xref: /dragonfly/sys/dev/disk/nata/ata-raid.c (revision feabea0f)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  */
28 
29 #include "opt_ata.h"
30 
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/buf.h>
34 #include <sys/buf2.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/devicestat.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 0, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154 
155     devstat_add_entry(&rdp->devstat, "ar", rdp->lun,
156 	DEV_BSIZE, DEVSTAT_NO_ORDERED_TAGS,
157 	DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
158 	DEVSTAT_PRIORITY_ARRAY);
159 
160     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
161     cdev->si_drv1 = rdp;
162     cdev->si_iosize_max = 128 * DEV_BSIZE;
163     rdp->cdev = cdev;
164 
165     bzero(&info, sizeof(info));
166     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
167     info.d_media_blocks = rdp->total_sectors;
168 
169     info.d_secpertrack = rdp->sectors;		/* optional */
170     info.d_nheads = rdp->heads;
171     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
172     info.d_secpercyl = rdp->sectors * rdp->heads;
173 
174     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
175 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
176 	   ata_raid_format(rdp), ata_raid_type(rdp),
177 	   buffer, ata_raid_flags(rdp));
178 
179     if (testing || bootverbose)
180 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
181 	       rdp->lun, rdp->total_sectors,
182 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
183 
184     for (disk = 0; disk < rdp->total_disks; disk++) {
185 	kprintf("ar%d: disk%d ", rdp->lun, disk);
186 	if (rdp->disks[disk].dev) {
187 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
188 		/* status of this disk in the array */
189 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
190 		    kprintf("READY ");
191 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
192 		    kprintf("SPARE ");
193 		else
194 		    kprintf("FREE  ");
195 
196 		/* what type of disk is this in the array */
197 		switch (rdp->type) {
198 		case AR_T_RAID1:
199 		case AR_T_RAID01:
200 		    if (disk < rdp->width)
201 			kprintf("(master) ");
202 		    else
203 			kprintf("(mirror) ");
204 		}
205 
206 		/* which physical disk is used */
207 		kprintf("using %s at ata%d-%s\n",
208 		       device_get_nameunit(rdp->disks[disk].dev),
209 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
210 		       (((struct ata_device *)
211 			 device_get_softc(rdp->disks[disk].dev))->unit ==
212 			 ATA_MASTER) ? "master" : "slave");
213 	    }
214 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
215 		kprintf("DOWN\n");
216 	    else
217 		kprintf("INVALID no RAID config on this subdisk\n");
218 	}
219 	else
220 	    kprintf("DOWN no device found for this subdisk\n");
221     }
222 
223     disk_setdiskinfo(&rdp->disk, &info);
224 }
225 
226 /*
227  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
228  * to the dev_ops way, because it's just chained from the generic ata ioctl.
229  */
230 static int
231 ata_raid_ioctl(u_long cmd, caddr_t data)
232 {
233     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
234     int *lun = (int *)data;
235     int error = EOPNOTSUPP;
236 
237     switch (cmd) {
238     case IOCATARAIDSTATUS:
239 	error = ata_raid_status(config);
240 	break;
241 
242     case IOCATARAIDCREATE:
243 	error = ata_raid_create(config);
244 	break;
245 
246     case IOCATARAIDDELETE:
247 	error = ata_raid_delete(*lun);
248 	break;
249 
250     case IOCATARAIDADDSPARE:
251 	error = ata_raid_addspare(config);
252 	break;
253 
254     case IOCATARAIDREBUILD:
255 	error = ata_raid_rebuild(*lun);
256 	break;
257     }
258     return error;
259 }
260 
261 static int
262 ata_raid_flush(struct ar_softc *rdp, struct bio *bp)
263 {
264     struct ata_request *request;
265     device_t dev;
266     int disk;
267 
268     bp->bio_driver_info = NULL;
269 
270     for (disk = 0; disk < rdp->total_disks; disk++) {
271 	if ((dev = rdp->disks[disk].dev) != NULL)
272 	    bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info + 1);
273     }
274     for (disk = 0; disk < rdp->total_disks; disk++) {
275 	if ((dev = rdp->disks[disk].dev) == NULL)
276 	    continue;
277 	if (!(request = ata_raid_init_request(rdp, bp)))
278 	    return ENOMEM;
279 	request->dev = dev;
280 	request->u.ata.command = ATA_FLUSHCACHE;
281 	request->u.ata.lba = 0;
282 	request->u.ata.count = 0;
283 	request->u.ata.feature = 0;
284 	request->timeout = 1;
285 	request->retries = 0;
286 	request->flags |= ATA_R_ORDERED | ATA_R_DIRECT;
287 	ata_queue_request(request);
288     }
289     return 0;
290 }
291 
292 /*
293  * XXX TGEN there are a lot of offset -> block number conversions going on
294  * here, which is suboptimal.
295  */
296 static int
297 ata_raid_strategy(struct dev_strategy_args *ap)
298 {
299     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
300     struct bio *bp = ap->a_bio;
301     struct buf *bbp = bp->bio_buf;
302     struct ata_request *request;
303     caddr_t data;
304     u_int64_t blkno, lba, blk = 0;
305     int count, chunk, drv, par = 0, change = 0;
306 
307     if (bbp->b_cmd == BUF_CMD_FLUSH) {
308 	int error;
309 
310 	error = ata_raid_flush(rdp, bp);
311 	if (error != 0) {
312 		bbp->b_flags |= B_ERROR;
313 		bbp->b_error = error;
314 		biodone(bp);
315 	}
316 	return(0);
317     }
318 
319     if (!(rdp->status & AR_S_READY) ||
320 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
321 	bbp->b_flags |= B_ERROR;
322 	bbp->b_error = EIO;
323 	biodone(bp);
324 	return(0);
325     }
326 
327     bbp->b_resid = bbp->b_bcount;
328     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
329 	 /* bio_offset is byte granularity, convert */
330 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
331 	 data = bbp->b_data;
332 	 count > 0;
333 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
334 
335 	switch (rdp->type) {
336 	case AR_T_RAID1:
337 	    drv = 0;
338 	    lba = blkno;
339 	    chunk = count;
340 	    break;
341 
342 	case AR_T_JBOD:
343 	case AR_T_SPAN:
344 	    drv = 0;
345 	    lba = blkno;
346 	    while (lba >= rdp->disks[drv].sectors)
347 		lba -= rdp->disks[drv++].sectors;
348 	    chunk = min(rdp->disks[drv].sectors - lba, count);
349 	    break;
350 
351 	case AR_T_RAID0:
352 	case AR_T_RAID01:
353 	    chunk = blkno % rdp->interleave;
354 	    drv = (blkno / rdp->interleave) % rdp->width;
355 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
356 	    chunk = min(count, rdp->interleave - chunk);
357 	    break;
358 
359 	case AR_T_RAID5:
360 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
361 	    par = rdp->width - 1 -
362 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
363 	    if (drv >= par)
364 		drv++;
365 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
366 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
367 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
368 	    break;
369 
370 	default:
371 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
372 	    bbp->b_flags |= B_ERROR;
373 	    bbp->b_error = EIO;
374 	    biodone(bp);
375 	    return(0);
376 	}
377 
378 	/* offset on all but "first on HPTv2" */
379 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
380 	    lba += rdp->offset_sectors;
381 
382 	if (!(request = ata_raid_init_request(rdp, bp))) {
383 	    bbp->b_flags |= B_ERROR;
384 	    bbp->b_error = EIO;
385 	    biodone(bp);
386 	    return(0);
387 	}
388 	request->data = data;
389 	request->bytecount = chunk * DEV_BSIZE;
390 	request->u.ata.lba = lba;
391 	request->u.ata.count = request->bytecount / DEV_BSIZE;
392 
393 	devstat_start_transaction(&rdp->devstat);
394 	switch (rdp->type) {
395 	case AR_T_JBOD:
396 	case AR_T_SPAN:
397 	case AR_T_RAID0:
398 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
399 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
400 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
401 		ata_raid_config_changed(rdp, 1);
402 		ata_free_request(request);
403 		bbp->b_flags |= B_ERROR;
404 		bbp->b_error = EIO;
405 		biodone(bp);
406 		return(0);
407 	    }
408 	    request->this = drv;
409 	    request->dev = rdp->disks[request->this].dev;
410 	    ata_raid_send_request(request);
411 	    break;
412 
413 	case AR_T_RAID1:
414 	case AR_T_RAID01:
415 	    if ((rdp->disks[drv].flags &
416 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
417 		!rdp->disks[drv].dev) {
418 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
419 		change = 1;
420 	    }
421 	    if ((rdp->disks[drv + rdp->width].flags &
422 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
423 		!rdp->disks[drv + rdp->width].dev) {
424 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
425 		change = 1;
426 	    }
427 	    if (change)
428 		ata_raid_config_changed(rdp, 1);
429 	    if (!(rdp->status & AR_S_READY)) {
430 		ata_free_request(request);
431 		bbp->b_flags |= B_ERROR;
432 		bbp->b_error = EIO;
433 		biodone(bp);
434 		return(0);
435 	    }
436 
437 	    if (rdp->status & AR_S_REBUILDING)
438 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
439 		      (rdp->interleave * (drv % rdp->width)) +
440 		      lba % rdp->interleave;
441 
442 	    if (bbp->b_cmd == BUF_CMD_READ) {
443 		int src_online =
444 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
445 		int mir_online =
446 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
447 
448 		/* if mirror gone or close to last access on source */
449 		if (!mir_online ||
450 		    ((src_online) &&
451 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
452 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
453 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
454 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
455 		    rdp->toggle = 0;
456 		}
457 		/* if source gone or close to last access on mirror */
458 		else if (!src_online ||
459 			 ((mir_online) &&
460 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
461 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
462 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
463 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
464 		    drv += rdp->width;
465 		    rdp->toggle = 1;
466 		}
467 		/* not close to any previous access, toggle */
468 		else {
469 		    if (rdp->toggle)
470 			rdp->toggle = 0;
471 		    else {
472 			drv += rdp->width;
473 			rdp->toggle = 1;
474 		    }
475 		}
476 
477 		if ((rdp->status & AR_S_REBUILDING) &&
478 		    (blk <= rdp->rebuild_lba) &&
479 		    ((blk + chunk) > rdp->rebuild_lba)) {
480 		    struct ata_composite *composite;
481 		    struct ata_request *rebuild;
482 		    int this;
483 
484 		    /* figure out what part to rebuild */
485 		    if (drv < rdp->width)
486 			this = drv + rdp->width;
487 		    else
488 			this = drv - rdp->width;
489 
490 		    /* do we have a spare to rebuild on ? */
491 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
492 			if ((composite = ata_alloc_composite())) {
493 			    if ((rebuild = ata_alloc_request())) {
494 				rdp->rebuild_lba = blk + chunk;
495 				bcopy(request, rebuild,
496 				      sizeof(struct ata_request));
497 				rebuild->this = this;
498 				rebuild->dev = rdp->disks[this].dev;
499 				rebuild->flags &= ~ATA_R_READ;
500 				rebuild->flags |= ATA_R_WRITE;
501 				spin_init(&composite->lock);
502 				composite->residual = request->bytecount;
503 				composite->rd_needed |= (1 << drv);
504 				composite->wr_depend |= (1 << drv);
505 				composite->wr_needed |= (1 << this);
506 				composite->request[drv] = request;
507 				composite->request[this] = rebuild;
508 				request->composite = composite;
509 				rebuild->composite = composite;
510 				ata_raid_send_request(rebuild);
511 			    }
512 			    else {
513 				ata_free_composite(composite);
514 				kprintf("DOH! ata_alloc_request failed!\n");
515 			    }
516 			}
517 			else {
518 			    kprintf("DOH! ata_alloc_composite failed!\n");
519 			}
520 		    }
521 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
522 			/*
523 			 * if we got here we are a chunk of a RAID01 that
524 			 * does not need a rebuild, but we need to increment
525 			 * the rebuild_lba address to get the rebuild to
526 			 * move to the next chunk correctly
527 			 */
528 			rdp->rebuild_lba = blk + chunk;
529 		    }
530 		    else
531 			kprintf("DOH! we didn't find the rebuild part\n");
532 		}
533 	    }
534 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
535 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
536 		    ((rdp->status & AR_S_REBUILDING) &&
537 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
538 		     ((blk < rdp->rebuild_lba) ||
539 		      ((blk <= rdp->rebuild_lba) &&
540 		       ((blk + chunk) > rdp->rebuild_lba))))) {
541 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
542 			((rdp->status & AR_S_REBUILDING) &&
543 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
544 			 ((blk < rdp->rebuild_lba) ||
545 			  ((blk <= rdp->rebuild_lba) &&
546 			   ((blk + chunk) > rdp->rebuild_lba))))) {
547 			struct ata_request *mirror;
548 			struct ata_composite *composite;
549 			int this = drv + rdp->width;
550 
551 			if ((composite = ata_alloc_composite())) {
552 			    if ((mirror = ata_alloc_request())) {
553 				if ((blk <= rdp->rebuild_lba) &&
554 				    ((blk + chunk) > rdp->rebuild_lba))
555 				    rdp->rebuild_lba = blk + chunk;
556 				bcopy(request, mirror,
557 				      sizeof(struct ata_request));
558 				mirror->this = this;
559 				mirror->dev = rdp->disks[this].dev;
560 				spin_init(&composite->lock);
561 				composite->residual = request->bytecount;
562 				composite->wr_needed |= (1 << drv);
563 				composite->wr_needed |= (1 << this);
564 				composite->request[drv] = request;
565 				composite->request[this] = mirror;
566 				request->composite = composite;
567 				mirror->composite = composite;
568 				ata_raid_send_request(mirror);
569 				rdp->disks[this].last_lba =
570 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
571 				    chunk;
572 			    }
573 			    else {
574 				ata_free_composite(composite);
575 				kprintf("DOH! ata_alloc_request failed!\n");
576 			    }
577 			}
578 			else {
579 			    kprintf("DOH! ata_alloc_composite failed!\n");
580 			}
581 		    }
582 		    else
583 			drv += rdp->width;
584 		}
585 	    }
586 	    request->this = drv;
587 	    request->dev = rdp->disks[request->this].dev;
588 	    ata_raid_send_request(request);
589 	    rdp->disks[request->this].last_lba =
590 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
591 	    break;
592 
593 	case AR_T_RAID5:
594 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
595 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
596 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
597 		change = 1;
598 	    }
599 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
600 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
601 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
602 		change = 1;
603 	    }
604 	    if (change)
605 		ata_raid_config_changed(rdp, 1);
606 	    if (!(rdp->status & AR_S_READY)) {
607 		ata_free_request(request);
608 		bbp->b_flags |= B_ERROR;
609 		bbp->b_error = EIO;
610 		biodone(bp);
611 		return(0);
612 	    }
613 	    if (rdp->status & AR_S_DEGRADED) {
614 		/* do the XOR game if possible */
615 	    }
616 	    else {
617 		request->this = drv;
618 		request->dev = rdp->disks[request->this].dev;
619 		if (bbp->b_cmd == BUF_CMD_READ) {
620 		    ata_raid_send_request(request);
621 		}
622 		if (bbp->b_cmd == BUF_CMD_WRITE) {
623 		    ata_raid_send_request(request);
624 		    /* XXX TGEN no, I don't speak Danish either */
625 		    /*
626 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
627 		     * par kopi af request
628 		     * l�se orgdata fra drv
629 		     * skriv nydata til drv
630 		     * l�se parorgdata fra par
631 		     * skriv orgdata xor parorgdata xor nydata til par
632 		     */
633 		}
634 	    }
635 	    break;
636 
637 	default:
638 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
639 	}
640     }
641 
642     return(0);
643 }
644 
645 static void
646 ata_raid_done(struct ata_request *request)
647 {
648     struct ar_softc *rdp = request->driver;
649     struct ata_composite *composite = NULL;
650     struct bio *bp = request->bio;
651     struct buf *bbp = bp->bio_buf;
652     int i, mirror, finished = 0;
653 
654     if (bbp->b_cmd == BUF_CMD_FLUSH) {
655 	if (bbp->b_error == 0)
656 		bbp->b_error = request->result;
657 	ata_free_request(request);
658 	bp->bio_driver_info = (void *)((intptr_t)bp->bio_driver_info - 1);
659 	if ((intptr_t)bp->bio_driver_info == 0) {
660 		if (bbp->b_error)
661 			bbp->b_flags |= B_ERROR;
662 		biodone(bp);
663 	}
664 	return;
665     }
666 
667     switch (rdp->type) {
668     case AR_T_JBOD:
669     case AR_T_SPAN:
670     case AR_T_RAID0:
671 	if (request->result) {
672 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
673 	    ata_raid_config_changed(rdp, 1);
674 	    bbp->b_error = request->result;
675 	    finished = 1;
676 	}
677 	else {
678 	    bbp->b_resid -= request->donecount;
679 	    if (!bbp->b_resid)
680 		finished = 1;
681 	}
682 	break;
683 
684     case AR_T_RAID1:
685     case AR_T_RAID01:
686 	if (request->this < rdp->width)
687 	    mirror = request->this + rdp->width;
688 	else
689 	    mirror = request->this - rdp->width;
690 	if (request->result) {
691 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
692 	    ata_raid_config_changed(rdp, 1);
693 	}
694 	if (rdp->status & AR_S_READY) {
695 	    u_int64_t blk = 0;
696 
697 	    if (rdp->status & AR_S_REBUILDING)
698 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
699 		      rdp->interleave + (rdp->interleave *
700 		      (request->this % rdp->width)) +
701 		      request->u.ata.lba % rdp->interleave;
702 
703 	    if (bbp->b_cmd == BUF_CMD_READ) {
704 
705 		/* is this a rebuild composite */
706 		if ((composite = request->composite)) {
707 		    spin_lock(&composite->lock);
708 
709 		    /* handle the read part of a rebuild composite */
710 		    if (request->flags & ATA_R_READ) {
711 
712 			/* if read failed array is now broken */
713 			if (request->result) {
714 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
715 			    ata_raid_config_changed(rdp, 1);
716 			    bbp->b_error = request->result;
717 			    rdp->rebuild_lba = blk;
718 			    finished = 1;
719 			}
720 
721 			/* good data, update how far we've gotten */
722 			else {
723 			    bbp->b_resid -= request->donecount;
724 			    composite->residual -= request->donecount;
725 			    if (!composite->residual) {
726 				if (composite->wr_done & (1 << mirror))
727 				    finished = 1;
728 			    }
729 			}
730 		    }
731 
732 		    /* handle the write part of a rebuild composite */
733 		    else if (request->flags & ATA_R_WRITE) {
734 			if (composite->rd_done & (1 << mirror)) {
735 			    if (request->result) {
736 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
737 				rdp->rebuild_lba = blk;
738 			    }
739 			    if (!composite->residual)
740 				finished = 1;
741 			}
742 		    }
743 		    spin_unlock(&composite->lock);
744 		}
745 
746 		/* if read failed retry on the mirror */
747 		else if (request->result) {
748 		    request->dev = rdp->disks[mirror].dev;
749 		    request->flags &= ~ATA_R_TIMEOUT;
750 		    ata_raid_send_request(request);
751 		    return;
752 		}
753 
754 		/* we have good data */
755 		else {
756 		    bbp->b_resid -= request->donecount;
757 		    if (!bbp->b_resid)
758 			finished = 1;
759 		}
760 	    }
761 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
762 		/* do we have a mirror or rebuild to deal with ? */
763 		if ((composite = request->composite)) {
764 		    spin_lock(&composite->lock);
765 		    if (composite->wr_done & (1 << mirror)) {
766 			if (request->result) {
767 			    if (composite->request[mirror]->result) {
768 				kprintf("DOH! all disks failed and got here\n");
769 				bbp->b_error = EIO;
770 			    }
771 			    if (rdp->status & AR_S_REBUILDING) {
772 				rdp->rebuild_lba = blk;
773 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
774 			    }
775 			    bbp->b_resid -=
776 				composite->request[mirror]->donecount;
777 			    composite->residual -=
778 				composite->request[mirror]->donecount;
779 			}
780 			else {
781 			    bbp->b_resid -= request->donecount;
782 			    composite->residual -= request->donecount;
783 			}
784 			if (!composite->residual)
785 			    finished = 1;
786 		    }
787 		    spin_unlock(&composite->lock);
