xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision 03517d4e)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.76 2011/10/07 08:59:54 marius Exp $
58  */
59 
60 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 
64 #include <sys/param.h>
65 
66 /*
67  *  Driver configuration options.
68  */
69 #include "opt_sym.h"
70 #include <dev/disk/sym/sym_conf.h>
71 
72 
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/module.h>
79 #include <sys/bus.h>
80 
81 #include <sys/proc.h>
82 
83 #include <bus/pci/pcireg.h>
84 #include <bus/pci/pcivar.h>
85 
86 #include <sys/rman.h>
87 
88 #include <bus/cam/cam.h>
89 #include <bus/cam/cam_ccb.h>
90 #include <bus/cam/cam_sim.h>
91 #include <bus/cam/cam_xpt.h>
92 #include <bus/cam/cam_xpt_sim.h>
93 #include <bus/cam/cam_xpt_periph.h>
94 #include <bus/cam/cam_debug.h>
95 
96 
97 #include <bus/cam/scsi/scsi_all.h>
98 #include <bus/cam/scsi/scsi_message.h>
99 
100 /* Short and quite clear integer types */
101 typedef int8_t    s8;
102 typedef int16_t   s16;
103 typedef	int32_t   s32;
104 typedef u_int8_t  u8;
105 typedef u_int16_t u16;
106 typedef	u_int32_t u32;
107 
108 /*
109  *  Driver definitions.
110  */
111 #include <dev/disk/sym/sym_defs.h>
112 #include <dev/disk/sym/sym_fw.h>
113 
114 /*
115  *  IA32 architecture does not reorder STORES and prevents
116  *  LOADS from passing STORES. It is called `program order'
117  *  by Intel and allows device drivers to deal with memory
118  *  ordering by only ensuring that the code is not reordered
119  *  by the compiler when ordering is required.
120  *  Other architectures implement a weaker ordering that
121  *  requires memory barriers (and also IO barriers when they
122  *  make sense) to be used.
123  */
124 
125 #if	defined __x86_64__
126 #define MEMORY_BARRIER()	do { ; } while(0)
127 #else
128 #error	"Not supported platform"
129 #endif
130 
131 /*
132  *  A la VMS/CAM-3 queue management.
133  */
134 
135 typedef struct sym_quehead {
136 	struct sym_quehead *flink;	/* Forward  pointer */
137 	struct sym_quehead *blink;	/* Backward pointer */
138 } SYM_QUEHEAD;
139 
140 #define sym_que_init(ptr) do { \
141 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
142 } while (0)
143 
144 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
145 {
146 	return (head->flink == head) ? NULL : head->flink;
147 }
148 
149 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
150 {
151 	return (head->blink == head) ? NULL : head->blink;
152 }
153 
154 static __inline void __sym_que_add(struct sym_quehead * new,
155 	struct sym_quehead * blink,
156 	struct sym_quehead * flink)
157 {
158 	flink->blink	= new;
159 	new->flink	= flink;
160 	new->blink	= blink;
161 	blink->flink	= new;
162 }
163 
164 static __inline void __sym_que_del(struct sym_quehead * blink,
165 	struct sym_quehead * flink)
166 {
167 	flink->blink = blink;
168 	blink->flink = flink;
169 }
170 
171 static __inline int sym_que_empty(struct sym_quehead *head)
172 {
173 	return head->flink == head;
174 }
175 
176 static __inline void sym_que_splice(struct sym_quehead *list,
177 	struct sym_quehead *head)
178 {
179 	struct sym_quehead *first = list->flink;
180 
181 	if (first != list) {
182 		struct sym_quehead *last = list->blink;
183 		struct sym_quehead *at   = head->flink;
184 
185 		first->blink = head;
186 		head->flink  = first;
187 
188 		last->flink = at;
189 		at->blink   = last;
190 	}
191 }
192 
193 #define sym_que_entry(ptr, type, member) \
194 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
195 
196 
197 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
198 
199 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
200 
201 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
202 
203 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
204 {
205 	struct sym_quehead *elem = head->flink;
206 
207 	if (elem != head)
208 		__sym_que_del(head, elem->flink);
209 	else
210 		elem = NULL;
211 	return elem;
212 }
213 
214 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
215 
216 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
217 {
218 	struct sym_quehead *elem = head->blink;
219 
220 	if (elem != head)
221 		__sym_que_del(elem->blink, head);
222 	else
223 		elem = NULL;
224 	return elem;
225 }
226 
227 /*
228  *  This one may be useful.
229  */
230 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
231 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
232 /*
233  *  FreeBSD does not offer our kind of queue in the CAM CCB.
234  *  So, we have to cast.
235  */
236 #define sym_qptr(p)	((struct sym_quehead *) (p))
237 
238 /*
239  *  Simple bitmap operations.
240  */
241 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
242 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
243 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
244 
245 /*
246  *  Number of tasks per device we want to handle.
247  */
248 #if	SYM_CONF_MAX_TAG_ORDER > 8
249 #error	"more than 256 tags per logical unit not allowed."
250 #endif
251 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
252 
253 /*
254  *  Donnot use more tasks that we can handle.
255  */
256 #ifndef	SYM_CONF_MAX_TAG
257 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
258 #endif
259 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
260 #undef	SYM_CONF_MAX_TAG
261 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
262 #endif
263 
264 /*
265  *    This one means 'NO TAG for this job'
266  */
267 #define NO_TAG	(256)
268 
269 /*
270  *  Number of SCSI targets.
271  */
272 #if	SYM_CONF_MAX_TARGET > 16
273 #error	"more than 16 targets not allowed."
274 #endif
275 
276 /*
277  *  Number of logical units per target.
278  */
279 #if	SYM_CONF_MAX_LUN > 64
280 #error	"more than 64 logical units per target not allowed."
281 #endif
282 
283 /*
284  *    Asynchronous pre-scaler (ns). Shall be 40 for
285  *    the SCSI timings to be compliant.
286  */
287 #define	SYM_CONF_MIN_ASYNC (40)
288 
289 /*
290  *  Number of entries in the START and DONE queues.
291  *
292  *  We limit to 1 PAGE in order to succeed allocation of
293  *  these queues. Each entry is 8 bytes long (2 DWORDS).
294  */
295 #ifdef	SYM_CONF_MAX_START
296 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
297 #else
298 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
299 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
300 #endif
301 
302 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
303 #undef	SYM_CONF_MAX_QUEUE
304 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
305 #undef	SYM_CONF_MAX_START
306 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
307 #endif
308 
309 /*
310  *  For this one, we want a short name :-)
311  */
312 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
313 
314 /*
315  *  Active debugging tags and verbosity.
316  */
317 #define DEBUG_ALLOC	(0x0001)
318 #define DEBUG_PHASE	(0x0002)
319 #define DEBUG_POLL	(0x0004)
320 #define DEBUG_QUEUE	(0x0008)
321 #define DEBUG_RESULT	(0x0010)
322 #define DEBUG_SCATTER	(0x0020)
323 #define DEBUG_SCRIPT	(0x0040)
324 #define DEBUG_TINY	(0x0080)
325 #define DEBUG_TIMING	(0x0100)
326 #define DEBUG_NEGO	(0x0200)
327 #define DEBUG_TAGS	(0x0400)
328 #define DEBUG_POINTER	(0x0800)
329 
330 #if 0
331 static int sym_debug = 0;
332 	#define DEBUG_FLAGS sym_debug
333 #else
334 /*	#define DEBUG_FLAGS (0x0631) */
335 	#define DEBUG_FLAGS (0x0000)
336 
337 #endif
338 #define sym_verbose	(np->verbose)
339 
340 /*
341  *  Insert a delay in micro-seconds and milli-seconds.
342  */
343 static void UDELAY(int us) { DELAY(us); }
344 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
345 
346 /*
347  *  Simple power of two buddy-like allocator.
348  *
349  *  This simple code is not intended to be fast, but to
350  *  provide power of 2 aligned memory allocations.
351  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
352  *  this allocator allows simple and fast address calculations
353  *  from the SCRIPTS code. In addition, cache line alignment
354  *  is guaranteed for power of 2 cache line size.
355  *
356  *  This allocator has been developed for the Linux sym53c8xx
357  *  driver, since this O/S does not provide naturally aligned
358  *  allocations.
359  *  It has the advantage of allowing the driver to use private
360  *  pages of memory that will be useful if we ever need to deal
361  *  with IO MMUs for PCI.
362  */
363 
364 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
365 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
366 #if 0
367 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
368 #endif
369 #define MEMO_WARN	1
370 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
371 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
372 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
373 
374 #define get_pages()		kmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
375 #define free_pages(p)		kfree((p), M_DEVBUF)
376 
377 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
378 
379 typedef struct m_link {		/* Link between free memory chunks */
380 	struct m_link *next;
381 } m_link_s;
382 
383 typedef struct m_vtob {		/* Virtual to Bus address translation */
384 	struct m_vtob	*next;
385 	bus_dmamap_t	dmamap;	/* Map for this chunk */
386 	m_addr_t	vaddr;	/* Virtual address */
387 	m_addr_t	baddr;	/* Bus physical address */
388 } m_vtob_s;
389 /* Hash this stuff a bit to speed up translations */
390 #define VTOB_HASH_SHIFT		5
391 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
392 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
393 #define VTOB_HASH_CODE(m)	\
394 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
395 
396 typedef struct m_pool {		/* Memory pool of a given kind */
397 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
398 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
399 	m_addr_t (*getp)(struct m_pool *);
400 #ifdef	MEMO_FREE_UNUSED
401 	void (*freep)(struct m_pool *, m_addr_t);
402 #endif
403 #define M_GETP()		mp->getp(mp)
404 #define M_FREEP(p)		mp->freep(mp, p)
405 	int nump;
406 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
407 	struct m_pool *next;
408 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
409 } m_pool_s;
410 
411 static void *___sym_malloc(m_pool_s *mp, int size)
412 {
413 	int i = 0;
414 	int s = (1 << MEMO_SHIFT);
415 	int j;
416 	m_addr_t a;
417 	m_link_s *h = mp->h;
418 
419 	if (size > MEMO_CLUSTER_SIZE)
420 		return NULL;
421 
422 	while (size > s) {
423 		s <<= 1;
424 		++i;
425 	}
426 
427 	j = i;
428 	while (!h[j].next) {
429 		if (s == MEMO_CLUSTER_SIZE) {
430 			h[j].next = (m_link_s *) M_GETP();
431 			if (h[j].next)
432 				h[j].next->next = NULL;
433 			break;
434 		}
435 		++j;
436 		s <<= 1;
437 	}
438 	a = (m_addr_t) h[j].next;
439 	if (a) {
440 		h[j].next = h[j].next->next;
441 		while (j > i) {
442 			j -= 1;
443 			s >>= 1;
444 			h[j].next = (m_link_s *) (a+s);
445 			h[j].next->next = NULL;
446 		}
447 	}
448 #ifdef DEBUG
449 	kprintf("___sym_malloc(%d) = %p\n", size, (void *) a);
450 #endif
451 	return (void *) a;
452 }
453 
454 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
455 {
456 	int i = 0;
457 	int s = (1 << MEMO_SHIFT);
458 	m_link_s *q;
459 	m_addr_t a, b;
460 	m_link_s *h = mp->h;
461 
462 #ifdef DEBUG
463 	kprintf("___sym_mfree(%p, %d)\n", ptr, size);
464 #endif
465 
466 	if (size > MEMO_CLUSTER_SIZE)
467 		return;
468 
469 	while (size > s) {
470 		s <<= 1;
471 		++i;
472 	}
473 
474 	a = (m_addr_t) ptr;
475 
476 	while (1) {
477 #ifdef MEMO_FREE_UNUSED
478 		if (s == MEMO_CLUSTER_SIZE) {
479 			M_FREEP(a);
480 			break;
481 		}
482 #endif
483 		b = a ^ s;
484 		q = &h[i];
485 		while (q->next && q->next != (m_link_s *) b) {
486 			q = q->next;
487 		}
488 		if (!q->next) {
489 			((m_link_s *) a)->next = h[i].next;
490 			h[i].next = (m_link_s *) a;
491 			break;
492 		}
493 		q->next = q->next->next;
494 		a = a & b;
495 		s <<= 1;
496 		++i;
497 	}
498 }
499 
500 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
501 {
502 	void *p;
503 
504 	p = ___sym_malloc(mp, size);
505 
506 	if (DEBUG_FLAGS & DEBUG_ALLOC)
507 		kprintf ("new %-10s[%4d] @%p.\n", name, size, p);
508 
509 	if (p)
510 		bzero(p, size);
511 	else if (uflags & MEMO_WARN)
512 		kprintf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
513 
514 	return p;
515 }
516 
517 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
518 
519 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
520 {
521 	if (DEBUG_FLAGS & DEBUG_ALLOC)
522 		kprintf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
523 
524 	___sym_mfree(mp, ptr, size);
525 
526 }
527 
528 /*
529  * Default memory pool we donnot need to involve in DMA.
530  */
531 /*
532  * With the `bus dma abstraction', we use a separate pool for
533  * memory we donnot need to involve in DMA.
534  */
535 static m_addr_t ___mp0_getp(m_pool_s *mp)
536 {
537 	m_addr_t m = (m_addr_t) get_pages();
538 	if (m)
539 		++mp->nump;
540 	return m;
541 }
542 
543 #ifdef	MEMO_FREE_UNUSED
544 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
545 {
546 	free_pages(m);
547 	--mp->nump;
548 }
549 #endif
550 
551 #ifdef	MEMO_FREE_UNUSED
552 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
553 #else
554 static m_pool_s mp0 = {0, 0, ___mp0_getp};
555 #endif
556 
557 
558 /*
559  * Actual memory allocation routine for non-DMAed memory.
560  */
561 static void *sym_calloc(int size, char *name)
562 {
563 	void *m;
564 	/* Lock */
565 	m = __sym_calloc(&mp0, size, name);
566 	/* Unlock */
567 	return m;
568 }
569 
570 /*
571  * Actual memory allocation routine for non-DMAed memory.
572  */
573 static void sym_mfree(void *ptr, int size, char *name)
574 {
575 	/* Lock */
576 	__sym_mfree(&mp0, ptr, size, name);
577 	/* Unlock */
578 }
579 
580 /*
581  * DMAable pools.
582  */
583 /*
584  * With `bus dma abstraction', we use a separate pool per parent
585  * BUS handle. A reverse table (hashed) is maintained for virtual
586  * to BUS address translation.
587  */
588 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
589 {
590 	bus_addr_t *baddr;
591 	baddr = (bus_addr_t *)arg;
592 	*baddr = segs->ds_addr;
593 }
594 
595 static m_addr_t ___dma_getp(m_pool_s *mp)
596 {
597 	m_vtob_s *vbp;
598 	void *vaddr = NULL;
599 	bus_addr_t baddr = 0;
600 
601 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
602 	if (!vbp)
603 		goto out_err;
604 
605 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
606 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
607 		goto out_err;
608 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
609 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
610 	if (baddr) {
611 		int hc = VTOB_HASH_CODE(vaddr);
612 		vbp->vaddr = (m_addr_t) vaddr;
613 		vbp->baddr = (m_addr_t) baddr;
614 		vbp->next = mp->vtob[hc];
615 		mp->vtob[hc] = vbp;
616 		++mp->nump;
617 		return (m_addr_t) vaddr;
618 	}
619 out_err:
620 	if (baddr)
621 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
622 	if (vaddr)
623 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
624 	if (vbp) {
625 		if (vbp->dmamap)
626 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
627 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
628 	}
629 	return 0;
630 }
631 
632 #ifdef	MEMO_FREE_UNUSED
633 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
634 {
635 	m_vtob_s **vbpp, *vbp;
636 	int hc = VTOB_HASH_CODE(m);
637 
638 	vbpp = &mp->vtob[hc];
639 	while (*vbpp && (*vbpp)->vaddr != m)
640 		vbpp = &(*vbpp)->next;
641 	if (*vbpp) {
642 		vbp = *vbpp;
643 		*vbpp = (*vbpp)->next;
644 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
645 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
646 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
647 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
648 		--mp->nump;
649 	}
650 }
651 #endif
652 
653 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
654 {
655 	m_pool_s *mp;
656 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
657 	return mp;
658 }
659 
660 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
661 {
662 	m_pool_s *mp = NULL;
663 
664 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
665 	if (mp) {
666 		mp->dev_dmat = dev_dmat;
667 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
668 			       BUS_SPACE_MAXADDR_32BIT,
669 			       BUS_SPACE_MAXADDR,
670 			       MEMO_CLUSTER_SIZE, 1,
671 			       MEMO_CLUSTER_SIZE, 0,
672 			       &mp->dmat)) {
673 			mp->getp = ___dma_getp;
674 #ifdef	MEMO_FREE_UNUSED
675 			mp->freep = ___dma_freep;
676 #endif
677 			mp->next = mp0.next;
678 			mp0.next = mp;
679 			return mp;
680 		}
681 	}
682 	if (mp)
683 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
684 	return NULL;
685 }
686 
687 #ifdef	MEMO_FREE_UNUSED
688 static void ___del_dma_pool(m_pool_s *p)
689 {
690 	struct m_pool **pp = &mp0.next;
691 
692 	while (*pp && *pp != p)
693 		pp = &(*pp)->next;
694 	if (*pp) {
695 		*pp = (*pp)->next;
696 		bus_dma_tag_destroy(p->dmat);
697 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
698 	}
699 }
700 #endif
701 
702 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
703 {
704 	struct m_pool *mp;
705 	void *m = NULL;
706 
707 	/* Lock */
708 	mp = ___get_dma_pool(dev_dmat);
709 	if (!mp)
710 		mp = ___cre_dma_pool(dev_dmat);
711 	if (mp)
712 		m = __sym_calloc(mp, size, name);
713 #ifdef	MEMO_FREE_UNUSED
714 	if (mp && !mp->nump)
715 		___del_dma_pool(mp);
716 #endif
717 	/* Unlock */
718 
719 	return m;
720 }
721 
722 static void
723 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
724 {
725 	struct m_pool *mp;
726 
727 	/* Lock */
728 	mp = ___get_dma_pool(dev_dmat);
729 	if (mp)
730 		__sym_mfree(mp, m, size, name);
731 #ifdef	MEMO_FREE_UNUSED
732 	if (mp && !mp->nump)
733 		___del_dma_pool(mp);
734 #endif
735 	/* Unlock */
736 }
737 
738 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
739 {
740 	m_pool_s *mp;
741 	int hc = VTOB_HASH_CODE(m);
742 	m_vtob_s *vp = NULL;
743 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
744 
745 	/* Lock */
746 	mp = ___get_dma_pool(dev_dmat);
747 	if (mp) {
748 		vp = mp->vtob[hc];
749 		while (vp && vp->vaddr != a)
750 			vp = vp->next;
751 	}
752 	/* Unlock */
753 	if (!vp)
754 		panic("sym: VTOBUS FAILED!");
755 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
756 }
757 
758 
759 /*
760  * Verbs for DMAable memory handling.
761  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
762  * being discarded.
763  */
764 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
765 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
766 #define _sym_mfree_dma(np, p, s, n)	\
767 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
768 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
769 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
770 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
771 #define vtobus(p)			_vtobus(np, p)
772 
773 
774 /*
775  *  Print a buffer in hexadecimal format.
776  */
777 static void sym_printb_hex (u_char *p, int n)
778 {
779 	while (n-- > 0)
780 		kprintf (" %x", *p++);
781 }
782 
783 /*
784  *  Same with a label at beginning and .\n at end.
785  */
786 static void sym_printl_hex (char *label, u_char *p, int n)
787 {
788 	kprintf ("%s", label);
789 	sym_printb_hex (p, n);
790 	kprintf (".\n");
791 }
792 
793 /*
794  *  Return a string for SCSI BUS mode.
795  */
796 static const char *sym_scsi_bus_mode(int mode)
797 {
798 	switch(mode) {
799 	case SMODE_HVD:	return "HVD";
800 	case SMODE_SE:	return "SE";
801 	case SMODE_LVD: return "LVD";
802 	}
803 	return "??";
804 }
805 
806 /*
807  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
808  */
809 #ifdef SYM_CONF_NVRAM_SUPPORT
810 static const u_char Tekram_sync[16] =
811 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
812 #endif
813 
814 /*
815  *  Union of supported NVRAM formats.
816  */
817 struct sym_nvram {
818 	int type;
819 #define	SYM_SYMBIOS_NVRAM	(1)
820 #define	SYM_TEKRAM_NVRAM	(2)
821 #ifdef	SYM_CONF_NVRAM_SUPPORT
822 	union {
823 		Symbios_nvram Symbios;
824 		Tekram_nvram Tekram;
825 	} data;
826 #endif
827 };
828 
829 /*
830  *  This one is hopefully useless, but actually useful. :-)
831  */
832 #ifndef assert
833 #define	assert(expression) { \
834 	if (!(expression)) { \
835 		(void)panic( \
836 			"assertion \"%s\" failed: file \"%s\", line %d", \
837 			#expression, \
838 			__FILE__, __LINE__); \
839 	} \
840 }
841 #endif
842 
843 /*
844  *  Some provision for a possible big endian mode supported by
845  *  Symbios chips (never seen, by the way).
846  *  For now, this stuff does not deserve any comments. :)
847  */
848 
849 #define sym_offb(o)	(o)
850 #define sym_offw(o)	(o)
851 
852 /*
853  *  Some provision for support for BIG ENDIAN CPU.
854  */
855 
856 #define cpu_to_scr(dw)	htole32(dw)
857 #define scr_to_cpu(dw)	le32toh(dw)
858 
859 /*
860  *  Access to the chip IO registers and on-chip RAM.
861  *  We use the `bus space' interface under FreeBSD-4 and
862  *  later kernel versions.
863  */
864 
865 
866 #if defined(SYM_CONF_IOMAPPED)
867 
868 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
869 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
870 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
871 
872 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
873 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
874 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
875 
876 #else	/* Memory mapped IO */
877 
878 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
879 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
880 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
881 
882 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
883 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
884 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
885 
886 #endif	/* SYM_CONF_IOMAPPED */
887 
888 #define OUTRAM_OFF(o, a, l)	\
889 	bus_write_region_1(np->ram_res, (o), (a), (l))
890 
891 
892 /*
893  *  Common definitions for both bus space and legacy IO methods.
894  */
895 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
896 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
897 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
898 
899 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
900 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
901 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
902 
903 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
904 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
905 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
906 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
907 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
908 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
909 
910 /*
911  *  We normally want the chip to have a consistent view
912  *  of driver internal data structures when we restart it.
913  *  Thus these macros.
914  */
915 #define OUTL_DSP(v)				\
916 	do {					\
917 		MEMORY_BARRIER();		\
918 		OUTL (nc_dsp, (v));		\
919 	} while (0)
920 
921 #define OUTONB_STD()				\
922 	do {					\
923 		MEMORY_BARRIER();		\
924 		OUTONB (nc_dcntl, (STD|NOCOM));	\
925 	} while (0)
926 
927 /*
928  *  Command control block states.
929  */
930 #define HS_IDLE		(0)
931 #define HS_BUSY		(1)
932 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
933 #define HS_DISCONNECT	(3)	/* Disconnected by target */
934 #define HS_WAIT		(4)	/* waiting for resource	  */
935 
936 #define HS_DONEMASK	(0x80)
937 #define HS_COMPLETE	(4|HS_DONEMASK)
938 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
939 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
940 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
941 
942 /*
943  *  Software Interrupt Codes
944  */
945 #define	SIR_BAD_SCSI_STATUS	(1)
946 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
947 #define	SIR_MSG_RECEIVED	(3)
948 #define	SIR_MSG_WEIRD		(4)
949 #define	SIR_NEGO_FAILED		(5)
950 #define	SIR_NEGO_PROTO		(6)
951 #define	SIR_SCRIPT_STOPPED	(7)
952 #define	SIR_REJECT_TO_SEND	(8)
953 #define	SIR_SWIDE_OVERRUN	(9)
954 #define	SIR_SODL_UNDERRUN	(10)
955 #define	SIR_RESEL_NO_MSG_IN	(11)
956 #define	SIR_RESEL_NO_IDENTIFY	(12)
957 #define	SIR_RESEL_BAD_LUN	(13)
958 #define	SIR_TARGET_SELECTED	(14)
959 #define	SIR_RESEL_BAD_I_T_L	(15)
960 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
961 #define	SIR_ABORT_SENT		(17)
962 #define	SIR_RESEL_ABORTED	(18)
963 #define	SIR_MSG_OUT_DONE	(19)
964 #define	SIR_COMPLETE_ERROR	(20)
965 #define	SIR_DATA_OVERRUN	(21)
966 #define	SIR_BAD_PHASE		(22)
967 #define	SIR_MAX			(22)
968 
969 /*
970  *  Extended error bit codes.
971  *  xerr_status field of struct sym_ccb.
972  */
973 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
974 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
975 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
976 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
977 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
978 
979 /*
980  *  Negotiation status.
981  *  nego_status field of struct sym_ccb.
982  */
983 #define NS_SYNC		(1)
984 #define NS_WIDE		(2)
985 #define NS_PPR		(3)
986 
987 /*
988  *  A CCB hashed table is used to retrieve CCB address
989  *  from DSA value.
990  */
991 #define CCB_HASH_SHIFT		8
992 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
993 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
994 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
995 
996 /*
997  *  Device flags.
998  */
999 #define SYM_DISC_ENABLED	(1)
1000 #define SYM_TAGS_ENABLED	(1<<1)
1001 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1002 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1003 
1004 /*
1005  *  Host adapter miscellaneous flags.
1006  */
1007 #define SYM_AVOID_BUS_RESET	(1)
1008 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1009 
1010 /*
1011  *  Device quirks.
1012  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1013  *  saving the DATA POINTER then reselects and terminates the IO.
1014  *  On reselection, the automatic RESTORE DATA POINTER makes the
1015  *  CURRENT DATA POINTER not point at the end of the IO.
1016  *  This behaviour just breaks our calculation of the residual.
1017  *  For now, we just force an AUTO SAVE on disconnection and will
1018  *  fix that in a further driver version.
1019  */
1020 #define SYM_QUIRK_AUTOSAVE 1
1021 
1022 /*
1023  *  Misc.
1024  */
1025 #define	SYM_LOCK()		lockmgr(&np->lock, LK_EXCLUSIVE)
1026 #define	SYM_LOCK_ASSERT(_what)	KKASSERT(lockstatus(&np->lock, curthread) == (_what))
1027 #define	SYM_LOCK_DESTROY()	lockuninit(&np->lock)
1028 #define	SYM_LOCK_INIT()		lockinit(&np->lock, "sym_lock", 0, LK_CANRECURSE)
1029 #if 0 /* XXX swildner */
1030 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->lock)
1031 #endif
1032 #define	SYM_UNLOCK()		lockmgr(&np->lock, LK_RELEASE)
1033 
1034 #define SYM_SNOOP_TIMEOUT (10000000)
1035 #define SYM_PCI_IO	PCIR_BAR(0)
1036 #define SYM_PCI_MMIO	PCIR_BAR(1)
1037 #define SYM_PCI_RAM	PCIR_BAR(2)
1038 #define SYM_PCI_RAM64	PCIR_BAR(3)
1039 
1040 /*
1041  *  Back-pointer from the CAM CCB to our data structures.
1042  */
1043 #define sym_hcb_ptr	spriv_ptr0
1044 /* #define sym_ccb_ptr	spriv_ptr1 */
1045 
1046 /*
1047  *  We mostly have to deal with pointers.
1048  *  Thus these typedef's.
1049  */
1050 typedef struct sym_tcb *tcb_p;
1051 typedef struct sym_lcb *lcb_p;
1052 typedef struct sym_ccb *ccb_p;
1053 typedef struct sym_hcb *hcb_p;
1054 
1055 /*
1056  *  Gather negotiable parameters value
1057  */
1058 struct sym_trans {
1059 	u8 scsi_version;
1060 	u8 spi_version;
1061 	u8 period;
1062 	u8 offset;
1063 	u8 width;
1064 	u8 options;	/* PPR options */
1065 };
1066 
1067 struct sym_tinfo {
1068 	struct sym_trans current;
1069 	struct sym_trans goal;
1070 	struct sym_trans user;
1071 };
1072 
1073 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1074 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1075 
1076 /*
1077  *  Global TCB HEADER.
1078  *
1079  *  Due to lack of indirect addressing on earlier NCR chips,
1080  *  this substructure is copied from the TCB to a global
1081  *  address after selection.
1082  *  For SYMBIOS chips that support LOAD/STORE this copy is
1083  *  not needed and thus not performed.
1084  */
1085 struct sym_tcbh {
1086 	/*
1087 	 *  Scripts bus addresses of LUN table accessed from scripts.
1088 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1089 	 *  and we we want to speed-up the general case and not waste
1090 	 *  resources.
1091 	 */
1092 	u32	luntbl_sa;	/* bus address of this table	*/
1093 	u32	lun0_sa;	/* bus address of LCB #0	*/
1094 	/*
1095 	 *  Actual SYNC/WIDE IO registers value for this target.
1096 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1097 	 *  so have alignment constraints.
1098 	 */
1099 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1100 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1101 /*2*/	u_char	filler1;
1102 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1103 };
1104 
1105 /*
1106  *  Target Control Block
1107  */
1108 struct sym_tcb {
1109 	/*
1110 	 *  TCB header.
1111 	 *  Assumed at offset 0.
1112 	 */
1113 /*0*/	struct sym_tcbh head;
1114 
1115 	/*
1116 	 *  LUN table used by the SCRIPTS processor.
1117 	 *  An array of bus addresses is used on reselection.
1118 	 */
1119 	u32	*luntbl;	/* LCBs bus address table	*/
1120 
1121 	/*
1122 	 *  LUN table used by the C code.
1123 	 */
1124 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1125 #if SYM_CONF_MAX_LUN > 1
1126 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1127 #endif
1128 
1129 	/*
1130 	 *  Bitmap that tells about LUNs that succeeded at least
1131 	 *  1 IO and therefore assumed to be a real device.
1132 	 *  Avoid useless allocation of the LCB structure.
1133 	 */
1134 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1135 
1136 	/*
1137 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1138 	 *  allocated (not discovered or LCB allocation failed).
1139 	 */
1140 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1141 
1142 	/*
1143 	 *  Transfer capabilities (SIP)
1144 	 */
1145 	struct sym_tinfo tinfo;
1146 
1147 	/*
1148 	 * Keep track of the CCB used for the negotiation in order
1149 	 * to ensure that only 1 negotiation is queued at a time.
1150 	 */
1151 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1152 
1153 	/*
1154 	 *  Set when we want to reset the device.
1155 	 */
1156 	u_char	to_reset;
1157 
1158 	/*
1159 	 *  Other user settable limits and options.
1160 	 *  These limits are read from the NVRAM if present.
1161 	 */
1162 	u_char	usrflags;
1163 	u_short	usrtags;
1164 };
1165 
1166 /*
1167  *  Global LCB HEADER.
1168  *
1169  *  Due to lack of indirect addressing on earlier NCR chips,
1170  *  this substructure is copied from the LCB to a global
1171  *  address after selection.
1172  *  For SYMBIOS chips that support LOAD/STORE this copy is
1173  *  not needed and thus not performed.
1174  */
1175 struct sym_lcbh {
1176 	/*
1177 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1178 	 *  For not probed logical units, this address points to
1179 	 *  SCRIPTS that deal with bad LU handling (must be at
1180 	 *  offset zero of the LCB for that reason).
1181 	 */
1182 /*0*/	u32	resel_sa;
1183 
1184 	/*
1185 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1186 	 *  to the unique ITL nexus allowed to be disconnected.
1187 	 */
1188 	u32	itl_task_sa;
1189 
1190 	/*
1191 	 *  Task table bus address (read from SCRIPTS).
1192 	 */
1193 	u32	itlq_tbl_sa;
1194 };
1195 
1196 /*
1197  *  Logical Unit Control Block
1198  */
1199 struct sym_lcb {
1200 	/*
1201 	 *  TCB header.
1202 	 *  Assumed at offset 0.
1203 	 */
1204 /*0*/	struct sym_lcbh head;
1205 
1206 	/*
1207 	 *  Task table read from SCRIPTS that contains pointers to
1208 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1209 	 *  inside the header.
1210 	 */
1211 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1212 
1213 	/*
1214 	 *  Busy CCBs management.
1215 	 */
1216 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1217 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1218 
1219 	/*
1220 	 *  Circular tag allocation buffer.
1221 	 */
1222 	u_short	ia_tag;		/* Tag allocation index		*/
1223 	u_short	if_tag;		/* Tag release index		*/
1224 	u_char	*cb_tags;	/* Circular tags buffer		*/
1225 
1226 	/*
1227 	 *  Set when we want to clear all tasks.
1228 	 */
1229 	u_char to_clear;
1230 
1231 	/*
1232 	 *  Capabilities.
1233 	 */
1234 	u_char	user_flags;
1235 	u_char	current_flags;
1236 };
1237 
1238 /*
1239  *  Action from SCRIPTS on a task.
1240  *  Is part of the CCB, but is also used separately to plug
1241  *  error handling action to perform from SCRIPTS.
1242  */
1243 struct sym_actscr {
1244 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1245 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1246 };
1247 
1248 /*
1249  *  Phase mismatch context.
1250  *
1251  *  It is part of the CCB and is used as parameters for the
1252  *  DATA pointer. We need two contexts to handle correctly the
1253  *  SAVED DATA POINTER.
1254  */
1255 struct sym_pmc {
1256 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1257 	u32	ret;		/* SCRIPT return address	*/
1258 };
1259 
1260 /*
1261  *  LUN control block lookup.
1262  *  We use a direct pointer for LUN #0, and a table of
1263  *  pointers which is only allocated for devices that support
1264  *  LUN(s) > 0.
1265  */
1266 #if SYM_CONF_MAX_LUN <= 1
1267 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1268 #else
1269 #define sym_lp(np, tp, lun) \
1270 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1271 #endif
1272 
1273 /*
1274  *  Status are used by the host and the script processor.
1275  *
1276  *  The last four bytes (status[4]) are copied to the
1277  *  scratchb register (declared as scr0..scr3) just after the
1278  *  select/reselect, and copied back just after disconnecting.
1279  *  Inside the script the XX_REG are used.
1280  */
1281 
1282 /*
1283  *  Last four bytes (script)
1284  */
1285 #define  QU_REG	scr0
1286 #define  HS_REG	scr1
1287 #define  HS_PRT	nc_scr1
1288 #define  SS_REG	scr2
1289 #define  SS_PRT	nc_scr2
1290 #define  HF_REG	scr3
1291 #define  HF_PRT	nc_scr3
1292 
1293 /*
1294  *  Last four bytes (host)
1295  */
1296 #define  actualquirks  phys.head.status[0]
1297 #define  host_status   phys.head.status[1]
1298 #define  ssss_status   phys.head.status[2]
1299 #define  host_flags    phys.head.status[3]
1300 
1301 /*
1302  *  Host flags
1303  */
1304 #define HF_IN_PM0	1u
1305 #define HF_IN_PM1	(1u<<1)
1306 #define HF_ACT_PM	(1u<<2)
1307 #define HF_DP_SAVED	(1u<<3)
1308 #define HF_SENSE	(1u<<4)
1309 #define HF_EXT_ERR	(1u<<5)
1310 #define HF_DATA_IN	(1u<<6)
1311 #ifdef SYM_CONF_IARB_SUPPORT
1312 #define HF_HINT_IARB	(1u<<7)
1313 #endif
1314 
1315 /*
1316  *  Global CCB HEADER.
1317  *
1318  *  Due to lack of indirect addressing on earlier NCR chips,
1319  *  this substructure is copied from the ccb to a global
1320  *  address after selection (or reselection) and copied back
1321  *  before disconnect.
1322  *  For SYMBIOS chips that support LOAD/STORE this copy is
1323  *  not needed and thus not performed.
1324  */
1325 
1326 struct sym_ccbh {
1327 	/*
1328 	 *  Start and restart SCRIPTS addresses (must be at 0).
