors / raid->width;
3096 	raid->disks[meta->disk_number].flags =
3097 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3098 	ars->raid[raid->volume] = raid;
3099 	ars->disk_number[raid->volume] = meta->disk_number;
3100 	retval = 1;
3101 	break;
3102     }
3103 
3104 nvidia_out:
3105     kfree(meta, M_AR);
3106     return retval;
3107 }
3108 
3109 /* Promise FastTrak Metadata */
3110 static int
3111 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3112 {
3113     struct ata_raid_subdisk *ars = device_get_softc(dev);
3114     device_t parent = device_get_parent(dev);
3115     struct promise_raid_conf *meta;
3116     struct ar_softc *raid;
3117     u_int32_t checksum, *ptr;
3118     int array, count, disk, disksum = 0, retval = 0;
3119 
3120     if (!(meta = (struct promise_raid_conf *)
3121 	  kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3122 	return ENOMEM;
3123 
3124     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3125 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3126 	if (testing || bootverbose)
3127 	    device_printf(parent, "%s read metadata failed\n",
3128 			  native ? "FreeBSD" : "Promise");
3129 	goto promise_out;
3130     }
3131 
3132     /* check the signature */
3133     if (native) {
3134 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3135 	    if (testing || bootverbose)
3136 		device_printf(parent, "FreeBSD check1 failed\n");
3137 	    goto promise_out;
3138 	}
3139     }
3140     else {
3141 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3142 	    if (testing || bootverbose)
3143 		device_printf(parent, "Promise check1 failed\n");
3144 	    goto promise_out;
3145 	}
3146     }
3147 
3148     /* check if the checksum is OK */
3149     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3150 	checksum += *ptr++;
3151     if (checksum != *ptr) {
3152 	if (testing || bootverbose)
3153 	    device_printf(parent, "%s check2 failed\n",
3154 			  native ? "FreeBSD" : "Promise");
3155 	goto promise_out;
3156     }
3157 
3158     /* check on disk integrity status */
3159     if (meta->raid.integrity != PR_I_VALID) {
3160 	if (testing || bootverbose)
3161 	    device_printf(parent, "%s check3 failed\n",
3162 			  native ? "FreeBSD" : "Promise");
3163 	goto promise_out;
3164     }
3165 
3166     if (testing || bootverbose)
3167 	ata_raid_promise_print_meta(meta);
3168 
3169     /* now convert Promise metadata into our generic form */
3170     for (array = 0; array < MAX_ARRAYS; array++) {
3171 	if (!raidp[array]) {
3172 	    raidp[array] =
3173 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3174 					  M_WAITOK | M_ZERO);
3175 	    if (!raidp[array]) {
3176 		device_printf(parent, "failed to allocate metadata storage\n");
3177 		goto promise_out;
3178 	    }
3179 	}
3180 	raid = raidp[array];
3181 	if (raid->format &&
3182 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3183 	    continue;
3184 
3185 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3186 	    !(meta->raid.magic_1 == (raid->magic_1)))
3187 	    continue;
3188 
3189 	/* update our knowledge about the array config based on generation */
3190 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3191 	    switch (meta->raid.type) {
3192 	    case PR_T_SPAN:
3193 		raid->type = AR_T_SPAN;
3194 		break;
3195 
3196 	    case PR_T_JBOD:
3197 		raid->type = AR_T_JBOD;
3198 		break;
3199 
3200 	    case PR_T_RAID0:
3201 		raid->type = AR_T_RAID0;
3202 		break;
3203 
3204 	    case PR_T_RAID1:
3205 		raid->type = AR_T_RAID1;
3206 		if (meta->raid.array_width > 1)
3207 		    raid->type = AR_T_RAID01;
3208 		break;
3209 
3210 	    case PR_T_RAID5:
3211 		raid->type = AR_T_RAID5;
3212 		break;
3213 
3214 	    default:
3215 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3216 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3217 		kfree(raidp[array], M_AR);
3218 		raidp[array] = NULL;
3219 		goto promise_out;
3220 	    }
3221 	    raid->magic_1 = meta->raid.magic_1;
3222 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3223 	    raid->generation = meta->raid.generation;
3224 	    raid->interleave = 1 << meta->raid.stripe_shift;
3225 	    raid->width = meta->raid.array_width;
3226 	    raid->total_disks = meta->raid.total_disks;
3227 	    raid->heads = meta->raid.heads + 1;
3228 	    raid->sectors = meta->raid.sectors;
3229 	    raid->cylinders = meta->raid.cylinders + 1;
3230 	    raid->total_sectors = meta->raid.total_sectors;
3231 	    raid->offset_sectors = 0;
3232 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3233 	    raid->lun = array;
3234 	    if ((meta->raid.status &
3235 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3236 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3237 		raid->status |= AR_S_READY;
3238 		if (meta->raid.status & PR_S_DEGRADED)
3239 		    raid->status |= AR_S_DEGRADED;
3240 	    }
3241 	    else
3242 		raid->status &= ~AR_S_READY;
3243 
3244 	    /* convert disk flags to our internal types */
3245 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3246 		raid->disks[disk].dev = NULL;
3247 		raid->disks[disk].flags = 0;
3248 		*((u_int64_t *)(raid->disks[disk].serial)) =
3249 		    meta->raid.disk[disk].magic_0;
3250 		disksum += meta->raid.disk[disk].flags;
3251 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3252 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3253 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3254 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3255 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3256 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3257 		    raid->disks[disk].flags |= AR_DF_SPARE;
3258 		}
3259 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3260 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3261 	    }
3262 	    if (!disksum) {
3263 		device_printf(parent, "%s subdisks has no flags\n",
3264 			      native ? "FreeBSD" : "Promise");
3265 		kfree(raidp[array], M_AR);
3266 		raidp[array] = NULL;
3267 		goto promise_out;
3268 	    }
3269 	}
3270 	if (meta->raid.generation >= raid->generation) {
3271 	    int disk_number = meta->raid.disk_number;
3272 
3273 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3274 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3275 		raid->disks[disk_number].dev = parent;
3276 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3277 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3278 		if ((raid->disks[disk_number].flags &
3279 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3280 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3281 		    ars->raid[raid->volume] = raid;
3282 		    ars->disk_number[raid->volume] = disk_number;
3283 		    retval = 1;
3284 		}
3285 	    }
3286 	}
3287 	break;
3288     }
3289 
3290 promise_out:
3291     kfree(meta, M_AR);
3292     return retval;
3293 }
3294 
3295 static int
3296 ata_raid_promise_write_meta(struct ar_softc *rdp)
3297 {
3298     struct promise_raid_conf *meta;
3299     struct timeval timestamp;
3300     u_int32_t *ckptr;
3301     int count, disk, drive, error = 0;
3302 
3303     if (!(meta = (struct promise_raid_conf *)
3304 	  kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK))) {
3305 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3306 	return ENOMEM;
3307     }
3308 
3309     rdp->generation++;
3310     microtime(&timestamp);
3311 
3312     for (disk = 0; disk < rdp->total_disks; disk++) {
3313 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3314 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3315 	meta->dummy_0 = 0x00020000;
3316 	meta->raid.disk_number = disk;
3317 
3318 	if (rdp->disks[disk].dev) {
3319 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3320 	    struct ata_channel *ch =
3321 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3322 
3323 	    meta->raid.channel = ch->unit;
3324 	    meta->raid.device = ATA_DEV(atadev->unit);
3325 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3326 	    meta->raid.disk_offset = rdp->offset_sectors;
3327 	}
3328 	else {
3329 	    meta->raid.channel = 0;
3330 	    meta->raid.device = 0;
3331 	    meta->raid.disk_sectors = 0;
3332 	    meta->raid.disk_offset = 0;
3333 	}
3334 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3335 	meta->magic_1 = timestamp.tv_sec >> 16;
3336 	meta->magic_2 = timestamp.tv_sec;
