xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision 65d793b5)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.76 2011/10/07 08:59:54 marius Exp $
58  */
59 
60 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 
64 #include <sys/param.h>
65 
66 /*
67  *  Driver configuration options.
68  */
69 #include "opt_sym.h"
70 #include <dev/disk/sym/sym_conf.h>
71 
72 
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/mutex.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81 
82 #include <sys/proc.h>
83 
84 #include <bus/pci/pcireg.h>
85 #include <bus/pci/pcivar.h>
86 
87 #ifdef __sparc64__
88 #include <dev/ofw/openfirm.h>
89 #include <machine/ofw_machdep.h>
90 #endif
91 
92 #include <sys/rman.h>
93 
94 #include <bus/cam/cam.h>
95 #include <bus/cam/cam_ccb.h>
96 #include <bus/cam/cam_sim.h>
97 #include <bus/cam/cam_xpt_sim.h>
98 #include <bus/cam/cam_debug.h>
99 
100 #include <bus/cam/scsi/scsi_all.h>
101 #include <bus/cam/scsi/scsi_message.h>
102 
103 /* Short and quite clear integer types */
104 typedef int8_t    s8;
105 typedef int16_t   s16;
106 typedef	int32_t   s32;
107 typedef u_int8_t  u8;
108 typedef u_int16_t u16;
109 typedef	u_int32_t u32;
110 
111 /*
112  *  Driver definitions.
113  */
114 #include <dev/disk/sym/sym_defs.h>
115 #include <dev/disk/sym/sym_fw.h>
116 
117 /*
118  *  IA32 architecture does not reorder STORES and prevents
119  *  LOADS from passing STORES. It is called `program order'
120  *  by Intel and allows device drivers to deal with memory
121  *  ordering by only ensuring that the code is not reordered
122  *  by the compiler when ordering is required.
123  *  Other architectures implement a weaker ordering that
124  *  requires memory barriers (and also IO barriers when they
125  *  make sense) to be used.
126  */
127 
128 #if	defined	__i386__ || defined __x86_64__
129 #define MEMORY_BARRIER()	do { ; } while(0)
130 #elif	defined	__powerpc__
131 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
132 #elif	defined	__ia64__
133 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
134 #elif	defined	__sparc64__
135 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
136 #else
137 #error	"Not supported platform"
138 #endif
139 
140 /*
141  *  A la VMS/CAM-3 queue management.
142  */
143 
144 typedef struct sym_quehead {
145 	struct sym_quehead *flink;	/* Forward  pointer */
146 	struct sym_quehead *blink;	/* Backward pointer */
147 } SYM_QUEHEAD;
148 
149 #define sym_que_init(ptr) do { \
150 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
151 } while (0)
152 
153 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
154 {
155 	return (head->flink == head) ? NULL : head->flink;
156 }
157 
158 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
159 {
160 	return (head->blink == head) ? NULL : head->blink;
161 }
162 
163 static __inline void __sym_que_add(struct sym_quehead * new,
164 	struct sym_quehead * blink,
165 	struct sym_quehead * flink)
166 {
167 	flink->blink	= new;
168 	new->flink	= flink;
169 	new->blink	= blink;
170 	blink->flink	= new;
171 }
172 
173 static __inline void __sym_que_del(struct sym_quehead * blink,
174 	struct sym_quehead * flink)
175 {
176 	flink->blink = blink;
177 	blink->flink = flink;
178 }
179 
180 static __inline int sym_que_empty(struct sym_quehead *head)
181 {
182 	return head->flink == head;
183 }
184 
185 static __inline void sym_que_splice(struct sym_quehead *list,
186 	struct sym_quehead *head)
187 {
188 	struct sym_quehead *first = list->flink;
189 
190 	if (first != list) {
191 		struct sym_quehead *last = list->blink;
192 		struct sym_quehead *at   = head->flink;
193 
194 		first->blink = head;
195 		head->flink  = first;
196 
197 		last->flink = at;
198 		at->blink   = last;
199 	}
200 }
201 
202 #define sym_que_entry(ptr, type, member) \
203 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
204 
205 
206 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
207 
208 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
209 
210 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
211 
212 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
213 {
214 	struct sym_quehead *elem = head->flink;
215 
216 	if (elem != head)
217 		__sym_que_del(head, elem->flink);
218 	else
219 		elem = NULL;
220 	return elem;
221 }
222 
223 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
224 
225 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
226 {
227 	struct sym_quehead *elem = head->blink;
228 
229 	if (elem != head)
230 		__sym_que_del(elem->blink, head);
231 	else
232 		elem = NULL;
233 	return elem;
234 }
235 
236 /*
237  *  This one may be useful.
238  */
239 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
240 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
241 /*
242  *  FreeBSD does not offer our kind of queue in the CAM CCB.
243  *  So, we have to cast.
244  */
245 #define sym_qptr(p)	((struct sym_quehead *) (p))
246 
247 /*
248  *  Simple bitmap operations.
249  */
250 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
251 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
252 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
253 
254 /*
255  *  Number of tasks per device we want to handle.
256  */
257 #if	SYM_CONF_MAX_TAG_ORDER > 8
258 #error	"more than 256 tags per logical unit not allowed."
259 #endif
260 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
261 
262 /*
263  *  Donnot use more tasks that we can handle.
264  */
265 #ifndef	SYM_CONF_MAX_TAG
266 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
267 #endif
268 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
269 #undef	SYM_CONF_MAX_TAG
270 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
271 #endif
272 
273 /*
274  *    This one means 'NO TAG for this job'
275  */
276 #define NO_TAG	(256)
277 
278 /*
279  *  Number of SCSI targets.
280  */
281 #if	SYM_CONF_MAX_TARGET > 16
282 #error	"more than 16 targets not allowed."
283 #endif
284 
285 /*
286  *  Number of logical units per target.
287  */
288 #if	SYM_CONF_MAX_LUN > 64
289 #error	"more than 64 logical units per target not allowed."
290 #endif
291 
292 /*
293  *    Asynchronous pre-scaler (ns). Shall be 40 for
294  *    the SCSI timings to be compliant.
295  */
296 #define	SYM_CONF_MIN_ASYNC (40)
297 
298 /*
299  *  Number of entries in the START and DONE queues.
300  *
301  *  We limit to 1 PAGE in order to succeed allocation of
302  *  these queues. Each entry is 8 bytes long (2 DWORDS).
303  */
304 #ifdef	SYM_CONF_MAX_START
305 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
306 #else
307 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
308 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
309 #endif
310 
311 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
312 #undef	SYM_CONF_MAX_QUEUE
313 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
314 #undef	SYM_CONF_MAX_START
315 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
316 #endif
317 
318 /*
319  *  For this one, we want a short name :-)
320  */
321 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
322 
323 /*
324  *  Active debugging tags and verbosity.
325  */
326 #define DEBUG_ALLOC	(0x0001)
327 #define DEBUG_PHASE	(0x0002)
328 #define DEBUG_POLL	(0x0004)
329 #define DEBUG_QUEUE	(0x0008)
330 #define DEBUG_RESULT	(0x0010)
331 #define DEBUG_SCATTER	(0x0020)
332 #define DEBUG_SCRIPT	(0x0040)
333 #define DEBUG_TINY	(0x0080)
334 #define DEBUG_TIMING	(0x0100)
335 #define DEBUG_NEGO	(0x0200)
336 #define DEBUG_TAGS	(0x0400)
337 #define DEBUG_POINTER	(0x0800)
338 
339 #if 0
340 static int sym_debug = 0;
341 	#define DEBUG_FLAGS sym_debug
342 #else
343 /*	#define DEBUG_FLAGS (0x0631) */
344 	#define DEBUG_FLAGS (0x0000)
345 
346 #endif
347 #define sym_verbose	(np->verbose)
348 
349 /*
350  *  Insert a delay in micro-seconds and milli-seconds.
351  */
352 static void UDELAY(int us) { DELAY(us); }
353 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
354 
355 /*
356  *  Simple power of two buddy-like allocator.
357  *
358  *  This simple code is not intended to be fast, but to
359  *  provide power of 2 aligned memory allocations.
360  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
361  *  this allocator allows simple and fast address calculations
362  *  from the SCRIPTS code. In addition, cache line alignment
363  *  is guaranteed for power of 2 cache line size.
364  *
365  *  This allocator has been developed for the Linux sym53c8xx
366  *  driver, since this O/S does not provide naturally aligned
367  *  allocations.
368  *  It has the advantage of allowing the driver to use private
369  *  pages of memory that will be useful if we ever need to deal
370  *  with IO MMUs for PCI.