1329 	 */
1330 /*0*/	struct sym_actscr go;
1331 
1332 	/*
1333 	 *  SCRIPTS jump address that deal with data pointers.
1334 	 *  'savep' points to the position in the script responsible
1335 	 *  for the actual transfer of data.
1336 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1337 	 */
1338 	u32	savep;		/* Jump address to saved data pointer	*/
1339 	u32	lastp;		/* SCRIPTS address at end of data	*/
1340 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1341 
1342 	/*
1343 	 *  Status fields.
1344 	 */
1345 	u8	status[4];
1346 };
1347 
1348 /*
1349  *  Data Structure Block
1350  *
1351  *  During execution of a ccb by the script processor, the
1352  *  DSA (data structure address) register points to this
1353  *  substructure of the ccb.
1354  */
1355 struct sym_dsb {
1356 	/*
1357 	 *  CCB header.
1358 	 *  Also assumed at offset 0 of the sym_ccb structure.
1359 	 */
1360 /*0*/	struct sym_ccbh head;
1361 
1362 	/*
1363 	 *  Phase mismatch contexts.
1364 	 *  We need two to handle correctly the SAVED DATA POINTER.
1365 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1366 	 *  for address calculation from SCRIPTS.
1367 	 */
1368 	struct sym_pmc pm0;
1369 	struct sym_pmc pm1;
1370 
1371 	/*
1372 	 *  Table data for Script
1373 	 */
1374 	struct sym_tblsel  select;
1375 	struct sym_tblmove smsg;
1376 	struct sym_tblmove smsg_ext;
1377 	struct sym_tblmove cmd;
1378 	struct sym_tblmove sense;
1379 	struct sym_tblmove wresid;
1380 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1381 };
1382 
1383 /*
1384  *  Our Command Control Block
1385  */
1386 struct sym_ccb {
1387 	/*
1388 	 *  This is the data structure which is pointed by the DSA
1389 	 *  register when it is executed by the script processor.
1390 	 *  It must be the first entry.
1391 	 */
1392 	struct sym_dsb phys;
1393 
1394 	/*
1395 	 *  Pointer to CAM ccb and related stuff.
1396 	 */
1397 	struct callout ch;	/* callout handle		*/
1398 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1399 	u8	cdb_buf[16];	/* Copy of CDB			*/
1400 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1401 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1402 	int	data_len;	/* Total data length		*/
1403 	int	segments;	/* Number of SG segments	*/
1404 
1405 	/*
1406 	 *  Miscellaneous status'.
1407 	 */
1408 	u_char	nego_status;	/* Negotiation status		*/
1409 	u_char	xerr_status;	/* Extended error flags		*/
1410 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1411 
1412 	/*
1413 	 *  Message areas.
1414 	 *  We prepare a message to be sent after selection.
1415 	 *  We may use a second one if the command is rescheduled
1416 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1417 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1418 	 *  While negotiating sync or wide transfer,
1419 	 *  a SDTR or WDTR message is appended.
1420 	 */
1421 	u_char	scsi_smsg [12];
1422 	u_char	scsi_smsg2[12];
1423 
1424 	/*
1425 	 *  Auto request sense related fields.
1426 	 */
1427 	u_char	sensecmd[6];	/* Request Sense command	*/
1428 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1429 	u_char	sv_xerr_status;	/* Saved extended status	*/
1430 	int	sv_resid;	/* Saved residual		*/
1431 
1432 	/*
1433 	 *  Map for the DMA of user data.
1434 	 */
1435 	void		*arg;	/* Argument for some callback	*/
1436 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1437 	u_char		dmamapped;
1438 #define SYM_DMA_NONE	0
1439 #define SYM_DMA_READ	1
1440 #define SYM_DMA_WRITE	2
1441 	/*
1442 	 *  Other fields.
1443 	 */
1444 	u32	ccb_ba;		/* BUS address of this CCB	*/
1445 	u_short	tag;		/* Tag for this transfer	*/
1446 				/*  NO_TAG means no tag		*/
1447 	u_char	target;
1448 	u_char	lun;
1449 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1450 	SYM_QUEHEAD
1451 		link_ccbq;	/* Link to free/busy CCB queue	*/
1452 	u32	startp;		/* Initial data pointer		*/
1453 	int	ext_sg;		/* Extreme data pointer, used	*/
1454 	int	ext_ofs;	/*  to calculate the residual.	*/
1455 	u_char	to_abort;	/* Want this IO to be aborted	*/
1456 };
1457 
1458 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1459 
1460 /*
1461  *  Host Control Block
1462  */
1463 struct sym_hcb {
1464 	struct lock	lock;
1465 
1466 	/*
1467 	 *  Global headers.
1468 	 *  Due to poorness of addressing capabilities, earlier
1469 	 *  chips (810, 815, 825) copy part of the data structures
1470 	 *  (CCB, TCB and LCB) in fixed areas.
1471 	 */
1472 #ifdef	SYM_CONF_GENERIC_SUPPORT
1473 	struct sym_ccbh	ccb_head;
1474 	struct sym_tcbh	tcb_head;
1475 	struct sym_lcbh	lcb_head;
1476 #endif
1477 	/*
1478 	 *  Idle task and invalid task actions and
1479 	 *  their bus addresses.
1480 	 */
1481 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1482 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1483 
1484 	/*
1485 	 *  Dummy lun table to protect us against target
1486 	 *  returning bad lun number on reselection.
1487 	 */
1488 	u32	*badluntbl;	/* Table physical address	*/
1489 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1490 
1491 	/*
1492 	 *  Bus address of this host control block.
1493 	 */
1494 	u32	hcb_ba;
1495 
1496 	/*
1497 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1498 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1499 	 *  field.
1500 	 */
1501 	u32	scr_ram_seg;
1502 
1503 	/*
1504 	 *  Chip and controller indentification.
1505 	 */
1506 	device_t device;
1507 
1508 	/*
1509 	 *  Initial value of some IO register bits.
1510 	 *  These values are assumed to have been set by BIOS, and may
1511 	 *  be used to probe adapter implementation differences.
1512 	 */
1513 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1514 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1515 		sv_stest1;
1516 
1517 	/*
1518 	 *  Actual initial value of IO register bits used by the
1519 	 *  driver. They are loaded at initialisation according to
1520 	 *  features that are to be enabled/disabled.
1521 	 */
1522 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1523 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1524 
1525 	/*
1526 	 *  Target data.
1527 	 */
1528 #ifdef __x86_64__
1529 	struct sym_tcb	*target;
1530 #else
1531 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1532 #endif
1533 
1534 	/*
1535 	 *  Target control block bus address array used by the SCRIPT
1536 	 *  on reselection.
1537 	 */
1538 	u32		*targtbl;
1539 	u32		targtbl_ba;
1540 
1541 	/*
1542 	 *  CAM SIM information for this instance.
1543 	 */
1544 	struct		cam_sim  *sim;
1545 	struct		cam_path *path;
1546 
1547 	/*
1548 	 *  Allocated hardware resources.
1549 	 */
1550 	struct resource	*irq_res;
1551 	struct resource	*io_res;
1552 	struct resource	*mmio_res;
1553 	struct resource	*ram_res;
1554 	int		ram_id;
1555 	void *intr;
1556 
1557 	/*
1558 	 *  Bus stuff.
1559 	 *
1560 	 *  My understanding of PCI is that all agents must share the
1561 	 *  same addressing range and model.
1562 	 *  But some hardware architecture guys provide complex and
1563 	 *  brain-deaded stuff that makes shit.
1564 	 *  This driver only support PCI compliant implementations and
1565 	 *  deals with part of the BUS stuff complexity only to fit O/S
1566 	 *  requirements.
1567 	 */
1568 
1569 	/*
1570 	 *  DMA stuff.
1571 	 */
1572 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1573 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1574 	/*
1575 	 *  BUS addresses of the chip
1576 	 */
1577 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1578 	int		mmio_ws;	/* MMIO Window size		*/
1579 
1580 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1581 	int		ram_ws;		/* RAM window size		*/
1582 
1583 	/*
1584 	 *  SCRIPTS virtual and physical bus addresses.
1585 	 *  'script'  is loaded in the on-chip RAM if present.
1586 	 *  'scripth' stays in main memory for all chips except the
1587 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1588 	 */
1589 	u_char		*scripta0;	/* Copies of script and scripth	*/
1590 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1591 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1592 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1593 	vm_offset_t	scriptb0_ba;
1594 	u_short		scripta_sz;	/* Actual size of script A	*/
1595 	u_short		scriptb_sz;	/* Actual size of script B	*/
1596 
1597 	/*
1598 	 *  Bus addresses, setup and patch methods for
1599 	 *  the selected firmware.
1600 	 */
1601 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1602 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1603 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1604 	void		(*fw_patch)(hcb_p np);
1605 	const char	*fw_name;
1606 
1607 	/*
1608 	 *  General controller parameters and configuration.
1609 	 */
1610 	u_short	device_id;	/* PCI device id		*/
1611 	u_char	revision_id;	/* PCI device revision id	*/
1612 	u_int	features;	/* Chip features map		*/
1613 	u_char	myaddr;		/* SCSI id of the adapter	*/
1614 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1615 	u_char	maxwide;	/* Maximum transfer width	*/
1616 	u_char	minsync;	/* Min sync period factor (ST)	*/
1617 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1618 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1619 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1620 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1621 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1622 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1623 	u_char	clock_divn;	/* Number of clock divisors	*/
1624 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1625 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1626 	/*
1627 	 *  Start queue management.
1628 	 *  It is filled up by the host processor and accessed by the
1629 	 *  SCRIPTS processor in order to start SCSI commands.
1630 	 */
1631 	volatile		/* Prevent code optimizations	*/
1632 	u32	*squeue;	/* Start queue virtual address	*/
1633 	u32	squeue_ba;	/* Start queue BUS address	*/
1634 	u_short	squeueput;	/* Next free slot of the queue	*/
1635 	u_short	actccbs;	/* Number of allocated CCBs	*/
1636 
1637 	/*
1638 	 *  Command completion queue.
1639 	 *  It is the same size as the start queue to avoid overflow.
1640 	 */
1641 	u_short	dqueueget;	/* Next position to scan	*/
1642 	volatile		/* Prevent code optimizations	*/
1643 	u32	*dqueue;	/* Completion (done) queue	*/
1644 	u32	dqueue_ba;	/* Done queue BUS address	*/
1645 
1646 	/*
1647 	 *  Miscellaneous buffers accessed by the scripts-processor.
1648 	 *  They shall be DWORD aligned, because they may be read or
1649 	 *  written with a script command.
1650 	 */
1651 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1652 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1653 	u32		lastmsg;	/* Last SCSI message sent	*/
1654 	u_char		scratch;	/* Scratch for SCSI receive	*/
1655 
1656 	/*
1657 	 *  Miscellaneous configuration and status parameters.
1658 	 */
1659 	u_char		usrflags;	/* Miscellaneous user flags	*/
1660 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1661 	u_char		verbose;	/* Verbosity for this controller*/
1662 	u32		cache;		/* Used for cache test at init.	*/
1663 
1664 	/*
1665 	 *  CCB lists and queue.
1666 	 */
1667 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1668 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1669 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1670 
1671 	/*
1672 	 *  During error handling and/or recovery,
1673 	 *  active CCBs that are to be completed with
1674 	 *  error or requeued are moved from the busy_ccbq
1675 	 *  to the comp_ccbq prior to completion.
1676 	 */
1677 	SYM_QUEHEAD	comp_ccbq;
1678 
1679 	/*
1680 	 *  CAM CCB pending queue.
1681 	 */
1682 	SYM_QUEHEAD	cam_ccbq;
1683 
1684 	/*
1685 	 *  IMMEDIATE ARBITRATION (IARB) control.
1686 	 *
1687 	 *  We keep track in 'last_cp' of the last CCB that has been
1688 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1689 	 *  this CCB completes. If last_cp is not zero at the moment
1690 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1691 	 *  used by the SCRIPTS as a hint for setting IARB.
1692 	 *  We donnot set more than 'iarb_max' consecutive hints for
1693 	 *  IARB in order to leave devices a chance to reselect.
1694 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1695 	 */
1696 #ifdef SYM_CONF_IARB_SUPPORT
1697 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1698 	u_short		iarb_count;	/* Actual # of these hints	*/
1699 	ccb_p		last_cp;
1700 #endif
1701 
1702 	/*
1703 	 *  Command abort handling.
1704 	 *  We need to synchronize tightly with the SCRIPTS
1705 	 *  processor in order to handle things correctly.
1706 	 */
1707 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1708 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1709 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1710 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1711 };
1712 
1713 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1714 
1715 /*
1716  *  Return the name of the controller.
1717  */
1718 static __inline const char *sym_name(hcb_p np)
1719 {
1720 	return device_get_nameunit(np->device);
1721 }
1722 
1723 /*--------------------------------------------------------------------------*/
1724 /*------------------------------ FIRMWARES ---------------------------------*/
1725 /*--------------------------------------------------------------------------*/
1726 
1727 /*
1728  *  This stuff will be moved to a separate source file when
1729  *  the driver will be broken into several source modules.
1730  */
1731 
1732 /*
1733  *  Macros used for all firmwares.
1734  */
1735 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1736 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1737 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1738 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1739 
1740 
1741 #ifdef	SYM_CONF_GENERIC_SUPPORT
1742 /*
1743  *  Allocate firmware #1 script area.
1744  */
1745 #define	SYM_FWA_SCR		sym_fw1a_scr
1746 #define	SYM_FWB_SCR		sym_fw1b_scr
1747 #include <dev/disk/sym/sym_fw1.h>
1748 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1749 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1750 };
1751 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1752 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1753 };
1754 #undef	SYM_FWA_SCR
1755 #undef	SYM_FWB_SCR
1756 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1757 
1758 /*
1759  *  Allocate firmware #2 script area.
1760  */
1761 #define	SYM_FWA_SCR		sym_fw2a_scr
1762 #define	SYM_FWB_SCR		sym_fw2b_scr
1763 #include <dev/disk/sym/sym_fw2.h>
1764 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1765 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1766 };
1767 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1768 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1769 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1770 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1771 };
1772 #undef	SYM_FWA_SCR
1773 #undef	SYM_FWB_SCR
1774 
1775 #undef	SYM_GEN_A
1776 #undef	SYM_GEN_B
1777 #undef	PADDR_A
1778 #undef	PADDR_B
1779 
1780 #ifdef	SYM_CONF_GENERIC_SUPPORT
1781 /*
1782  *  Patch routine for firmware #1.
1783  */
1784 static void
1785 sym_fw1_patch(hcb_p np)
1786 {
1787 	struct sym_fw1a_scr *scripta0;
1788 	struct sym_fw1b_scr *scriptb0;
1789 
1790 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1791 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1792 
1793 	/*
1794 	 *  Remove LED support if not needed.
1795 	 */
1796 	if (!(np->features & FE_LED0)) {
1797 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1798 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1799 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1800 	}
1801 
1802 #ifdef SYM_CONF_IARB_SUPPORT
1803 	/*
1804 	 *    If user does not want to use IMMEDIATE ARBITRATION
1805 	 *    when we are reselected while attempting to arbitrate,
1806 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1807 	 */
1808 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1809 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1810 #endif
1811 	/*
1812 	 *  Patch some data in SCRIPTS.
1813 	 *  - start and done queue initial bus address.
1814 	 *  - target bus address table bus address.
1815 	 */
1816 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1817 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1818 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1819 }
1820 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1821 
1822 /*
1823  *  Patch routine for firmware #2.
1824  */
1825 static void
1826 sym_fw2_patch(hcb_p np)
1827 {
1828 	struct sym_fw2a_scr *scripta0;
1829 	struct sym_fw2b_scr *scriptb0;
1830 
1831 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1832 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1833 
1834 	/*
1835 	 *  Remove LED support if not needed.
1836 	 */
1837 	if (!(np->features & FE_LED0)) {
1838 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1839 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1840 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1841 	}
1842 
1843 #ifdef SYM_CONF_IARB_SUPPORT
1844 	/*
1845 	 *    If user does not want to use IMMEDIATE ARBITRATION
1846 	 *    when we are reselected while attempting to arbitrate,
1847 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1848 	 */
1849 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1850 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1851 #endif
1852 	/*
1853 	 *  Patch some variable in SCRIPTS.
1854 	 *  - start and done queue initial bus address.
1855 	 *  - target bus address table bus address.
1856 	 */
1857 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1858 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1859 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1860 
1861 	/*
1862 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1863 	 */
1864 	if (!(np->features & FE_C10)) {
1865 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1866 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1867 	}
1868 
1869 	/*
1870 	 *  Remove a couple of work-arounds specific to C1010 if
1871 	 *  they are not desirable. See `sym_fw2.h' for more details.
1872 	 */
1873 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1874 	      np->revision_id < 0x1 &&
1875 	      np->pciclk_khz < 60000)) {
1876 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1877 		scripta0->datao_phase[1] = cpu_to_scr(0);
1878 	}
1879 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1880 	      /* np->revision_id < 0xff */ 1)) {
1881 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1882 		scripta0->sel_done[1] = cpu_to_scr(0);
1883 	}
1884 
1885 	/*
1886 	 *  Patch some other variables in SCRIPTS.
1887 	 *  These ones are loaded by the SCRIPTS processor.
1888 	 */
1889 	scriptb0->pm0_data_addr[0] =
1890 		cpu_to_scr(np->scripta_ba +
1891 			   offsetof(struct sym_fw2a_scr, pm0_data));
1892 	scriptb0->pm1_data_addr[0] =
1893 		cpu_to_scr(np->scripta_ba +
1894 			   offsetof(struct sym_fw2a_scr, pm1_data));
1895 }
1896 
1897 /*
1898  *  Fill the data area in scripts.
1899  *  To be done for all firmwares.
1900  */
1901 static void
1902 sym_fw_fill_data (u32 *in, u32 *out)
1903 {
1904 	int	i;
1905 
1906 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1907 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1908 		*in++  = offsetof (struct sym_dsb, data[i]);
1909 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1910 		*out++ = offsetof (struct sym_dsb, data[i]);
1911 	}
1912 }
1913 
1914 /*
1915  *  Setup useful script bus addresses.
1916  *  To be done for all firmwares.
1917  */
1918 static void
1919 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1920 {
1921 	u32 *pa;
1922 	const u_short *po;
1923 	int i;
1924 
1925 	/*
1926 	 *  Build the bus address table for script A
1927 	 *  from the script A offset table.
1928 	 */
1929 	po = (const u_short *) fw->a_ofs;
1930 	pa = (u32 *) &np->fwa_bas;
1931 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1932 		pa[i] = np->scripta_ba + po[i];
1933 
1934 	/*
1935 	 *  Same for script B.
1936 	 */
1937 	po = (const u_short *) fw->b_ofs;
1938 	pa = (u32 *) &np->fwb_bas;
1939 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1940 		pa[i] = np->scriptb_ba + po[i];
1941 }
1942 
1943 #ifdef	SYM_CONF_GENERIC_SUPPORT
1944 /*
1945  *  Setup routine for firmware #1.
1946  */
1947 static void
1948 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1949 {
1950 	struct sym_fw1a_scr *scripta0;
1951 
1952 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1953 
1954 	/*
1955 	 *  Fill variable parts in scripts.
1956 	 */
1957 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1958 
1959 	/*
1960 	 *  Setup bus addresses used from the C code..
1961 	 */
1962 	sym_fw_setup_bus_addresses(np, fw);
1963 }
1964 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1965 
1966 /*
1967  *  Setup routine for firmware #2.
1968  */
1969 static void
1970 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1971 {
1972 	struct sym_fw2a_scr *scripta0;
1973 
1974 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1975 
1976 	/*
1977 	 *  Fill variable parts in scripts.
1978 	 */
1979 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1980 
1981 	/*
1982 	 *  Setup bus addresses used from the C code..
1983 	 */
1984 	sym_fw_setup_bus_addresses(np, fw);
1985 }
1986 
1987 /*
1988  *  Allocate firmware descriptors.
1989  */
1990 #ifdef	SYM_CONF_GENERIC_SUPPORT
1991 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1992 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1993 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1994 
1995 /*
1996  *  Find the most appropriate firmware for a chip.
1997  */
1998 static const struct sym_fw *
1999 sym_find_firmware(const struct sym_pci_chip *chip)
2000 {
2001 	if (chip->features & FE_LDSTR)
2002 		return &sym_fw2;
2003 #ifdef	SYM_CONF_GENERIC_SUPPORT
2004 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2005 		return &sym_fw1;
2006 #endif
2007 	else
2008 		return NULL;
2009 }
2010 
2011 /*
2012  *  Bind a script to physical addresses.
2013  */
2014 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2015 {
2016 	u32 opcode, new, old, tmp1, tmp2;
2017 	u32 *end, *cur;
2018 	int relocs;
2019 
2020 	cur = start;
2021 	end = start + len/4;
2022 
2023 	while (cur < end) {
2024 
2025 		opcode = *cur;
2026 
2027 		/*
2028 		 *  If we forget to change the length
2029 		 *  in scripts, a field will be
2030 		 *  padded with 0. This is an illegal
2031 		 *  command.
2032 		 */
2033 		if (opcode == 0) {
2034 			kprintf ("%s: ERROR0 IN SCRIPT at %d.\n",
2035 				sym_name(np), (int) (cur-start));
2036 			MDELAY (10000);
2037 			++cur;
2038 			continue;
2039 		}
2040 
2041 		/*
2042 		 *  We use the bogus value 0xf00ff00f ;-)
2043 		 *  to reserve data area in SCRIPTS.
2044 		 */
2045 		if (opcode == SCR_DATA_ZERO) {
2046 			*cur++ = 0;
2047 			continue;
2048 		}
2049 
2050 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2051 			kprintf ("%d:  <%x>\n", (int) (cur-start),
2052 				(unsigned)opcode);
2053 
2054 		/*
2055 		 *  We don't have to decode ALL commands
2056 		 */
2057 		switch (opcode >> 28) {
2058 		case 0xf:
2059 			/*
2060 			 *  LOAD / STORE DSA relative, don't relocate.
2061 			 */
2062 			relocs = 0;
2063 			break;
2064 		case 0xe:
2065 			/*
2066 			 *  LOAD / STORE absolute.
2067 			 */
2068 			relocs = 1;
2069 			break;
2070 		case 0xc:
2071 			/*
2072 			 *  COPY has TWO arguments.
2073 			 */
2074 			relocs = 2;
2075 			tmp1 = cur[1];
2076 			tmp2 = cur[2];
2077 			if ((tmp1 ^ tmp2) & 3) {
2078 				kprintf ("%s: ERROR1 IN SCRIPT at %d.\n",
2079 					sym_name(np), (int) (cur-start));
2080 				MDELAY (10000);
2081 			}
2082 			/*
2083 			 *  If PREFETCH feature not enabled, remove
2084 			 *  the NO FLUSH bit if present.
2085 			 */
2086 			if ((opcode & SCR_NO_FLUSH) &&
2087 			    !(np->features & FE_PFEN)) {
2088 				opcode = (opcode & ~SCR_NO_FLUSH);
2089 			}
2090 			break;
2091 		case 0x0:
2092 			/*
2093 			 *  MOVE/CHMOV (absolute address)
2094 			 */
2095 			if (!(np->features & FE_WIDE))
2096 				opcode = (opcode | OPC_MOVE);
2097 			relocs = 1;
2098 			break;
2099 		case 0x1:
2100 			/*
2101 			 *  MOVE/CHMOV (table indirect)
2102 			 */
2103 			if (!(np->features & FE_WIDE))
2104 				opcode = (opcode | OPC_MOVE);
2105 			relocs = 0;
2106 			break;
2107 		case 0x8:
2108 			/*
2109 			 *  JUMP / CALL
2110 			 *  dont't relocate if relative :-)
2111 			 */
2112 			if (opcode & 0x00800000)
2113 				relocs = 0;
2114 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2115 				relocs = 2;
2116 			else
2117 				relocs = 1;
2118 			break;
2119 		case 0x4:
2120 		case 0x5:
2121 		case 0x6:
2122 		case 0x7:
2123 			relocs = 1;
2124 			break;
2125 		default:
2126 			relocs = 0;
2127 			break;
2128 		}
2129 
2130 		/*
2131 		 *  Scriptify:) the opcode.
2132 		 */
2133 		*cur++ = cpu_to_scr(opcode);
2134 
2135 		/*
2136 		 *  If no relocation, assume 1 argument
2137 		 *  and just scriptize:) it.
2138 		 */
2139 		if (!relocs) {
2140 			*cur = cpu_to_scr(*cur);
2141 			++cur;
2142 			continue;
2143 		}
2144 
2145 		/*
2146 		 *  Otherwise performs all needed relocations.
2147 		 */
2148 		while (relocs--) {
2149 			old = *cur;
2150 
2151 			switch (old & RELOC_MASK) {
2152 			case RELOC_REGISTER:
2153 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2154 				break;
2155 			case RELOC_LABEL_A:
2156 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2157 				break;
2158 			case RELOC_LABEL_B:
2159 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2160 				break;
2161 			case RELOC_SOFTC:
2162 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2163 				break;
2164 			case 0:
2165 				/*
2166 				 *  Don't relocate a 0 address.
2167 				 *  They are mostly used for patched or
2168 				 *  script self-modified areas.
2169 				 */
2170 				if (old == 0) {
2171 					new = old;
2172 					break;
2173 				}
2174 				/* fall through */
2175 			default:
2176 				new = 0;
2177 				panic("sym_fw_bind_script: "
2178 				      "weird relocation %x\n", old);
2179 				break;
2180 			}
2181 
2182 			*cur++ = cpu_to_scr(new);
2183 		}
2184 	}
2185 }
2186 
2187 /*---------------------------------------------------------------------------*/
2188 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2189 /*---------------------------------------------------------------------------*/
2190 
2191 /*
2192  *  Function prototypes.
2193  */
2194 static void sym_save_initial_setting (hcb_p np);
2195 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2196 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2197 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2198 static void sym_chip_reset (hcb_p np);
2199 static void sym_soft_reset (hcb_p np);
2200 static void sym_start_reset (hcb_p np);
2201 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2202 static int  sym_wakeup_done (hcb_p np);
2203 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2204 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2205 static void sym_init (hcb_p np, int reason);
2206 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2207 		        u_char *fakp);
2208 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2209 			 u_char div, u_char fak);
2210 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2211 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2212 			 u_char per, u_char wide, u_char div, u_char fak);
2213 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2214 			 u_char per, u_char wide, u_char div, u_char fak);
2215 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2216 static void sym_intr (void *arg);
2217 static void sym_poll (struct cam_sim *sim);
2218 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2219 static void sym_int_sto (hcb_p np);
2220 static void sym_int_udc (hcb_p np);
2221 static void sym_int_sbmc (hcb_p np);
2222 static void sym_int_par (hcb_p np, u_short sist);
2223 static void sym_int_ma (hcb_p np);
2224 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2225 				    int task);
2226 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2227 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2228 static void sym_sir_task_recovery (hcb_p np, int num);
2229 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2230 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2231 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2232 static int  sym_show_msg (u_char * msg);
2233 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2234 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2235 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2236 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2237 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2238 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2239 static void sym_int_sir (hcb_p np);
2240 static void sym_free_ccb (hcb_p np, ccb_p cp);
2241 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2242 static ccb_p sym_alloc_ccb (hcb_p np);
2243 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2244 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2245 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2246 static int  sym_snooptest (hcb_p np);
2247 static void sym_selectclock(hcb_p np, u_char scntl3);
2248 static void sym_getclock (hcb_p np, int mult);
2249 static int  sym_getpciclock (hcb_p np);
2250 static void sym_complete_ok (hcb_p np, ccb_p cp);
2251 static void sym_complete_error (hcb_p np, ccb_p cp);
2252 static void sym_callout (void *arg);
2253 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2254 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2255 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2256 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2257 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2258 				      ccb_p cp);
2259 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2260 					bus_dma_segment_t *psegs, int nsegs);
2261 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2262 				    bus_dma_segment_t *psegs, int nsegs);
2263 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2264 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2265 			      struct ccb_trans_settings *cts);
2266 static void sym_update_dflags(hcb_p np, u_char *flags,
2267 			      struct ccb_trans_settings *cts);
2268 
2269 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2270 static int  sym_pci_probe (device_t dev);
2271 static int  sym_pci_attach (device_t dev);
2272 
2273 static void sym_pci_free (hcb_p np);
2274 static int  sym_cam_attach (hcb_p np);
2275 static void sym_cam_free (hcb_p np);
2276 
2277 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2278 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2279 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2280 
2281 /*
2282  *  Print something which allows to retrieve the controller type,
2283  *  unit, target, lun concerned by a kernel message.
2284  */
2285 static void PRINT_TARGET (hcb_p np, int target)
2286 {
2287 	kprintf ("%s:%d:", sym_name(np), target);
2288 }
2289 
2290 static void PRINT_LUN(hcb_p np, int target, int lun)
2291 {
2292 	kprintf ("%s:%d:%d:", sym_name(np), target, lun);
2293 }
2294 
2295 static void PRINT_ADDR (ccb_p cp)
2296 {
2297 	if (cp && cp->cam_ccb)
2298 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2299 }
2300 
2301 /*
2302  *  Take into account this ccb in the freeze count.
2303  */
2304 static void sym_freeze_cam_ccb(union ccb *ccb)
2305 {
2306 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2307 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2308 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2309 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  *  Set the status field of a CAM CCB.
2316  */
2317 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2318 {
2319 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2320 	ccb->ccb_h.status |= status;
2321 }
2322 
2323 /*
2324  *  Get the status field of a CAM CCB.
2325  */
2326 static __inline int sym_get_cam_status(union ccb *ccb)
2327 {
2328 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2329 }
2330 
2331 /*
2332  *  Enqueue a CAM CCB.
2333  */
2334 static void sym_enqueue_cam_ccb(ccb_p cp)
2335 {
2336 	hcb_p np;
2337 	union ccb *ccb;
2338 
2339 	ccb = cp->cam_ccb;
2340 	np = (hcb_p) cp->arg;
2341 
2342 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2343 	ccb->ccb_h.status = CAM_REQ_INPROG;
2344 
2345 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2346 			(caddr_t) ccb);
2347 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2348 	ccb->ccb_h.sym_hcb_ptr = np;
2349 
2350 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2351 }
2352 
2353 /*
2354  *  Complete a pending CAM CCB.
2355  */
2356 static void _sym_xpt_done(hcb_p np, union ccb *ccb)
2357 {
2358 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2359 
2360 	KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
2361 			("%s: status=CAM_SIM_QUEUED", __func__));
2362 
2363 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2364 		sym_freeze_cam_ccb(ccb);
2365 	xpt_done(ccb);
2366 }
2367 
2368 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2369 {
2370 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2371 
2372 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2373 		callout_stop(&cp->ch);
2374 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2375 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2376 		ccb->ccb_h.sym_hcb_ptr = NULL;
2377 	}
2378 	_sym_xpt_done(np, ccb);
2379 }
2380 
2381 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2382 {
2383 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2384 
2385 	sym_set_cam_status(ccb, cam_status);
2386 	_sym_xpt_done(np, ccb);
2387 }
2388 
2389 /*
2390  *  SYMBIOS chip clock divisor table.
2391  *
2392  *  Divisors are multiplied by 10,000,000 in order to make
2393  *  calculations more simple.
2394  */
2395 #define _5M 5000000
2396 static const u32 div_10M[] =
2397 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2398 
2399 /*
2400  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2401  *  128 transfers. All chips support at least 16 transfers
2402  *  bursts. The 825A, 875 and 895 chips support bursts of up
2403  *  to 128 transfers and the 895A and 896 support bursts of up
2404  *  to 64 transfers. All other chips support up to 16
2405  *  transfers bursts.
2406  *
2407  *  For PCI 32 bit data transfers each transfer is a DWORD.
2408  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2409  *
2410  *  We use log base 2 (burst length) as internal code, with
2411  *  value 0 meaning "burst disabled".
2412  */
2413 
2414 /*
2415  *  Burst length from burst code.
2416  */
2417 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2418 
2419 /*
2420  *  Burst code from io register bits.
2421  */
2422 #define burst_code(dmode, ctest4, ctest5) \
2423 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2424 
2425 /*
2426  *  Set initial io register bits from burst code.
2427  */
2428 static __inline void sym_init_burst(hcb_p np, u_char bc)
2429 {
2430 	np->rv_ctest4	&= ~0x80;
2431 	np->rv_dmode	&= ~(0x3 << 6);
2432 	np->rv_ctest5	&= ~0x4;
2433 
2434 	if (!bc) {
2435 		np->rv_ctest4	|= 0x80;
2436 	}
2437 	else {
2438 		--bc;
2439 		np->rv_dmode	|= ((bc & 0x3) << 6);
2440 		np->rv_ctest5	|= (bc & 0x4);
2441 	}
2442 }
2443 
2444 
2445 /*
2446  * Print out the list of targets that have some flag disabled by user.
2447  */
2448 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2449 {
2450 	int cnt;
2451 	int i;
2452 
2453 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2454 		if (i == np->myaddr)
2455 			continue;
2456 		if (np->target[i].usrflags & mask) {
2457 			if (!cnt++)
2458 				kprintf("%s: %s disabled for targets",
2459 					sym_name(np), msg);
2460 			kprintf(" %d", i);
2461 		}
2462 	}
2463 	if (cnt)
2464 		kprintf(".\n");
2465 }
2466 
2467 /*
2468  *  Save initial settings of some IO registers.
2469  *  Assumed to have been set by BIOS.
2470  *  We cannot reset the chip prior to reading the
2471  *  IO registers, since informations will be lost.
2472  *  Since the SCRIPTS processor may be running, this
2473  *  is not safe on paper, but it seems to work quite
2474  *  well. :)
2475  */
2476 static void sym_save_initial_setting (hcb_p np)
2477 {
2478 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2479 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2480 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2481 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2482 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2483 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2484 	np->sv_gpcntl	= INB(nc_gpcntl);
2485 	np->sv_stest1	= INB(nc_stest1);
2486 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2487 	np->sv_stest4	= INB(nc_stest4);
2488 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2489 		np->sv_scntl4	= INB(nc_scntl4);
2490 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2491 	}
2492 	else
2493 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2494 }
2495 
2496 /*
2497  *  Prepare io register values used by sym_init() according
2498  *  to selected and supported features.
2499  */
2500 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2501 {
2502 	u_char	burst_max;
2503 	u32	period;
2504 	int i;
2505 
2506 	/*
2507 	 *  Wide ?
2508 	 */
2509 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2510 
2511 	/*
2512 	 *  Get the frequency of the chip's clock.
2513 	 */
2514 	if	(np->features & FE_QUAD)
2515 		np->multiplier	= 4;
2516 	else if	(np->features & FE_DBLR)
2517 		np->multiplier	= 2;
2518 	else
2519 		np->multiplier	= 1;
2520 
2521 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2522 	np->clock_khz	*= np->multiplier;
2523 
2524 	if (np->clock_khz != 40000)
2525 		sym_getclock(np, np->multiplier);
2526 
2527 	/*
2528 	 * Divisor to be used for async (timer pre-scaler).
2529 	 */
2530 	i = np->clock_divn - 1;
2531 	while (--i >= 0) {
2532 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2533 			++i;
2534 			break;
2535 		}
2536 	}
2537 	np->rv_scntl3 = i+1;
2538 
2539 	/*
2540 	 * The C1010 uses hardwired divisors for async.
2541 	 * So, we just throw away, the async. divisor.:-)
2542 	 */
2543 	if (np->features & FE_C10)
2544 		np->rv_scntl3 = 0;
2545 
2546 	/*
2547 	 * Minimum synchronous period factor supported by the chip.
2548 	 * Btw, 'period' is in tenths of nanoseconds.
2549 	 */
2550 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2551 	if	(period <= 250)		np->minsync = 10;
2552 	else if	(period <= 303)		np->minsync = 11;
2553 	else if	(period <= 500)		np->minsync = 12;
2554 	else				np->minsync = (period + 40 - 1) / 40;
2555 
2556 	/*
2557 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2558 	 */
2559 	if	(np->minsync < 25 &&
2560 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2561 		np->minsync = 25;
2562 	else if	(np->minsync < 12 &&
2563 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2564 		np->minsync = 12;
2565 
2566 	/*
2567 	 * Maximum synchronous period factor supported by the chip.