3337 	meta->raid.integrity = PR_I_VALID;
3338 	meta->raid.magic_0 = meta->magic_0;
3339 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3340 	meta->raid.generation = rdp->generation;
3341 
3342 	if (rdp->status & AR_S_READY) {
3343 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3344 	    meta->raid.status =
3345 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3346 	    if (rdp->status & AR_S_DEGRADED)
3347 		meta->raid.status |= PR_S_DEGRADED;
3348 	    else
3349 		meta->raid.status |= PR_S_FUNCTIONAL;
3350 	}
3351 	else {
3352 	    meta->raid.flags = PR_F_DOWN;
3353 	    meta->raid.status = 0;
3354 	}
3355 
3356 	switch (rdp->type) {
3357 	case AR_T_RAID0:
3358 	    meta->raid.type = PR_T_RAID0;
3359 	    break;
3360 	case AR_T_RAID1:
3361 	    meta->raid.type = PR_T_RAID1;
3362 	    break;
3363 	case AR_T_RAID01:
3364 	    meta->raid.type = PR_T_RAID1;
3365 	    break;
3366 	case AR_T_RAID5:
3367 	    meta->raid.type = PR_T_RAID5;
3368 	    break;
3369 	case AR_T_SPAN:
3370 	    meta->raid.type = PR_T_SPAN;
3371 	    break;
3372 	case AR_T_JBOD:
3373 	    meta->raid.type = PR_T_JBOD;
3374 	    break;
3375 	default:
3376 	    kfree(meta, M_AR);
3377 	    return ENODEV;
3378 	}
3379 
3380 	meta->raid.total_disks = rdp->total_disks;
3381 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3382 	meta->raid.array_width = rdp->width;
3383 	meta->raid.array_number = rdp->lun;
3384 	meta->raid.total_sectors = rdp->total_sectors;
3385 	meta->raid.cylinders = rdp->cylinders - 1;
3386 	meta->raid.heads = rdp->heads - 1;
3387 	meta->raid.sectors = rdp->sectors;
3388 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3389 
3390 	bzero(&meta->raid.disk, 8 * 12);
3391 	for (drive = 0; drive < rdp->total_disks; drive++) {
3392 	    meta->raid.disk[drive].flags = 0;
3393 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3394 		meta->raid.disk[drive].flags |= PR_F_VALID;
3395 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3396 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3397 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3398 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3399 	    else
3400 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3401 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3402 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3403 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3404 	    meta->raid.disk[drive].dummy_0 = 0x0;
3405 	    if (rdp->disks[drive].dev) {
3406 		struct ata_channel *ch =
3407 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3408 		struct ata_device *atadev =
3409 		    device_get_softc(rdp->disks[drive].dev);
3410 
3411 		meta->raid.disk[drive].channel = ch->unit;
3412 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3413 	    }
3414 	    meta->raid.disk[drive].magic_0 =
3415 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3416 	}
3417 
3418 	if (rdp->disks[disk].dev) {
3419 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3420 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3421 		if (rdp->format == AR_F_FREEBSD_RAID)
3422 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3423 		else
3424 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3425 	    }
3426 	    else
3427 		bzero(meta->promise_id, sizeof(meta->promise_id));
3428 	    meta->checksum = 0;
3429 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3430 		meta->checksum += *ckptr++;
3431 	    if (testing || bootverbose)
3432 		ata_raid_promise_print_meta(meta);
3433 	    if (ata_raid_rw(rdp->disks[disk].dev,
3434 			    PROMISE_LBA(rdp->disks[disk].dev),
3435 			    meta, sizeof(struct promise_raid_conf),
3436 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3437 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3438 		error = EIO;
3439 	    }
3440 	}
3441     }
3442     kfree(meta, M_AR);
3443     return error;
3444 }
3445 
3446 /* Silicon Image Medley Metadata */
3447 static int
3448 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3449 {
3450     struct ata_raid_subdisk *ars = device_get_softc(dev);
3451     device_t parent = device_get_parent(dev);
3452     struct sii_raid_conf *meta;
3453     struct ar_softc *raid = NULL;
3454     u_int16_t checksum, *ptr;
3455     int array, count, disk, retval = 0;
3456 
3457     if (!(meta = (struct sii_raid_conf *)
3458 	  kmalloc(sizeof(struct sii_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3459 	return ENOMEM;
3460 
3461     if (ata_raid_rw(parent, SII_LBA(parent),
3462 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3463 	if (testing || bootverbose)
3464 	    device_printf(parent, "Silicon Image read metadata failed\n");
3465 	goto sii_out;
3466     }
3467 
3468     /* check if this is a Silicon Image (Medley) RAID struct */
3469     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3470 	checksum += *ptr++;
3471     if (checksum) {
3472 	if (testing || bootverbose)
3473 	    device_printf(parent, "Silicon Image check1 failed\n");
3474 	goto sii_out;
3475     }
3476 
3477     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3478 	checksum += *ptr++;
3479     if (checksum != meta->checksum_1) {
3480 	if (testing || bootverbose)
3481 	    device_printf(parent, "Silicon Image check2 failed\n");
3482 	goto sii_out;
3483     }
3484 
3485     /* check verison */
3486     if (meta->version_major != 0x0002 ||
3487 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3488 	if (testing || bootverbose)
3489 	    device_printf(parent, "Silicon Image check3 failed\n");
3490 	goto sii_out;
3491     }
3492 
3493     if (testing || bootverbose)
3494 	ata_raid_sii_print_meta(meta);
3495 
3496     /* now convert Silicon Image meta into our generic form */
3497     for (array = 0; array < MAX_ARRAYS; array++) {
3498 	if (!raidp[array]) {
3499 	    raidp[array] =
3500 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3501 					  M_WAITOK | M_ZERO);
3502 	    if (!raidp[array]) {
3503 		device_printf(parent, "failed to allocate metadata storage\n");
3504 		goto sii_out;
3505 	    }
3506 	}
3507 	raid = raidp[array];
3508 	if (raid->format && (raid->format != AR_F_SII_RAID))
3509 	    continue;
3510 
3511 	if (raid->format == AR_F_SII_RAID &&
3512 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3513 	    continue;
3514 	}
3515 
3516 	/* update our knowledge about the array config based on generation */
3517 	if (!meta->generation || meta->generation > raid->generation) {
3518 	    switch (meta->type) {
3519 	    case SII_T_RAID0:
3520 		raid->type = AR_T_RAID0;
3521 		break;
3522 
3523 	    case SII_T_RAID1:
3524 		raid->type = AR_T_RAID1;
3525 		break;
3526 
3527 	    case SII_T_RAID01:
3528 		raid->type = AR_T_RAID01;
3529 		break;
3530 
3531 	    case SII_T_SPARE:
3532 		device_printf(parent, "Silicon Image SPARE disk\n");
3533 		kfree(raidp[array], M_AR);
3534 		raidp[array] = NULL;
3535 		goto sii_out;
3536 
3537 	    default:
3538 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3539 			      meta->type);
3540 		kfree(raidp[array], M_AR);
3541 		raidp[array] = NULL;
3542 		goto sii_out;
3543 	    }
3544 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3545 	    raid->format = AR_F_SII_RAID;
3546 	    raid->generation = meta->generation;
3547 	    raid->interleave = meta->stripe_sectors;
3548 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3549 	    raid->total_disks =
3550 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3551 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3552 	    raid->total_sectors = meta->total_sectors;
3553 	    raid->heads = 255;
3554 	    raid->sectors = 63;
3555 	    raid->cylinders = raid->total_sectors / (63 * 255);
3556 	    raid->offset_sectors = 0;
3557 	    raid->rebuild_lba = meta->rebuild_lba;
3558 	    raid->lun = array;
3559 	    strncpy(raid->name, meta->name,
3560 		    min(sizeof(raid->name), sizeof(meta->name)));
3561 
3562 	    /* clear out any old info */
3563 	    if (raid->generation) {
3564 		for (disk = 0; disk < raid->total_disks; disk++) {
3565 		    raid->disks[disk].dev = NULL;
3566 		    raid->disks[disk].flags = 0;
3567 		}
3568 	    }
3569 	}
3570 	if (meta->generation >= raid->generation) {
3571 	    /* XXX SOS add check for the right physical disk by serial# */
3572 	    if (meta->status & SII_S_READY) {
3573 		int disk_number = (raid->type == AR_T_RAID01) ?