371  */
372 
373 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
374 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
375 #if 0
376 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
377 #endif
378 #define MEMO_WARN	1
379 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
380 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
381 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
382 
383 #define get_pages()		kmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
384 #define free_pages(p)		kfree((p), M_DEVBUF)
385 
386 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
387 
388 typedef struct m_link {		/* Link between free memory chunks */
389 	struct m_link *next;
390 } m_link_s;
391 
392 typedef struct m_vtob {		/* Virtual to Bus address translation */
393 	struct m_vtob	*next;
394 	bus_dmamap_t	dmamap;	/* Map for this chunk */
395 	m_addr_t	vaddr;	/* Virtual address */
396 	m_addr_t	baddr;	/* Bus physical address */
397 } m_vtob_s;
398 /* Hash this stuff a bit to speed up translations */
399 #define VTOB_HASH_SHIFT		5
400 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
401 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
402 #define VTOB_HASH_CODE(m)	\
403 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
404 
405 typedef struct m_pool {		/* Memory pool of a given kind */
406 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
407 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
408 	m_addr_t (*getp)(struct m_pool *);
409 #ifdef	MEMO_FREE_UNUSED
410 	void (*freep)(struct m_pool *, m_addr_t);
411 #endif
412 #define M_GETP()		mp->getp(mp)
413 #define M_FREEP(p)		mp->freep(mp, p)
414 	int nump;
415 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
416 	struct m_pool *next;
417 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
418 } m_pool_s;
419 
420 static void *___sym_malloc(m_pool_s *mp, int size)
421 {
422 	int i = 0;
423 	int s = (1 << MEMO_SHIFT);
424 	int j;
425 	m_addr_t a;
426 	m_link_s *h = mp->h;
427 
428 	if (size > MEMO_CLUSTER_SIZE)
429 		return NULL;
430 
431 	while (size > s) {
432 		s <<= 1;
433 		++i;
434 	}
435 
436 	j = i;
437 	while (!h[j].next) {
438 		if (s == MEMO_CLUSTER_SIZE) {
439 			h[j].next = (m_link_s *) M_GETP();
440 			if (h[j].next)
441 				h[j].next->next = NULL;
442 			break;
443 		}
444 		++j;
445 		s <<= 1;
446 	}
447 	a = (m_addr_t) h[j].next;
448 	if (a) {
449 		h[j].next = h[j].next->next;
450 		while (j > i) {
451 			j -= 1;
452 			s >>= 1;
453 			h[j].next = (m_link_s *) (a+s);
454 			h[j].next->next = NULL;
455 		}
456 	}
457 #ifdef DEBUG
458 	kprintf("___sym_malloc(%d) = %p\n", size, (void *) a);
459 #endif
460 	return (void *) a;
461 }
462 
463 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
464 {
465 	int i = 0;
466 	int s = (1 << MEMO_SHIFT);
467 	m_link_s *q;
468 	m_addr_t a, b;
469 	m_link_s *h = mp->h;
470 
471 #ifdef DEBUG
472 	kprintf("___sym_mfree(%p, %d)\n", ptr, size);
473 #endif
474 
475 	if (size > MEMO_CLUSTER_SIZE)
476 		return;
477 
478 	while (size > s) {
479 		s <<= 1;
480 		++i;
481 	}
482 
483 	a = (m_addr_t) ptr;
484 
485 	while (1) {
486 #ifdef MEMO_FREE_UNUSED
487 		if (s == MEMO_CLUSTER_SIZE) {
488 			M_FREEP(a);
489 			break;
490 		}
491 #endif
492 		b = a ^ s;
493 		q = &h[i];
494 		while (q->next && q->next != (m_link_s *) b) {
495 			q = q->next;
496 		}
497 		if (!q->next) {
498 			((m_link_s *) a)->next = h[i].next;
499 			h[i].next = (m_link_s *) a;
500 			break;
501 		}
502 		q->next = q->next->next;
503 		a = a & b;
504 		s <<= 1;
505 		++i;
506 	}
507 }
508 
509 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
510 {
511 	void *p;
512 
513 	p = ___sym_malloc(mp, size);
514 
515 	if (DEBUG_FLAGS & DEBUG_ALLOC)
516 		kprintf ("new %-10s[%4d] @%p.\n", name, size, p);
517 
518 	if (p)
519 		bzero(p, size);
520 	else if (uflags & MEMO_WARN)
521 		kprintf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
522 
523 	return p;
524 }
525 
526 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
527 
528 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
529 {
530 	if (DEBUG_FLAGS & DEBUG_ALLOC)
531 		kprintf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
532 
533 	___sym_mfree(mp, ptr, size);
534 
535 }
536 
537 /*
538  * Default memory pool we donnot need to involve in DMA.
539  */
540 /*
541  * With the `bus dma abstraction', we use a separate pool for
542  * memory we donnot need to involve in DMA.
543  */
544 static m_addr_t ___mp0_getp(m_pool_s *mp)
545 {
546 	m_addr_t m = (m_addr_t) get_pages();
547 	if (m)
548 		++mp->nump;
549 	return m;
550 }
551 
552 #ifdef	MEMO_FREE_UNUSED
553 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
554 {
555 	free_pages(m);
556 	--mp->nump;
557 }
558 #endif
559 
560 #ifdef	MEMO_FREE_UNUSED
561 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
562 #else
563 static m_pool_s mp0 = {0, 0, ___mp0_getp};
564 #endif
565 
566 
567 /*
568  * Actual memory allocation routine for non-DMAed memory.
569  */
570 static void *sym_calloc(int size, char *name)
571 {
572 	void *m;
573 	/* Lock */
574 	m = __sym_calloc(&mp0, size, name);
575 	/* Unlock */
576 	return m;
577 }
578 
579 /*
580  * Actual memory allocation routine for non-DMAed memory.
581  */
582 static void sym_mfree(void *ptr, int size, char *name)
583 {
584 	/* Lock */
585 	__sym_mfree(&mp0, ptr, size, name);
586 	/* Unlock */
587 }
588 
589 /*
590  * DMAable pools.
591  */
592 /*
593  * With `bus dma abstraction', we use a separate pool per parent
594  * BUS handle. A reverse table (hashed) is maintained for virtual
595  * to BUS address translation.
596  */
597 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
598 {
599 	bus_addr_t *baddr;
600 	baddr = (bus_addr_t *)arg;
601 	*baddr = segs->ds_addr;
602 }
603 
604 static m_addr_t ___dma_getp(m_pool_s *mp)
605 {
606 	m_vtob_s *vbp;
607 	void *vaddr = NULL;
608 	bus_addr_t baddr = 0;
609 
610 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
611 	if (!vbp)
612 		goto out_err;
613 
614 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
615 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
616 		goto out_err;
617 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
618 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
619 	if (baddr) {
620 		int hc = VTOB_HASH_CODE(vaddr);
621 		vbp->vaddr = (m_addr_t) vaddr;
622 		vbp->baddr = (m_addr_t) baddr;
623 		vbp->next = mp->vtob[hc];
624 		mp->vtob[hc] = vbp;
625 		++mp->nump;
626 		return (m_addr_t) vaddr;
627 	}
628 out_err:
629 	if (baddr)
630 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
631 	if (vaddr)
632 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
633 	if (vbp) {
634 		if (vbp->dmamap)
635 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
636 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
637 	}
638 	return 0;
639 }
640 
641 #ifdef	MEMO_FREE_UNUSED
642 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
643 {
644 	m_vtob_s **vbpp, *vbp;
645 	int hc = VTOB_HASH_CODE(m);
646 
647 	vbpp = &mp->vtob[hc];
648 	while (*vbpp && (*vbpp)->vaddr != m)
649 		vbpp = &(*vbpp)->next;
650 	if (*vbpp) {
651 		vbp = *vbpp;
652 		*vbpp = (*vbpp)->next;
653 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
654 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
655 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
656 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
657 		--mp->nump;
658 	}
659 }
660 #endif
661 
662 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
663 {
664 	m_pool_s *mp;
665 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
666 	return mp;
667 }
668 
669 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
670 {
671 	m_pool_s *mp = NULL;
672 
673 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
674 	if (mp) {
675 		mp->dev_dmat = dev_dmat;
676 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
677 			       BUS_SPACE_MAXADDR_32BIT,
678 			       BUS_SPACE_MAXADDR,
679 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
680 			       MEMO_CLUSTER_SIZE, 0,
681 			       &mp->dmat)) {
682 			mp->getp = ___dma_getp;
683 #ifdef	MEMO_FREE_UNUSED
684 			mp->freep = ___dma_freep;
685 #endif
686 			mp->next = mp0.next;
687 			mp0.next = mp;
688 			return mp;
689 		}
690 	}
691 	if (mp)
692 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
693 	return NULL;
694 }
695 
696 #ifdef	MEMO_FREE_UNUSED
697 static void ___del_dma_pool(m_pool_s *p)
698 {
699 	struct m_pool **pp = &mp0.next;
700 
701 	while (*pp && *pp != p)
702 		pp = &(*pp)->next;
703 	if (*pp) {
704 		*pp = (*pp)->next;
705 		bus_dma_tag_destroy(p->dmat);
706 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
707 	}
708 }
709 #endif
710 
711 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
712 {
713 	struct m_pool *mp;
714 	void *m = NULL;
715 
716 	/* Lock */
717 	mp = ___get_dma_pool(dev_dmat);
718 	if (!mp)
719 		mp = ___cre_dma_pool(dev_dmat);
720 	if (mp)
721 		m = __sym_calloc(mp, size, name);
722 #ifdef	MEMO_FREE_UNUSED
723 	if (mp && !mp->nump)
724 		___del_dma_pool(mp);
725 #endif
726 	/* Unlock */
727 
728 	return m;
729 }
730 
731 static void
732 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
733 {
734 	struct m_pool *mp;
735 
736 	/* Lock */
737 	mp = ___get_dma_pool(dev_dmat);
738 	if (mp)
739 		__sym_mfree(mp, m, size, name);
740 #ifdef	MEMO_FREE_UNUSED
741 	if (mp && !mp->nump)
742 		___del_dma_pool(mp);
743 #endif
744 	/* Unlock */
745 }
746 
747 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
748 {
749 	m_pool_s *mp;
750 	int hc = VTOB_HASH_CODE(m);
751 	m_vtob_s *vp = NULL;
752 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
753 
754 	/* Lock */
755 	mp = ___get_dma_pool(dev_dmat);
756 	if (mp) {
757 		vp = mp->vtob[hc];
758 		while (vp && vp->vaddr != a)
759 			vp = vp->next;
760 	}
761 	/* Unlock */
762 	if (!vp)
763 		panic("sym: VTOBUS FAILED!");
764 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
765 }
766 
767 
768 /*
769  * Verbs for DMAable memory handling.
770  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
771  * being discarded.
772  */
773 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
774 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
775 #define _sym_mfree_dma(np, p, s, n)	\
776 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
777 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
778 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
779 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
780 #define vtobus(p)			_vtobus(np, p)
781 
782 
783 /*
784  *  Print a buffer in hexadecimal format.
785  */
786 static void sym_printb_hex (u_char *p, int n)
787 {
788 	while (n-- > 0)
789 		kprintf (" %x", *p++);
790 }
791 
792 /*
793  *  Same with a label at beginning and .\n at end.
794  */
795 static void sym_printl_hex (char *label, u_char *p, int n)
796 {
797 	kprintf ("%s", label);
798 	sym_printb_hex (p, n);
799 	kprintf (".\n");
800 }
801 
802 /*
803  *  Return a string for SCSI BUS mode.
804  */
805 static const char *sym_scsi_bus_mode(int mode)
806 {
807 	switch(mode) {
808 	case SMODE_HVD:	return "HVD";
809 	case SMODE_SE:	return "SE";
810 	case SMODE_LVD: return "LVD";
811 	}
812 	return "??";
813 }
814 
815 /*
816  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
817  */
818 #ifdef SYM_CONF_NVRAM_SUPPORT
819 static const u_char Tekram_sync[16] =
820 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
821 #endif
822 
823 /*
824  *  Union of supported NVRAM formats.