2568 	 */
2569 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2570 	np->maxsync = period > 2540 ? 254 : period / 10;
2571 
2572 	/*
2573 	 * If chip is a C1010, guess the sync limits in DT mode.
2574 	 */
2575 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2576 		if (np->clock_khz == 160000) {
2577 			np->minsync_dt = 9;
2578 			np->maxsync_dt = 50;
2579 			np->maxoffs_dt = 62;
2580 		}
2581 	}
2582 
2583 	/*
2584 	 *  64 bit addressing  (895A/896/1010) ?
2585 	 */
2586 	if (np->features & FE_DAC)
2587 #ifdef __LP64__
2588 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2589 #else
2590 		np->rv_ccntl1	|= (DDAC);
2591 #endif
2592 
2593 	/*
2594 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2595   	 */
2596 	if (np->features & FE_NOPM)
2597 		np->rv_ccntl0	|= (ENPMJ);
2598 
2599  	/*
2600 	 *  C1010 Errata.
2601 	 *  In dual channel mode, contention occurs if internal cycles
2602 	 *  are used. Disable internal cycles.
2603 	 */
2604 	if (np->device_id == PCI_ID_LSI53C1010 &&
2605 	    np->revision_id < 0x2)
2606 		np->rv_ccntl0	|=  DILS;
2607 
2608 	/*
2609 	 *  Select burst length (dwords)
2610 	 */
2611 	burst_max	= SYM_SETUP_BURST_ORDER;
2612 	if (burst_max == 255)
2613 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2614 				       np->sv_ctest5);
2615 	if (burst_max > 7)
2616 		burst_max = 7;
2617 	if (burst_max > np->maxburst)
2618 		burst_max = np->maxburst;
2619 
2620 	/*
2621 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2622 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2623 	 *  based transactions on LOAD/STORE instructions. So we have
2624 	 *  to prevent these chips from using such PCI transactions in
2625 	 *  this driver. The generic ncr driver that does not use
2626 	 *  LOAD/STORE instructions does not need this work-around.
2627 	 */
2628 	if ((np->device_id == PCI_ID_SYM53C810 &&
2629 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2630 	    (np->device_id == PCI_ID_SYM53C860 &&
2631 	     np->revision_id <= 0x1))
2632 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2633 
2634 	/*
2635 	 *  Select all supported special features.
2636 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2637 	 *  does not help, but burst op fetch (BOF) does.
2638 	 *  Disabling PFEN makes sure BOF will be used.
2639 	 */
2640 	if (np->features & FE_ERL)
2641 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2642 	if (np->features & FE_BOF)
2643 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2644 	if (np->features & FE_ERMP)
2645 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2646 #if 1
2647 	if ((np->features & FE_PFEN) && !np->ram_ba)
2648 #else
2649 	if (np->features & FE_PFEN)
2650 #endif
2651 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2652 	if (np->features & FE_CLSE)
2653 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2654 	if (np->features & FE_WRIE)
2655 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2656 	if (np->features & FE_DFS)
2657 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2658 
2659 	/*
2660 	 *  Select some other
2661 	 */
2662 	if (SYM_SETUP_PCI_PARITY)
2663 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2664 	if (SYM_SETUP_SCSI_PARITY)
2665 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2666 
2667 	/*
2668 	 *  Get parity checking, host ID and verbose mode from NVRAM
2669 	 */
2670 	np->myaddr = 255;
2671 	sym_nvram_setup_host (np, nvram);
2672 
2673 	/*
2674 	 *  Get SCSI addr of host adapter (set by bios?).
2675 	 */
2676 	if (np->myaddr == 255) {
2677 		np->myaddr = INB(nc_scid) & 0x07;
2678 		if (!np->myaddr)
2679 			np->myaddr = SYM_SETUP_HOST_ID;
2680 	}
2681 
2682 	/*
2683 	 *  Prepare initial io register bits for burst length
2684 	 */
2685 	sym_init_burst(np, burst_max);
2686 
2687 	/*
2688 	 *  Set SCSI BUS mode.
2689 	 *  - LVD capable chips (895/895A/896/1010) report the
2690 	 *    current BUS mode through the STEST4 IO register.
2691 	 *  - For previous generation chips (825/825A/875),
2692 	 *    user has to tell us how to check against HVD,
2693 	 *    since a 100% safe algorithm is not possible.
2694 	 */
2695 	np->scsi_mode = SMODE_SE;
2696 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2697 		np->scsi_mode = (np->sv_stest4 & SMODE);
2698 	else if	(np->features & FE_DIFF) {
2699 		if (SYM_SETUP_SCSI_DIFF == 1) {
2700 			if (np->sv_scntl3) {
2701 				if (np->sv_stest2 & 0x20)
2702 					np->scsi_mode = SMODE_HVD;
2703 			}
2704 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2705 				if (!(INB(nc_gpreg) & 0x08))
2706 					np->scsi_mode = SMODE_HVD;
2707 			}
2708 		}
2709 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2710 			np->scsi_mode = SMODE_HVD;
2711 	}
2712 	if (np->scsi_mode == SMODE_HVD)
2713 		np->rv_stest2 |= 0x20;
2714 
2715 	/*
2716 	 *  Set LED support from SCRIPTS.
2717 	 *  Ignore this feature for boards known to use a
2718 	 *  specific GPIO wiring and for the 895A, 896
2719 	 *  and 1010 that drive the LED directly.
2720 	 */
2721 	if ((SYM_SETUP_SCSI_LED ||
2722 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2723 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2724 	       np->device_id == PCI_ID_SYM53C895))) &&
2725 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2726 		np->features |= FE_LED0;
2727 
2728 	/*
2729 	 *  Set irq mode.
2730 	 */
2731 	switch(SYM_SETUP_IRQ_MODE & 3) {
2732 	case 2:
2733 		np->rv_dcntl	|= IRQM;
2734 		break;
2735 	case 1:
2736 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2737 		break;
2738 	default:
2739 		break;
2740 	}
2741 
2742 	/*
2743 	 *  Configure targets according to driver setup.
2744 	 *  If NVRAM present get targets setup from NVRAM.
2745 	 */
2746 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2747 		tcb_p tp = &np->target[i];
2748 
2749 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2750 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2751 		tp->tinfo.user.period = np->minsync;
2752 		if (np->features & FE_ULTRA3)
2753 			tp->tinfo.user.period = np->minsync_dt;
2754 		tp->tinfo.user.offset = np->maxoffs;
2755 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2756 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2757 		tp->usrtags = SYM_SETUP_MAX_TAG;
2758 
2759 		sym_nvram_setup_target (np, i, nvram);
2760 
2761 		/*
2762 		 *  For now, guess PPR/DT support from the period
2763 		 *  and BUS width.
2764 		 */
2765 		if (np->features & FE_ULTRA3) {
2766 			if (tp->tinfo.user.period <= 9	&&
2767 			    tp->tinfo.user.width == BUS_16_BIT) {
2768 				tp->tinfo.user.options |= PPR_OPT_DT;
2769 				tp->tinfo.user.offset   = np->maxoffs_dt;
2770 				tp->tinfo.user.spi_version = 3;
2771 			}
2772 		}
2773 
2774 		if (!tp->usrtags)
2775 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2776 	}
2777 
2778 	/*
2779 	 *  Let user know about the settings.
2780 	 */
2781 	i = nvram->type;
2782 	kprintf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2783 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2784 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2785 		np->myaddr,
2786 		(np->features & FE_ULTRA3) ? 80 :
2787 		(np->features & FE_ULTRA2) ? 40 :
2788 		(np->features & FE_ULTRA)  ? 20 : 10,
2789 		sym_scsi_bus_mode(np->scsi_mode),
2790 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2791 	/*
2792 	 *  Tell him more on demand.
2793 	 */
2794 	if (sym_verbose) {
2795 		kprintf("%s: %s IRQ line driver%s\n",
2796 			sym_name(np),
2797 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2798 			np->ram_ba ? ", using on-chip SRAM" : "");
2799 		kprintf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2800 		if (np->features & FE_NOPM)
2801 			kprintf("%s: handling phase mismatch from SCRIPTS.\n",
2802 			       sym_name(np));
2803 	}
2804 	/*
2805 	 *  And still more.
2806 	 */
2807 	if (sym_verbose > 1) {
2808 		kprintf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2809 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2810 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2811 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2812 
2813 		kprintf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2814 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2815 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2816 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2817 	}
2818 	/*
2819 	 *  Let user be aware of targets that have some disable flags set.
2820 	 */
2821 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2822 	if (sym_verbose)
2823 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2824 				       "SCAN FOR LUNS");
2825 
2826 	return 0;
2827 }
2828 
2829 /*
2830  *  Prepare the next negotiation message if needed.
2831  *
2832  *  Fill in the part of message buffer that contains the
2833  *  negotiation and the nego_status field of the CCB.
2834  *  Returns the size of the message in bytes.
2835  */
2836 
2837 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2838 {
2839 	tcb_p tp = &np->target[cp->target];
2840 	int msglen = 0;
2841 
2842 	/*
2843 	 *  Early C1010 chips need a work-around for DT
2844 	 *  data transfer to work.
2845 	 */
2846 	if (!(np->features & FE_U3EN))
2847 		tp->tinfo.goal.options = 0;
2848 	/*
2849 	 *  negotiate using PPR ?
2850 	 */
2851 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2852 		nego = NS_PPR;
2853 	/*
2854 	 *  negotiate wide transfers ?
2855 	 */
2856 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2857 		nego = NS_WIDE;
2858 	/*
2859 	 *  negotiate synchronous transfers?
2860 	 */
2861 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2862 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2863 		nego = NS_SYNC;
2864 
2865 	switch (nego) {
2866 	case NS_SYNC:
2867 		msgptr[msglen++] = M_EXTENDED;
2868 		msgptr[msglen++] = 3;
2869 		msgptr[msglen++] = M_X_SYNC_REQ;
2870 		msgptr[msglen++] = tp->tinfo.goal.period;
2871 		msgptr[msglen++] = tp->tinfo.goal.offset;
2872 		break;
2873 	case NS_WIDE:
2874 		msgptr[msglen++] = M_EXTENDED;
2875 		msgptr[msglen++] = 2;
2876 		msgptr[msglen++] = M_X_WIDE_REQ;
2877 		msgptr[msglen++] = tp->tinfo.goal.width;
2878 		break;
2879 	case NS_PPR:
2880 		msgptr[msglen++] = M_EXTENDED;
2881 		msgptr[msglen++] = 6;
2882 		msgptr[msglen++] = M_X_PPR_REQ;
2883 		msgptr[msglen++] = tp->tinfo.goal.period;
2884 		msgptr[msglen++] = 0;
2885 		msgptr[msglen++] = tp->tinfo.goal.offset;
2886 		msgptr[msglen++] = tp->tinfo.goal.width;
2887 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2888 		break;
2889 	}
2890 
2891 	cp->nego_status = nego;
2892 
2893 	if (nego) {
2894 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2895 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2896 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2897 					  nego == NS_WIDE ? "wide msgout" :
2898 					  "ppr msgout", msgptr);
2899 		}
2900 	}
2901 
2902 	return msglen;
2903 }
2904 
2905 /*
2906  *  Insert a job into the start queue.
2907  */
2908 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2909 {
2910 	u_short	qidx;
2911 
2912 #ifdef SYM_CONF_IARB_SUPPORT
2913 	/*
2914 	 *  If the previously queued CCB is not yet done,
2915 	 *  set the IARB hint. The SCRIPTS will go with IARB
2916 	 *  for this job when starting the previous one.
2917 	 *  We leave devices a chance to win arbitration by
2918 	 *  not using more than 'iarb_max' consecutive
2919 	 *  immediate arbitrations.
2920 	 */
2921 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2922 		np->last_cp->host_flags |= HF_HINT_IARB;
2923 		++np->iarb_count;
2924 	}
2925 	else
2926 		np->iarb_count = 0;
2927 	np->last_cp = cp;
2928 #endif
2929 
2930 	/*
2931 	 *  Insert first the idle task and then our job.
2932 	 *  The MB should ensure proper ordering.
2933 	 */
2934 	qidx = np->squeueput + 2;
2935 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2936 
2937 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2938 	MEMORY_BARRIER();
2939 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2940 
2941 	np->squeueput = qidx;
2942 
2943 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2944 		kprintf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2945 
2946 	/*
2947 	 *  Script processor may be waiting for reselect.
2948 	 *  Wake it up.
2949 	 */
2950 	MEMORY_BARRIER();
2951 	OUTB (nc_istat, SIGP|np->istat_sem);
2952 }
2953 
2954 
2955 /*
2956  *  Soft reset the chip.
2957  *
2958  *  Raising SRST when the chip is running may cause
2959  *  problems on dual function chips (see below).
2960  *  On the other hand, LVD devices need some delay
2961  *  to settle and report actual BUS mode in STEST4.
2962  */
2963 static void sym_chip_reset (hcb_p np)
2964 {
2965 	OUTB (nc_istat, SRST);
2966 	UDELAY (10);
2967 	OUTB (nc_istat, 0);
2968 	UDELAY(2000);	/* For BUS MODE to settle */
2969 }
2970 
2971 /*
2972  *  Soft reset the chip.
2973  *
2974  *  Some 896 and 876 chip revisions may hang-up if we set
2975  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2976  *  are running.
2977  *  So, we need to abort the current operation prior to
2978  *  soft resetting the chip.
2979  */
2980 static void sym_soft_reset (hcb_p np)
2981 {
2982 	u_char istat;
2983 	int i;
2984 
2985 	OUTB (nc_istat, CABRT);
2986 	for (i = 1000000 ; i ; --i) {
2987 		istat = INB (nc_istat);
2988 		if (istat & SIP) {
2989 			INW (nc_sist);
2990 			continue;
2991 		}
2992 		if (istat & DIP) {
2993 			OUTB (nc_istat, 0);
2994 			INB (nc_dstat);
2995 			break;
2996 		}
2997 	}
2998 	if (!i)
2999 		kprintf("%s: unable to abort current chip operation.\n",
3000 			sym_name(np));
3001 	sym_chip_reset (np);
3002 }
3003 
3004 /*
3005  *  Start reset process.
3006  *
3007  *  The interrupt handler will reinitialize the chip.
3008  */
3009 static void sym_start_reset(hcb_p np)
3010 {
3011 	(void) sym_reset_scsi_bus(np, 1);
3012 }
3013 
3014 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3015 {
3016 	u32 term;
3017 	int retv = 0;
3018 
3019 	sym_soft_reset(np);	/* Soft reset the chip */
3020 	if (enab_int)
3021 		OUTW (nc_sien, RST);
3022 	/*
3023 	 *  Enable Tolerant, reset IRQD if present and
3024 	 *  properly set IRQ mode, prior to resetting the bus.
3025 	 */
3026 	OUTB (nc_stest3, TE);
3027 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3028 	OUTB (nc_scntl1, CRST);
3029 	UDELAY (200);
3030 
3031 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3032 		goto out;
3033 	/*
3034 	 *  Check for no terminators or SCSI bus shorts to ground.
3035 	 *  Read SCSI data bus, data parity bits and control signals.
3036 	 *  We are expecting RESET to be TRUE and other signals to be
3037 	 *  FALSE.
3038 	 */
3039 	term =	INB(nc_sstat0);
3040 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3041 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3042 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3043 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3044 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3045 
3046 	if (!(np->features & FE_WIDE))
3047 		term &= 0x3ffff;
3048 
3049 	if (term != (2<<7)) {
3050 		kprintf("%s: suspicious SCSI data while resetting the BUS.\n",
3051 			sym_name(np));
3052 		kprintf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3053 			"0x%lx, expecting 0x%lx\n",
3054 			sym_name(np),
3055 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3056 			(u_long)term, (u_long)(2<<7));
3057 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3058 			retv = 1;
3059 	}
3060 out:
3061 	OUTB (nc_scntl1, 0);
3062 	/* MDELAY(100); */
3063 	return retv;
3064 }
3065 
3066 /*
3067  *  The chip may have completed jobs. Look at the DONE QUEUE.
3068  *
3069  *  On architectures that may reorder LOAD/STORE operations,
3070  *  a memory barrier may be needed after the reading of the
3071  *  so-called `flag' and prior to dealing with the data.
3072  */
3073 static int sym_wakeup_done (hcb_p np)
3074 {
3075 	ccb_p cp;
3076 	int i, n;
3077 	u32 dsa;
3078 
3079 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3080 
3081 	n = 0;
3082 	i = np->dqueueget;
3083 	while (1) {
3084 		dsa = scr_to_cpu(np->dqueue[i]);
3085 		if (!dsa)
3086 			break;
3087 		np->dqueue[i] = 0;
3088 		if ((i = i+2) >= MAX_QUEUE*2)
3089 			i = 0;
3090 
3091 		cp = sym_ccb_from_dsa(np, dsa);
3092 		if (cp) {
3093 			MEMORY_BARRIER();
3094 			sym_complete_ok (np, cp);
3095 			++n;
3096 		}
3097 		else
3098 			kprintf ("%s: bad DSA (%x) in done queue.\n",
3099 				sym_name(np), (u_int) dsa);
3100 	}
3101 	np->dqueueget = i;
3102 
3103 	return n;
3104 }
3105 
3106 /*
3107  *  Complete all active CCBs with error.
3108  *  Used on CHIP/SCSI RESET.
3109  */
3110 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3111 {
3112 	/*
3113 	 *  Move all active CCBs to the COMP queue
3114 	 *  and flush this queue.
3115 	 */
3116 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3117 	sym_que_init(&np->busy_ccbq);
3118 	sym_flush_comp_queue(np, cam_status);
3119 }
3120 
3121 /*
3122  *  Start chip.
3123  *
3124  *  'reason' means:
3125  *     0: initialisation.
3126  *     1: SCSI BUS RESET delivered or received.
3127  *     2: SCSI BUS MODE changed.
3128  */
3129 static void sym_init (hcb_p np, int reason)
3130 {
3131  	int	i;
3132 	u32	phys;
3133 
3134 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3135 
3136  	/*
3137 	 *  Reset chip if asked, otherwise just clear fifos.
3138  	 */
3139 	if (reason == 1)
3140 		sym_soft_reset(np);
3141 	else {
3142 		OUTB (nc_stest3, TE|CSF);
3143 		OUTONB (nc_ctest3, CLF);
3144 	}
3145 
3146 	/*
3147 	 *  Clear Start Queue
3148 	 */
3149 	phys = np->squeue_ba;
3150 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3151 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3152 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3153 	}
3154 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3155 
3156 	/*
3157 	 *  Start at first entry.
3158 	 */
3159 	np->squeueput = 0;
3160 
3161 	/*
3162 	 *  Clear Done Queue
3163 	 */
3164 	phys = np->dqueue_ba;
3165 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3166 		np->dqueue[i]   = 0;
3167 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3168 	}
3169 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3170 
3171 	/*
3172 	 *  Start at first entry.
3173 	 */
3174 	np->dqueueget = 0;
3175 
3176 	/*
3177 	 *  Install patches in scripts.
3178 	 *  This also let point to first position the start
3179 	 *  and done queue pointers used from SCRIPTS.
3180 	 */
3181 	np->fw_patch(np);
3182 
3183 	/*
3184 	 *  Wakeup all pending jobs.
3185 	 */
3186 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3187 
3188 	/*
3189 	 *  Init chip.
3190 	 */
3191 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3192 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3193 
3194 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3195 					/*  full arb., ena parity, par->ATN  */
3196 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3197 
3198 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3199 
3200 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3201 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3202 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3203 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3204 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3205 
3206 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3207 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3208 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3209 
3210 	/* Extended Sreq/Sack filtering not supported on the C10 */
3211 	if (np->features & FE_C10)
3212 		OUTB (nc_stest2, np->rv_stest2);
3213 	else
3214 		OUTB (nc_stest2, EXT|np->rv_stest2);
3215 
3216 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3217 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3218 
3219 	/*
3220 	 *  For now, disable AIP generation on C1010-66.
3221 	 */
3222 	if (np->device_id == PCI_ID_LSI53C1010_2)
3223 		OUTB (nc_aipcntl1, DISAIP);
3224 
3225 	/*
3226 	 *  C10101 Errata.
3227 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3228 	 *  STEST1 register to disable SGE. We probably should do
3229 	 *  that from SCRIPTS for each selection/reselection, but
3230 	 *  I just don't want. :)
3231 	 */
3232 	if (np->device_id == PCI_ID_LSI53C1010 &&
3233 	    /* np->revision_id < 0xff */ 1)
3234 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3235 
3236 	/*
3237 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3238 	 *  Disable overlapped arbitration for some dual function devices,
3239 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3240 	 */
3241 	if (np->device_id == PCI_ID_SYM53C875)
3242 		OUTB (nc_ctest0, (1<<5));
3243 	else if (np->device_id == PCI_ID_SYM53C896)
3244 		np->rv_ccntl0 |= DPR;
3245 
3246 	/*
3247 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3248 	 *  and/or hardware phase mismatch, since only such chips
3249 	 *  seem to support those IO registers.
3250 	 */
3251 	if (np->features & (FE_DAC|FE_NOPM)) {
3252 		OUTB (nc_ccntl0, np->rv_ccntl0);
3253 		OUTB (nc_ccntl1, np->rv_ccntl1);
3254 	}
3255 
3256 	/*
3257 	 *  If phase mismatch handled by scripts (895A/896/1010),
3258 	 *  set PM jump addresses.
3259 	 */
3260 	if (np->features & FE_NOPM) {
3261 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3262 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3263 	}
3264 
3265 	/*
3266 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3267 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3268 	 */
3269 	if (np->features & FE_LED0)
3270 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3271 	else if (np->features & FE_LEDC)
3272 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3273 
3274 	/*
3275 	 *      enable ints
3276 	 */
3277 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3278 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3279 
3280 	/*
3281 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3282 	 *  Try to eat the spurious SBMC interrupt that may occur when
3283 	 *  we reset the chip but not the SCSI BUS (at initialization).
3284 	 */
3285 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3286 		OUTONW (nc_sien, SBMC);
3287 		if (reason == 0) {
3288 			MDELAY(100);
3289 			INW (nc_sist);
3290 		}
3291 		np->scsi_mode = INB (nc_stest4) & SMODE;
3292 	}
3293 
3294 	/*
3295 	 *  Fill in target structure.
3296 	 *  Reinitialize usrsync.
3297 	 *  Reinitialize usrwide.
3298 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3299 	 */
3300 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3301 		tcb_p tp = &np->target[i];
3302 
3303 		tp->to_reset  = 0;
3304 		tp->head.sval = 0;
3305 		tp->head.wval = np->rv_scntl3;
3306 		tp->head.uval = 0;
3307 
3308 		tp->tinfo.current.period = 0;
3309 		tp->tinfo.current.offset = 0;
3310 		tp->tinfo.current.width  = BUS_8_BIT;
3311 		tp->tinfo.current.options = 0;
3312 	}
3313 
3314 	/*
3315 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3316 	 *  and start script processor.
3317 	 */
3318 	if (np->ram_ba) {
3319 		if (sym_verbose > 1)
3320 			kprintf ("%s: Downloading SCSI SCRIPTS.\n",
3321 				sym_name(np));
3322 		if (np->ram_ws == 8192) {
3323 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3324 			OUTL (nc_mmws, np->scr_ram_seg);
3325 			OUTL (nc_mmrs, np->scr_ram_seg);
3326 			OUTL (nc_sfs,  np->scr_ram_seg);
3327 			phys = SCRIPTB_BA (np, start64);
3328 		}
3329 		else
3330 			phys = SCRIPTA_BA (np, init);
3331 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3332 	}
3333 	else
3334 		phys = SCRIPTA_BA (np, init);
3335 
3336 	np->istat_sem = 0;
3337 
3338 	OUTL (nc_dsa, np->hcb_ba);
3339 	OUTL_DSP (phys);
3340 
3341 	/*
3342 	 *  Notify the XPT about the RESET condition.
3343 	 */
3344 	if (reason != 0)
3345 		xpt_async(AC_BUS_RESET, np->path, NULL);
3346 }
3347 
3348 /*
3349  *  Get clock factor and sync divisor for a given
3350  *  synchronous factor period.
3351  */
3352 static int
3353 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3354 {
3355 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3356 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3357 	u32	fak;			/* Sync factor in sxfer		*/
3358 	u32	per;			/* Period in tenths of ns	*/
3359 	u32	kpc;			/* (per * clk)			*/
3360 	int	ret;
3361 
3362 	/*
3363 	 *  Compute the synchronous period in tenths of nano-seconds
3364 	 */
3365 	if (dt && sfac <= 9)	per = 125;
3366 	else if	(sfac <= 10)	per = 250;
3367 	else if	(sfac == 11)	per = 303;
3368 	else if	(sfac == 12)	per = 500;
3369 	else			per = 40 * sfac;
3370 	ret = per;
3371 
3372 	kpc = per * clk;
3373 	if (dt)
3374 		kpc <<= 1;
3375 
3376 	/*
3377 	 *  For earliest C10 revision 0, we cannot use extra
3378 	 *  clocks for the setting of the SCSI clocking.
3379 	 *  Note that this limits the lowest sync data transfer
3380 	 *  to 5 Mega-transfers per second and may result in
3381 	 *  using higher clock divisors.
3382 	 */
3383 #if 1
3384 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3385 		/*
3386 		 *  Look for the lowest clock divisor that allows an
3387 		 *  output speed not faster than the period.
3388 		 */
3389 		while (div > 0) {
3390 			--div;
3391 			if (kpc > (div_10M[div] << 2)) {
3392 				++div;
3393 				break;
3394 			}
3395 		}
3396 		fak = 0;			/* No extra clocks */
3397 		if (div == np->clock_divn) {	/* Are we too fast ? */
3398 			ret = -1;
3399 		}
3400 		*divp = div;
3401 		*fakp = fak;
3402 		return ret;
3403 	}
3404 #endif
3405 
3406 	/*
3407 	 *  Look for the greatest clock divisor that allows an
3408 	 *  input speed faster than the period.
3409 	 */
3410 	while (div-- > 0)
3411 		if (kpc >= (div_10M[div] << 2)) break;
3412 
3413 	/*
3414 	 *  Calculate the lowest clock factor that allows an output
3415 	 *  speed not faster than the period, and the max output speed.
3416 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3417 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3418 	 */
3419 	if (dt) {
3420 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3421 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3422 	}
3423 	else {
3424 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3425 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3426 	}
3427 
3428 	/*
3429 	 *  Check against our hardware limits, or bugs :).
3430 	 */
3431 	if (fak < 0)	{fak = 0; ret = -1;}
3432 	if (fak > 2)	{fak = 2; ret = -1;}
3433 
3434 	/*
3435 	 *  Compute and return sync parameters.
3436 	 */
3437 	*divp = div;
3438 	*fakp = fak;
3439 
3440 	return ret;
3441 }
3442 
3443 /*
3444  *  Tell the SCSI layer about the new transfer parameters.
3445  */
3446 static void
3447 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3448 {
3449 	struct ccb_trans_settings *cts;
3450 	struct cam_path *path;
3451 	int sts;
3452 	tcb_p tp = &np->target[target];
3453 
3454 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3455 	                      CAM_LUN_WILDCARD);
3456 	if (sts != CAM_REQ_CMP)
3457 		return;
3458 
3459 	cts = &xpt_alloc_ccb()->cts;
3460 
3461 #define	cts__scsi (cts->proto_specific.scsi)
3462 #define	cts__spi  (cts->xport_specific.spi)
3463 
3464 	cts->type      = CTS_TYPE_CURRENT_SETTINGS;
3465 	cts->protocol  = PROTO_SCSI;
3466 	cts->transport = XPORT_SPI;
3467 	cts->protocol_version  = tp->tinfo.current.scsi_version;
3468 	cts->transport_version = tp->tinfo.current.spi_version;
3469 
3470 	cts__spi.valid = spi_valid;
3471 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3472 		cts__spi.sync_period = tp->tinfo.current.period;
3473 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3474 		cts__spi.sync_offset = tp->tinfo.current.offset;
3475 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3476 		cts__spi.bus_width   = tp->tinfo.current.width;
3477 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3478 		cts__spi.ppr_options = tp->tinfo.current.options;
3479 #undef cts__spi
3480 #undef cts__scsi
3481 	xpt_setup_ccb(&cts->ccb_h, path, /*priority*/1);
3482 	xpt_async(AC_TRANSFER_NEG, path, cts);
3483 	xpt_free_path(path);
3484 	xpt_free_ccb(&cts->ccb_h);
3485 }
3486 
3487 #define SYM_SPI_VALID_WDTR		\
3488 	CTS_SPI_VALID_BUS_WIDTH |	\
3489 	CTS_SPI_VALID_SYNC_RATE |	\
3490 	CTS_SPI_VALID_SYNC_OFFSET
3491 #define SYM_SPI_VALID_SDTR		\
3492 	CTS_SPI_VALID_SYNC_RATE |	\
3493 	CTS_SPI_VALID_SYNC_OFFSET
3494 #define SYM_SPI_VALID_PPR		\
3495 	CTS_SPI_VALID_PPR_OPTIONS |	\
3496 	CTS_SPI_VALID_BUS_WIDTH |	\
3497 	CTS_SPI_VALID_SYNC_RATE |	\
3498 	CTS_SPI_VALID_SYNC_OFFSET
3499 
3500 /*
3501  *  We received a WDTR.
3502  *  Let everything be aware of the changes.
3503  */
3504 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3505 {
3506 	tcb_p tp = &np->target[cp->target];
3507 
3508 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3509 
3510 	/*
3511 	 *  Tell the SCSI layer about the new transfer parameters.
3512 	 */
3513 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3514 	tp->tinfo.current.offset = 0;
3515 	tp->tinfo.current.period = 0;
3516 	tp->tinfo.current.options = 0;
3517 
3518 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3519 }
3520 
3521 /*
3522  *  We received a SDTR.
3523  *  Let everything be aware of the changes.
3524  */
3525 static void
3526 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3527 {
3528 	tcb_p tp = &np->target[cp->target];
3529 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3530 
3531 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3532 
3533 	/*
3534 	 *  Tell the SCSI layer about the new transfer parameters.
3535 	 */
3536 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3537 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3538 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3539 
3540 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3541 }
3542 
3543 /*
3544  *  We received a PPR.
3545  *  Let everything be aware of the changes.
3546  */
3547 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3548 			 u_char per, u_char wide, u_char div, u_char fak)
3549 {
3550 	tcb_p tp = &np->target[cp->target];
3551 
3552 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3553 
3554 	/*
3555 	 *  Tell the SCSI layer about the new transfer parameters.
3556 	 */
3557 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3558 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3559 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3560 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3561 
3562 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3563 }
3564 
3565 /*
3566  *  Switch trans mode for current job and it's target.
3567  */
3568 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3569 			 u_char per, u_char wide, u_char div, u_char fak)
3570 {
3571 	SYM_QUEHEAD *qp;
3572 	union	ccb *ccb;
3573 	tcb_p tp;
3574 	u_char target = INB (nc_sdid) & 0x0f;
3575 	u_char sval, wval, uval;
3576 
3577 	assert (cp);
3578 	if (!cp) return;
3579 	ccb = cp->cam_ccb;
3580 	assert (ccb);
3581 	if (!ccb) return;
3582 	assert (target == (cp->target & 0xf));
3583 	tp = &np->target[target];
3584 
3585 	sval = tp->head.sval;
3586 	wval = tp->head.wval;
3587 	uval = tp->head.uval;
3588 
3589 #if 0
3590 	kprintf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3591 		sval, wval, uval, np->rv_scntl3);
3592 #endif
3593 	/*
3594 	 *  Set the offset.
3595 	 */
3596 	if (!(np->features & FE_C10))
3597 		sval = (sval & ~0x1f) | ofs;
3598 	else
3599 		sval = (sval & ~0x3f) | ofs;
3600 
3601 	/*
3602 	 *  Set the sync divisor and extra clock factor.
3603 	 */
3604 	if (ofs != 0) {
3605 		wval = (wval & ~0x70) | ((div+1) << 4);
3606 		if (!(np->features & FE_C10))
3607 			sval = (sval & ~0xe0) | (fak << 5);
3608 		else {
3609 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3610 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3611 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3612 		}
3613 	}
3614 
3615 	/*
3616 	 *  Set the bus width.
3617 	 */
3618 	wval = wval & ~EWS;
3619 	if (wide != 0)
3620 		wval |= EWS;
3621 
3622 	/*
3623 	 *  Set misc. ultra enable bits.
3624 	 */
3625 	if (np->features & FE_C10) {
3626 		uval = uval & ~(U3EN|AIPCKEN);
3627 		if (dt)	{
3628 			assert(np->features & FE_U3EN);
3629 			uval |= U3EN;
3630 		}
3631 	}
3632 	else {
3633 		wval = wval & ~ULTRA;
3634 		if (per <= 12)	wval |= ULTRA;
3635 	}
3636 
3637 	/*
3638 	 *   Stop there if sync parameters are unchanged.
3639 	 */
3640 	if (tp->head.sval == sval &&
3641 	    tp->head.wval == wval &&
3642 	    tp->head.uval == uval)
3643 		return;
3644 	tp->head.sval = sval;
3645 	tp->head.wval = wval;
3646 	tp->head.uval = uval;
3647 
3648 	/*
3649 	 *  Disable extended Sreq/Sack filtering if per < 50.
3650 	 *  Not supported on the C1010.
3651 	 */
3652 	if (per < 50 && !(np->features & FE_C10))
3653 		OUTOFFB (nc_stest2, EXT);
3654 
3655 	/*
3656 	 *  set actual value and sync_status
3657 	 */
3658 	OUTB (nc_sxfer,  tp->head.sval);
3659 	OUTB (nc_scntl3, tp->head.wval);
3660 
3661 	if (np->features & FE_C10) {
3662 		OUTB (nc_scntl4, tp->head.uval);
3663 	}
3664 
3665 	/*
3666 	 *  patch ALL busy ccbs of this target.
3667 	 */
3668 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3669 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3670 		if (cp->target != target)
3671 			continue;
3672 		cp->phys.select.sel_scntl3 = tp->head.wval;
3673 		cp->phys.select.sel_sxfer  = tp->head.sval;
3674 		if (np->features & FE_C10) {
3675 			cp->phys.select.sel_scntl4 = tp->head.uval;
3676 		}
3677 	}
3678 }
3679 
3680 /*
3681  *  log message for real hard errors
3682  *
3683  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3684  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3685  *
3686  *  exception register:
3687  *  	ds:	dstat
3688  *  	si:	sist
3689  *
3690  *  SCSI bus lines:
3691  *  	so:	control lines as driven by chip.
3692  *  	si:	control lines as seen by chip.
3693  *  	sd:	scsi data lines as seen by chip.
3694  *
3695  *  wide/fastmode:
3696  *  	sxfer:	(see the manual)
3697  *  	scntl3:	(see the manual)
3698  *
3699  *  current script command:
3700  *  	dsp:	script address (relative to start of script).
3701  *  	dbc:	first word of script command.
3702  *
3703  *  First 24 register of the chip:
3704  *  	r0..rf
3705  */
3706 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3707 {
3708 	u32	dsp;
3709 	int	script_ofs;
3710 	int	script_size;
3711 	char	*script_name;
3712 	u_char	*script_base;
3713 	int	i;
3714 
3715 	dsp	= INL (nc_dsp);
3716 
3717 	if	(dsp > np->scripta_ba &&
3718 		 dsp <= np->scripta_ba + np->scripta_sz) {
3719 		script_ofs	= dsp - np->scripta_ba;
3720 		script_size	= np->scripta_sz;
3721 		script_base	= np->scripta0;
3722 		script_name	= "scripta";
3723 	}
3724 	else if (np->scriptb_ba < dsp &&
3725 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3726 		script_ofs	= dsp - np->scriptb_ba;
3727 		script_size	= np->scriptb_sz;
3728 		script_base	= np->scriptb0;
3729 		script_name	= "scriptb";
3730 	} else {
3731 		script_ofs	= dsp;
3732 		script_size	= 0;
3733 		script_base	= NULL;
3734 		script_name	= "mem";
3735 	}
3736 
3737 	kprintf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3738 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3739 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3740 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3741 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3742 		(unsigned)INL (nc_dbc));
3743 
3744 	if (((script_ofs & 3) == 0) &&
3745 	    (unsigned)script_ofs < script_size) {
3746 		kprintf ("%s: script cmd = %08x\n", sym_name(np),
3747 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3748 	}
3749 
3750         kprintf ("%s: regdump:", sym_name(np));
3751         for (i=0; i<24;i++)
3752             kprintf (" %02x", (unsigned)INB_OFF(i));
3753         kprintf (".\n");
3754 
3755 	/*
3756 	 *  PCI BUS error, read the PCI ststus register.
