xref: /dragonfly/sys/dev/disk/nvme/nvme_attach.c (revision 277350a0)
1 /*
2  * Copyright (c) 2016 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "nvme.h"
36 
37 static int	nvme_pci_attach(device_t);
38 static int	nvme_pci_detach(device_t);
39 
40 static const nvme_device_t nvme_devices[] = {
41 	/* Vendor-specific table goes here (see ahci for example) */
42 	{ 0, 0, nvme_pci_attach, nvme_pci_detach, "NVME-PCIe" }
43 };
44 
45 static int	nvme_msix_enable = 1;
46 TUNABLE_INT("hw.nvme.msix.enable", &nvme_msix_enable);
47 static int	nvme_msi_enable = 0;
48 TUNABLE_INT("hw.nvme.msi.enable", &nvme_msi_enable);
49 
50 TAILQ_HEAD(, nvme_softc) nvme_sc_list = TAILQ_HEAD_INITIALIZER(nvme_sc_list);
51 struct lock nvme_master_lock = LOCK_INITIALIZER("nvmstr", 0, 0);
52 
53 static int last_global_cpu;
54 
55 /*
56  * Match during probe and attach.  The device does not yet have a softc.
57  */
58 const nvme_device_t *
59 nvme_lookup_device(device_t dev)
60 {
61 	const nvme_device_t *ad;
62 	uint16_t vendor = pci_get_vendor(dev);
63 	uint16_t product = pci_get_device(dev);
64 	uint8_t class = pci_get_class(dev);
65 	uint8_t subclass = pci_get_subclass(dev);
66 	uint8_t progif = pci_read_config(dev, PCIR_PROGIF, 1);
67 	int is_nvme;
68 
69 	/*
70 	 * Generally speaking if the pci device does not identify as
71 	 * AHCI we skip it.
72 	 */
73 	if (class == PCIC_STORAGE && subclass == PCIS_STORAGE_NVM &&
74 	    progif == PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0) {
75 		is_nvme = 1;
76 	} else {
77 		is_nvme = 0;
78 	}
79 
80 	for (ad = &nvme_devices[0]; ad->vendor; ++ad) {
81 		if (ad->vendor == vendor && ad->product == product)
82 			return (ad);
83 	}
84 
85 	/*
86 	 * Last ad is the default match if the PCI device matches SATA.
87 	 */
88 	if (is_nvme == 0)
89 		ad = NULL;
90 	return (ad);
91 }
92 
93 /*
94  * Attach functions.  They all eventually fall through to nvme_pci_attach().
95  */
96 static int
97 nvme_pci_attach(device_t dev)
98 {
99 	nvme_softc_t *sc = device_get_softc(dev);
100 	uint32_t reg;
101 	int error;
102 	int msi_enable;
103 	int msix_enable;
104 
105 #if 0
106 	if (pci_read_config(dev, PCIR_COMMAND, 2) & 0x0400) {
107 		device_printf(dev, "BIOS disabled PCI interrupt, "
108 				   "re-enabling\n");
109 		pci_write_config(dev, PCIR_COMMAND,
110 			pci_read_config(dev, PCIR_COMMAND, 2) & ~0x0400, 2);
111 	}
112 #endif
113 
114 	sc->dev = dev;
115 
116 	/*
117 	 * Map the register window
118 	 */
119 	sc->rid_regs = PCIR_BAR(0);
120 	sc->regs = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
121 					  &sc->rid_regs, RF_ACTIVE);
122 	if (sc->regs == NULL) {
123 		device_printf(dev, "unable to map registers\n");
124 		nvme_pci_detach(dev);
125 		return (ENXIO);
126 	}
127 	sc->iot = rman_get_bustag(sc->regs);
128 	sc->ioh = rman_get_bushandle(sc->regs);
129 
130 	/*
131 	 * NVMe allows the MSI-X table to be mapped to BAR 4/5.
132 	 * Always try to map BAR4, but it's ok if it fails.  Must
133 	 * be done prior to allocating our interrupts.
134 	 */
135 	sc->rid_bar4 = PCIR_BAR(4);
136 	sc->bar4 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
137 					  &sc->rid_bar4, RF_ACTIVE);
138 
139 	/*
140 	 * Map the interrupt or initial interrupt which will be used for
141 	 * the admin queue.  NVME chipsets can potentially support a huge
142 	 * number of MSIX vectors but we really only need enough for
143 	 * available cpus, plus 1.