788 		}
789 		/* no mirror we are done */
790 		else {
791 		    bbp->b_resid -= request->donecount;
792 		    if (!bbp->b_resid)
793 			finished = 1;
794 		}
795 	    }
796 	}
797 	else {
798 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
799 	    bbp->b_error = request->result;
800 	    biodone(bp);
801 	}
802 	break;
803 
804     case AR_T_RAID5:
805 	if (request->result) {
806 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
807 	    ata_raid_config_changed(rdp, 1);
808 	    if (rdp->status & AR_S_READY) {
809 		if (bbp->b_cmd == BUF_CMD_READ) {
810 		    /* do the XOR game to recover data */
811 		}
812 		if (bbp->b_cmd == BUF_CMD_WRITE) {
813 		    /* if the parity failed we're OK sortof */
814 		    /* otherwise wee need to do the XOR long dance */
815 		}
816 		finished = 1;
817 	    }
818 	    else {
819 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
820 		bbp->b_error = request->result;
821 		biodone(bp);
822 	    }
823 	}
824 	else {
825 	    /* did we have an XOR game going ?? */
826 	    bbp->b_resid -= request->donecount;
827 	    if (!bbp->b_resid)
828 		finished = 1;
829 	}
830 	break;
831 
832     default:
833 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
834     }
835 
836     devstat_end_transaction_buf(&rdp->devstat, bbp);
837     if (finished) {
838 	if ((rdp->status & AR_S_REBUILDING) &&
839 	    rdp->rebuild_lba >= rdp->total_sectors) {
840 	    int disk;
841 
842 	    for (disk = 0; disk < rdp->total_disks; disk++) {
843 		if ((rdp->disks[disk].flags &
844 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
845 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
846 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
847 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
848 		}
849 	    }
850 	    rdp->status &= ~AR_S_REBUILDING;
851 	    ata_raid_config_changed(rdp, 1);
852 	}
853 	if (!bbp->b_resid)
854 	    biodone(bp);
855     }
856 
857     if (composite) {
858 	if (finished) {
859 	    /* we are done with this composite, free all resources */
860 	    for (i = 0; i < 32; i++) {
861 		if (composite->rd_needed & (1 << i) ||
862 		    composite->wr_needed & (1 << i)) {
863 		    ata_free_request(composite->request[i]);
864 		}
865 	    }
866 	    spin_uninit(&composite->lock);
867 	    ata_free_composite(composite);
868 	}
869     }
870     else
871 	ata_free_request(request);
872 }
873 
874 static int
875 ata_raid_dump(struct dev_dump_args *ap)
876 {
877 	struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
878 	struct buf dbuf;
879 	int error = 0;
880 	int disk;
881 
882 	if (ap->a_length == 0) {
883 		/* flush subdisk buffers to media */
884 		for (disk = 0, error = 0; disk < rdp->total_disks; disk++) {
885 			if (rdp->disks[disk].dev) {
886 				error |= ata_controlcmd(rdp->disks[disk].dev,
887 						ATA_FLUSHCACHE, 0, 0, 0);
888 			}
889 		}
890 		return (error ? EIO : 0);
891 	}
892 
893 	bzero(&dbuf, sizeof(struct buf));
894 	initbufbio(&dbuf);
895 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
896 	/* bio_offset is byte granularity, convert block granularity a_blkno */
897 	dbuf.b_bio1.bio_offset = ap->a_offset;
898 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
899 	dbuf.b_bio1.bio_flags |= BIO_SYNC;
900 	dbuf.b_bio1.bio_done = biodone_sync;
901 	dbuf.b_bcount = ap->a_length;
902 	dbuf.b_data = ap->a_virtual;
903 	dbuf.b_cmd = BUF_CMD_WRITE;
904 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
905 	/* wait for completion, unlock the buffer, check status */
906 	if (biowait(&dbuf.b_bio1, "dumpw")) {
907 	    BUF_UNLOCK(&dbuf);
908 	    return(dbuf.b_error ? dbuf.b_error : EIO);
909 	}
910 	BUF_UNLOCK(&dbuf);
911 	uninitbufbio(&dbuf);
912 
913 	return 0;
914 }
915 
916 static void
917 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
918 {
919     int disk, count, status;
920 
921     spin_lock(&rdp->lock);
922     /* set default all working mode */
923     status = rdp->status;
924     rdp->status &= ~AR_S_DEGRADED;
925     rdp->status |= AR_S_READY;
926 
927     /* make sure all lost drives are accounted for */
928     for (disk = 0; disk < rdp->total_disks; disk++) {
929 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
930 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
931     }
932 
933     /* depending on RAID type figure out our health status */
934     switch (rdp->type) {
935     case AR_T_JBOD:
936     case AR_T_SPAN:
937     case AR_T_RAID0:
938 	for (disk = 0; disk < rdp->total_disks; disk++)
939 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
940 		rdp->status &= ~AR_S_READY;
941 	break;
942 
943     case AR_T_RAID1:
944     case AR_T_RAID01:
945 	for (disk = 0; disk < rdp->width; disk++) {
946 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
947 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
948 		rdp->status &= ~AR_S_READY;
949 	    }
950 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
951 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
952 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
953 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
954 		rdp->status |= AR_S_DEGRADED;
955 	    }
956 	}
957 	break;
958 
959     case AR_T_RAID5:
960 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
961 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
962 		count++;
963 	}
964 	if (count) {
965 	    if (count > 1)
966 		rdp->status &= ~AR_S_READY;
967 	    else
968 		rdp->status |= AR_S_DEGRADED;
969 	}
970 	break;
971     default:
972 	rdp->status &= ~AR_S_READY;
973     }
974 
975     /*
976      * Note that when the array breaks so comes up broken we
977      * force a write of the array config to the remaining
978      * drives so that the generation will be incremented past
979      * those of the missing or failed drives (in all cases).
980      */
981     if (rdp->status != status) {
982 	if (!(rdp->status & AR_S_READY)) {
983 	    kprintf("ar%d: FAILURE - %s array broken\n",
984 		   rdp->lun, ata_raid_type(rdp));
985 	    writeback = 1;
986 	}
987 	else if (rdp->status & AR_S_DEGRADED) {
988 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
989 		kprintf("ar%d: WARNING - mirror", rdp->lun);
990 	    else
991 		kprintf("ar%d: WARNING - parity", rdp->lun);
992 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
993 		   ata_raid_type(rdp));
994 	    writeback = 1;
995 	}
996     }
997     spin_unlock(&rdp->lock);
998     if (writeback)
999 	ata_raid_write_metadata(rdp);
1000 
1001 }
1002 
1003 static int
1004 ata_raid_status(struct ata_ioc_raid_config *config)
1005 {
1006     struct ar_softc *rdp;
1007     int i;
1008 
1009     if (!(rdp = ata_raid_arrays[config->lun]))
1010 	return ENXIO;
1011 
1012     config->type = rdp->type;
1013     config->total_disks = rdp->total_disks;
1014     for (i = 0; i < rdp->total_disks; i++ ) {
1015 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
1016 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
1017 	else
1018 	    config->disks[i] = -1;
1019     }
1020     config->interleave = rdp->interleave;
1021     config->status = rdp->status;
1022     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
1023     return 0;
1024 }
1025 
1026 static int
1027 ata_raid_create(struct ata_ioc_raid_config *config)
1028 {
1029     struct ar_softc *rdp;
1030     device_t subdisk;
1031     int array, disk;
1032     int ctlr = 0, total_disks = 0;
1033     u_int disk_size = 0;
1034     device_t gpdev;
1035 
1036     for (array = 0; array < MAX_ARRAYS; array++) {
1037 	if (!ata_raid_arrays[array])
1038 	    break;
1039     }
1040     if (array >= MAX_ARRAYS)
1041 	return ENOSPC;
1042 
1043     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
1044 	M_WAITOK | M_ZERO);
1045 
1046     for (disk = 0; disk < config->total_disks; disk++) {
1047 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1048 					   config->disks[disk]))) {
1049 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1050 
1051 	    /* is device already assigned to another array ? */
1052 	    if (ars->raid[rdp->volume]) {
1053 		config->disks[disk] = -1;
1054 		kfree(rdp, M_AR);
1055 		return EBUSY;
1056 	    }
1057 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1058 
1059 	    gpdev = GRANDPARENT(rdp->disks[disk].dev);
1060 
1061 	    switch (pci_get_vendor(gpdev)) {
1062 	    case ATA_HIGHPOINT_ID:
1063 		/*
1064 		 * we need some way to decide if it should be v2 or v3
1065 		 * for now just use v2 since the v3 BIOS knows how to
1066 		 * handle that as well.
1067 		 */
1068 		ctlr = AR_F_HPTV2_RAID;
1069 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1070 		break;
1071 
1072 	    case ATA_INTEL_ID:
1073 		ctlr = AR_F_INTEL_RAID;
1074 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1075 		break;
1076 
1077 	    case ATA_ITE_ID:
1078 		ctlr = AR_F_ITE_RAID;
1079 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1080 		break;
1081 
1082 	    case ATA_JMICRON_ID:
1083 		ctlr = AR_F_JMICRON_RAID;
1084 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1085 		break;
1086 
1087 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1088 	    case ATA_PROMISE_ID:
1089 		ctlr = AR_F_PROMISE_RAID;
1090 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1091 		break;
1092 
1093 	    case ATA_SIS_ID:
1094 		ctlr = AR_F_SIS_RAID;
1095 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1096 		break;
1097 
1098 	    case ATA_ATI_ID:
1099 	    case ATA_VIA_ID:
1100 		ctlr = AR_F_VIA_RAID;
1101 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1102 		break;
1103 
1104 	    default:
1105 		/* XXX SOS
1106 		 * right, so here we are, we have an ATA chip and we want
1107 		 * to create a RAID and store the metadata.
1108 		 * we need to find a way to tell what kind of metadata this
1109 		 * hardware's BIOS might be using (good ideas are welcomed)
1110 		 * for now we just use our own native FreeBSD format.
1111 		 * the only way to get support for the BIOS format is to
1112 		 * setup the RAID from there, in that case we pickup the
1113 		 * metadata format from the disks (if we support it).
1114 		 */
1115 		kprintf("WARNING!! - not able to determine metadata format\n"
1116 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1117 		       "If that is not what you want, use the BIOS to "
1118 		       "create the array\n");
1119 		ctlr = AR_F_FREEBSD_RAID;
1120 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1121 		break;
1122 	    }
1123 
1124 	    /* we need all disks to be of the same format */
1125 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1126 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1127 		kfree(rdp, M_AR);
1128 		return EXDEV;
1129 	    }
1130 	    else
1131 		rdp->format = ctlr;
1132 
1133 	    /* use the smallest disk of the lots size */
1134 	    /* gigabyte boundry ??? XXX SOS */
1135 	    if (disk_size)
1136 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1137 	    else
1138 		disk_size = rdp->disks[disk].sectors;
1139 	    rdp->disks[disk].flags =
1140 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1141 
1142 	    total_disks++;
1143 	}
1144 	else {
1145 	    config->disks[disk] = -1;
1146 	    kfree(rdp, M_AR);
1147 	    return ENXIO;
1148 	}
1149     }
1150 
1151     if (total_disks != config->total_disks) {
1152 	kfree(rdp, M_AR);
1153 	return ENODEV;
1154     }
1155 
1156     switch (config->type) {
1157     case AR_T_JBOD:
1158     case AR_T_SPAN:
1159     case AR_T_RAID0:
1160 	break;
1161 
1162     case AR_T_RAID1:
1163 	if (total_disks != 2) {
1164 	    kfree(rdp, M_AR);
1165 	    return EPERM;
1166 	}
1167 	break;
1168 
1169     case AR_T_RAID01:
1170 	if (total_disks % 2 != 0) {
1171 	    kfree(rdp, M_AR);
1172 	    return EPERM;
1173 	}
1174 	break;
1175 
1176     case AR_T_RAID5:
1177 	if (total_disks < 3) {
1178 	    kfree(rdp, M_AR);
1179 	    return EPERM;
1180 	}
1181 	break;
1182 
1183     default:
1184 	kfree(rdp, M_AR);
1185 	return EOPNOTSUPP;
1186     }
1187     rdp->type = config->type;
1188     rdp->lun = array;
1189     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1190 	rdp->type == AR_T_RAID5) {
1191 	int bit = 0;
1192 
1193 	while (config->interleave >>= 1)
1194 	    bit++;
1195 	rdp->interleave = 1 << bit;
1196     }
1197     rdp->offset_sectors = 0;
1198 
1199     /* values that depend on metadata format */
1200     switch (rdp->format) {
1201     case AR_F_ADAPTEC_RAID:
1202 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1203 	break;
1204 
1205     case AR_F_HPTV2_RAID:
1206 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1207 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1208 	break;
1209 
1210     case AR_F_HPTV3_RAID:
1211 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1212 	break;
1213 
1214     case AR_F_INTEL_RAID:
1215 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1216 	break;
1217 
1218     case AR_F_ITE_RAID:
1219 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1220 	break;
1221 
1222     case AR_F_JMICRON_RAID:
1223 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1224 	break;
1225 
1226     case AR_F_LSIV2_RAID:
1227 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1228 	break;
1229 
1230     case AR_F_LSIV3_RAID:
1231 	rdp->interleave = min(max(2, rdp->interleave), 256);
1232 	break;
1233 
1234     case AR_F_PROMISE_RAID:
1235 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1236 	break;
1237 
1238     case AR_F_SII_RAID:
1239 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1240 	break;
1241 
1242     case AR_F_SIS_RAID:
1243 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1244 	break;
1245 
1246     case AR_F_VIA_RAID:
1247 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1248 	break;
1249     }
1250 
1251     rdp->total_disks = total_disks;
1252     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1253     rdp->total_sectors =
1254 	(uint64_t)disk_size * (rdp->width - (rdp->type == AR_RAID5));
1255     rdp->heads = 255;
1256     rdp->sectors = 63;
1257     rdp->cylinders = rdp->total_sectors / (255 * 63);
1258     rdp->rebuild_lba = 0;
1259     rdp->status |= AR_S_READY;
1260 
1261     /* we are committed to this array, grap the subdisks */
1262     for (disk = 0; disk < config->total_disks; disk++) {
1263 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1264 					   config->disks[disk]))) {
1265 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1266 
1267 	    ars->raid[rdp->volume] = rdp;
1268 	    ars->disk_number[rdp->volume] = disk;
1269 	}
1270     }
1271     ata_raid_attach(rdp, 1);
1272     ata_raid_arrays[array] = rdp;
1273     config->lun = array;
1274     return 0;
1275 }
1276 
1277 static int
1278 ata_raid_delete(int array)
1279 {
1280     struct ar_softc *rdp;
1281     device_t subdisk;
1282     int disk;
1283 
1284     if (!(rdp = ata_raid_arrays[array]))
1285 	return ENXIO;
1286 
1287     rdp->status &= ~AR_S_READY;
1288     disk_destroy(&rdp->disk);
1289     devstat_remove_entry(&rdp->devstat);
1290 
1291     for (disk = 0; disk < rdp->total_disks; disk++) {
1292 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1293 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1294 		     device_get_unit(rdp->disks[disk].dev)))) {
1295 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1296 
1297 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1298 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1299 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1300 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1301 		ars->raid[rdp->volume] = NULL;
1302 		ars->disk_number[rdp->volume] = -1;
1303 	    }
1304 	    rdp->disks[disk].flags = 0;
1305 	}
1306     }
1307     ata_raid_wipe_metadata(rdp);
1308     ata_raid_arrays[array] = NULL;
1309     kfree(rdp, M_AR);
1310     return 0;
1311 }
1312 
1313 static int
1314 ata_raid_addspare(struct ata_ioc_raid_config *config)
1315 {
1316     struct ar_softc *rdp;
1317     device_t subdisk;
1318     int disk;
1319 
1320     if (!(rdp = ata_raid_arrays[config->lun]))
1321 	return ENXIO;
1322     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1323 	return ENXIO;
1324     if (rdp->status & AR_S_REBUILDING)
1325 	return EBUSY;
1326     switch (rdp->type) {
1327     case AR_T_RAID1:
1328     case AR_T_RAID01:
1329     case AR_T_RAID5:
1330 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1331 
1332 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1333 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1334 		continue;
1335 
1336 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1337 					       config->disks[0] ))) {
1338 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1339 
1340 		if (ars->raid[rdp->volume])
1341 		    return EBUSY;
1342 
1343 		/* XXX SOS validate size etc etc */
1344 		ars->raid[rdp->volume] = rdp;
1345 		ars->disk_number[rdp->volume] = disk;
1346 		rdp->disks[disk].dev = device_get_parent(subdisk);
1347 		rdp->disks[disk].flags =
1348 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1349 
1350 		device_printf(rdp->disks[disk].dev,
1351 			      "inserted into ar%d disk%d as spare\n",
1352 			      rdp->lun, disk);
1353 		ata_raid_config_changed(rdp, 1);
1354 		return 0;
1355 	    }
1356 	}
1357 	return ENXIO;
1358 
1359     default:
1360 	return EPERM;
1361     }
1362 }
1363 
1364 static int
1365 ata_raid_rebuild(int array)
1366 {
1367     struct ar_softc *rdp;
1368     int disk, count;
1369 
1370     if (!(rdp = ata_raid_arrays[array]))
1371 	return ENXIO;
1372     /* XXX SOS we should lock the rdp softc here */
1373     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1374 	return ENXIO;
1375     if (rdp->status & AR_S_REBUILDING)
1376 	return EBUSY;
1377 
1378     switch (rdp->type) {
1379     case AR_T_RAID1:
1380     case AR_T_RAID01:
1381     case AR_T_RAID5:
1382 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1383 	    if (((rdp->disks[disk].flags &
1384 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1385 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1386 		rdp->disks[disk].dev) {
1387 		count++;
1388 	    }
1389 	}
1390 
1391 	if (count) {
1392 	    rdp->rebuild_lba = 0;
1393 	    rdp->status |= AR_S_REBUILDING;
1394 	    return 0;
1395 	}
1396 	return EIO;
1397 
1398     default:
1399 	return EPERM;
1400     }
1401 }
1402 
1403 static int
1404 ata_raid_read_metadata(device_t subdisk)
1405 {
1406     devclass_t pci_devclass = devclass_find("pci");
1407     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1408     device_t gpdev;
1409     uint16_t vendor;
1410 
1411     /* prioritize vendor native metadata layout if possible */
1412     if (devclass == pci_devclass) {
1413 	gpdev = device_get_parent(subdisk);
1414 	gpdev = GRANDPARENT(gpdev);
1415 	vendor = pci_get_vendor(gpdev);
1416 
1417 	switch (vendor) {
1418 	case ATA_HIGHPOINT_ID:
1419 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1420 		return 0;
1421 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1422 		return 0;
1423 	    break;
1424 
1425 	case ATA_INTEL_ID:
1426 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1427 		return 0;
1428 	    break;
1429 
1430 	case ATA_ITE_ID:
1431 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1432 		return 0;
1433 	    break;
1434 
1435 	case ATA_JMICRON_ID:
1436 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1437 		return 0;
1438 	    break;
1439 
1440 	case ATA_NVIDIA_ID:
1441 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1442 		return 0;
1443 	    break;
1444 
1445 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1446 	case ATA_PROMISE_ID:
1447 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1448 		return 0;
1449 	    break;
1450 
1451 	case ATA_ATI_ID:
1452 	case ATA_SILICON_IMAGE_ID:
1453 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1454 		return 0;
1455 	    break;
1456 
1457 	case ATA_SIS_ID:
1458 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1459 		return 0;
1460 	    break;
1461 
1462 	case ATA_VIA_ID:
1463 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1464 		return 0;
1465 	    break;
1466 	}
1467     }
1468 
1469     /* handle controllers that have multiple layout possibilities */
1470     /* NOTE: the order of these are not insignificant */
1471 
1472     /* Adaptec HostRAID */
1473     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1474 	return 0;
1475 
1476     /* LSILogic v3 and v2 */
1477     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1478 	return 0;
1479     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1480 	return 0;
1481 
1482     /* if none of the above matched, try FreeBSD native format */