3757 	 */
3758 	if (dstat & (MDPE|BF)) {
3759 		u_short pci_sts;
3760 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3761 		if (pci_sts & 0xf900) {
3762 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3763 			kprintf("%s: PCI STATUS = 0x%04x\n",
3764 				sym_name(np), pci_sts & 0xf900);
3765 		}
3766 	}
3767 }
3768 
3769 /*
3770  *  chip interrupt handler
3771  *
3772  *  In normal situations, interrupt conditions occur one at
3773  *  a time. But when something bad happens on the SCSI BUS,
3774  *  the chip may raise several interrupt flags before
3775  *  stopping and interrupting the CPU. The additionnal
3776  *  interrupt flags are stacked in some extra registers
3777  *  after the SIP and/or DIP flag has been raised in the
3778  *  ISTAT. After the CPU has read the interrupt condition
3779  *  flag from SIST or DSTAT, the chip unstacks the other
3780  *  interrupt flags and sets the corresponding bits in
3781  *  SIST or DSTAT. Since the chip starts stacking once the
3782  *  SIP or DIP flag is set, there is a small window of time
3783  *  where the stacking does not occur.
3784  *
3785  *  Typically, multiple interrupt conditions may happen in
3786  *  the following situations:
3787  *
3788  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3789  *    When a parity error is detected in input phase
3790  *    and the device switches to msg-in phase inside a
3791  *    block MOV.
3792  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3793  *    When a stupid device does not want to handle the
3794  *    recovery of an SCSI parity error.
3795  *  - Some combinations of STO, PAR, UDC, ...
3796  *    When using non compliant SCSI stuff, when user is
3797  *    doing non compliant hot tampering on the BUS, when
3798  *    something really bad happens to a device, etc ...
3799  *
3800  *  The heuristic suggested by SYMBIOS to handle
3801  *  multiple interrupts is to try unstacking all
3802  *  interrupts conditions and to handle them on some
3803  *  priority based on error severity.
3804  *  This will work when the unstacking has been
3805  *  successful, but we cannot be 100 % sure of that,
3806  *  since the CPU may have been faster to unstack than
3807  *  the chip is able to stack. Hmmm ... But it seems that
3808  *  such a situation is very unlikely to happen.
3809  *
3810  *  If this happen, for example STO caught by the CPU
3811  *  then UDC happenning before the CPU have restarted
3812  *  the SCRIPTS, the driver may wrongly complete the
3813  *  same command on UDC, since the SCRIPTS didn't restart
3814  *  and the DSA still points to the same command.
3815  *  We avoid this situation by setting the DSA to an
3816  *  invalid value when the CCB is completed and before
3817  *  restarting the SCRIPTS.
3818  *
3819  *  Another issue is that we need some section of our
3820  *  recovery procedures to be somehow uninterruptible but
3821  *  the SCRIPTS processor does not provides such a
3822  *  feature. For this reason, we handle recovery preferently
3823  *  from the C code and check against some SCRIPTS critical
3824  *  sections from the C code.
3825  *
3826  *  Hopefully, the interrupt handling of the driver is now
3827  *  able to resist to weird BUS error conditions, but donnot
3828  *  ask me for any guarantee that it will never fail. :-)
3829  *  Use at your own decision and risk.
3830  */
3831 
3832 static void sym_intr1 (hcb_p np)
3833 {
3834 	u_char	istat, istatc;
3835 	u_char	dstat;
3836 	u_short	sist;
3837 
3838 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3839 
3840 	/*
3841 	 *  interrupt on the fly ?
3842 	 *
3843 	 *  A `dummy read' is needed to ensure that the
3844 	 *  clear of the INTF flag reaches the device
3845 	 *  before the scanning of the DONE queue.
3846 	 */
3847 	istat = INB (nc_istat);
3848 	if (istat & INTF) {
3849 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3850 		istat = INB (nc_istat);		/* DUMMY READ */
3851 		if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("F ");
3852 		(void)sym_wakeup_done (np);
3853 	}
3854 
3855 	if (!(istat & (SIP|DIP)))
3856 		return;
3857 
3858 #if 0	/* We should never get this one */
3859 	if (istat & CABRT)
3860 		OUTB (nc_istat, CABRT);
3861 #endif
3862 
3863 	/*
3864 	 *  PAR and MA interrupts may occur at the same time,
3865 	 *  and we need to know of both in order to handle
3866 	 *  this situation properly. We try to unstack SCSI
3867 	 *  interrupts for that reason. BTW, I dislike a LOT
3868 	 *  such a loop inside the interrupt routine.
3869 	 *  Even if DMA interrupt stacking is very unlikely to
3870 	 *  happen, we also try unstacking these ones, since
3871 	 *  this has no performance impact.
3872 	 */
3873 	sist	= 0;
3874 	dstat	= 0;
3875 	istatc	= istat;
3876 	do {
3877 		if (istatc & SIP)
3878 			sist  |= INW (nc_sist);
3879 		if (istatc & DIP)
3880 			dstat |= INB (nc_dstat);
3881 		istatc = INB (nc_istat);
3882 		istat |= istatc;
3883 	} while (istatc & (SIP|DIP));
3884 
3885 	if (DEBUG_FLAGS & DEBUG_TINY)
3886 		kprintf ("<%d|%x:%x|%x:%x>",
3887 			(int)INB(nc_scr0),
3888 			dstat,sist,
3889 			(unsigned)INL(nc_dsp),
3890 			(unsigned)INL(nc_dbc));
3891 	/*
3892 	 *  On paper, a memory barrier may be needed here.
3893 	 *  And since we are paranoid ... :)
3894 	 */
3895 	MEMORY_BARRIER();
3896 
3897 	/*
3898 	 *  First, interrupts we want to service cleanly.
3899 	 *
3900 	 *  Phase mismatch (MA) is the most frequent interrupt
3901 	 *  for chip earlier than the 896 and so we have to service
3902 	 *  it as quickly as possible.
3903 	 *  A SCSI parity error (PAR) may be combined with a phase
3904 	 *  mismatch condition (MA).
3905 	 *  Programmed interrupts (SIR) are used to call the C code
3906 	 *  from SCRIPTS.
3907 	 *  The single step interrupt (SSI) is not used in this
3908 	 *  driver.
3909 	 */
3910 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3911 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3912 		if	(sist & PAR)	sym_int_par (np, sist);
3913 		else if (sist & MA)	sym_int_ma (np);
3914 		else if (dstat & SIR)	sym_int_sir (np);
3915 		else if (dstat & SSI)	OUTONB_STD ();
3916 		else			goto unknown_int;
3917 		return;
3918 	}
3919 
3920 	/*
3921 	 *  Now, interrupts that donnot happen in normal
3922 	 *  situations and that we may need to recover from.
3923 	 *
3924 	 *  On SCSI RESET (RST), we reset everything.
3925 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3926 	 *  active CCBs with RESET status, prepare all devices
3927 	 *  for negotiating again and restart the SCRIPTS.
3928 	 *  On STO and UDC, we complete the CCB with the corres-
3929 	 *  ponding status and restart the SCRIPTS.
3930 	 */
3931 	if (sist & RST) {
3932 		xpt_print_path(np->path);
3933 		kprintf("SCSI BUS reset detected.\n");
3934 		sym_init (np, 1);
3935 		return;
3936 	}
3937 
3938 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3939 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3940 
3941 	if (!(sist  & (GEN|HTH|SGE)) &&
3942 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3943 		if	(sist & SBMC)	sym_int_sbmc (np);
3944 		else if (sist & STO)	sym_int_sto (np);
3945 		else if (sist & UDC)	sym_int_udc (np);
3946 		else			goto unknown_int;
3947 		return;
3948 	}
3949 
3950 	/*
3951 	 *  Now, interrupts we are not able to recover cleanly.
3952 	 *
3953 	 *  Log message for hard errors.
3954 	 *  Reset everything.
3955 	 */
3956 
3957 	sym_log_hard_error(np, sist, dstat);
3958 
3959 	if ((sist & (GEN|HTH|SGE)) ||
3960 		(dstat & (MDPE|BF|ABRT|IID))) {
3961 		sym_start_reset(np);
3962 		return;
3963 	}
3964 
3965 unknown_int:
3966 	/*
3967 	 *  We just miss the cause of the interrupt. :(
3968 	 *  Print a message. The timeout will do the real work.
3969 	 */
3970 	kprintf(	"%s: unknown interrupt(s) ignored, "
3971 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3972 		sym_name(np), istat, dstat, sist);
3973 }
3974 
3975 static void sym_intr(void *arg)
3976 {
3977 	hcb_p np = arg;
3978 
3979 	SYM_LOCK();
3980 
3981 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("[");
3982 	sym_intr1((hcb_p) arg);
3983 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("]");
3984 
3985 	SYM_UNLOCK();
3986 }
3987 
3988 static void sym_poll(struct cam_sim *sim)
3989 {
3990 	sym_intr1(cam_sim_softc(sim));
3991 }
3992 
3993 
3994 /*
3995  *  generic recovery from scsi interrupt
3996  *
3997  *  The doc says that when the chip gets an SCSI interrupt,
3998  *  it tries to stop in an orderly fashion, by completing
3999  *  an instruction fetch that had started or by flushing
4000  *  the DMA fifo for a write to memory that was executing.
4001  *  Such a fashion is not enough to know if the instruction
4002  *  that was just before the current DSP value has been
4003  *  executed or not.
4004  *
4005  *  There are some small SCRIPTS sections that deal with
4006  *  the start queue and the done queue that may break any
4007  *  assomption from the C code if we are interrupted
4008  *  inside, so we reset if this happens. Btw, since these
4009  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4010  *  started SCSI operations, it is very unlikely to happen.
4011  *
4012  *  All the driver data structures are supposed to be
4013  *  allocated from the same 4 GB memory window, so there
4014  *  is a 1 to 1 relationship between DSA and driver data
4015  *  structures. Since we are careful :) to invalidate the
4016  *  DSA when we complete a command or when the SCRIPTS
4017  *  pushes a DSA into a queue, we can trust it when it
4018  *  points to a CCB.
4019  */
4020 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4021 {
4022 	u32	dsp	= INL (nc_dsp);
4023 	u32	dsa	= INL (nc_dsa);
4024 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4025 
4026 	/*
4027 	 *  If we haven't been interrupted inside the SCRIPTS
4028 	 *  critical pathes, we can safely restart the SCRIPTS
4029 	 *  and trust the DSA value if it matches a CCB.
4030 	 */
4031 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4032 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4033 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4034 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4035 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4036 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4037 	    (!(dsp > SCRIPTA_BA (np, done) &&
4038 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4039 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4040 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4041 		/*
4042 		 *  If we have a CCB, let the SCRIPTS call us back for
4043 		 *  the handling of the error with SCRATCHA filled with
4044 		 *  STARTPOS. This way, we will be able to freeze the
4045 		 *  device queue and requeue awaiting IOs.
4046 		 */
4047 		if (cp) {
4048 			cp->host_status = hsts;
4049 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4050 		}
4051 		/*
4052 		 *  Otherwise just restart the SCRIPTS.
4053 		 */
4054 		else {
4055 			OUTL (nc_dsa, 0xffffff);
4056 			OUTL_DSP (SCRIPTA_BA (np, start));
4057 		}
4058 	}
4059 	else
4060 		goto reset_all;
4061 
4062 	return;
4063 
4064 reset_all:
4065 	sym_start_reset(np);
4066 }
4067 
4068 /*
4069  *  chip exception handler for selection timeout
4070  */
4071 static void sym_int_sto (hcb_p np)
4072 {
4073 	u32 dsp	= INL (nc_dsp);
4074 
4075 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("T");
4076 
4077 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4078 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4079 	else
4080 		sym_start_reset(np);
4081 }
4082 
4083 /*
4084  *  chip exception handler for unexpected disconnect
4085  */
4086 static void sym_int_udc (hcb_p np)
4087 {
4088 	kprintf ("%s: unexpected disconnect\n", sym_name(np));
4089 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4090 }
4091 
4092 /*
4093  *  chip exception handler for SCSI bus mode change
4094  *
4095  *  spi2-r12 11.2.3 says a transceiver mode change must
4096  *  generate a reset event and a device that detects a reset
4097  *  event shall initiate a hard reset. It says also that a
4098  *  device that detects a mode change shall set data transfer
4099  *  mode to eight bit asynchronous, etc...
4100  *  So, just reinitializing all except chip should be enough.
4101  */
4102 static void sym_int_sbmc (hcb_p np)
4103 {
4104 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4105 
4106 	/*
4107 	 *  Notify user.
4108 	 */
4109 	xpt_print_path(np->path);
4110 	kprintf("SCSI BUS mode change from %s to %s.\n",
4111 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4112 
4113 	/*
4114 	 *  Should suspend command processing for a few seconds and
4115 	 *  reinitialize all except the chip.
4116 	 */
4117 	sym_init (np, 2);
4118 }
4119 
4120 /*
4121  *  chip exception handler for SCSI parity error.
4122  *
4123  *  When the chip detects a SCSI parity error and is
4124  *  currently executing a (CH)MOV instruction, it does
4125  *  not interrupt immediately, but tries to finish the
4126  *  transfer of the current scatter entry before
4127  *  interrupting. The following situations may occur:
4128  *
4129  *  - The complete scatter entry has been transferred
4130  *    without the device having changed phase.
4131  *    The chip will then interrupt with the DSP pointing
4132  *    to the instruction that follows the MOV.
4133  *
4134  *  - A phase mismatch occurs before the MOV finished
4135  *    and phase errors are to be handled by the C code.
4136  *    The chip will then interrupt with both PAR and MA
4137  *    conditions set.
4138  *
4139  *  - A phase mismatch occurs before the MOV finished and
4140  *    phase errors are to be handled by SCRIPTS.
4141  *    The chip will load the DSP with the phase mismatch
4142  *    JUMP address and interrupt the host processor.
4143  */
4144 static void sym_int_par (hcb_p np, u_short sist)
4145 {
4146 	u_char	hsts	= INB (HS_PRT);
4147 	u32	dsp	= INL (nc_dsp);
4148 	u32	dbc	= INL (nc_dbc);
4149 	u32	dsa	= INL (nc_dsa);
4150 	u_char	sbcl	= INB (nc_sbcl);
4151 	u_char	cmd	= dbc >> 24;
4152 	int phase	= cmd & 7;
4153 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4154 
4155 	kprintf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4156 		sym_name(np), hsts, dbc, sbcl);
4157 
4158 	/*
4159 	 *  Check that the chip is connected to the SCSI BUS.
4160 	 */
4161 	if (!(INB (nc_scntl1) & ISCON)) {
4162 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4163 		return;
4164 	}
4165 
4166 	/*
4167 	 *  If the nexus is not clearly identified, reset the bus.
4168 	 *  We will try to do better later.
4169 	 */
4170 	if (!cp)
4171 		goto reset_all;
4172 
4173 	/*
4174 	 *  Check instruction was a MOV, direction was INPUT and
4175 	 *  ATN is asserted.
4176 	 */
4177 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4178 		goto reset_all;
4179 
4180 	/*
4181 	 *  Keep track of the parity error.
4182 	 */
4183 	OUTONB (HF_PRT, HF_EXT_ERR);
4184 	cp->xerr_status |= XE_PARITY_ERR;
4185 
4186 	/*
4187 	 *  Prepare the message to send to the device.
4188 	 */
4189 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4190 
4191 	/*
4192 	 *  If the old phase was DATA IN phase, we have to deal with
4193 	 *  the 3 situations described above.
4194 	 *  For other input phases (MSG IN and STATUS), the device
4195 	 *  must resend the whole thing that failed parity checking
4196 	 *  or signal error. So, jumping to dispatcher should be OK.
4197 	 */
4198 	if (phase == 1 || phase == 5) {
4199 		/* Phase mismatch handled by SCRIPTS */
4200 		if (dsp == SCRIPTB_BA (np, pm_handle))
4201 			OUTL_DSP (dsp);
4202 		/* Phase mismatch handled by the C code */
4203 		else if (sist & MA)
4204 			sym_int_ma (np);
4205 		/* No phase mismatch occurred */
4206 		else {
4207 			OUTL (nc_temp, dsp);
4208 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4209 		}
4210 	}
4211 	else
4212 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4213 	return;
4214 
4215 reset_all:
4216 	sym_start_reset(np);
4217 }
4218 
4219 /*
4220  *  chip exception handler for phase errors.
4221  *
4222  *  We have to construct a new transfer descriptor,
4223  *  to transfer the rest of the current block.
4224  */
4225 static void sym_int_ma (hcb_p np)
4226 {
4227 	u32	dbc;
4228 	u32	rest;
4229 	u32	dsp;
4230 	u32	dsa;
4231 	u32	nxtdsp;
4232 	u32	*vdsp;
4233 	u32	oadr, olen;
4234 	u32	*tblp;
4235         u32	newcmd;
4236 	u_int	delta;
4237 	u_char	cmd;
4238 	u_char	hflags, hflags0;
4239 	struct	sym_pmc *pm;
4240 	ccb_p	cp;
4241 
4242 	dsp	= INL (nc_dsp);
4243 	dbc	= INL (nc_dbc);
4244 	dsa	= INL (nc_dsa);
4245 
4246 	cmd	= dbc >> 24;
4247 	rest	= dbc & 0xffffff;
4248 	delta	= 0;
4249 
4250 	/*
4251 	 *  locate matching cp if any.
4252 	 */
4253 	cp = sym_ccb_from_dsa(np, dsa);
4254 
4255 	/*
4256 	 *  Donnot take into account dma fifo and various buffers in
4257 	 *  INPUT phase since the chip flushes everything before
4258 	 *  raising the MA interrupt for interrupted INPUT phases.
4259 	 *  For DATA IN phase, we will check for the SWIDE later.
4260 	 */
4261 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4262 		u_char ss0, ss2;
4263 
4264 		if (np->features & FE_DFBC)
4265 			delta = INW (nc_dfbc);
4266 		else {
4267 			u32 dfifo;
4268 
4269 			/*
4270 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4271 			 */
4272 			dfifo = INL(nc_dfifo);
4273 
4274 			/*
4275 			 *  Calculate remaining bytes in DMA fifo.
4276 			 *  (CTEST5 = dfifo >> 16)
4277 			 */
4278 			if (dfifo & (DFS << 16))
4279 				delta = ((((dfifo >> 8) & 0x300) |
4280 				          (dfifo & 0xff)) - rest) & 0x3ff;
4281 			else
4282 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4283 		}
4284 
4285 		/*
4286 		 *  The data in the dma fifo has not been transferred to
4287 		 *  the target -> add the amount to the rest
4288 		 *  and clear the data.
4289 		 *  Check the sstat2 register in case of wide transfer.
4290 		 */
4291 		rest += delta;
4292 		ss0  = INB (nc_sstat0);
4293 		if (ss0 & OLF) rest++;
4294 		if (!(np->features & FE_C10))
4295 			if (ss0 & ORF) rest++;
4296 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4297 			ss2 = INB (nc_sstat2);
4298 			if (ss2 & OLF1) rest++;
4299 			if (!(np->features & FE_C10))
4300 				if (ss2 & ORF1) rest++;
4301 		}
4302 
4303 		/*
4304 		 *  Clear fifos.
4305 		 */
4306 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4307 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4308 	}
4309 
4310 	/*
4311 	 *  log the information
4312 	 */
4313 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4314 		kprintf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4315 			(unsigned) rest, (unsigned) delta);
4316 
4317 	/*
4318 	 *  try to find the interrupted script command,
4319 	 *  and the address at which to continue.
4320 	 */
4321 	vdsp	= NULL;
4322 	nxtdsp	= 0;
4323 	if	(dsp >  np->scripta_ba &&
4324 		 dsp <= np->scripta_ba + np->scripta_sz) {
4325 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4326 		nxtdsp = dsp;
4327 	}
4328 	else if	(dsp >  np->scriptb_ba &&
4329 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4330 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4331 		nxtdsp = dsp;
4332 	}
4333 
4334 	/*
4335 	 *  log the information
4336 	 */
4337 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4338 		kprintf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4339 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4340 	}
4341 
4342 	if (!vdsp) {
4343 		kprintf ("%s: interrupted SCRIPT address not found.\n",
4344 			sym_name (np));
4345 		goto reset_all;
4346 	}
4347 
4348 	if (!cp) {
4349 		kprintf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4350 			sym_name (np));
4351 		goto reset_all;
4352 	}
4353 
4354 	/*
4355 	 *  get old startaddress and old length.
4356 	 */
4357 	oadr = scr_to_cpu(vdsp[1]);
4358 
4359 	if (cmd & 0x10) {	/* Table indirect */
4360 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4361 		olen = scr_to_cpu(tblp[0]);
4362 		oadr = scr_to_cpu(tblp[1]);
4363 	} else {
4364 		tblp = NULL;
4365 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4366 	}
4367 
4368 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4369 		kprintf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4370 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4371 			tblp,
4372 			(unsigned) olen,
4373 			(unsigned) oadr);
4374 	}
4375 
4376 	/*
4377 	 *  check cmd against assumed interrupted script command.
4378 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4379 	 *  the phase.
4380 	 */
4381 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4382 		PRINT_ADDR(cp);
4383 		kprintf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4384 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4385 
4386 		goto reset_all;
4387 	}
4388 
4389 	/*
4390 	 *  if old phase not dataphase, leave here.
4391 	 */
4392 	if (cmd & 2) {
4393 		PRINT_ADDR(cp);
4394 		kprintf ("phase change %x-%x %d@%08x resid=%d.\n",
4395 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4396 			(unsigned)oadr, (unsigned)rest);
4397 		goto unexpected_phase;
4398 	}
4399 
4400 	/*
4401 	 *  Choose the correct PM save area.
4402 	 *
4403 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4404 	 *  this stuff. The equivalent code is implemented in
4405 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4406 	 *  handle PM from the SCRIPTS processor.
4407 	 */
4408 	hflags0 = INB (HF_PRT);
4409 	hflags = hflags0;
4410 
4411 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4412 		if (hflags & HF_IN_PM0)
4413 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4414 		else if	(hflags & HF_IN_PM1)
4415 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4416 
4417 		if (hflags & HF_DP_SAVED)
4418 			hflags ^= HF_ACT_PM;
4419 	}
4420 
4421 	if (!(hflags & HF_ACT_PM)) {
4422 		pm = &cp->phys.pm0;
4423 		newcmd = SCRIPTA_BA (np, pm0_data);
4424 	}
4425 	else {
4426 		pm = &cp->phys.pm1;
4427 		newcmd = SCRIPTA_BA (np, pm1_data);
4428 	}
4429 
4430 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4431 	if (hflags != hflags0)
4432 		OUTB (HF_PRT, hflags);
4433 
4434 	/*
4435 	 *  fillin the phase mismatch context
4436 	 */
4437 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4438 	pm->sg.size = cpu_to_scr(rest);
4439 	pm->ret     = cpu_to_scr(nxtdsp);
4440 
4441 	/*
4442 	 *  If we have a SWIDE,
4443 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4444 	 *  - compute the SCRIPTS address to restart from,
4445 	 *  - move current data pointer context by one byte.
4446 	 */
4447 	nxtdsp = SCRIPTA_BA (np, dispatch);
4448 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4449 	    (INB (nc_scntl2) & WSR)) {
4450 		u32 tmp;
4451 
4452 		/*
4453 		 *  Set up the table indirect for the MOVE
4454 		 *  of the residual byte and adjust the data
4455 		 *  pointer context.
4456 		 */
4457 		tmp = scr_to_cpu(pm->sg.addr);
4458 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4459 		pm->sg.addr = cpu_to_scr(tmp + 1);
4460 		tmp = scr_to_cpu(pm->sg.size);
4461 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4462 		pm->sg.size = cpu_to_scr(tmp - 1);
4463 
4464 		/*
4465 		 *  If only the residual byte is to be moved,
4466 		 *  no PM context is needed.
4467 		 */
4468 		if ((tmp&0xffffff) == 1)
4469 			newcmd = pm->ret;
4470 
4471 		/*
4472 		 *  Prepare the address of SCRIPTS that will
4473 		 *  move the residual byte to memory.
4474 		 */
4475 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4476 	}
4477 
4478 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4479 		PRINT_ADDR(cp);
4480 		kprintf ("PM %x %x %x / %x %x %x.\n",
4481 			hflags0, hflags, newcmd,
4482 			(unsigned)scr_to_cpu(pm->sg.addr),
4483 			(unsigned)scr_to_cpu(pm->sg.size),
4484 			(unsigned)scr_to_cpu(pm->ret));
4485 	}
4486 
4487 	/*
4488 	 *  Restart the SCRIPTS processor.
4489 	 */
4490 	OUTL (nc_temp, newcmd);
4491 	OUTL_DSP (nxtdsp);
4492 	return;
4493 
4494 	/*
4495 	 *  Unexpected phase changes that occurs when the current phase
4496 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4497 	 *  Such event may only happen when the SCRIPTS is using a
4498 	 *  multibyte SCSI MOVE.
4499 	 *
4500 	 *  Phase change		Some possible cause
4501 	 *
4502 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4503 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4504 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4505 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4506 	 *  			negotiation messages.
4507 	 *
4508 	 *  The code below does not care of the new phase and so
4509 	 *  trusts the target. Why to annoy it ?
4510 	 *  If the interrupted phase is COMMAND phase, we restart at
4511 	 *  dispatcher.
4512 	 *  If a target does not get all the messages after selection,
4513 	 *  the code assumes blindly that the target discards extended
4514 	 *  messages and clears the negotiation status.
4515 	 *  If the target does not want all our response to negotiation,
4516 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4517 	 *  bloat for such a should_not_happen situation).
4518 	 *  In all other situation, we reset the BUS.
4519 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4520 	 */
4521 unexpected_phase:
4522 	dsp -= 8;
4523 	nxtdsp = 0;
4524 
4525 	switch (cmd & 7) {
4526 	case 2:	/* COMMAND phase */
4527 		nxtdsp = SCRIPTA_BA (np, dispatch);
4528 		break;
4529 #if 0
4530 	case 3:	/* STATUS  phase */
4531 		nxtdsp = SCRIPTA_BA (np, dispatch);
4532 		break;
4533 #endif
4534 	case 6:	/* MSG OUT phase */
4535 		/*
4536 		 *  If the device may want to use untagged when we want
4537 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4538 		 *  since we will not be able to handle reselect.
4539 		 *  Otherwise, we just don't care.
4540 		 */
4541 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4542 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4543 				cp->host_status = HS_BUSY;
4544 				np->msgout[0] = M_IDENTIFY | cp->lun;
4545 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4546 			}
4547 			else
4548 				nxtdsp = SCRIPTB_BA (np, ident_break);
4549 		}
4550 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4551 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4552 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4553 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4554 		}
4555 		break;
4556 #if 0
4557 	case 7:	/* MSG IN  phase */
4558 		nxtdsp = SCRIPTA_BA (np, clrack);
4559 		break;
4560 #endif
4561 	}
4562 
4563 	if (nxtdsp) {
4564 		OUTL_DSP (nxtdsp);
4565 		return;
4566 	}
4567 
4568 reset_all:
4569 	sym_start_reset(np);
4570 }
4571 
4572 /*
4573  *  Dequeue from the START queue all CCBs that match
4574  *  a given target/lun/task condition (-1 means all),
4575  *  and move them from the BUSY queue to the COMP queue
4576  *  with CAM_REQUEUE_REQ status condition.
4577  *  This function is used during error handling/recovery.
4578  *  It is called with SCRIPTS not running.
4579  */
4580 static int
4581 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4582 {
4583 	int j;
4584 	ccb_p cp;
4585 
4586 	/*
4587 	 *  Make sure the starting index is within range.
4588 	 */
4589 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4590 
4591 	/*
4592 	 *  Walk until end of START queue and dequeue every job
4593 	 *  that matches the target/lun/task condition.
4594 	 */
4595 	j = i;
4596 	while (i != np->squeueput) {
4597 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4598 		assert(cp);
4599 #ifdef SYM_CONF_IARB_SUPPORT
4600 		/* Forget hints for IARB, they may be no longer relevant */
4601 		cp->host_flags &= ~HF_HINT_IARB;
4602 #endif
4603 		if ((target == -1 || cp->target == target) &&
4604 		    (lun    == -1 || cp->lun    == lun)    &&
4605 		    (task   == -1 || cp->tag    == task)) {
4606 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4607 			sym_remque(&cp->link_ccbq);
4608 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4609 		}
4610 		else {
4611 			if (i != j)
4612 				np->squeue[j] = np->squeue[i];
4613 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4614 		}
4615 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4616 	}
4617 	if (i != j)		/* Copy back the idle task if needed */
4618 		np->squeue[j] = np->squeue[i];
4619 	np->squeueput = j;	/* Update our current start queue pointer */
4620 
4621 	return (i - j) / 2;
4622 }
4623 
4624 /*
4625  *  Complete all CCBs queued to the COMP queue.
4626  *
4627  *  These CCBs are assumed:
4628  *  - Not to be referenced either by devices or
4629  *    SCRIPTS-related queues and datas.
4630  *  - To have to be completed with an error condition
4631  *    or requeued.
4632  *
4633  *  The device queue freeze count is incremented
4634  *  for each CCB that does not prevent this.
4635  *  This function is called when all CCBs involved
4636  *  in error handling/recovery have been reaped.
4637  */
4638 static void
4639 sym_flush_comp_queue(hcb_p np, int cam_status)
4640 {
4641 	SYM_QUEHEAD *qp;
4642 	ccb_p cp;
4643 
4644 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4645 		union ccb *ccb;
4646 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4647 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4648 		/* Leave quiet CCBs waiting for resources */
4649 		if (cp->host_status == HS_WAIT)
4650 			continue;
4651 		ccb = cp->cam_ccb;
4652 		if (cam_status)
4653 			sym_set_cam_status(ccb, cam_status);
4654 		sym_freeze_cam_ccb(ccb);
4655 		sym_xpt_done(np, ccb, cp);
4656 		sym_free_ccb(np, cp);
4657 	}
4658 }
4659 
4660 /*
4661  *  chip handler for bad SCSI status condition
4662  *
4663  *  In case of bad SCSI status, we unqueue all the tasks
4664  *  currently queued to the controller but not yet started
4665  *  and then restart the SCRIPTS processor immediately.
4666  *
4667  *  QUEUE FULL and BUSY conditions are handled the same way.
4668  *  Basically all the not yet started tasks are requeued in
4669  *  device queue and the queue is frozen until a completion.
4670  *
4671  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4672  *  the CCB of the failed command to prepare a REQUEST SENSE
4673  *  SCSI command and queue it to the controller queue.
4674  *
4675  *  SCRATCHA is assumed to have been loaded with STARTPOS
4676  *  before the SCRIPTS called the C code.
4677  */
4678 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4679 {
4680 	tcb_p tp	= &np->target[cp->target];
4681 	u32		startp;
4682 	u_char		s_status = cp->ssss_status;
4683 	u_char		h_flags  = cp->host_flags;
4684 	int		msglen;
4685 	int		nego;
4686 	int		i;
4687 
4688 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
4689 
4690 	/*
4691 	 *  Compute the index of the next job to start from SCRIPTS.
4692 	 */
4693 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4694 
4695 	/*
4696 	 *  The last CCB queued used for IARB hint may be
4697 	 *  no longer relevant. Forget it.
4698 	 */
4699 #ifdef SYM_CONF_IARB_SUPPORT
4700 	if (np->last_cp)
4701 		np->last_cp = NULL;
4702 #endif
4703 
4704 	/*
4705 	 *  Now deal with the SCSI status.
4706 	 */
4707 	switch(s_status) {
4708 	case S_BUSY:
4709 	case S_QUEUE_FULL:
4710 		if (sym_verbose >= 2) {
4711 			PRINT_ADDR(cp);
4712 			kprintf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4713 		}
4714 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4715 		sym_complete_error (np, cp);
4716 		break;
4717 	case S_TERMINATED:
4718 	case S_CHECK_COND:
4719 		/*
4720 		 *  If we get an SCSI error when requesting sense, give up.
4721 		 */
4722 		if (h_flags & HF_SENSE) {
4723 			sym_complete_error (np, cp);
4724 			break;
4725 		}
4726 
4727 		/*
4728 		 *  Dequeue all queued CCBs for that device not yet started,
4729 		 *  and restart the SCRIPTS processor immediately.
4730 		 */
4731 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4732 		OUTL_DSP (SCRIPTA_BA (np, start));
4733 
4734  		/*
4735 		 *  Save some info of the actual IO.
4736 		 *  Compute the data residual.
4737 		 */
4738 		cp->sv_scsi_status = cp->ssss_status;
4739 		cp->sv_xerr_status = cp->xerr_status;
4740 		cp->sv_resid = sym_compute_residual(np, cp);
4741 
4742 		/*
4743 		 *  Prepare all needed data structures for
4744 		 *  requesting sense data.
4745 		 */
4746 
4747 		/*
4748 		 *  identify message
4749 		 */
4750 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4751 		msglen = 1;
4752 
4753 		/*
4754 		 *  If we are currently using anything different from
4755 		 *  async. 8 bit data transfers with that target,
4756 		 *  start a negotiation, since the device may want
4757 		 *  to report us a UNIT ATTENTION condition due to
4758 		 *  a cause we currently ignore, and we donnot want
4759 		 *  to be stuck with WIDE and/or SYNC data transfer.
4760 		 *
4761 		 *  cp->nego_status is filled by sym_prepare_nego().
4762 		 */
4763 		cp->nego_status = 0;
4764 		nego = 0;
4765 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4766 			nego = NS_PPR;
4767 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4768 			nego = NS_WIDE;
4769 		else if (tp->tinfo.current.offset != 0)
4770 			nego = NS_SYNC;
4771 		if (nego)
4772 			msglen +=
4773 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4774 		/*
4775 		 *  Message table indirect structure.
4776 		 */
4777 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4778 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4779 
4780 		/*
4781 		 *  sense command
4782 		 */
4783 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4784 		cp->phys.cmd.size	= cpu_to_scr(6);
4785 
4786 		/*
4787 		 *  patch requested size into sense command
4788 		 */
4789 		cp->sensecmd[0]		= 0x03;
4790 		cp->sensecmd[1]		= cp->lun << 5;
4791 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4792 			cp->sensecmd[1]	= 0;
4793 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4794 		cp->data_len		= SYM_SNS_BBUF_LEN;
4795 
4796 		/*
4797 		 *  sense data
4798 		 */
4799 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4800 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4801 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4802 
4803 		/*
4804 		 *  requeue the command.
4805 		 */
4806 		startp = SCRIPTB_BA (np, sdata_in);
4807 
4808 		cp->phys.head.savep	= cpu_to_scr(startp);
4809 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4810 		cp->phys.head.lastp	= cpu_to_scr(startp);
4811 		cp->startp	= cpu_to_scr(startp);
4812 
4813 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4814 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4815 		cp->ssss_status = S_ILLEGAL;
4816 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4817 		cp->xerr_status = 0;
4818 		cp->extra_bytes = 0;
4819 
4820 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4821 
4822 		/*
4823 		 *  Requeue the command.
4824 		 */
4825 		sym_put_start_queue(np, cp);
4826 
4827 		/*
4828 		 *  Give back to upper layer everything we have dequeued.