144 	 */
145 	msi_enable = device_getenv_int(dev, "msi.enable", nvme_msi_enable);
146 	msix_enable = device_getenv_int(dev, "msix.enable", nvme_msix_enable);
147 
148 	error = 0;
149 	if (msix_enable) {
150 		int i;
151 		int cpu;
152 
153 		sc->nirqs = pci_msix_count(dev);
154 		sc->irq_type = PCI_INTR_TYPE_MSIX;
155 		if (sc->nirqs > ncpus + 1)		/* max we need */
156 			sc->nirqs = ncpus + 1;
157 
158 		error = pci_setup_msix(dev);
159 		cpu = (last_global_cpu + 0) % ncpus;	/* GCC warn */
160 		for (i = 0; error == 0 && i < sc->nirqs; ++i) {
161 			cpu = (last_global_cpu + i) % ncpus;
162 			error = pci_alloc_msix_vector(dev, i,
163 						      &sc->rid_irq[i], cpu);
164 			if (error)
165 				break;
166 			sc->irq[i] = bus_alloc_resource_any(dev, SYS_RES_IRQ,
167 							    &sc->rid_irq[i],
168 							    RF_ACTIVE);
169 			/*
170 			 * We want this to overwrite queue 0's cpu vector
171 			 * when the cpu's rotate through later on.
172 			 */
173 			if (sc->cputovect[cpu] == 0)
174 				sc->cputovect[cpu] = i;
175 		}
176 
177 		/*
178 		 * If we did not iterate enough cpus (that is, there weren't
179 		 * enough irqs for all available cpus) we still need to
180 		 * finish or sc->cputovect[] mapping.
181 		 */
182 		while (error == 0) {
183 			cpu = (cpu + 1) % ncpus;
184 			i = (i + 1) % sc->nirqs;
185 			if (i == 0)
186 				i = 1;
187 			if (sc->cputovect[cpu] != 0)
188 				break;
189 			sc->cputovect[cpu] = i;
190 		}
191 
192 		if (error) {
193 			while (--i >= 0) {
194 				bus_release_resource(dev, SYS_RES_IRQ,
195 						     sc->rid_irq[i],
196 						     sc->irq[i]);
197 				pci_release_msix_vector(dev, sc->rid_irq[i]);
198 				sc->irq[i] = NULL;
199 			}
200 			/* leave error intact to fall through to normal */
201 		} else {
202 			last_global_cpu = (last_global_cpu + sc->nirqs) % ncpus;
203 			pci_enable_msix(dev);
204 		}
205 	}
206 	if (msix_enable == 0 || error) {
207 		uint32_t irq_flags;
208 
209 		error = 0;
210 		sc->nirqs = 1;
211 		sc->irq_type = pci_alloc_1intr(dev, msi_enable,
212 					       &sc->rid_irq[0], &irq_flags);
213 		sc->irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ,
214 						 &sc->rid_irq[0], irq_flags);
215 	}
216 	if (sc->irq[0] == NULL) {
217 		device_printf(dev, "unable to map interrupt\n");
218 		nvme_pci_detach(dev);
219 		return (ENXIO);
220 	} else {
221 		const char *type;
222 		switch(sc->irq_type) {
223 		case PCI_INTR_TYPE_MSI:
224 			type = "MSI";
225 			break;
226 		case PCI_INTR_TYPE_MSIX:
227 			type = "MSIX";
228 			break;
229 		default:
230 			type = "normal-int";
231 			break;
232 		}
233 		device_printf(dev, "mapped %d %s IRQs\n", sc->nirqs, type);
234 	}
235 
236 	/*
237 	 * Make sure the chip is disabled, which will reset all controller
238 	 * registers except for the admin queue registers.  Device should
239 	 * already be disabled so this is usually instantanious.  Use a
240 	 * fixed 5-second timeout in case it is not.  I'd like my other
241 	 * reads to occur after the device has been disabled.
