xref: /dragonfly/sys/dev/disk/sdhci/sdhci.c (revision 03517d4e)
1 /*-
2  * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/dev/sdhci/sdhci.c,v 1.8 2009/02/17 19:12:15 mav Exp $
26  */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/bus.h>
31 #include <sys/callout.h>
32 #include <sys/conf.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/module.h>
36 #include <sys/spinlock.h>
37 #include <sys/resource.h>
38 #include <sys/rman.h>
39 #include <sys/sysctl.h>
40 #include <sys/taskqueue.h>
41 
42 #include <bus/mmc/bridge.h>
43 #include <bus/mmc/mmcreg.h>
44 #include <bus/mmc/mmcbrvar.h>
45 
46 #include "mmcbr_if.h"
47 #include "sdhci.h"
48 #include "sdhci_if.h"
49 
50 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver");
51 
52 int	sdhci_debug = 0;
53 TUNABLE_INT("hw.sdhci.debug", &sdhci_debug);
54 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RW, &sdhci_debug, 0, "Debug level");
55 
56 static int sdhci_sdma_disable = 0;
57 TUNABLE_INT("hw.sdhci.sdma_disable", &sdhci_sdma_disable);
58 
59 static int sdhci_adma2_disable = 0;
60 TUNABLE_INT("hw.sdhci.adma2_disable", &sdhci_adma2_disable);
61 
62 static int sdhci_adma2_test = 0;
63 TUNABLE_INT("hw.sdhci.adma2_test", &sdhci_adma2_test);
64 
65 u_int sdhci_quirk_clear = 0;
66 TUNABLE_INT("hw.sdhci.quirk_clear", &sdhci_quirk_clear);
67 u_int sdhci_quirk_set = 0;
68 TUNABLE_INT("hw.sdhci.quirk_set", &sdhci_quirk_set);
69 
70 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off))
71 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off))
72 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off))
73 #define RD_MULTI_4(slot, off, ptr, count)      \
74     SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
75 #define WR1(slot, off, val)    SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
76 #define WR2(slot, off, val)    SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
77 #define WR4(slot, off, val)    SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
78 #define WR_MULTI_4(slot, off, ptr, count)      \
79     SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
80 
81 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
82 static void sdhci_start(struct sdhci_slot *slot);
83 static void sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data);
84 
85 static void sdhci_card_task(void *, int);
86 
87 static int  sdhci_dma_alloc(struct sdhci_slot *slot);
88 static void sdhci_dmamem_free(bus_dmamem_t *mem);
89 static void sdhci_dma_free(struct sdhci_slot *slot);
90 static void sdhci_adma2_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
91 		int error);
92 
93 /* helper routines */
94 static void sdhci_dumpregs(struct sdhci_slot *slot);
95 static int slot_printf(struct sdhci_slot *slot, const char * fmt, ...)
96     __printflike(2, 3);
97 
98 #define SDHCI_LOCK(_slot)		lockmgr(&(_slot)->lock, LK_EXCLUSIVE)
99 #define	SDHCI_UNLOCK(_slot)		lockmgr(&(_slot)->lock, LK_RELEASE)
100 #define SDHCI_LOCK_INIT(_slot)		lockinit(&(_slot)->lock, "sdhci", 0, LK_CANRECURSE)
101 #define SDHCI_LOCK_DESTROY(_slot)	lockuninit(&(_slot)->lock);
102 #define SDHCI_ASSERT_LOCKED(_slot)	KKASSERT(lockstatus(&(_slot)->lock, curthread) != 0);
103 #define SDHCI_ASSERT_UNLOCKED(_slot)	KKASSERT(lockstatus(&(_slot)->lock, curthread) == 0);
104 
105 #define	SDHCI_DEFAULT_MAX_FREQ	50
106 
107 #define	SDHCI_200_MAX_DIVIDER	256
108 #define	SDHCI_300_MAX_DIVIDER	2046
109 
110 /*
111  * Broadcom BCM577xx Controller Constants
112  */
113 #define BCM577XX_DEFAULT_MAX_DIVIDER	256		/* Maximum divider supported by the default clock source. */
114 #define BCM577XX_ALT_CLOCK_BASE		63000000	/* Alternative clock's base frequency. */
115 
116 #define BCM577XX_HOST_CONTROL		0x198
117 #define BCM577XX_CTRL_CLKSEL_MASK	0xFFFFCFFF
118 #define BCM577XX_CTRL_CLKSEL_SHIFT	12
119 #define BCM577XX_CTRL_CLKSEL_DEFAULT	0x0
120 #define BCM577XX_CTRL_CLKSEL_64MHZ	0x3
121 
122 static int
123 slot_printf(struct sdhci_slot *slot, const char * fmt, ...)
124 {
125 	__va_list ap;
126 	int retval;
127 
128 	retval = kprintf("%s-slot%d: ",
129 	    device_get_nameunit(slot->bus), slot->num);
130 
131 	__va_start(ap, fmt);
132 	retval += kvprintf(fmt, ap);
133 	__va_end(ap);
134 	return (retval);
135 }
136 
137 static void
138 sdhci_dumpregs(struct sdhci_slot *slot)
139 {
140 	slot_printf(slot,
141 	    "============== REGISTER DUMP ==============\n");
142 
143 	slot_printf(slot, "SDMA addr: 0x%08x | Version:  0x%08x\n",
144 	    RD4(slot, SDHCI_SDMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
145 	slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
146 	    RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
147 	slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n",
148 	    RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
149 	slot_printf(slot, "Present:  0x%08x | Host ctl: 0x%08x\n",
150 	    RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
151 	slot_printf(slot, "Power:    0x%08x | Blk gap:  0x%08x\n",
152 	    RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
153 	slot_printf(slot, "Wake-up:  0x%08x | Clock:    0x%08x\n",
154 	    RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
155 	slot_printf(slot, "Timeout:  0x%08x | Int stat: 0x%08x\n",
156 	    RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
157 	slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
158 	    RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
159 	slot_printf(slot, "AC12 err: 0x%08x | Host ctl2: 0x%08x\n",
160 	    RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
161 	slot_printf(slot, "Caps:     0x%08x | Caps2:    0x%08x\n",
162 	    RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
163 	slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n",
164 	    RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
165 	slot_printf(slot, "ADMA addr: 0x%08x | Slot int: 0x%08x\n",
166 	    RD4(slot, SDHCI_ADMA_ADDRESS_LOW), RD2(slot, SDHCI_SLOT_INT_STATUS));
167 
168 	slot_printf(slot,
169 	    "===========================================\n");
170 }
171 
172 static void
173 sdhci_reset(struct sdhci_slot *slot, uint8_t mask)
174 {
175 	int timeout;
176 	uint32_t clock;
177 
178 	if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
179 		if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
180 			return;
181 	}
182 
183 	/* Some controllers need this kick or reset won't work. */
184 	if ((mask & SDHCI_RESET_ALL) == 0 &&
185 	    (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
186 		/* This is to force an update */
187 		clock = slot->clock;
188 		slot->clock = 0;
189 		sdhci_set_clock(slot, clock);
190 	}
191 
192 	if (mask & SDHCI_RESET_ALL) {
193 		slot->clock = 0;
194 		slot->power = 0;
195 	}
196 
197 	WR1(slot, SDHCI_SOFTWARE_RESET, mask);
198 
199 	if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
200 		/*
201 		 * Resets on TI OMAPs and AM335x are incompatible with SDHCI
202 		 * specification.  The reset bit has internal propagation delay,
203 		 * so a fast read after write returns 0 even if reset process is
204 		 * in progress.  The workaround is to poll for 1 before polling
205 		 * for 0.  In the worst case, if we miss seeing it asserted the
206 		 * time we spent waiting is enough to ensure the reset finishes.