825  */
826 struct sym_nvram {
827 	int type;
828 #define	SYM_SYMBIOS_NVRAM	(1)
829 #define	SYM_TEKRAM_NVRAM	(2)
830 #ifdef	SYM_CONF_NVRAM_SUPPORT
831 	union {
832 		Symbios_nvram Symbios;
833 		Tekram_nvram Tekram;
834 	} data;
835 #endif
836 };
837 
838 /*
839  *  This one is hopefully useless, but actually useful. :-)
840  */
841 #ifndef assert
842 #define	assert(expression) { \
843 	if (!(expression)) { \
844 		(void)panic( \
845 			"assertion \"%s\" failed: file \"%s\", line %d", \
846 			#expression, \
847 			__FILE__, __LINE__); \
848 	} \
849 }
850 #endif
851 
852 /*
853  *  Some provision for a possible big endian mode supported by
854  *  Symbios chips (never seen, by the way).
855  *  For now, this stuff does not deserve any comments. :)
856  */
857 
858 #define sym_offb(o)	(o)
859 #define sym_offw(o)	(o)
860 
861 /*
862  *  Some provision for support for BIG ENDIAN CPU.
863  */
864 
865 #define cpu_to_scr(dw)	htole32(dw)
866 #define scr_to_cpu(dw)	le32toh(dw)
867 
868 /*
869  *  Access to the chip IO registers and on-chip RAM.
870  *  We use the `bus space' interface under FreeBSD-4 and
871  *  later kernel versions.
872  */
873 
874 
875 #if defined(SYM_CONF_IOMAPPED)
876 
877 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
878 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
879 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
880 
881 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
882 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
883 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
884 
885 #else	/* Memory mapped IO */
886 
887 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
888 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
889 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
890 
891 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
892 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
893 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
894 
895 #endif	/* SYM_CONF_IOMAPPED */
896 
897 #define OUTRAM_OFF(o, a, l)	\
898 	bus_write_region_1(np->ram_res, (o), (a), (l))
899 
900 
901 /*
902  *  Common definitions for both bus space and legacy IO methods.
903  */
904 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
905 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
906 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
907 
908 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
909 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
910 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
911 
912 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
913 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
914 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
915 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
916 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
917 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
918 
919 /*
920  *  We normally want the chip to have a consistent view
921  *  of driver internal data structures when we restart it.
922  *  Thus these macros.
923  */
924 #define OUTL_DSP(v)				\
925 	do {					\
926 		MEMORY_BARRIER();		\
927 		OUTL (nc_dsp, (v));		\
928 	} while (0)
929 
930 #define OUTONB_STD()				\
931 	do {					\
932 		MEMORY_BARRIER();		\
933 		OUTONB (nc_dcntl, (STD|NOCOM));	\
934 	} while (0)
935 
936 /*
937  *  Command control block states.
938  */
939 #define HS_IDLE		(0)
940 #define HS_BUSY		(1)
941 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
942 #define HS_DISCONNECT	(3)	/* Disconnected by target */
943 #define HS_WAIT		(4)	/* waiting for resource	  */
944 
945 #define HS_DONEMASK	(0x80)
946 #define HS_COMPLETE	(4|HS_DONEMASK)
947 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
948 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
949 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
950 
951 /*
952  *  Software Interrupt Codes
953  */
954 #define	SIR_BAD_SCSI_STATUS	(1)
955 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
956 #define	SIR_MSG_RECEIVED	(3)
957 #define	SIR_MSG_WEIRD		(4)
958 #define	SIR_NEGO_FAILED		(5)
959 #define	SIR_NEGO_PROTO		(6)
960 #define	SIR_SCRIPT_STOPPED	(7)
961 #define	SIR_REJECT_TO_SEND	(8)
962 #define	SIR_SWIDE_OVERRUN	(9)
963 #define	SIR_SODL_UNDERRUN	(10)
964 #define	SIR_RESEL_NO_MSG_IN	(11)
965 #define	SIR_RESEL_NO_IDENTIFY	(12)
966 #define	SIR_RESEL_BAD_LUN	(13)
967 #define	SIR_TARGET_SELECTED	(14)
968 #define	SIR_RESEL_BAD_I_T_L	(15)
969 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
970 #define	SIR_ABORT_SENT		(17)
971 #define	SIR_RESEL_ABORTED	(18)
972 #define	SIR_MSG_OUT_DONE	(19)
973 #define	SIR_COMPLETE_ERROR	(20)
974 #define	SIR_DATA_OVERRUN	(21)
975 #define	SIR_BAD_PHASE		(22)
976 #define	SIR_MAX			(22)
977 
978 /*
979  *  Extended error bit codes.
980  *  xerr_status field of struct sym_ccb.
981  */
982 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
983 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
984 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
985 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
986 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
987 
988 /*
989  *  Negotiation status.
990  *  nego_status field of struct sym_ccb.
991  */
992 #define NS_SYNC		(1)
993 #define NS_WIDE		(2)
994 #define NS_PPR		(3)
995 
996 /*
997  *  A CCB hashed table is used to retrieve CCB address
998  *  from DSA value.
999  */
1000 #define CCB_HASH_SHIFT		8
1001 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1002 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1003 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1004 
1005 /*
1006  *  Device flags.
1007  */
1008 #define SYM_DISC_ENABLED	(1)
1009 #define SYM_TAGS_ENABLED	(1<<1)
1010 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1011 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1012 
1013 /*
1014  *  Host adapter miscellaneous flags.
1015  */
1016 #define SYM_AVOID_BUS_RESET	(1)
1017 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1018 
1019 /*
1020  *  Device quirks.
1021  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1022  *  saving the DATA POINTER then reselects and terminates the IO.
1023  *  On reselection, the automatic RESTORE DATA POINTER makes the
1024  *  CURRENT DATA POINTER not point at the end of the IO.
1025  *  This behaviour just breaks our calculation of the residual.
1026  *  For now, we just force an AUTO SAVE on disconnection and will
1027  *  fix that in a further driver version.
1028  */
1029 #define SYM_QUIRK_AUTOSAVE 1
1030 
1031 /*
1032  *  Misc.
1033  */
1034 #define	SYM_LOCK()		lockmgr(&np->lock, LK_EXCLUSIVE)
1035 #define	SYM_LOCK_ASSERT(_what)	KKASSERT(lockstatus(&np->lock, curthread) == (_what));
1036 #define	SYM_LOCK_DESTROY()	lockuninit(&np->lock)
1037 #define	SYM_LOCK_INIT()		lockinit(&np->lock, "sym_lock", 0, LK_CANRECURSE)
1038 #if 0 /* XXX swildner */
1039 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->lock)
1040 #endif
1041 #define	SYM_UNLOCK()		lockmgr(&np->lock, LK_RELEASE)
1042 
1043 #define SYM_SNOOP_TIMEOUT (10000000)
1044 #define SYM_PCI_IO	PCIR_BAR(0)
1045 #define SYM_PCI_MMIO	PCIR_BAR(1)
1046 #define SYM_PCI_RAM	PCIR_BAR(2)
1047 #define SYM_PCI_RAM64	PCIR_BAR(3)
1048 
1049 /*
1050  *  Back-pointer from the CAM CCB to our data structures.
1051  */
1052 #define sym_hcb_ptr	spriv_ptr0
1053 /* #define sym_ccb_ptr	spriv_ptr1 */
1054 
1055 /*
1056  *  We mostly have to deal with pointers.
1057  *  Thus these typedef's.
1058  */
1059 typedef struct sym_tcb *tcb_p;
1060 typedef struct sym_lcb *lcb_p;
1061 typedef struct sym_ccb *ccb_p;
1062 typedef struct sym_hcb *hcb_p;
1063 
1064 /*
1065  *  Gather negotiable parameters value
1066  */
1067 struct sym_trans {
1068 	u8 scsi_version;
1069 	u8 spi_version;
1070 	u8 period;
1071 	u8 offset;
1072 	u8 width;
1073 	u8 options;	/* PPR options */
1074 };
1075 
1076 struct sym_tinfo {
1077 	struct sym_trans current;
1078 	struct sym_trans goal;
1079 	struct sym_trans user;
1080 };
1081 
1082 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1083 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1084 
1085 /*
1086  *  Global TCB HEADER.
1087  *
1088  *  Due to lack of indirect addressing on earlier NCR chips,
1089  *  this substructure is copied from the TCB to a global
1090  *  address after selection.
1091  *  For SYMBIOS chips that support LOAD/STORE this copy is
1092  *  not needed and thus not performed.
1093  */
1094 struct sym_tcbh {
1095 	/*
1096 	 *  Scripts bus addresses of LUN table accessed from scripts.
1097 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1098 	 *  and we we want to speed-up the general case and not waste
1099 	 *  resources.
1100 	 */
1101 	u32	luntbl_sa;	/* bus address of this table	*/
1102 	u32	lun0_sa;	/* bus address of LCB #0	*/
1103 	/*
1104 	 *  Actual SYNC/WIDE IO registers value for this target.
1105 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1106 	 *  so have alignment constraints.
1107 	 */
1108 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1109 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1110 /*2*/	u_char	filler1;
1111 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1112 };
1113 
1114 /*
1115  *  Target Control Block
1116  */
1117 struct sym_tcb {
1118 	/*
1119 	 *  TCB header.
1120 	 *  Assumed at offset 0.
1121 	 */
1122 /*0*/	struct sym_tcbh head;
1123 
1124 	/*
1125 	 *  LUN table used by the SCRIPTS processor.
1126 	 *  An array of bus addresses is used on reselection.
1127 	 */
1128 	u32	*luntbl;	/* LCBs bus address table	*/
1129 
1130 	/*
1131 	 *  LUN table used by the C code.
1132 	 */
1133 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1134 #if SYM_CONF_MAX_LUN > 1
1135 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1136 #endif
1137 
1138 	/*
1139 	 *  Bitmap that tells about LUNs that succeeded at least
1140 	 *  1 IO and therefore assumed to be a real device.
1141 	 *  Avoid useless allocation of the LCB structure.
1142 	 */
1143 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1144 
1145 	/*
1146 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1147 	 *  allocated (not discovered or LCB allocation failed).
1148 	 */
1149 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1150 
1151 	/*
1152 	 *  Transfer capabilities (SIP)
1153 	 */
1154 	struct sym_tinfo tinfo;
1155 
1156 	/*
1157 	 * Keep track of the CCB used for the negotiation in order
1158 	 * to ensure that only 1 negotiation is queued at a time.
1159 	 */
1160 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1161 
1162 	/*
1163 	 *  Set when we want to reset the device.
1164 	 */
1165 	u_char	to_reset;
1166 
1167 	/*
1168 	 *  Other user settable limits and options.
1169 	 *  These limits are read from the NVRAM if present.
1170 	 */
1171 	u_char	usrflags;
1172 	u_short	usrtags;
1173 };
1174 
1175 /*
1176  *  Global LCB HEADER.