242 	 */
243 	sc->entimo = hz * 5;
244 	error = nvme_enable(sc, 0);
245 	if (error) {
246 		nvme_pci_detach(dev);
247 		return (ENXIO);
248 	}
249 
250 	/*
251 	 * Get capabillities and version and report
252 	 */
253 	sc->vers = nvme_read(sc, NVME_REG_VERS);
254 	sc->cap = nvme_read8(sc, NVME_REG_CAP);
255 	sc->maxqe = NVME_CAP_MQES_GET(sc->cap);
256 	sc->dstrd4 = NVME_CAP_DSTRD_GET(sc->cap);
257 
258 	device_printf(dev, "NVME Version %u.%u maxqe=%u caps=%016jx\n",
259 		      NVME_VERS_MAJOR_GET(sc->vers),
260 		      NVME_VERS_MINOR_GET(sc->vers),
261 		      sc->maxqe, sc->cap);
262 
263 	/*
264 	 * Enable timeout, 500ms increments.  Convert to ticks.
265 	 */
266 	sc->entimo = NVME_CAP_TIMEOUT_GET(sc->cap) * hz / 2; /* in ticks */
267 	++sc->entimo;		/* fudge */
268 
269 	/*
270 	 * Validate maxqe.  To cap the amount of memory we reserve for
271 	 * PRPs we limit maxqe to 256.  Also make sure it is a power of
272 	 * two.
273 	 */
274 	if (sc->maxqe < 2) {
275 		device_printf(dev,
276 			      "Attach failed, max queue entries (%d) "
277 			      "below minimum (2)\n", sc->maxqe);
278 		nvme_pci_detach(dev);
279 		return (ENXIO);
280 	}
281 	if (sc->maxqe > 256)
282 		sc->maxqe = 256;
283 	for (reg = 2; reg <= sc->maxqe; reg <<= 1)
284 		;
285 	sc->maxqe = reg >> 1;
286 
287 	/*
288 	 * DMA tags
289 	 *
290 	 * PRP	- Worst case PRPs needed per queue is MAXPHYS / PAGE_SIZE
291 	 *	  (typically 64), multiplied by maxqe (typ 256).  Roughly
292 	 *	  ~128KB per queue.  Align for cache performance.  We actually
293 	 *	  need one more PRP per queue entry worst-case to handle
294 	 *	  buffer overlap, but we have an extra one in the command
295 	 *	  structure so we don't have to calculate that out.
296 	 *
297 	 *	  Remember that we intend to allocate potentially many queues,
298 	 *	  so we don't want to bloat this too much.  A queue depth of
299 	 *	  256 is plenty.
300 	 *
301 	 * CMD - Storage for the submit queue.  maxqe * 64	(~16KB)
302 	 *
303 	 * RES - Storage for the completion queue.  maxqe * 16	(~4KB)
304 	 *
305 	 * ADM - Storage for admin command DMA data.  Maximum admin command
306 	 *	 DMA data is 4KB so reserve maxqe * 4KB (~1MB).  There is only
307 	 *	 one admin queue.
308 	 *
309 	 * NOTE: There are no boundary requirements for NVMe, but I specify a
310 	 *	 4MB boundary anyway because this reduces mass-bit flipping
311 	 *	 of address bits inside the controller when incrementing
312 	 *	 DMA addresses.  Why not?  Can't hurt.