207 		 */
208 		timeout = 10000;
209 		while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
210 			if (timeout <= 0)
211 				break;
212 			timeout--;
213 			DELAY(1);
214 		}
215 	}
216 
217 	/* Wait max 100 ms */
218 	timeout = 10000;
219 	/* Controller clears the bits when it's done */
220 	while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
221 		if (timeout <= 0) {
222 			slot_printf(slot, "Reset 0x%x never completed.\n",
223 			    mask);
224 			sdhci_dumpregs(slot);
225 			return;
226 		}
227 		timeout--;
228 		DELAY(10);
229 	}
230 }
231 
232 static void
233 sdhci_init(struct sdhci_slot *slot)
234 {
235 
236 	sdhci_reset(slot, SDHCI_RESET_ALL);
237 
238 	/* Enable interrupts. */
239 	slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
240 	    SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
241 	    SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
242 	    SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
243 	    SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
244 	    SDHCI_INT_ACMD12ERR | SDHCI_INT_ADMAERR;
245 	if (!(slot->opt & SDHCI_SLOT_EMBEDDED))
246 		slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
247 	WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
248 	WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
249 }
250 
251 static void
252 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
253 {
254 	uint32_t clk_base;
255 	uint32_t clk_sel;
256 	uint32_t res;
257 	uint16_t clk;
258 	uint16_t div;
259 	int timeout;
260 
261 	if (clock == slot->clock)
262 		return;
263 	slot->clock = clock;
264 
265 	/* Turn off the clock. */
266 	clk = RD2(slot, SDHCI_CLOCK_CONTROL);
267 	WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
268 	/* If no clock requested - leave it so. */
269 	if (clock == 0)
270 		return;
271 
272 	/* Determine the clock base frequency */
273 	clk_base = slot->max_clk;
274 	if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
275 		clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & BCM577XX_CTRL_CLKSEL_MASK;
276 
277 		/* Select clock source appropriate for the requested frequency. */
278 		if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
279 			clk_base = BCM577XX_ALT_CLOCK_BASE;
280 			clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << BCM577XX_CTRL_CLKSEL_SHIFT);
281 		} else {
282 			clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << BCM577XX_CTRL_CLKSEL_SHIFT);
283 		}
284 
285 		WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
286 	}
287 
288 	/* Recalculate timeout clock frequency based on the new sd clock. */
289 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
290 		slot->timeout_clk = slot->clock / 1000;
291 
292 	if (slot->version < SDHCI_SPEC_300) {
293 		/* Looking for highest freq <= clock. */
294 		res = clk_base;
295 		for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
296 			if (res <= clock)
297 				break;
298 			res >>= 1;
299 		}
300 		/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
301 		div >>= 1;
302 	} else {
303 		/* Version 3.0 divisors are multiples of two up to 1023 * 2 */
304 		if (clock >= clk_base)
305 			div = 0;
306 		else {
307 			for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
308 				if ((clk_base / div) <= clock)
309 					break;
310 			}
311 		}
312 		div >>= 1;
313 	}
314 
315 	if (bootverbose || sdhci_debug)
316 		slot_printf(slot, "Divider %d for freq %d (base %d)\n",
317 			div, clock, clk_base);
318 
319 	/* Now we have got divider, set it. */
320 	clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
321 	clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
322 		<< SDHCI_DIVIDER_HI_SHIFT;
323 
324 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
325 	/* Enable clock. */
326 	clk |= SDHCI_CLOCK_INT_EN;
327 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
328 	/* Wait up to 10 ms until it stabilize. */
329 	timeout = 10;
330 	while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
331 		& SDHCI_CLOCK_INT_STABLE)) {
332 		if (timeout == 0) {
333 			slot_printf(slot,
334 			    "Internal clock never stabilised.\n");
335 			sdhci_dumpregs(slot);
336 			return;
337 		}
338 		timeout--;
339 		DELAY(1000);
340 	}
341 	/* Pass clock signal to the bus. */
342 	clk |= SDHCI_CLOCK_CARD_EN;
343 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
344 }
345 
346 static void
347 sdhci_set_power(struct sdhci_slot *slot, u_char power)
348 {
349 	uint8_t pwr;
350 
351 	if (slot->power == power)
352 		return;
353 
354 	slot->power = power;
355 
356 	/* Turn off the power. */
357 	pwr = 0;
358 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
359 	/* If power down requested - leave it so. */
360 	if (power == 0)
361 		return;
362 	/* Set voltage. */
363 	switch (1 << power) {
364 	case MMC_OCR_LOW_VOLTAGE:
365 		pwr |= SDHCI_POWER_180;
366 		break;
367 	case MMC_OCR_290_300:
368 	case MMC_OCR_300_310:
369 		pwr |= SDHCI_POWER_300;
370 		break;
371 	case MMC_OCR_320_330:
372 	case MMC_OCR_330_340:
373 		pwr |= SDHCI_POWER_330;
374 		break;
375 	}
376 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
377 	/* Turn on the power. */
378 	pwr |= SDHCI_POWER_ON;
379 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
380 }
381 
382 static void
383 sdhci_read_block_pio(struct sdhci_slot *slot)
384 {
385 	uint32_t data;
386 	char *buffer;
387 	size_t left;
388 
389 	buffer = slot->curcmd->data->data;
390 	buffer += slot->offset;
391 	/* Transfer one block at a time. */
392 	left = min(512, slot->curcmd->data->len - slot->offset);
393 	slot->offset += left;
394 
395 	/* If we are too fast, broken controllers return zeroes. */
396 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
397 		DELAY(10);
398 	/* Handle unaligned and aligned buffer cases. */
399 	if ((intptr_t)buffer & 3) {
400 		while (left > 3) {
401 			data = RD4(slot, SDHCI_BUFFER);
402 			buffer[0] = data;
403 			buffer[1] = (data >> 8);
404 			buffer[2] = (data >> 16);
405 			buffer[3] = (data >> 24);
406 			buffer += 4;
407 			left -= 4;
408 		}
409 	} else {
410 		RD_MULTI_4(slot, SDHCI_BUFFER,
411 		    (uint32_t *)buffer, left >> 2);
412 		left &= 3;
413 	}
414 	/* Handle uneven size case. */
415 	if (left > 0) {
416 		data = RD4(slot, SDHCI_BUFFER);
417 		while (left > 0) {
418 			*(buffer++) = data;
419 			data >>= 8;
420 			left--;
421 		}
422 	}
423 }
424 
425 static void
426 sdhci_write_block_pio(struct sdhci_slot *slot)
427 {
428 	uint32_t data = 0;
429 	char *buffer;
430 	size_t left;
431 
432 	buffer = slot->curcmd->data->data;
433 	buffer += slot->offset;
434 	/* Transfer one block at a time. */
435 	left = min(512, slot->curcmd->data->len - slot->offset);
436 	slot->offset += left;
437 
438 	/* Handle unaligned and aligned buffer cases. */
439 	if ((intptr_t)buffer & 3) {
440 		while (left > 3) {
441 			data = buffer[0] +
442 			    (buffer[1] << 8) +
443 			    (buffer[2] << 16) +
444 			    (buffer[3] << 24);
445 			left -= 4;
446 			buffer += 4;
447 			WR4(slot, SDHCI_BUFFER, data);
448 		}
449 	} else {
450 		WR_MULTI_4(slot, SDHCI_BUFFER,
451 		    (uint32_t *)buffer, left >> 2);
452 		left &= 3;
453 	}
454 	/* Handle uneven size case. */
455 	if (left > 0) {
456 		while (left > 0) {
457 			data <<= 8;
458 			data += *(buffer++);
459 			left--;
460 		}
461 		WR4(slot, SDHCI_BUFFER, data);
462 	}
463 }
464 
465 static void
466 sdhci_transfer_pio(struct sdhci_slot *slot)
467 {
468 
469 	/* Read as many blocks as possible. */