3574 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3575 		    meta->disk_number;
3576 
3577 		raid->disks[disk_number].dev = parent;
3578 		raid->disks[disk_number].sectors =
3579 		    raid->total_sectors / raid->width;
3580 		raid->disks[disk_number].flags =
3581 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3582 		ars->raid[raid->volume] = raid;
3583 		ars->disk_number[raid->volume] = disk_number;
3584 		retval = 1;
3585 	    }
3586 	}
3587 	break;
3588     }
3589 
3590 sii_out:
3591     kfree(meta, M_AR);
3592     return retval;
3593 }
3594 
3595 /* Silicon Integrated Systems Metadata */
3596 static int
3597 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3598 {
3599     struct ata_raid_subdisk *ars = device_get_softc(dev);
3600     device_t parent = device_get_parent(dev);
3601     struct sis_raid_conf *meta;
3602     struct ar_softc *raid = NULL;
3603     int array, disk_number, drive, retval = 0;
3604 
3605     if (!(meta = (struct sis_raid_conf *)
3606 	  kmalloc(sizeof(struct sis_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3607 	return ENOMEM;
3608 
3609     if (ata_raid_rw(parent, SIS_LBA(parent),
3610 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3611 	if (testing || bootverbose)
3612 	    device_printf(parent,
3613 			  "Silicon Integrated Systems read metadata failed\n");
3614     }
3615 
3616     /* check for SiS magic */
3617     if (meta->magic != SIS_MAGIC) {
3618 	if (testing || bootverbose)
3619 	    device_printf(parent,
3620 			  "Silicon Integrated Systems check1 failed\n");
3621 	goto sis_out;
3622     }
3623 
3624     if (testing || bootverbose)
3625 	ata_raid_sis_print_meta(meta);
3626 
3627     /* now convert SiS meta into our generic form */
3628     for (array = 0; array < MAX_ARRAYS; array++) {
3629 	if (!raidp[array]) {
3630 	    raidp[array] =
3631 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3632 					  M_WAITOK | M_ZERO);
3633 	    if (!raidp[array]) {
3634 		device_printf(parent, "failed to allocate metadata storage\n");
3635 		goto sis_out;
3636 	    }
3637 	}
3638 
3639 	raid = raidp[array];
3640 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3641 	    continue;
3642 
3643 	if ((raid->format == AR_F_SIS_RAID) &&
3644 	    ((raid->magic_0 != meta->controller_pci_id) ||
3645 	     (raid->magic_1 != meta->timestamp))) {
3646 	    continue;
3647 	}
3648 
3649 	switch (meta->type_total_disks & SIS_T_MASK) {
3650 	case SIS_T_JBOD:
3651 	    raid->type = AR_T_JBOD;
3652 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3653 	    raid->total_sectors += SIS_LBA(parent);
3654 	    break;
3655 
3656 	case SIS_T_RAID0:
3657 	    raid->type = AR_T_RAID0;
3658 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3659 	    if (!raid->total_sectors ||
3660 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3661 		raid->total_sectors = raid->width * SIS_LBA(parent);
3662 	    break;
3663 
3664 	case SIS_T_RAID1:
3665 	    raid->type = AR_T_RAID1;
3666 	    raid->width = 1;
3667 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3668 		raid->total_sectors = SIS_LBA(parent);
3669 	    break;
3670 
3671 	default:
3672 	    device_printf(parent, "Silicon Integrated Systems "
3673 			  "unknown RAID type 0x%08x\n", meta->magic);
3674 	    kfree(raidp[array], M_AR);
3675 	    raidp[array] = NULL;
3676 	    goto sis_out;
3677 	}
3678 	raid->magic_0 = meta->controller_pci_id;
3679 	raid->magic_1 = meta->timestamp;
3680 	raid->format = AR_F_SIS_RAID;
3681 	raid->generation = 0;
3682 	raid->interleave = meta->stripe_sectors;
3683 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3684 	raid->heads = 255;
3685 	raid->sectors = 63;
3686 	raid->cylinders = raid->total_sectors / (63 * 255);
3687 	raid->offset_sectors = 0;
3688 	raid->rebuild_lba = 0;
3689 	raid->lun = array;
3690 	/* XXX SOS if total_disks > 2 this doesn't float */
3691 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3692 	    disk_number = 0;
3693 	else
3694 	    disk_number = 1;
3695 
3696 	for (drive = 0; drive < raid->total_disks; drive++) {
3697 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3698 	    if (drive == disk_number) {
3699 		raid->disks[disk_number].dev = parent;
3700 		raid->disks[disk_number].flags =
3701 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3702 		ars->raid[raid->volume] = raid;
3703 		ars->disk_number[raid->volume] = disk_number;
3704 	    }
3705 	}
3706 	retval = 1;
3707 	break;
3708     }
3709 
3710 sis_out:
3711     kfree(meta, M_AR);
3712     return retval;
3713 }
3714 
3715 static int
3716 ata_raid_sis_write_meta(struct ar_softc *rdp)
3717 {
3718     struct sis_raid_conf *meta;
3719     struct timeval timestamp;
3720     int disk, error = 0;
3721 
3722     if (!(meta = (struct sis_raid_conf *)
3723 	  kmalloc(sizeof(struct sis_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
3724 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3725 	return ENOMEM;
3726     }
3727 
3728     rdp->generation++;
3729     microtime(&timestamp);
3730 
3731     meta->magic = SIS_MAGIC;
3732     /* XXX SOS if total_disks > 2 this doesn't float */
3733     for (disk = 0; disk < rdp->total_disks; disk++) {
3734 	if (rdp->disks[disk].dev) {
3735 	    struct ata_channel *ch =
3736 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3737 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3738 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3739 
3740 	    meta->disks |= disk_number << ((1 - disk) << 2);
3741 	}
3742     }
3743     switch (rdp->type) {
3744     case AR_T_JBOD:
3745 	meta->type_total_disks = SIS_T_JBOD;
3746 	break;
3747 
3748     case AR_T_RAID0:
3749 	meta->type_total_disks = SIS_T_RAID0;
3750 	break;
3751 
3752     case AR_T_RAID1:
3753 	meta->type_total_disks = SIS_T_RAID1;
3754 	break;
3755 
3756     default:
3757 	kfree(meta, M_AR);
3758 	return ENODEV;
3759     }
3760     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3761     meta->stripe_sectors = rdp->interleave;
3762     meta->timestamp = timestamp.tv_sec;
3763 
3764     for (disk = 0; disk < rdp->total_disks; disk++) {
3765 	if (rdp->disks[disk].dev) {
3766 	    struct ata_channel *ch =
3767 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3768 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3769 
3770 	    meta->controller_pci_id =
3771 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3772 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3773 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3774 
3775 	    /* XXX SOS if total_disks > 2 this may not float */
3776 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3777 
3778 	    if (testing || bootverbose)
3779 		ata_raid_sis_print_meta(meta);
3780 
3781 	    if (ata_raid_rw(rdp->disks[disk].dev,
3782 			    SIS_LBA(rdp->disks[disk].dev),
3783 			    meta, sizeof(struct sis_raid_conf),
3784 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3785 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3786 		error = EIO;
3787 	    }
3788 	}
3789     }
3790     kfree(meta, M_AR);
3791     return error;
3792 }
3793 
3794 /* VIA Tech V-RAID Metadata */
3795 static int
3796 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3797 {
3798     struct ata_raid_subdisk *ars = device_get_softc(dev);
3799     device_t parent = device_get_parent(dev);
3800     struct via_raid_conf *meta;
3801     struct ar_softc *raid = NULL;
3802     u_int8_t checksum, *ptr;
3803     int array, count, disk, retval = 0;
3804 
3805     if (!(meta = (struct via_raid_conf *)
3806 	  kmalloc(sizeof(struct via_raid_conf), M_AR, M_WAITOK | M_ZERO)))
3807 	return ENOMEM;
3808 
3809     if (ata_raid_rw(parent, VIA_LBA(parent),
3810 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3811 	if (testing || bootverbose)
3812 	    device_printf(parent, "VIA read metadata failed\n");
3813 	goto via_out;
3814     }
3815 
3816     /* check if this is a VIA RAID struct */
3817     if (meta->magic != VIA_MAGIC) {
3818 	if (testing || bootverbose)
3819 	    device_printf(parent, "VIA check1 failed\n");
3820 	goto via_out;
3821     }
3822 
3823     /* calculate checksum and compare for valid */
3824     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3825 	checksum += *ptr++;
3826     if (checksum != meta->checksum) {
3827 	if (testing || bootverbose)
3828 	    device_printf(parent, "VIA check2 failed\n");
3829 	goto via_out;
3830     }
3831 
3832     if (testing || bootverbose)
3833 	ata_raid_via_print_meta(meta);
3834 
3835     /* now convert VIA meta into our generic form */
3836     for (array = 0; array < MAX_ARRAYS; array++) {
3837 	if (!raidp[array]) {
3838 	    raidp[array] =
3839 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3840 					  M_WAITOK | M_ZERO);
3841 	    if (!raidp[array]) {
3842 		device_printf(parent, "failed to allocate metadata storage\n");
3843 		goto via_out;
3844 	    }
3845 	}
3846 	raid = raidp[array];
3847 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3848 	    continue;
3849 
3850 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3851 	    continue;
3852 
3853 	switch (meta->type & VIA_T_MASK) {
3854 	case VIA_T_RAID0:
3855 	    raid->type = AR_T_RAID0;
3856 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3857 	    if (!raid->total_sectors ||