313 	 */
314 	sc->prp_bytes = sizeof(uint64_t) * (MAXPHYS / PAGE_SIZE) * sc->maxqe;
315 	sc->cmd_bytes = sizeof(nvme_subq_item_t) * sc->maxqe;
316 	sc->res_bytes = sizeof(nvme_comq_item_t) * sc->maxqe;
317 	sc->adm_bytes = NVME_MAX_ADMIN_BUFFER * sc->maxqe;
318 
319 	error = 0;
320 
321 	error += bus_dma_tag_create(
322 			NULL,				/* parent tag */
323 			PAGE_SIZE,			/* alignment */
324 			4 * 1024 * 1024,		/* boundary */
325 			BUS_SPACE_MAXADDR,		/* loaddr? */
326 			BUS_SPACE_MAXADDR,		/* hiaddr */
327 			NULL,				/* filter */
328 			NULL,				/* filterarg */
329 			sc->prp_bytes,			/* [max]size */
330 			1,				/* maxsegs */
331 			sc->prp_bytes,			/* maxsegsz */
332 			0,				/* flags */
333 			&sc->prps_tag);			/* return tag */
334 
335 	error += bus_dma_tag_create(
336 			NULL,				/* parent tag */
337 			PAGE_SIZE,			/* alignment */
338 			4 * 1024 * 1024,		/* boundary */
339 			BUS_SPACE_MAXADDR,		/* loaddr? */
340 			BUS_SPACE_MAXADDR,		/* hiaddr */
341 			NULL,				/* filter */
342 			NULL,				/* filterarg */
343 			sc->cmd_bytes,			/* [max]size */
344 			1,				/* maxsegs */
345 			sc->cmd_bytes,			/* maxsegsz */
346 			0,				/* flags */
347 			&sc->sque_tag);			/* return tag */
348 
349 	error += bus_dma_tag_create(
350 			NULL,				/* parent tag */
351 			PAGE_SIZE,			/* alignment */
352 			4 * 1024 * 1024,		/* boundary */
353 			BUS_SPACE_MAXADDR,		/* loaddr? */
354 			BUS_SPACE_MAXADDR,		/* hiaddr */
355 			NULL,				/* filter */
356 			NULL,				/* filterarg */
357 			sc->res_bytes,			/* [max]size */
358 			1,				/* maxsegs */
359 			sc->res_bytes,			/* maxsegsz */
360 			0,				/* flags */
361 			&sc->cque_tag);			/* return tag */
362 
363 	error += bus_dma_tag_create(
364 			NULL,				/* parent tag */
365 			PAGE_SIZE,			/* alignment */
366 			4 * 1024 * 1024,		/* boundary */
367 			BUS_SPACE_MAXADDR,		/* loaddr? */
368 			BUS_SPACE_MAXADDR,		/* hiaddr */
369 			NULL,				/* filter */
370 			NULL,				/* filterarg */
371 			sc->adm_bytes,			/* [max]size */
372 			1,				/* maxsegs */
373 			sc->adm_bytes,			/* maxsegsz */
374 			0,				/* flags */
375 			&sc->adm_tag);			/* return tag */
376 
377 	if (error) {
378 		device_printf(dev, "unable to create dma tags\n");
379 		nvme_pci_detach(dev);
380 		return (ENXIO);
381 	}
382 
383 	/*
384 	 * Setup the admin queues (qid 0).
385 	 */
386 	error = nvme_alloc_subqueue(sc, 0);
387 	if (error) {
388 		device_printf(dev, "unable to allocate admin subqueue\n");
389 		nvme_pci_detach(dev);
390 		return (ENXIO);
391 	}
392 	error = nvme_alloc_comqueue(sc, 0);
393 	if (error) {
394 		device_printf(dev, "unable to allocate admin comqueue\n");
395 		nvme_pci_detach(dev);
396 		return (ENXIO);
397 	}
398 
399 	/*
400 	 * Initialize the admin queue registers
401 	 */
402 	reg = NVME_ATTR_COM_SET(sc->maxqe) | NVME_ATTR_SUB_SET(sc->maxqe);
403 	nvme_write(sc, NVME_REG_ADM_ATTR, reg);
404 	nvme_write8(sc, NVME_REG_ADM_SUBADR, (uint64_t)sc->subqueues[0].psubq);
405 	nvme_write8(sc, NVME_REG_ADM_COMADR, (uint64_t)sc->comqueues[0].pcomq);
406 
407 	/*
408 	 * qemu appears to require this, real hardware does not appear
409 	 * to require this.
410 	 */
411 	pci_enable_busmaster(dev);
412 
413 	/*
414 	 * Other configuration registers
415 	 */
416 	reg = NVME_CONFIG_IOSUB_ES_SET(6) |		/* 64 byte sub entry */
417 	      NVME_CONFIG_IOCOM_ES_SET(4) |		/* 16 byte com entry */
418 	      NVME_CONFIG_MEMPG_SET(PAGE_SHIFT) |	/* 4K pages */
419 	      NVME_CONFIG_CSS_NVM;			/* NVME command set */
420 	nvme_write(sc, NVME_REG_CONFIG, reg);
421 
422 	reg = nvme_read(sc, NVME_REG_MEMSIZE);
423 
424 	/*
425 	 * Enable the chip for operation
426 	 */
427 	error = nvme_enable(sc, 1);
428 	if (error) {
429 		nvme_enable(sc, 0);
430 		nvme_pci_detach(dev);
431 		return (ENXIO);
432 	}
433 
434 	/*
435 	 * Start the admin thread.  This will also setup the admin queue
436 	 * interrupt.