4829 		 */
4830 		sym_flush_comp_queue(np, 0);
4831 		break;
4832 	}
4833 }
4834 
4835 /*
4836  *  After a device has accepted some management message
4837  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4838  *  a device signals a UNIT ATTENTION condition, some
4839  *  tasks are thrown away by the device. We are required
4840  *  to reflect that on our tasks list since the device
4841  *  will never complete these tasks.
4842  *
4843  *  This function move from the BUSY queue to the COMP
4844  *  queue all disconnected CCBs for a given target that
4845  *  match the following criteria:
4846  *  - lun=-1  means any logical UNIT otherwise a given one.
4847  *  - task=-1 means any task, otherwise a given one.
4848  */
4849 static int
4850 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4851 {
4852 	SYM_QUEHEAD qtmp, *qp;
4853 	int i = 0;
4854 	ccb_p cp;
4855 
4856 	/*
4857 	 *  Move the entire BUSY queue to our temporary queue.
4858 	 */
4859 	sym_que_init(&qtmp);
4860 	sym_que_splice(&np->busy_ccbq, &qtmp);
4861 	sym_que_init(&np->busy_ccbq);
4862 
4863 	/*
4864 	 *  Put all CCBs that matches our criteria into
4865 	 *  the COMP queue and put back other ones into
4866 	 *  the BUSY queue.
4867 	 */
4868 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4869 		union ccb *ccb;
4870 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4871 		ccb = cp->cam_ccb;
4872 		if (cp->host_status != HS_DISCONNECT ||
4873 		    cp->target != target	     ||
4874 		    (lun  != -1 && cp->lun != lun)   ||
4875 		    (task != -1 &&
4876 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4877 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4878 			continue;
4879 		}
4880 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4881 
4882 		/* Preserve the software timeout condition */
4883 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4884 			sym_set_cam_status(ccb, cam_status);
4885 		++i;
4886 #if 0
4887 kprintf("XXXX TASK @%p CLEARED\n", cp);
4888 #endif
4889 	}
4890 	return i;
4891 }
4892 
4893 /*
4894  *  chip handler for TASKS recovery
4895  *
4896  *  We cannot safely abort a command, while the SCRIPTS
4897  *  processor is running, since we just would be in race
4898  *  with it.
4899  *
4900  *  As long as we have tasks to abort, we keep the SEM
4901  *  bit set in the ISTAT. When this bit is set, the
4902  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4903  *  each time it enters the scheduler.
4904  *
4905  *  If we have to reset a target, clear tasks of a unit,
4906  *  or to perform the abort of a disconnected job, we
4907  *  restart the SCRIPTS for selecting the target. Once
4908  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4909  *  If it loses arbitration, the SCRIPTS will interrupt again
4910  *  the next time it will enter its scheduler, and so on ...
4911  *
4912  *  On SIR_TARGET_SELECTED, we scan for the more
4913  *  appropriate thing to do:
4914  *
4915  *  - If nothing, we just sent a M_ABORT message to the
4916  *    target to get rid of the useless SCSI bus ownership.
4917  *    According to the specs, no tasks shall be affected.
4918  *  - If the target is to be reset, we send it a M_RESET
4919  *    message.
4920  *  - If a logical UNIT is to be cleared , we send the
4921  *    IDENTIFY(lun) + M_ABORT.
4922  *  - If an untagged task is to be aborted, we send the
4923  *    IDENTIFY(lun) + M_ABORT.
4924  *  - If a tagged task is to be aborted, we send the
4925  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4926  *
4927  *  Once our 'kiss of death' :) message has been accepted
4928  *  by the target, the SCRIPTS interrupts again
4929  *  (SIR_ABORT_SENT). On this interrupt, we complete
4930  *  all the CCBs that should have been aborted by the
4931  *  target according to our message.
4932  */
4933 static void sym_sir_task_recovery(hcb_p np, int num)
4934 {
4935 	SYM_QUEHEAD *qp;
4936 	ccb_p cp;
4937 	tcb_p tp;
4938 	int target=-1, lun=-1, task;
4939 	int i, k;
4940 
4941 	switch(num) {
4942 	/*
4943 	 *  The SCRIPTS processor stopped before starting
4944 	 *  the next command in order to allow us to perform
4945 	 *  some task recovery.
4946 	 */
4947 	case SIR_SCRIPT_STOPPED:
4948 		/*
4949 		 *  Do we have any target to reset or unit to clear ?
4950 		 */
4951 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4952 			tp = &np->target[i];
4953 			if (tp->to_reset ||
4954 			    (tp->lun0p && tp->lun0p->to_clear)) {
4955 				target = i;
4956 				break;
4957 			}
4958 			if (!tp->lunmp)
4959 				continue;
4960 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4961 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4962 					target	= i;
4963 					break;
4964 				}
4965 			}
4966 			if (target != -1)
4967 				break;
4968 		}
4969 
4970 		/*
4971 		 *  If not, walk the busy queue for any
4972 		 *  disconnected CCB to be aborted.
4973 		 */
4974 		if (target == -1) {
4975 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4976 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4977 				if (cp->host_status != HS_DISCONNECT)
4978 					continue;
4979 				if (cp->to_abort) {
4980 					target = cp->target;
4981 					break;
4982 				}
4983 			}
4984 		}
4985 
4986 		/*
4987 		 *  If some target is to be selected,
4988 		 *  prepare and start the selection.
4989 		 */
4990 		if (target != -1) {
4991 			tp = &np->target[target];
4992 			np->abrt_sel.sel_id	= target;
4993 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4994 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4995 			OUTL(nc_dsa, np->hcb_ba);
4996 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4997 			return;
4998 		}
4999 
5000 		/*
5001 		 *  Now look for a CCB to abort that haven't started yet.
5002 		 *  Btw, the SCRIPTS processor is still stopped, so
5003 		 *  we are not in race.
5004 		 */
5005 		i = 0;
5006 		cp = NULL;
5007 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5008 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5009 			if (cp->host_status != HS_BUSY &&
5010 			    cp->host_status != HS_NEGOTIATE)
5011 				continue;
5012 			if (!cp->to_abort)
5013 				continue;
5014 #ifdef SYM_CONF_IARB_SUPPORT
5015 			/*
5016 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5017 			 *    want to cancel the last queued CCB, since the
5018 			 *    SCRIPTS may have anticipated the selection.
5019 			 */
5020 			if (cp == np->last_cp) {
5021 				cp->to_abort = 0;
5022 				continue;
5023 			}
5024 #endif
5025 			i = 1;	/* Means we have found some */
5026 			break;
5027 		}
5028 		if (!i) {
5029 			/*
5030 			 *  We are done, so we donnot need
5031 			 *  to synchronize with the SCRIPTS anylonger.
5032 			 *  Remove the SEM flag from the ISTAT.
5033 			 */
5034 			np->istat_sem = 0;
5035 			OUTB (nc_istat, SIGP);
5036 			break;
5037 		}
5038 		/*
5039 		 *  Compute index of next position in the start
5040 		 *  queue the SCRIPTS intends to start and dequeue
5041 		 *  all CCBs for that device that haven't been started.
5042 		 */
5043 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5044 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5045 
5046 		/*
5047 		 *  Make sure at least our IO to abort has been dequeued.
5048 		 */
5049 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5050 
5051 		/*
5052 		 *  Keep track in cam status of the reason of the abort.
5053 		 */
5054 		if (cp->to_abort == 2)
5055 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5056 		else
5057 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5058 
5059 		/*
5060 		 *  Complete with error everything that we have dequeued.
5061 	 	 */
5062 		sym_flush_comp_queue(np, 0);
5063 		break;
5064 	/*
5065 	 *  The SCRIPTS processor has selected a target
5066 	 *  we may have some manual recovery to perform for.
5067 	 */
5068 	case SIR_TARGET_SELECTED:
5069 		target = (INB (nc_sdid) & 0xf);
5070 		tp = &np->target[target];
5071 
5072 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5073 
5074 		/*
5075 		 *  If the target is to be reset, prepare a
5076 		 *  M_RESET message and clear the to_reset flag
5077 		 *  since we donnot expect this operation to fail.
5078 		 */
5079 		if (tp->to_reset) {
5080 			np->abrt_msg[0] = M_RESET;
5081 			np->abrt_tbl.size = 1;
5082 			tp->to_reset = 0;
5083 			break;
5084 		}
5085 
5086 		/*
5087 		 *  Otherwise, look for some logical unit to be cleared.
5088 		 */
5089 		if (tp->lun0p && tp->lun0p->to_clear)
5090 			lun = 0;
5091 		else if (tp->lunmp) {
5092 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5093 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5094 					lun = k;
5095 					break;
5096 				}
5097 			}
5098 		}
5099 
5100 		/*
5101 		 *  If a logical unit is to be cleared, prepare
5102 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5103 		 */
5104 		if (lun != -1) {
5105 			lcb_p lp = sym_lp(np, tp, lun);
5106 			lp->to_clear = 0; /* We donnot expect to fail here */
5107 			np->abrt_msg[0] = M_IDENTIFY | lun;
5108 			np->abrt_msg[1] = M_ABORT;
5109 			np->abrt_tbl.size = 2;
5110 			break;
5111 		}
5112 
5113 		/*
5114 		 *  Otherwise, look for some disconnected job to
5115 		 *  abort for this target.
5116 		 */
5117 		i = 0;
5118 		cp = NULL;
5119 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5120 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5121 			if (cp->host_status != HS_DISCONNECT)
5122 				continue;
5123 			if (cp->target != target)
5124 				continue;
5125 			if (!cp->to_abort)
5126 				continue;
5127 			i = 1;	/* Means we have some */
5128 			break;
5129 		}
5130 
5131 		/*
5132 		 *  If we have none, probably since the device has
5133 		 *  completed the command before we won abitration,
5134 		 *  send a M_ABORT message without IDENTIFY.
5135 		 *  According to the specs, the device must just
5136 		 *  disconnect the BUS and not abort any task.
5137 		 */
5138 		if (!i) {
5139 			np->abrt_msg[0] = M_ABORT;
5140 			np->abrt_tbl.size = 1;
5141 			break;
5142 		}
5143 
5144 		/*
5145 		 *  We have some task to abort.
5146 		 *  Set the IDENTIFY(lun)
5147 		 */
5148 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5149 
5150 		/*
5151 		 *  If we want to abort an untagged command, we
5152 		 *  will send an IDENTIFY + M_ABORT.
5153 		 *  Otherwise (tagged command), we will send
5154 		 *  an IDENTIFY + task attributes + ABORT TAG.
5155 		 */
5156 		if (cp->tag == NO_TAG) {
5157 			np->abrt_msg[1] = M_ABORT;
5158 			np->abrt_tbl.size = 2;
5159 		}
5160 		else {
5161 			np->abrt_msg[1] = cp->scsi_smsg[1];
5162 			np->abrt_msg[2] = cp->scsi_smsg[2];
5163 			np->abrt_msg[3] = M_ABORT_TAG;
5164 			np->abrt_tbl.size = 4;
5165 		}
5166 		/*
5167 		 *  Keep track of software timeout condition, since the
5168 		 *  peripheral driver may not count retries on abort
5169 		 *  conditions not due to timeout.
5170 		 */
5171 		if (cp->to_abort == 2)
5172 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5173 		cp->to_abort = 0; /* We donnot expect to fail here */
5174 		break;
5175 
5176 	/*
5177 	 *  The target has accepted our message and switched
5178 	 *  to BUS FREE phase as we expected.
5179 	 */
5180 	case SIR_ABORT_SENT:
5181 		target = (INB (nc_sdid) & 0xf);
5182 		tp = &np->target[target];
5183 
5184 		/*
5185 		**  If we didn't abort anything, leave here.
5186 		*/
5187 		if (np->abrt_msg[0] == M_ABORT)
5188 			break;
5189 
5190 		/*
5191 		 *  If we sent a M_RESET, then a hardware reset has
5192 		 *  been performed by the target.
5193 		 *  - Reset everything to async 8 bit
5194 		 *  - Tell ourself to negotiate next time :-)
5195 		 *  - Prepare to clear all disconnected CCBs for
5196 		 *    this target from our task list (lun=task=-1)
5197 		 */
5198 		lun = -1;
5199 		task = -1;
5200 		if (np->abrt_msg[0] == M_RESET) {
5201 			tp->head.sval = 0;
5202 			tp->head.wval = np->rv_scntl3;
5203 			tp->head.uval = 0;
5204 			tp->tinfo.current.period = 0;
5205 			tp->tinfo.current.offset = 0;
5206 			tp->tinfo.current.width  = BUS_8_BIT;
5207 			tp->tinfo.current.options = 0;
5208 		}
5209 
5210 		/*
5211 		 *  Otherwise, check for the LUN and TASK(s)
5212 		 *  concerned by the cancelation.
5213 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5214 		 *  or an ABORT message :-)
5215 		 */
5216 		else {
5217 			lun = np->abrt_msg[0] & 0x3f;
5218 			if (np->abrt_msg[1] == M_ABORT_TAG)
5219 				task = np->abrt_msg[2];
5220 		}
5221 
5222 		/*
5223 		 *  Complete all the CCBs the device should have
5224 		 *  aborted due to our 'kiss of death' message.
5225 		 */
5226 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5227 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5228 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5229 		sym_flush_comp_queue(np, 0);
5230 
5231 		/*
5232 		 *  If we sent a BDR, make uper layer aware of that.
5233 		 */
5234 		if (np->abrt_msg[0] == M_RESET)
5235 			xpt_async(AC_SENT_BDR, np->path, NULL);
5236 		break;
5237 	}
5238 
5239 	/*
5240 	 *  Print to the log the message we intend to send.
5241 	 */
5242 	if (num == SIR_TARGET_SELECTED) {
5243 		PRINT_TARGET(np, target);
5244 		sym_printl_hex("control msgout:", np->abrt_msg,
5245 			      np->abrt_tbl.size);
5246 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5247 	}
5248 
5249 	/*
5250 	 *  Let the SCRIPTS processor continue.
5251 	 */
5252 	OUTONB_STD ();
5253 }
5254 
5255 /*
5256  *  Gerard's alchemy:) that deals with with the data
5257  *  pointer for both MDP and the residual calculation.
5258  *
5259  *  I didn't want to bloat the code by more than 200
5260  *  lignes for the handling of both MDP and the residual.
5261  *  This has been achieved by using a data pointer
5262  *  representation consisting in an index in the data
5263  *  array (dp_sg) and a negative offset (dp_ofs) that
5264  *  have the following meaning:
5265  *
5266  *  - dp_sg = SYM_CONF_MAX_SG
5267  *    we are at the end of the data script.
5268  *  - dp_sg < SYM_CONF_MAX_SG
5269  *    dp_sg points to the next entry of the scatter array
5270  *    we want to transfer.
5271  *  - dp_ofs < 0
5272  *    dp_ofs represents the residual of bytes of the
5273  *    previous entry scatter entry we will send first.
5274  *  - dp_ofs = 0
5275  *    no residual to send first.
5276  *
5277  *  The function sym_evaluate_dp() accepts an arbitray
5278  *  offset (basically from the MDP message) and returns
5279  *  the corresponding values of dp_sg and dp_ofs.
5280  */
5281 
5282 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5283 {
5284 	u32	dp_scr;
5285 	int	dp_ofs, dp_sg, dp_sgmin;
5286 	int	tmp;
5287 	struct sym_pmc *pm;
5288 
5289 	/*
5290 	 *  Compute the resulted data pointer in term of a script
5291 	 *  address within some DATA script and a signed byte offset.
5292 	 */
5293 	dp_scr = scr;
5294 	dp_ofs = *ofs;
5295 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5296 		pm = &cp->phys.pm0;
5297 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5298 		pm = &cp->phys.pm1;
5299 	else
5300 		pm = NULL;
5301 
5302 	if (pm) {
5303 		dp_scr  = scr_to_cpu(pm->ret);
5304 		dp_ofs -= scr_to_cpu(pm->sg.size);
5305 	}
5306 
5307 	/*
5308 	 *  If we are auto-sensing, then we are done.
5309 	 */
5310 	if (cp->host_flags & HF_SENSE) {
5311 		*ofs = dp_ofs;
5312 		return 0;
5313 	}
5314 
5315 	/*
5316 	 *  Deduce the index of the sg entry.
5317 	 *  Keep track of the index of the first valid entry.
5318 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5319 	 *  end of the data.
5320 	 */
5321 	tmp = scr_to_cpu(cp->phys.head.goalp);
5322 	dp_sg = SYM_CONF_MAX_SG;
5323 	if (dp_scr != tmp)
5324 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5325 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5326 
5327 	/*
5328 	 *  Move to the sg entry the data pointer belongs to.
5329 	 *
5330 	 *  If we are inside the data area, we expect result to be:
5331 	 *
5332 	 *  Either,
5333 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5334 	 *      the data pointer belongs to (or the end of the data)
5335 	 *  Or,
5336 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5337 	 *      the data pointer belongs to + 1.
5338 	 */
5339 	if (dp_ofs < 0) {
5340 		int n;
5341 		while (dp_sg > dp_sgmin) {
5342 			--dp_sg;
5343 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5344 			n = dp_ofs + (tmp & 0xffffff);
5345 			if (n > 0) {
5346 				++dp_sg;
5347 				break;
5348 			}
5349 			dp_ofs = n;
5350 		}
5351 	}
5352 	else if (dp_ofs > 0) {
5353 		while (dp_sg < SYM_CONF_MAX_SG) {
5354 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5355 			dp_ofs -= (tmp & 0xffffff);
5356 			++dp_sg;
5357 			if (dp_ofs <= 0)
5358 				break;
5359 		}
5360 	}
5361 
5362 	/*
5363 	 *  Make sure the data pointer is inside the data area.
5364 	 *  If not, return some error.
5365 	 */
5366 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5367 		goto out_err;
5368 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5369 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5370 		goto out_err;
5371 
5372 	/*
5373 	 *  Save the extreme pointer if needed.
5374 	 */
5375 	if (dp_sg > cp->ext_sg ||
5376             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5377 		cp->ext_sg  = dp_sg;
5378 		cp->ext_ofs = dp_ofs;
5379 	}
5380 
5381 	/*
5382 	 *  Return data.
5383 	 */
5384 	*ofs = dp_ofs;
5385 	return dp_sg;
5386 
5387 out_err:
5388 	return -1;
5389 }
5390 
5391 /*
5392  *  chip handler for MODIFY DATA POINTER MESSAGE
5393  *
5394  *  We also call this function on IGNORE WIDE RESIDUE
5395  *  messages that do not match a SWIDE full condition.
5396  *  Btw, we assume in that situation that such a message
5397  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5398  */
5399 
5400 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5401 {
5402 	int dp_ofs	= ofs;
5403 	u32	dp_scr	= INL (nc_temp);
5404 	u32	dp_ret;
5405 	u32	tmp;
5406 	u_char	hflags;
5407 	int	dp_sg;
5408 	struct	sym_pmc *pm;
5409 
5410 	/*
5411 	 *  Not supported for auto-sense.
5412 	 */
5413 	if (cp->host_flags & HF_SENSE)
5414 		goto out_reject;
5415 
5416 	/*
5417 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5418 	 *  to the resulted data pointer.
5419 	 */
5420 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5421 	if (dp_sg < 0)
5422 		goto out_reject;
5423 
5424 	/*
5425 	 *  And our alchemy:) allows to easily calculate the data
5426 	 *  script address we want to return for the next data phase.
5427 	 */
5428 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5429 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5430 
5431 	/*
5432 	 *  If offset / scatter entry is zero we donnot need
5433 	 *  a context for the new current data pointer.
5434 	 */
5435 	if (dp_ofs == 0) {
5436 		dp_scr = dp_ret;
5437 		goto out_ok;
5438 	}
5439 
5440 	/*
5441 	 *  Get a context for the new current data pointer.
5442 	 */
5443 	hflags = INB (HF_PRT);
5444 
5445 	if (hflags & HF_DP_SAVED)
5446 		hflags ^= HF_ACT_PM;
5447 
5448 	if (!(hflags & HF_ACT_PM)) {
5449 		pm  = &cp->phys.pm0;
5450 		dp_scr = SCRIPTA_BA (np, pm0_data);
5451 	}
5452 	else {
5453 		pm = &cp->phys.pm1;
5454 		dp_scr = SCRIPTA_BA (np, pm1_data);
5455 	}
5456 
5457 	hflags &= ~(HF_DP_SAVED);
5458 
5459 	OUTB (HF_PRT, hflags);
5460 
5461 	/*
5462 	 *  Set up the new current data pointer.
5463 	 *  ofs < 0 there, and for the next data phase, we
5464 	 *  want to transfer part of the data of the sg entry
5465 	 *  corresponding to index dp_sg-1 prior to returning
5466 	 *  to the main data script.
5467 	 */
5468 	pm->ret = cpu_to_scr(dp_ret);
5469 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5470 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5471 	pm->sg.addr = cpu_to_scr(tmp);
5472 	pm->sg.size = cpu_to_scr(-dp_ofs);
5473 
5474 out_ok:
5475 	OUTL (nc_temp, dp_scr);
5476 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5477 	return;
5478 
5479 out_reject:
5480 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5481 }
5482 
5483 
5484 /*
5485  *  chip calculation of the data residual.
5486  *
5487  *  As I used to say, the requirement of data residual
5488  *  in SCSI is broken, useless and cannot be achieved
5489  *  without huge complexity.
5490  *  But most OSes and even the official CAM require it.
5491  *  When stupidity happens to be so widely spread inside
5492  *  a community, it gets hard to convince.
5493  *
5494  *  Anyway, I don't care, since I am not going to use
5495  *  any software that considers this data residual as
5496  *  a relevant information. :)
5497  */
5498 
5499 static int sym_compute_residual(hcb_p np, ccb_p cp)
5500 {
5501 	int dp_sg, resid = 0;
5502 	int dp_ofs = 0;
5503 
5504 	/*
5505 	 *  Check for some data lost or just thrown away.
5506 	 *  We are not required to be quite accurate in this
5507 	 *  situation. Btw, if we are odd for output and the
5508 	 *  device claims some more data, it may well happen
5509 	 *  than our residual be zero. :-)
5510 	 */
5511 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5512 		if (cp->xerr_status & XE_EXTRA_DATA)
5513 			resid -= cp->extra_bytes;
5514 		if (cp->xerr_status & XE_SODL_UNRUN)
5515 			++resid;
5516 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5517 			--resid;
5518 	}
5519 
5520 	/*
5521 	 *  If all data has been transferred,
5522 	 *  there is no residual.
5523 	 */
5524 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5525 		return resid;
5526 
5527 	/*
5528 	 *  If no data transfer occurs, or if the data
5529 	 *  pointer is weird, return full residual.
5530 	 */
5531 	if (cp->startp == cp->phys.head.lastp ||
5532 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5533 			    &dp_ofs) < 0) {
5534 		return cp->data_len;
5535 	}
5536 
5537 	/*
5538 	 *  If we were auto-sensing, then we are done.
5539 	 */
5540 	if (cp->host_flags & HF_SENSE) {
5541 		return -dp_ofs;
5542 	}
5543 
5544 	/*
5545 	 *  We are now full comfortable in the computation
5546 	 *  of the data residual (2's complement).
5547 	 */
5548 	resid = -cp->ext_ofs;
5549 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5550 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5551 		resid += (tmp & 0xffffff);
5552 	}
5553 
5554 	/*
5555 	 *  Hopefully, the result is not too wrong.
5556 	 */
5557 	return resid;
5558 }
5559 
5560 /*
5561  *  Print out the content of a SCSI message.
5562  */
5563 
5564 static int sym_show_msg (u_char * msg)
5565 {
5566 	u_char i;
5567 	kprintf ("%x",*msg);
5568 	if (*msg==M_EXTENDED) {
5569 		for (i=1;i<8;i++) {
5570 			if (i-1>msg[1]) break;
5571 			kprintf ("-%x",msg[i]);
5572 		}
5573 		return (i+1);
5574 	} else if ((*msg & 0xf0) == 0x20) {
5575 		kprintf ("-%x",msg[1]);
5576 		return (2);
5577 	}
5578 	return (1);
5579 }
5580 
5581 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5582 {
5583 	PRINT_ADDR(cp);
5584 	if (label)
5585 		kprintf ("%s: ", label);
5586 
5587 	(void) sym_show_msg (msg);
5588 	kprintf (".\n");
5589 }
5590 
5591 /*
5592  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5593  *
5594  *  When we try to negotiate, we append the negotiation message
5595  *  to the identify and (maybe) simple tag message.
5596  *  The host status field is set to HS_NEGOTIATE to mark this
5597  *  situation.
5598  *
5599  *  If the target doesn't answer this message immediately
5600  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5601  *  will be raised eventually.
5602  *  The handler removes the HS_NEGOTIATE status, and sets the
5603  *  negotiated value to the default (async / nowide).
5604  *
5605  *  If we receive a matching answer immediately, we check it
5606  *  for validity, and set the values.
5607  *
5608  *  If we receive a Reject message immediately, we assume the
5609  *  negotiation has failed, and fall back to standard values.
5610  *
5611  *  If we receive a negotiation message while not in HS_NEGOTIATE
5612  *  state, it's a target initiated negotiation. We prepare a
5613  *  (hopefully) valid answer, set our parameters, and send back
5614  *  this answer to the target.
5615  *
5616  *  If the target doesn't fetch the answer (no message out phase),
5617  *  we assume the negotiation has failed, and fall back to default
5618  *  settings (SIR_NEGO_PROTO interrupt).
5619  *
5620  *  When we set the values, we adjust them in all ccbs belonging
5621  *  to this target, in the controller's register, and in the "phys"
5622  *  field of the controller's struct sym_hcb.
5623  */
5624 
5625 /*
5626  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5627  */
5628 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5629 {
5630 	u_char	chg, ofs, per, fak, div;
5631 	int	req = 1;
5632 
5633 	/*
5634 	 *  Synchronous request message received.
5635 	 */
5636 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5637 		sym_print_msg(cp, "sync msgin", np->msgin);
5638 	}
5639 
5640 	/*
5641 	 * request or answer ?
5642 	 */
5643 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5644 		OUTB (HS_PRT, HS_BUSY);
5645 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5646 			goto reject_it;
5647 		req = 0;
5648 	}
5649 
5650 	/*
5651 	 *  get requested values.
5652 	 */
5653 	chg = 0;
5654 	per = np->msgin[3];
5655 	ofs = np->msgin[4];
5656 
5657 	/*
5658 	 *  check values against our limits.
5659 	 */
5660 	if (ofs) {
5661 		if (ofs > np->maxoffs)
5662 			{chg = 1; ofs = np->maxoffs;}
5663 		if (req) {
5664 			if (ofs > tp->tinfo.user.offset)
5665 				{chg = 1; ofs = tp->tinfo.user.offset;}
5666 		}
5667 	}
5668 
5669 	if (ofs) {
5670 		if (per < np->minsync)
5671 			{chg = 1; per = np->minsync;}
5672 		if (req) {
5673 			if (per < tp->tinfo.user.period)
5674 				{chg = 1; per = tp->tinfo.user.period;}
5675 		}
5676 	}
5677 
5678 	div = fak = 0;
5679 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5680 		goto reject_it;
5681 
5682 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5683 		PRINT_ADDR(cp);
5684 		kprintf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5685 			ofs, per, div, fak, chg);
5686 	}
5687 
5688 	/*
5689 	 *  This was an answer message
5690 	 */
5691 	if (req == 0) {
5692 		if (chg) 	/* Answer wasn't acceptable. */
5693 			goto reject_it;
5694 		sym_setsync (np, cp, ofs, per, div, fak);
5695 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5696 		return;
5697 	}
5698 
5699 	/*
5700 	 *  It was a request. Set value and
5701 	 *  prepare an answer message
5702 	 */
5703 	sym_setsync (np, cp, ofs, per, div, fak);
5704 
5705 	np->msgout[0] = M_EXTENDED;
5706 	np->msgout[1] = 3;
5707 	np->msgout[2] = M_X_SYNC_REQ;
5708 	np->msgout[3] = per;
5709 	np->msgout[4] = ofs;
5710 
5711 	cp->nego_status = NS_SYNC;
5712 
5713 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5714 		sym_print_msg(cp, "sync msgout", np->msgout);
5715 	}
5716 
5717 	np->msgin [0] = M_NOOP;
5718 
5719 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5720 	return;
5721 reject_it:
5722 	sym_setsync (np, cp, 0, 0, 0, 0);
5723 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5724 }
5725 
5726 /*
5727  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5728  */
5729 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5730 {
5731 	u_char	chg, ofs, per, fak, dt, div, wide;
5732 	int	req = 1;
5733 
5734 	/*
5735 	 * Synchronous request message received.
5736 	 */
5737 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5738 		sym_print_msg(cp, "ppr msgin", np->msgin);
5739 	}
5740 
5741 	/*
5742 	 *  get requested values.
5743 	 */
5744 	chg  = 0;
5745 	per  = np->msgin[3];
5746 	ofs  = np->msgin[5];
5747 	wide = np->msgin[6];
5748 	dt   = np->msgin[7] & PPR_OPT_DT;
5749 
5750 	/*
5751 	 * request or answer ?
5752 	 */
5753 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5754 		OUTB (HS_PRT, HS_BUSY);
5755 		if (cp->nego_status && cp->nego_status != NS_PPR)
5756 			goto reject_it;
5757 		req = 0;
5758 	}
5759 
5760 	/*
5761 	 *  check values against our limits.
5762 	 */
5763 	if (wide > np->maxwide)
5764 		{chg = 1; wide = np->maxwide;}
5765 	if (!wide || !(np->features & FE_ULTRA3))
5766 		dt &= ~PPR_OPT_DT;
5767 	if (req) {
5768 		if (wide > tp->tinfo.user.width)
5769 			{chg = 1; wide = tp->tinfo.user.width;}
5770 	}
5771 
5772 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5773 		dt &= ~PPR_OPT_DT;
5774 
5775 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5776 
5777 	if (ofs) {
5778 		if (dt) {
5779 			if (ofs > np->maxoffs_dt)
5780 				{chg = 1; ofs = np->maxoffs_dt;}
5781 		}
5782 		else if (ofs > np->maxoffs)
5783 			{chg = 1; ofs = np->maxoffs;}
5784 		if (req) {
5785 			if (ofs > tp->tinfo.user.offset)
5786 				{chg = 1; ofs = tp->tinfo.user.offset;}
5787 		}
5788 	}
5789 
5790 	if (ofs) {
5791 		if (dt) {
5792 			if (per < np->minsync_dt)
5793 				{chg = 1; per = np->minsync_dt;}
5794 		}
5795 		else if (per < np->minsync)
5796 			{chg = 1; per = np->minsync;}
5797 		if (req) {
5798 			if (per < tp->tinfo.user.period)
5799 				{chg = 1; per = tp->tinfo.user.period;}
5800 		}
5801 	}
5802 
5803 	div = fak = 0;
5804 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5805 		goto reject_it;
5806 
5807 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5808 		PRINT_ADDR(cp);
5809 		kprintf ("ppr: "
5810 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5811 			dt, ofs, per, wide, div, fak, chg);
5812 	}
5813 
5814 	/*
5815 	 *  It was an answer.
5816 	 */
5817 	if (req == 0) {
5818 		if (chg) 	/* Answer wasn't acceptable */
5819 			goto reject_it;
5820 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5821 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5822 		return;
5823 	}
5824 
5825 	/*
5826 	 *  It was a request. Set value and
5827 	 *  prepare an answer message
5828 	 */
5829 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5830 
5831 	np->msgout[0] = M_EXTENDED;
5832 	np->msgout[1] = 6;
5833 	np->msgout[2] = M_X_PPR_REQ;
5834 	np->msgout[3] = per;
5835 	np->msgout[4] = 0;
5836 	np->msgout[5] = ofs;
5837 	np->msgout[6] = wide;
5838 	np->msgout[7] = dt;
5839 
5840 	cp->nego_status = NS_PPR;
5841 
5842 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5843 		sym_print_msg(cp, "ppr msgout", np->msgout);
5844 	}
5845 
5846 	np->msgin [0] = M_NOOP;
5847 
5848 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5849 	return;
5850 reject_it:
5851 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5852 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5853 	/*
5854 	 *  If it was a device response that should result in
5855 	 *  ST, we may want to try a legacy negotiation later.
5856 	 */
5857 	if (!req && !dt) {
5858 		tp->tinfo.goal.options = 0;
5859 		tp->tinfo.goal.width   = wide;
5860 		tp->tinfo.goal.period  = per;
5861 		tp->tinfo.goal.offset  = ofs;
5862 	}
5863 }
5864 
5865 /*
5866  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5867  */
5868 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5869 {
5870 	u_char	chg, wide;
5871 	int	req = 1;
5872 
5873 	/*
5874 	 *  Wide request message received.
5875 	 */
5876 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5877 		sym_print_msg(cp, "wide msgin", np->msgin);
5878 	}
5879 
5880 	/*
5881 	 * Is it a request from the device?
5882 	 */
5883 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5884 		OUTB (HS_PRT, HS_BUSY);
5885 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5886 			goto reject_it;
5887 		req = 0;
5888 	}
5889 
5890 	/*
5891 	 *  get requested values.
5892 	 */
5893 	chg  = 0;
5894 	wide = np->msgin[3];
5895 
5896 	/*
5897 	 *  check values against driver limits.
5898 	 */
5899 	if (wide > np->maxwide)
5900 		{chg = 1; wide = np->maxwide;}
5901 	if (req) {
5902 		if (wide > tp->tinfo.user.width)
5903 			{chg = 1; wide = tp->tinfo.user.width;}
5904 	}
5905 
5906 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5907 		PRINT_ADDR(cp);
5908 		kprintf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5909 	}
5910 
5911 	/*
5912 	 * This was an answer message
5913 	 */
5914 	if (req == 0) {
5915 		if (chg)	/*  Answer wasn't acceptable. */
5916 			goto reject_it;
5917 		sym_setwide (np, cp, wide);
5918 
5919 		/*
5920 		 * Negotiate for SYNC immediately after WIDE response.
5921 		 * This allows to negotiate for both WIDE and SYNC on
5922 		 * a single SCSI command (Suggested by Justin Gibbs).
5923 		 */
5924 		if (tp->tinfo.goal.offset) {
5925 			np->msgout[0] = M_EXTENDED;
5926 			np->msgout[1] = 3;
5927 			np->msgout[2] = M_X_SYNC_REQ;
5928 			np->msgout[3] = tp->tinfo.goal.period;
5929 			np->msgout[4] = tp->tinfo.goal.offset;
5930 
5931 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5932 				sym_print_msg(cp, "sync msgout", np->msgout);
5933 			}
5934 
5935 			cp->nego_status = NS_SYNC;
5936 			OUTB (HS_PRT, HS_NEGOTIATE);
5937 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5938 			return;
5939 		}
5940 
5941 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5942 		return;
5943 	}
5944 
5945 	/*
5946 	 *  It was a request, set value and
5947 	 *  prepare an answer message
5948 	 */
5949 	sym_setwide (np, cp, wide);
5950 
5951 	np->msgout[0] = M_EXTENDED;
5952 	np->msgout[1] = 2;
5953 	np->msgout[2] = M_X_WIDE_REQ;
5954 	np->msgout[3] = wide;
5955 
5956 	np->msgin [0] = M_NOOP;
5957 
5958 	cp->nego_status = NS_WIDE;
5959 
5960 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5961 		sym_print_msg(cp, "wide msgout", np->msgout);
5962 	}
5963 
5964 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5965 	return;
5966 reject_it:
5967 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5968 }
5969 
5970 /*
5971  *  Reset SYNC or WIDE to default settings.
5972  *
5973  *  Called when a negotiation does not succeed either
5974  *  on rejection or on protocol error.
5975  *
5976  *  If it was a PPR that made problems, we may want to
5977  *  try a legacy negotiation later.
5978  */
5979 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5980 {
5981 	/*
5982 	 *  any error in negotiation:
5983 	 *  fall back to default mode.