3858 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3859 		raid->total_sectors = raid->width * meta->disk_sectors;
3860 	    break;
3861 
3862 	case VIA_T_RAID1:
3863 	    raid->type = AR_T_RAID1;
3864 	    raid->width = 1;
3865 	    raid->total_sectors = meta->disk_sectors;
3866 	    break;
3867 
3868 	case VIA_T_RAID01:
3869 	    raid->type = AR_T_RAID01;
3870 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3871 	    if (!raid->total_sectors ||
3872 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3873 		raid->total_sectors = raid->width * meta->disk_sectors;
3874 	    break;
3875 
3876 	case VIA_T_RAID5:
3877 	    raid->type = AR_T_RAID5;
3878 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3879 	    if (!raid->total_sectors ||
3880 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3881 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3882 	    break;
3883 
3884 	case VIA_T_SPAN:
3885 	    raid->type = AR_T_SPAN;
3886 	    raid->width = 1;
3887 	    raid->total_sectors += meta->disk_sectors;
3888 	    break;
3889 
3890 	default:
3891 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3892 	    kfree(raidp[array], M_AR);
3893 	    raidp[array] = NULL;
3894 	    goto via_out;
3895 	}
3896 	raid->magic_0 = meta->disks[0];
3897 	raid->format = AR_F_VIA_RAID;
3898 	raid->generation = 0;
3899 	raid->interleave =
3900 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3901 	for (count = 0, disk = 0; disk < 8; disk++)
3902 	    if (meta->disks[disk])
3903 		count++;
3904 	raid->total_disks = count;
3905 	raid->heads = 255;
3906 	raid->sectors = 63;
3907 	raid->cylinders = raid->total_sectors / (63 * 255);
3908 	raid->offset_sectors = 0;
3909 	raid->rebuild_lba = 0;
3910 	raid->lun = array;
3911 
3912 	for (disk = 0; disk < raid->total_disks; disk++) {
3913 	    if (meta->disks[disk] == meta->disk_id) {
3914 		raid->disks[disk].dev = parent;
3915 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3916 		      sizeof(u_int32_t));
3917 		raid->disks[disk].sectors = meta->disk_sectors;
3918 		raid->disks[disk].flags =
3919 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3920 		ars->raid[raid->volume] = raid;
3921 		ars->disk_number[raid->volume] = disk;
3922 		retval = 1;
3923 		break;
3924 	    }
3925 	}
3926 	break;
3927     }
3928 
3929 via_out:
3930     kfree(meta, M_AR);
3931     return retval;
3932 }
3933 
3934 static int
3935 ata_raid_via_write_meta(struct ar_softc *rdp)
3936 {
3937     struct via_raid_conf *meta;
3938     int disk, error = 0;
3939 
3940     if (!(meta = (struct via_raid_conf *)
3941 	  kmalloc(sizeof(struct via_raid_conf), M_AR, M_WAITOK | M_ZERO))) {
3942 	kprintf("ar%d: failed to allocate metadata storage\n", rdp->lun);
3943 	return ENOMEM;
3944     }
3945 
3946     rdp->generation++;
3947 
3948     meta->magic = VIA_MAGIC;
3949     meta->dummy_0 = 0x02;
3950     switch (rdp->type) {
3951     case AR_T_SPAN:
3952 	meta->type = VIA_T_SPAN;
3953 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3954 	break;
3955 
3956     case AR_T_RAID0:
3957 	meta->type = VIA_T_RAID0;
3958 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3959 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3960 	break;
3961 
3962     case AR_T_RAID1:
3963 	meta->type = VIA_T_RAID1;
3964 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3965 	break;
3966 
3967     case AR_T_RAID5:
3968 	meta->type = VIA_T_RAID5;
3969 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3970 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3971 	break;
3972 
3973     case AR_T_RAID01:
3974 	meta->type = VIA_T_RAID01;
3975 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3976 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3977 	break;
3978 
3979     default:
3980 	kfree(meta, M_AR);
3981 	return ENODEV;
3982     }
3983     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3984     meta->disk_sectors =
3985 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3986     for (disk = 0; disk < rdp->total_disks; disk++)
3987 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3988 
3989     for (disk = 0; disk < rdp->total_disks; disk++) {
3990 	if (rdp->disks[disk].dev) {
3991 	    u_int8_t *ptr;
3992 	    int count;
3993 
3994 	    meta->disk_index = disk * sizeof(u_int32_t);
3995 	    if (rdp->type == AR_T_RAID01)
3996 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3997 				   (meta->disk_index & ~0x08);
3998 	    meta->disk_id = meta->disks[disk];
3999 	    meta->checksum = 0;
4000 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
4001 		meta->checksum += *ptr++;
4002 
4003 	    if (testing || bootverbose)
4004 		ata_raid_via_print_meta(meta);
4005 
4006 	    if (ata_raid_rw(rdp->disks[disk].dev,
4007 			    VIA_LBA(rdp->disks[disk].dev),
4008 			    meta, sizeof(struct via_raid_conf),
4009 			    ATA_R_WRITE | ATA_R_DIRECT)) {
4010 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
4011 		error = EIO;
4012 	    }
4013 	}
4014     }
4015     kfree(meta, M_AR);
4016     return error;
4017 }
4018 
4019 static struct ata_request *
4020 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4021 {
4022     struct ata_request *request;
4023 
4024     if (!(request = ata_alloc_request())) {
4025 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4026 	return NULL;
4027     }
4028     request->timeout = 5;
4029     request->retries = 2;
4030     request->callback = ata_raid_done;
4031     request->driver = rdp;
4032     request->bio = bio;
4033     switch (request->bio->bio_buf->b_cmd) {
4034     case BUF_CMD_READ:
4035 	request->flags = ATA_R_READ;
4036 	break;
4037     case BUF_CMD_WRITE:
4038 	request->flags = ATA_R_WRITE;
4039 	break;
4040     default:
4041 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4042 	ata_free_request(request);
4043 #if 0
4044 	bio->bio_buf->b_flags |= B_ERROR;
4045 	bio->bio_buf->b_error = EIO;
4046 	biodone(bio);
4047 #endif /* 0 */
4048 	return(NULL);
4049     }
4050     return request;
4051 }
4052 
4053 static int
4054 ata_raid_send_request(struct ata_request *request)
4055 {
4056     struct ata_device *atadev = device_get_softc(request->dev);
4057 
4058     request->transfersize = min(request->bytecount, atadev->max_iosize);
4059     if (request->flags & ATA_R_READ) {
4060 	if (atadev->mode >= ATA_DMA) {
4061 	    request->flags |= ATA_R_DMA;
4062 	    request->u.ata.command = ATA_READ_DMA;
4063 	}
4064 	else if (atadev->max_iosize > DEV_BSIZE)
4065 	    request->u.ata.command = ATA_READ_MUL;
4066 	else
4067 	    request->u.ata.command = ATA_READ;
4068     }
4069     else if (request->flags & ATA_R_WRITE) {
4070 	if (atadev->mode >= ATA_DMA) {
4071 	    request->flags |= ATA_R_DMA;
4072 	    request->u.ata.command = ATA_WRITE_DMA;
4073 	}
4074 	else if (atadev->max_iosize > DEV_BSIZE)
4075 	    request->u.ata.command = ATA_WRITE_MUL;
4076 	else
4077 	    request->u.ata.command = ATA_WRITE;
4078     }
4079     else {
4080 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4081 	ata_free_request(request);
4082 	return EIO;
4083     }
4084     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4085     ata_queue_request(request);
4086     return 0;
4087 }
4088 
4089 static int
4090 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4091 {
4092     struct ata_device *atadev = device_get_softc(dev);
4093     struct ata_request *request;
4094     int error;
4095 
4096     if (bcount % DEV_BSIZE) {
4097 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4098 	return ENOMEM;
4099     }
4100 
4101     if (!(request = ata_alloc_request())) {
4102 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4103 	return ENOMEM;
4104     }
4105 
4106     /* setup request */
4107     request->dev = dev;
4108     request->timeout = 10;
4109     request->retries = 0;
4110     request->data = data;
4111     request->bytecount = bcount;
4112     request->transfersize = DEV_BSIZE;
4113     request->u.ata.lba = lba;
4114     request->u.ata.count = request->bytecount / DEV_BSIZE;
4115     request->flags = flags;
4116 
4117     if (flags & ATA_R_READ) {
4118 	if (atadev->mode >= ATA_DMA) {
4119 	    request->u.ata.command = ATA_READ_DMA;
4120 	    request->flags |= ATA_R_DMA;
4121 	}
4122 	else
4123 	    request->u.ata.command = ATA_READ;
4124 	ata_queue_request(request);
4125     }
4126     else if (flags & ATA_R_WRITE) {
4127 	if (atadev->mode >= ATA_DMA) {
4128 	    request->u.ata.command = ATA_WRITE_DMA;
4129 	    request->flags |= ATA_R_DMA;
4130 	}
4131 	else
4132 	    request->u.ata.command = ATA_WRITE;
4133 	ata_queue_request(request);
4134     }
4135     else {
4136 	device_printf(dev, "FAILURE - unknown IO operation\n");
4137 	request->result = EIO;
4138     }
4139     error = request->result;
4140     ata_free_request(request);
4141     return error;
4142 }
4143 
4144 /*
4145  * module handeling
4146  */
4147 static int
4148 ata_raid_subdisk_probe(device_t dev)
4149 {
4150     device_quiet(dev);
4151     return 0;
4152 }
4153 
4154 static int
4155 ata_raid_subdisk_attach(device_t dev)
4156 {
4157     struct ata_raid_subdisk *ars = device_get_softc(dev);
4158     int volume;
4159 
4160     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4161 	ars->raid[volume] = NULL;
4162 	ars->disk_number[volume] = -1;