437 	 */
438 	error = nvme_start_admin_thread(sc);
439 	if (error) {
440 		nvme_pci_detach(dev);
441 		return (ENXIO);
442 	}
443 	lockmgr(&nvme_master_lock, LK_EXCLUSIVE);
444 	sc->flags |= NVME_SC_ATTACHED;
445 	TAILQ_INSERT_TAIL(&nvme_sc_list, sc, entry);
446 	lockmgr(&nvme_master_lock, LK_RELEASE);
447 
448 	return(0);
449 }
450 
451 /*
452  * Device unload / detachment
453  */
454 static int
455 nvme_pci_detach(device_t dev)
456 {
457 	nvme_softc_t *sc = device_get_softc(dev);
458 	int i;
459 
460 	/*
461 	 * Stop the admin thread
462 	 */
463 	nvme_stop_admin_thread(sc);
464 
465 	/*
466 	 * Issue a normal shutdown and wait for completion
467 	 */
468 	nvme_issue_shutdown(sc);
469 
470 	/*
471 	 * Disable the chip
472 	 */
473 	nvme_enable(sc, 0);
474 
475 	/*
476 	 * Free admin memory
477 	 */
478 	nvme_free_subqueue(sc, 0);
479 	nvme_free_comqueue(sc, 0);
480 
481 	/*
482 	 * Release related resources.
483 	 */
484 	for (i = 0; i < sc->nirqs; ++i) {
485 		if (sc->irq[i]) {
486 			bus_release_resource(dev, SYS_RES_IRQ,
487 					     sc->rid_irq[i], sc->irq[i]);
488 			sc->irq[i] = NULL;
489 			if (sc->irq_type == PCI_INTR_TYPE_MSIX)
490 				pci_release_msix_vector(dev, sc->rid_irq[i]);
491 		}
492 	}
493 	switch(sc->irq_type) {
494 	case PCI_INTR_TYPE_MSI:
495 		pci_release_msi(dev);
496 		break;
497 	case PCI_INTR_TYPE_MSIX:
498 		pci_teardown_msix(dev);
499 		break;
500 	default:
501 		break;
502 	}
503 
504 	/*
505 	 * Release remaining chipset resources
506 	 */
507 	if (sc->regs) {
508 		bus_release_resource(dev, SYS_RES_MEMORY,
509 				     sc->rid_regs, sc->regs);
510 		sc->regs = NULL;
511 	}
512 	if (sc->bar4) {
513 		bus_release_resource(dev, SYS_RES_MEMORY,
514 				     sc->rid_bar4, sc->bar4);
515 		sc->bar4 = NULL;
516 	}
517 
518 	/*
519 	 * Cleanup the DMA tags
520 	 */
521 	if (sc->prps_tag) {
522 		bus_dma_tag_destroy(sc->prps_tag);
523 		sc->prps_tag = NULL;
524 	}
525 	if (sc->sque_tag) {
526 		bus_dma_tag_destroy(sc->sque_tag);
527 		sc->sque_tag = NULL;
528 	}
529 	if (sc->cque_tag) {
530 		bus_dma_tag_destroy(sc->cque_tag);
531 		sc->cque_tag = NULL;
532 	}
533 	if (sc->adm_tag) {
534 		bus_dma_tag_destroy(sc->adm_tag);
535 		sc->adm_tag = NULL;
536 	}
537 
538 	if (sc->flags & NVME_SC_ATTACHED) {
539 		lockmgr(&nvme_master_lock, LK_EXCLUSIVE);
540 		sc->flags &= ~NVME_SC_ATTACHED;
541 		TAILQ_REMOVE(&nvme_sc_list, sc, entry);
542 		lockmgr(&nvme_master_lock, LK_RELEASE);
543 	}
544 
545 	return (0);
546 }
547