5984 	 */
5985 	switch (cp->nego_status) {
5986 	case NS_PPR:
5987 #if 0
5988 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5989 #else
5990 		tp->tinfo.goal.options = 0;
5991 		if (tp->tinfo.goal.period < np->minsync)
5992 			tp->tinfo.goal.period = np->minsync;
5993 		if (tp->tinfo.goal.offset > np->maxoffs)
5994 			tp->tinfo.goal.offset = np->maxoffs;
5995 #endif
5996 		break;
5997 	case NS_SYNC:
5998 		sym_setsync (np, cp, 0, 0, 0, 0);
5999 		break;
6000 	case NS_WIDE:
6001 		sym_setwide (np, cp, 0);
6002 		break;
6003 	}
6004 	np->msgin [0] = M_NOOP;
6005 	np->msgout[0] = M_NOOP;
6006 	cp->nego_status = 0;
6007 }
6008 
6009 /*
6010  *  chip handler for MESSAGE REJECT received in response to
6011  *  a WIDE or SYNCHRONOUS negotiation.
6012  */
6013 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6014 {
6015 	sym_nego_default(np, tp, cp);
6016 	OUTB (HS_PRT, HS_BUSY);
6017 }
6018 
6019 /*
6020  *  chip exception handler for programmed interrupts.
6021  */
6022 static void sym_int_sir (hcb_p np)
6023 {
6024 	u_char	num	= INB (nc_dsps);
6025 	u32	dsa	= INL (nc_dsa);
6026 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6027 	u_char	target	= INB (nc_sdid) & 0x0f;
6028 	tcb_p	tp	= &np->target[target];
6029 	int	tmp;
6030 
6031 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
6032 
6033 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("I#%d", num);
6034 
6035 	switch (num) {
6036 	/*
6037 	 *  Command has been completed with error condition
6038 	 *  or has been auto-sensed.
6039 	 */
6040 	case SIR_COMPLETE_ERROR:
6041 		sym_complete_error(np, cp);
6042 		return;
6043 	/*
6044 	 *  The C code is currently trying to recover from something.
6045 	 *  Typically, user want to abort some command.
6046 	 */
6047 	case SIR_SCRIPT_STOPPED:
6048 	case SIR_TARGET_SELECTED:
6049 	case SIR_ABORT_SENT:
6050 		sym_sir_task_recovery(np, num);
6051 		return;
6052 	/*
6053 	 *  The device didn't go to MSG OUT phase after having
6054 	 *  been selected with ATN. We donnot want to handle
6055 	 *  that.
6056 	 */
6057 	case SIR_SEL_ATN_NO_MSG_OUT:
6058 		kprintf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6059 			sym_name (np), target);
6060 		goto out_stuck;
6061 	/*
6062 	 *  The device didn't switch to MSG IN phase after
6063 	 *  having reseleted the initiator.
6064 	 */
6065 	case SIR_RESEL_NO_MSG_IN:
6066 		kprintf ("%s:%d: No MSG IN phase after reselection.\n",
6067 			sym_name (np), target);
6068 		goto out_stuck;
6069 	/*
6070 	 *  After reselection, the device sent a message that wasn't
6071 	 *  an IDENTIFY.
6072 	 */
6073 	case SIR_RESEL_NO_IDENTIFY:
6074 		kprintf ("%s:%d: No IDENTIFY after reselection.\n",
6075 			sym_name (np), target);
6076 		goto out_stuck;
6077 	/*
6078 	 *  The device reselected a LUN we donnot know about.
6079 	 */
6080 	case SIR_RESEL_BAD_LUN:
6081 		np->msgout[0] = M_RESET;
6082 		goto out;
6083 	/*
6084 	 *  The device reselected for an untagged nexus and we
6085 	 *  haven't any.
6086 	 */
6087 	case SIR_RESEL_BAD_I_T_L:
6088 		np->msgout[0] = M_ABORT;
6089 		goto out;
6090 	/*
6091 	 *  The device reselected for a tagged nexus that we donnot
6092 	 *  have.
6093 	 */
6094 	case SIR_RESEL_BAD_I_T_L_Q:
6095 		np->msgout[0] = M_ABORT_TAG;
6096 		goto out;
6097 	/*
6098 	 *  The SCRIPTS let us know that the device has grabbed
6099 	 *  our message and will abort the job.
6100 	 */
6101 	case SIR_RESEL_ABORTED:
6102 		np->lastmsg = np->msgout[0];
6103 		np->msgout[0] = M_NOOP;
6104 		kprintf ("%s:%d: message %x sent on bad reselection.\n",
6105 			sym_name (np), target, np->lastmsg);
6106 		goto out;
6107 	/*
6108 	 *  The SCRIPTS let us know that a message has been
6109 	 *  successfully sent to the device.
6110 	 */
6111 	case SIR_MSG_OUT_DONE:
6112 		np->lastmsg = np->msgout[0];
6113 		np->msgout[0] = M_NOOP;
6114 		/* Should we really care of that */
6115 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6116 			if (cp) {
6117 				cp->xerr_status &= ~XE_PARITY_ERR;
6118 				if (!cp->xerr_status)
6119 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6120 			}
6121 		}
6122 		goto out;
6123 	/*
6124 	 *  The device didn't send a GOOD SCSI status.
6125 	 *  We may have some work to do prior to allow
6126 	 *  the SCRIPTS processor to continue.
6127 	 */
6128 	case SIR_BAD_SCSI_STATUS:
6129 		if (!cp)
6130 			goto out;
6131 		sym_sir_bad_scsi_status(np, num, cp);
6132 		return;
6133 	/*
6134 	 *  We are asked by the SCRIPTS to prepare a
6135 	 *  REJECT message.
6136 	 */
6137 	case SIR_REJECT_TO_SEND:
6138 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6139 		np->msgout[0] = M_REJECT;
6140 		goto out;
6141 	/*
6142 	 *  We have been ODD at the end of a DATA IN
6143 	 *  transfer and the device didn't send a
6144 	 *  IGNORE WIDE RESIDUE message.
6145 	 *  It is a data overrun condition.
6146 	 */
6147 	case SIR_SWIDE_OVERRUN:
6148 		if (cp) {
6149 			OUTONB (HF_PRT, HF_EXT_ERR);
6150 			cp->xerr_status |= XE_SWIDE_OVRUN;
6151 		}
6152 		goto out;
6153 	/*
6154 	 *  We have been ODD at the end of a DATA OUT
6155 	 *  transfer.
6156 	 *  It is a data underrun condition.
6157 	 */
6158 	case SIR_SODL_UNDERRUN:
6159 		if (cp) {
6160 			OUTONB (HF_PRT, HF_EXT_ERR);
6161 			cp->xerr_status |= XE_SODL_UNRUN;
6162 		}
6163 		goto out;
6164 	/*
6165 	 *  The device wants us to tranfer more data than
6166 	 *  expected or in the wrong direction.
6167 	 *  The number of extra bytes is in scratcha.
6168 	 *  It is a data overrun condition.
6169 	 */
6170 	case SIR_DATA_OVERRUN:
6171 		if (cp) {
6172 			OUTONB (HF_PRT, HF_EXT_ERR);
6173 			cp->xerr_status |= XE_EXTRA_DATA;
6174 			cp->extra_bytes += INL (nc_scratcha);
6175 		}
6176 		goto out;
6177 	/*
6178 	 *  The device switched to an illegal phase (4/5).
6179 	 */
6180 	case SIR_BAD_PHASE:
6181 		if (cp) {
6182 			OUTONB (HF_PRT, HF_EXT_ERR);
6183 			cp->xerr_status |= XE_BAD_PHASE;
6184 		}
6185 		goto out;
6186 	/*
6187 	 *  We received a message.
6188 	 */
6189 	case SIR_MSG_RECEIVED:
6190 		if (!cp)
6191 			goto out_stuck;
6192 		switch (np->msgin [0]) {
6193 		/*
6194 		 *  We received an extended message.
6195 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6196 		 *  and reject all other extended messages.
6197 		 */
6198 		case M_EXTENDED:
6199 			switch (np->msgin [2]) {
6200 			case M_X_MODIFY_DP:
6201 				if (DEBUG_FLAGS & DEBUG_POINTER)
6202 					sym_print_msg(cp,"modify DP",np->msgin);
6203 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6204 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6205 				sym_modify_dp(np, tp, cp, tmp);
6206 				return;
6207 			case M_X_SYNC_REQ:
6208 				sym_sync_nego(np, tp, cp);
6209 				return;
6210 			case M_X_PPR_REQ:
6211 				sym_ppr_nego(np, tp, cp);
6212 				return;
6213 			case M_X_WIDE_REQ:
6214 				sym_wide_nego(np, tp, cp);
6215 				return;
6216 			default:
6217 				goto out_reject;
6218 			}
6219 			break;
6220 		/*
6221 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6222 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6223 		 *  RESIDUE messages that haven't been anticipated by
6224 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6225 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6226 		 */
6227 		case M_IGN_RESIDUE:
6228 			if (DEBUG_FLAGS & DEBUG_POINTER)
6229 				sym_print_msg(cp,"ign wide residue", np->msgin);
6230 			sym_modify_dp(np, tp, cp, -1);
6231 			return;
6232 		case M_REJECT:
6233 			if (INB (HS_PRT) == HS_NEGOTIATE)
6234 				sym_nego_rejected(np, tp, cp);
6235 			else {
6236 				PRINT_ADDR(cp);
6237 				kprintf ("M_REJECT received (%x:%x).\n",
6238 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6239 			}
6240 			goto out_clrack;
6241 			break;
6242 		default:
6243 			goto out_reject;
6244 		}
6245 		break;
6246 	/*
6247 	 *  We received an unknown message.
6248 	 *  Ignore all MSG IN phases and reject it.
6249 	 */
6250 	case SIR_MSG_WEIRD:
6251 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6252 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6253 		return;
6254 	/*
6255 	 *  Negotiation failed.
6256 	 *  Target does not send us the reply.
6257 	 *  Remove the HS_NEGOTIATE status.
6258 	 */
6259 	case SIR_NEGO_FAILED:
6260 		OUTB (HS_PRT, HS_BUSY);
6261 	/*
6262 	 *  Negotiation failed.
6263 	 *  Target does not want answer message.
6264 	 */
6265 	case SIR_NEGO_PROTO:
6266 		sym_nego_default(np, tp, cp);
6267 		goto out;
6268 	}
6269 
6270 out:
6271 	OUTONB_STD ();
6272 	return;
6273 out_reject:
6274 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6275 	return;
6276 out_clrack:
6277 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6278 	return;
6279 out_stuck:
6280 	return;
6281 }
6282 
6283 /*
6284  *  Acquire a control block
6285  */
6286 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6287 {
6288 	tcb_p tp = &np->target[tn];
6289 	lcb_p lp = sym_lp(np, tp, ln);
6290 	u_short tag = NO_TAG;
6291 	SYM_QUEHEAD *qp;
6292 	ccb_p cp = NULL;
6293 
6294 	/*
6295 	 *  Look for a free CCB
6296 	 */
6297 	if (sym_que_empty(&np->free_ccbq))
6298 		goto out;
6299 	qp = sym_remque_head(&np->free_ccbq);
6300 	if (!qp)
6301 		goto out;
6302 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6303 
6304 	/*
6305 	 *  If the LCB is not yet available and the LUN
6306 	 *  has been probed ok, try to allocate the LCB.
6307 	 */
6308 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6309 		lp = sym_alloc_lcb(np, tn, ln);
6310 		if (!lp)
6311 			goto out_free;
6312 	}
6313 
6314 	/*
6315 	 *  If the LCB is not available here, then the
6316 	 *  logical unit is not yet discovered. For those
6317 	 *  ones only accept 1 SCSI IO per logical unit,
6318 	 *  since we cannot allow disconnections.
6319 	 */
6320 	if (!lp) {
6321 		if (!sym_is_bit(tp->busy0_map, ln))
6322 			sym_set_bit(tp->busy0_map, ln);
6323 		else
6324 			goto out_free;
6325 	} else {
6326 		/*
6327 		 *  If we have been asked for a tagged command.
6328 		 */
6329 		if (tag_order) {
6330 			/*
6331 			 *  Debugging purpose.
6332 			 */
6333 			assert(lp->busy_itl == 0);
6334 			/*
6335 			 *  Allocate resources for tags if not yet.
6336 			 */
6337 			if (!lp->cb_tags) {
6338 				sym_alloc_lcb_tags(np, tn, ln);
6339 				if (!lp->cb_tags)
6340 					goto out_free;
6341 			}
6342 			/*
6343 			 *  Get a tag for this SCSI IO and set up
6344 			 *  the CCB bus address for reselection,
6345 			 *  and count it for this LUN.
6346 			 *  Toggle reselect path to tagged.
6347 			 */
6348 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6349 				tag = lp->cb_tags[lp->ia_tag];
6350 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6351 					lp->ia_tag = 0;
6352 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6353 				++lp->busy_itlq;
6354 				lp->head.resel_sa =
6355 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6356 			}
6357 			else
6358 				goto out_free;
6359 		}
6360 		/*
6361 		 *  This command will not be tagged.
6362 		 *  If we already have either a tagged or untagged
6363 		 *  one, refuse to overlap this untagged one.
6364 		 */
6365 		else {
6366 			/*
6367 			 *  Debugging purpose.
6368 			 */
6369 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6370 			/*
6371 			 *  Count this nexus for this LUN.
6372 			 *  Set up the CCB bus address for reselection.
6373 			 *  Toggle reselect path to untagged.
6374 			 */
6375 			if (++lp->busy_itl == 1) {
6376 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6377 				lp->head.resel_sa =
6378 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6379 			}
6380 			else
6381 				goto out_free;
6382 		}
6383 	}
6384 	/*
6385 	 *  Put the CCB into the busy queue.
6386 	 */
6387 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6388 
6389 	/*
6390 	 *  Remember all informations needed to free this CCB.
6391 	 */
6392 	cp->to_abort = 0;
6393 	cp->tag	   = tag;
6394 	cp->target = tn;
6395 	cp->lun    = ln;
6396 
6397 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6398 		PRINT_LUN(np, tn, ln);
6399 		kprintf ("ccb @%p using tag %d.\n", cp, tag);
6400 	}
6401 
6402 out:
6403 	return cp;
6404 out_free:
6405 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6406 	return NULL;
6407 }
6408 
6409 /*
6410  *  Release one control block
6411  */
6412 static void sym_free_ccb (hcb_p np, ccb_p cp)
6413 {
6414 	tcb_p tp = &np->target[cp->target];
6415 	lcb_p lp = sym_lp(np, tp, cp->lun);
6416 
6417 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6418 		PRINT_LUN(np, cp->target, cp->lun);
6419 		kprintf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6420 	}
6421 
6422 	/*
6423 	 *  If LCB available,
6424 	 */
6425 	if (lp) {
6426 		/*
6427 		 *  If tagged, release the tag, set the relect path
6428 		 */
6429 		if (cp->tag != NO_TAG) {
6430 			/*
6431 			 *  Free the tag value.
6432 			 */
6433 			lp->cb_tags[lp->if_tag] = cp->tag;
6434 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6435 				lp->if_tag = 0;
6436 			/*
6437 			 *  Make the reselect path invalid,
6438 			 *  and uncount this CCB.
6439 			 */
6440 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6441 			--lp->busy_itlq;
6442 		} else {	/* Untagged */
6443 			/*
6444 			 *  Make the reselect path invalid,
6445 			 *  and uncount this CCB.
6446 			 */
6447 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6448 			--lp->busy_itl;
6449 		}
6450 		/*
6451 		 *  If no JOB active, make the LUN reselect path invalid.
6452 		 */
6453 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6454 			lp->head.resel_sa =
6455 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6456 	}
6457 	/*
6458 	 *  Otherwise, we only accept 1 IO per LUN.
6459 	 *  Clear the bit that keeps track of this IO.
6460 	 */
6461 	else
6462 		sym_clr_bit(tp->busy0_map, cp->lun);
6463 
6464 	/*
6465 	 *  We donnot queue more than 1 ccb per target
6466 	 *  with negotiation at any time. If this ccb was
6467 	 *  used for negotiation, clear this info in the tcb.
6468 	 */
6469 	if (cp == tp->nego_cp)
6470 		tp->nego_cp = NULL;
6471 
6472 #ifdef SYM_CONF_IARB_SUPPORT
6473 	/*
6474 	 *  If we just complete the last queued CCB,
6475 	 *  clear this info that is no longer relevant.
6476 	 */
6477 	if (cp == np->last_cp)
6478 		np->last_cp = NULL;
6479 #endif
6480 
6481 	/*
6482 	 *  Unmap user data from DMA map if needed.
6483 	 */
6484 	if (cp->dmamapped) {
6485 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6486 		cp->dmamapped = 0;
6487 	}
6488 
6489 	/*
6490 	 *  Make this CCB available.
6491 	 */
6492 	cp->cam_ccb = NULL;
6493 	cp->host_status = HS_IDLE;
6494 	sym_remque(&cp->link_ccbq);
6495 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6496 }
6497 
6498 /*
6499  *  Allocate a CCB from memory and initialize its fixed part.
6500  */
6501 static ccb_p sym_alloc_ccb(hcb_p np)
6502 {
6503 	ccb_p cp = NULL;
6504 	int hcode;
6505 
6506 	SYM_LOCK_ASSERT(0);
6507 
6508 	/*
6509 	 *  Prevent from allocating more CCBs than we can
6510 	 *  queue to the controller.
6511 	 */
6512 	if (np->actccbs >= SYM_CONF_MAX_START)
6513 		return NULL;
6514 
6515 	/*
6516 	 *  Allocate memory for this CCB.
6517 	 */
6518 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6519 	if (!cp)
6520 		return NULL;
6521 
6522 	/*
6523 	 *  Allocate a bounce buffer for sense data.
6524 	 */
6525 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6526 	if (!cp->sns_bbuf)
6527 		goto out_free;
6528 
6529 	/*
6530 	 *  Allocate a map for the DMA of user data.
6531 	 */
6532 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6533 		goto out_free;
6534 	/*
6535 	 *  Count it.
6536 	 */
6537 	np->actccbs++;
6538 
6539 	/*
6540 	 * Initialize the callout.
6541 	 */
6542 	callout_init(&cp->ch);
6543 
6544 	/*
6545 	 *  Compute the bus address of this ccb.
6546 	 */
6547 	cp->ccb_ba = vtobus(cp);
6548 
6549 	/*
6550 	 *  Insert this ccb into the hashed list.
6551 	 */
6552 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6553 	cp->link_ccbh = np->ccbh[hcode];
6554 	np->ccbh[hcode] = cp;
6555 
6556 	/*
6557 	 *  Initialize the start and restart actions.
6558 	 */
6559 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6560 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6561 
6562  	/*
6563 	 *  Initilialyze some other fields.
6564 	 */
6565 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6566 
6567 	/*
6568 	 *  Chain into free ccb queue.
6569 	 */
6570 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6571 
6572 	return cp;
6573 out_free:
6574 	if (cp->sns_bbuf)
6575 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6576 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6577 	return NULL;
6578 }
6579 
6580 /*
6581  *  Look up a CCB from a DSA value.
6582  */
6583 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6584 {
6585 	int hcode;
6586 	ccb_p cp;
6587 
6588 	hcode = CCB_HASH_CODE(dsa);
6589 	cp = np->ccbh[hcode];
6590 	while (cp) {
6591 		if (cp->ccb_ba == dsa)
6592 			break;
6593 		cp = cp->link_ccbh;
6594 	}
6595 
6596 	return cp;
6597 }
6598 
6599 /*
6600  *  Target control block initialisation.
6601  *  Nothing important to do at the moment.
6602  */
6603 static void sym_init_tcb (hcb_p np, u_char tn)
6604 {
6605 	/*
6606 	 *  Check some alignments required by the chip.
6607 	 */
6608 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6609 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6610 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6611 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6612 }
6613 
6614 /*
6615  *  Lun control block allocation and initialization.
6616  */
6617 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6618 {
6619 	tcb_p tp = &np->target[tn];
6620 	lcb_p lp = sym_lp(np, tp, ln);
6621 
6622 	/*
6623 	 *  Already done, just return.
6624 	 */
6625 	if (lp)
6626 		return lp;
6627 	/*
6628 	 *  Check against some race.
6629 	 */
6630 	assert(!sym_is_bit(tp->busy0_map, ln));
6631 
6632 	/*
6633 	 *  Initialize the target control block if not yet.
6634 	 */
6635 	sym_init_tcb (np, tn);
6636 
6637 	/*
6638 	 *  Allocate the LCB bus address array.
6639 	 *  Compute the bus address of this table.
6640 	 */
6641 	if (ln && !tp->luntbl) {
6642 		int i;
6643 
6644 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6645 		if (!tp->luntbl)
6646 			goto fail;
6647 		for (i = 0 ; i < 64 ; i++)
6648 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6649 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6650 	}
6651 
6652 	/*
6653 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6654 	 */
6655 	if (ln && !tp->lunmp) {
6656 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6657 				   "LUNMP");
6658 		if (!tp->lunmp)
6659 			goto fail;
6660 	}
6661 
6662 	/*
6663 	 *  Allocate the lcb.
6664 	 *  Make it available to the chip.
6665 	 */
6666 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6667 	if (!lp)
6668 		goto fail;
6669 	if (ln) {
6670 		tp->lunmp[ln] = lp;
6671 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6672 	}
6673 	else {
6674 		tp->lun0p = lp;
6675 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6676 	}
6677 
6678 	/*
6679 	 *  Let the itl task point to error handling.
6680 	 */
6681 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6682 
6683 	/*
6684 	 *  Set the reselect pattern to our default. :)
6685 	 */
6686 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6687 
6688 	/*
6689 	 *  Set user capabilities.
6690 	 */
6691 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6692 
6693 fail:
6694 	return lp;
6695 }
6696 
6697 /*
6698  *  Allocate LCB resources for tagged command queuing.
6699  */
6700 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6701 {
6702 	tcb_p tp = &np->target[tn];
6703 	lcb_p lp = sym_lp(np, tp, ln);
6704 	int i;
6705 
6706 	/*
6707 	 *  If LCB not available, try to allocate it.
6708 	 */
6709 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6710 		return;
6711 
6712 	/*
6713 	 *  Allocate the task table and and the tag allocation
6714 	 *  circular buffer. We want both or none.
6715 	 */
6716 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6717 	if (!lp->itlq_tbl)
6718 		return;
6719 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6720 	if (!lp->cb_tags) {
6721 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6722 		lp->itlq_tbl = NULL;
6723 		return;
6724 	}
6725 
6726 	/*
6727 	 *  Initialize the task table with invalid entries.
6728 	 */
6729 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6730 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6731 
6732 	/*
6733 	 *  Fill up the tag buffer with tag numbers.
6734 	 */
6735 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6736 		lp->cb_tags[i] = i;
6737 
6738 	/*
6739 	 *  Make the task table available to SCRIPTS,
6740 	 *  And accept tagged commands now.
6741 	 */
6742 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6743 }
6744 
6745 /*
6746  *  Test the pci bus snoop logic :-(
6747  *
6748  *  Has to be called with interrupts disabled.
6749  */
6750 #ifndef SYM_CONF_IOMAPPED
6751 static int sym_regtest (hcb_p np)
6752 {
6753 	volatile u32 data;
6754 	/*
6755 	 *  chip registers may NOT be cached.
6756 	 *  write 0xffffffff to a read only register area,
6757 	 *  and try to read it back.
6758 	 */
6759 	data = 0xffffffff;
6760 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6761 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6762 #if 1
6763 	if (data == 0xffffffff) {
6764 #else
6765 	if ((data & 0xe2f0fffd) != 0x02000080) {
6766 #endif
6767 		kprintf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6768 			(unsigned) data);
6769 		return (0x10);
6770 	}
6771 	return (0);
6772 }
6773 #endif
6774 
6775 static int sym_snooptest (hcb_p np)
6776 {
6777 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6778 	int	i, err=0;
6779 #ifndef SYM_CONF_IOMAPPED
6780 	err |= sym_regtest (np);
6781 	if (err) return (err);
6782 #endif
6783 restart_test:
6784 	/*
6785 	 *  Enable Master Parity Checking as we intend
6786 	 *  to enable it for normal operations.
6787 	 */
6788 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6789 	/*
6790 	 *  init
6791 	 */
6792 	pc  = SCRIPTB0_BA (np, snooptest);
6793 	host_wr = 1;
6794 	sym_wr  = 2;
6795 	/*
6796 	 *  Set memory and register.
6797 	 */
6798 	np->cache = cpu_to_scr(host_wr);
6799 	OUTL (nc_temp, sym_wr);
6800 	/*
6801 	 *  Start script (exchange values)
6802 	 */
6803 	OUTL (nc_dsa, np->hcb_ba);
6804 	OUTL_DSP (pc);
6805 	/*
6806 	 *  Wait 'til done (with timeout)
6807 	 */
6808 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6809 		if (INB(nc_istat) & (INTF|SIP|DIP))
6810 			break;
6811 	if (i>=SYM_SNOOP_TIMEOUT) {
6812 		kprintf ("CACHE TEST FAILED: timeout.\n");
6813 		return (0x20);
6814 	}
6815 	/*
6816 	 *  Check for fatal DMA errors.
6817 	 */
6818 	dstat = INB (nc_dstat);
6819 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6820 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6821 		kprintf ("%s: PCI DATA PARITY ERROR DETECTED - "
6822 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6823 			sym_name(np));
6824 		np->rv_ctest4 &= ~MPEE;
6825 		goto restart_test;
6826 	}
6827 #endif
6828 	if (dstat & (MDPE|BF|IID)) {
6829 		kprintf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6830 		return (0x80);
6831 	}
6832 	/*
6833 	 *  Save termination position.
6834 	 */
6835 	pc = INL (nc_dsp);
6836 	/*
6837 	 *  Read memory and register.
6838 	 */
6839 	host_rd = scr_to_cpu(np->cache);
6840 	sym_rd  = INL (nc_scratcha);
6841 	sym_bk  = INL (nc_temp);
6842 
6843 	/*
6844 	 *  Check termination position.
6845 	 */
6846 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6847 		kprintf ("CACHE TEST FAILED: script execution failed.\n");
6848 		kprintf ("start=%08lx, pc=%08lx, end=%08lx\n",
6849 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6850 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6851 		return (0x40);
6852 	}
6853 	/*
6854 	 *  Show results.
6855 	 */
6856 	if (host_wr != sym_rd) {
6857 		kprintf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6858 			(int) host_wr, (int) sym_rd);
6859 		err |= 1;
6860 	}
6861 	if (host_rd != sym_wr) {
6862 		kprintf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6863 			(int) sym_wr, (int) host_rd);
6864 		err |= 2;
6865 	}
6866 	if (sym_bk != sym_wr) {
6867 		kprintf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6868 			(int) sym_wr, (int) sym_bk);
6869 		err |= 4;
6870 	}
6871 
6872 	return (err);
6873 }
6874 
6875 /*
6876  *  Determine the chip's clock frequency.
6877  *
6878  *  This is essential for the negotiation of the synchronous
6879  *  transfer rate.
6880  *
6881  *  Note: we have to return the correct value.
6882  *  THERE IS NO SAFE DEFAULT VALUE.
6883  *
6884  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6885  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6886  *  do not have a clock doubler and so are provided with a
6887  *  80 MHz clock. All other fast20 boards incorporate a doubler
6888  *  and so should be delivered with a 40 MHz clock.
6889  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6890  *  clock and provide a clock quadrupler (160 Mhz).
6891  */
6892 
6893 /*
6894  *  Select SCSI clock frequency
6895  */
6896 static void sym_selectclock(hcb_p np, u_char scntl3)
6897 {
6898 	/*
6899 	 *  If multiplier not present or not selected, leave here.
6900 	 */
6901 	if (np->multiplier <= 1) {
6902 		OUTB(nc_scntl3,	scntl3);
6903 		return;
6904 	}
6905 
6906 	if (sym_verbose >= 2)
6907 		kprintf ("%s: enabling clock multiplier\n", sym_name(np));
6908 
6909 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6910 	/*
6911 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6912 	 *  Otherwise wait 20 micro-seconds.
6913 	 */
6914 	if (np->features & FE_LCKFRQ) {
6915 		int i = 20;
6916 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6917 			UDELAY (20);
6918 		if (!i)
6919 			kprintf("%s: the chip cannot lock the frequency\n",
6920 				sym_name(np));
6921 	} else
6922 		UDELAY (20);
6923 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6924 	OUTB(nc_scntl3,	scntl3);
6925 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6926 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6927 }
6928 
6929 /*
6930  *  calculate SCSI clock frequency (in KHz)
6931  */
6932 static unsigned getfreq (hcb_p np, int gen)
6933 {
6934 	unsigned int ms = 0;
6935 	unsigned int f;
6936 
6937 	/*
6938 	 * Measure GEN timer delay in order
6939 	 * to calculate SCSI clock frequency
6940 	 *
6941 	 * This code will never execute too
6942 	 * many loop iterations (if DELAY is
6943 	 * reasonably correct). It could get
6944 	 * too low a delay (too high a freq.)
6945 	 * if the CPU is slow executing the
6946 	 * loop for some reason (an NMI, for
6947 	 * example). For this reason we will
6948 	 * if multiple measurements are to be
6949 	 * performed trust the higher delay
6950 	 * (lower frequency returned).
6951 	 */
6952 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6953 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6954 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6955 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6956 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6957 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6958 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6959 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6960 		UDELAY (1000);	/* count ms */
6961 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6962  	/*
6963  	 * set prescaler to divide by whatever 0 means
6964  	 * 0 ought to choose divide by 2, but appears
6965  	 * to set divide by 3.5 mode in my 53c810 ...
6966  	 */
6967  	OUTB (nc_scntl3, 0);
6968 
6969   	/*
6970 	 * adjust for prescaler, and convert into KHz
6971   	 */
6972 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6973 
6974 	if (sym_verbose >= 2)
6975 		kprintf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6976 			sym_name(np), gen, ms, f);
6977 
6978 	return f;
6979 }
6980 
6981 static unsigned sym_getfreq (hcb_p np)
6982 {
6983 	u_int f1, f2;
6984 	int gen = 11;
6985 
6986 	(void) getfreq (np, gen);	/* throw away first result */
6987 	f1 = getfreq (np, gen);
6988 	f2 = getfreq (np, gen);
6989 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6990 	return f1;
6991 }
6992 
6993 /*
6994  *  Get/probe chip SCSI clock frequency
6995  */
6996 static void sym_getclock (hcb_p np, int mult)
6997 {
6998 	unsigned char scntl3 = np->sv_scntl3;
6999 	unsigned char stest1 = np->sv_stest1;
7000 	unsigned f1;
7001 
7002 	/*
7003 	 *  For the C10 core, assume 40 MHz.
7004 	 */
7005 	if (np->features & FE_C10) {
7006 		np->multiplier = mult;
7007 		np->clock_khz = 40000 * mult;
7008 		return;
7009 	}
7010 
7011 	np->multiplier = 1;
7012 	f1 = 40000;
7013 	/*
7014 	 *  True with 875/895/896/895A with clock multiplier selected
7015 	 */
7016 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7017 		if (sym_verbose >= 2)
7018 			kprintf ("%s: clock multiplier found\n", sym_name(np));
7019 		np->multiplier = mult;
7020 	}
7021 
7022 	/*
7023 	 *  If multiplier not found or scntl3 not 7,5,3,
7024 	 *  reset chip and get frequency from general purpose timer.
7025 	 *  Otherwise trust scntl3 BIOS setting.
7026 	 */
7027 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7028 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7029 		f1 = sym_getfreq (np);
7030 
7031 		if (sym_verbose)
7032 			kprintf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7033 
7034 		if	(f1 <	45000)		f1 =  40000;
7035 		else if (f1 <	55000)		f1 =  50000;
7036 		else				f1 =  80000;
7037 
7038 		if (f1 < 80000 && mult > 1) {
7039 			if (sym_verbose >= 2)
7040 				kprintf ("%s: clock multiplier assumed\n",
7041 					sym_name(np));
7042 			np->multiplier	= mult;
7043 		}
7044 	} else {
7045 		if	((scntl3 & 7) == 3)	f1 =  40000;
7046 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7047 		else 				f1 = 160000;
7048 
7049 		f1 /= np->multiplier;
7050 	}
7051 
7052 	/*
7053 	 *  Compute controller synchronous parameters.
7054 	 */
7055 	f1		*= np->multiplier;
7056 	np->clock_khz	= f1;
7057 }
7058 
7059 /*
7060  *  Get/probe PCI clock frequency
7061  */
7062 static int sym_getpciclock (hcb_p np)
7063 {
7064 	int f = 0;
7065 
7066 	/*
7067 	 *  For the C1010-33, this doesn't work.
7068 	 *  For the C1010-66, this will be tested when I'll have
7069 	 *  such a beast to play with.
7070 	 */
7071 	if (!(np->features & FE_C10)) {
7072 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7073 		f = (int) sym_getfreq (np);
7074 		OUTB (nc_stest1, 0);
7075 	}
7076 	np->pciclk_khz = f;
7077 
7078 	return f;
7079 }
7080 
7081 /*============= DRIVER ACTION/COMPLETION ====================*/
7082 
7083 /*
7084  *  Print something that tells about extended errors.
7085  */
7086 static void sym_print_xerr(ccb_p cp, int x_status)
7087 {
7088 	if (x_status & XE_PARITY_ERR) {
7089 		PRINT_ADDR(cp);
7090 		kprintf ("unrecovered SCSI parity error.\n");
7091 	}
7092 	if (x_status & XE_EXTRA_DATA) {
7093 		PRINT_ADDR(cp);
7094 		kprintf ("extraneous data discarded.\n");
7095 	}
7096 	if (x_status & XE_BAD_PHASE) {
7097 		PRINT_ADDR(cp);
7098 		kprintf ("illegal scsi phase (4/5).\n");
7099 	}
7100 	if (x_status & XE_SODL_UNRUN) {
7101 		PRINT_ADDR(cp);
7102 		kprintf ("ODD transfer in DATA OUT phase.\n");
7103 	}
7104 	if (x_status & XE_SWIDE_OVRUN) {
7105 		PRINT_ADDR(cp);
7106 		kprintf ("ODD transfer in DATA IN phase.\n");
7107 	}
7108 }
7109 
7110 /*
7111  *  Choose the more appropriate CAM status if
7112  *  the IO encountered an extended error.
7113  */
7114 static int sym_xerr_cam_status(int cam_status, int x_status)
7115 {
7116 	if (x_status) {
7117 		if	(x_status & XE_PARITY_ERR)
7118 			cam_status = CAM_UNCOR_PARITY;
7119 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7120 			cam_status = CAM_DATA_RUN_ERR;
7121 		else if	(x_status & XE_BAD_PHASE)
7122 			cam_status = CAM_REQ_CMP_ERR;
7123 		else
7124 			cam_status = CAM_REQ_CMP_ERR;
7125 	}
7126 	return cam_status;
7127 }
7128 
7129 /*
7130  *  Complete execution of a SCSI command with extented
7131  *  error, SCSI status error, or having been auto-sensed.
7132  *
7133  *  The SCRIPTS processor is not running there, so we
7134  *  can safely access IO registers and remove JOBs from
7135  *  the START queue.
7136  *  SCRATCHA is assumed to have been loaded with STARTPOS
7137  *  before the SCRIPTS called the C code.
7138  */
7139 static void sym_complete_error (hcb_p np, ccb_p cp)
7140 {
7141 	struct ccb_scsiio *csio;
7142 	u_int cam_status;
7143 	int i, sense_returned;
7144 
7145 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7146 
7147 	/*
7148 	 *  Paranoid check. :)
7149 	 */
7150 	if (!cp || !cp->cam_ccb)
7151 		return;
7152 
7153 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7154 		kprintf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7155 			cp->host_status, cp->ssss_status, cp->host_flags,
7156 			cp->target, cp->lun);
7157 		MDELAY(100);
7158 	}
7159 
7160 	/*
7161 	 *  Get CAM command pointer.
7162 	 */
7163 	csio = &cp->cam_ccb->csio;
7164 
7165 	/*
7166 	 *  Check for extended errors.