470 	if (slot->curcmd->data->flags & MMC_DATA_READ) {
471 		while (RD4(slot, SDHCI_PRESENT_STATE) &
472 		    SDHCI_DATA_AVAILABLE) {
473 			sdhci_read_block_pio(slot);
474 			if (slot->offset >= slot->curcmd->data->len)
475 				break;
476 		}
477 	} else {
478 		while (RD4(slot, SDHCI_PRESENT_STATE) &
479 		    SDHCI_SPACE_AVAILABLE) {
480 			sdhci_write_block_pio(slot);
481 			if (slot->offset >= slot->curcmd->data->len)
482 				break;
483 		}
484 	}
485 }
486 
487 static void
488 sdhci_card_delay(void *arg)
489 {
490 	struct sdhci_slot *slot = arg;
491 
492 	taskqueue_enqueue(taskqueue_swi_mp, &slot->card_task);
493 }
494 
495 static void
496 sdhci_card_task(void *arg, int pending)
497 {
498 	struct sdhci_slot *slot = arg;
499 
500 	SDHCI_LOCK(slot);
501 	if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
502 		if (slot->dev == NULL) {
503 			/* If card is present - attach mmc bus. */
504 			slot->dev = device_add_child(slot->bus, "mmc", -1);
505 			device_set_ivars(slot->dev, slot);
506 			SDHCI_UNLOCK(slot);
507 			device_probe_and_attach(slot->dev);
508 		} else
509 			SDHCI_UNLOCK(slot);
510 	} else {
511 		if (slot->dev != NULL) {
512 			/* If no card present - detach mmc bus. */
513 			device_t d = slot->dev;
514 			slot->dev = NULL;
515 			SDHCI_UNLOCK(slot);
516 			device_delete_child(slot->bus, d);
517 		} else
518 			SDHCI_UNLOCK(slot);
519 	}
520 }
521 
522 static int
523 sdhci_dma_alloc(struct sdhci_slot *slot)
524 {
525 	int err;
526 
527 	/* Allocate DMA memory for SDMA. */
528 	err = bus_dmamem_coherent(bus_get_dma_tag(slot->bus),
529 	    DMA_BLOCK_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
530 	    BUS_SPACE_MAXADDR, DMA_BLOCK_SIZE, BUS_DMA_NOWAIT,
531 	    &slot->sdma_mem);
532 	if (err != 0) {
533 		device_printf(slot->bus, "Can't alloc DMA memory for SDMA\n");
534 		goto done;
535 	}
536 
537 	/* Allocate DMA memory for 32bit ADMA2 descriptors. */
538 	err = bus_dmamem_coherent(bus_get_dma_tag(slot->bus),
539 	    4, 0, BUS_SPACE_MAXADDR_32BIT,
540 	    BUS_SPACE_MAXADDR, SDHCI_ADMA2_DESCBUF_SIZE, BUS_DMA_NOWAIT,
541 	    &slot->adma2_descs);
542 	if (err != 0) {
543 		device_printf(slot->bus,
544 		    "Can't alloc DMA memory for ADMA2 descriptors\n");
545 		goto error1;
546 	}
547 
548 	/* Allocate DMA tag for 32bit ADMA2 data buffer */
549 	err = bus_dma_tag_create(bus_get_dma_tag(slot->bus),
550 	    4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
551 	    MAXPHYS, SDHCI_ADMA2_DESC_COUNT,
552 	    MIN(MAXPHYS, SDHCI_ADMA2_MAX_SEGSIZE),
553 	    BUS_DMA_ALLOCNOW | BUS_DMA_ALLOCALL,
554 	    &slot->adma2_tag);
555 	if (err != 0) {
556 		device_printf(slot->bus, "Can't create DMA tag for ADMA2\n");
557 		goto error2;
558 	}
559 
560 	/* Allocate DMA map for ADMA2 data buffer */
561 	err = bus_dmamap_create(slot->adma2_tag, BUS_DMA_NOWAIT,
562 	    &slot->adma2_map);
563 	if (err != 0) {
564 		device_printf(slot->bus, "Can't create DMA map for ADMA2\n");
565 		goto error3;
566 	}
567 
568 	return (0);
569 
570 error3:
571 	bus_dma_tag_destroy(slot->adma2_tag);
572 error2:
573 	sdhci_dmamem_free(&slot->adma2_descs);
574 error1:
575 	sdhci_dmamem_free(&slot->sdma_mem);
576 done:
577 	return (err);
578 }
579 
580 static void
581 sdhci_dmamem_free(bus_dmamem_t *dma)
582 {
583 	bus_dmamap_unload(dma->dmem_tag, dma->dmem_map);
584 	bus_dmamem_free(dma->dmem_tag, dma->dmem_addr, dma->dmem_map);
585 	bus_dma_tag_destroy(dma->dmem_tag);
586 }
587 
588 static void
589 sdhci_dma_free(struct sdhci_slot *slot)
590 {
591 	bus_dmamap_destroy(slot->adma2_tag, slot->adma2_map);
592 	bus_dma_tag_destroy(slot->adma2_tag);
593 	sdhci_dmamem_free(&slot->sdma_mem);
594 	sdhci_dmamem_free(&slot->adma2_descs);
595 }
596 
597 static void
598 sdhci_adma2_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
599 {
600 	struct sdhci_slot *slot = arg;
601 	bus_dmamem_t *descmem = &slot->adma2_descs;
602 	struct sdhci_adma2_desc32 *descs = (void *)descmem->dmem_addr;
603 	int i;
604 
605 	if (error != 0) {
606 		/* This signals, that loading was unsuccessful */
607 		memset(&descs[0], 0, sizeof(*descs));
608 		return;
609 	}
610 
611 	for (i = 0; i < nsegs; i++) {
612 		descs[i].address = segs[i].ds_addr;
613 		/*
614 		 * The 65536 segment length case is broken in some sdhc host
615 		 * controllers, so we actually use a maximum segment length
616 		 * of 32768 for the DMA mapping and ds_len should be at most
617 		 * 32768 here.
618 		 */
619 		if (segs[i].ds_len == 65536)
620 			descs[i].length = 0;
621 		else
622 			descs[i].length = segs[i].ds_len;
623 		descs[i].attribute =
624 		    SDHCI_ADMA2_ATTR_VALID | SDHCI_ADMA2_ATTR_OP_TRAN;
625 	}
626 	descs[nsegs-1].attribute |= SDHCI_ADMA2_ATTR_END;
627 	/* If there is room left, explicitly add an invalid descriptor. */
628 	if (nsegs < SDHCI_ADMA2_DESC_COUNT)
629 		memset(&descs[nsegs], 0, sizeof(*descs));
630 }
631 
632 int
633 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
634 {
635 	uint32_t caps, caps2, freq, host_caps;
636 	int err;
637 
638 	SDHCI_LOCK_INIT(slot);
639 	slot->num = num;
640 	slot->bus = dev;
641 
642 	err = sdhci_dma_alloc(slot);
643 	if (err != 0) {
644 		SDHCI_LOCK_DESTROY(slot);
645 		return (err);
646 	}
647 
648 	/* Initialize slot. */
649 	sdhci_init(slot);
650 	slot->version = (RD2(slot, SDHCI_HOST_VERSION)
651 		>> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
652 	if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
653 		caps = slot->caps;
654 		caps2 = slot->caps2;
655 	} else {
656 		caps = RD4(slot, SDHCI_CAPABILITIES);
657 		if (slot->version >= SDHCI_SPEC_300)
658 			caps2 = RD4(slot, SDHCI_CAPABILITIES2);
659 		else
660 			caps2 = 0;
661 	}
662 	if (slot->version >= SDHCI_SPEC_300) {
663 		if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
664 		    (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
665 			device_printf(dev,
666 			    "Driver doesn't support shared bus slots\n");
667 			sdhci_dma_free(slot);
668 			SDHCI_LOCK_DESTROY(slot);
669 			return (1);
670 		} else if ((caps & SDHCI_SLOTTYPE_MASK) ==
671 		    SDHCI_SLOTTYPE_EMBEDDED) {
672 			slot->opt |= SDHCI_SLOT_EMBEDDED;
673 		}
674 	}
675 	/* Calculate base clock frequency. */
676 	if (slot->version >= SDHCI_SPEC_300)
677 		freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
678 		    SDHCI_CLOCK_BASE_SHIFT;
679 	else
680 		freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
681 		    SDHCI_CLOCK_BASE_SHIFT;
682 	if (freq != 0)
683 		slot->max_clk = freq * 1000000;
684 	/*
685 	 * If the frequency wasn't in the capabilities and the hardware driver
686 	 * hasn't already set max_clk we're probably not going to work right
687 	 * with an assumption, so complain about it.
688 	 */
689 	if (slot->max_clk == 0) {
690 		slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
691 		device_printf(dev, "Hardware doesn't specify base clock "
692 		    "frequency, using %dMHz as default.\n", SDHCI_DEFAULT_MAX_FREQ);
693 	}
694 	/* Calculate timeout clock frequency. */
695 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
696 		slot->timeout_clk = slot->max_clk / 1000;
697 	} else {
698 		slot->timeout_clk =
699 			(caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;
700 		if (caps & SDHCI_TIMEOUT_CLK_UNIT)
701 			slot->timeout_clk *= 1000;
702 	}
703 	/*
704 	 * If the frequency wasn't in the capabilities and the hardware driver
705 	 * hasn't already set timeout_clk we'll probably work okay using the
706 	 * max timeout, but still mention it.