1177  *
1178  *  Due to lack of indirect addressing on earlier NCR chips,
1179  *  this substructure is copied from the LCB to a global
1180  *  address after selection.
1181  *  For SYMBIOS chips that support LOAD/STORE this copy is
1182  *  not needed and thus not performed.
1183  */
1184 struct sym_lcbh {
1185 	/*
1186 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1187 	 *  For not probed logical units, this address points to
1188 	 *  SCRIPTS that deal with bad LU handling (must be at
1189 	 *  offset zero of the LCB for that reason).
1190 	 */
1191 /*0*/	u32	resel_sa;
1192 
1193 	/*
1194 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1195 	 *  to the unique ITL nexus allowed to be disconnected.
1196 	 */
1197 	u32	itl_task_sa;
1198 
1199 	/*
1200 	 *  Task table bus address (read from SCRIPTS).
1201 	 */
1202 	u32	itlq_tbl_sa;
1203 };
1204 
1205 /*
1206  *  Logical Unit Control Block
1207  */
1208 struct sym_lcb {
1209 	/*
1210 	 *  TCB header.
1211 	 *  Assumed at offset 0.
1212 	 */
1213 /*0*/	struct sym_lcbh head;
1214 
1215 	/*
1216 	 *  Task table read from SCRIPTS that contains pointers to
1217 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1218 	 *  inside the header.
1219 	 */
1220 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1221 
1222 	/*
1223 	 *  Busy CCBs management.
1224 	 */
1225 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1226 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1227 
1228 	/*
1229 	 *  Circular tag allocation buffer.
1230 	 */
1231 	u_short	ia_tag;		/* Tag allocation index		*/
1232 	u_short	if_tag;		/* Tag release index		*/
1233 	u_char	*cb_tags;	/* Circular tags buffer		*/
1234 
1235 	/*
1236 	 *  Set when we want to clear all tasks.
1237 	 */
1238 	u_char to_clear;
1239 
1240 	/*
1241 	 *  Capabilities.
1242 	 */
1243 	u_char	user_flags;
1244 	u_char	current_flags;
1245 };
1246 
1247 /*
1248  *  Action from SCRIPTS on a task.
1249  *  Is part of the CCB, but is also used separately to plug
1250  *  error handling action to perform from SCRIPTS.
1251  */
1252 struct sym_actscr {
1253 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1254 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1255 };
1256 
1257 /*
1258  *  Phase mismatch context.
1259  *
1260  *  It is part of the CCB and is used as parameters for the
1261  *  DATA pointer. We need two contexts to handle correctly the
1262  *  SAVED DATA POINTER.
1263  */
1264 struct sym_pmc {
1265 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1266 	u32	ret;		/* SCRIPT return address	*/
1267 };
1268 
1269 /*
1270  *  LUN control block lookup.
1271  *  We use a direct pointer for LUN #0, and a table of
1272  *  pointers which is only allocated for devices that support
1273  *  LUN(s) > 0.
1274  */
1275 #if SYM_CONF_MAX_LUN <= 1
1276 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1277 #else
1278 #define sym_lp(np, tp, lun) \
1279 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1280 #endif
1281 
1282 /*
1283  *  Status are used by the host and the script processor.
1284  *
1285  *  The last four bytes (status[4]) are copied to the
1286  *  scratchb register (declared as scr0..scr3) just after the
1287  *  select/reselect, and copied back just after disconnecting.
1288  *  Inside the script the XX_REG are used.
1289  */
1290 
1291 /*
1292  *  Last four bytes (script)
1293  */
1294 #define  QU_REG	scr0
1295 #define  HS_REG	scr1
1296 #define  HS_PRT	nc_scr1
1297 #define  SS_REG	scr2
1298 #define  SS_PRT	nc_scr2
1299 #define  HF_REG	scr3
1300 #define  HF_PRT	nc_scr3
1301 
1302 /*
1303  *  Last four bytes (host)
1304  */
1305 #define  actualquirks  phys.head.status[0]
1306 #define  host_status   phys.head.status[1]
1307 #define  ssss_status   phys.head.status[2]
1308 #define  host_flags    phys.head.status[3]
1309 
1310 /*
1311  *  Host flags
1312  */
1313 #define HF_IN_PM0	1u
1314 #define HF_IN_PM1	(1u<<1)
1315 #define HF_ACT_PM	(1u<<2)
1316 #define HF_DP_SAVED	(1u<<3)
1317 #define HF_SENSE	(1u<<4)
1318 #define HF_EXT_ERR	(1u<<5)
1319 #define HF_DATA_IN	(1u<<6)
1320 #ifdef SYM_CONF_IARB_SUPPORT
1321 #define HF_HINT_IARB	(1u<<7)
1322 #endif
1323 
1324 /*
1325  *  Global CCB HEADER.
1326  *
1327  *  Due to lack of indirect addressing on earlier NCR chips,
1328  *  this substructure is copied from the ccb to a global
1329  *  address after selection (or reselection) and copied back
1330  *  before disconnect.
1331  *  For SYMBIOS chips that support LOAD/STORE this copy is
1332  *  not needed and thus not performed.
1333  */
1334 
1335 struct sym_ccbh {
1336 	/*
1337 	 *  Start and restart SCRIPTS addresses (must be at 0).
1338 	 */
1339 /*0*/	struct sym_actscr go;
1340 
1341 	/*
1342 	 *  SCRIPTS jump address that deal with data pointers.
1343 	 *  'savep' points to the position in the script responsible
1344 	 *  for the actual transfer of data.
1345 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1346 	 */
1347 	u32	savep;		/* Jump address to saved data pointer	*/
1348 	u32	lastp;		/* SCRIPTS address at end of data	*/
1349 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1350 
1351 	/*
1352 	 *  Status fields.
1353 	 */
1354 	u8	status[4];
1355 };
1356 
1357 /*
1358  *  Data Structure Block
1359  *
1360  *  During execution of a ccb by the script processor, the
1361  *  DSA (data structure address) register points to this
1362  *  substructure of the ccb.
1363  */
1364 struct sym_dsb {
1365 	/*
1366 	 *  CCB header.
1367 	 *  Also assumed at offset 0 of the sym_ccb structure.
1368 	 */
1369 /*0*/	struct sym_ccbh head;
1370 
1371 	/*
1372 	 *  Phase mismatch contexts.
1373 	 *  We need two to handle correctly the SAVED DATA POINTER.
1374 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1375 	 *  for address calculation from SCRIPTS.
1376 	 */
1377 	struct sym_pmc pm0;
1378 	struct sym_pmc pm1;
1379 
1380 	/*
1381 	 *  Table data for Script
1382 	 */
1383 	struct sym_tblsel  select;
1384 	struct sym_tblmove smsg;
1385 	struct sym_tblmove smsg_ext;
1386 	struct sym_tblmove cmd;
1387 	struct sym_tblmove sense;
1388 	struct sym_tblmove wresid;
1389 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1390 };
1391 
1392 /*
1393  *  Our Command Control Block
1394  */
1395 struct sym_ccb {
1396 	/*
1397 	 *  This is the data structure which is pointed by the DSA
1398 	 *  register when it is executed by the script processor.
1399 	 *  It must be the first entry.
1400 	 */
1401 	struct sym_dsb phys;
1402 
1403 	/*
1404 	 *  Pointer to CAM ccb and related stuff.
1405 	 */
1406 	struct callout ch;	/* callout handle		*/
1407 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1408 	u8	cdb_buf[16];	/* Copy of CDB			*/
1409 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1410 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1411 	int	data_len;	/* Total data length		*/
1412 	int	segments;	/* Number of SG segments	*/
1413 
1414 	/*
1415 	 *  Miscellaneous status'.
1416 	 */
1417 	u_char	nego_status;	/* Negotiation status		*/
1418 	u_char	xerr_status;	/* Extended error flags		*/
1419 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1420 
1421 	/*
1422 	 *  Message areas.
1423 	 *  We prepare a message to be sent after selection.
1424 	 *  We may use a second one if the command is rescheduled
1425 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1426 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1427 	 *  While negotiating sync or wide transfer,
1428 	 *  a SDTR or WDTR message is appended.
1429 	 */
1430 	u_char	scsi_smsg [12];
1431 	u_char	scsi_smsg2[12];
1432 
1433 	/*
1434 	 *  Auto request sense related fields.
1435 	 */
1436 	u_char	sensecmd[6];	/* Request Sense command	*/
1437 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1438 	u_char	sv_xerr_status;	/* Saved extended status	*/
1439 	int	sv_resid;	/* Saved residual		*/
1440 
1441 	/*
1442 	 *  Map for the DMA of user data.
1443 	 */
1444 	void		*arg;	/* Argument for some callback	*/
1445 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1446 	u_char		dmamapped;
1447 #define SYM_DMA_NONE	0
1448 #define SYM_DMA_READ	1
1449 #define SYM_DMA_WRITE	2
1450 	/*
1451 	 *  Other fields.
1452 	 */
1453 	u32	ccb_ba;		/* BUS address of this CCB	*/
1454 	u_short	tag;		/* Tag for this transfer	*/
1455 				/*  NO_TAG means no tag		*/
1456 	u_char	target;
1457 	u_char	lun;
1458 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1459 	SYM_QUEHEAD
1460 		link_ccbq;	/* Link to free/busy CCB queue	*/
1461 	u32	startp;		/* Initial data pointer		*/
1462 	int	ext_sg;		/* Extreme data pointer, used	*/
1463 	int	ext_ofs;	/*  to calculate the residual.	*/
1464 	u_char	to_abort;	/* Want this IO to be aborted	*/
1465 };
1466 
1467 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1468 
1469 /*
1470  *  Host Control Block
1471  */
1472 struct sym_hcb {
1473 	struct lock	lock;
1474 
1475 	/*
1476 	 *  Global headers.
1477 	 *  Due to poorness of addressing capabilities, earlier
1478 	 *  chips (810, 815, 825) copy part of the data structures
1479 	 *  (CCB, TCB and LCB) in fixed areas.
1480 	 */
1481 #ifdef	SYM_CONF_GENERIC_SUPPORT
1482 	struct sym_ccbh	ccb_head;
1483 	struct sym_tcbh	tcb_head;
1484 	struct sym_lcbh	lcb_head;
1485 #endif
1486 	/*
1487 	 *  Idle task and invalid task actions and
1488 	 *  their bus addresses.
1489 	 */
1490 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1491 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1492 
1493 	/*
1494 	 *  Dummy lun table to protect us against target
1495 	 *  returning bad lun number on reselection.