1483     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1484 }
1485 
1486 static int
1487 ata_raid_write_metadata(struct ar_softc *rdp)
1488 {
1489     switch (rdp->format) {
1490     case AR_F_FREEBSD_RAID:
1491     case AR_F_PROMISE_RAID:
1492 	return ata_raid_promise_write_meta(rdp);
1493 
1494     case AR_F_HPTV3_RAID:
1495     case AR_F_HPTV2_RAID:
1496 	/*
1497 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1498 	 * this is handy since we cannot know what version BIOS is on there
1499 	 */
1500 	return ata_raid_hptv2_write_meta(rdp);
1501 
1502     case AR_F_INTEL_RAID:
1503 	return ata_raid_intel_write_meta(rdp);
1504 
1505     case AR_F_JMICRON_RAID:
1506 	return ata_raid_jmicron_write_meta(rdp);
1507 
1508     case AR_F_SIS_RAID:
1509 	return ata_raid_sis_write_meta(rdp);
1510 
1511     case AR_F_VIA_RAID:
1512 	return ata_raid_via_write_meta(rdp);
1513 #if 0
1514     case AR_F_HPTV3_RAID:
1515 	return ata_raid_hptv3_write_meta(rdp);
1516 
1517     case AR_F_ADAPTEC_RAID:
1518 	return ata_raid_adaptec_write_meta(rdp);
1519 
1520     case AR_F_ITE_RAID:
1521 	return ata_raid_ite_write_meta(rdp);
1522 
1523     case AR_F_LSIV2_RAID:
1524 	return ata_raid_lsiv2_write_meta(rdp);
1525 
1526     case AR_F_LSIV3_RAID:
1527 	return ata_raid_lsiv3_write_meta(rdp);
1528 
1529     case AR_F_NVIDIA_RAID:
1530 	return ata_raid_nvidia_write_meta(rdp);
1531 
1532     case AR_F_SII_RAID:
1533 	return ata_raid_sii_write_meta(rdp);
1534 
1535 #endif
1536     default:
1537 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1538 	       rdp->lun, ata_raid_format(rdp));
1539     }
1540     return -1;
1541 }
1542 
1543 static int
1544 ata_raid_wipe_metadata(struct ar_softc *rdp)
1545 {
1546     int disk, error = 0;
1547     u_int64_t lba;
1548     u_int32_t size;
1549     u_int8_t *meta;
1550 
1551     for (disk = 0; disk < rdp->total_disks; disk++) {
1552 	if (rdp->disks[disk].dev) {
1553 	    switch (rdp->format) {
1554 	    case AR_F_ADAPTEC_RAID:
1555 		lba = ADP_LBA(rdp->disks[disk].dev);
1556 		size = sizeof(struct adaptec_raid_conf);
1557 		break;
1558 
1559 	    case AR_F_HPTV2_RAID:
1560 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1561 		size = sizeof(struct hptv2_raid_conf);
1562 		break;
1563 
1564 	    case AR_F_HPTV3_RAID:
1565 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1566 		size = sizeof(struct hptv3_raid_conf);
1567 		break;
1568 
1569 	    case AR_F_INTEL_RAID:
1570 		lba = INTEL_LBA(rdp->disks[disk].dev);
1571 		size = 3 * 512;         /* XXX SOS */
1572 		break;
1573 
1574 	    case AR_F_ITE_RAID:
1575 		lba = ITE_LBA(rdp->disks[disk].dev);
1576 		size = sizeof(struct ite_raid_conf);
1577 		break;
1578 
1579 	    case AR_F_JMICRON_RAID:
1580 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1581 		size = sizeof(struct jmicron_raid_conf);
1582 		break;
1583 
1584 	    case AR_F_LSIV2_RAID:
1585 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1586 		size = sizeof(struct lsiv2_raid_conf);
1587 		break;
1588 
1589 	    case AR_F_LSIV3_RAID:
1590 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1591 		size = sizeof(struct lsiv3_raid_conf);
1592 		break;
1593 
1594 	    case AR_F_NVIDIA_RAID:
1595 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1596 		size = sizeof(struct nvidia_raid_conf);
1597 		break;
1598 
1599 	    case AR_F_FREEBSD_RAID:
1600 	    case AR_F_PROMISE_RAID:
1601 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1602 		size = sizeof(struct promise_raid_conf);
1603 		break;
1604 
1605 	    case AR_F_SII_RAID:
1606 		lba = SII_LBA(rdp->disks[disk].dev);
1607 		size = sizeof(struct sii_raid_conf);
1608 		break;
1609 
1610 	    case AR_F_SIS_RAID:
1611 		lba = SIS_LBA(rdp->disks[disk].dev);
1612 		size = sizeof(struct sis_raid_conf);
1613 		break;
1614 
1615 	    case AR_F_VIA_RAID:
1616 		lba = VIA_LBA(rdp->disks[disk].dev);
1617 		size = sizeof(struct via_raid_conf);
1618 		break;
1619 
1620 	    default:
1621 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1622 		       rdp->lun, ata_raid_format(rdp));
1623 		return ENXIO;
1624 	    }
1625 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1626 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1627 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1628 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1629 		error = EIO;
1630 	    }
1631 	    kfree(meta, M_AR);
1632 	}
1633     }
1634     return error;
1635 }
1636 
1637 /* Adaptec HostRAID Metadata */
1638 static int
1639 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1640 {
1641     struct ata_raid_subdisk *ars = device_get_softc(dev);
1642     device_t parent = device_get_parent(dev);
1643     struct adaptec_raid_conf *meta;
1644     struct ar_softc *raid;
1645     int array, disk, retval = 0;
1646 
1647     meta = (struct adaptec_raid_conf *)
1648 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1649 
1650     if (ata_raid_rw(parent, ADP_LBA(parent),
1651 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1652 	if (testing || bootverbose)
1653 	    device_printf(parent, "Adaptec read metadata failed\n");
1654 	goto adaptec_out;
1655     }
1656 
1657     /* check if this is a Adaptec RAID struct */
1658     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1659 	if (testing || bootverbose)
1660 	    device_printf(parent, "Adaptec check1 failed\n");
1661 	goto adaptec_out;
1662     }
1663 
1664     if (testing || bootverbose)
1665 	ata_raid_adaptec_print_meta(meta);
1666 
1667     /* now convert Adaptec metadata into our generic form */
1668     for (array = 0; array < MAX_ARRAYS; array++) {
1669 	if (!raidp[array]) {
1670 	    raidp[array] =
1671 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1672 					  M_WAITOK | M_ZERO);
1673 	}
1674 	raid = raidp[array];
1675 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1676 	    continue;
1677 
1678 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1679 	    continue;
1680 
1681 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1682 	    switch (meta->configs[0].type) {
1683 	    case ADP_T_RAID0:
1684 		raid->magic_0 = meta->configs[0].magic_0;
1685 		raid->type = AR_T_RAID0;
1686 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1687 		raid->width = be16toh(meta->configs[0].total_disks);
1688 		break;
1689 
1690 	    case ADP_T_RAID1:
1691 		raid->magic_0 = meta->configs[0].magic_0;
1692 		raid->type = AR_T_RAID1;
1693 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1694 		break;
1695 
1696 	    default:
1697 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1698 			      meta->configs[0].type);
1699 		kfree(raidp[array], M_AR);
1700 		raidp[array] = NULL;
1701 		goto adaptec_out;
1702 	    }
1703 
1704 	    raid->format = AR_F_ADAPTEC_RAID;
1705 	    raid->generation = be32toh(meta->generation);
1706 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1707 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1708 	    raid->heads = 255;
1709 	    raid->sectors = 63;
1710 	    raid->cylinders = raid->total_sectors / (63 * 255);
1711 	    raid->offset_sectors = 0;
1712 	    raid->rebuild_lba = 0;
1713 	    raid->lun = array;
1714 	    strncpy(raid->name, meta->configs[0].name,
1715 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1716 
1717 	    /* clear out any old info */
1718 	    if (raid->generation) {
1719 		for (disk = 0; disk < raid->total_disks; disk++) {
1720 		    raid->disks[disk].dev = NULL;
1721 		    raid->disks[disk].flags = 0;
1722 		}
1723 	    }
1724 	}
1725 	if (be32toh(meta->generation) >= raid->generation) {
1726 	    struct ata_device *atadev = device_get_softc(parent);
1727 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1728 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1729 			      ATA_DEV(atadev->unit);
1730 
1731 	    raid->disks[disk_number].dev = parent;
1732 	    raid->disks[disk_number].sectors =
1733 		be32toh(meta->configs[disk_number + 1].sectors);
1734 	    raid->disks[disk_number].flags =
1735 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1736 	    ars->raid[raid->volume] = raid;
1737 	    ars->disk_number[raid->volume] = disk_number;
1738 	    retval = 1;
1739 	}
1740 	break;
1741     }
1742 
1743 adaptec_out:
1744     kfree(meta, M_AR);
1745     return retval;
1746 }
1747 
1748 /* Highpoint V2 RocketRAID Metadata */
1749 static int
1750 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1751 {
1752     struct ata_raid_subdisk *ars = device_get_softc(dev);
1753     device_t parent = device_get_parent(dev);
1754     struct hptv2_raid_conf *meta;
1755     struct ar_softc *raid = NULL;
1756     int array, disk_number = 0, retval = 0;
1757 
1758     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1759 	M_AR, M_WAITOK | M_ZERO);
1760 
1761     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1762 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1763 	if (testing || bootverbose)
1764 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1765 	goto hptv2_out;
1766     }
1767 
1768     /* check if this is a HighPoint v2 RAID struct */
1769     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1770 	if (testing || bootverbose)
1771 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1772 	goto hptv2_out;
1773     }
1774 
1775     /* is this disk defined, or an old leftover/spare ? */
1776     if (!meta->magic_0) {
1777 	if (testing || bootverbose)
1778 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1779 	goto hptv2_out;
1780     }
1781 
1782     if (testing || bootverbose)
1783 	ata_raid_hptv2_print_meta(meta);
1784 
1785     /* now convert HighPoint (v2) metadata into our generic form */
1786     for (array = 0; array < MAX_ARRAYS; array++) {
1787 	if (!raidp[array]) {
1788 	    raidp[array] =
1789 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1790 					  M_WAITOK | M_ZERO);
1791 	}
1792 	raid = raidp[array];
1793 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1794 	    continue;
1795 
1796 	switch (meta->type) {
1797 	case HPTV2_T_RAID0:
1798 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1799 		(HPTV2_O_RAID0|HPTV2_O_OK))
1800 		goto highpoint_raid1;
1801 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1802 		goto highpoint_raid01;
1803 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1804 		continue;
1805 	    raid->magic_0 = meta->magic_0;
1806 	    raid->type = AR_T_RAID0;
1807 	    raid->interleave = 1 << meta->stripe_shift;
1808 	    disk_number = meta->disk_number;
1809 	    if (!(meta->order & HPTV2_O_OK))
1810 		meta->magic = 0;        /* mark bad */
1811 	    break;
1812 
1813 	case HPTV2_T_RAID1:
1814 highpoint_raid1:
1815 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1816 		continue;
1817 	    raid->magic_0 = meta->magic_0;
1818 	    raid->type = AR_T_RAID1;
1819 	    disk_number = (meta->disk_number > 0);
1820 	    break;
1821 
1822 	case HPTV2_T_RAID01_RAID0:
1823 highpoint_raid01:
1824 	    if (meta->order & HPTV2_O_RAID0) {
1825 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1826 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1827 		    continue;
1828 		raid->magic_0 = meta->magic_0;
1829 		raid->magic_1 = meta->magic_1;
1830 		raid->type = AR_T_RAID01;
1831 		raid->interleave = 1 << meta->stripe_shift;
1832 		disk_number = meta->disk_number;
1833 	    }
1834 	    else {
1835 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1836 		    continue;
1837 		raid->magic_1 = meta->magic_1;
1838 		raid->type = AR_T_RAID01;
1839 		raid->interleave = 1 << meta->stripe_shift;
1840 		disk_number = meta->disk_number + meta->array_width;
1841 		if (!(meta->order & HPTV2_O_RAID1))
1842 		    meta->magic = 0;    /* mark bad */
1843 	    }
1844 	    break;
1845 
1846 	case HPTV2_T_SPAN:
1847 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1848 		continue;
1849 	    raid->magic_0 = meta->magic_0;
1850 	    raid->type = AR_T_SPAN;
1851 	    disk_number = meta->disk_number;
1852 	    break;
1853 
1854 	default:
1855 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1856 			  meta->type);
1857 	    kfree(raidp[array], M_AR);
1858 	    raidp[array] = NULL;
1859 	    goto hptv2_out;
1860 	}
1861 
1862 	raid->format |= AR_F_HPTV2_RAID;
1863 	raid->disks[disk_number].dev = parent;
1864 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1865 	raid->lun = array;
1866 	strncpy(raid->name, meta->name_1,
1867 		min(sizeof(raid->name), sizeof(meta->name_1)));
1868 	if (meta->magic == HPTV2_MAGIC_OK) {
1869 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1870 	    raid->width = meta->array_width;
1871 	    raid->total_sectors = meta->total_sectors;
1872 	    raid->heads = 255;
1873 	    raid->sectors = 63;
1874 	    raid->cylinders = raid->total_sectors / (63 * 255);
1875 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1876 	    raid->rebuild_lba = meta->rebuild_lba;
1877 	    raid->disks[disk_number].sectors =
1878 		raid->total_sectors / raid->width;
1879 	}
1880 	else
1881 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1882 
1883 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1884 	    raid->total_disks = raid->width;
1885 	if (disk_number >= raid->total_disks)
1886 	    raid->total_disks = disk_number + 1;
1887 	ars->raid[raid->volume] = raid;
1888 	ars->disk_number[raid->volume] = disk_number;
1889 	retval = 1;
1890 	break;
1891     }
1892 
1893 hptv2_out:
1894     kfree(meta, M_AR);
1895     return retval;
1896 }
1897 
1898 static int
1899 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1900 {
1901     struct hptv2_raid_conf *meta;
1902     struct timeval timestamp;
1903     int disk, error = 0;
1904 
1905     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1906 	M_AR, M_WAITOK | M_ZERO);
1907 
1908     microtime(&timestamp);
1909     rdp->magic_0 = timestamp.tv_sec + 2;
1910     rdp->magic_1 = timestamp.tv_sec;
1911 
1912     for (disk = 0; disk < rdp->total_disks; disk++) {
1913 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1914 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1915 	    meta->magic = HPTV2_MAGIC_OK;
1916 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1917 	    meta->magic_0 = rdp->magic_0;
1918 	    if (strlen(rdp->name))
1919 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1920 	    else
1921 		strcpy(meta->name_1, "FreeBSD");
1922 	}
1923 	meta->disk_number = disk;
1924 
1925 	switch (rdp->type) {
1926 	case AR_T_RAID0:
1927 	    meta->type = HPTV2_T_RAID0;
1928 	    strcpy(meta->name_2, "RAID 0");
1929 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1930 		meta->order = HPTV2_O_OK;
1931 	    break;
1932 
1933 	case AR_T_RAID1:
1934 	    meta->type = HPTV2_T_RAID0;
1935 	    strcpy(meta->name_2, "RAID 1");
1936 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1937 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1938 	    break;
1939 
1940 	case AR_T_RAID01:
1941 	    meta->type = HPTV2_T_RAID01_RAID0;
1942 	    strcpy(meta->name_2, "RAID 0+1");
1943 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1944 		if (disk < rdp->width) {
1945 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1946 		    meta->magic_0 = rdp->magic_0 - 1;
1947 		}
1948 		else {
1949 		    meta->order = HPTV2_O_RAID1;
1950 		    meta->disk_number -= rdp->width;
1951 		}
1952 	    }
1953 	    else
1954 		meta->magic_0 = rdp->magic_0 - 1;
1955 	    meta->magic_1 = rdp->magic_1;
1956 	    break;
1957 
1958 	case AR_T_SPAN:
1959 	    meta->type = HPTV2_T_SPAN;
1960 	    strcpy(meta->name_2, "SPAN");
1961 	    break;
1962 	default:
1963 	    kfree(meta, M_AR);
1964 	    return ENODEV;
1965 	}
1966 
1967 	meta->array_width = rdp->width;
1968 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1969 	meta->total_sectors = rdp->total_sectors;
1970 	meta->rebuild_lba = rdp->rebuild_lba;
1971 	if (testing || bootverbose)
1972 	    ata_raid_hptv2_print_meta(meta);
1973 	if (rdp->disks[disk].dev) {
1974 	    if (ata_raid_rw(rdp->disks[disk].dev,
1975 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1976 			    sizeof(struct promise_raid_conf),
1977 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1978 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1979 		error = EIO;
1980 	    }
1981 	}
1982     }
1983     kfree(meta, M_AR);
1984     return error;
1985 }
1986 
1987 /* Highpoint V3 RocketRAID Metadata */
1988 static int
1989 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1990 {
1991     struct ata_raid_subdisk *ars = device_get_softc(dev);
1992     device_t parent = device_get_parent(dev);
1993     struct hptv3_raid_conf *meta;
1994     struct ar_softc *raid = NULL;
1995     int array, disk_number, retval = 0;
1996 
1997     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1998 	M_AR, M_WAITOK | M_ZERO);
1999 
2000     if (ata_raid_rw(parent, HPTV3_LBA(parent),
2001 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
2002 	if (testing || bootverbose)
2003 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
2004 	goto hptv3_out;
2005     }
2006 
2007     /* check if this is a HighPoint v3 RAID struct */
2008     if (meta->magic != HPTV3_MAGIC) {
2009 	if (testing || bootverbose)
2010 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
2011 	goto hptv3_out;
2012     }
2013 
2014     /* check if there are any config_entries */
2015     if (meta->config_entries < 1) {
2016 	if (testing || bootverbose)
2017 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
2018 	goto hptv3_out;
2019     }
2020 
2021     if (testing || bootverbose)
2022 	ata_raid_hptv3_print_meta(meta);
2023 
2024     /* now convert HighPoint (v3) metadata into our generic form */
2025     for (array = 0; array < MAX_ARRAYS; array++) {
2026 	if (!raidp[array]) {
2027 	    raidp[array] =
2028 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2029 					  M_WAITOK | M_ZERO);
2030 	}
2031 	raid = raidp[array];
2032 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
2033 	    continue;
2034 
2035 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
2036 	    continue;
2037 
2038 	switch (meta->configs[0].type) {
2039 	case HPTV3_T_RAID0:
2040 	    raid->type = AR_T_RAID0;
2041 	    raid->width = meta->configs[0].total_disks;
2042 	    disk_number = meta->configs[0].disk_number;
2043 	    break;
2044 
2045 	case HPTV3_T_RAID1:
2046 	    raid->type = AR_T_RAID1;
2047 	    raid->width = meta->configs[0].total_disks / 2;
2048 	    disk_number = meta->configs[0].disk_number;
2049 	    break;
2050 
2051 	case HPTV3_T_RAID5:
2052 	    raid->type = AR_T_RAID5;
2053 	    raid->width = meta->configs[0].total_disks;
2054 	    disk_number = meta->configs[0].disk_number;
2055 	    break;
2056 
2057 	case HPTV3_T_SPAN:
2058 	    raid->type = AR_T_SPAN;
2059 	    raid->width = meta->configs[0].total_disks;
2060 	    disk_number = meta->configs[0].disk_number;
2061 	    break;
2062 
2063 	default:
2064 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2065 			  meta->configs[0].type);
2066 	    kfree(raidp[array], M_AR);
2067 	    raidp[array] = NULL;
2068 	    goto hptv3_out;
2069 	}
2070 	if (meta->config_entries == 2) {
2071 	    switch (meta->configs[1].type) {
2072 	    case HPTV3_T_RAID1:
2073 		if (raid->type == AR_T_RAID0) {
2074 		    raid->type = AR_T_RAID01;
2075 		    disk_number = meta->configs[1].disk_number +
2076 				  (meta->configs[0].disk_number << 1);
2077 		    break;
2078 		}
2079 	    default:
2080 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2081 			      meta->configs[1].type);
2082 		kfree(raidp[array], M_AR);
2083 		raidp[array] = NULL;
2084 		goto hptv3_out;
2085 	    }
2086 	}
2087 
2088 	raid->magic_0 = meta->magic_0;
2089 	raid->format = AR_F_HPTV3_RAID;
2090 	raid->generation = meta->timestamp;
2091 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2092 	raid->total_disks = meta->configs[0].total_disks +
2093 	    meta->configs[1].total_disks;
2094 	raid->total_sectors = meta->configs[0].total_sectors +
2095 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2096 	raid->heads = 255;
2097 	raid->sectors = 63;
2098 	raid->cylinders = raid->total_sectors / (63 * 255);
2099 	raid->offset_sectors = 0;
2100 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2101 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2102 	raid->lun = array;
2103 	strncpy(raid->name, meta->name,
2104 		min(sizeof(raid->name), sizeof(meta->name)));
2105 	raid->disks[disk_number].sectors = raid->total_sectors /
2106 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2107 	raid->disks[disk_number].dev = parent;
2108 	raid->disks[disk_number].flags =
2109 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2110 	ars->raid[raid->volume] = raid;