707 	 */
708 	if (slot->timeout_clk == 0) {
709 		device_printf(dev, "Hardware doesn't specify timeout clock "
710 		    "frequency, setting BROKEN_TIMEOUT quirk.\n");
711 		slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
712 	}
713 
714 	slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
715 	slot->host.f_max = slot->max_clk;
716 	slot->host.host_ocr = 0;
717 	if (caps & SDHCI_CAN_VDD_330)
718 	    slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
719 	if (caps & SDHCI_CAN_VDD_300)
720 	    slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
721 	/* 1.8V VDD is not supposed to be used for removable cards */
722 	if ((caps & SDHCI_CAN_VDD_180) && (slot->opt & SDHCI_SLOT_EMBEDDED))
723 	    slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
724 	if (slot->host.host_ocr == 0) {
725 		device_printf(dev, "Hardware doesn't report any "
726 		    "support voltages.\n");
727 	}
728 	host_caps = MMC_CAP_4_BIT_DATA;
729 	if (caps & SDHCI_CAN_DO_8BITBUS)
730 		host_caps |= MMC_CAP_8_BIT_DATA;
731 	if (caps & SDHCI_CAN_DO_HISPD)
732 		host_caps |= MMC_CAP_HSPEED;
733 	if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
734 		host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
735 	if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
736 		host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
737 	if (caps2 & SDHCI_CAN_SDR104) {
738 		host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
739 		if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
740 			host_caps |= MMC_CAP_MMC_HS200;
741 	} else if (caps2 & SDHCI_CAN_SDR50) {
742 		host_caps |= MMC_CAP_UHS_SDR50;
743 	}
744 	if ((caps2 & SDHCI_CAN_DDR50) &&
745 	    !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
746 		host_caps |= MMC_CAP_UHS_DDR50;
747 	if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
748 		host_caps |= MMC_CAP_MMC_DDR52;
749 	if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
750 	    caps2 & SDHCI_CAN_MMC_HS400)
751 		host_caps |= MMC_CAP_MMC_HS400;
752 	host_caps |= MMC_CAP_SIGNALING_330;
753 	if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
754 	    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50 |
755 	    MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
756 	    MMC_CAP_MMC_HS400_180))
757 		host_caps |= MMC_CAP_SIGNALING_180;
758 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
759 		host_caps |= MMC_CAP_DRIVER_TYPE_A;
760 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
761 		host_caps |= MMC_CAP_DRIVER_TYPE_C;
762 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
763 		host_caps |= MMC_CAP_DRIVER_TYPE_D;
764 	slot->host.caps = host_caps;
765 
766 	/* Decide if we have usable DMA. */
767 	if (caps & SDHCI_CAN_DO_DMA)
768 		slot->opt |= SDHCI_HAVE_SDMA;
769 	if (caps & SDHCI_CAN_DO_ADMA2)
770 		slot->opt |= SDHCI_HAVE_ADMA2;
771 
772 	/* Use ADMA2 only on whitelisted models, or when explicitly enabled. */
773 	if (sdhci_adma2_test == 0 &&
774 	    (slot->quirks & SDHCI_QUIRK_WHITELIST_ADMA2) == 0) {
775 		slot->opt &= ~SDHCI_HAVE_ADMA2;
776 	}
777 
778 	if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) {
779 		slot->opt &= ~SDHCI_HAVE_SDMA;
780 		slot->opt &= ~SDHCI_HAVE_ADMA2;
781 	}
782 	if (slot->quirks & SDHCI_QUIRK_FORCE_SDMA)
783 		slot->opt |= SDHCI_HAVE_SDMA;
784 
785 	if (sdhci_sdma_disable)
786 		slot->opt &= ~SDHCI_HAVE_SDMA;
787 	if (sdhci_adma2_disable)
788 		slot->opt &= ~SDHCI_HAVE_ADMA2;
789 
790 	/*
791 	 * Use platform-provided transfer backend
792 	 * with PIO as a fallback mechanism
793 	 */
794 	if (slot->opt & SDHCI_PLATFORM_TRANSFER) {
795 		slot->opt &= ~SDHCI_HAVE_SDMA;
796 		slot->opt &= ~SDHCI_HAVE_ADMA2;
797 	}
798 
799 	if (bootverbose || sdhci_debug) {
800 		slot_printf(slot,
801 		    "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s%s\n",
802 		    slot->max_clk / 1000000,
803 		    (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
804 		    (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
805 			((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
806 		    (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
807 		    (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
808 		    ((caps & SDHCI_CAN_VDD_180) &&
809 		     (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
810 		    (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
811 		    (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
812 		    (caps2 & SDHCI_CAN_DRIVE_TYPE_A) ? "A" : "",
813 		    (caps2 & SDHCI_CAN_DRIVE_TYPE_C) ? "C" : "",
814 		    (caps2 & SDHCI_CAN_DRIVE_TYPE_D) ? "D" : "",
815 		    (slot->opt & SDHCI_HAVE_ADMA2) ? "ADMA2" :
816 			(slot->opt & SDHCI_HAVE_SDMA) ? "SDMA" : "PIO",
817 		    (slot->version < SDHCI_SPEC_300) ? "" :
818 			(slot->opt & SDHCI_SLOT_EMBEDDED) ? " (embedded)" :
819 			" (removable)");
820 		if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
821 		    MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
822 			slot_printf(slot, "eMMC:%s%s%s%s\n",
823 			    (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
824 			    (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
825 			    (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
826 			    ((host_caps &
827 			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
828 			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
829 			    " HS400ES" : "");
830 		if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
831 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
832 			slot_printf(slot, "UHS-I:%s%s%s%s%s\n",
833 			    (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
834 			    (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
835 			    (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
836 			    (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
837 			    (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
838 		sdhci_dumpregs(slot);
839 	}
840 
841 	slot->timeout = 10;
842 	slot->failures = 0;
843 	SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
844 	    SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
845 	    "timeout", CTLFLAG_RW, &slot->timeout, 0,
846 	    "Maximum timeout for SDHCI transfers (in secs)");
847 	TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
848 	callout_init_mp(&slot->card_callout);
849 	callout_init_lk(&slot->timeout_callout, &slot->lock);
850 	return (0);
851 }
852 
853 void
854 sdhci_start_slot(struct sdhci_slot *slot)
855 {
856 	sdhci_card_task(slot, 0);
857 }
858 
859 int
860 sdhci_cleanup_slot(struct sdhci_slot *slot)
861 {
862 	device_t d;
863 
864 	callout_drain(&slot->timeout_callout);
865 	callout_drain(&slot->card_callout);
866 	taskqueue_drain(taskqueue_swi_mp, &slot->card_task);
867 
868 	SDHCI_LOCK(slot);
869 	d = slot->dev;
870 	slot->dev = NULL;
871 	SDHCI_UNLOCK(slot);
872 	if (d != NULL)
873 		device_delete_child(slot->bus, d);
874 
875 	SDHCI_LOCK(slot);
876 	sdhci_reset(slot, SDHCI_RESET_ALL);
877 	SDHCI_UNLOCK(slot);
878 
879 	sdhci_dma_free(slot);
880 
881 	SDHCI_LOCK_DESTROY(slot);
882 
883 	return (0);
884 }
885 
886 int
887 sdhci_generic_suspend(struct sdhci_slot *slot)
888 {
889 	sdhci_reset(slot, SDHCI_RESET_ALL);
890 
891 	return (0);
892 }
893 
894 int
895 sdhci_generic_resume(struct sdhci_slot *slot)
896 {
897 	sdhci_init(slot);
898 
899 	return (0);
900 }
901 
902 uint32_t
903 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
904 {
905 	if (slot->version >= SDHCI_SPEC_300)
906 		return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
907 	else
908 		return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
909 }
910 
911 boolean_t
912 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
913 {
914 	if (slot->opt & SDHCI_SLOT_EMBEDDED)
915 		return 1;
916 
917 	return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
918 }
919 
920 void
921 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
922 {
923 	struct mmc_ios *ios;
924 	uint16_t hostctrl2;
925 
926 	if (slot->version < SDHCI_SPEC_300)
927 		return;
928 
929 	ios = &slot->host.ios;
930 	sdhci_set_clock(slot, 0);
931 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
932 	hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
933 	if (ios->timing == bus_timing_mmc_hs400 ||
934 	    ios->timing == bus_timing_mmc_hs400es)
935 		hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
936 	else if (ios->clock > SD_SDR50_MAX)
937 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
938 	else if (ios->clock > SD_SDR25_MAX)
939 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
940 	else if (ios->clock > SD_SDR12_MAX) {
941 		if (ios->timing == bus_timing_uhs_ddr50 ||
942 		    ios->timing == bus_timing_mmc_ddr52)
943 			hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
944 		else
945 			hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
946 	} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
947 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
948 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
949 	sdhci_set_clock(slot, ios->clock);
950 }
951 
952 int
953 sdhci_generic_update_ios(device_t brdev, device_t reqdev)
954 {
955 	struct sdhci_slot *slot = device_get_ivars(reqdev);
956 	struct mmc_ios *ios = &slot->host.ios;
957 
958 	SDHCI_LOCK(slot);
959 	/* Do full reset on bus power down to clear from any state. */
960 	if (ios->power_mode == power_off) {
961 		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
962 		sdhci_init(slot);
963 	}
964 	/* Configure the bus. */
965 	sdhci_set_clock(slot, ios->clock);
966 	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
967 	if (ios->bus_width == bus_width_8) {
968 		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
969 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
970 	} else if (ios->bus_width == bus_width_4) {
971 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
972 		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
973 	} else if (ios->bus_width == bus_width_1) {
974 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
975 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
976 	} else {
977 		panic("Invalid bus width: %d", ios->bus_width);
978 	}
979 	if (ios->clock > SD_SDR12_MAX &&
980 	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
981 		slot->hostctrl |= SDHCI_CTRL_HISPD;
982 	else
983 		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
984 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
985 	SDHCI_SET_UHS_TIMING(brdev, slot);
986 	/* Some controllers like reset after bus changes. */
987 	if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
988 		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
989 
990 	SDHCI_UNLOCK(slot);
991 	return (0);
992 }
993 
994 int
995 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
996 {
997 	struct sdhci_slot *slot = device_get_ivars(reqdev);
998 	enum mmc_vccq vccq;
999 	int err;
1000 	uint16_t hostctrl2;
1001 
1002 	if (slot->version < SDHCI_SPEC_300)
1003 		return (0);
1004 
1005 	err = 0;
1006 	vccq = slot->host.ios.vccq;
1007 	SDHCI_LOCK(slot);
1008 	sdhci_set_clock(slot, 0);
1009 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1010 	switch (vccq) {
1011 	case vccq_330:
1012 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1013 			goto done;
1014 		hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
1015 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1016 		DELAY(5000);
1017 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1018 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1019 			goto done;
1020 		err = EAGAIN;
1021 		break;
1022 	case vccq_180:
1023 		if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
1024 			err = EINVAL;
1025 			goto done;
1026 		}
1027 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1028 			goto done;
1029 		hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
1030 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1031 		DELAY(5000);
1032 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1033 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1034 			goto done;
1035 		err = EAGAIN;
1036 		break;
1037 	default:
1038 		slot_printf(slot,
1039 		    "Attempt to set unsupported signaling voltage\n");
1040 		err = EINVAL;
1041 		break;
1042 	}
1043 done:
1044 	sdhci_set_clock(slot, slot->host.ios.clock);
1045 	SDHCI_UNLOCK(slot);
1046 	return (err);
1047 }
1048 
1049 static void
1050 sdhci_req_done(struct sdhci_slot *slot)
1051 {
1052 	struct mmc_request *req;
1053 
1054 	if (slot->req != NULL && slot->curcmd != NULL) {
1055 		callout_stop(&slot->timeout_callout);
1056 		if (slot->curcmd->error != MMC_ERR_TIMEOUT)
1057 			slot->failures = 0;
1058 		req = slot->req;
1059 		slot->req = NULL;
1060 		slot->curcmd = NULL;
1061 		req->done(req);
1062 	}
1063 }
1064 
1065 static void
1066 sdhci_timeout(void *arg)
1067 {
1068 	struct sdhci_slot *slot = arg;
1069 
1070 	if (slot->curcmd != NULL) {
1071 		slot_printf(slot, " Controller timeout\n");
1072 		sdhci_dumpregs(slot);
1073 		sdhci_reset(slot, SDHCI_RESET_CMD|SDHCI_RESET_DATA);
1074 		slot->curcmd->error = MMC_ERR_TIMEOUT;
1075 		sdhci_req_done(slot);
1076 	} else {
1077 		slot_printf(slot, " Spurious timeout - no active command\n");
1078 	}
1079 }
1080 
1081 static void
1082 sdhci_set_transfer_mode(struct sdhci_slot *slot, struct mmc_data *data)
1083 {
1084 	uint16_t mode;
1085 
1086 	if (data == NULL)
1087 		return;
1088 
1089 	mode = SDHCI_TRNS_BLK_CNT_EN;
1090 	if (data->len > 512)
1091 		mode |= SDHCI_TRNS_MULTI;
1092 	if (data->flags & MMC_DATA_READ)
1093 		mode |= SDHCI_TRNS_READ;
1094 	if (slot->req->stop)
1095 		mode |= SDHCI_TRNS_ACMD12;
1096 	if (slot->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA2))
1097 		mode |= SDHCI_TRNS_DMA;
1098 
1099 	WR2(slot, SDHCI_TRANSFER_MODE, mode);
1100 }
1101 
1102 static void
1103 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
1104 {
1105 	int flags, timeout;
1106 	uint32_t mask;
1107 
1108 	slot->curcmd = cmd;
1109 	slot->cmd_done = 0;
1110 
1111 	cmd->error = MMC_ERR_NONE;
1112 
1113 	/* This flags combination is not supported by controller. */
1114 	if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
1115 		slot_printf(slot, "Unsupported response type!\n");
1116 		cmd->error = MMC_ERR_FAILED;
1117 		sdhci_req_done(slot);
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * Do not issue command if there is no card, clock or power.