4163     }
4164     ata_raid_read_metadata(dev);
4165     return 0;
4166 }
4167 
4168 static int
4169 ata_raid_subdisk_detach(device_t dev)
4170 {
4171     struct ata_raid_subdisk *ars = device_get_softc(dev);
4172     int volume;
4173 
4174     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4175 	if (ars->raid[volume]) {
4176 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4177 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4178 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4179 	    ata_raid_config_changed(ars->raid[volume], 1);
4180 	    ars->raid[volume] = NULL;
4181 	    ars->disk_number[volume] = -1;
4182 	}
4183     }
4184     return 0;
4185 }
4186 
4187 static device_method_t ata_raid_sub_methods[] = {
4188     /* device interface */
4189     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4190     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4191     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4192     { 0, 0 }
4193 };
4194 
4195 static driver_t ata_raid_sub_driver = {
4196     "subdisk",
4197     ata_raid_sub_methods,
4198     sizeof(struct ata_raid_subdisk)
4199 };
4200 
4201 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4202 
4203 static int
4204 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4205 {
4206     int i;
4207 
4208     switch (what) {
4209     case MOD_LOAD:
4210 	if (testing || bootverbose)
4211 	    kprintf("ATA PseudoRAID loaded\n");
4212 #if 0
4213 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4214 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4215 				M_AR, M_WAITOK | M_ZERO);
4216 	if (!ata_raid_arrays) {
4217 	    kprintf("ataraid: no memory for metadata storage\n");
4218 	    return ENOMEM;
4219 	}
4220 #endif
4221 	/* attach found PseudoRAID arrays */
4222 	for (i = 0; i < MAX_ARRAYS; i++) {
4223 	    struct ar_softc *rdp = ata_raid_arrays[i];
4224 
4225 	    if (!rdp || !rdp->format)
4226 		continue;
4227 	    if (testing || bootverbose)
4228 		ata_raid_print_meta(rdp);
4229 	    ata_raid_attach(rdp, 0);
4230 	}
4231 	ata_raid_ioctl_func = ata_raid_ioctl;
4232 	return 0;
4233 
4234     case MOD_UNLOAD:
4235 	/* detach found PseudoRAID arrays */
4236 	for (i = 0; i < MAX_ARRAYS; i++) {
4237 	    struct ar_softc *rdp = ata_raid_arrays[i];
4238 
4239 	    if (!rdp || !rdp->status)
4240 		continue;
4241 	    disk_destroy(&rdp->disk);
4242 	}
4243 	if (testing || bootverbose)
4244 	    kprintf("ATA PseudoRAID unloaded\n");
4245 #if 0
4246 	kfree(ata_raid_arrays, M_AR);
4247 #endif
4248 	ata_raid_ioctl_func = NULL;
4249 	return 0;
4250 
4251     default:
4252 	return EOPNOTSUPP;
4253     }
4254 }
4255 
4256 static moduledata_t ata_raid_moduledata =
4257     { "ataraid", ata_raid_module_event_handler, NULL };
4258 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4259 MODULE_VERSION(ataraid, 1);
4260 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4261 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4262 
4263 static char *
4264 ata_raid_format(struct ar_softc *rdp)
4265 {
4266     switch (rdp->format) {
4267     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4268     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4269     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4270     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4271     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4272     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4273     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4274     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4275     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4276     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4277     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4278     case AR_F_SII_RAID:         return "Silicon Image Medley";
4279     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4280     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4281     default:                    return "UNKNOWN";
4282     }
4283 }
4284 
4285 static char *
4286 ata_raid_type(struct ar_softc *rdp)
4287 {
4288     switch (rdp->type) {
4289     case AR_T_JBOD:     return "JBOD";
4290     case AR_T_SPAN:     return "SPAN";
4291     case AR_T_RAID0:    return "RAID0";
4292     case AR_T_RAID1:    return "RAID1";
4293     case AR_T_RAID3:    return "RAID3";
4294     case AR_T_RAID4:    return "RAID4";
4295     case AR_T_RAID5:    return "RAID5";
4296     case AR_T_RAID01:   return "RAID0+1";
4297     default:            return "UNKNOWN";
4298     }
4299 }
4300 
4301 static char *
4302 ata_raid_flags(struct ar_softc *rdp)
4303 {
4304     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4305     case AR_S_READY:                                    return "READY";
4306     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4307     case AR_S_READY | AR_S_REBUILDING:
4308     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4309     default:                                            return "BROKEN";
4310     }
4311 }
4312 
4313 /* debugging gunk */
4314 static void
4315 ata_raid_print_meta(struct ar_softc *raid)
4316 {
4317     int i;
4318 
4319     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4320     kprintf("=================================================\n");
4321     kprintf("format              %s\n", ata_raid_format(raid));
4322     kprintf("type                %s\n", ata_raid_type(raid));
4323     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4324 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4325     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4326     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4327     kprintf("generation          %u\n", raid->generation);
4328     kprintf("total_sectors       %ju\n", raid->total_sectors);
4329     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4330     kprintf("heads               %u\n", raid->heads);
4331     kprintf("sectors             %u\n", raid->sectors);
4332     kprintf("cylinders           %u\n", raid->cylinders);
4333     kprintf("width               %u\n", raid->width);
4334     kprintf("interleave          %u\n", raid->interleave);
4335     kprintf("total_disks         %u\n", raid->total_disks);
4336     for (i = 0; i < raid->total_disks; i++) {
4337 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4338 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4339 	if (raid->disks[i].dev) {
4340 	    kprintf("        ");
4341 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4342 			  raid->disks[i].sectors);
4343 	}
4344     }
4345     kprintf("=================================================\n");
4346 }
4347 
4348 static char *
4349 ata_raid_adaptec_type(int type)
4350 {
4351     static char buffer[16];
4352 
4353     switch (type) {
4354     case ADP_T_RAID0:   return "RAID0";
4355     case ADP_T_RAID1:   return "RAID1";
4356     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4357 			return buffer;
4358     }
4359 }
4360 
4361 static void
4362 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4363 {
4364     int i;
4365 
4366     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4367     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4368     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4369     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4370     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4371     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4372     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4373     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4374     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4375     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4376     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4377     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4378 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4379 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4380     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4381 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4382 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4383 
4384     for (i = 0; i < be16toh(meta->total_configs); i++) {
4385 	kprintf("    %d   total_disks  %u\n", i,
4386 	       be16toh(meta->configs[i].disk_number));
4387 	kprintf("    %d   generation   %u\n", i,
4388 	       be16toh(meta->configs[i].generation));
4389 	kprintf("    %d   magic_0      0x%08x\n", i,
4390 	       be32toh(meta->configs[i].magic_0));
4391 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4392 	kprintf("    %d   type         %s\n", i,
4393 	       ata_raid_adaptec_type(meta->configs[i].type));
4394 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4395 	kprintf("    %d   flags        %d\n", i,
4396 	       be32toh(meta->configs[i].flags));
4397 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4398 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4399 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4400 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4401 	kprintf("    %d   disk_number  %u\n", i,
4402 	       be32toh(meta->configs[i].disk_number));
4403 	kprintf("    %d   dummy_6      0x%08x\n", i,
4404 	       be32toh(meta->configs[i].dummy_6));