2111 	ars->disk_number[raid->volume] = disk_number;
2112 	retval = 1;
2113 	break;
2114     }
2115 
2116 hptv3_out:
2117     kfree(meta, M_AR);
2118     return retval;
2119 }
2120 
2121 /* Intel MatrixRAID Metadata */
2122 static int
2123 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2124 {
2125     struct ata_raid_subdisk *ars = device_get_softc(dev);
2126     device_t parent = device_get_parent(dev);
2127     struct intel_raid_conf *meta;
2128     struct intel_raid_mapping *map;
2129     struct ar_softc *raid = NULL;
2130     u_int32_t checksum, *ptr;
2131     int array, count, disk, volume = 1, retval = 0;
2132     char *tmp;
2133 
2134     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2135 
2136     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2137 	if (testing || bootverbose)
2138 	    device_printf(parent, "Intel read metadata failed\n");
2139 	goto intel_out;
2140     }
2141     tmp = (char *)meta;
2142     bcopy(tmp, tmp+1024, 512);
2143     bcopy(tmp+512, tmp, 1024);
2144     bzero(tmp+1024, 512);
2145 
2146     /* check if this is a Intel RAID struct */
2147     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2148 	if (testing || bootverbose)
2149 	    device_printf(parent, "Intel check1 failed\n");
2150 	goto intel_out;
2151     }
2152 
2153     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2154 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2155 	checksum += *ptr++;
2156     }
2157     checksum -= meta->checksum;
2158     if (checksum != meta->checksum) {
2159 	if (testing || bootverbose)
2160 	    device_printf(parent, "Intel check2 failed\n");
2161 	goto intel_out;
2162     }
2163 
2164     if (testing || bootverbose)
2165 	ata_raid_intel_print_meta(meta);
2166 
2167     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2168 
2169     /* now convert Intel metadata into our generic form */
2170     for (array = 0; array < MAX_ARRAYS; array++) {
2171 	if (!raidp[array]) {
2172 	    raidp[array] =
2173 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2174 					  M_WAITOK | M_ZERO);
2175 	}
2176 	raid = raidp[array];
2177 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2178 	    continue;
2179 
2180 	if ((raid->format & AR_F_INTEL_RAID) &&
2181 	    (raid->magic_0 != meta->config_id))
2182 	    continue;
2183 
2184 	/*
2185 	 * update our knowledge about the array config based on generation
2186 	 * NOTE: there can be multiple volumes on a disk set
2187 	 */
2188 	if (!meta->generation || meta->generation > raid->generation) {
2189 	    switch (map->type) {
2190 	    case INTEL_T_RAID0:
2191 		raid->type = AR_T_RAID0;
2192 		raid->width = map->total_disks;
2193 		break;
2194 
2195 	    case INTEL_T_RAID1:
2196 		if (map->total_disks == 4)
2197 		    raid->type = AR_T_RAID01;
2198 		else
2199 		    raid->type = AR_T_RAID1;
2200 		raid->width = map->total_disks / 2;
2201 		break;
2202 
2203 	    case INTEL_T_RAID5:
2204 		raid->type = AR_T_RAID5;
2205 		raid->width = map->total_disks;
2206 		break;
2207 
2208 	    default:
2209 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2210 			      map->type);
2211 		kfree(raidp[array], M_AR);
2212 		raidp[array] = NULL;
2213 		goto intel_out;
2214 	    }
2215 
2216 	    switch (map->status) {
2217 	    case INTEL_S_READY:
2218 		raid->status = AR_S_READY;
2219 		break;
2220 	    case INTEL_S_DEGRADED:
2221 		raid->status |= AR_S_DEGRADED;
2222 		break;
2223 	    case INTEL_S_DISABLED:
2224 	    case INTEL_S_FAILURE:
2225 		raid->status = 0;
2226 	    }
2227 
2228 	    raid->magic_0 = meta->config_id;
2229 	    raid->format = AR_F_INTEL_RAID;
2230 	    raid->generation = meta->generation;
2231 	    raid->interleave = map->stripe_sectors;
2232 	    raid->total_disks = map->total_disks;
2233 	    raid->total_sectors = map->total_sectors;
2234 	    raid->heads = 255;
2235 	    raid->sectors = 63;
2236 	    raid->cylinders = raid->total_sectors / (63 * 255);
2237 	    raid->offset_sectors = map->offset;
2238 	    raid->rebuild_lba = 0;
2239 	    raid->lun = array;
2240 	    raid->volume = volume - 1;
2241 	    strncpy(raid->name, map->name,
2242 		    min(sizeof(raid->name), sizeof(map->name)));
2243 
2244 	    /* clear out any old info */
2245 	    for (disk = 0; disk < raid->total_disks; disk++) {
2246 		raid->disks[disk].dev = NULL;
2247 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2248 		      raid->disks[disk].serial,
2249 		      sizeof(raid->disks[disk].serial));
2250 		raid->disks[disk].sectors =
2251 		    meta->disk[map->disk_idx[disk]].sectors;
2252 		raid->disks[disk].flags = 0;
2253 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2254 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2255 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2256 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2257 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2258 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2259 		    raid->disks[disk].flags |= AR_DF_SPARE;
2260 		}
2261 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2262 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2263 	    }
2264 	}
2265 	if (meta->generation >= raid->generation) {
2266 	    for (disk = 0; disk < raid->total_disks; disk++) {
2267 		struct ata_device *atadev = device_get_softc(parent);
2268 
2269 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2270 		    sizeof(raid->disks[disk].serial))) {
2271 		    raid->disks[disk].dev = parent;
2272 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2273 		    ars->raid[raid->volume] = raid;
2274 		    ars->disk_number[raid->volume] = disk;
2275 		    retval = 1;
2276 		}
2277 	    }
2278 	}
2279 	else
2280 	    goto intel_out;
2281 
2282 	if (retval) {
2283 	    if (volume < meta->total_volumes) {
2284 		map = (struct intel_raid_mapping *)
2285 		      &map->disk_idx[map->total_disks];
2286 		volume++;
2287 		retval = 0;
2288 		continue;
2289 	    }
2290 	    break;
2291 	}
2292 	else {
2293 	    kfree(raidp[array], M_AR);
2294 	    raidp[array] = NULL;
2295 	    if (volume == 2)
2296 		retval = 1;
2297 	}
2298     }
2299 
2300 intel_out:
2301     kfree(meta, M_AR);
2302     return retval;
2303 }
2304 
2305 static int
2306 ata_raid_intel_write_meta(struct ar_softc *rdp)
2307 {
2308     struct intel_raid_conf *meta;
2309     struct intel_raid_mapping *map;
2310     struct timeval timestamp;
2311     u_int32_t checksum, *ptr;
2312     int count, disk, error = 0;
2313     char *tmp;
2314 
2315     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2316 
2317     rdp->generation++;
2318 
2319     /* Generate a new config_id if none exists */
2320     if (!rdp->magic_0) {
2321 	microtime(&timestamp);
2322 	rdp->magic_0 = timestamp.tv_sec ^ timestamp.tv_usec;
2323     }
2324 
2325     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2326     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2327     meta->config_id = rdp->magic_0;
2328     meta->generation = rdp->generation;
2329     meta->total_disks = rdp->total_disks;
2330     meta->total_volumes = 1;                                    /* XXX SOS */
2331     for (disk = 0; disk < rdp->total_disks; disk++) {
2332 	if (rdp->disks[disk].dev) {
2333 	    struct ata_channel *ch =
2334 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2335 	    struct ata_device *atadev =
2336 		device_get_softc(rdp->disks[disk].dev);
2337 
2338 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2339 		  sizeof(rdp->disks[disk].serial));
2340 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2341 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2342 	}
2343 	else
2344 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2345 	meta->disk[disk].flags = 0;
2346 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2347 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2348 	else {
2349 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2350 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2351 	    else
2352 		meta->disk[disk].flags |= INTEL_F_DOWN;
2353 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2354 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2355 	}
2356     }
2357     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2358 
2359     bcopy(rdp->name, map->name, sizeof(rdp->name));
2360     map->total_sectors = rdp->total_sectors;
2361     map->state = 12;                                            /* XXX SOS */
2362     map->offset = rdp->offset_sectors;
2363     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2364     map->stripe_sectors =  rdp->interleave;
2365     map->disk_sectors = rdp->total_sectors / rdp->width;
2366     map->status = INTEL_S_READY;                                /* XXX SOS */
2367     switch (rdp->type) {
2368     case AR_T_RAID0:
2369 	map->type = INTEL_T_RAID0;
2370 	break;
2371     case AR_T_RAID1:
2372 	map->type = INTEL_T_RAID1;
2373 	break;
2374     case AR_T_RAID01:
2375 	map->type = INTEL_T_RAID1;
2376 	break;
2377     case AR_T_RAID5:
2378 	map->type = INTEL_T_RAID5;
2379 	break;
2380     default:
2381 	kfree(meta, M_AR);
2382 	return ENODEV;
2383     }
2384     map->total_disks = rdp->total_disks;
2385     map->magic[0] = 0x02;
2386     map->magic[1] = 0xff;
2387     map->magic[2] = 0x01;
2388     for (disk = 0; disk < rdp->total_disks; disk++)
2389 	map->disk_idx[disk] = disk;
2390 
2391     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2392     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2393 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2394 	checksum += *ptr++;
2395     }
2396     meta->checksum = checksum;
2397 
2398     if (testing || bootverbose)
2399 	ata_raid_intel_print_meta(meta);
2400 
2401     tmp = (char *)meta;
2402     bcopy(tmp, tmp+1024, 512);
2403     bcopy(tmp+512, tmp, 1024);
2404     bzero(tmp+1024, 512);
2405 
2406     for (disk = 0; disk < rdp->total_disks; disk++) {
2407 	if (rdp->disks[disk].dev) {
2408 	    if (ata_raid_rw(rdp->disks[disk].dev,
2409 			    INTEL_LBA(rdp->disks[disk].dev),
2410 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2411 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2412 		error = EIO;
2413 	    }
2414 	}
2415     }
2416     kfree(meta, M_AR);
2417     return error;
2418 }
2419 
2420 
2421 /* Integrated Technology Express Metadata */
2422 static int
2423 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2424 {
2425     struct ata_raid_subdisk *ars = device_get_softc(dev);
2426     device_t parent = device_get_parent(dev);
2427     struct ite_raid_conf *meta;
2428     struct ar_softc *raid = NULL;
2429     int array, disk_number, count, retval = 0;
2430     u_int16_t *ptr;
2431 
2432     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2433 	M_WAITOK | M_ZERO);
2434 
2435     if (ata_raid_rw(parent, ITE_LBA(parent),
2436 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2437 	if (testing || bootverbose)
2438 	    device_printf(parent, "ITE read metadata failed\n");
2439 	goto ite_out;
2440     }
2441 
2442     /* check if this is a ITE RAID struct */
2443     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2444 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2445 	ptr[count] = be16toh(ptr[count]);
2446 
2447     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2448 	if (testing || bootverbose)
2449 	    device_printf(parent, "ITE check1 failed\n");
2450 	goto ite_out;
2451     }
2452 
2453     if (testing || bootverbose)
2454 	ata_raid_ite_print_meta(meta);
2455 
2456     /* now convert ITE metadata into our generic form */
2457     for (array = 0; array < MAX_ARRAYS; array++) {
2458 	if ((raid = raidp[array])) {
2459 	    if (raid->format != AR_F_ITE_RAID)
2460 		continue;
2461 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2462 		continue;
2463 	}
2464 
2465 	/* if we dont have a disks timestamp the RAID is invalidated */
2466 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2467 	    goto ite_out;
2468 
2469 	if (!raid) {
2470 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2471 						     M_AR, M_WAITOK | M_ZERO);
2472 	}
2473 
2474 	switch (meta->type) {
2475 	case ITE_T_RAID0:
2476 	    raid->type = AR_T_RAID0;
2477 	    raid->width = meta->array_width;
2478 	    raid->total_disks = meta->array_width;
2479 	    disk_number = meta->disk_number;
2480 	    break;
2481 
2482 	case ITE_T_RAID1:
2483 	    raid->type = AR_T_RAID1;
2484 	    raid->width = 1;
2485 	    raid->total_disks = 2;
2486 	    disk_number = meta->disk_number;
2487 	    break;
2488 
2489 	case ITE_T_RAID01:
2490 	    raid->type = AR_T_RAID01;
2491 	    raid->width = meta->array_width;
2492 	    raid->total_disks = 4;
2493 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2494 			  ((meta->disk_number & 0x01) << 1);
2495 	    break;
2496 
2497 	case ITE_T_SPAN:
2498 	    raid->type = AR_T_SPAN;
2499 	    raid->width = 1;
2500 	    raid->total_disks = meta->array_width;
2501 	    disk_number = meta->disk_number;
2502 	    break;
2503 
2504 	default:
2505 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2506 	    kfree(raidp[array], M_AR);
2507 	    raidp[array] = NULL;
2508 	    goto ite_out;
2509 	}
2510 
2511 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2512 	raid->format = AR_F_ITE_RAID;
2513 	raid->generation = 0;
2514 	raid->interleave = meta->stripe_sectors;
2515 	raid->total_sectors = meta->total_sectors;
2516 	raid->heads = 255;
2517 	raid->sectors = 63;
2518 	raid->cylinders = raid->total_sectors / (63 * 255);
2519 	raid->offset_sectors = 0;
2520 	raid->rebuild_lba = 0;
2521 	raid->lun = array;
2522 
2523 	raid->disks[disk_number].dev = parent;
2524 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2525 	raid->disks[disk_number].flags =
2526 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2527 	ars->raid[raid->volume] = raid;
2528 	ars->disk_number[raid->volume] = disk_number;
2529 	retval = 1;
2530 	break;
2531     }
2532 ite_out:
2533     kfree(meta, M_AR);
2534     return retval;
2535 }
2536 
2537 /* JMicron Technology Corp Metadata */
2538 static int
2539 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2540 {
2541     struct ata_raid_subdisk *ars = device_get_softc(dev);
2542     device_t parent = device_get_parent(dev);
2543     struct jmicron_raid_conf *meta;
2544     struct ar_softc *raid = NULL;
2545     u_int16_t checksum, *ptr;
2546     u_int64_t disk_size;
2547     int count, array, disk, total_disks, retval = 0;
2548 
2549     meta = (struct jmicron_raid_conf *)
2550 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2551 
2552     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2553 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2554 	if (testing || bootverbose)
2555 	    device_printf(parent,
2556 			  "JMicron read metadata failed\n");
2557     }
2558 
2559     /* check for JMicron signature */
2560     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2561 	if (testing || bootverbose)
2562 	    device_printf(parent, "JMicron check1 failed\n");
2563 	goto jmicron_out;
2564     }
2565 
2566     /* calculate checksum and compare for valid */
2567     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2568 	checksum += *ptr++;
2569     if (checksum) {
2570 	if (testing || bootverbose)
2571 	    device_printf(parent, "JMicron check2 failed\n");
2572 	goto jmicron_out;
2573     }
2574 
2575     if (testing || bootverbose)
2576 	ata_raid_jmicron_print_meta(meta);
2577 
2578     /* now convert JMicron meta into our generic form */
2579     for (array = 0; array < MAX_ARRAYS; array++) {
2580 jmicron_next:
2581 	if (!raidp[array]) {
2582 	    raidp[array] =
2583 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2584 					  M_WAITOK | M_ZERO);
2585 	}
2586 	raid = raidp[array];
2587 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2588 	    continue;
2589 
2590 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2591 	    if (meta->disks[disk]) {
2592 		if (raid->format == AR_F_JMICRON_RAID) {
2593 		    if (bcmp(&meta->disks[disk],
2594 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2595 			array++;
2596 			goto jmicron_next;
2597 		    }
2598 		}
2599 		else
2600 		    bcopy(&meta->disks[disk],
2601 			  raid->disks[disk].serial, sizeof(u_int32_t));
2602 		total_disks++;
2603 	    }
2604 	}
2605 	/* handle spares XXX SOS */
2606 
2607 	switch (meta->type) {
2608 	case JM_T_RAID0:
2609 	    raid->type = AR_T_RAID0;
2610 	    raid->width = total_disks;
2611 	    break;
2612 
2613 	case JM_T_RAID1:
2614 	    raid->type = AR_T_RAID1;
2615 	    raid->width = 1;
2616 	    break;
2617 
2618 	case JM_T_RAID01:
2619 	    raid->type = AR_T_RAID01;
2620 	    raid->width = total_disks / 2;
2621 	    break;
2622 
2623 	case JM_T_RAID5:
2624 	    raid->type = AR_T_RAID5;
2625 	    raid->width = total_disks;
2626 	    break;
2627 
2628 	case JM_T_JBOD:
2629 	    raid->type = AR_T_SPAN;
2630 	    raid->width = 1;
2631 	    break;
2632 
2633 	default:
2634 	    device_printf(parent,
2635 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2636 	    kfree(raidp[array], M_AR);
2637 	    raidp[array] = NULL;
2638 	    goto jmicron_out;
2639 	}
2640 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2641 	raid->format = AR_F_JMICRON_RAID;
2642 	strncpy(raid->name, meta->name, sizeof(meta->name));
2643 	raid->generation = 0;
2644 	raid->interleave = 2 << meta->stripe_shift;
2645 	raid->total_disks = total_disks;
2646 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2647 	raid->heads = 255;
2648 	raid->sectors = 63;
2649 	raid->cylinders = raid->total_sectors / (63 * 255);
2650 	raid->offset_sectors = meta->offset * 16;
2651 	raid->rebuild_lba = 0;
2652 	raid->lun = array;
2653 
2654 	for (disk = 0; disk < raid->total_disks; disk++) {
2655 	    if (meta->disks[disk] == meta->disk_id) {
2656 		raid->disks[disk].dev = parent;
2657 		raid->disks[disk].sectors = disk_size;
2658 		raid->disks[disk].flags =
2659 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2660 		ars->raid[raid->volume] = raid;
2661 		ars->disk_number[raid->volume] = disk;
2662 		retval = 1;
2663 		break;
2664 	    }
2665 	}
2666 	break;
2667     }
2668 jmicron_out:
2669     kfree(meta, M_AR);
2670     return retval;
2671 }
2672 
2673 static int
2674 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2675 {
2676     struct jmicron_raid_conf *meta;
2677     u_int64_t disk_sectors;
2678     int disk, error = 0;
2679 
2680     meta = (struct jmicron_raid_conf *)
2681 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2682 
2683     rdp->generation++;
2684     switch (rdp->type) {
2685     case AR_T_JBOD:
2686 	meta->type = JM_T_JBOD;
2687 	break;
2688 
2689     case AR_T_RAID0:
2690 	meta->type = JM_T_RAID0;
2691 	break;
2692 
2693     case AR_T_RAID1:
2694 	meta->type = JM_T_RAID1;
2695 	break;
2696 
2697     case AR_T_RAID5:
2698 	meta->type = JM_T_RAID5;
2699 	break;
2700 
2701     case AR_T_RAID01:
2702 	meta->type = JM_T_RAID01;
2703 	break;
2704 
2705     default:
2706 	kfree(meta, M_AR);
2707 	return ENODEV;
2708     }
2709     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2710     meta->version = JMICRON_VERSION;
2711     meta->offset = rdp->offset_sectors / 16;
2712     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2713     meta->disk_sectors_low = disk_sectors & 0xffff;
2714     meta->disk_sectors_high = disk_sectors >> 16;
2715     strncpy(meta->name, rdp->name, sizeof(meta->name));
2716     meta->stripe_shift = ffs(rdp->interleave) - 2;
2717 
2718     for (disk = 0; disk < rdp->total_disks; disk++) {
2719 	if (rdp->disks[disk].serial[0])
2720 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2721 	else
2722 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2723     }
2724 
2725     for (disk = 0; disk < rdp->total_disks; disk++) {
2726 	if (rdp->disks[disk].dev) {
2727 	    u_int16_t checksum = 0, *ptr;
2728 	    int count;
2729 
2730 	    meta->disk_id = meta->disks[disk];
2731 	    meta->checksum = 0;
2732 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2733 		checksum += *ptr++;
2734 	    meta->checksum -= checksum;
2735 
2736 	    if (testing || bootverbose)
2737 		ata_raid_jmicron_print_meta(meta);
2738 
2739 	    if (ata_raid_rw(rdp->disks[disk].dev,
2740 			    JMICRON_LBA(rdp->disks[disk].dev),
2741 			    meta, sizeof(struct jmicron_raid_conf),
2742 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2743 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2744 		error = EIO;
2745 	    }
2746 	}
2747     }
2748     /* handle spares XXX SOS */
2749 
2750     kfree(meta, M_AR);
2751     return error;
2752 }
2753 
2754 /* LSILogic V2 MegaRAID Metadata */
2755 static int