1123 	 * Controller will not detect timeout without clock active.
1124 	 */
1125 	if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
1126 	    slot->power == 0 ||
1127 	    slot->clock == 0) {
1128 		cmd->error = MMC_ERR_FAILED;
1129 		sdhci_req_done(slot);
1130 		return;
1131 	}
1132 	/* Always wait for free CMD bus. */
1133 	mask = SDHCI_CMD_INHIBIT;
1134 	/* Wait for free DAT if we have data or busy signal. */
1135 	if (cmd->data || (cmd->flags & MMC_RSP_BUSY))
1136 		mask |= SDHCI_DAT_INHIBIT;
1137 	/* We shouldn't wait for DAT for stop commands. */
1138 	if (cmd == slot->req->stop)
1139 		mask &= ~SDHCI_DAT_INHIBIT;
1140 	/*
1141 	 *  Wait for bus no more then 250 ms.  Typically there will be no wait
1142 	 *  here at all, but when writing a crash dump we may be bypassing the
1143 	 *  host platform's interrupt handler, and in some cases that handler
1144 	 *  may be working around hardware quirks such as not respecting r1b
1145 	 *  busy indications.  In those cases, this wait-loop serves the purpose
1146 	 *  of waiting for the prior command and data transfers to be done, and
1147 	 *  SD cards are allowed to take up to 250ms for write and erase ops.
1148 	 *  (It's usually more like 20-30ms in the real world.)
1149 	 */
1150 	timeout = 250;
1151 	while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
1152 		if (timeout == 0) {
1153 			slot_printf(slot, "Controller never released "
1154 			    "inhibit bit(s).\n");
1155 			sdhci_dumpregs(slot);
1156 			cmd->error = MMC_ERR_FAILED;
1157 			sdhci_req_done(slot);
1158 			return;
1159 		}
1160 		timeout--;
1161 		DELAY(1000);
1162 	}
1163 
1164 	/* Prepare command flags. */
1165 	if (!(cmd->flags & MMC_RSP_PRESENT))
1166 		flags = SDHCI_CMD_RESP_NONE;
1167 	else if (cmd->flags & MMC_RSP_136)
1168 		flags = SDHCI_CMD_RESP_LONG;
1169 	else if (cmd->flags & MMC_RSP_BUSY)
1170 		flags = SDHCI_CMD_RESP_SHORT_BUSY;
1171 	else
1172 		flags = SDHCI_CMD_RESP_SHORT;
1173 	if (cmd->flags & MMC_RSP_CRC)
1174 		flags |= SDHCI_CMD_CRC;
1175 	if (cmd->flags & MMC_RSP_OPCODE)
1176 		flags |= SDHCI_CMD_INDEX;
1177 	if (cmd->data)
1178 		flags |= SDHCI_CMD_DATA;
1179 	if (cmd->opcode == MMC_STOP_TRANSMISSION)
1180 		flags |= SDHCI_CMD_TYPE_ABORT;
1181 	/* Prepare data. */
1182 	sdhci_start_data(slot, cmd->data);
1183 	/*
1184 	 * Interrupt aggregation: To reduce total number of interrupts
1185 	 * group response interrupt with data interrupt when possible.
1186 	 * If there is going to be a data interrupt, mask the response one.
1187 	 */
1188 	if (slot->data_done == 0) {
1189 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1190 		    slot->intmask &= ~SDHCI_INT_RESPONSE);
1191 	}
1192 	/* Set command argument. */
1193 	WR4(slot, SDHCI_ARGUMENT, cmd->arg);
1194 	/* Set data transfer mode. */
1195 	sdhci_set_transfer_mode(slot, cmd->data);
1196 	/* Start command. */
1197 	WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
1198 
1199 	/*
1200 	 * Start timeout callout.  Timeout is dropped to 2 seconds with
1201 	 * repeated controller timeouts.
1202 	 */
1203 	if (slot->failures)
1204 		timeout = slot->timeout / 5;
1205 	else
1206 		timeout = slot->timeout;
1207 	if (timeout < 2)
1208 		timeout = 2;
1209 	callout_reset(&slot->timeout_callout, timeout * hz,
1210 		      sdhci_timeout, slot);
1211 }
1212 
1213 static void
1214 sdhci_finish_command(struct sdhci_slot *slot)
1215 {
1216 	int i;
1217 
1218 	slot->cmd_done = 1;
1219 	/* Interrupt aggregation: Restore command interrupt.