7167 	 */
7168 	if (cp->xerr_status) {
7169 		if (sym_verbose)
7170 			sym_print_xerr(cp, cp->xerr_status);
7171 		if (cp->host_status == HS_COMPLETE)
7172 			cp->host_status = HS_COMP_ERR;
7173 	}
7174 
7175 	/*
7176 	 *  Calculate the residual.
7177 	 */
7178 	csio->sense_resid = 0;
7179 	csio->resid = sym_compute_residual(np, cp);
7180 
7181 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7182 		csio->resid  = 0;	/* throw them away. :)		   */
7183 		cp->sv_resid = 0;
7184 	}
7185 
7186 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7187 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7188 		csio->sense_resid = csio->resid;	/* Swap residuals */
7189 		csio->resid       = cp->sv_resid;
7190 		cp->sv_resid	  = 0;
7191 		if (sym_verbose && cp->sv_xerr_status)
7192 			sym_print_xerr(cp, cp->sv_xerr_status);
7193 		if (cp->host_status == HS_COMPLETE &&
7194 		    cp->ssss_status == S_GOOD &&
7195 		    cp->xerr_status == 0) {
7196 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7197 							 cp->sv_xerr_status);
7198 			cam_status |= CAM_AUTOSNS_VALID;
7199 			/*
7200 			 *  Bounce back the sense data to user and
7201 			 *  fix the residual.
7202 			 */
7203 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7204 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7205 			if (sense_returned < csio->sense_len)
7206 				csio->sense_resid = csio->sense_len -
7207 				    sense_returned;
7208 			else
7209 				csio->sense_resid = 0;
7210 			bcopy(cp->sns_bbuf, &csio->sense_data,
7211 			    MIN(csio->sense_len, sense_returned));
7212 #if 0
7213 			/*
7214 			 *  If the device reports a UNIT ATTENTION condition
7215 			 *  due to a RESET condition, we should consider all
7216 			 *  disconnect CCBs for this unit as aborted.
7217 			 */
7218 			if (1) {
7219 				u_char *p;
7220 				p  = (u_char *) csio->sense_data;
7221 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7222 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7223 							cp->target,cp->lun, -1);
7224 			}
7225 #endif
7226 		}
7227 		else
7228 			cam_status = CAM_AUTOSENSE_FAIL;
7229 	}
7230 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7231 		csio->scsi_status = cp->ssss_status;
7232 		cam_status = CAM_SCSI_STATUS_ERROR;
7233 	}
7234 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7235 		cam_status = CAM_SEL_TIMEOUT;
7236 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7237 		cam_status = CAM_UNEXP_BUSFREE;
7238 	else {						/* Extended error */
7239 		if (sym_verbose) {
7240 			PRINT_ADDR(cp);
7241 			kprintf ("COMMAND FAILED (%x %x %x).\n",
7242 				cp->host_status, cp->ssss_status,
7243 				cp->xerr_status);
7244 		}
7245 		csio->scsi_status = cp->ssss_status;
7246 		/*
7247 		 *  Set the most appropriate value for CAM status.
7248 		 */
7249 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7250 						 cp->xerr_status);
7251 	}
7252 
7253 	/*
7254 	 *  Dequeue all queued CCBs for that device
7255 	 *  not yet started by SCRIPTS.
7256 	 */
7257 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7258 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7259 
7260 	/*
7261 	 *  Restart the SCRIPTS processor.
7262 	 */
7263 	OUTL_DSP (SCRIPTA_BA (np, start));
7264 
7265 	/*
7266 	 *  Synchronize DMA map if needed.
7267 	 */
7268 	if (cp->dmamapped) {
7269 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7270 			(cp->dmamapped == SYM_DMA_READ ?
7271 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7272 	}
7273 	/*
7274 	 *  Add this one to the COMP queue.
7275 	 *  Complete all those commands with either error
7276 	 *  or requeue condition.
7277 	 */
7278 	sym_set_cam_status((union ccb *) csio, cam_status);
7279 	sym_remque(&cp->link_ccbq);
7280 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7281 	sym_flush_comp_queue(np, 0);
7282 }
7283 
7284 /*
7285  *  Complete execution of a successful SCSI command.
7286  *
7287  *  Only successful commands go to the DONE queue,
7288  *  since we need to have the SCRIPTS processor
7289  *  stopped on any error condition.
7290  *  The SCRIPTS processor is running while we are
7291  *  completing successful commands.
7292  */
7293 static void sym_complete_ok (hcb_p np, ccb_p cp)
7294 {
7295 	struct ccb_scsiio *csio;
7296 	tcb_p tp;
7297 	lcb_p lp;
7298 
7299 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7300 
7301 	/*
7302 	 *  Paranoid check. :)
7303 	 */
7304 	if (!cp || !cp->cam_ccb)
7305 		return;
7306 	assert (cp->host_status == HS_COMPLETE);
7307 
7308 	/*
7309 	 *  Get command, target and lun pointers.
7310 	 */
7311 	csio = &cp->cam_ccb->csio;
7312 	tp = &np->target[cp->target];
7313 	lp = sym_lp(np, tp, cp->lun);
7314 
7315 	/*
7316 	 *  Assume device discovered on first success.
7317 	 */
7318 	if (!lp)
7319 		sym_set_bit(tp->lun_map, cp->lun);
7320 
7321 	/*
7322 	 *  If all data have been transferred, given than no
7323 	 *  extended error did occur, there is no residual.
7324 	 */
7325 	csio->resid = 0;
7326 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7327 		csio->resid = sym_compute_residual(np, cp);
7328 
7329 	/*
7330 	 *  Wrong transfer residuals may be worse than just always
7331 	 *  returning zero. User can disable this feature from
7332 	 *  sym_conf.h. Residual support is enabled by default.
7333 	 */
7334 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7335 		csio->resid  = 0;
7336 
7337 	/*
7338 	 *  Synchronize DMA map if needed.
7339 	 */
7340 	if (cp->dmamapped) {
7341 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7342 			(cp->dmamapped == SYM_DMA_READ ?
7343 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7344 	}
7345 	/*
7346 	 *  Set status and complete the command.
7347 	 */
7348 	csio->scsi_status = cp->ssss_status;
7349 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7350 	sym_xpt_done(np, (union ccb *) csio, cp);
7351 	sym_free_ccb(np, cp);
7352 }
7353 
7354 /*
7355  *  Our callout handler
7356  */
7357 static void sym_callout(void *arg)
7358 {
7359 	union ccb *ccb = (union ccb *) arg;
7360 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7361 
7362 	/*
7363 	 *  Check that the CAM CCB is still queued.
7364 	 */
7365 	if (!np)
7366 		return;
7367 
7368 	SYM_LOCK();
7369 
7370 	switch(ccb->ccb_h.func_code) {
7371 	case XPT_SCSI_IO:
7372 		(void) sym_abort_scsiio(np, ccb, 1);
7373 		break;
7374 	default:
7375 		break;
7376 	}
7377 
7378 	SYM_UNLOCK();
7379 }
7380 
7381 /*
7382  *  Abort an SCSI IO.
7383  */
7384 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7385 {
7386 	ccb_p cp;
7387 	SYM_QUEHEAD *qp;
7388 
7389 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7390 
7391 	/*
7392 	 *  Look up our CCB control block.
7393 	 */
7394 	cp = NULL;
7395 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7396 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7397 		if (cp2->cam_ccb == ccb) {
7398 			cp = cp2;
7399 			break;
7400 		}
7401 	}
7402 	if (!cp || cp->host_status == HS_WAIT)
7403 		return -1;
7404 
7405 	/*
7406 	 *  If a previous abort didn't succeed in time,
7407 	 *  perform a BUS reset.
7408 	 */
7409 	if (cp->to_abort) {
7410 		sym_reset_scsi_bus(np, 1);
7411 		return 0;
7412 	}
7413 
7414 	/*
7415 	 *  Mark the CCB for abort and allow time for.
7416 	 */
7417 	cp->to_abort = timed_out ? 2 : 1;
7418 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7419 
7420 	/*
7421 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7422 	 */
7423 	np->istat_sem = SEM;
7424 	OUTB (nc_istat, SIGP|SEM);
7425 	return 0;
7426 }
7427 
7428 /*
7429  *  Reset a SCSI device (all LUNs of a target).
7430  */
7431 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7432 {
7433 	tcb_p tp;
7434 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7435 
7436 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7437 
7438 	if (ccb_h->target_id   == np->myaddr ||
7439 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7440 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7441 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7442 		return;
7443 	}
7444 
7445 	tp = &np->target[ccb_h->target_id];
7446 
7447 	tp->to_reset = 1;
7448 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7449 
7450 	np->istat_sem = SEM;
7451 	OUTB (nc_istat, SIGP|SEM);
7452 }
7453 
7454 /*
7455  *  SIM action entry point.
7456  */
7457 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7458 {
7459 	hcb_p	np;
7460 	tcb_p	tp;
7461 	lcb_p	lp;
7462 	ccb_p	cp;
7463 	int 	tmp;
7464 	u_char	idmsg, *msgptr;
7465 	u_int   msglen;
7466 	struct	ccb_scsiio *csio;
7467 	struct	ccb_hdr  *ccb_h;
7468 
7469 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7470 
7471 	/*
7472 	 *  Retrieve our controller data structure.
7473 	 */
7474 	np = (hcb_p) cam_sim_softc(sim);
7475 
7476 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7477 
7478 	/*
7479 	 *  The common case is SCSI IO.
7480 	 *  We deal with other ones elsewhere.
7481 	 */
7482 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7483 		sym_action2(sim, ccb);
7484 		return;
7485 	}
7486 	csio  = &ccb->csio;
7487 	ccb_h = &csio->ccb_h;
7488 
7489 	/*
7490 	 *  Work around races.
7491 	 */
7492 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7493 		xpt_done(ccb);
7494 		return;
7495 	}
7496 
7497 	/*
7498 	 *  Minimal checkings, so that we will not
7499 	 *  go outside our tables.
7500 	 */
7501 	if (ccb_h->target_id   == np->myaddr ||
7502 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7503 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7504 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7505 		return;
7506         }
7507 
7508 	/*
7509 	 *  Retrieve the target and lun descriptors.
7510 	 */
7511 	tp = &np->target[ccb_h->target_id];
7512 	lp = sym_lp(np, tp, ccb_h->target_lun);
7513 
7514 	/*
7515 	 *  Complete the 1st INQUIRY command with error
7516 	 *  condition if the device is flagged NOSCAN
7517 	 *  at BOOT in the NVRAM. This may speed up
7518 	 *  the boot and maintain coherency with BIOS
7519 	 *  device numbering. Clearing the flag allows
7520 	 *  user to rescan skipped devices later.
7521 	 *  We also return error for devices not flagged
7522 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7523 	 *  devices behave badly when asked for some non
7524 	 *  zero LUN. Btw, this is an absolute hack.:-)
7525 	 */
7526 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7527 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7528 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7529 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7530 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7531 		     ccb_h->target_lun != 0)) {
7532 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7533 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7534 			return;
7535 		}
7536 	}
7537 
7538 	/*
7539 	 *  Get a control block for this IO.
7540 	 */
7541 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7542 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7543 	if (!cp) {
7544 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7545 		return;
7546 	}
7547 
7548 	/*
7549 	 *  Keep track of the IO in our CCB.
7550 	 */
7551 	cp->cam_ccb = ccb;
7552 
7553 	/*
7554 	 *  Build the IDENTIFY message.
7555 	 */
7556 	idmsg = M_IDENTIFY | cp->lun;
7557 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7558 		idmsg |= 0x40;
7559 
7560 	msgptr = cp->scsi_smsg;
7561 	msglen = 0;
7562 	msgptr[msglen++] = idmsg;
7563 
7564 	/*
7565 	 *  Build the tag message if present.
7566 	 */
7567 	if (cp->tag != NO_TAG) {
7568 		u_char order = csio->tag_action;
7569 
7570 		switch(order) {
7571 		case M_ORDERED_TAG:
7572 			break;
7573 		case M_HEAD_TAG:
7574 			break;
7575 		default:
7576 			order = M_SIMPLE_TAG;
7577 		}
7578 		msgptr[msglen++] = order;
7579 
7580 		/*
7581 		 *  For less than 128 tags, actual tags are numbered
7582 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7583 		 *  with devices that have problems with #TAG 0 or too
7584 		 *  great #TAG numbers. For more tags (up to 256),
7585 		 *  we use directly our tag number.
7586 		 */
7587 #if SYM_CONF_MAX_TASK > (512/4)
7588 		msgptr[msglen++] = cp->tag;
7589 #else
7590 		msgptr[msglen++] = (cp->tag << 1) + 1;
7591 #endif
7592 	}
7593 
7594 	/*
7595 	 *  Build a negotiation message if needed.
7596 	 *  (nego_status is filled by sym_prepare_nego())
7597 	 */
7598 	cp->nego_status = 0;
7599 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7600 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7601 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7602 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7603 		if (!tp->nego_cp && lp)
7604 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7605 	}
7606 
7607 	/*
7608 	 *  Fill in our ccb
7609 	 */
7610 
7611 	/*
7612 	 *  Startqueue
7613 	 */
7614 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7615 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7616 
7617 	/*
7618 	 *  select
7619 	 */
7620 	cp->phys.select.sel_id		= cp->target;
7621 	cp->phys.select.sel_scntl3	= tp->head.wval;
7622 	cp->phys.select.sel_sxfer	= tp->head.sval;
7623 	cp->phys.select.sel_scntl4	= tp->head.uval;
7624 
7625 	/*
7626 	 *  message
7627 	 */
7628 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7629 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7630 
7631 	/*
7632 	 *  command
7633 	 */
7634 	if (sym_setup_cdb(np, csio, cp) < 0) {
7635 		sym_xpt_done(np, ccb, cp);
7636 		sym_free_ccb(np, cp);
7637 		return;
7638 	}
7639 
7640 	/*
7641 	 *  status
7642 	 */
7643 #if	0	/* Provision */
7644 	cp->actualquirks	= tp->quirks;
7645 #endif
7646 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7647 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7648 	cp->ssss_status		= S_ILLEGAL;
7649 	cp->xerr_status		= 0;
7650 	cp->host_flags		= 0;
7651 	cp->extra_bytes		= 0;
7652 
7653 	/*
7654 	 *  extreme data pointer.
7655 	 *  shall be positive, so -1 is lower than lowest.:)
7656 	 */
7657 	cp->ext_sg  = -1;
7658 	cp->ext_ofs = 0;
7659 
7660 	/*
7661 	 *  Build the data descriptor block
7662 	 *  and start the IO.
7663 	 */
7664 	sym_setup_data_and_start(np, csio, cp);
7665 }
7666 
7667 /*
7668  *  Setup buffers and pointers that address the CDB.
7669  *  I bet, physical CDBs will never be used on the planet,
7670  *  since they can be bounced without significant overhead.
7671  */
7672 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7673 {
7674 	struct ccb_hdr *ccb_h;
7675 	u32	cmd_ba;
7676 	int	cmd_len;
7677 
7678 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7679 
7680 	ccb_h = &csio->ccb_h;
7681 
7682 	/*
7683 	 *  CDB is 16 bytes max.
7684 	 */
7685 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7686 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7687 		return -1;
7688 	}
7689 	cmd_len = csio->cdb_len;
7690 
7691 	if (ccb_h->flags & CAM_CDB_POINTER) {
7692 		/* CDB is a pointer */
7693 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7694 			/* CDB pointer is virtual */
7695 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7696 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7697 		} else {
7698 			/* CDB pointer is physical */
7699 #if 0
7700 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7701 #else
7702 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7703 			return -1;
7704 #endif
7705 		}
7706 	} else {
7707 		/* CDB is in the CAM ccb (buffer) */
7708 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7709 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7710 	}
7711 
7712 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7713 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7714 
7715 	return 0;
7716 }
7717 
7718 /*
7719  *  Set up data pointers used by SCRIPTS.
7720  */
7721 static __inline void
7722 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7723 {
7724 	u32 lastp, goalp;
7725 
7726 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7727 
7728 	/*
7729 	 *  No segments means no data.
7730 	 */
7731 	if (!cp->segments)
7732 		dir = CAM_DIR_NONE;
7733 
7734 	/*
7735 	 *  Set the data pointer.
7736 	 */
7737 	switch(dir) {
7738 	case CAM_DIR_OUT:
7739 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7740 		lastp = goalp - 8 - (cp->segments * (2*4));
7741 		break;
7742 	case CAM_DIR_IN:
7743 		cp->host_flags |= HF_DATA_IN;
7744 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7745 		lastp = goalp - 8 - (cp->segments * (2*4));
7746 		break;
7747 	case CAM_DIR_NONE:
7748 	default:
7749 		lastp = goalp = SCRIPTB_BA (np, no_data);
7750 		break;
7751 	}
7752 
7753 	cp->phys.head.lastp = cpu_to_scr(lastp);
7754 	cp->phys.head.goalp = cpu_to_scr(goalp);
7755 	cp->phys.head.savep = cpu_to_scr(lastp);
7756 	cp->startp	    = cp->phys.head.savep;
7757 }
7758 
7759 
7760 /*
7761  *  Call back routine for the DMA map service.
7762  *  If bounce buffers are used (why ?), we may sleep and then
7763  *  be called there in another context.
7764  */
7765 static void
7766 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7767 {
7768 	ccb_p	cp;
7769 	hcb_p	np;
7770 	union	ccb *ccb;
7771 
7772 	cp  = (ccb_p) arg;
7773 	ccb = cp->cam_ccb;
7774 	np  = (hcb_p) cp->arg;
7775 
7776 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7777 
7778 	/*
7779 	 *  Deal with weird races.
7780 	 */
7781 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7782 		goto out_abort;
7783 
7784 	/*
7785 	 *  Deal with weird errors.
7786 	 */
7787 	if (error) {
7788 		cp->dmamapped = 0;
7789 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7790 		goto out_abort;
7791 	}
7792 
7793 	/*
7794 	 *  Build the data descriptor for the chip.
7795 	 */
7796 	if (nsegs) {
7797 		int retv;
7798 		/* 896 rev 1 requires to be careful about boundaries */
7799 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7800 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7801 		else
7802 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7803 		if (retv < 0) {
7804 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7805 			goto out_abort;
7806 		}
7807 	}
7808 
7809 	/*
7810 	 *  Synchronize the DMA map only if we have
7811 	 *  actually mapped the data.
7812 	 */
7813 	if (cp->dmamapped) {
7814 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7815 			(cp->dmamapped == SYM_DMA_READ ?
7816 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7817 	}
7818 
7819 	/*
7820 	 *  Set host status to busy state.
7821 	 *  May have been set back to HS_WAIT to avoid a race.
7822 	 */
7823 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7824 
7825 	/*
7826 	 *  Set data pointers.
7827 	 */
7828 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7829 
7830 	/*
7831 	 *  Enqueue this IO in our pending queue.
7832 	 */
7833 	sym_enqueue_cam_ccb(cp);
7834 
7835 	/*
7836 	 *  When `#ifed 1', the code below makes the driver
7837 	 *  panic on the first attempt to write to a SCSI device.
7838 	 *  It is the first test we want to do after a driver
7839 	 *  change that does not seem obviously safe. :)
7840 	 */
7841 #if 0
7842 	switch (cp->cdb_buf[0]) {
7843 	case 0x0A: case 0x2A: case 0xAA:
7844 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX");
7845 		MDELAY(10000);
7846 		break;
7847 	default:
7848 		break;
7849 	}
7850 #endif
7851 	/*
7852 	 *  Activate this job.
7853 	 */
7854 	sym_put_start_queue(np, cp);
7855 	return;
7856 out_abort:
7857 	sym_xpt_done(np, ccb, cp);
7858 	sym_free_ccb(np, cp);
7859 }
7860 
7861 /*
7862  *  How complex it gets to deal with the data in CAM.
7863  *  The Bus Dma stuff makes things still more complex.
7864  */
7865 static void
7866 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7867 {
7868 	struct ccb_hdr *ccb_h;
7869 	int dir, retv;
7870 
7871 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7872 
7873 	ccb_h = &csio->ccb_h;
7874 
7875 	/*
7876 	 *  Now deal with the data.
7877 	 */
7878 	cp->data_len = csio->dxfer_len;
7879 	cp->arg      = np;
7880 
7881 	/*
7882 	 *  No direction means no data.
7883 	 */
7884 	dir = (ccb_h->flags & CAM_DIR_MASK);
7885 	if (dir == CAM_DIR_NONE) {
7886 		sym_execute_ccb(cp, NULL, 0, 0);
7887 		return;
7888 	}
7889 
7890 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7891 		/* Single buffer */
7892 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7893 			/* Buffer is virtual */
7894 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7895 						SYM_DMA_READ : SYM_DMA_WRITE;
7896 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7897 					       csio->data_ptr, csio->dxfer_len,
7898 					       sym_execute_ccb, cp, 0);
7899 			if (retv == EINPROGRESS) {
7900 				cp->host_status	= HS_WAIT;
7901 				xpt_freeze_simq(np->sim, 1);
7902 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7903 			}
7904 		} else {
7905 			/* Buffer is physical */
7906 			struct bus_dma_segment seg;
7907 
7908 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7909 			sym_execute_ccb(cp, &seg, 1, 0);
7910 		}
7911 	} else {
7912 		/* Scatter/gather list */
7913 		struct bus_dma_segment *segs;
7914 
7915 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7916 			/* The SG list pointer is physical */
7917 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7918 			goto out_abort;
7919 		}
7920 
7921 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7922 			/* SG buffer pointers are virtual */
7923 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7924 			goto out_abort;
7925 		}
7926 
7927 		/* SG buffer pointers are physical */
7928 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7929 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7930 	}
7931 	return;
7932 out_abort:
7933 	sym_xpt_done(np, (union ccb *) csio, cp);
7934 	sym_free_ccb(np, cp);
7935 }
7936 
7937 /*
7938  *  Move the scatter list to our data block.
7939  */
7940 static int
7941 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7942 			     bus_dma_segment_t *psegs, int nsegs)
7943 {
7944 	struct sym_tblmove *data;
7945 	bus_dma_segment_t *psegs2;
7946 
7947 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7948 
7949 	if (nsegs > SYM_CONF_MAX_SG)
7950 		return -1;
7951 
7952 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7953 	psegs2 = &psegs[nsegs-1];
7954 	cp->segments = nsegs;
7955 
7956 	while (1) {
7957 		data->addr = cpu_to_scr(psegs2->ds_addr);
7958 		data->size = cpu_to_scr(psegs2->ds_len);
7959 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7960 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
7961 				sym_name(np), (long) psegs2->ds_addr,
7962 				(long) psegs2->ds_len);
7963 		}
7964 		if (psegs2 != psegs) {
7965 			--data;
7966 			--psegs2;
7967 			continue;
7968 		}
7969 		break;
7970 	}
7971 	return 0;
7972 }
7973 
7974 
7975 /*
7976  *  Scatter a SG list with physical addresses into bus addressable chunks.
7977  *  We need to ensure 16MB boundaries not to be crossed during DMA of
7978  *  each segment, due to some chips being flawed.
7979  */
7980 #define BOUND_MASK ((1UL<<24)-1)
7981 static int
7982 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7983 {
7984 	u_long	ps, pe, pn;
7985 	u_long	k;
7986 	int s, t;
7987 
7988 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7989 
7990 	s  = SYM_CONF_MAX_SG - 1;
7991 	t  = nsegs - 1;
7992 	ps = psegs[t].ds_addr;
7993 	pe = ps + psegs[t].ds_len;
7994 
7995 	while (s >= 0) {
7996 		pn = (pe - 1) & ~BOUND_MASK;
7997 		if (pn <= ps)
7998 			pn = ps;
7999 		k = pe - pn;
8000 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8001 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8002 				sym_name(np), pn, k);
8003 		}
8004 		cp->phys.data[s].addr = cpu_to_scr(pn);
8005 		cp->phys.data[s].size = cpu_to_scr(k);
8006 		--s;
8007 		if (pn == ps) {
8008 			if (--t < 0)
8009 				break;
8010 			ps = psegs[t].ds_addr;
8011 			pe = ps + psegs[t].ds_len;
8012 		}
8013 		else
8014 			pe = pn;
8015 	}
8016 
8017 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8018 
8019 	return t >= 0 ? -1 : 0;
8020 }
8021 #undef BOUND_MASK
8022 
8023 /*
8024  *  SIM action for non performance critical stuff.
8025  */
8026 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8027 {
8028 	hcb_p	np;
8029 	tcb_p	tp;
8030 	lcb_p	lp;
8031 	struct	ccb_hdr  *ccb_h;
8032 
8033 	/*
8034 	 *  Retrieve our controller data structure.
8035 	 */
8036 	np = (hcb_p) cam_sim_softc(sim);
8037 
8038 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8039 
8040 	ccb_h = &ccb->ccb_h;
8041 
8042 	switch (ccb_h->func_code) {
8043 	case XPT_SET_TRAN_SETTINGS:
8044 	{
8045 		struct ccb_trans_settings *cts;
8046 
8047 		cts  = &ccb->cts;
8048 		tp = &np->target[ccb_h->target_id];
8049 
8050 		/*
8051 		 *  Update SPI transport settings in TARGET control block.
8052 		 *  Update SCSI device settings in LUN control block.
8053 		 */
8054 		lp = sym_lp(np, tp, ccb_h->target_lun);
8055 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8056 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8057 			if (lp)
8058 				sym_update_dflags(np, &lp->current_flags, cts);
8059 		}
8060 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8061 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8062 			if (lp)
8063 				sym_update_dflags(np, &lp->user_flags, cts);
8064 		}
8065 
8066 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8067 		break;
8068 	}
8069 	case XPT_GET_TRAN_SETTINGS:
8070 	{
8071 		struct ccb_trans_settings *cts;
8072 		struct sym_trans *tip;
8073 		u_char dflags;
8074 
8075 		cts = &ccb->cts;
8076 		tp = &np->target[ccb_h->target_id];
8077 		lp = sym_lp(np, tp, ccb_h->target_lun);
8078 
8079 #define	cts__scsi (&cts->proto_specific.scsi)
8080 #define	cts__spi  (&cts->xport_specific.spi)
8081 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8082 			tip = &tp->tinfo.current;
8083 			dflags = lp ? lp->current_flags : 0;
8084 		}
8085 		else {
8086 			tip = &tp->tinfo.user;
8087 			dflags = lp ? lp->user_flags : tp->usrflags;
8088 		}
8089 
8090 		cts->protocol  = PROTO_SCSI;
8091 		cts->transport = XPORT_SPI;
8092 		cts->protocol_version  = tip->scsi_version;
8093 		cts->transport_version = tip->spi_version;
8094 
8095 		cts__spi->sync_period = tip->period;
8096 		cts__spi->sync_offset = tip->offset;
8097 		cts__spi->bus_width   = tip->width;
8098 		cts__spi->ppr_options = tip->options;
8099 
8100 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8101 		                | CTS_SPI_VALID_SYNC_OFFSET
8102 		                | CTS_SPI_VALID_BUS_WIDTH
8103 		                | CTS_SPI_VALID_PPR_OPTIONS;
8104 
8105 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8106 		if (dflags & SYM_DISC_ENABLED)
8107 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8108 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8109 
8110 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8111 		if (dflags & SYM_TAGS_ENABLED)
8112 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8113 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8114 #undef	cts__spi
8115 #undef	cts__scsi
8116 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8117 		break;
8118 	}
8119 	case XPT_CALC_GEOMETRY:
8120 	{
8121 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8122 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8123 		break;
8124 	}
8125 	case XPT_PATH_INQ:
8126 	{
8127 		struct ccb_pathinq *cpi = &ccb->cpi;
8128 		cpi->version_num = 1;
8129 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8130 		if ((np->features & FE_WIDE) != 0)
8131 			cpi->hba_inquiry |= PI_WIDE_16;
8132 		cpi->target_sprt = 0;
8133 		cpi->hba_misc = 0;
8134 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8135 			cpi->hba_misc |= PIM_SCANHILO;
8136 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8137 			cpi->hba_misc |= PIM_NOBUSRESET;
8138 		cpi->hba_eng_cnt = 0;
8139 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8140 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8141 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8142 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8143 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8144 		cpi->bus_id = cam_sim_bus(sim);
8145 		cpi->initiator_id = np->myaddr;
8146 		cpi->base_transfer_speed = 3300;
8147 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8148 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8149 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8150 		cpi->unit_number = cam_sim_unit(sim);
8151 
8152 		cpi->protocol = PROTO_SCSI;
8153 		cpi->protocol_version = SCSI_REV_2;
8154 		cpi->transport = XPORT_SPI;
8155 		cpi->transport_version = 2;
8156 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8157 		if (np->features & FE_ULTRA3) {
8158 			cpi->transport_version = 3;
8159 			cpi->xport_specific.spi.ppr_options =
8160 			    SID_SPI_CLOCK_DT_ST;
8161 		}
8162 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8163 		break;
8164 	}
8165 	case XPT_ABORT:
8166 	{
8167 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8168 		switch(abort_ccb->ccb_h.func_code) {
8169 		case XPT_SCSI_IO:
8170 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8171 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8172 				break;
8173 			}
8174 		default:
8175 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8176 			break;
8177 		}
8178 		break;
8179 	}
8180 	case XPT_RESET_DEV:
8181 	{
8182 		sym_reset_dev(np, ccb);
8183 		break;
8184 	}
8185 	case XPT_RESET_BUS:
8186 	{
8187 		sym_reset_scsi_bus(np, 0);
8188 		if (sym_verbose) {
8189 			xpt_print_path(np->path);
8190 			kprintf("SCSI BUS reset delivered.\n");
8191 		}
8192 		sym_init (np, 1);
8193 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8194 		break;
8195 	}
8196 	case XPT_ACCEPT_TARGET_IO:
8197 	case XPT_CONT_TARGET_IO:
8198 	case XPT_EN_LUN:
8199 	case XPT_NOTIFY_ACK:
8200 	case XPT_IMMED_NOTIFY:
8201 	case XPT_TERM_IO:
8202 	default:
8203 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8204 		break;
8205 	}
8206 }
8207 
8208 /*
8209  *  Asynchronous notification handler.
8210  */
8211 static void
8212 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8213 {
8214 	hcb_p np;
8215 	struct cam_sim *sim;
8216 	u_int tn;
8217 	tcb_p tp;
8218 
8219 	sim = (struct cam_sim *) cb_arg;
8220 	np  = (hcb_p) cam_sim_softc(sim);
8221 
8222 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8223 
8224 	switch (code) {
8225 	case AC_LOST_DEVICE:
8226 		tn = xpt_path_target_id(path);
8227 		if (tn >= SYM_CONF_MAX_TARGET)
8228 			break;
8229 
8230 		tp = &np->target[tn];
8231 
8232 		tp->to_reset  = 0;
8233 		tp->head.sval = 0;
8234 		tp->head.wval = np->rv_scntl3;
8235 		tp->head.uval = 0;
8236 
8237 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8238 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8239 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8240 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8241 
8242 		break;
8243 	default:
8244 		break;
8245 	}
8246 }
8247 
8248 /*
8249  *  Update transfer settings of a target.
8250  */
8251 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8252 			    struct ccb_trans_settings *cts)
8253 {
8254 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8255 
8256 	/*
8257 	 *  Update the infos.
8258 	 */
8259 #define cts__spi (&cts->xport_specific.spi)
8260 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8261 		tip->width = cts__spi->bus_width;
8262 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8263 		tip->offset = cts__spi->sync_offset;
8264 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8265 		tip->period = cts__spi->sync_period;
8266 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8267 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8268 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8269 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8270 		tip->scsi_version = cts->protocol_version;
8271 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8272 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8273 		tip->spi_version = cts->transport_version;
8274 #undef cts__spi
8275 	/*
8276 	 *  Scale against driver configuration limits.
8277 	 */
8278 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8279 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8280 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8281 
8282 	/*
8283 	 *  Scale against actual controller BUS width.
8284 	 */
8285 	if (tip->width > np->maxwide)
8286 		tip->width  = np->maxwide;
8287 
8288 	/*
8289 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8290 	 */
8291 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8292 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8293 		tip->options &= ~PPR_OPT_DT;
8294 	}
8295 
8296 	/*
8297 	 *  Scale period factor and offset against controller limits.
8298 	 */
8299 	if (tip->options & PPR_OPT_DT) {
8300 		if (tip->period < np->minsync_dt)
8301 			tip->period = np->minsync_dt;
8302 		if (tip->period > np->maxsync_dt)
8303 			tip->period = np->maxsync_dt;
8304 		if (tip->offset > np->maxoffs_dt)
8305 			tip->offset = np->maxoffs_dt;
8306 	}
8307 	else {
8308 		if (tip->period < np->minsync)
8309 			tip->period = np->minsync;
8310 		if (tip->period > np->maxsync)
8311 			tip->period = np->maxsync;
8312 		if (tip->offset > np->maxoffs)
8313 			tip->offset = np->maxoffs;
8314 	}
8315 }
8316 
8317 /*
8318  *  Update flags for a device (logical unit).
8319  */
8320 static void
8321 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8322 {
8323 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8324 
8325 #define	cts__scsi (&cts->proto_specific.scsi)
8326 #define	cts__spi  (&cts->xport_specific.spi)
8327 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8328 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8329 			*flags |= SYM_DISC_ENABLED;
8330 		else
8331 			*flags &= ~SYM_DISC_ENABLED;
8332 	}
8333 
8334 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8335 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8336 			*flags |= SYM_TAGS_ENABLED;
8337 		else
8338 			*flags &= ~SYM_TAGS_ENABLED;
8339 	}
8340 #undef	cts__spi
8341 #undef	cts__scsi
8342 }
8343 
8344 
8345 /*============= DRIVER INITIALISATION ==================*/
8346 
8347 
8348 static device_method_t sym_pci_methods[] = {
8349 	DEVMETHOD(device_probe,	 sym_pci_probe),
8350 	DEVMETHOD(device_attach, sym_pci_attach),
8351 	DEVMETHOD_END
8352 };
8353 
8354 static driver_t sym_pci_driver = {
8355 	"sym",
8356 	sym_pci_methods,
8357 	1	/* no softc */
8358 };
8359 
8360 static devclass_t sym_devclass;
8361 
8362 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8363 MODULE_VERSION(sym, 1);
8364 MODULE_DEPEND(sym, cam, 1, 1, 1);
8365 MODULE_DEPEND(sym, pci, 1, 1, 1);
8366 
8367 
8368 static const struct sym_pci_chip sym_pci_dev_table[] = {
8369  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8370  FE_ERL}
8371  ,
8372 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8373  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8374  FE_BOF}
8375  ,
8376 #else
8377  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8378  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8379  ,
8380 #endif
8381  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8382  FE_BOF|FE_ERL}
8383  ,
8384  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8385  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8386  ,
8387  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8388  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8389  ,
8390  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8391  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8392  ,
8393  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8394  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8395  FE_RAM|FE_DIFF}
8396  ,
8397  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8398  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8399  FE_RAM|FE_DIFF}
8400  ,
8401  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8402  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8403  FE_RAM|FE_DIFF}
8404  ,
8405  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8406  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8407  FE_RAM|FE_DIFF}
8408  ,
8409 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8410  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8411  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8412  FE_RAM|FE_LCKFRQ}
8413  ,
8414 #else
8415  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8416  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8417  FE_RAM|FE_LCKFRQ}
8418  ,
8419 #endif
8420  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8421  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8422  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8423  ,
8424  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8425  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8426  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8427  ,
8428  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8429  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8430  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8431  FE_C10}
8432  ,
8433  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8434  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8435  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8436  FE_C10|FE_U3EN}
8437  ,
8438  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8439  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8440  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8441  FE_C10|FE_U3EN}
8442  ,
8443  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8444  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8445  FE_RAM|FE_IO256|FE_LEDC}
8446 };
8447 
8448 #define sym_pci_num_devs NELEM(sym_pci_dev_table)
8449 
8450 /*
8451  *  Look up the chip table.
8452  *
8453  *  Return a pointer to the chip entry if found,
8454  *  zero otherwise.