4405 	kprintf("    %d   sectors      %u\n", i,
4406 	       be32toh(meta->configs[i].sectors));
4407 	kprintf("    %d   stripe_shift %u\n", i,
4408 	       be16toh(meta->configs[i].stripe_shift));
4409 	kprintf("    %d   dummy_7      0x%08x\n", i,
4410 	       be32toh(meta->configs[i].dummy_7));
4411 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4412 	       be32toh(meta->configs[i].dummy_8[0]),
4413 	       be32toh(meta->configs[i].dummy_8[1]),
4414 	       be32toh(meta->configs[i].dummy_8[2]),
4415 	       be32toh(meta->configs[i].dummy_8[3]));
4416 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4417     }
4418     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4419     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4420     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4421     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4422     kprintf("=================================================\n");
4423 }
4424 
4425 static char *
4426 ata_raid_hptv2_type(int type)
4427 {
4428     static char buffer[16];
4429 
4430     switch (type) {
4431     case HPTV2_T_RAID0:         return "RAID0";
4432     case HPTV2_T_RAID1:         return "RAID1";
4433     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4434     case HPTV2_T_SPAN:          return "SPAN";
4435     case HPTV2_T_RAID_3:        return "RAID3";
4436     case HPTV2_T_RAID_5:        return "RAID5";
4437     case HPTV2_T_JBOD:          return "JBOD";
4438     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4439     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4440 			return buffer;
4441     }
4442 }
4443 
4444 static void
4445 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4446 {
4447     int i;
4448 
4449     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4450     kprintf("magic               0x%08x\n", meta->magic);
4451     kprintf("magic_0             0x%08x\n", meta->magic_0);
4452     kprintf("magic_1             0x%08x\n", meta->magic_1);
4453     kprintf("order               0x%08x\n", meta->order);
4454     kprintf("array_width         %u\n", meta->array_width);
4455     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4456     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4457     kprintf("disk_number         %u\n", meta->disk_number);
4458     kprintf("total_sectors       %u\n", meta->total_sectors);
4459     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4460     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4461     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4462     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4463     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4464     kprintf("log_index           0x%02x\n", meta->error_log_index);
4465     if (meta->error_log_entries) {
4466 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4467 	for (i = meta->error_log_index;
4468 	     i < meta->error_log_index + meta->error_log_entries; i++)
4469 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4470 		   meta->errorlog[i%32].timestamp,
4471 		   meta->errorlog[i%32].reason,
4472 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4473 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4474     }
4475     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4476     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4477     kprintf("name_1              <%.15s>\n", meta->name_1);
4478     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4479     kprintf("name_2              <%.15s>\n", meta->name_2);
4480     kprintf("=================================================\n");
4481 }
4482 
4483 static char *
4484 ata_raid_hptv3_type(int type)
4485 {
4486     static char buffer[16];
4487 
4488     switch (type) {
4489     case HPTV3_T_SPARE: return "SPARE";
4490     case HPTV3_T_JBOD:  return "JBOD";
4491     case HPTV3_T_SPAN:  return "SPAN";
4492     case HPTV3_T_RAID0: return "RAID0";
4493     case HPTV3_T_RAID1: return "RAID1";
4494     case HPTV3_T_RAID3: return "RAID3";
4495     case HPTV3_T_RAID5: return "RAID5";
4496     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4497 			return buffer;
4498     }
4499 }
4500 
4501 static void
4502 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4503 {
4504     int i;
4505 
4506     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4507     kprintf("magic               0x%08x\n", meta->magic);
4508     kprintf("magic_0             0x%08x\n", meta->magic_0);
4509     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4510     kprintf("mode                0x%02x\n", meta->mode);
4511     kprintf("user_mode           0x%02x\n", meta->user_mode);
4512     kprintf("config_entries      0x%02x\n", meta->config_entries);
4513     for (i = 0; i < meta->config_entries; i++) {
4514 	kprintf("config %d:\n", i);
4515 	kprintf("    total_sectors       %ju\n",
4516 	       meta->configs[0].total_sectors +
4517 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4518 	kprintf("    type                %s\n",
4519 	       ata_raid_hptv3_type(meta->configs[i].type));
4520 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4521 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4522 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4523 	kprintf("    status              %b\n", meta->configs[i].status,
4524 	       "\20\2RAID5\1NEED_REBUILD\n");
4525 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4526 	kprintf("    rebuild_lba         %ju\n",
4527 	       meta->configs_high[0].rebuild_lba +
4528 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4529     }
4530     kprintf("name                <%.16s>\n", meta->name);
4531     kprintf("timestamp           0x%08x\n", meta->timestamp);
4532     kprintf("description         <%.16s>\n", meta->description);
4533     kprintf("creator             <%.16s>\n", meta->creator);
4534     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4535     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4536     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4537     kprintf("flags               %b\n", meta->flags,
4538 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4539     kprintf("=================================================\n");
4540 }
4541 
4542 static char *
4543 ata_raid_intel_type(int type)
4544 {
4545     static char buffer[16];
4546 
4547     switch (type) {
4548     case INTEL_T_RAID0: return "RAID0";
4549     case INTEL_T_RAID1: return "RAID1";
4550     case INTEL_T_RAID5: return "RAID5";
4551     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4552 			return buffer;
4553     }
4554 }
4555 
4556 static void
4557 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4558 {
4559     struct intel_raid_mapping *map;
4560     int i, j;
4561 
4562     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4563     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4564     kprintf("version             <%.6s>\n", meta->version);
4565     kprintf("checksum            0x%08x\n", meta->checksum);
4566     kprintf("config_size         0x%08x\n", meta->config_size);
4567     kprintf("config_id           0x%08x\n", meta->config_id);
4568     kprintf("generation          0x%08x\n", meta->generation);
4569     kprintf("total_disks         %u\n", meta->total_disks);
4570     kprintf("total_volumes       %u\n", meta->total_volumes);
4571     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4572     for (i = 0; i < meta->total_disks; i++ ) {
4573 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4574 	       meta->disk[i].serial, meta->disk[i].sectors,
4575 	       meta->disk[i].id, meta->disk[i].flags);
4576     }
4577     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4578     for (j = 0; j < meta->total_volumes; j++) {
4579 	kprintf("name                %.16s\n", map->name);
4580 	kprintf("total_sectors       %ju\n", map->total_sectors);
4581 	kprintf("state               %u\n", map->state);
4582 	kprintf("reserved            %u\n", map->reserved);
4583 	kprintf("offset              %u\n", map->offset);
4584 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4585 	kprintf("stripe_count        %u\n", map->stripe_count);
4586 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4587 	kprintf("status              %u\n", map->status);
4588 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4589 	kprintf("total_disks         %u\n", map->total_disks);
4590 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4591 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4592 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4593 	for (i = 0; i < map->total_disks; i++ ) {
4594 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4595 	}
4596 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4597     }
4598     kprintf("=================================================\n");
4599 }
4600 
4601 static char *
4602 ata_raid_ite_type(int type)
4603 {
4604     static char buffer[16];
4605 
4606     switch (type) {
4607     case ITE_T_RAID0:   return "RAID0";
4608     case ITE_T_RAID1:   return "RAID1";
4609     case ITE_T_RAID01:  return "RAID0+1";
4610     case ITE_T_SPAN:    return "SPAN";
4611     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4612 			return buffer;
4613     }
4614 }
4615 