1220 	 * Main restore point for the case when command interrupt
1221 	 * happened first. */
1222 	WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE);
1223 	/* In case of error - reset host and return. */
1224 	if (slot->curcmd->error) {
1225 		sdhci_reset(slot, SDHCI_RESET_CMD);
1226 		sdhci_reset(slot, SDHCI_RESET_DATA);
1227 		sdhci_start(slot);
1228 		return;
1229 	}
1230 	/* If command has response - fetch it. */
1231 	if (slot->curcmd->flags & MMC_RSP_PRESENT) {
1232 		if (slot->curcmd->flags & MMC_RSP_136) {
1233 			/* CRC is stripped so we need one byte shift. */
1234 			uint8_t extra = 0;
1235 			for (i = 0; i < 4; i++) {
1236 				uint32_t val = RD4(slot, SDHCI_RESPONSE + i * 4);
1237 				if (slot->quirks & SDHCI_QUIRK_DONT_SHIFT_RESPONSE) {
1238 					slot->curcmd->resp[3 - i] = val;
1239 				} else {
1240 					slot->curcmd->resp[3 - i] =
1241 						(val << 8) | extra;
1242 					extra = val >> 24;
1243 				}
1244 			}
1245 		} else {
1246 			slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
1247 		}
1248 	}
1249 	/* If data ready - finish. */
1250 	if (slot->data_done)
1251 		sdhci_start(slot);
1252 }
1253 
1254 static void
1255 sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data)
1256 {
1257 	uint32_t target_timeout, current_timeout;
1258 	uint8_t div;
1259 
1260 	if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1261 		slot->data_done = 1;
1262 		return;
1263 	}
1264 
1265 	slot->data_done = 0;
1266 
1267 	/* Calculate and set data timeout.*/
1268 	/* XXX: We should have this from mmc layer, now assume 1 sec. */
1269 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
1270 		div = 0xe;
1271 	} else {
1272 		target_timeout = 1000000;
1273 		div = 0;
1274 		current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
1275 		while (current_timeout < target_timeout && div < 0xE) {
1276 			++div;
1277 			current_timeout <<= 1;
1278 		}
1279 		/* Compensate for an off-by-one error in the CaFe chip.*/
1280 		if (div < 0xE &&
1281 		    (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
1282 			++div;
1283 		}
1284 	}
1285 	WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
1286 
1287 	if (data == NULL)
1288 		return;
1289 
1290 	/* Use DMA if possible. Prefer ADMA2 over SDMA. */
1291 	if ((slot->opt & SDHCI_HAVE_ADMA2)) {
1292 		slot->flags |= SDHCI_USE_ADMA2;
1293 		slot->flags &= ~SDHCI_USE_SDMA;
1294 	} else if ((slot->opt & SDHCI_HAVE_SDMA)) {
1295 		slot->flags |= SDHCI_USE_SDMA;
1296 		slot->flags &= ~SDHCI_USE_ADMA2;
1297 	}
1298 	/* If data is small, broken DMA may return zeroes instead of data. */
1299 	if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
1300 	    (data->len <= 512)) {
1301 		slot->flags &= ~SDHCI_USE_SDMA;
1302 		slot->flags &= ~SDHCI_USE_ADMA2;
1303 	}
1304 	/* Some controllers require even block sizes. */
1305 	if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
1306 	    ((data->len) & 0x3)) {
1307 		slot->flags &= ~SDHCI_USE_SDMA;
1308 		slot->flags &= ~SDHCI_USE_ADMA2;
1309 	}
1310 	/* Load DMA buffer. */
1311 	if (slot->flags & SDHCI_USE_ADMA2) {
1312 		bus_dmamem_t *descmem = &slot->adma2_descs;
1313 		struct sdhci_adma2_desc32 *descs = (void *)descmem->dmem_addr;
1314 		int err;
1315 
1316 		/* It shouldn't really be possible for this to fail */
1317 		err = bus_dmamap_load(slot->adma2_tag, slot->adma2_map,
1318 		    data->data, data->len, sdhci_adma2_getaddr, slot,
1319 		    dumping ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
1320 		if (err != 0) {
1321 			device_printf(slot->bus,
1322 			    "Dma load for ADMA2 fail: %d\n", err);
1323 		} else if (descs[0].address == 0) {
1324 			device_printf(slot->bus,
1325 			    "Dma load for ADMA2 fail, segment constraints\n");
1326 		}
1327 		if (err != 0 || descs[0].address == 0) {
1328 			/* fallback to PIO for this request */
1329 			slot->flags &= ~SDHCI_USE_ADMA2;
1330 			goto pio_fallback;
1331 		}
1332 		/* sync dma descriptors */
1333 		bus_dmamap_sync(descmem->dmem_tag, descmem->dmem_map,
1334 		    BUS_DMASYNC_PREWRITE);
1335 		/* sync data buffers */
1336 		if (data->flags & MMC_DATA_READ) {
1337 			bus_dmamap_sync(slot->adma2_tag, slot->adma2_map,
1338 			    BUS_DMASYNC_PREREAD);
1339 		} else {
1340 			bus_dmamap_sync(slot->adma2_tag, slot->adma2_map,
1341 			    BUS_DMASYNC_PREWRITE);
1342 		}
1343 		WR4(slot, SDHCI_ADMA_ADDRESS_LOW, descmem->dmem_busaddr);
1344 		if ((slot->hostctrl & SDHCI_CTRL_DMA_MASK) !=
1345 		    SDHCI_CTRL_ADMA2) {
1346 			slot->hostctrl &= ~SDHCI_CTRL_DMA_MASK;
1347 			slot->hostctrl |= SDHCI_CTRL_ADMA2;
1348 			WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1349 		}
1350 		/* We don't expect any DMA_END interrupts with ADMA2 */
1351 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1352 		    slot->intmask &= ~SDHCI_INT_DMA_END);
1353 	} else if (slot->flags & SDHCI_USE_SDMA) {
1354 		bus_dmamem_t *sdma = &slot->sdma_mem;
1355 
1356 		if (data->flags & MMC_DATA_READ) {
1357 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1358 			    BUS_DMASYNC_PREREAD);
1359 		} else {
1360 			memcpy(sdma->dmem_addr, data->data,
1361 			    (data->len < DMA_BLOCK_SIZE) ?
1362 			    data->len : DMA_BLOCK_SIZE);
1363 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1364 			    BUS_DMASYNC_PREWRITE);
1365 		}
1366 		WR4(slot, SDHCI_SDMA_ADDRESS, sdma->dmem_busaddr);
1367 		if ((slot->hostctrl & SDHCI_CTRL_DMA_MASK) !=
1368 		    SDHCI_CTRL_SDMA) {
1369 			slot->hostctrl &= ~SDHCI_CTRL_DMA_MASK;
1370 			slot->hostctrl |= SDHCI_CTRL_SDMA;
1371 			WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1372 		}
1373 		/* Interrupt aggregation: Mask border interrupt
1374 		 * for the last page and unmask else. */
1375 		if (data->len == DMA_BLOCK_SIZE)
1376 			slot->intmask &= ~SDHCI_INT_DMA_END;
1377 		else
1378 			slot->intmask |= SDHCI_INT_DMA_END;
1379 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1380 	}
1381 pio_fallback:
1382 	/* Current data offset for both PIO and SDMA. */
1383 	slot->offset = 0;
1384 	/* Set block size and for SDMA request IRQ on 4K border. */
1385 	WR2(slot, SDHCI_BLOCK_SIZE,
1386 	    SDHCI_MAKE_BLKSZ(DMA_BOUNDARY, (data->len < 512)?data->len:512));
1387 	/* Set block count. */
1388 	WR2(slot, SDHCI_BLOCK_COUNT, (data->len + 511) / 512);
1389 }
1390 
1391 void
1392 sdhci_finish_data(struct sdhci_slot *slot)
1393 {
1394 	struct mmc_data *data = slot->curcmd->data;
1395 
1396 	/* Interrupt aggregation: Restore command interrupt.
1397 	 * Auxiliary restore point for the case when data interrupt
1398 	 * happened first. */
1399 	if (!slot->cmd_done) {
1400 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1401 		    slot->intmask |= SDHCI_INT_RESPONSE);
1402 	}
1403 	/* Unload rest of data from DMA buffer. */
1404 	if (!slot->data_done && (slot->flags & SDHCI_USE_ADMA2)) {
1405 		bus_dmamem_t *descmem = &slot->adma2_descs;
1406 
1407 		bus_dmamap_sync(descmem->dmem_tag, descmem->dmem_map,
1408 		    BUS_DMASYNC_POSTWRITE);
1409 		if (data->flags & MMC_DATA_READ) {
1410 			bus_dmamap_sync(slot->adma2_tag, slot->adma2_map,
1411 			    BUS_DMASYNC_POSTREAD);
1412 		} else {
1413 			bus_dmamap_sync(slot->adma2_tag, slot->adma2_map,
1414 			    BUS_DMASYNC_POSTWRITE);
1415 		}
1416 		bus_dmamap_unload(slot->adma2_tag, slot->adma2_map);
1417 	} else if (!slot->data_done && (slot->flags & SDHCI_USE_SDMA)) {
1418 		bus_dmamem_t *sdma = &slot->sdma_mem;
1419 
1420 		if (data->flags & MMC_DATA_READ) {
1421 			size_t left = data->len - slot->offset;
1422 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1423 			    BUS_DMASYNC_POSTREAD);
1424 			memcpy((u_char*)data->data + slot->offset,
1425 			    sdma->dmem_addr,
1426 			    (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
1427 		} else {
1428 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1429 			    BUS_DMASYNC_POSTWRITE);
1430 		}
1431 	}
1432 	slot->data_done = 1;
1433 	/* If there was an error - reset the host. */
1434 	if (slot->curcmd->error) {
1435 		sdhci_reset(slot, SDHCI_RESET_CMD);