1496 	 */
1497 	u32	*badluntbl;	/* Table physical address	*/
1498 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1499 
1500 	/*
1501 	 *  Bus address of this host control block.
1502 	 */
1503 	u32	hcb_ba;
1504 
1505 	/*
1506 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1507 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1508 	 *  field.
1509 	 */
1510 	u32	scr_ram_seg;
1511 
1512 	/*
1513 	 *  Chip and controller indentification.
1514 	 */
1515 	device_t device;
1516 
1517 	/*
1518 	 *  Initial value of some IO register bits.
1519 	 *  These values are assumed to have been set by BIOS, and may
1520 	 *  be used to probe adapter implementation differences.
1521 	 */
1522 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1523 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1524 		sv_stest1;
1525 
1526 	/*
1527 	 *  Actual initial value of IO register bits used by the
1528 	 *  driver. They are loaded at initialisation according to
1529 	 *  features that are to be enabled/disabled.
1530 	 */
1531 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1532 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1533 
1534 	/*
1535 	 *  Target data.
1536 	 */
1537 #ifdef __x86_64__
1538 	struct sym_tcb	*target;
1539 #else
1540 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1541 #endif
1542 
1543 	/*
1544 	 *  Target control block bus address array used by the SCRIPT
1545 	 *  on reselection.
1546 	 */
1547 	u32		*targtbl;
1548 	u32		targtbl_ba;
1549 
1550 	/*
1551 	 *  CAM SIM information for this instance.
1552 	 */
1553 	struct		cam_sim  *sim;
1554 	struct		cam_path *path;
1555 
1556 	/*
1557 	 *  Allocated hardware resources.
1558 	 */
1559 	struct resource	*irq_res;
1560 	struct resource	*io_res;
1561 	struct resource	*mmio_res;
1562 	struct resource	*ram_res;
1563 	int		ram_id;
1564 	void *intr;
1565 
1566 	/*
1567 	 *  Bus stuff.
1568 	 *
1569 	 *  My understanding of PCI is that all agents must share the
1570 	 *  same addressing range and model.
1571 	 *  But some hardware architecture guys provide complex and
1572 	 *  brain-deaded stuff that makes shit.
1573 	 *  This driver only support PCI compliant implementations and
1574 	 *  deals with part of the BUS stuff complexity only to fit O/S
1575 	 *  requirements.
1576 	 */
1577 
1578 	/*
1579 	 *  DMA stuff.
1580 	 */
1581 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1582 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1583 	/*
1584 	 *  BUS addresses of the chip
1585 	 */
1586 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1587 	int		mmio_ws;	/* MMIO Window size		*/
1588 
1589 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1590 	int		ram_ws;		/* RAM window size		*/
1591 
1592 	/*
1593 	 *  SCRIPTS virtual and physical bus addresses.
1594 	 *  'script'  is loaded in the on-chip RAM if present.
1595 	 *  'scripth' stays in main memory for all chips except the
1596 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1597 	 */
1598 	u_char		*scripta0;	/* Copies of script and scripth	*/
1599 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1600 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1601 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1602 	vm_offset_t	scriptb0_ba;
1603 	u_short		scripta_sz;	/* Actual size of script A	*/
1604 	u_short		scriptb_sz;	/* Actual size of script B	*/
1605 
1606 	/*
1607 	 *  Bus addresses, setup and patch methods for
1608 	 *  the selected firmware.
1609 	 */
1610 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1611 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1612 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1613 	void		(*fw_patch)(hcb_p np);
1614 	const char	*fw_name;
1615 
1616 	/*
1617 	 *  General controller parameters and configuration.
1618 	 */
1619 	u_short	device_id;	/* PCI device id		*/
1620 	u_char	revision_id;	/* PCI device revision id	*/
1621 	u_int	features;	/* Chip features map		*/
1622 	u_char	myaddr;		/* SCSI id of the adapter	*/
1623 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1624 	u_char	maxwide;	/* Maximum transfer width	*/
1625 	u_char	minsync;	/* Min sync period factor (ST)	*/
1626 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1627 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1628 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1629 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1630 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1631 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1632 	u_char	clock_divn;	/* Number of clock divisors	*/
1633 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1634 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1635 	/*
1636 	 *  Start queue management.
1637 	 *  It is filled up by the host processor and accessed by the
1638 	 *  SCRIPTS processor in order to start SCSI commands.
1639 	 */
1640 	volatile		/* Prevent code optimizations	*/
1641 	u32	*squeue;	/* Start queue virtual address	*/
1642 	u32	squeue_ba;	/* Start queue BUS address	*/
1643 	u_short	squeueput;	/* Next free slot of the queue	*/
1644 	u_short	actccbs;	/* Number of allocated CCBs	*/
1645 
1646 	/*
1647 	 *  Command completion queue.
1648 	 *  It is the same size as the start queue to avoid overflow.
1649 	 */
1650 	u_short	dqueueget;	/* Next position to scan	*/
1651 	volatile		/* Prevent code optimizations	*/
1652 	u32	*dqueue;	/* Completion (done) queue	*/
1653 	u32	dqueue_ba;	/* Done queue BUS address	*/
1654 
1655 	/*
1656 	 *  Miscellaneous buffers accessed by the scripts-processor.
1657 	 *  They shall be DWORD aligned, because they may be read or
1658 	 *  written with a script command.
1659 	 */
1660 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1661 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1662 	u32		lastmsg;	/* Last SCSI message sent	*/
1663 	u_char		scratch;	/* Scratch for SCSI receive	*/
1664 
1665 	/*
1666 	 *  Miscellaneous configuration and status parameters.
1667 	 */
1668 	u_char		usrflags;	/* Miscellaneous user flags	*/
1669 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1670 	u_char		verbose;	/* Verbosity for this controller*/
1671 	u32		cache;		/* Used for cache test at init.	*/
1672 
1673 	/*
1674 	 *  CCB lists and queue.
1675 	 */
1676 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1677 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1678 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1679 
1680 	/*
1681 	 *  During error handling and/or recovery,
1682 	 *  active CCBs that are to be completed with
1683 	 *  error or requeued are moved from the busy_ccbq
1684 	 *  to the comp_ccbq prior to completion.
1685 	 */
1686 	SYM_QUEHEAD	comp_ccbq;
1687 
1688 	/*
1689 	 *  CAM CCB pending queue.
1690 	 */
1691 	SYM_QUEHEAD	cam_ccbq;
1692 
1693 	/*
1694 	 *  IMMEDIATE ARBITRATION (IARB) control.
1695 	 *
1696 	 *  We keep track in 'last_cp' of the last CCB that has been
1697 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1698 	 *  this CCB completes. If last_cp is not zero at the moment
1699 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1700 	 *  used by the SCRIPTS as a hint for setting IARB.
1701 	 *  We donnot set more than 'iarb_max' consecutive hints for
1702 	 *  IARB in order to leave devices a chance to reselect.
1703 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1704 	 */
1705 #ifdef SYM_CONF_IARB_SUPPORT
1706 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1707 	u_short		iarb_count;	/* Actual # of these hints	*/
1708 	ccb_p		last_cp;
1709 #endif
1710 
1711 	/*
1712 	 *  Command abort handling.
1713 	 *  We need to synchronize tightly with the SCRIPTS
1714 	 *  processor in order to handle things correctly.
1715 	 */
1716 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1717 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1718 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1719 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1720 };
1721 
1722 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1723 
1724 /*
1725  *  Return the name of the controller.
1726  */
1727 static __inline const char *sym_name(hcb_p np)
1728 {
1729 	return device_get_nameunit(np->device);
1730 }
1731 
1732 /*--------------------------------------------------------------------------*/
1733 /*------------------------------ FIRMWARES ---------------------------------*/
1734 /*--------------------------------------------------------------------------*/
1735 
1736 /*
1737  *  This stuff will be moved to a separate source file when
1738  *  the driver will be broken into several source modules.
1739  */
1740 
1741 /*
1742  *  Macros used for all firmwares.
1743  */
1744 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1745 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1746 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1747 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1748 
1749 
1750 #ifdef	SYM_CONF_GENERIC_SUPPORT
1751 /*
1752  *  Allocate firmware #1 script area.
1753  */
1754 #define	SYM_FWA_SCR		sym_fw1a_scr
1755 #define	SYM_FWB_SCR		sym_fw1b_scr
1756 #include <dev/disk/sym/sym_fw1.h>
1757 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1758 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1759 };
1760 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1761 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1762 };
1763 #undef	SYM_FWA_SCR
1764 #undef	SYM_FWB_SCR
1765 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1766 
1767 /*
1768  *  Allocate firmware #2 script area.
1769  */
1770 #define	SYM_FWA_SCR		sym_fw2a_scr
1771 #define	SYM_FWB_SCR		sym_fw2b_scr
1772 #include <dev/disk/sym/sym_fw2.h>
1773 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1774 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1775 };
1776 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1777 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1778 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1779 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1780 };
1781 #undef	SYM_FWA_SCR
1782 #undef	SYM_FWB_SCR
1783 
1784 #undef	SYM_GEN_A
1785 #undef	SYM_GEN_B
1786 #undef	PADDR_A
1787 #undef	PADDR_B
1788 
1789 #ifdef	SYM_CONF_GENERIC_SUPPORT
1790 /*
1791  *  Patch routine for firmware #1.
1792  */
1793 static void
1794 sym_fw1_patch(hcb_p np)
1795 {
1796 	struct sym_fw1a_scr *scripta0;
1797 	struct sym_fw1b_scr *scriptb0;
1798 
1799 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1800 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1801 
1802 	/*
1803 	 *  Remove LED support if not needed.
1804 	 */
1805 	if (!(np->features & FE_LED0)) {
1806 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1807 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1808 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1809 	}
1810 
1811 #ifdef SYM_CONF_IARB_SUPPORT
1812 	/*
1813 	 *    If user does not want to use IMMEDIATE ARBITRATION
1814 	 *    when we are reselected while attempting to arbitrate,
1815 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1816 	 */
1817 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1818 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1819 #endif
1820 	/*
1821 	 *  Patch some data in SCRIPTS.
1822 	 *  - start and done queue initial bus address.
1823 	 *  - target bus address table bus address.
1824 	 */
1825 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1826 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1827 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1828 }
1829 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1830 
1831 /*
1832  *  Patch routine for firmware #2.
1833  */
1834 static void
1835 sym_fw2_patch(hcb_p np)
1836 {
1837 	struct sym_fw2a_scr *scripta0;
1838 	struct sym_fw2b_scr *scriptb0;
1839 
1840 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1841 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1842 
1843 	/*
1844 	 *  Remove LED support if not needed.