4616 static void
4617 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4618 {
4619     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4620     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4621     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4622 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4623 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4624 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4625     kprintf("total_sectors       %jd\n", meta->total_sectors);
4626     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4627     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4628     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4629 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4630 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4631 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4632     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4633     kprintf("array_width         %u\n", meta->array_width);
4634     kprintf("disk_number         %u\n", meta->disk_number);
4635     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4636     kprintf("=================================================\n");
4637 }
4638 
4639 static char *
4640 ata_raid_jmicron_type(int type)
4641 {
4642     static char buffer[16];
4643 
4644     switch (type) {
4645     case JM_T_RAID0:	return "RAID0";
4646     case JM_T_RAID1:	return "RAID1";
4647     case JM_T_RAID01:	return "RAID0+1";
4648     case JM_T_JBOD:	return "JBOD";
4649     case JM_T_RAID5:	return "RAID5";
4650     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4651 			return buffer;
4652     }
4653 }
4654 
4655 static void
4656 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4657 {
4658     int i;
4659 
4660     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4661     kprintf("signature           %.2s\n", meta->signature);
4662     kprintf("version             0x%04x\n", meta->version);
4663     kprintf("checksum            0x%04x\n", meta->checksum);
4664     kprintf("disk_id             0x%08x\n", meta->disk_id);
4665     kprintf("offset              0x%08x\n", meta->offset);
4666     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4667     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4668     kprintf("name                %.16s\n", meta->name);
4669     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4670     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4671     kprintf("flags               0x%04x\n", meta->flags);
4672     kprintf("spare:\n");
4673     for (i=0; i < 2 && meta->spare[i]; i++)
4674 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4675     kprintf("disks:\n");
4676     for (i=0; i < 8 && meta->disks[i]; i++)
4677 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4678     kprintf("=================================================\n");
4679 }
4680 
4681 static char *
4682 ata_raid_lsiv2_type(int type)
4683 {
4684     static char buffer[16];
4685 
4686     switch (type) {
4687     case LSIV2_T_RAID0: return "RAID0";
4688     case LSIV2_T_RAID1: return "RAID1";
4689     case LSIV2_T_SPARE: return "SPARE";
4690     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4691 			return buffer;
4692     }
4693 }
4694 
4695 static void
4696 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4697 {
4698     int i;
4699 
4700     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4701     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4702     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4703     kprintf("flags               0x%02x\n", meta->flags);
4704     kprintf("version             0x%04x\n", meta->version);
4705     kprintf("config_entries      0x%02x\n", meta->config_entries);
4706     kprintf("raid_count          0x%02x\n", meta->raid_count);
4707     kprintf("total_disks         0x%02x\n", meta->total_disks);
4708     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4709     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4710     for (i = 0; i < meta->config_entries; i++) {
4711 	kprintf("    type             %s\n",
4712 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4713 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4714 	kprintf("    stripe_sectors   %u\n",
4715 	       meta->configs[i].raid.stripe_sectors);
4716 	kprintf("    array_width      %u\n",
4717 	       meta->configs[i].raid.array_width);
4718 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4719 	kprintf("    config_offset    %u\n",
4720 	       meta->configs[i].raid.config_offset);
4721 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4722 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4723 	kprintf("    total_sectors    %u\n",
4724 	       meta->configs[i].raid.total_sectors);
4725     }
4726     kprintf("disk_number         0x%02x\n", meta->disk_number);
4727     kprintf("raid_number         0x%02x\n", meta->raid_number);
4728     kprintf("timestamp           0x%08x\n", meta->timestamp);
4729     kprintf("=================================================\n");
4730 }
4731 
4732 static char *
4733 ata_raid_lsiv3_type(int type)
4734 {
4735     static char buffer[16];
4736 
4737     switch (type) {
4738     case LSIV3_T_RAID0: return "RAID0";
4739     case LSIV3_T_RAID1: return "RAID1";
4740     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4741 			return buffer;
4742     }
4743 }
4744 
4745 static void
4746 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4747 {
4748     int i;
4749 
4750     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4751     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4752     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4753     kprintf("version             0x%04x\n", meta->version);
4754     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4755     kprintf("RAID configs:\n");
4756     for (i = 0; i < 8; i++) {
4757 	if (meta->raid[i].total_disks) {
4758 	    kprintf("%02d  stripe_pages       %u\n", i,
4759 		   meta->raid[i].stripe_pages);
4760 	    kprintf("%02d  type               %s\n", i,
4761 		   ata_raid_lsiv3_type(meta->raid[i].type));
4762 	    kprintf("%02d  total_disks        %u\n", i,
4763 		   meta->raid[i].total_disks);
4764 	    kprintf("%02d  array_width        %u\n", i,
4765 		   meta->raid[i].array_width);
4766 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4767 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4768 	    kprintf("%02d  device             0x%02x\n", i,
4769 		   meta->raid[i].device);
4770 	}
4771     }
4772     kprintf("DISK configs:\n");
4773     for (i = 0; i < 6; i++) {
4774 	    if (meta->disk[i].disk_sectors) {
4775 	    kprintf("%02d  disk_sectors       %u\n", i,
4776 		   meta->disk[i].disk_sectors);
4777 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4778 	}
4779     }
4780     kprintf("device              0x%02x\n", meta->device);
4781     kprintf("timestamp           0x%08x\n", meta->timestamp);
4782     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4783     kprintf("=================================================\n");
4784 }
4785 
4786 static char *
4787 ata_raid_nvidia_type(int type)
4788 {
4789     static char buffer[16];
4790 
4791     switch (type) {
4792     case NV_T_SPAN:     return "SPAN";
4793     case NV_T_RAID0:    return "RAID0";
4794     case NV_T_RAID1:    return "RAID1";
4795     case NV_T_RAID3:    return "RAID3";
4796     case NV_T_RAID5:    return "RAID5";
4797     case NV_T_RAID01:   return "RAID0+1";
4798     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4799 			return buffer;
4800     }
4801 }
4802 
4803 static void
4804 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4805 {
4806     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4807     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4808     kprintf("config_size         %d\n", meta->config_size);
4809     kprintf("checksum            0x%08x\n", meta->checksum);
4810     kprintf("version             0x%04x\n", meta->version);
4811     kprintf("disk_number         %d\n", meta->disk_number);
4812     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4813     kprintf("total_sectors       %d\n", meta->total_sectors);
4814     kprintf("sectors_size        %d\n", meta->sector_size);
4815     kprintf("serial              %.16s\n", meta->serial);
4816     kprintf("revision            %.4s\n", meta->revision);
4817     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4818     kprintf("magic_0             0x%08x\n", meta->magic_0);
4819     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4820     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4821     kprintf("flags               0x%02x\n", meta->flags);
4822     kprintf("array_width         %d\n", meta->array_width);
4823     kprintf("total_disks         %d\n", meta->total_disks);
4824     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4825     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4826     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4827     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4828     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4829     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4830     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4831     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4832     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4833     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4834     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4835     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4836     kprintf("status              0x%08x\n", meta->status);