1436 		sdhci_reset(slot, SDHCI_RESET_DATA);
1437 		sdhci_start(slot);
1438 		return;
1439 	}
1440 	/* If we already have command response - finish. */
1441 	if (slot->cmd_done)
1442 		sdhci_start(slot);
1443 }
1444 
1445 static void
1446 sdhci_start(struct sdhci_slot *slot)
1447 {
1448 	struct mmc_request *req;
1449 
1450 	req = slot->req;
1451 	if (req == NULL)
1452 		return;
1453 
1454 	if (!(slot->flags & CMD_STARTED)) {
1455 		slot->flags |= CMD_STARTED;
1456 		sdhci_start_command(slot, req->cmd);
1457 		return;
1458 	}
1459 /* 	We don't need this until using Auto-CMD12 feature
1460 	if (!(slot->flags & STOP_STARTED) && req->stop) {
1461 		slot->flags |= STOP_STARTED;
1462 		sdhci_start_command(slot, req->stop);
1463 		return;
1464 	}
1465 */
1466 	if (sdhci_debug > 1)
1467 		slot_printf(slot, "result: %d\n", req->cmd->error);
1468 	if (!req->cmd->error &&
1469 	    (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
1470 		sdhci_reset(slot, SDHCI_RESET_CMD);
1471 		sdhci_reset(slot, SDHCI_RESET_DATA);
1472 	}
1473 
1474 	sdhci_req_done(slot);
1475 }
1476 
1477 int
1478 sdhci_generic_request(device_t brdev __unused, device_t reqdev,
1479     struct mmc_request *req)
1480 {
1481 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1482 
1483 	SDHCI_LOCK(slot);
1484 	if (slot->req != NULL) {
1485 		SDHCI_UNLOCK(slot);
1486 		return (EBUSY);
1487 	}
1488 	if (sdhci_debug > 1) {
1489 		slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
1490     		    req->cmd->opcode, req->cmd->arg, req->cmd->flags,
1491     		    (req->cmd->data)?(u_int)req->cmd->data->len:0,
1492 		    (req->cmd->data)?req->cmd->data->flags:0);
1493 	}
1494 	slot->req = req;
1495 	slot->flags = 0;
1496 	sdhci_start(slot);
1497 	SDHCI_UNLOCK(slot);
1498 	if (dumping) {
1499 		while (slot->req != NULL) {
1500 			sdhci_generic_intr(slot);
1501 			DELAY(10);
1502 		}
1503 	}
1504 	return (0);
1505 }
1506 
1507 int
1508 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
1509 {
1510 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1511 	uint32_t val;
1512 
1513 	SDHCI_LOCK(slot);
1514 	val = RD4(slot, SDHCI_PRESENT_STATE);
1515 	SDHCI_UNLOCK(slot);
1516 	return (!(val & SDHCI_WRITE_PROTECT));
1517 }
1518 
1519 int
1520 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
1521 {
1522 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1523 	int err = 0;
1524 
1525 	SDHCI_LOCK(slot);
1526 	while (slot->bus_busy)
1527 		lksleep(slot, &slot->lock, 0, "sdhciah", 0);
1528 	slot->bus_busy++;
1529 	/* Activate led. */
1530 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
1531 	SDHCI_UNLOCK(slot);
1532 	return (err);
1533 }
1534 
1535 int
1536 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
1537 {
1538 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1539 
1540 	SDHCI_LOCK(slot);
1541 	/* Deactivate led. */
1542 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
1543 	slot->bus_busy--;
1544 	SDHCI_UNLOCK(slot);
1545 	wakeup(slot);
1546 	return (0);
1547 }
1548 
1549 static void
1550 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
1551 {
1552 
1553 	if (!slot->curcmd) {
1554 		slot_printf(slot, "Got command interrupt 0x%08x, but "
1555 		    "there is no active command.\n", intmask);
1556 		sdhci_dumpregs(slot);
1557 		return;
1558 	}
1559 	if (intmask & SDHCI_INT_TIMEOUT)
1560 		slot->curcmd->error = MMC_ERR_TIMEOUT;
1561 	else if (intmask & SDHCI_INT_CRC)
1562 		slot->curcmd->error = MMC_ERR_BADCRC;
1563 	else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
1564 		slot->curcmd->error = MMC_ERR_FIFO;
1565 
1566 	sdhci_finish_command(slot);
1567 }
1568 
1569 static void
1570 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
1571 {
1572 
1573 	if (!slot->curcmd) {
1574 		slot_printf(slot, "Got data interrupt 0x%08x, but "
1575 		    "there is no active command.\n", intmask);
1576 		sdhci_dumpregs(slot);
1577 		return;
1578 	}
1579 	if (slot->curcmd->data == NULL &&
1580 	    (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1581 		slot_printf(slot, "Got data interrupt 0x%08x, but "
1582 		    "there is no active data operation.\n",
1583 		    intmask);
1584 		sdhci_dumpregs(slot);
1585 		return;
1586 	}
1587 	if (intmask & SDHCI_INT_DATA_TIMEOUT)
1588 		slot->curcmd->error = MMC_ERR_TIMEOUT;
1589 	else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
1590 		slot->curcmd->error = MMC_ERR_BADCRC;
1591 	if (slot->curcmd->data == NULL &&
1592 	    (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
1593 	    SDHCI_INT_DMA_END))) {
1594 		slot_printf(slot, "Got data interrupt 0x%08x, but "
1595 		    "there is busy-only command.\n", intmask);
1596 		sdhci_dumpregs(slot);
1597 		slot->curcmd->error = MMC_ERR_INVALID;
1598 	}
1599 	if (slot->curcmd->error) {
1600 		/* No need to continue after any error. */
1601 		goto done;
1602 	}
1603 
1604 	/* Handle PIO interrupt. */
1605 	if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
1606 		if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
1607 		    SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
1608 			SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, &intmask);
1609 			slot->flags |= PLATFORM_DATA_STARTED;
1610 		} else
1611 			sdhci_transfer_pio(slot);
1612 	}
1613 	/* Handle DMA border. */
1614 	if (intmask & SDHCI_INT_DMA_END) {
1615 		struct mmc_data *data = slot->curcmd->data;
1616 		bus_dmamem_t *sdma = &slot->sdma_mem;
1617 		size_t left;
1618 
1619 		/* Unload DMA buffer ... */
1620 		left = data->len - slot->offset;
1621 		if (data->flags & MMC_DATA_READ) {
1622 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1623 			    BUS_DMASYNC_POSTREAD);
1624 			memcpy((u_char*)data->data + slot->offset,
1625 			    sdma->dmem_addr,
1626 			    (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
1627 		} else {
1628 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1629 			    BUS_DMASYNC_POSTWRITE);
1630 		}
1631 		/* ... and reload it again. */
1632 		slot->offset += DMA_BLOCK_SIZE;
1633 		left = data->len - slot->offset;
1634 		if (data->flags & MMC_DATA_READ) {
1635 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1636 			    BUS_DMASYNC_PREREAD);
1637 		} else {
1638 			memcpy(sdma->dmem_addr,
1639 			    (u_char*)data->data + slot->offset,
1640 			    (left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
1641 			bus_dmamap_sync(sdma->dmem_tag, sdma->dmem_map,
1642 			    BUS_DMASYNC_PREWRITE);
1643 		}
1644 		/* Interrupt aggregation: Mask border interrupt
1645 		 * for the last page. */
1646 		if (left == DMA_BLOCK_SIZE) {
1647 			slot->intmask &= ~SDHCI_INT_DMA_END;
1648 			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1649 		}
1650 		/* Restart DMA. */
1651 		WR4(slot, SDHCI_SDMA_ADDRESS, sdma->dmem_busaddr);
1652 	}
1653 	/* We have got all data. */
1654 	if (intmask & SDHCI_INT_DATA_END) {
1655 		if (slot->flags & PLATFORM_DATA_STARTED) {
1656 			slot->flags &= ~PLATFORM_DATA_STARTED;
1657 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
1658 		} else {
1659 			sdhci_finish_data(slot);
1660 		}
1661 	}
1662 done:
1663 	if (slot->curcmd != NULL && slot->curcmd->error != 0) {
1664 		if (slot->flags & PLATFORM_DATA_STARTED) {
1665 			slot->flags &= ~PLATFORM_DATA_STARTED;
1666 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
1667 		} else {
1668 			sdhci_finish_data(slot);
1669 		}
1670 		return;
1671 	}
1672 }
1673 
1674 static void
1675 sdhci_acmd_irq(struct sdhci_slot *slot)
1676 {
1677 	uint16_t err;
1678 
1679 	err = RD4(slot, SDHCI_ACMD12_ERR);
1680 	if (!slot->curcmd) {
1681 		slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
1682 		    "there is no active command.\n", err);
1683 		sdhci_dumpregs(slot);
1684 		return;
1685 	}
1686 	slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", err);
1687 	sdhci_reset(slot, SDHCI_RESET_CMD);
1688 }
1689 
1690 static void
1691 sdhci_adma_irq(struct sdhci_slot *slot)
1692 {
1693 	bus_dmamem_t *descmem = &slot->adma2_descs;
1694 	struct sdhci_adma2_desc32 *desc;