2756 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2757 {
2758     struct ata_raid_subdisk *ars = device_get_softc(dev);
2759     device_t parent = device_get_parent(dev);
2760     struct lsiv2_raid_conf *meta;
2761     struct ar_softc *raid = NULL;
2762     int array, retval = 0;
2763 
2764     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2765 	M_AR, M_WAITOK | M_ZERO);
2766 
2767     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2768 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2769 	if (testing || bootverbose)
2770 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2771 	goto lsiv2_out;
2772     }
2773 
2774     /* check if this is a LSI RAID struct */
2775     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2776 	if (testing || bootverbose)
2777 	    device_printf(parent, "LSI (v2) check1 failed\n");
2778 	goto lsiv2_out;
2779     }
2780 
2781     if (testing || bootverbose)
2782 	ata_raid_lsiv2_print_meta(meta);
2783 
2784     /* now convert LSI (v2) config meta into our generic form */
2785     for (array = 0; array < MAX_ARRAYS; array++) {
2786 	int raid_entry, conf_entry;
2787 
2788 	if (!raidp[array + meta->raid_number]) {
2789 	    raidp[array + meta->raid_number] =
2790 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2791 					  M_WAITOK | M_ZERO);
2792 	}
2793 	raid = raidp[array + meta->raid_number];
2794 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2795 	    continue;
2796 
2797 	if (raid->magic_0 &&
2798 	    ((raid->magic_0 != meta->timestamp) ||
2799 	     (raid->magic_1 != meta->raid_number)))
2800 	    continue;
2801 
2802 	array += meta->raid_number;
2803 
2804 	raid_entry = meta->raid_number;
2805 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2806 		     meta->disk_number - 1;
2807 
2808 	switch (meta->configs[raid_entry].raid.type) {
2809 	case LSIV2_T_RAID0:
2810 	    raid->magic_0 = meta->timestamp;
2811 	    raid->magic_1 = meta->raid_number;
2812 	    raid->type = AR_T_RAID0;
2813 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2814 	    raid->width = meta->configs[raid_entry].raid.array_width;
2815 	    break;
2816 
2817 	case LSIV2_T_RAID1:
2818 	    raid->magic_0 = meta->timestamp;
2819 	    raid->magic_1 = meta->raid_number;
2820 	    raid->type = AR_T_RAID1;
2821 	    raid->width = meta->configs[raid_entry].raid.array_width;
2822 	    break;
2823 
2824 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2825 	    raid->magic_0 = meta->timestamp;
2826 	    raid->magic_1 = meta->raid_number;
2827 	    raid->type = AR_T_RAID01;
2828 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2829 	    raid->width = meta->configs[raid_entry].raid.array_width;
2830 	    break;
2831 
2832 	default:
2833 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2834 			  meta->configs[raid_entry].raid.type);
2835 	    kfree(raidp[array], M_AR);
2836 	    raidp[array] = NULL;
2837 	    goto lsiv2_out;
2838 	}
2839 
2840 	raid->format = AR_F_LSIV2_RAID;
2841 	raid->generation = 0;
2842 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2843 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2844 	raid->heads = 255;
2845 	raid->sectors = 63;
2846 	raid->cylinders = raid->total_sectors / (63 * 255);
2847 	raid->offset_sectors = 0;
2848 	raid->rebuild_lba = 0;
2849 	raid->lun = array;
2850 
2851 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2852 	    raid->disks[meta->disk_number].dev = parent;
2853 	    raid->disks[meta->disk_number].sectors =
2854 		meta->configs[conf_entry].disk.disk_sectors;
2855 	    raid->disks[meta->disk_number].flags =
2856 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2857 	    ars->raid[raid->volume] = raid;
2858 	    ars->disk_number[raid->volume] = meta->disk_number;
2859 	    retval = 1;
2860 	}
2861 	else
2862 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2863 
2864 	break;
2865     }
2866 
2867 lsiv2_out:
2868     kfree(meta, M_AR);
2869     return retval;
2870 }
2871 
2872 /* LSILogic V3 MegaRAID Metadata */
2873 static int
2874 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2875 {
2876     struct ata_raid_subdisk *ars = device_get_softc(dev);
2877     device_t parent = device_get_parent(dev);
2878     struct lsiv3_raid_conf *meta;
2879     struct ar_softc *raid = NULL;
2880     u_int8_t checksum, *ptr;
2881     int array, entry, count, disk_number, retval = 0;
2882 
2883     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2884 	M_AR, M_WAITOK | M_ZERO);
2885 
2886     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2887 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2888 	if (testing || bootverbose)
2889 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2890 	goto lsiv3_out;
2891     }
2892 
2893     /* check if this is a LSI RAID struct */
2894     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2895 	if (testing || bootverbose)
2896 	    device_printf(parent, "LSI (v3) check1 failed\n");
2897 	goto lsiv3_out;
2898     }
2899 
2900     /* check if the checksum is OK */
2901     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2902 	checksum += *ptr++;
2903     if (checksum) {
2904 	if (testing || bootverbose)
2905 	    device_printf(parent, "LSI (v3) check2 failed\n");
2906 	goto lsiv3_out;
2907     }
2908 
2909     if (testing || bootverbose)
2910 	ata_raid_lsiv3_print_meta(meta);
2911 
2912     /* now convert LSI (v3) config meta into our generic form */
2913     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2914 	if (!raidp[array]) {
2915 	    raidp[array] =
2916 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2917 					  M_WAITOK | M_ZERO);
2918 	}
2919 	raid = raidp[array];
2920 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2921 	    array++;
2922 	    continue;
2923 	}
2924 
2925 	if ((raid->format == AR_F_LSIV3_RAID) &&
2926 	    (raid->magic_0 != meta->timestamp)) {
2927 	    array++;
2928 	    continue;
2929 	}
2930 
2931 	switch (meta->raid[entry].total_disks) {
2932 	case 0:
2933 	    entry++;
2934 	    continue;
2935 	case 1:
2936 	    if (meta->raid[entry].device == meta->device) {
2937 		disk_number = 0;
2938 		break;
2939 	    }
2940 	    if (raid->format)
2941 		array++;
2942 	    entry++;
2943 	    continue;
2944 	case 2:
2945 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2946 	    break;
2947 	default:
2948 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2949 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2950 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2951 	    break;
2952 	}
2953 
2954 	switch (meta->raid[entry].type) {
2955 	case LSIV3_T_RAID0:
2956 	    raid->type = AR_T_RAID0;
2957 	    raid->width = meta->raid[entry].total_disks;
2958 	    break;
2959 
2960 	case LSIV3_T_RAID1:
2961 	    raid->type = AR_T_RAID1;
2962 	    raid->width = meta->raid[entry].array_width;
2963 	    break;
2964 
2965 	default:
2966 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2967 			  meta->raid[entry].type);
2968 	    kfree(raidp[array], M_AR);
2969 	    raidp[array] = NULL;
2970 	    entry++;
2971 	    continue;
2972 	}
2973 
2974 	raid->magic_0 = meta->timestamp;
2975 	raid->format = AR_F_LSIV3_RAID;
2976 	raid->generation = 0;
2977 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2978 	raid->total_disks = meta->raid[entry].total_disks;
2979 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2980 	raid->heads = 255;
2981 	raid->sectors = 63;
2982 	raid->cylinders = raid->total_sectors / (63 * 255);
2983 	raid->offset_sectors = meta->raid[entry].offset;
2984 	raid->rebuild_lba = 0;
2985 	raid->lun = array;
2986 
2987 	raid->disks[disk_number].dev = parent;
2988 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2989 	raid->disks[disk_number].flags =
2990 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2991 	ars->raid[raid->volume] = raid;
2992 	ars->disk_number[raid->volume] = disk_number;
2993 	retval = 1;
2994 	entry++;
2995 	array++;
2996     }
2997 
2998 lsiv3_out:
2999     kfree(meta, M_AR);
3000     return retval;
3001 }
3002 
3003 /* nVidia MediaShield Metadata */
3004 static int
3005 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
3006 {
3007     struct ata_raid_subdisk *ars = device_get_softc(dev);
3008     device_t parent = device_get_parent(dev);
3009     struct nvidia_raid_conf *meta;
3010     struct ar_softc *raid = NULL;
3011     u_int32_t checksum, *ptr;
3012     int array, count, retval = 0;
3013 
3014     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
3015 	M_AR, M_WAITOK | M_ZERO);
3016 
3017     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
3018 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
3019 	if (testing || bootverbose)
3020 	    device_printf(parent, "nVidia read metadata failed\n");
3021 	goto nvidia_out;
3022     }
3023 
3024     /* check if this is a nVidia RAID struct */
3025     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
3026 	if (testing || bootverbose)
3027 	    device_printf(parent, "nVidia check1 failed\n");
3028 	goto nvidia_out;
3029     }
3030 
3031     /* check if the checksum is OK */
3032     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
3033 	 count < meta->config_size; count++)
3034 	checksum += *ptr++;
3035     if (checksum) {
3036 	if (testing || bootverbose)
3037 	    device_printf(parent, "nVidia check2 failed\n");
3038 	goto nvidia_out;
3039     }
3040 
3041     if (testing || bootverbose)
3042 	ata_raid_nvidia_print_meta(meta);
3043 
3044     /* now convert nVidia meta into our generic form */
3045     for (array = 0; array < MAX_ARRAYS; array++) {
3046 	if (!raidp[array]) {
3047 	    raidp[array] =
3048 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3049 					  M_WAITOK | M_ZERO);
3050 	}
3051 	raid = raidp[array];
3052 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
3053 	    continue;
3054 
3055 	if (raid->format == AR_F_NVIDIA_RAID &&
3056 	    ((raid->magic_0 != meta->magic_1) ||
3057 	     (raid->magic_1 != meta->magic_2))) {
3058 	    continue;
3059 	}
3060 
3061 	switch (meta->type) {
3062 	case NV_T_SPAN:
3063 	    raid->type = AR_T_SPAN;
3064 	    break;
3065 
3066 	case NV_T_RAID0:
3067 	    raid->type = AR_T_RAID0;
3068 	    break;
3069 
3070 	case NV_T_RAID1:
3071 	    raid->type = AR_T_RAID1;
3072 	    break;
3073 
3074 	case NV_T_RAID5:
3075 	    raid->type = AR_T_RAID5;
3076 	    break;
3077 
3078 	case NV_T_RAID01:
3079 	    raid->type = AR_T_RAID01;
3080 	    break;
3081 
3082 	default:
3083 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3084 			  meta->type);
3085 	    kfree(raidp[array], M_AR);
3086 	    raidp[array] = NULL;
3087 	    goto nvidia_out;
3088 	}
3089 	raid->magic_0 = meta->magic_1;
3090 	raid->magic_1 = meta->magic_2;
3091 	raid->format = AR_F_NVIDIA_RAID;
3092 	raid->generation = 0;
3093 	raid->interleave = meta->stripe_sectors;
3094 	raid->width = meta->array_width;
3095 	raid->total_disks = meta->total_disks;
3096 	raid->total_sectors = meta->total_sectors;
3097 	raid->heads = 255;
3098 	raid->sectors = 63;
3099 	raid->cylinders = raid->total_sectors / (63 * 255);
3100 	raid->offset_sectors = 0;
3101 	raid->rebuild_lba = meta->rebuild_lba;
3102 	raid->lun = array;
3103 	raid->status = AR_S_READY;
3104 	if (meta->status & NV_S_DEGRADED)
3105 	    raid->status |= AR_S_DEGRADED;
3106 
3107 	raid->disks[meta->disk_number].dev = parent;
3108 	raid->disks[meta->disk_number].sectors =
3109 	    raid->total_sectors / raid->width;
3110 	raid->disks[meta->disk_number].flags =
3111 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3112 	ars->raid[raid->volume] = raid;
3113 	ars->disk_number[raid->volume] = meta->disk_number;
3114 	retval = 1;
3115 	break;
3116     }
3117 
3118 nvidia_out:
3119     kfree(meta, M_AR);
3120     return retval;
3121 }
3122 
3123 /* Promise FastTrak Metadata */
3124 static int
3125 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3126 {
3127     struct ata_raid_subdisk *ars = device_get_softc(dev);
3128     device_t parent = device_get_parent(dev);
3129     struct promise_raid_conf *meta;
3130     struct ar_softc *raid;
3131     u_int32_t checksum, *ptr;
3132     int array, count, disk, disksum = 0, retval = 0;
3133 
3134     meta = (struct promise_raid_conf *)
3135 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3136 
3137     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3138 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3139 	if (testing || bootverbose)
3140 	    device_printf(parent, "%s read metadata failed\n",
3141 			  native ? "FreeBSD" : "Promise");
3142 	goto promise_out;
3143     }
3144 
3145     /* check the signature */
3146     if (native) {
3147 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3148 	    if (testing || bootverbose)
3149 		device_printf(parent, "FreeBSD check1 failed\n");
3150 	    goto promise_out;
3151 	}
3152     }
3153     else {
3154 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3155 	    if (testing || bootverbose)
3156 		device_printf(parent, "Promise check1 failed\n");
3157 	    goto promise_out;
3158 	}
3159     }
3160 
3161     /* check if the checksum is OK */
3162     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3163 	checksum += *ptr++;
3164     if (checksum != *ptr) {
3165 	if (testing || bootverbose)
3166 	    device_printf(parent, "%s check2 failed\n",
3167 			  native ? "FreeBSD" : "Promise");
3168 	goto promise_out;
3169     }
3170 
3171     /* check on disk integrity status */
3172     if (meta->raid.integrity != PR_I_VALID) {
3173 	if (testing || bootverbose)
3174 	    device_printf(parent, "%s check3 failed\n",
3175 			  native ? "FreeBSD" : "Promise");
3176 	goto promise_out;
3177     }
3178 
3179     if (testing || bootverbose)
3180 	ata_raid_promise_print_meta(meta);
3181 
3182     /* now convert Promise metadata into our generic form */
3183     for (array = 0; array < MAX_ARRAYS; array++) {
3184 	if (!raidp[array]) {
3185 	    raidp[array] =
3186 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3187 					  M_WAITOK | M_ZERO);
3188 	}
3189 	raid = raidp[array];
3190 	if (raid->format &&
3191 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3192 	    continue;
3193 
3194 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3195 	    !(meta->raid.magic_1 == (raid->magic_1)))
3196 	    continue;
3197 
3198 	/* update our knowledge about the array config based on generation */
3199 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3200 	    switch (meta->raid.type) {
3201 	    case PR_T_SPAN:
3202 		raid->type = AR_T_SPAN;
3203 		break;
3204 
3205 	    case PR_T_JBOD:
3206 		raid->type = AR_T_JBOD;
3207 		break;
3208 
3209 	    case PR_T_RAID0:
3210 		raid->type = AR_T_RAID0;
3211 		break;
3212 
3213 	    case PR_T_RAID1:
3214 		raid->type = AR_T_RAID1;
3215 		if (meta->raid.array_width > 1)
3216 		    raid->type = AR_T_RAID01;
3217 		break;
3218 
3219 	    case PR_T_RAID5:
3220 		raid->type = AR_T_RAID5;
3221 		break;
3222 
3223 	    default:
3224 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3225 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3226 		kfree(raidp[array], M_AR);
3227 		raidp[array] = NULL;
3228 		goto promise_out;
3229 	    }
3230 	    raid->magic_1 = meta->raid.magic_1;
3231 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3232 	    raid->generation = meta->raid.generation;
3233 	    raid->interleave = 1 << meta->raid.stripe_shift;
3234 	    raid->width = meta->raid.array_width;
3235 	    raid->total_disks = meta->raid.total_disks;
3236 	    raid->heads = meta->raid.heads + 1;
3237 	    raid->sectors = meta->raid.sectors;
3238 	    raid->cylinders = meta->raid.cylinders + 1;
3239 	    raid->total_sectors = meta->raid.total_sectors;
3240 	    raid->offset_sectors = 0;
3241 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3242 	    raid->lun = array;
3243 	    if ((meta->raid.status &
3244 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3245 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3246 		raid->status |= AR_S_READY;
3247 		if (meta->raid.status & PR_S_DEGRADED)
3248 		    raid->status |= AR_S_DEGRADED;
3249 	    }
3250 	    else
3251 		raid->status &= ~AR_S_READY;
3252 
3253 	    /* convert disk flags to our internal types */
3254 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3255 		raid->disks[disk].dev = NULL;
3256 		raid->disks[disk].flags = 0;
3257 		*((u_int64_t *)(raid->disks[disk].serial)) =
3258 		    meta->raid.disk[disk].magic_0;
3259 		disksum += meta->raid.disk[disk].flags;
3260 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3261 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3262 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3263 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3264 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3265 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3266 		    raid->disks[disk].flags |= AR_DF_SPARE;
3267 		}
3268 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3269 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3270 	    }
3271 	    if (!disksum) {
3272 		device_printf(parent, "%s subdisks has no flags\n",
3273 			      native ? "FreeBSD" : "Promise");
3274 		kfree(raidp[array], M_AR);
3275 		raidp[array] = NULL;
3276 		goto promise_out;
3277 	    }
3278 	}
3279 	if (meta->raid.generation >= raid->generation) {
3280 	    int disk_number = meta->raid.disk_number;
3281 
3282 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3283 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3284 		raid->disks[disk_number].dev = parent;
3285 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3286 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3287 		if ((raid->disks[disk_number].flags &
3288 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3289 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3290 		    ars->raid[raid->volume] = raid;
3291 		    ars->disk_number[raid->volume] = disk_number;
3292 		    retval = 1;
3293 		}
3294 	    }
3295 	}
3296 	break;
3297     }
3298 
3299 promise_out:
3300     kfree(meta, M_AR);
3301     return retval;
3302 }
3303 
3304 static int
3305 ata_raid_promise_write_meta(struct ar_softc *rdp)
3306 {
3307     struct promise_raid_conf *meta;
3308     struct timeval timestamp;
3309     u_int32_t *ckptr;
3310     int count, disk, drive, error = 0;
3311 
3312     meta = (struct promise_raid_conf *)
3313 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3314 
3315     rdp->generation++;
3316     microtime(&timestamp);
3317 
3318     for (disk = 0; disk < rdp->total_disks; disk++) {
3319 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3320 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3321 	meta->dummy_0 = 0x00020000;
3322 	meta->raid.disk_number = disk;
3323 
3324 	if (rdp->disks[disk].dev) {
3325 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3326 	    struct ata_channel *ch =
3327 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3328 
3329 	    meta->raid.channel = ch->unit;
3330 	    meta->raid.device = ATA_DEV(atadev->unit);
3331 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3332 	    meta->raid.disk_offset = rdp->offset_sectors;
3333 	}
3334 	else {
3335 	    meta->raid.channel = 0;
3336 	    meta->raid.device = 0;
3337 	    meta->raid.disk_sectors = 0;
3338 	    meta->raid.disk_offset = 0;
3339 	}
3340 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3341 	meta->magic_1 = timestamp.tv_sec >> 16;
3342 	meta->magic_2 = timestamp.tv_sec;
3343 	meta->raid.integrity = PR_I_VALID;
3344 	meta->raid.magic_0 = meta->magic_0;
3345 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3346 	meta->raid.generation = rdp->generation;
3347 
3348 	if (rdp->status & AR_S_READY) {
3349 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3350 	    meta->raid.status =
3351 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3352 	    if (rdp->status & AR_S_DEGRADED)
3353 		meta->raid.status |= PR_S_DEGRADED;
3354 	    else
3355 		meta->raid.status |= PR_S_FUNCTIONAL;
3356 	}
3357 	else {
3358 	    meta->raid.flags = PR_F_DOWN;
3359 	    meta->raid.status = 0;
3360 	}
3361 
3362 	switch (rdp->type) {
3363 	case AR_T_RAID0:
3364 	    meta->raid.type = PR_T_RAID0;
3365 	    break;
3366 	case AR_T_RAID1:
3367 	    meta->raid.type = PR_T_RAID1;
3368 	    break;
3369 	case AR_T_RAID01:
3370 	    meta->raid.type = PR_T_RAID1;
3371 	    break;
3372 	case AR_T_RAID5:
3373 	    meta->raid.type = PR_T_RAID5;
3374 	    break;
3375 	case AR_T_SPAN:
3376 	    meta->raid.type = PR_T_SPAN;
3377 	    break;
3378 	case AR_T_JBOD:
3379 	    meta->raid.type = PR_T_JBOD;
3380 	    break;
3381 	default:
3382 	    kfree(meta, M_AR);
3383 	    return ENODEV;