4837     kprintf("=================================================\n");
4838 }
4839 
4840 static char *
4841 ata_raid_promise_type(int type)
4842 {
4843     static char buffer[16];
4844 
4845     switch (type) {
4846     case PR_T_RAID0:    return "RAID0";
4847     case PR_T_RAID1:    return "RAID1";
4848     case PR_T_RAID3:    return "RAID3";
4849     case PR_T_RAID5:    return "RAID5";
4850     case PR_T_SPAN:     return "SPAN";
4851     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4852 			return buffer;
4853     }
4854 }
4855 
4856 static void
4857 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4858 {
4859     int i;
4860 
4861     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4862     kprintf("promise_id          <%s>\n", meta->promise_id);
4863     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4864     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4865     kprintf("magic_1             0x%04x\n", meta->magic_1);
4866     kprintf("magic_2             0x%08x\n", meta->magic_2);
4867     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4868 		meta->raid.integrity, "\20\10VALID\n" );
4869     kprintf("flags               0x%02x %b\n",
4870 	   meta->raid.flags, meta->raid.flags,
4871 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4872 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4873     kprintf("disk_number         %d\n", meta->raid.disk_number);
4874     kprintf("channel             0x%02x\n", meta->raid.channel);
4875     kprintf("device              0x%02x\n", meta->raid.device);
4876     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4877     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4878     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4879     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4880     kprintf("generation          0x%04x\n", meta->raid.generation);
4881     kprintf("status              0x%02x %b\n",
4882 	    meta->raid.status, meta->raid.status,
4883 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4884     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4885     kprintf("total_disks         %u\n", meta->raid.total_disks);
4886     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4887     kprintf("array_width         %u\n", meta->raid.array_width);
4888     kprintf("array_number        %u\n", meta->raid.array_number);
4889     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4890     kprintf("cylinders           %u\n", meta->raid.cylinders);
4891     kprintf("heads               %u\n", meta->raid.heads);
4892     kprintf("sectors             %u\n", meta->raid.sectors);
4893     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4894     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4895     for (i = 0; i < 8; i++) {
4896 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4897 	       i, meta->raid.disk[i].flags,
4898 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4899 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4900 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4901 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4902     }
4903     kprintf("checksum            0x%08x\n", meta->checksum);
4904     kprintf("=================================================\n");
4905 }
4906 
4907 static char *
4908 ata_raid_sii_type(int type)
4909 {
4910     static char buffer[16];
4911 
4912     switch (type) {
4913     case SII_T_RAID0:   return "RAID0";
4914     case SII_T_RAID1:   return "RAID1";
4915     case SII_T_RAID01:  return "RAID0+1";
4916     case SII_T_SPARE:   return "SPARE";
4917     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4918 			return buffer;
4919     }
4920 }
4921 
4922 static void
4923 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4924 {
4925     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4926     kprintf("total_sectors       %ju\n", meta->total_sectors);
4927     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4928     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4929     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4930     kprintf("version_minor       0x%04x\n", meta->version_minor);
4931     kprintf("version_major       0x%04x\n", meta->version_major);
4932     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4933 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4934 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4935     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4936     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4937     kprintf("disk_number         %u\n", meta->disk_number);
4938     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4939     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4940     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4941     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4942     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4943     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4944     kprintf("generation          0x%08x\n", meta->generation);
4945     kprintf("status              0x%02x %b\n",
4946 	    meta->status, meta->status,
4947 	   "\20\1READY\n");
4948     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4949     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4950     kprintf("position            %02x\n", meta->position);
4951     kprintf("dummy_3             %04x\n", meta->dummy_3);
4952     kprintf("name                <%.16s>\n", meta->name);
4953     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4954     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4955     kprintf("=================================================\n");
4956 }
4957 
4958 static char *
4959 ata_raid_sis_type(int type)
4960 {
4961     static char buffer[16];
4962 
4963     switch (type) {
4964     case SIS_T_JBOD:    return "JBOD";
4965     case SIS_T_RAID0:   return "RAID0";
4966     case SIS_T_RAID1:   return "RAID1";
4967     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4968 			return buffer;
4969     }
4970 }
4971 
4972 static void
4973 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4974 {
4975     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4976     kprintf("magic               0x%04x\n", meta->magic);
4977     kprintf("disks               0x%02x\n", meta->disks);
4978     kprintf("type                %s\n",
4979 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4980     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4981     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4982     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4983     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4984     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4985     kprintf("timestamp           0x%08x\n", meta->timestamp);
4986     kprintf("model               %.40s\n", meta->model);
4987     kprintf("disk_number         %u\n", meta->disk_number);
4988     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4989 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4990     kprintf("=================================================\n");
4991 }
4992 
4993 static char *
4994 ata_raid_via_type(int type)
4995 {
4996     static char buffer[16];
4997 
4998     switch (type) {
4999     case VIA_T_RAID0:   return "RAID0";
5000     case VIA_T_RAID1:   return "RAID1";
5001     case VIA_T_RAID5:   return "RAID5";
5002     case VIA_T_RAID01:  return "RAID0+1";
5003     case VIA_T_SPAN:    return "SPAN";
5004     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
5005 			return buffer;
5006     }
5007 }
5008 
5009 static void
5010 ata_raid_via_print_meta(struct via_raid_conf *meta)
5011 {
5012     int i;
5013 
5014     kprintf("*************** ATA VIA Metadata ****************\n");
5015     kprintf("magic               0x%02x\n", meta->magic);
5016     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5017     kprintf("type                %s\n",
5018 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5019     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5020     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5021     kprintf("disk_index          0x%02x\n", meta->disk_index);
5022     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5023     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5024     kprintf(" stripe_sectors     %d\n",
5025 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5026     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5027     kprintf("disk_id             0x%08x\n", meta->disk_id);
5028     kprintf("DISK#   disk_id\n");
5029     for (i = 0; i < 8; i++) {
5030 	if (meta->disks[i])
5031 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5032     }
5033     kprintf("checksum            0x%02x\n", meta->checksum);
5034     kprintf("=================================================\n");
5035 }
5036