1695 	bus_addr_t addr = 0;
1696 	uint8_t err, adma_state;
1697 
1698 	err = RD1(slot, SDHCI_ADMA_ERR);
1699 	if (slot->curcmd && (slot->flags & SDHCI_USE_ADMA2)) {
1700 		slot_printf(slot, "Got ADMA2 error 0x%02x\n", err);
1701 	} else {
1702 		slot_printf(slot, "Got ADMA2 error 0x%02x, but "
1703 		    "there is no active command.\n", err);
1704 		sdhci_dumpregs(slot);
1705 	}
1706 
1707 	/* Try to print the erronous ADMA2 descriptor */
1708 	adma_state = err & SDHCI_ADMA_ERR_STATE_MASK;
1709 	if (adma_state == SDHCI_ADMA_ERR_STATE_STOP) {
1710 		addr = RD4(slot, SDHCI_ADMA_ADDRESS_LOW);
1711 		if (addr > sizeof(*desc))
1712 			addr -= sizeof(*desc);
1713 		else
1714 			addr = 0;
1715 	} else if (adma_state == SDHCI_ADMA_ERR_STATE_FDS) {
1716 		addr = RD4(slot, SDHCI_ADMA_ADDRESS_LOW);
1717 	} else if (adma_state == SDHCI_ADMA_ERR_STATE_TFR) {
1718 		addr = RD4(slot, SDHCI_ADMA_ADDRESS_LOW);
1719 		if (addr > sizeof(*desc))
1720 			addr -= sizeof(*desc);
1721 		else
1722 			addr = 0;
1723 	} else {
1724 		slot_printf(slot, "Invalid ADMA2 state 0x%02x\n", adma_state);
1725 	}
1726 	if (addr >= descmem->dmem_busaddr &&
1727 	    addr < descmem->dmem_busaddr + SDHCI_ADMA2_DESCBUF_SIZE) {
1728 		desc = (void *) ((char *)descmem->dmem_addr +
1729 		    (addr - descmem->dmem_busaddr));
1730 		slot_printf(slot,
1731 		    "Descriptor: Addr=0x%08x Length=0x%04x Attr=0x%04x\n",
1732 		    desc->address, desc->length, desc->attribute);
1733 	}
1734 
1735 	if (slot->curcmd && (slot->flags & SDHCI_USE_ADMA2)) {
1736 		sdhci_reset(slot, SDHCI_RESET_CMD);
1737 	}
1738 }
1739 
1740 void
1741 sdhci_generic_intr(struct sdhci_slot *slot)
1742 {
1743 	uint32_t intmask;
1744 
1745 	SDHCI_LOCK(slot);
1746 	/* Read slot interrupt status. */
1747 	intmask = RD4(slot, SDHCI_INT_STATUS);
1748 	if (intmask == 0 || intmask == 0xffffffff) {
1749 		SDHCI_UNLOCK(slot);
1750 		return;
1751 	}
1752 	if (sdhci_debug > 2)
1753 		slot_printf(slot, "Interrupt %#x\n", intmask);
1754 
1755 	/* Handle card presence interrupts. */
1756 	if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
1757 		WR4(slot, SDHCI_INT_STATUS, intmask &
1758 		    (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
1759 
1760 		if (intmask & SDHCI_INT_CARD_REMOVE) {
1761 			if (bootverbose || sdhci_debug)
1762 				slot_printf(slot, "Card removed\n");
1763 			callout_stop(&slot->card_callout);
1764 			taskqueue_enqueue(taskqueue_swi_mp, &slot->card_task);
1765 		}
1766 		if (intmask & SDHCI_INT_CARD_INSERT) {
1767 			if (bootverbose || sdhci_debug)
1768 				slot_printf(slot, "Card inserted\n");
1769 			callout_reset(&slot->card_callout, hz / 2,
1770 			    sdhci_card_delay, slot);
1771 		}
1772 		intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
1773 	}
1774 	/* Handle command interrupts. */
1775 	if (intmask & SDHCI_INT_CMD_MASK) {
1776 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
1777 		sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
1778 	}
1779 	/* Handle data interrupts. */
1780 	if (intmask & SDHCI_INT_DATA_MASK) {
1781 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
1782 		/* Dont call data_irq in case of errored command */
1783 		if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
1784 			sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
1785 	}
1786 	/* Handle AutoCMD12 error interrupt. */
1787 	if (intmask & SDHCI_INT_ACMD12ERR) {
1788 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
1789 		sdhci_acmd_irq(slot);
1790 	}
1791 	/* Handle ADMA2 error interrupt. */
1792 	if (intmask & SDHCI_INT_ADMAERR) {
1793 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ADMAERR);
1794 		sdhci_adma_irq(slot);
1795 	}
1796 	intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK);
1797 	intmask &= ~SDHCI_INT_ACMD12ERR;
1798 	intmask &= ~SDHCI_INT_ADMAERR;
1799 	intmask &= ~SDHCI_INT_ERROR;
1800 	/* Handle bus power interrupt. */
1801 	if (intmask & SDHCI_INT_BUS_POWER) {
1802 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
1803 		slot_printf(slot,
1804 		    "Card is consuming too much power!\n");
1805 		intmask &= ~SDHCI_INT_BUS_POWER;
1806 	}
1807 	/* The rest is unknown. */
1808 	if (intmask) {
1809 		WR4(slot, SDHCI_INT_STATUS, intmask);
1810 		slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
1811 		    intmask);
1812 		sdhci_dumpregs(slot);
1813 	}
1814 
1815 	SDHCI_UNLOCK(slot);
1816 }
1817 
1818 int
1819 sdhci_generic_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
1820 {
1821 	struct sdhci_slot *slot = device_get_ivars(child);
1822 
1823 	switch (which) {
1824 	default:
1825 		return (EINVAL);
1826 	case MMCBR_IVAR_BUS_MODE:
1827 		*(int *)result = slot->host.ios.bus_mode;
1828 		break;
1829 	case MMCBR_IVAR_BUS_WIDTH:
1830 		*(int *)result = slot->host.ios.bus_width;
1831 		break;
1832 	case MMCBR_IVAR_CHIP_SELECT:
1833 		*(int *)result = slot->host.ios.chip_select;
1834 		break;
1835 	case MMCBR_IVAR_CLOCK:
1836 		*(int *)result = slot->host.ios.clock;
1837 		break;
1838 	case MMCBR_IVAR_F_MIN:
1839 		*(int *)result = slot->host.f_min;
1840 		break;
1841 	case MMCBR_IVAR_F_MAX:
1842 		*(int *)result = slot->host.f_max;
1843 		break;
1844 	case MMCBR_IVAR_HOST_OCR:
1845 		*(int *)result = slot->host.host_ocr;
1846 		break;
1847 	case MMCBR_IVAR_MODE:
1848 		*(int *)result = slot->host.mode;
1849 		break;
1850 	case MMCBR_IVAR_OCR:
1851 		*(int *)result = slot->host.ocr;
1852 		break;
1853 	case MMCBR_IVAR_POWER_MODE:
1854 		*(int *)result = slot->host.ios.power_mode;
1855 		break;
1856 	case MMCBR_IVAR_VDD:
1857 		*(int *)result = slot->host.ios.vdd;
1858 		break;
1859 	case MMCBR_IVAR_VCCQ:
1860 		*result = slot->host.ios.vccq;
1861 		break;
1862 	case MMCBR_IVAR_CAPS:
1863 		*(int *)result = slot->host.caps;
1864 		break;
1865 	case MMCBR_IVAR_TIMING:
1866 		*(int *)result = slot->host.ios.timing;
1867 		break;
1868 	case MMCBR_IVAR_MAX_DATA:
1869 		*(int *)result = 65535;
1870 		break;
1871 	case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
1872 		/*
1873 		 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
1874 		 */
1875 		*result = 1000000;
1876 		break;
1877 	}
1878 	return (0);
1879 }
1880 
1881 int
1882 sdhci_generic_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
1883 {
1884 	struct sdhci_slot *slot = device_get_ivars(child);
1885 	uint32_t clock, max_clock;
1886 	int i;
1887 
1888 	switch (which) {
1889 	default:
1890 		return (EINVAL);
1891 	case MMCBR_IVAR_BUS_MODE:
1892 		slot->host.ios.bus_mode = value;
1893 		break;
1894 	case MMCBR_IVAR_BUS_WIDTH:
1895 		slot->host.ios.bus_width = value;
1896 		break;
1897 	case MMCBR_IVAR_CHIP_SELECT:
1898 		slot->host.ios.chip_select = value;
1899 		break;
1900 	case MMCBR_IVAR_CLOCK:
1901 		if (value > 0) {
1902 			max_clock = slot->max_clk;
1903 			clock = max_clock;
1904 
1905 			if (slot->version < SDHCI_SPEC_300) {
1906 				for (i = 0; i < SDHCI_200_MAX_DIVIDER;
1907 				    i <<= 1) {
1908 					if (clock <= value)
1909 						break;
1910 					clock >>= 1;
1911 				}
1912 			} else {
1913 				for (i = 0; i < SDHCI_300_MAX_DIVIDER;
1914 				    i += 2) {
1915 					if (clock <= value)
1916 						break;
1917 					clock = max_clock / (i + 2);
1918 				}
1919 			}
1920 
1921 			slot->host.ios.clock = clock;
1922 		} else
1923 			slot->host.ios.clock = 0;
1924 		break;
1925 	case MMCBR_IVAR_MODE:
1926 		slot->host.mode = value;
1927 		break;
1928 	case MMCBR_IVAR_OCR:
1929 		slot->host.ocr = value;
1930 		break;
1931 	case MMCBR_IVAR_POWER_MODE:
1932 		slot->host.ios.power_mode = value;
1933 		break;
1934 	case MMCBR_IVAR_VDD:
1935 		slot->host.ios.vdd = value;
1936 		break;
1937 	case MMCBR_IVAR_VCCQ:
1938 		slot->host.ios.vccq = value;
1939 		break;
1940 	case MMCBR_IVAR_TIMING:
1941 		slot->host.ios.timing = value;
1942 		break;
1943 	case MMCBR_IVAR_CAPS:
1944 	case MMCBR_IVAR_HOST_OCR:
1945 	case MMCBR_IVAR_F_MIN:
1946 	case MMCBR_IVAR_F_MAX:
1947 	case MMCBR_IVAR_MAX_DATA:
1948 		return (EINVAL);
1949 	}
1950 	return (0);
1951 }
1952 
1953 MODULE_VERSION(sdhci, 1);
1954