8455  */
8456 static const struct sym_pci_chip *
8457 sym_find_pci_chip(device_t dev)
8458 {
8459 	const struct	sym_pci_chip *chip;
8460 	int	i;
8461 	u_short	device_id;
8462 	u_char	revision;
8463 
8464 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8465 		return NULL;
8466 
8467 	device_id = pci_get_device(dev);
8468 	revision  = pci_get_revid(dev);
8469 
8470 	for (i = 0; i < sym_pci_num_devs; i++) {
8471 		chip = &sym_pci_dev_table[i];
8472 		if (device_id != chip->device_id)
8473 			continue;
8474 		if (revision > chip->revision_id)
8475 			continue;
8476 		return chip;
8477 	}
8478 
8479 	return NULL;
8480 }
8481 
8482 /*
8483  *  Tell upper layer if the chip is supported.
8484  */
8485 static int
8486 sym_pci_probe(device_t dev)
8487 {
8488 	const struct	sym_pci_chip *chip;
8489 
8490 	chip = sym_find_pci_chip(dev);
8491 	if (chip && sym_find_firmware(chip)) {
8492 		device_set_desc(dev, chip->name);
8493 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8494 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8495 	}
8496 	return ENXIO;
8497 }
8498 
8499 /*
8500  *  Attach a sym53c8xx device.
8501  */
8502 static int
8503 sym_pci_attach(device_t dev)
8504 {
8505 	const struct	sym_pci_chip *chip;
8506 	u_short	command;
8507 	u_char	cachelnsz;
8508 	struct	sym_hcb *np = NULL;
8509 	struct	sym_nvram nvram;
8510 	const struct	sym_fw *fw = NULL;
8511 	int 	i;
8512 	bus_dma_tag_t	bus_dmat;
8513 
8514 #if 0 /* XXX swildner */
8515 	bus_dmat = bus_get_dma_tag(dev);
8516 #else
8517 	bus_dmat = NULL;
8518 #endif
8519 
8520 	/*
8521 	 *  Only probed devices should be attached.
8522 	 *  We just enjoy being paranoid. :)
8523 	 */
8524 	chip = sym_find_pci_chip(dev);
8525 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8526 		return (ENXIO);
8527 
8528 	/*
8529 	 *  Allocate immediately the host control block,
8530 	 *  since we are only expecting to succeed. :)
8531 	 *  We keep track in the HCB of all the resources that
8532 	 *  are to be released on error.
8533 	 */
8534 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8535 	if (np)
8536 		np->bus_dmat = bus_dmat;
8537 	else
8538 		return (ENXIO);
8539 	device_set_softc(dev, np);
8540 
8541 	SYM_LOCK_INIT();
8542 
8543 	/*
8544 	 *  Copy some useful infos to the HCB.
8545 	 */
8546 	np->hcb_ba	 = vtobus(np);
8547 	np->verbose	 = bootverbose;
8548 	np->device	 = dev;
8549 	np->device_id	 = pci_get_device(dev);
8550 	np->revision_id  = pci_get_revid(dev);
8551 	np->features	 = chip->features;
8552 	np->clock_divn	 = chip->nr_divisor;
8553 	np->maxoffs	 = chip->offset_max;
8554 	np->maxburst	 = chip->burst_max;
8555 	np->scripta_sz	 = fw->a_size;
8556 	np->scriptb_sz	 = fw->b_size;
8557 	np->fw_setup	 = fw->setup;
8558 	np->fw_patch	 = fw->patch;
8559 	np->fw_name	 = fw->name;
8560 
8561 #ifdef __x86_64__
8562 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8563 			"TARGET");
8564 	if (!np->target)
8565 		goto attach_failed;
8566 #endif
8567 
8568 	/*
8569 	 *  Initialize the CCB free and busy queues.
8570 	 */
8571 	sym_que_init(&np->free_ccbq);
8572 	sym_que_init(&np->busy_ccbq);
8573 	sym_que_init(&np->comp_ccbq);
8574 	sym_que_init(&np->cam_ccbq);
8575 
8576 	/*
8577 	 *  Allocate a tag for the DMA of user data.
8578 	 */
8579 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8580 				BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
8581 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8582 				(1<<24), 0,
8583 				&np->data_dmat)) {
8584 		device_printf(dev, "failed to create DMA tag.\n");
8585 		goto attach_failed;
8586 	}
8587 	/*
8588 	 *  Read and apply some fix-ups to the PCI COMMAND
8589 	 *  register. We want the chip to be enabled for:
8590 	 *  - BUS mastering
8591 	 *  - PCI parity checking (reporting would also be fine)
8592 	 *  - Write And Invalidate.
8593 	 */
8594 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8595 	command |= PCIM_CMD_BUSMASTEREN;
8596 	command |= PCIM_CMD_PERRESPEN;
8597 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8598 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8599 
8600 	/*
8601 	 *  Let the device know about the cache line size,
8602 	 *  if it doesn't yet.
8603 	 */
8604 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8605 	if (!cachelnsz) {
8606 		cachelnsz = 8;
8607 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8608 	}
8609 
8610 	/*
8611 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8612 	 */
8613 	if ((command & PCIM_CMD_MEMEN) != 0) {
8614 		int regs_id = SYM_PCI_MMIO;
8615 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8616 						      &regs_id, RF_ACTIVE);
8617 	}
8618 	if (!np->mmio_res) {
8619 		device_printf(dev, "failed to allocate MMIO resources\n");
8620 		goto attach_failed;
8621 	}
8622 	np->mmio_ba = rman_get_start(np->mmio_res);
8623 
8624 	/*
8625 	 *  Allocate the IRQ.
8626 	 */
8627 	i = 0;
8628 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8629 					     RF_ACTIVE | RF_SHAREABLE);
8630 	if (!np->irq_res) {
8631 		device_printf(dev, "failed to allocate IRQ resource\n");
8632 		goto attach_failed;
8633 	}
8634 
8635 #ifdef	SYM_CONF_IOMAPPED
8636 	/*
8637 	 *  User want us to use normal IO with PCI.
8638 	 *  Alloc/get/map/retrieve everything that deals with IO.
8639 	 */
8640 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8641 		int regs_id = SYM_PCI_IO;
8642 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8643 						    &regs_id, RF_ACTIVE);
8644 	}
8645 	if (!np->io_res) {
8646 		device_printf(dev, "failed to allocate IO resources\n");
8647 		goto attach_failed;
8648 	}
8649 
8650 #endif /* SYM_CONF_IOMAPPED */
8651 
8652 	/*
8653 	 *  If the chip has RAM.
8654 	 *  Alloc/get/map/retrieve the corresponding resources.
8655 	 */
8656 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8657 	    (command & PCIM_CMD_MEMEN) != 0) {
8658 		int regs_id = SYM_PCI_RAM;
8659 		if (np->features & FE_64BIT)
8660 			regs_id = SYM_PCI_RAM64;
8661 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8662 						     &regs_id, RF_ACTIVE);
8663 		if (!np->ram_res) {
8664 			device_printf(dev,"failed to allocate RAM resources\n");
8665 			goto attach_failed;
8666 		}
8667 		np->ram_id  = regs_id;
8668 		np->ram_ba = rman_get_start(np->ram_res);
8669 	}
8670 
8671 	/*
8672 	 *  Save setting of some IO registers, so we will
8673 	 *  be able to probe specific implementations.
8674 	 */
8675 	sym_save_initial_setting (np);
8676 
8677 	/*
8678 	 *  Reset the chip now, since it has been reported
8679 	 *  that SCSI clock calibration may not work properly
8680 	 *  if the chip is currently active.
8681 	 */
8682 	sym_chip_reset (np);
8683 
8684 	/*
8685 	 *  Try to read the user set-up.
8686 	 */
8687 	(void) sym_read_nvram(np, &nvram);
8688 
8689 	/*
8690 	 *  Prepare controller and devices settings, according
8691 	 *  to chip features, user set-up and driver set-up.
8692 	 */
8693 	(void) sym_prepare_setting(np, &nvram);
8694 
8695 	/*
8696 	 *  Check the PCI clock frequency.
8697 	 *  Must be performed after prepare_setting since it destroys
8698 	 *  STEST1 that is used to probe for the clock doubler.
8699 	 */
8700 	i = sym_getpciclock(np);
8701 	if (i > 37000)
8702 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8703 
8704 	/*
8705 	 *  Allocate the start queue.
8706 	 */
8707 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8708 	if (!np->squeue)
8709 		goto attach_failed;
8710 	np->squeue_ba = vtobus(np->squeue);
8711 
8712 	/*
8713 	 *  Allocate the done queue.
8714 	 */
8715 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8716 	if (!np->dqueue)
8717 		goto attach_failed;
8718 	np->dqueue_ba = vtobus(np->dqueue);
8719 
8720 	/*
8721 	 *  Allocate the target bus address array.
8722 	 */
8723 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8724 	if (!np->targtbl)
8725 		goto attach_failed;
8726 	np->targtbl_ba = vtobus(np->targtbl);
8727 
8728 	/*
8729 	 *  Allocate SCRIPTS areas.
8730 	 */
8731 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8732 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8733 	if (!np->scripta0 || !np->scriptb0)
8734 		goto attach_failed;
8735 
8736 	/*
8737 	 *  Allocate the CCBs. We need at least ONE.
8738 	 */
8739 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8740 		;
8741 	if (i < 1)
8742 		goto attach_failed;
8743 
8744 	/*
8745 	 *  Calculate BUS addresses where we are going
8746 	 *  to load the SCRIPTS.
8747 	 */
8748 	np->scripta_ba	= vtobus(np->scripta0);
8749 	np->scriptb_ba	= vtobus(np->scriptb0);
8750 	np->scriptb0_ba	= np->scriptb_ba;
8751 
8752 	if (np->ram_ba) {
8753 		np->scripta_ba	= np->ram_ba;
8754 		if (np->features & FE_RAM8K) {
8755 			np->ram_ws = 8192;
8756 			np->scriptb_ba = np->scripta_ba + 4096;
8757 #ifdef __LP64__
8758 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8759 #endif
8760 		}
8761 		else
8762 			np->ram_ws = 4096;
8763 	}
8764 
8765 	/*
8766 	 *  Copy scripts to controller instance.
8767 	 */
8768 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8769 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8770 
8771 	/*
8772 	 *  Setup variable parts in scripts and compute
8773 	 *  scripts bus addresses used from the C code.
8774 	 */
8775 	np->fw_setup(np, fw);
8776 
8777 	/*
8778 	 *  Bind SCRIPTS with physical addresses usable by the
8779 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8780 	 */
8781 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8782 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8783 
8784 #ifdef SYM_CONF_IARB_SUPPORT
8785 	/*
8786 	 *    If user wants IARB to be set when we win arbitration
8787 	 *    and have other jobs, compute the max number of consecutive
8788 	 *    settings of IARB hints before we leave devices a chance to
8789 	 *    arbitrate for reselection.
8790 	 */
8791 #ifdef	SYM_SETUP_IARB_MAX
8792 	np->iarb_max = SYM_SETUP_IARB_MAX;
8793 #else
8794 	np->iarb_max = 4;
8795 #endif
8796 #endif
8797 
8798 	/*
8799 	 *  Prepare the idle and invalid task actions.
8800 	 */
8801 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8802 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8803 	np->idletask_ba		= vtobus(&np->idletask);
8804 
8805 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8806 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8807 	np->notask_ba		= vtobus(&np->notask);
8808 
8809 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8810 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8811 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8812 
8813 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8814 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8815 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8816 
8817 	/*
8818 	 *  Allocate and prepare the lun JUMP table that is used
8819 	 *  for a target prior the probing of devices (bad lun table).
8820 	 *  A private table will be allocated for the target on the
8821 	 *  first INQUIRY response received.
8822 	 */
8823 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8824 	if (!np->badluntbl)
8825 		goto attach_failed;
8826 
8827 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8828 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8829 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8830 
8831 	/*
8832 	 *  Prepare the bus address array that contains the bus
8833 	 *  address of each target control block.
8834 	 *  For now, assume all logical units are wrong. :)
8835 	 */
8836 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8837 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8838 		np->target[i].head.luntbl_sa =
8839 				cpu_to_scr(vtobus(np->badluntbl));
8840 		np->target[i].head.lun0_sa =
8841 				cpu_to_scr(vtobus(&np->badlun_sa));
8842 	}
8843 
8844 	/*
8845 	 *  Now check the cache handling of the pci chipset.
8846 	 */
8847 	if (sym_snooptest (np)) {
8848 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8849 		goto attach_failed;
8850 	}
8851 
8852 	/*
8853 	 *  Now deal with CAM.
8854 	 *  Hopefully, we will succeed with that one.:)
8855 	 */
8856 	if (!sym_cam_attach(np))
8857 		goto attach_failed;
8858 
8859 	/*
8860 	 *  Sigh! we are done.
8861 	 */
8862 	return 0;
8863 
8864 	/*
8865 	 *  We have failed.
8866 	 *  We will try to free all the resources we have
8867 	 *  allocated, but if we are a boot device, this
8868 	 *  will not help that much.;)
8869 	 */
8870 attach_failed:
8871 	if (np)
8872 		sym_pci_free(np);
8873 	return ENXIO;
8874 }
8875 
8876 /*
8877  *  Free everything that have been allocated for this device.
8878  */
8879 static void sym_pci_free(hcb_p np)
8880 {
8881 	SYM_QUEHEAD *qp;
8882 	ccb_p cp;
8883 	tcb_p tp;
8884 	lcb_p lp;
8885 	int target, lun;
8886 
8887 	/*
8888 	 *  First free CAM resources.
8889 	 */
8890 	sym_cam_free(np);
8891 
8892 	/*
8893 	 *  Now every should be quiet for us to
8894 	 *  free other resources.
8895 	 */
8896 	if (np->ram_res)
8897 		bus_release_resource(np->device, SYS_RES_MEMORY,
8898 				     np->ram_id, np->ram_res);
8899 	if (np->mmio_res)
8900 		bus_release_resource(np->device, SYS_RES_MEMORY,
8901 				     SYM_PCI_MMIO, np->mmio_res);
8902 	if (np->io_res)
8903 		bus_release_resource(np->device, SYS_RES_IOPORT,
8904 				     SYM_PCI_IO, np->io_res);
8905 	if (np->irq_res)
8906 		bus_release_resource(np->device, SYS_RES_IRQ,
8907 				     0, np->irq_res);
8908 
8909 	if (np->scriptb0)
8910 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8911 	if (np->scripta0)
8912 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8913 	if (np->squeue)
8914 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8915 	if (np->dqueue)
8916 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8917 
8918 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8919 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8920 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8921 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8922 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8923 	}
8924 
8925 	if (np->badluntbl)
8926 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8927 
8928 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8929 		tp = &np->target[target];
8930 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8931 			lp = sym_lp(np, tp, lun);
8932 			if (!lp)
8933 				continue;
8934 			if (lp->itlq_tbl)
8935 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8936 				       "ITLQ_TBL");
8937 			if (lp->cb_tags)
8938 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8939 				       "CB_TAGS");
8940 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8941 		}
8942 #if SYM_CONF_MAX_LUN > 1
8943 		if (tp->lunmp)
8944 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8945 			       "LUNMP");
8946 #endif
8947 	}
8948 #ifdef __x86_64__
8949 	if (np->target)
8950 		sym_mfree_dma(np->target,
8951 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8952 #endif
8953 	if (np->targtbl)
8954 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8955 	if (np->data_dmat)
8956 		bus_dma_tag_destroy(np->data_dmat);
8957 #if 0 /* XXX swildner */
8958 	if (SYM_LOCK_INITIALIZED() != 0)
8959 #endif
8960 		SYM_LOCK_DESTROY();
8961 	device_set_softc(np->device, NULL);
8962 	sym_mfree_dma(np, sizeof(*np), "HCB");
8963 }
8964 
8965 /*
8966  *  Allocate CAM resources and register a bus to CAM.
8967  */
8968 static int sym_cam_attach(hcb_p np)
8969 {
8970 	struct cam_devq *devq = NULL;
8971 	struct cam_sim *sim = NULL;
8972 	struct cam_path *path = NULL;
8973 	int err;
8974 
8975 	/*
8976 	 *  Establish our interrupt handler.
8977 	 */
8978 	err = bus_setup_intr(np->device, np->irq_res,
8979 			INTR_MPSAFE,
8980 			sym_intr, np, &np->intr, NULL);
8981 	if (err) {
8982 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8983 			      err);
8984 		goto fail;
8985 	}
8986 
8987 	/*
8988 	 *  Create the device queue for our sym SIM.
8989 	 */
8990 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8991 	if (!devq)
8992 		goto fail;
8993 
8994 	/*
8995 	 *  Construct our SIM entry.
8996 	 */
8997 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8998 			device_get_unit(np->device),
8999 			&np->lock, 1, SYM_SETUP_MAX_TAG, devq);
9000 	cam_simq_release(devq);
9001 	if (!sim)
9002 		goto fail;
9003 
9004 	SYM_LOCK();
9005 
9006 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9007 		goto fail;
9008 	np->sim = sim;
9009 
9010 	if (xpt_create_path(&path, 0,
9011 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9012 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9013 		goto fail;
9014 	}
9015 	np->path = path;
9016 
9017 	/*
9018 	 *  Establish our async notification handler.
9019 	 */
9020 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
9021 	    CAM_REQ_CMP)
9022 		goto fail;
9023 
9024 	/*
9025 	 *  Start the chip now, without resetting the BUS, since
9026 	 *  it seems that this must stay under control of CAM.
9027 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9028 	 *  get a spurious SMBC interrupt.
9029 	 */
9030 	sym_init (np, 0);
9031 
9032 	SYM_UNLOCK();
9033 
9034 	return 1;
9035 fail:
9036 	if (sim)
9037 		cam_sim_free(sim);
9038 
9039 	SYM_UNLOCK();
9040 
9041 	sym_cam_free(np);
9042 
9043 	return 0;
9044 }
9045 
9046 /*
9047  *  Free everything that deals with CAM.
9048  */
9049 static void sym_cam_free(hcb_p np)
9050 {
9051 	SYM_LOCK_ASSERT(0);
9052 
9053 	if (np->intr) {
9054 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9055 		np->intr = NULL;
9056 	}
9057 
9058 	SYM_LOCK();
9059 
9060 	if (np->sim) {
9061 		xpt_bus_deregister(cam_sim_path(np->sim));
9062 		cam_sim_free(np->sim);
9063 		np->sim = NULL;
9064 	}
9065 	if (np->path) {
9066 		xpt_free_path(np->path);
9067 		np->path = NULL;
9068 	}
9069 
9070 	SYM_UNLOCK();
9071 }
9072 
9073 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9074 
9075 /*
9076  *  Get host setup from NVRAM.
9077  */
9078 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9079 {
9080 #ifdef SYM_CONF_NVRAM_SUPPORT
9081 	/*
9082 	 *  Get parity checking, host ID, verbose mode
9083 	 *  and miscellaneous host flags from NVRAM.
9084 	 */
9085 	switch(nvram->type) {
9086 	case SYM_SYMBIOS_NVRAM:
9087 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9088 			np->rv_scntl0  &= ~0x0a;
9089 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9090 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9091 			np->verbose += 1;
9092 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9093 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9094 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9095 			np->usrflags |= SYM_AVOID_BUS_RESET;
9096 		break;
9097 	case SYM_TEKRAM_NVRAM:
9098 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9099 		break;
9100 	default:
9101 		break;
9102 	}
9103 #endif
9104 }
9105 
9106 /*
9107  *  Get target setup from NVRAM.
9108  */
9109 #ifdef SYM_CONF_NVRAM_SUPPORT
9110 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9111 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9112 #endif
9113 
9114 static void
9115 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9116 {
9117 #ifdef SYM_CONF_NVRAM_SUPPORT
9118 	switch(nvp->type) {
9119 	case SYM_SYMBIOS_NVRAM:
9120 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9121 		break;
9122 	case SYM_TEKRAM_NVRAM:
9123 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9124 		break;
9125 	default:
9126 		break;
9127 	}
9128 #endif
9129 }
9130 
9131 #ifdef SYM_CONF_NVRAM_SUPPORT
9132 /*
9133  *  Get target set-up from Symbios format NVRAM.
9134  */
9135 static void
9136 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9137 {
9138 	tcb_p tp = &np->target[target];
9139 	Symbios_target *tn = &nvram->target[target];
9140 
9141 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9142 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9143 	tp->usrtags =
9144 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9145 
9146 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9147 		tp->usrflags &= ~SYM_DISC_ENABLED;
9148 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9149 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9150 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9151 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9152 }
9153 
9154 /*
9155  *  Get target set-up from Tekram format NVRAM.
9156  */
9157 static void
9158 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9159 {
9160 	tcb_p tp = &np->target[target];
9161 	struct Tekram_target *tn = &nvram->target[target];
9162 	int i;
9163 
9164 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9165 		i = tn->sync_index & 0xf;
9166 		tp->tinfo.user.period = Tekram_sync[i];
9167 	}
9168 
9169 	tp->tinfo.user.width =
9170 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9171 
9172 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9173 		tp->usrtags = 2 << nvram->max_tags_index;
9174 	}
9175 
9176 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9177 		tp->usrflags |= SYM_DISC_ENABLED;
9178 
9179 	/* If any device does not support parity, we will not use this option */
9180 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9181 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9182 }
9183 
9184 #ifdef	SYM_CONF_DEBUG_NVRAM
9185 /*
9186  *  Dump Symbios format NVRAM for debugging purpose.
9187  */
9188 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9189 {
9190 	int i;
9191 
9192 	/* display Symbios nvram host data */
9193 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9194 		sym_name(np), nvram->host_id & 0x0f,
9195 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9196 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9197 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9198 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9199 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9200 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9201 
9202 	/* display Symbios nvram drive data */
9203 	for (i = 0 ; i < 15 ; i++) {
9204 		struct Symbios_target *tn = &nvram->target[i];
9205 		kprintf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9206 		sym_name(np), i,
9207 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9208 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9209 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9210 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9211 		tn->bus_width,
9212 		tn->sync_period / 4,
9213 		tn->timeout);
9214 	}
9215 }
9216 
9217 /*
9218  *  Dump TEKRAM format NVRAM for debugging purpose.
9219  */
9220 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9221 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9222 {
9223 	int i, tags, boot_delay;
9224 	char *rem;
9225 
9226 	/* display Tekram nvram host data */
9227 	tags = 2 << nvram->max_tags_index;
9228 	boot_delay = 0;
9229 	if (nvram->boot_delay_index < 6)
9230 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9231 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9232 	default:
9233 	case 0:	rem = "";			break;
9234 	case 1: rem = " REMOVABLE=boot device";	break;
9235 	case 2: rem = " REMOVABLE=all";		break;
9236 	}
9237 
9238 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9239 		sym_name(np), nvram->host_id & 0x0f,
9240 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9241 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9242 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9243 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9244 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9245 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9246 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9247 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9248 		rem, boot_delay, tags);
9249 
9250 	/* display Tekram nvram drive data */
9251 	for (i = 0; i <= 15; i++) {
9252 		int sync, j;
9253 		struct Tekram_target *tn = &nvram->target[i];
9254 		j = tn->sync_index & 0xf;
9255 		sync = Tekram_sync[j];
9256 		kprintf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9257 		sym_name(np), i,
9258 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9259 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9260 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9261 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9262 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9263 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9264 		sync);
9265 	}
9266 }
9267 #endif	/* SYM_CONF_DEBUG_NVRAM */
9268 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9269 
9270 
9271 /*
9272  *  Try reading Symbios or Tekram NVRAM
9273  */
9274 #ifdef SYM_CONF_NVRAM_SUPPORT
9275 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9276 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9277 #endif
9278 
9279 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9280 {
9281 #ifdef SYM_CONF_NVRAM_SUPPORT
9282 	/*
9283 	 *  Try to read SYMBIOS nvram.
9284 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9285 	 */
9286 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9287 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9288 		nvp->type = SYM_SYMBIOS_NVRAM;
9289 #ifdef SYM_CONF_DEBUG_NVRAM
9290 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9291 #endif
9292 	}
9293 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9294 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9295 		nvp->type = SYM_TEKRAM_NVRAM;
9296 #ifdef SYM_CONF_DEBUG_NVRAM
9297 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9298 #endif
9299 	}
9300 	else
9301 		nvp->type = 0;
9302 #else
9303 	nvp->type = 0;
9304 #endif
9305 	return nvp->type;
9306 }
9307 
9308 
9309 #ifdef SYM_CONF_NVRAM_SUPPORT
9310 /*
9311  *  24C16 EEPROM reading.
9312  *
9313  *  GPOI0 - data in/data out
9314  *  GPIO1 - clock
9315  *  Symbios NVRAM wiring now also used by Tekram.
9316  */
9317 
9318 #define SET_BIT 0
9319 #define CLR_BIT 1
9320 #define SET_CLK 2
9321 #define CLR_CLK 3
9322 
9323 /*
9324  *  Set/clear data/clock bit in GPIO0
9325  */
9326 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9327 			  int bit_mode)
9328 {
9329 	UDELAY (5);
9330 	switch (bit_mode){
9331 	case SET_BIT:
9332 		*gpreg |= write_bit;
9333 		break;
9334 	case CLR_BIT:
9335 		*gpreg &= 0xfe;
9336 		break;
9337 	case SET_CLK:
9338 		*gpreg |= 0x02;
9339 		break;
9340 	case CLR_CLK:
9341 		*gpreg &= 0xfd;
9342 		break;
9343 
9344 	}
9345 	OUTB (nc_gpreg, *gpreg);
9346 	UDELAY (5);
9347 }
9348 
9349 /*
9350  *  Send START condition to NVRAM to wake it up.
9351  */
9352 static void S24C16_start(hcb_p np, u_char *gpreg)
9353 {
9354 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9355 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9356 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9357 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9358 }
9359 
9360 /*
9361  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9362  */
9363 static void S24C16_stop(hcb_p np, u_char *gpreg)
9364 {
9365 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9366 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9367 }
9368 
9369 /*
9370  *  Read or write a bit to the NVRAM,
9371  *  read if GPIO0 input else write if GPIO0 output
9372  */
9373 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9374 			 u_char *gpreg)
9375 {
9376 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9377 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9378 	if (read_bit)
9379 		*read_bit = INB (nc_gpreg);
9380 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9381 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9382 }
9383 
9384 /*
9385  *  Output an ACK to the NVRAM after reading,
9386  *  change GPIO0 to output and when done back to an input
9387  */
9388 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9389 			    u_char *gpcntl)
9390 {
9391 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9392 	S24C16_do_bit(np, 0, write_bit, gpreg);
9393 	OUTB (nc_gpcntl, *gpcntl);
9394 }
9395 
9396 /*
9397  *  Input an ACK from NVRAM after writing,
9398  *  change GPIO0 to input and when done back to an output
9399  */
9400 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9401 			   u_char *gpcntl)
9402 {
9403 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9404 	S24C16_do_bit(np, read_bit, 1, gpreg);
9405 	OUTB (nc_gpcntl, *gpcntl);
9406 }
9407 
9408 /*
9409  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9410  *  GPIO0 must already be set as an output
9411  */
9412 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9413 			     u_char *gpreg, u_char *gpcntl)
9414 {
9415 	int x;
9416 
9417 	for (x = 0; x < 8; x++)
9418 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9419 
9420 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9421 }
9422 
9423 /*
9424  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9425  *  GPIO0 must already be set as an input
9426  */
9427 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9428 			    u_char *gpreg, u_char *gpcntl)
9429 {
9430 	int x;
9431 	u_char read_bit;
9432 
9433 	*read_data = 0;
9434 	for (x = 0; x < 8; x++) {
9435 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9436 		*read_data |= ((read_bit & 0x01) << (7 - x));
9437 	}
9438 
9439 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9440 }
9441 
9442 /*
9443  *  Read 'len' bytes starting at 'offset'.
9444  */
9445 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9446 {
9447 	u_char	gpcntl, gpreg;
9448 	u_char	old_gpcntl, old_gpreg;
9449 	u_char	ack_data;
9450 	int	retv = 1;
9451 	int	x;
9452 
9453 	/* save current state of GPCNTL and GPREG */
9454 	old_gpreg	= INB (nc_gpreg);
9455 	old_gpcntl	= INB (nc_gpcntl);
9456 	gpcntl		= old_gpcntl & 0x1c;
9457 
9458 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9459 	OUTB (nc_gpreg,  old_gpreg);
9460 	OUTB (nc_gpcntl, gpcntl);
9461 
9462 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9463 	gpreg = old_gpreg;
9464 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9465 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9466 
9467 	/* now set NVRAM inactive with GPIO0/1 both high */
9468 	S24C16_stop(np, &gpreg);
9469 
9470 	/* activate NVRAM */
9471 	S24C16_start(np, &gpreg);
9472 
9473 	/* write device code and random address MSB */
9474 	S24C16_write_byte(np, &ack_data,
9475 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9476 	if (ack_data & 0x01)
9477 		goto out;
9478 
9479 	/* write random address LSB */
9480 	S24C16_write_byte(np, &ack_data,
9481 		offset & 0xff, &gpreg, &gpcntl);
9482 	if (ack_data & 0x01)
9483 		goto out;
9484 
9485 	/* regenerate START state to set up for reading */
9486 	S24C16_start(np, &gpreg);
9487 
9488 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9489 	S24C16_write_byte(np, &ack_data,
9490 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9491 	if (ack_data & 0x01)
9492 		goto out;
9493 
9494 	/* now set up GPIO0 for inputting data */
9495 	gpcntl |= 0x01;
9496 	OUTB (nc_gpcntl, gpcntl);
9497 
9498 	/* input all requested data - only part of total NVRAM */
9499 	for (x = 0; x < len; x++)
9500 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9501 
9502 	/* finally put NVRAM back in inactive mode */
9503 	gpcntl &= 0xfe;
9504 	OUTB (nc_gpcntl, gpcntl);
9505 	S24C16_stop(np, &gpreg);
9506 	retv = 0;
9507 out:
9508 	/* return GPIO0/1 to original states after having accessed NVRAM */
9509 	OUTB (nc_gpcntl, old_gpcntl);
9510 	OUTB (nc_gpreg,  old_gpreg);
9511 
9512 	return retv;
9513 }
9514 
9515 #undef SET_BIT /* 0 */
9516 #undef CLR_BIT /* 1 */
9517 #undef SET_CLK /* 2 */
9518 #undef CLR_CLK /* 3 */
9519 
9520 /*
9521  *  Try reading Symbios NVRAM.
9522  *  Return 0 if OK.
9523  */
9524 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9525 {
9526 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9527 	u_char *data = (u_char *) nvram;
9528 	int len  = sizeof(*nvram);
9529 	u_short	csum;
9530 	int x;
9531 
9532 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9533 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9534 		return 1;
9535 
9536 	/* check valid NVRAM signature, verify byte count and checksum */
9537 	if (nvram->type != 0 ||
9538 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9539 	    nvram->byte_count != len - 12)
9540 		return 1;
9541 
9542 	/* verify checksum */
9543 	for (x = 6, csum = 0; x < len - 6; x++)
9544 		csum += data[x];
9545 	if (csum != nvram->checksum)
9546 		return 1;
9547 
9548 	return 0;
9549 }
9550 
9551 /*
9552  *  93C46 EEPROM reading.
9553  *
9554  *  GPOI0 - data in
9555  *  GPIO1 - data out
9556  *  GPIO2 - clock
9557  *  GPIO4 - chip select
9558  *
9559  *  Used by Tekram.
9560  */
9561 
9562 /*
9563  *  Pulse clock bit in GPIO0
9564  */
9565 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9566 {
9567 	OUTB (nc_gpreg, *gpreg | 0x04);
9568 	UDELAY (2);
9569 	OUTB (nc_gpreg, *gpreg);
9570 }
9571 
9572 /*
9573  *  Read bit from NVRAM
9574  */
9575 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9576 {
9577 	UDELAY (2);
9578 	T93C46_Clk(np, gpreg);
9579 	*read_bit = INB (nc_gpreg);
9580 }
9581 
9582 /*
9583  *  Write bit to GPIO0
9584  */
9585 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9586 {
9587 	if (write_bit & 0x01)
9588 		*gpreg |= 0x02;
9589 	else
9590 		*gpreg &= 0xfd;
9591 
9592 	*gpreg |= 0x10;
9593 
9594 	OUTB (nc_gpreg, *gpreg);
9595 	UDELAY (2);
9596 
9597 	T93C46_Clk(np, gpreg);
9598 }
9599 
9600 /*
9601  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9602  */
9603 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9604 {
9605 	*gpreg &= 0xef;
9606 	OUTB (nc_gpreg, *gpreg);
9607 	UDELAY (2);
9608 
9609 	T93C46_Clk(np, gpreg);
9610 }
9611 
9612 /*
9613  *  Send read command and address to NVRAM
9614  */
9615 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9616 				u_char *read_bit, u_char *gpreg)
9617 {
9618 	int x;
9619 
9620 	/* send 9 bits, start bit (1), command (2), address (6)  */
9621 	for (x = 0; x < 9; x++)
9622 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9623 
9624 	*read_bit = INB (nc_gpreg);
9625 }
9626 
9627 /*
9628  *  READ 2 bytes from the NVRAM
9629  */
9630 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9631 {
9632 	int x;
9633 	u_char read_bit;
9634 
9635 	*nvram_data = 0;
9636 	for (x = 0; x < 16; x++) {
9637 		T93C46_Read_Bit(np, &read_bit, gpreg);
9638 
9639 		if (read_bit & 0x01)
9640 			*nvram_data |=  (0x01 << (15 - x));
9641 		else
9642 			*nvram_data &= ~(0x01 << (15 - x));
9643 	}
9644 }
9645 
9646 /*
9647  *  Read Tekram NvRAM data.
9648  */
9649 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9650 {
9651 	u_char	read_bit;
9652 	int	x;
9653 
9654 	for (x = 0; x < len; x++)  {
9655 
9656 		/* output read command and address */
9657 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9658 		if (read_bit & 0x01)
9659 			return 1; /* Bad */
9660 		T93C46_Read_Word(np, &data[x], gpreg);
9661 		T93C46_Stop(np, gpreg);
9662 	}
9663 
9664 	return 0;
9665 }
9666 
9667 /*
9668  *  Try reading 93C46 Tekram NVRAM.
9669  */
9670 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9671 {
9672 	u_char gpcntl, gpreg;
9673 	u_char old_gpcntl, old_gpreg;
9674 	int retv = 1;
9675 
9676 	/* save current state of GPCNTL and GPREG */
9677 	old_gpreg	= INB (nc_gpreg);
9678 	old_gpcntl	= INB (nc_gpcntl);
9679 
9680 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9681 	   1/2/4 out */
9682 	gpreg = old_gpreg & 0xe9;
9683 	OUTB (nc_gpreg, gpreg);
9684 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9685 	OUTB (nc_gpcntl, gpcntl);
9686 
9687 	/* input all of NVRAM, 64 words */
9688 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9689 				sizeof(*nvram) / sizeof(short), &gpreg);
9690 
9691 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9692 	OUTB (nc_gpcntl, old_gpcntl);
9693 	OUTB (nc_gpreg,  old_gpreg);
9694 
9695 	return retv;
9696 }
9697 
9698 /*
9699  *  Try reading Tekram NVRAM.
9700  *  Return 0 if OK.
9701  */
9702 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9703 {
9704 	u_char *data = (u_char *) nvram;
9705 	int len = sizeof(*nvram);
9706 	u_short	csum;
9707 	int x;
9708 
9709 	switch (np->device_id) {
9710 	case PCI_ID_SYM53C885:
9711 	case PCI_ID_SYM53C895:
9712 	case PCI_ID_SYM53C896:
9713 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9714 					  data, len);
9715 		break;
9716 	case PCI_ID_SYM53C875:
9717 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9718 					  data, len);
9719 		if (!x)
9720 			break;
9721 	default:
9722 		x = sym_read_T93C46_nvram(np, nvram);
9723 		break;
9724 	}
9725 	if (x)
9726 		return 1;
9727 
9728 	/* verify checksum */
9729 	for (x = 0, csum = 0; x < len - 1; x += 2)
9730 		csum += data[x] + (data[x+1] << 8);
9731 	if (csum != 0x1234)
9732 		return 1;
9733 
9734 	return 0;
9735 }
9736 
9737 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9738