1845 	 */
1846 	if (!(np->features & FE_LED0)) {
1847 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1848 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1849 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1850 	}
1851 
1852 #ifdef SYM_CONF_IARB_SUPPORT
1853 	/*
1854 	 *    If user does not want to use IMMEDIATE ARBITRATION
1855 	 *    when we are reselected while attempting to arbitrate,
1856 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1857 	 */
1858 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1859 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1860 #endif
1861 	/*
1862 	 *  Patch some variable in SCRIPTS.
1863 	 *  - start and done queue initial bus address.
1864 	 *  - target bus address table bus address.
1865 	 */
1866 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1867 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1868 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1869 
1870 	/*
1871 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1872 	 */
1873 	if (!(np->features & FE_C10)) {
1874 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1875 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1876 	}
1877 
1878 	/*
1879 	 *  Remove a couple of work-arounds specific to C1010 if
1880 	 *  they are not desirable. See `sym_fw2.h' for more details.
1881 	 */
1882 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1883 	      np->revision_id < 0x1 &&
1884 	      np->pciclk_khz < 60000)) {
1885 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1886 		scripta0->datao_phase[1] = cpu_to_scr(0);
1887 	}
1888 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1889 	      /* np->revision_id < 0xff */ 1)) {
1890 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1891 		scripta0->sel_done[1] = cpu_to_scr(0);
1892 	}
1893 
1894 	/*
1895 	 *  Patch some other variables in SCRIPTS.
1896 	 *  These ones are loaded by the SCRIPTS processor.
1897 	 */
1898 	scriptb0->pm0_data_addr[0] =
1899 		cpu_to_scr(np->scripta_ba +
1900 			   offsetof(struct sym_fw2a_scr, pm0_data));
1901 	scriptb0->pm1_data_addr[0] =
1902 		cpu_to_scr(np->scripta_ba +
1903 			   offsetof(struct sym_fw2a_scr, pm1_data));
1904 }
1905 
1906 /*
1907  *  Fill the data area in scripts.
1908  *  To be done for all firmwares.
1909  */
1910 static void
1911 sym_fw_fill_data (u32 *in, u32 *out)
1912 {
1913 	int	i;
1914 
1915 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1916 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1917 		*in++  = offsetof (struct sym_dsb, data[i]);
1918 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1919 		*out++ = offsetof (struct sym_dsb, data[i]);
1920 	}
1921 }
1922 
1923 /*
1924  *  Setup useful script bus addresses.
1925  *  To be done for all firmwares.
1926  */
1927 static void
1928 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1929 {
1930 	u32 *pa;
1931 	const u_short *po;
1932 	int i;
1933 
1934 	/*
1935 	 *  Build the bus address table for script A
1936 	 *  from the script A offset table.
1937 	 */
1938 	po = (const u_short *) fw->a_ofs;
1939 	pa = (u32 *) &np->fwa_bas;
1940 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1941 		pa[i] = np->scripta_ba + po[i];
1942 
1943 	/*
1944 	 *  Same for script B.
1945 	 */
1946 	po = (const u_short *) fw->b_ofs;
1947 	pa = (u32 *) &np->fwb_bas;
1948 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1949 		pa[i] = np->scriptb_ba + po[i];
1950 }
1951 
1952 #ifdef	SYM_CONF_GENERIC_SUPPORT
1953 /*
1954  *  Setup routine for firmware #1.
1955  */
1956 static void
1957 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1958 {
1959 	struct sym_fw1a_scr *scripta0;
1960 
1961 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1962 
1963 	/*
1964 	 *  Fill variable parts in scripts.
1965 	 */
1966 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1967 
1968 	/*
1969 	 *  Setup bus addresses used from the C code..
1970 	 */
1971 	sym_fw_setup_bus_addresses(np, fw);
1972 }
1973 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1974 
1975 /*
1976  *  Setup routine for firmware #2.
1977  */
1978 static void
1979 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1980 {
1981 	struct sym_fw2a_scr *scripta0;
1982 
1983 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1984 
1985 	/*
1986 	 *  Fill variable parts in scripts.
1987 	 */
1988 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1989 
1990 	/*
1991 	 *  Setup bus addresses used from the C code..
1992 	 */
1993 	sym_fw_setup_bus_addresses(np, fw);
1994 }
1995 
1996 /*
1997  *  Allocate firmware descriptors.
1998  */
1999 #ifdef	SYM_CONF_GENERIC_SUPPORT
2000 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2001 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2002 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2003 
2004 /*
2005  *  Find the most appropriate firmware for a chip.
2006  */
2007 static const struct sym_fw *
2008 sym_find_firmware(const struct sym_pci_chip *chip)
2009 {
2010 	if (chip->features & FE_LDSTR)
2011 		return &sym_fw2;
2012 #ifdef	SYM_CONF_GENERIC_SUPPORT
2013 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2014 		return &sym_fw1;
2015 #endif
2016 	else
2017 		return NULL;
2018 }
2019 
2020 /*
2021  *  Bind a script to physical addresses.
2022  */
2023 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2024 {
2025 	u32 opcode, new, old, tmp1, tmp2;
2026 	u32 *end, *cur;
2027 	int relocs;
2028 
2029 	cur = start;
2030 	end = start + len/4;
2031 
2032 	while (cur < end) {
2033 
2034 		opcode = *cur;
2035 
2036 		/*
2037 		 *  If we forget to change the length
2038 		 *  in scripts, a field will be
2039 		 *  padded with 0. This is an illegal
2040 		 *  command.
2041 		 */
2042 		if (opcode == 0) {
2043 			kprintf ("%s: ERROR0 IN SCRIPT at %d.\n",
2044 				sym_name(np), (int) (cur-start));
2045 			MDELAY (10000);
2046 			++cur;
2047 			continue;
2048 		};
2049 
2050 		/*
2051 		 *  We use the bogus value 0xf00ff00f ;-)
2052 		 *  to reserve data area in SCRIPTS.
2053 		 */
2054 		if (opcode == SCR_DATA_ZERO) {
2055 			*cur++ = 0;
2056 			continue;
2057 		}
2058 
2059 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2060 			kprintf ("%d:  <%x>\n", (int) (cur-start),
2061 				(unsigned)opcode);
2062 
2063 		/*
2064 		 *  We don't have to decode ALL commands
2065 		 */
2066 		switch (opcode >> 28) {
2067 		case 0xf:
2068 			/*
2069 			 *  LOAD / STORE DSA relative, don't relocate.
2070 			 */
2071 			relocs = 0;
2072 			break;
2073 		case 0xe:
2074 			/*
2075 			 *  LOAD / STORE absolute.
2076 			 */
2077 			relocs = 1;
2078 			break;
2079 		case 0xc:
2080 			/*
2081 			 *  COPY has TWO arguments.
2082 			 */
2083 			relocs = 2;
2084 			tmp1 = cur[1];
2085 			tmp2 = cur[2];
2086 			if ((tmp1 ^ tmp2) & 3) {
2087 				kprintf ("%s: ERROR1 IN SCRIPT at %d.\n",
2088 					sym_name(np), (int) (cur-start));
2089 				MDELAY (10000);
2090 			}
2091 			/*
2092 			 *  If PREFETCH feature not enabled, remove
2093 			 *  the NO FLUSH bit if present.
2094 			 */
2095 			if ((opcode & SCR_NO_FLUSH) &&
2096 			    !(np->features & FE_PFEN)) {
2097 				opcode = (opcode & ~SCR_NO_FLUSH);
2098 			}
2099 			break;
2100 		case 0x0:
2101 			/*
2102 			 *  MOVE/CHMOV (absolute address)
2103 			 */
2104 			if (!(np->features & FE_WIDE))
2105 				opcode = (opcode | OPC_MOVE);
2106 			relocs = 1;
2107 			break;
2108 		case 0x1:
2109 			/*
2110 			 *  MOVE/CHMOV (table indirect)
2111 			 */
2112 			if (!(np->features & FE_WIDE))
2113 				opcode = (opcode | OPC_MOVE);
2114 			relocs = 0;
2115 			break;
2116 		case 0x8:
2117 			/*
2118 			 *  JUMP / CALL
2119 			 *  dont't relocate if relative :-)
2120 			 */
2121 			if (opcode & 0x00800000)
2122 				relocs = 0;
2123 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2124 				relocs = 2;
2125 			else
2126 				relocs = 1;
2127 			break;
2128 		case 0x4:
2129 		case 0x5:
2130 		case 0x6:
2131 		case 0x7:
2132 			relocs = 1;
2133 			break;
2134 		default:
2135 			relocs = 0;
2136 			break;
2137 		};
2138 
2139 		/*
2140 		 *  Scriptify:) the opcode.
2141 		 */
2142 		*cur++ = cpu_to_scr(opcode);
2143 
2144 		/*
2145 		 *  If no relocation, assume 1 argument
2146 		 *  and just scriptize:) it.
2147 		 */
2148 		if (!relocs) {
2149 			*cur = cpu_to_scr(*cur);
2150 			++cur;
2151 			continue;
2152 		}
2153 
2154 		/*
2155 		 *  Otherwise performs all needed relocations.
2156 		 */
2157 		while (relocs--) {
2158 			old = *cur;
2159 
2160 			switch (old & RELOC_MASK) {
2161 			case RELOC_REGISTER:
2162 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2163 				break;
2164 			case RELOC_LABEL_A:
2165 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2166 				break;
2167 			case RELOC_LABEL_B:
2168 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2169 				break;
2170 			case RELOC_SOFTC:
2171 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2172 				break;
2173 			case 0:
2174 				/*
2175 				 *  Don't relocate a 0 address.
2176 				 *  They are mostly used for patched or
2177 				 *  script self-modified areas.
2178 				 */
2179 				if (old == 0) {
2180 					new = old;
2181 					break;
2182 				}
2183 				/* fall through */
2184 			default:
2185 				new = 0;
2186 				panic("sym_fw_bind_script: "
2187 				      "weird relocation %x\n", old);
2188 				break;
2189 			}
2190 
2191 			*cur++ = cpu_to_scr(new);
2192 		}
2193 	};
2194 }
2195 
2196 /*---------------------------------------------------------------------------*/
2197 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2198 /*---------------------------------------------------------------------------*/
2199 
2200 /*
2201  *  Function prototypes.