3384 	}
3385 
3386 	meta->raid.total_disks = rdp->total_disks;
3387 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3388 	meta->raid.array_width = rdp->width;
3389 	meta->raid.array_number = rdp->lun;
3390 	meta->raid.total_sectors = rdp->total_sectors;
3391 	meta->raid.cylinders = rdp->cylinders - 1;
3392 	meta->raid.heads = rdp->heads - 1;
3393 	meta->raid.sectors = rdp->sectors;
3394 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3395 
3396 	bzero(&meta->raid.disk, 8 * 12);
3397 	for (drive = 0; drive < rdp->total_disks; drive++) {
3398 	    meta->raid.disk[drive].flags = 0;
3399 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3400 		meta->raid.disk[drive].flags |= PR_F_VALID;
3401 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3402 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3403 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3404 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3405 	    else
3406 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3407 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3408 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3409 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3410 	    meta->raid.disk[drive].dummy_0 = 0x0;
3411 	    if (rdp->disks[drive].dev) {
3412 		struct ata_channel *ch =
3413 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3414 		struct ata_device *atadev =
3415 		    device_get_softc(rdp->disks[drive].dev);
3416 
3417 		meta->raid.disk[drive].channel = ch->unit;
3418 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3419 	    }
3420 	    meta->raid.disk[drive].magic_0 =
3421 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3422 	}
3423 
3424 	if (rdp->disks[disk].dev) {
3425 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3426 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3427 		if (rdp->format == AR_F_FREEBSD_RAID)
3428 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3429 		else
3430 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3431 	    }
3432 	    else
3433 		bzero(meta->promise_id, sizeof(meta->promise_id));
3434 	    meta->checksum = 0;
3435 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3436 		meta->checksum += *ckptr++;
3437 	    if (testing || bootverbose)
3438 		ata_raid_promise_print_meta(meta);
3439 	    if (ata_raid_rw(rdp->disks[disk].dev,
3440 			    PROMISE_LBA(rdp->disks[disk].dev),
3441 			    meta, sizeof(struct promise_raid_conf),
3442 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3443 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3444 		error = EIO;
3445 	    }
3446 	}
3447     }
3448     kfree(meta, M_AR);
3449     return error;
3450 }
3451 
3452 /* Silicon Image Medley Metadata */
3453 static int
3454 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3455 {
3456     struct ata_raid_subdisk *ars = device_get_softc(dev);
3457     device_t parent = device_get_parent(dev);
3458     struct sii_raid_conf *meta;
3459     struct ar_softc *raid = NULL;
3460     u_int16_t checksum, *ptr;
3461     int array, count, disk, retval = 0;
3462 
3463     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3464 	M_WAITOK | M_ZERO);
3465 
3466     if (ata_raid_rw(parent, SII_LBA(parent),
3467 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3468 	if (testing || bootverbose)
3469 	    device_printf(parent, "Silicon Image read metadata failed\n");
3470 	goto sii_out;
3471     }
3472 
3473     /* check if this is a Silicon Image (Medley) RAID struct */
3474     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3475 	checksum += *ptr++;
3476     if (checksum) {
3477 	if (testing || bootverbose)
3478 	    device_printf(parent, "Silicon Image check1 failed\n");
3479 	goto sii_out;
3480     }
3481 
3482     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3483 	checksum += *ptr++;
3484     if (checksum != meta->checksum_1) {
3485 	if (testing || bootverbose)
3486 	    device_printf(parent, "Silicon Image check2 failed\n");
3487 	goto sii_out;
3488     }
3489 
3490     /* check verison */
3491     if (meta->version_major != 0x0002 ||
3492 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3493 	if (testing || bootverbose)
3494 	    device_printf(parent, "Silicon Image check3 failed\n");
3495 	goto sii_out;
3496     }
3497 
3498     if (testing || bootverbose)
3499 	ata_raid_sii_print_meta(meta);
3500 
3501     /* now convert Silicon Image meta into our generic form */
3502     for (array = 0; array < MAX_ARRAYS; array++) {
3503 	if (!raidp[array]) {
3504 	    raidp[array] =
3505 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3506 					  M_WAITOK | M_ZERO);
3507 	}
3508 	raid = raidp[array];
3509 	if (raid->format && (raid->format != AR_F_SII_RAID))
3510 	    continue;
3511 
3512 	if (raid->format == AR_F_SII_RAID &&
3513 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3514 	    continue;
3515 	}
3516 
3517 	/* update our knowledge about the array config based on generation */
3518 	if (!meta->generation || meta->generation > raid->generation) {
3519 	    switch (meta->type) {
3520 	    case SII_T_RAID0:
3521 		raid->type = AR_T_RAID0;
3522 		break;
3523 
3524 	    case SII_T_RAID1:
3525 		raid->type = AR_T_RAID1;
3526 		break;
3527 
3528 	    case SII_T_RAID01:
3529 		raid->type = AR_T_RAID01;
3530 		break;
3531 
3532 	    case SII_T_SPARE:
3533 		device_printf(parent, "Silicon Image SPARE disk\n");
3534 		kfree(raidp[array], M_AR);
3535 		raidp[array] = NULL;
3536 		goto sii_out;
3537 
3538 	    default:
3539 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3540 			      meta->type);
3541 		kfree(raidp[array], M_AR);
3542 		raidp[array] = NULL;
3543 		goto sii_out;
3544 	    }
3545 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3546 	    raid->format = AR_F_SII_RAID;
3547 	    raid->generation = meta->generation;
3548 	    raid->interleave = meta->stripe_sectors;
3549 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3550 	    raid->total_disks =
3551 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3552 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3553 	    raid->total_sectors = meta->total_sectors;
3554 	    raid->heads = 255;
3555 	    raid->sectors = 63;
3556 	    raid->cylinders = raid->total_sectors / (63 * 255);
3557 	    raid->offset_sectors = 0;
3558 	    raid->rebuild_lba = meta->rebuild_lba;
3559 	    raid->lun = array;
3560 	    strncpy(raid->name, meta->name,
3561 		    min(sizeof(raid->name), sizeof(meta->name)));
3562 
3563 	    /* clear out any old info */
3564 	    if (raid->generation) {
3565 		for (disk = 0; disk < raid->total_disks; disk++) {
3566 		    raid->disks[disk].dev = NULL;
3567 		    raid->disks[disk].flags = 0;
3568 		}
3569 	    }
3570 	}
3571 	if (meta->generation >= raid->generation) {
3572 	    /* XXX SOS add check for the right physical disk by serial# */
3573 	    if (meta->status & SII_S_READY) {
3574 		int disk_number = (raid->type == AR_T_RAID01) ?
3575 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3576 		    meta->disk_number;
3577 
3578 		raid->disks[disk_number].dev = parent;
3579 		raid->disks[disk_number].sectors =
3580 		    raid->total_sectors / raid->width;
3581 		raid->disks[disk_number].flags =
3582 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3583 		ars->raid[raid->volume] = raid;
3584 		ars->disk_number[raid->volume] = disk_number;
3585 		retval = 1;
3586 	    }
3587 	}
3588 	break;
3589     }
3590 
3591 sii_out:
3592     kfree(meta, M_AR);
3593     return retval;
3594 }
3595 
3596 /* Silicon Integrated Systems Metadata */
3597 static int
3598 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3599 {
3600     struct ata_raid_subdisk *ars = device_get_softc(dev);
3601     device_t parent = device_get_parent(dev);
3602     struct sis_raid_conf *meta;
3603     struct ar_softc *raid = NULL;
3604     int array, disk_number, drive, retval = 0;
3605 
3606     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3607 	M_WAITOK | M_ZERO);
3608 
3609     if (ata_raid_rw(parent, SIS_LBA(parent),
3610 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3611 	if (testing || bootverbose)
3612 	    device_printf(parent,
3613 			  "Silicon Integrated Systems read metadata failed\n");
3614     }
3615 
3616     /* check for SiS magic */
3617     if (meta->magic != SIS_MAGIC) {
3618 	if (testing || bootverbose)
3619 	    device_printf(parent,
3620 			  "Silicon Integrated Systems check1 failed\n");
3621 	goto sis_out;
3622     }
3623 
3624     if (testing || bootverbose)
3625 	ata_raid_sis_print_meta(meta);
3626 
3627     /* now convert SiS meta into our generic form */
3628     for (array = 0; array < MAX_ARRAYS; array++) {
3629 	if (!raidp[array]) {
3630 	    raidp[array] =
3631 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3632 					  M_WAITOK | M_ZERO);
3633 	}
3634 
3635 	raid = raidp[array];
3636 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3637 	    continue;
3638 
3639 	if ((raid->format == AR_F_SIS_RAID) &&
3640 	    ((raid->magic_0 != meta->controller_pci_id) ||
3641 	     (raid->magic_1 != meta->timestamp))) {
3642 	    continue;
3643 	}
3644 
3645 	switch (meta->type_total_disks & SIS_T_MASK) {
3646 	case SIS_T_JBOD:
3647 	    raid->type = AR_T_JBOD;
3648 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3649 	    raid->total_sectors += SIS_LBA(parent);
3650 	    break;
3651 
3652 	case SIS_T_RAID0:
3653 	    raid->type = AR_T_RAID0;
3654 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3655 	    if (!raid->total_sectors ||
3656 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3657 		raid->total_sectors = raid->width * SIS_LBA(parent);
3658 	    break;
3659 
3660 	case SIS_T_RAID1:
3661 	    raid->type = AR_T_RAID1;
3662 	    raid->width = 1;
3663 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3664 		raid->total_sectors = SIS_LBA(parent);
3665 	    break;
3666 
3667 	default:
3668 	    device_printf(parent, "Silicon Integrated Systems "
3669 			  "unknown RAID type 0x%08x\n", meta->magic);
3670 	    kfree(raidp[array], M_AR);
3671 	    raidp[array] = NULL;
3672 	    goto sis_out;
3673 	}
3674 	raid->magic_0 = meta->controller_pci_id;
3675 	raid->magic_1 = meta->timestamp;
3676 	raid->format = AR_F_SIS_RAID;
3677 	raid->generation = 0;
3678 	raid->interleave = meta->stripe_sectors;
3679 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3680 	raid->heads = 255;
3681 	raid->sectors = 63;
3682 	raid->cylinders = raid->total_sectors / (63 * 255);
3683 	raid->offset_sectors = 0;
3684 	raid->rebuild_lba = 0;
3685 	raid->lun = array;
3686 	/* XXX SOS if total_disks > 2 this doesn't float */
3687 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3688 	    disk_number = 0;
3689 	else
3690 	    disk_number = 1;
3691 
3692 	for (drive = 0; drive < raid->total_disks; drive++) {
3693 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3694 	    if (drive == disk_number) {
3695 		raid->disks[disk_number].dev = parent;
3696 		raid->disks[disk_number].flags =
3697 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3698 		ars->raid[raid->volume] = raid;
3699 		ars->disk_number[raid->volume] = disk_number;
3700 	    }
3701 	}
3702 	retval = 1;
3703 	break;
3704     }
3705 
3706 sis_out:
3707     kfree(meta, M_AR);
3708     return retval;
3709 }
3710 
3711 static int
3712 ata_raid_sis_write_meta(struct ar_softc *rdp)
3713 {
3714     struct sis_raid_conf *meta;
3715     struct timeval timestamp;
3716     int disk, error = 0;
3717 
3718     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3719 	M_WAITOK | M_ZERO);
3720 
3721     rdp->generation++;
3722     microtime(&timestamp);
3723 
3724     meta->magic = SIS_MAGIC;
3725     /* XXX SOS if total_disks > 2 this doesn't float */
3726     for (disk = 0; disk < rdp->total_disks; disk++) {
3727 	if (rdp->disks[disk].dev) {
3728 	    struct ata_channel *ch =
3729 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3730 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3731 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3732 
3733 	    meta->disks |= disk_number << ((1 - disk) << 2);
3734 	}
3735     }
3736     switch (rdp->type) {
3737     case AR_T_JBOD:
3738 	meta->type_total_disks = SIS_T_JBOD;
3739 	break;
3740 
3741     case AR_T_RAID0:
3742 	meta->type_total_disks = SIS_T_RAID0;
3743 	break;
3744 
3745     case AR_T_RAID1:
3746 	meta->type_total_disks = SIS_T_RAID1;
3747 	break;
3748 
3749     default:
3750 	kfree(meta, M_AR);
3751 	return ENODEV;
3752     }
3753     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3754     meta->stripe_sectors = rdp->interleave;
3755     meta->timestamp = timestamp.tv_sec;
3756 
3757     for (disk = 0; disk < rdp->total_disks; disk++) {
3758 	if (rdp->disks[disk].dev) {
3759 	    struct ata_channel *ch =
3760 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3761 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3762 
3763 	    meta->controller_pci_id =
3764 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3765 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3766 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3767 
3768 	    /* XXX SOS if total_disks > 2 this may not float */
3769 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3770 
3771 	    if (testing || bootverbose)
3772 		ata_raid_sis_print_meta(meta);
3773 
3774 	    if (ata_raid_rw(rdp->disks[disk].dev,
3775 			    SIS_LBA(rdp->disks[disk].dev),
3776 			    meta, sizeof(struct sis_raid_conf),
3777 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3778 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3779 		error = EIO;
3780 	    }
3781 	}
3782     }
3783     kfree(meta, M_AR);
3784     return error;
3785 }
3786 
3787 /* VIA Tech V-RAID Metadata */
3788 static int
3789 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3790 {
3791     struct ata_raid_subdisk *ars = device_get_softc(dev);
3792     device_t parent = device_get_parent(dev);
3793     struct via_raid_conf *meta;
3794     struct ar_softc *raid = NULL;
3795     u_int8_t checksum, *ptr;
3796     int array, count, disk, retval = 0;
3797 
3798     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3799 	M_WAITOK | M_ZERO);
3800 
3801     if (ata_raid_rw(parent, VIA_LBA(parent),
3802 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3803 	if (testing || bootverbose)
3804 	    device_printf(parent, "VIA read metadata failed\n");
3805 	goto via_out;
3806     }
3807 
3808     /* check if this is a VIA RAID struct */
3809     if (meta->magic != VIA_MAGIC) {
3810 	if (testing || bootverbose)
3811 	    device_printf(parent, "VIA check1 failed\n");
3812 	goto via_out;
3813     }
3814 
3815     /* calculate checksum and compare for valid */
3816     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3817 	checksum += *ptr++;
3818     if (checksum != meta->checksum) {
3819 	if (testing || bootverbose)
3820 	    device_printf(parent, "VIA check2 failed\n");
3821 	goto via_out;
3822     }
3823 
3824     if (testing || bootverbose)
3825 	ata_raid_via_print_meta(meta);
3826 
3827     /* now convert VIA meta into our generic form */
3828     for (array = 0; array < MAX_ARRAYS; array++) {
3829 	if (!raidp[array]) {
3830 	    raidp[array] =
3831 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3832 					  M_WAITOK | M_ZERO);
3833 	}
3834 	raid = raidp[array];
3835 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3836 	    continue;
3837 
3838 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3839 	    continue;
3840 
3841 	switch (meta->type & VIA_T_MASK) {
3842 	case VIA_T_RAID0:
3843 	    raid->type = AR_T_RAID0;
3844 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3845 	    if (!raid->total_sectors ||
3846 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3847 		raid->total_sectors = raid->width * meta->disk_sectors;
3848 	    break;
3849 
3850 	case VIA_T_RAID1:
3851 	    raid->type = AR_T_RAID1;
3852 	    raid->width = 1;
3853 	    raid->total_sectors = meta->disk_sectors;
3854 	    break;
3855 
3856 	case VIA_T_RAID01:
3857 	    raid->type = AR_T_RAID01;
3858 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3859 	    if (!raid->total_sectors ||
3860 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3861 		raid->total_sectors = raid->width * meta->disk_sectors;
3862 	    break;
3863 
3864 	case VIA_T_RAID5:
3865 	    raid->type = AR_T_RAID5;
3866 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3867 	    if (!raid->total_sectors ||
3868 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3869 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3870 	    break;
3871 
3872 	case VIA_T_SPAN:
3873 	    raid->type = AR_T_SPAN;
3874 	    raid->width = 1;
3875 	    raid->total_sectors += meta->disk_sectors;
3876 	    break;
3877 
3878 	default:
3879 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3880 	    kfree(raidp[array], M_AR);
3881 	    raidp[array] = NULL;
3882 	    goto via_out;
3883 	}
3884 	raid->magic_0 = meta->disks[0];
3885 	raid->format = AR_F_VIA_RAID;
3886 	raid->generation = 0;
3887 	raid->interleave =
3888 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3889 	for (count = 0, disk = 0; disk < 8; disk++)
3890 	    if (meta->disks[disk])
3891 		count++;
3892 	raid->total_disks = count;
3893 	raid->heads = 255;
3894 	raid->sectors = 63;
3895 	raid->cylinders = raid->total_sectors / (63 * 255);
3896 	raid->offset_sectors = 0;
3897 	raid->rebuild_lba = 0;
3898 	raid->lun = array;
3899 
3900 	for (disk = 0; disk < raid->total_disks; disk++) {
3901 	    if (meta->disks[disk] == meta->disk_id) {
3902 		raid->disks[disk].dev = parent;
3903 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3904 		      sizeof(u_int32_t));
3905 		raid->disks[disk].sectors = meta->disk_sectors;
3906 		raid->disks[disk].flags =
3907 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3908 		ars->raid[raid->volume] = raid;
3909 		ars->disk_number[raid->volume] = disk;
3910 		retval = 1;
3911 		break;
3912 	    }
3913 	}
3914 	break;
3915     }
3916 
3917 via_out:
3918     kfree(meta, M_AR);
3919     return retval;
3920 }
3921 
3922 static int
3923 ata_raid_via_write_meta(struct ar_softc *rdp)
3924 {
3925     struct via_raid_conf *meta;
3926     int disk, error = 0;
3927 
3928     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3929 	M_WAITOK | M_ZERO);
3930 
3931     rdp->generation++;
3932 
3933     meta->magic = VIA_MAGIC;
3934     meta->dummy_0 = 0x02;
3935     switch (rdp->type) {
3936     case AR_T_SPAN:
3937 	meta->type = VIA_T_SPAN;
3938 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3939 	break;
3940 
3941     case AR_T_RAID0:
3942 	meta->type = VIA_T_RAID0;
3943 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3944 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3945 	break;
3946 
3947     case AR_T_RAID1:
3948 	meta->type = VIA_T_RAID1;
3949 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3950 	break;
3951 
3952     case AR_T_RAID5:
3953 	meta->type = VIA_T_RAID5;
3954 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3955 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3956 	break;
3957 
3958     case AR_T_RAID01:
3959 	meta->type = VIA_T_RAID01;
3960 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3961 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3962 	break;
3963 
3964     default:
3965 	kfree(meta, M_AR);
3966 	return ENODEV;
3967     }
3968     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3969     meta->disk_sectors =
3970 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3971     for (disk = 0; disk < rdp->total_disks; disk++)
3972 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3973 
3974     for (disk = 0; disk < rdp->total_disks; disk++) {
3975 	if (rdp->disks[disk].dev) {
3976 	    u_int8_t *ptr;
3977 	    int count;
3978 
3979 	    meta->disk_index = disk * sizeof(u_int32_t);
3980 	    if (rdp->type == AR_T_RAID01)
3981 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3982 				   (meta->disk_index & ~0x08);
3983 	    meta->disk_id = meta->disks[disk];
3984 	    meta->checksum = 0;
3985 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3986 		meta->checksum += *ptr++;
3987 
3988 	    if (testing || bootverbose)
3989 		ata_raid_via_print_meta(meta);
3990 
3991 	    if (ata_raid_rw(rdp->disks[disk].dev,
3992 			    VIA_LBA(rdp->disks[disk].dev),
3993 			    meta, sizeof(struct via_raid_conf),
3994 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3995 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3996 		error = EIO;
3997 	    }
3998 	}
3999     }
4000     kfree(meta, M_AR);
4001     return error;
4002 }
4003 
4004 static struct ata_request *