2202  */
2203 static void sym_save_initial_setting (hcb_p np);
2204 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2205 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2206 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2207 static void sym_chip_reset (hcb_p np);
2208 static void sym_soft_reset (hcb_p np);
2209 static void sym_start_reset (hcb_p np);
2210 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2211 static int  sym_wakeup_done (hcb_p np);
2212 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2213 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2214 static void sym_init (hcb_p np, int reason);
2215 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2216 		        u_char *fakp);
2217 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2218 			 u_char div, u_char fak);
2219 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2220 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2221 			 u_char per, u_char wide, u_char div, u_char fak);
2222 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2223 			 u_char per, u_char wide, u_char div, u_char fak);
2224 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2225 static void sym_intr (void *arg);
2226 static void sym_poll (struct cam_sim *sim);
2227 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2228 static void sym_int_sto (hcb_p np);
2229 static void sym_int_udc (hcb_p np);
2230 static void sym_int_sbmc (hcb_p np);
2231 static void sym_int_par (hcb_p np, u_short sist);
2232 static void sym_int_ma (hcb_p np);
2233 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2234 				    int task);
2235 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2236 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2237 static void sym_sir_task_recovery (hcb_p np, int num);
2238 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2239 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2240 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2241 static int  sym_show_msg (u_char * msg);
2242 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2243 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2244 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2245 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2246 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2247 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2248 static void sym_int_sir (hcb_p np);
2249 static void sym_free_ccb (hcb_p np, ccb_p cp);
2250 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2251 static ccb_p sym_alloc_ccb (hcb_p np);
2252 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2253 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2254 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2255 static int  sym_snooptest (hcb_p np);
2256 static void sym_selectclock(hcb_p np, u_char scntl3);
2257 static void sym_getclock (hcb_p np, int mult);
2258 static int  sym_getpciclock (hcb_p np);
2259 static void sym_complete_ok (hcb_p np, ccb_p cp);
2260 static void sym_complete_error (hcb_p np, ccb_p cp);
2261 static void sym_callout (void *arg);
2262 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2263 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2264 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2265 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2266 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2267 				      ccb_p cp);
2268 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2269 					bus_dma_segment_t *psegs, int nsegs);
2270 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2271 				    bus_dma_segment_t *psegs, int nsegs);
2272 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2273 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2274 			      struct ccb_trans_settings *cts);
2275 static void sym_update_dflags(hcb_p np, u_char *flags,
2276 			      struct ccb_trans_settings *cts);
2277 
2278 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2279 static int  sym_pci_probe (device_t dev);
2280 static int  sym_pci_attach (device_t dev);
2281 
2282 static void sym_pci_free (hcb_p np);
2283 static int  sym_cam_attach (hcb_p np);
2284 static void sym_cam_free (hcb_p np);
2285 
2286 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2287 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2288 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2289 
2290 /*
2291  *  Print something which allows to retrieve the controller type,
2292  *  unit, target, lun concerned by a kernel message.
2293  */
2294 static void PRINT_TARGET (hcb_p np, int target)
2295 {
2296 	kprintf ("%s:%d:", sym_name(np), target);
2297 }
2298 
2299 static void PRINT_LUN(hcb_p np, int target, int lun)
2300 {
2301 	kprintf ("%s:%d:%d:", sym_name(np), target, lun);
2302 }
2303 
2304 static void PRINT_ADDR (ccb_p cp)
2305 {
2306 	if (cp && cp->cam_ccb)
2307 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2308 }
2309 
2310 /*
2311  *  Take into account this ccb in the freeze count.
2312  */
2313 static void sym_freeze_cam_ccb(union ccb *ccb)
2314 {
2315 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2316 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2317 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2318 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2319 		}
2320 	}
2321 }
2322 
2323 /*
2324  *  Set the status field of a CAM CCB.
2325  */
2326 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2327 {
2328 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2329 	ccb->ccb_h.status |= status;
2330 }
2331 
2332 /*
2333  *  Get the status field of a CAM CCB.
2334  */
2335 static __inline int sym_get_cam_status(union ccb *ccb)
2336 {
2337 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2338 }
2339 
2340 /*
2341  *  Enqueue a CAM CCB.
2342  */
2343 static void sym_enqueue_cam_ccb(ccb_p cp)
2344 {
2345 	hcb_p np;
2346 	union ccb *ccb;
2347 
2348 	ccb = cp->cam_ccb;
2349 	np = (hcb_p) cp->arg;
2350 
2351 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2352 	ccb->ccb_h.status = CAM_REQ_INPROG;
2353 
2354 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2355 			(caddr_t) ccb);
2356 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2357 	ccb->ccb_h.sym_hcb_ptr = np;
2358 
2359 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2360 }
2361 
2362 /*
2363  *  Complete a pending CAM CCB.
2364  */
2365 static void _sym_xpt_done(hcb_p np, union ccb *ccb)
2366 {
2367 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2368 
2369 	KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
2370 			("%s: status=CAM_SIM_QUEUED", __func__));
2371 
2372 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2373 		sym_freeze_cam_ccb(ccb);
2374 	xpt_done(ccb);
2375 }
2376 
2377 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2378 {
2379 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2380 
2381 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2382 		callout_stop(&cp->ch);
2383 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2384 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2385 		ccb->ccb_h.sym_hcb_ptr = NULL;
2386 	}
2387 	_sym_xpt_done(np, ccb);
2388 }
2389 
2390 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2391 {
2392 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
2393 
2394 	sym_set_cam_status(ccb, cam_status);
2395 	_sym_xpt_done(np, ccb);
2396 }
2397 
2398 /*
2399  *  SYMBIOS chip clock divisor table.
2400  *
2401  *  Divisors are multiplied by 10,000,000 in order to make
2402  *  calculations more simple.
2403  */
2404 #define _5M 5000000
2405 static const u32 div_10M[] =
2406 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2407 
2408 /*
2409  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2410  *  128 transfers. All chips support at least 16 transfers
2411  *  bursts. The 825A, 875 and 895 chips support bursts of up
2412  *  to 128 transfers and the 895A and 896 support bursts of up
2413  *  to 64 transfers. All other chips support up to 16
2414  *  transfers bursts.
2415  *
2416  *  For PCI 32 bit data transfers each transfer is a DWORD.
2417  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2418  *
2419  *  We use log base 2 (burst length) as internal code, with
2420  *  value 0 meaning "burst disabled".
2421  */
2422 
2423 /*
2424  *  Burst length from burst code.
2425  */
2426 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2427 
2428 /*
2429  *  Burst code from io register bits.
2430  */
2431 #define burst_code(dmode, ctest4, ctest5) \
2432 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2433 
2434 /*
2435  *  Set initial io register bits from burst code.
2436  */
2437 static __inline void sym_init_burst(hcb_p np, u_char bc)
2438 {
2439 	np->rv_ctest4	&= ~0x80;
2440 	np->rv_dmode	&= ~(0x3 << 6);
2441 	np->rv_ctest5	&= ~0x4;
2442 
2443 	if (!bc) {
2444 		np->rv_ctest4	|= 0x80;
2445 	}
2446 	else {
2447 		--bc;
2448 		np->rv_dmode	|= ((bc & 0x3) << 6);
2449 		np->rv_ctest5	|= (bc & 0x4);
2450 	}
2451 }
2452 
2453 
2454 /*
2455  * Print out the list of targets that have some flag disabled by user.
2456  */
2457 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2458 {
2459 	int cnt;
2460 	int i;
2461 
2462 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2463 		if (i == np->myaddr)
2464 			continue;
2465 		if (np->target[i].usrflags & mask) {
2466 			if (!cnt++)
2467 				kprintf("%s: %s disabled for targets",
2468 					sym_name(np), msg);
2469 			kprintf(" %d", i);
2470 		}
2471 	}
2472 	if (cnt)
2473 		kprintf(".\n");
2474 }
2475 
2476 /*
2477  *  Save initial settings of some IO registers.
2478  *  Assumed to have been set by BIOS.
2479  *  We cannot reset the chip prior to reading the
2480  *  IO registers, since informations will be lost.
2481  *  Since the SCRIPTS processor may be running, this
2482  *  is not safe on paper, but it seems to work quite
2483  *  well. :)
2484  */
2485 static void sym_save_initial_setting (hcb_p np)
2486 {
2487 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2488 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2489 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2490 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2491 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2492 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2493 	np->sv_gpcntl	= INB(nc_gpcntl);
2494 	np->sv_stest1	= INB(nc_stest1);
2495 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2496 	np->sv_stest4	= INB(nc_stest4);
2497 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2498 		np->sv_scntl4	= INB(nc_scntl4);
2499 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2500 	}
2501 	else
2502 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2503 }
2504 
2505 /*
2506  *  Prepare io register values used by sym_init() according
2507  *  to selected and supported features.
2508  */
2509 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2510 {
2511 	u_char	burst_max;
2512 	u32	period;
2513 	int i;
2514 
2515 	/*
2516 	 *  Wide ?
2517 	 */
2518 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2519 
2520 	/*
2521 	 *  Get the frequency of the chip's clock.
2522 	 */
2523 	if	(np->features & FE_QUAD)
2524 		np->multiplier	= 4;
2525 	else if	(np->features & FE_DBLR)
2526 		np->multiplier	= 2;
2527 	else
2528 		np->multiplier	= 1;
2529 
2530 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2531 	np->clock_khz	*= np->multiplier;
2532 
2533 	if (np->clock_khz != 40000)
2534 		sym_getclock(np, np->multiplier);
2535 
2536 	/*
2537 	 * Divisor to be used for async (timer pre-scaler).
2538 	 */
2539 	i = np->clock_divn - 1;
2540 	while (--i >= 0) {
2541 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2542 			++i;
2543 			break;
2544 		}
2545 	}
2546 	np->rv_scntl3 = i+1;
2547 
2548 	/*
2549 	 * The C1010 uses hardwired divisors for async.
2550 	 * So, we just throw away, the async. divisor.:-)
2551 	 */
2552 	if (np->features & FE_C10)
2553 		np->rv_scntl3 = 0;
2554 
2555 	/*
2556 	 * Minimum synchronous period factor supported by the chip.
2557 	 * Btw, 'period' is in tenths of nanoseconds.
2558 	 */
2559 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2560 	if	(period <= 250)		np->minsync = 10;
2561 	else if	(period <= 303)		np->minsync = 11;
2562 	else if	(period <= 500)		np->minsync = 12;
2563 	else				np->minsync = (period + 40 - 1) / 40;
2564 
2565 	/*
2566 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2567 	 */
2568 	if	(np->minsync < 25 &&
2569 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2570 		np->minsync = 25;
2571 	else if	(np->minsync < 12 &&
2572 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2573 		np->minsync = 12;
2574 
2575 	/*
2576 	 * Maximum synchronous period factor supported by the chip.