4005 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
4006 {
4007     struct ata_request *request;
4008 
4009     if (!(request = ata_alloc_request())) {
4010 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
4011 	return NULL;
4012     }
4013     request->timeout = ATA_DEFAULT_TIMEOUT;
4014     request->retries = 2;
4015     request->callback = ata_raid_done;
4016     request->driver = rdp;
4017     request->bio = bio;
4018     switch (request->bio->bio_buf->b_cmd) {
4019     case BUF_CMD_READ:
4020 	request->flags = ATA_R_READ;
4021 	break;
4022     case BUF_CMD_WRITE:
4023 	request->flags = ATA_R_WRITE;
4024 	break;
4025     case BUF_CMD_FLUSH:
4026 	request->flags = ATA_R_CONTROL;
4027 	break;
4028     default:
4029 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
4030 	ata_free_request(request);
4031 #if 0
4032 	bio->bio_buf->b_flags |= B_ERROR;
4033 	bio->bio_buf->b_error = EIO;
4034 	biodone(bio);
4035 #endif /* 0 */
4036 	return(NULL);
4037     }
4038     return request;
4039 }
4040 
4041 static int
4042 ata_raid_send_request(struct ata_request *request)
4043 {
4044     struct ata_device *atadev = device_get_softc(request->dev);
4045 
4046     request->transfersize = min(request->bytecount, atadev->max_iosize);
4047     if (request->flags & ATA_R_READ) {
4048 	if (atadev->mode >= ATA_DMA) {
4049 	    request->flags |= ATA_R_DMA;
4050 	    request->u.ata.command = ATA_READ_DMA;
4051 	}
4052 	else if (atadev->max_iosize > DEV_BSIZE)
4053 	    request->u.ata.command = ATA_READ_MUL;
4054 	else
4055 	    request->u.ata.command = ATA_READ;
4056     }
4057     else if (request->flags & ATA_R_WRITE) {
4058 	if (atadev->mode >= ATA_DMA) {
4059 	    request->flags |= ATA_R_DMA;
4060 	    request->u.ata.command = ATA_WRITE_DMA;
4061 	}
4062 	else if (atadev->max_iosize > DEV_BSIZE)
4063 	    request->u.ata.command = ATA_WRITE_MUL;
4064 	else
4065 	    request->u.ata.command = ATA_WRITE;
4066     }
4067     else {
4068 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
4069 	ata_free_request(request);
4070 	return EIO;
4071     }
4072     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4073     ata_queue_request(request);
4074     return 0;
4075 }
4076 
4077 static int
4078 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4079 {
4080     struct ata_device *atadev = device_get_softc(dev);
4081     struct ata_request *request;
4082     int error;
4083 
4084     if (bcount % DEV_BSIZE) {
4085 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4086 	return ENOMEM;
4087     }
4088 
4089     if (!(request = ata_alloc_request())) {
4090 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4091 	return ENOMEM;
4092     }
4093 
4094     /* setup request */
4095     request->dev = dev;
4096     request->timeout = 10;
4097     request->retries = 0;
4098     request->data = data;
4099     request->bytecount = bcount;
4100     request->transfersize = DEV_BSIZE;
4101     request->u.ata.lba = lba;
4102     request->u.ata.count = request->bytecount / DEV_BSIZE;
4103     request->flags = flags;
4104 
4105     if (flags & ATA_R_READ) {
4106 	if (atadev->mode >= ATA_DMA) {
4107 	    request->u.ata.command = ATA_READ_DMA;
4108 	    request->flags |= ATA_R_DMA;
4109 	}
4110 	else
4111 	    request->u.ata.command = ATA_READ;
4112 	ata_queue_request(request);
4113     }
4114     else if (flags & ATA_R_WRITE) {
4115 	if (atadev->mode >= ATA_DMA) {
4116 	    request->u.ata.command = ATA_WRITE_DMA;
4117 	    request->flags |= ATA_R_DMA;
4118 	}
4119 	else
4120 	    request->u.ata.command = ATA_WRITE;
4121 	ata_queue_request(request);
4122     }
4123     else {
4124 	device_printf(dev, "FAILURE - unknown IO operation\n");
4125 	request->result = EIO;
4126     }
4127     error = request->result;
4128     ata_free_request(request);
4129     return error;
4130 }
4131 
4132 /*
4133  * module handeling
4134  */
4135 static int
4136 ata_raid_subdisk_probe(device_t dev)
4137 {
4138     device_quiet(dev);
4139     return 0;
4140 }
4141 
4142 static int
4143 ata_raid_subdisk_attach(device_t dev)
4144 {
4145     struct ata_raid_subdisk *ars = device_get_softc(dev);
4146     int volume;
4147 
4148     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4149 	ars->raid[volume] = NULL;
4150 	ars->disk_number[volume] = -1;
4151     }
4152     ata_raid_read_metadata(dev);
4153     return 0;
4154 }
4155 
4156 static int
4157 ata_raid_subdisk_detach(device_t dev)
4158 {
4159     struct ata_raid_subdisk *ars = device_get_softc(dev);
4160     int volume;
4161 
4162     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4163 	if (ars->raid[volume]) {
4164 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4165 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4166 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4167 	    ata_raid_config_changed(ars->raid[volume], 1);
4168 	    ars->raid[volume] = NULL;
4169 	    ars->disk_number[volume] = -1;
4170 	}
4171     }
4172     return 0;
4173 }
4174 
4175 static device_method_t ata_raid_sub_methods[] = {
4176     /* device interface */
4177     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4178     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4179     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4180     DEVMETHOD_END
4181 };
4182 
4183 static driver_t ata_raid_sub_driver = {
4184     "subdisk",
4185     ata_raid_sub_methods,
4186     sizeof(struct ata_raid_subdisk)
4187 };
4188 
4189 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4190 
4191 static int
4192 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4193 {
4194     int i;
4195 
4196     switch (what) {
4197     case MOD_LOAD:
4198 	if (testing || bootverbose)
4199 	    kprintf("ATA PseudoRAID loaded\n");
4200 #if 0
4201 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4202 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4203 				M_AR, M_WAITOK | M_ZERO);
4204 #endif
4205 	/* attach found PseudoRAID arrays */
4206 	for (i = 0; i < MAX_ARRAYS; i++) {
4207 	    struct ar_softc *rdp = ata_raid_arrays[i];
4208 
4209 	    if (!rdp || !rdp->format)
4210 		continue;
4211 	    if (testing || bootverbose)
4212 		ata_raid_print_meta(rdp);
4213 	    ata_raid_attach(rdp, 0);
4214 	}
4215 	ata_raid_ioctl_func = ata_raid_ioctl;
4216 	return 0;
4217 
4218     case MOD_UNLOAD:
4219 	/* detach found PseudoRAID arrays */
4220 	for (i = 0; i < MAX_ARRAYS; i++) {
4221 	    struct ar_softc *rdp = ata_raid_arrays[i];
4222 
4223 	    if (!rdp || !rdp->status)
4224 		continue;
4225 	    disk_destroy(&rdp->disk);
4226 	}
4227 	if (testing || bootverbose)
4228 	    kprintf("ATA PseudoRAID unloaded\n");
4229 #if 0
4230 	kfree(ata_raid_arrays, M_AR);
4231 #endif
4232 	ata_raid_ioctl_func = NULL;
4233 	return 0;
4234 
4235     default:
4236 	return EOPNOTSUPP;
4237     }
4238 }
4239 
4240 static moduledata_t ata_raid_moduledata =
4241     { "ataraid", ata_raid_module_event_handler, NULL };
4242 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4243 MODULE_VERSION(ataraid, 1);
4244 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4245 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4246 
4247 static char *
4248 ata_raid_format(struct ar_softc *rdp)
4249 {
4250     switch (rdp->format) {
4251     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4252     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4253     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4254     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4255     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4256     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4257     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4258     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4259     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4260     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4261     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4262     case AR_F_SII_RAID:         return "Silicon Image Medley";
4263     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4264     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4265     default:                    return "UNKNOWN";
4266     }
4267 }
4268 
4269 static char *
4270 ata_raid_type(struct ar_softc *rdp)
4271 {
4272     switch (rdp->type) {
4273     case AR_T_JBOD:     return "JBOD";
4274     case AR_T_SPAN:     return "SPAN";
4275     case AR_T_RAID0:    return "RAID0";
4276     case AR_T_RAID1:    return "RAID1";
4277     case AR_T_RAID3:    return "RAID3";
4278     case AR_T_RAID4:    return "RAID4";
4279     case AR_T_RAID5:    return "RAID5";
4280     case AR_T_RAID01:   return "RAID0+1";
4281     default:            return "UNKNOWN";
4282     }
4283 }
4284 
4285 static char *
4286 ata_raid_flags(struct ar_softc *rdp)
4287 {
4288     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4289     case AR_S_READY:                                    return "READY";
4290     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4291     case AR_S_READY | AR_S_REBUILDING:
4292     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4293     default:                                            return "BROKEN";
4294     }
4295 }
4296 
4297 /* debugging gunk */
4298 static void
4299 ata_raid_print_meta(struct ar_softc *raid)
4300 {
4301     int i;
4302 
4303     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4304     kprintf("=================================================\n");
4305     kprintf("format              %s\n", ata_raid_format(raid));
4306     kprintf("type                %s\n", ata_raid_type(raid));
4307     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4308 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4309     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4310     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4311     kprintf("generation          %u\n", raid->generation);
4312     kprintf("total_sectors       %ju\n", raid->total_sectors);
4313     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4314     kprintf("heads               %u\n", raid->heads);
4315     kprintf("sectors             %u\n", raid->sectors);
4316     kprintf("cylinders           %u\n", raid->cylinders);
4317     kprintf("width               %u\n", raid->width);
4318     kprintf("interleave          %u\n", raid->interleave);
4319     kprintf("total_disks         %u\n", raid->total_disks);
4320     for (i = 0; i < raid->total_disks; i++) {
4321 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4322 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4323 	if (raid->disks[i].dev) {
4324 	    kprintf("        ");
4325 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4326 			  raid->disks[i].sectors);
4327 	}
4328     }
4329     kprintf("=================================================\n");
4330 }
4331 
4332 static char *
4333 ata_raid_adaptec_type(int type)
4334 {
4335     static char buffer[16];
4336 
4337     switch (type) {
4338     case ADP_T_RAID0:   return "RAID0";
4339     case ADP_T_RAID1:   return "RAID1";
4340     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4341 			return buffer;
4342     }
4343 }
4344 
4345 static void
4346 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4347 {
4348     int i;
4349 
4350     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4351     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4352     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4353     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4354     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4355     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4356     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4357     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4358     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4359     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4360     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4361     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4362 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4363 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4364     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4365 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4366 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4367 
4368     for (i = 0; i < be16toh(meta->total_configs); i++) {
4369 	kprintf("    %d   total_disks  %u\n", i,
4370 	       be16toh(meta->configs[i].disk_number));
4371 	kprintf("    %d   generation   %u\n", i,
4372 	       be16toh(meta->configs[i].generation));
4373 	kprintf("    %d   magic_0      0x%08x\n", i,
4374 	       be32toh(meta->configs[i].magic_0));
4375 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4376 	kprintf("    %d   type         %s\n", i,
4377 	       ata_raid_adaptec_type(meta->configs[i].type));
4378 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4379 	kprintf("    %d   flags        %d\n", i,
4380 	       be32toh(meta->configs[i].flags));
4381 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4382 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4383 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4384 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4385 	kprintf("    %d   disk_number  %u\n", i,
4386 	       be32toh(meta->configs[i].disk_number));
4387 	kprintf("    %d   dummy_6      0x%08x\n", i,
4388 	       be32toh(meta->configs[i].dummy_6));
4389 	kprintf("    %d   sectors      %u\n", i,
4390 	       be32toh(meta->configs[i].sectors));
4391 	kprintf("    %d   stripe_shift %u\n", i,
4392 	       be16toh(meta->configs[i].stripe_shift));
4393 	kprintf("    %d   dummy_7      0x%08x\n", i,
4394 	       be32toh(meta->configs[i].dummy_7));
4395 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4396 	       be32toh(meta->configs[i].dummy_8[0]),
4397 	       be32toh(meta->configs[i].dummy_8[1]),
4398 	       be32toh(meta->configs[i].dummy_8[2]),
4399 	       be32toh(meta->configs[i].dummy_8[3]));
4400 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4401     }
4402     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4403     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4404     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4405     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4406     kprintf("=================================================\n");
4407 }
4408 
4409 static char *
4410 ata_raid_hptv2_type(int type)
4411 {
4412     static char buffer[16];
4413 
4414     switch (type) {
4415     case HPTV2_T_RAID0:         return "RAID0";
4416     case HPTV2_T_RAID1:         return "RAID1";
4417     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4418     case HPTV2_T_SPAN:          return "SPAN";
4419     case HPTV2_T_RAID_3:        return "RAID3";
4420     case HPTV2_T_RAID_5:        return "RAID5";
4421     case HPTV2_T_JBOD:          return "JBOD";
4422     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4423     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4424 			return buffer;
4425     }
4426 }
4427 
4428 static void
4429 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4430 {
4431     int i;
4432 
4433     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4434     kprintf("magic               0x%08x\n", meta->magic);
4435     kprintf("magic_0             0x%08x\n", meta->magic_0);
4436     kprintf("magic_1             0x%08x\n", meta->magic_1);
4437     kprintf("order               0x%08x\n", meta->order);
4438     kprintf("array_width         %u\n", meta->array_width);
4439     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4440     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4441     kprintf("disk_number         %u\n", meta->disk_number);
4442     kprintf("total_sectors       %u\n", meta->total_sectors);
4443     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4444     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4445     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4446     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4447     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4448     kprintf("log_index           0x%02x\n", meta->error_log_index);
4449     if (meta->error_log_entries) {
4450 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4451 	for (i = meta->error_log_index;
4452 	     i < meta->error_log_index + meta->error_log_entries; i++)
4453 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4454 		   meta->errorlog[i%32].timestamp,
4455 		   meta->errorlog[i%32].reason,
4456 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4457 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4458     }
4459     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4460     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4461     kprintf("name_1              <%.15s>\n", meta->name_1);
4462     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4463     kprintf("name_2              <%.15s>\n", meta->name_2);
4464     kprintf("=================================================\n");
4465 }
4466 
4467 static char *
4468 ata_raid_hptv3_type(int type)
4469 {
4470     static char buffer[16];
4471 
4472     switch (type) {
4473     case HPTV3_T_SPARE: return "SPARE";
4474     case HPTV3_T_JBOD:  return "JBOD";
4475     case HPTV3_T_SPAN:  return "SPAN";
4476     case HPTV3_T_RAID0: return "RAID0";
4477     case HPTV3_T_RAID1: return "RAID1";
4478     case HPTV3_T_RAID3: return "RAID3";
4479     case HPTV3_T_RAID5: return "RAID5";
4480     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4481 			return buffer;
4482     }
4483 }
4484 
4485 static void
4486 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4487 {
4488     int i;
4489 
4490     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4491     kprintf("magic               0x%08x\n", meta->magic);
4492     kprintf("magic_0             0x%08x\n", meta->magic_0);
4493     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4494     kprintf("mode                0x%02x\n", meta->mode);
4495     kprintf("user_mode           0x%02x\n", meta->user_mode);
4496     kprintf("config_entries      0x%02x\n", meta->config_entries);
4497     for (i = 0; i < meta->config_entries; i++) {
4498 	kprintf("config %d:\n", i);
4499 	kprintf("    total_sectors       %ju\n",
4500 	       meta->configs[0].total_sectors +
4501 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4502 	kprintf("    type                %s\n",
4503 	       ata_raid_hptv3_type(meta->configs[i].type));
4504 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4505 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4506 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4507 	kprintf("    status              %b\n", meta->configs[i].status,
4508 	       "\20\2RAID5\1NEED_REBUILD\n");
4509 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4510 	kprintf("    rebuild_lba         %ju\n",
4511 	       meta->configs_high[0].rebuild_lba +
4512 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4513     }
4514     kprintf("name                <%.16s>\n", meta->name);
4515     kprintf("timestamp           0x%08x\n", meta->timestamp);
4516     kprintf("description         <%.16s>\n", meta->description);
4517     kprintf("creator             <%.16s>\n", meta->creator);
4518     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4519     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4520     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4521     kprintf("flags               %b\n", meta->flags,
4522 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4523     kprintf("=================================================\n");
4524 }
4525 
4526 static char *
4527 ata_raid_intel_type(int type)
4528 {
4529     static char buffer[16];
4530 
4531     switch (type) {
4532     case INTEL_T_RAID0: return "RAID0";
4533     case INTEL_T_RAID1: return "RAID1";
4534     case INTEL_T_RAID5: return "RAID5";
4535     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4536 			return buffer;
4537     }
4538 }
4539 
4540 static void
4541 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4542 {
4543     struct intel_raid_mapping *map;
4544     int i, j;
4545 
4546     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4547     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4548     kprintf("version             <%.6s>\n", meta->version);
4549     kprintf("checksum            0x%08x\n", meta->checksum);
4550     kprintf("config_size         0x%08x\n", meta->config_size);
4551     kprintf("config_id           0x%08x\n", meta->config_id);
4552     kprintf("generation          0x%08x\n", meta->generation);
4553     kprintf("total_disks         %u\n", meta->total_disks);
4554     kprintf("total_volumes       %u\n", meta->total_volumes);
4555     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4556     for (i = 0; i < meta->total_disks; i++ ) {
4557 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4558 	       meta->disk[i].serial, meta->disk[i].sectors,
4559 	       meta->disk[i].id, meta->disk[i].flags);
4560     }
4561     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4562     for (j = 0; j < meta->total_volumes; j++) {
4563 	kprintf("name                %.16s\n", map->name);
4564 	kprintf("total_sectors       %ju\n", map->total_sectors);
4565 	kprintf("state               %u\n", map->state);
4566 	kprintf("reserved            %u\n", map->reserved);
4567 	kprintf("offset              %u\n", map->offset);
4568 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4569 	kprintf("stripe_count        %u\n", map->stripe_count);
4570 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4571 	kprintf("status              %u\n", map->status);
4572 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4573 	kprintf("total_disks         %u\n", map->total_disks);
4574 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4575 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4576 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4577 	for (i = 0; i < map->total_disks; i++ ) {
4578 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4579 	}
4580 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4581     }
4582     kprintf("=================================================\n");
4583 }
4584 
4585 static char *
4586 ata_raid_ite_type(int type)
4587 {
4588     static char buffer[16];
4589 
4590     switch (type) {
4591     case ITE_T_RAID0:   return "RAID0";
4592     case ITE_T_RAID1:   return "RAID1";
4593     case ITE_T_RAID01:  return "RAID0+1";
4594     case ITE_T_SPAN:    return "SPAN";
4595     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4596 			return buffer;
4597     }
4598 }
4599 
4600 static void
4601 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4602 {
4603     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4604     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4605     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4606 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4607 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4608 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4609     kprintf("total_sectors       %jd\n", meta->total_sectors);
4610     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4611     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4612     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4613 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4614 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4615 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4616     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4617     kprintf("array_width         %u\n", meta->array_width);
4618     kprintf("disk_number         %u\n", meta->disk_number);
4619     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4620     kprintf("=================================================\n");
4621 }
4622 
4623 static char *
4624 ata_raid_jmicron_type(int type)
4625 {
4626     static char buffer[16];
4627 
4628     switch (type) {
4629     case JM_T_RAID0:	return "RAID0";
4630     case JM_T_RAID1:	return "RAID1";
4631     case JM_T_RAID01:	return "RAID0+1";
4632     case JM_T_JBOD:	return "JBOD";
4633     case JM_T_RAID5:	return "RAID5";
4634     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4635 			return buffer;
4636     }
4637 }
4638 
4639 static void
4640 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4641 {
4642     int i;
4643 
4644     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4645     kprintf("signature           %.2s\n", meta->signature);
4646     kprintf("version             0x%04x\n", meta->version);
4647     kprintf("checksum            0x%04x\n", meta->checksum);
4648     kprintf("disk_id             0x%08x\n", meta->disk_id);
4649     kprintf("offset              0x%08x\n", meta->offset);
4650     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4651     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4652     kprintf("name                %.16s\n", meta->name);
4653     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4654     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4655     kprintf("flags               0x%04x\n", meta->flags);
4656     kprintf("spare:\n");
4657     for (i=0; i < 2 && meta->spare[i]; i++)
4658 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4659     kprintf("disks:\n");
4660     for (i=0; i < 8 && meta->disks[i]; i++)
4661 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4662     kprintf("=================================================\n");
4663 }
4664 
4665 static char *
4666 ata_raid_lsiv2_type(int type)
4667 {
4668     static char buffer[16];
4669 
4670     switch (type) {
4671     case LSIV2_T_RAID0: return "RAID0";
4672     case LSIV2_T_RAID1: return "RAID1";
4673     case LSIV2_T_SPARE: return "SPARE";
4674     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4675 			return buffer;
4676     }
4677 }
4678 
4679 static void
4680 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4681 {
4682     int i;
4683 
4684     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4685     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4686     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4687     kprintf("flags               0x%02x\n", meta->flags);
4688     kprintf("version             0x%04x\n", meta->version);
4689     kprintf("config_entries      0x%02x\n", meta->config_entries);
4690     kprintf("raid_count          0x%02x\n", meta->raid_count);
4691     kprintf("total_disks         0x%02x\n", meta->total_disks);
4692     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4693     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4694     for (i = 0; i < meta->config_entries; i++) {
4695 	kprintf("    type             %s\n",
4696 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4697 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4698 	kprintf("    stripe_sectors   %u\n",
4699 	       meta->configs[i].raid.stripe_sectors);
4700 	kprintf("    array_width      %u\n",
4701 	       meta->configs[i].raid.array_width);
4702 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4703 	kprintf("    config_offset    %u\n",
4704 	       meta->configs[i].raid.config_offset);
4705 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4706 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4707 	kprintf("    total_sectors    %u\n",
4708 	       meta->configs[i].raid.total_sectors);
4709     }
4710     kprintf("disk_number         0x%02x\n", meta->disk_number);
4711     kprintf("raid_number         0x%02x\n", meta->raid_number);
4712     kprintf("timestamp           0x%08x\n", meta->timestamp);
4713     kprintf("=================================================\n");
4714 }
4715 
4716 static char *
4717 ata_raid_lsiv3_type(int type)
4718 {
4719     static char buffer[16];
4720 
4721     switch (type) {
4722     case LSIV3_T_RAID0: return "RAID0";
4723     case LSIV3_T_RAID1: return "RAID1";
4724     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4725 			return buffer;
4726     }
4727 }
4728 
4729 static void
4730 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4731 {
4732     int i;
4733 
4734     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4735     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4736     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4737     kprintf("version             0x%04x\n", meta->version);
4738     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4739     kprintf("RAID configs:\n");
4740     for (i = 0; i < 8; i++) {
4741 	if (meta->raid[i].total_disks) {
4742 	    kprintf("%02d  stripe_pages       %u\n", i,
4743 		   meta->raid[i].stripe_pages);
4744 	    kprintf("%02d  type               %s\n", i,
4745 		   ata_raid_lsiv3_type(meta->raid[i].type));
4746 	    kprintf("%02d  total_disks        %u\n", i,
4747 		   meta->raid[i].total_disks);
4748 	    kprintf("%02d  array_width        %u\n", i,
4749 		   meta->raid[i].array_width);
4750 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4751 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4752 	    kprintf("%02d  device             0x%02x\n", i,
4753 		   meta->raid[i].device);
4754 	}
4755     }
4756     kprintf("DISK configs:\n");
4757     for (i = 0; i < 6; i++) {
4758 	    if (meta->disk[i].disk_sectors) {
4759 	    kprintf("%02d  disk_sectors       %u\n", i,
4760 		   meta->disk[i].disk_sectors);
4761 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4762 	}
4763     }
4764     kprintf("device              0x%02x\n", meta->device);
4765     kprintf("timestamp           0x%08x\n", meta->timestamp);
4766     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4767     kprintf("=================================================\n");
4768 }
4769 
4770 static char *
4771 ata_raid_nvidia_type(int type)
4772 {
4773     static char buffer[16];
4774 
4775     switch (type) {
4776     case NV_T_SPAN:     return "SPAN";
4777     case NV_T_RAID0:    return "RAID0";
4778     case NV_T_RAID1:    return "RAID1";
4779     case NV_T_RAID3:    return "RAID3";
4780     case NV_T_RAID5:    return "RAID5";
4781     case NV_T_RAID01:   return "RAID0+1";
4782     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4783 			return buffer;
4784     }
4785 }
4786 
4787 static void
4788 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4789 {
4790     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4791     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4792     kprintf("config_size         %u\n", meta->config_size);
4793     kprintf("checksum            0x%08x\n", meta->checksum);
4794     kprintf("version             0x%04x\n", meta->version);
4795     kprintf("disk_number         %u\n", meta->disk_number);
4796     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4797     kprintf("total_sectors       %u\n", meta->total_sectors);
4798     kprintf("sectors_size        %u\n", meta->sector_size);
4799     kprintf("serial              %.16s\n", meta->serial);
4800     kprintf("revision            %.4s\n", meta->revision);
4801     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4802     kprintf("magic_0             0x%08x\n", meta->magic_0);
4803     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4804     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4805     kprintf("flags               0x%02x\n", meta->flags);
4806     kprintf("array_width         %u\n", meta->array_width);
4807     kprintf("total_disks         %u\n", meta->total_disks);
4808     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4809     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4810     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4811     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4812     kprintf("stripe_bytes        %u\n", meta->stripe_bytes);
4813     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4814     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4815     kprintf("stripe_sizesectors  %u\n", meta->stripe_sizesectors);
4816     kprintf("stripe_sizebytes    %u\n", meta->stripe_sizebytes);
4817     kprintf("rebuild_lba         %u\n", meta->rebuild_lba);
4818     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4819     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4820     kprintf("status              0x%08x\n", meta->status);
4821     kprintf("=================================================\n");
4822 }
4823 
4824 static char *
4825 ata_raid_promise_type(int type)
4826 {
4827     static char buffer[16];
4828 
4829     switch (type) {
4830     case PR_T_RAID0:    return "RAID0";
4831     case PR_T_RAID1:    return "RAID1";
4832     case PR_T_RAID3:    return "RAID3";
4833     case PR_T_RAID5:    return "RAID5";
4834     case PR_T_SPAN:     return "SPAN";
4835     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4836 			return buffer;
4837     }
4838 }
4839 
4840 static void
4841 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4842 {
4843     int i;
4844 
4845     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4846     kprintf("promise_id          <%s>\n", meta->promise_id);
4847     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4848     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4849     kprintf("magic_1             0x%04x\n", meta->magic_1);
4850     kprintf("magic_2             0x%08x\n", meta->magic_2);
4851     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4852 		meta->raid.integrity, "\20\10VALID\n" );
4853     kprintf("flags               0x%02x %b\n",
4854 	   meta->raid.flags, meta->raid.flags,
4855 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4856 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4857     kprintf("disk_number         %d\n", meta->raid.disk_number);
4858     kprintf("channel             0x%02x\n", meta->raid.channel);
4859     kprintf("device              0x%02x\n", meta->raid.device);
4860     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4861     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4862     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4863     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4864     kprintf("generation          0x%04x\n", meta->raid.generation);
4865     kprintf("status              0x%02x %b\n",
4866 	    meta->raid.status, meta->raid.status,
4867 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4868     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4869     kprintf("total_disks         %u\n", meta->raid.total_disks);
4870     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4871     kprintf("array_width         %u\n", meta->raid.array_width);
4872     kprintf("array_number        %u\n", meta->raid.array_number);
4873     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4874     kprintf("cylinders           %u\n", meta->raid.cylinders);
4875     kprintf("heads               %u\n", meta->raid.heads);
4876     kprintf("sectors             %u\n", meta->raid.sectors);
4877     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4878     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4879     for (i = 0; i < 8; i++) {
4880 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4881 	       i, meta->raid.disk[i].flags,
4882 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4883 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4884 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4885 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4886     }
4887     kprintf("checksum            0x%08x\n", meta->checksum);
4888     kprintf("=================================================\n");
4889 }
4890 
4891 static char *
4892 ata_raid_sii_type(int type)
4893 {
4894     static char buffer[16];
4895 
4896     switch (type) {
4897     case SII_T_RAID0:   return "RAID0";
4898     case SII_T_RAID1:   return "RAID1";
4899     case SII_T_RAID01:  return "RAID0+1";
4900     case SII_T_SPARE:   return "SPARE";
4901     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4902 			return buffer;
4903     }
4904 }
4905 
4906 static void
4907 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4908 {
4909     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4910     kprintf("total_sectors       %ju\n", meta->total_sectors);
4911     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4912     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4913     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4914     kprintf("version_minor       0x%04x\n", meta->version_minor);
4915     kprintf("version_major       0x%04x\n", meta->version_major);
4916     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4917 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4918 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4919     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4920     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4921     kprintf("disk_number         %u\n", meta->disk_number);
4922     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4923     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4924     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4925     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4926     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4927     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4928     kprintf("generation          0x%08x\n", meta->generation);
4929     kprintf("status              0x%02x %b\n",
4930 	    meta->status, meta->status,
4931 	   "\20\1READY\n");
4932     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4933     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4934     kprintf("position            %02x\n", meta->position);
4935     kprintf("dummy_3             %04x\n", meta->dummy_3);
4936     kprintf("name                <%.16s>\n", meta->name);
4937     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4938     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4939     kprintf("=================================================\n");
4940 }
4941 
4942 static char *
4943 ata_raid_sis_type(int type)
4944 {
4945     static char buffer[16];
4946 
4947     switch (type) {
4948     case SIS_T_JBOD:    return "JBOD";
4949     case SIS_T_RAID0:   return "RAID0";
4950     case SIS_T_RAID1:   return "RAID1";
4951     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4952 			return buffer;
4953     }
4954 }
4955 
4956 static void
4957 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4958 {
4959     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4960     kprintf("magic               0x%04x\n", meta->magic);
4961     kprintf("disks               0x%02x\n", meta->disks);
4962     kprintf("type                %s\n",
4963 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4964     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4965     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4966     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4967     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4968     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4969     kprintf("timestamp           0x%08x\n", meta->timestamp);
4970     kprintf("model               %.40s\n", meta->model);
4971     kprintf("disk_number         %u\n", meta->disk_number);
4972     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4973 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4974     kprintf("=================================================\n");
4975 }
4976 
4977 static char *
4978 ata_raid_via_type(int type)
4979 {
4980     static char buffer[16];
4981 
4982     switch (type) {
4983     case VIA_T_RAID0:   return "RAID0";
4984     case VIA_T_RAID1:   return "RAID1";
4985     case VIA_T_RAID5:   return "RAID5";
4986     case VIA_T_RAID01:  return "RAID0+1";
4987     case VIA_T_SPAN:    return "SPAN";
4988     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4989 			return buffer;
4990     }
4991 }
4992 
4993 static void
4994 ata_raid_via_print_meta(struct via_raid_conf *meta)
4995 {
4996     int i;
4997 
4998     kprintf("*************** ATA VIA Metadata ****************\n");
4999     kprintf("magic               0x%02x\n", meta->magic);
5000     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
5001     kprintf("type                %s\n",
5002 	   ata_raid_via_type(meta->type & VIA_T_MASK));
5003     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
5004     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
5005     kprintf("disk_index          0x%02x\n", meta->disk_index);
5006     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
5007     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
5008     kprintf(" stripe_sectors     %d\n",
5009 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
5010     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
5011     kprintf("disk_id             0x%08x\n", meta->disk_id);
5012     kprintf("DISK#   disk_id\n");
5013     for (i = 0; i < 8; i++) {
5014 	if (meta->disks[i])
5015 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
5016     }
5017     kprintf("checksum            0x%02x\n", meta->checksum);
5018     kprintf("=================================================\n");
5019 }
5020