2577 	 */
2578 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2579 	np->maxsync = period > 2540 ? 254 : period / 10;
2580 
2581 	/*
2582 	 * If chip is a C1010, guess the sync limits in DT mode.
2583 	 */
2584 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2585 		if (np->clock_khz == 160000) {
2586 			np->minsync_dt = 9;
2587 			np->maxsync_dt = 50;
2588 			np->maxoffs_dt = 62;
2589 		}
2590 	}
2591 
2592 	/*
2593 	 *  64 bit addressing  (895A/896/1010) ?
2594 	 */
2595 	if (np->features & FE_DAC)
2596 #ifdef __LP64__
2597 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2598 #else
2599 		np->rv_ccntl1	|= (DDAC);
2600 #endif
2601 
2602 	/*
2603 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2604   	 */
2605 	if (np->features & FE_NOPM)
2606 		np->rv_ccntl0	|= (ENPMJ);
2607 
2608  	/*
2609 	 *  C1010 Errata.
2610 	 *  In dual channel mode, contention occurs if internal cycles
2611 	 *  are used. Disable internal cycles.
2612 	 */
2613 	if (np->device_id == PCI_ID_LSI53C1010 &&
2614 	    np->revision_id < 0x2)
2615 		np->rv_ccntl0	|=  DILS;
2616 
2617 	/*
2618 	 *  Select burst length (dwords)
2619 	 */
2620 	burst_max	= SYM_SETUP_BURST_ORDER;
2621 	if (burst_max == 255)
2622 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2623 				       np->sv_ctest5);
2624 	if (burst_max > 7)
2625 		burst_max = 7;
2626 	if (burst_max > np->maxburst)
2627 		burst_max = np->maxburst;
2628 
2629 	/*
2630 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2631 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2632 	 *  based transactions on LOAD/STORE instructions. So we have
2633 	 *  to prevent these chips from using such PCI transactions in
2634 	 *  this driver. The generic ncr driver that does not use
2635 	 *  LOAD/STORE instructions does not need this work-around.
2636 	 */
2637 	if ((np->device_id == PCI_ID_SYM53C810 &&
2638 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2639 	    (np->device_id == PCI_ID_SYM53C860 &&
2640 	     np->revision_id <= 0x1))
2641 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2642 
2643 	/*
2644 	 *  Select all supported special features.
2645 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2646 	 *  does not help, but burst op fetch (BOF) does.
2647 	 *  Disabling PFEN makes sure BOF will be used.
2648 	 */
2649 	if (np->features & FE_ERL)
2650 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2651 	if (np->features & FE_BOF)
2652 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2653 	if (np->features & FE_ERMP)
2654 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2655 #if 1
2656 	if ((np->features & FE_PFEN) && !np->ram_ba)
2657 #else
2658 	if (np->features & FE_PFEN)
2659 #endif
2660 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2661 	if (np->features & FE_CLSE)
2662 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2663 	if (np->features & FE_WRIE)
2664 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2665 	if (np->features & FE_DFS)
2666 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2667 
2668 	/*
2669 	 *  Select some other
2670 	 */
2671 	if (SYM_SETUP_PCI_PARITY)
2672 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2673 	if (SYM_SETUP_SCSI_PARITY)
2674 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2675 
2676 	/*
2677 	 *  Get parity checking, host ID and verbose mode from NVRAM
2678 	 */
2679 	np->myaddr = 255;
2680 	sym_nvram_setup_host (np, nvram);
2681 #ifdef __sparc64__
2682 	np->myaddr = OF_getscsinitid(np->device);
2683 #endif
2684 
2685 	/*
2686 	 *  Get SCSI addr of host adapter (set by bios?).
2687 	 */
2688 	if (np->myaddr == 255) {
2689 		np->myaddr = INB(nc_scid) & 0x07;
2690 		if (!np->myaddr)
2691 			np->myaddr = SYM_SETUP_HOST_ID;
2692 	}
2693 
2694 	/*
2695 	 *  Prepare initial io register bits for burst length
2696 	 */
2697 	sym_init_burst(np, burst_max);
2698 
2699 	/*
2700 	 *  Set SCSI BUS mode.
2701 	 *  - LVD capable chips (895/895A/896/1010) report the
2702 	 *    current BUS mode through the STEST4 IO register.
2703 	 *  - For previous generation chips (825/825A/875),
2704 	 *    user has to tell us how to check against HVD,
2705 	 *    since a 100% safe algorithm is not possible.
2706 	 */
2707 	np->scsi_mode = SMODE_SE;
2708 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2709 		np->scsi_mode = (np->sv_stest4 & SMODE);
2710 	else if	(np->features & FE_DIFF) {
2711 		if (SYM_SETUP_SCSI_DIFF == 1) {
2712 			if (np->sv_scntl3) {
2713 				if (np->sv_stest2 & 0x20)
2714 					np->scsi_mode = SMODE_HVD;
2715 			}
2716 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2717 				if (!(INB(nc_gpreg) & 0x08))
2718 					np->scsi_mode = SMODE_HVD;
2719 			}
2720 		}
2721 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2722 			np->scsi_mode = SMODE_HVD;
2723 	}
2724 	if (np->scsi_mode == SMODE_HVD)
2725 		np->rv_stest2 |= 0x20;
2726 
2727 	/*
2728 	 *  Set LED support from SCRIPTS.
2729 	 *  Ignore this feature for boards known to use a
2730 	 *  specific GPIO wiring and for the 895A, 896
2731 	 *  and 1010 that drive the LED directly.
2732 	 */
2733 	if ((SYM_SETUP_SCSI_LED ||
2734 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2735 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2736 	       np->device_id == PCI_ID_SYM53C895))) &&
2737 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2738 		np->features |= FE_LED0;
2739 
2740 	/*
2741 	 *  Set irq mode.
2742 	 */
2743 	switch(SYM_SETUP_IRQ_MODE & 3) {
2744 	case 2:
2745 		np->rv_dcntl	|= IRQM;
2746 		break;
2747 	case 1:
2748 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2749 		break;
2750 	default:
2751 		break;
2752 	}
2753 
2754 	/*
2755 	 *  Configure targets according to driver setup.
2756 	 *  If NVRAM present get targets setup from NVRAM.
2757 	 */
2758 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2759 		tcb_p tp = &np->target[i];
2760 
2761 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2762 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2763 		tp->tinfo.user.period = np->minsync;
2764 		if (np->features & FE_ULTRA3)
2765 			tp->tinfo.user.period = np->minsync_dt;
2766 		tp->tinfo.user.offset = np->maxoffs;
2767 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2768 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2769 		tp->usrtags = SYM_SETUP_MAX_TAG;
2770 
2771 		sym_nvram_setup_target (np, i, nvram);
2772 
2773 		/*
2774 		 *  For now, guess PPR/DT support from the period
2775 		 *  and BUS width.
2776 		 */
2777 		if (np->features & FE_ULTRA3) {
2778 			if (tp->tinfo.user.period <= 9	&&
2779 			    tp->tinfo.user.width == BUS_16_BIT) {
2780 				tp->tinfo.user.options |= PPR_OPT_DT;
2781 				tp->tinfo.user.offset   = np->maxoffs_dt;
2782 				tp->tinfo.user.spi_version = 3;
2783 			}
2784 		}
2785 
2786 		if (!tp->usrtags)
2787 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2788 	}
2789 
2790 	/*
2791 	 *  Let user know about the settings.
2792 	 */
2793 	i = nvram->type;
2794 	kprintf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2795 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2796 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2797 		np->myaddr,
2798 		(np->features & FE_ULTRA3) ? 80 :
2799 		(np->features & FE_ULTRA2) ? 40 :
2800 		(np->features & FE_ULTRA)  ? 20 : 10,
2801 		sym_scsi_bus_mode(np->scsi_mode),
2802 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2803 	/*
2804 	 *  Tell him more on demand.
2805 	 */
2806 	if (sym_verbose) {
2807 		kprintf("%s: %s IRQ line driver%s\n",
2808 			sym_name(np),
2809 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2810 			np->ram_ba ? ", using on-chip SRAM" : "");
2811 		kprintf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2812 		if (np->features & FE_NOPM)
2813 			kprintf("%s: handling phase mismatch from SCRIPTS.\n",
2814 			       sym_name(np));
2815 	}
2816 	/*
2817 	 *  And still more.
2818 	 */
2819 	if (sym_verbose > 1) {
2820 		kprintf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2821 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2822 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2823 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2824 
2825 		kprintf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2826 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2827 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2828 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2829 	}
2830 	/*
2831 	 *  Let user be aware of targets that have some disable flags set.
2832 	 */
2833 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2834 	if (sym_verbose)
2835 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2836 				       "SCAN FOR LUNS");
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  *  Prepare the next negotiation message if needed.
2843  *
2844  *  Fill in the part of message buffer that contains the
2845  *  negotiation and the nego_status field of the CCB.
2846  *  Returns the size of the message in bytes.
2847  */
2848 
2849 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2850 {
2851 	tcb_p tp = &np->target[cp->target];
2852 	int msglen = 0;
2853 
2854 	/*
2855 	 *  Early C1010 chips need a work-around for DT
2856 	 *  data transfer to work.
2857 	 */
2858 	if (!(np->features & FE_U3EN))
2859 		tp->tinfo.goal.options = 0;
2860 	/*
2861 	 *  negotiate using PPR ?
2862 	 */
2863 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2864 		nego = NS_PPR;
2865 	/*
2866 	 *  negotiate wide transfers ?
2867 	 */
2868 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2869 		nego = NS_WIDE;
2870 	/*
2871 	 *  negotiate synchronous transfers?
2872 	 */
2873 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2874 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2875 		nego = NS_SYNC;
2876 
2877 	switch (nego) {
2878 	case NS_SYNC:
2879 		msgptr[msglen++] = M_EXTENDED;
2880 		msgptr[msglen++] = 3;
2881 		msgptr[msglen++] = M_X_SYNC_REQ;
2882 		msgptr[msglen++] = tp->tinfo.goal.period;
2883 		msgptr[msglen++] = tp->tinfo.goal.offset;
2884 		break;
2885 	case NS_WIDE:
2886 		msgptr[msglen++] = M_EXTENDED;
2887 		msgptr[msglen++] = 2;
2888 		msgptr[msglen++] = M_X_WIDE_REQ;
2889 		msgptr[msglen++] = tp->tinfo.goal.width;
2890 		break;
2891 	case NS_PPR:
2892 		msgptr[msglen++] = M_EXTENDED;
2893 		msgptr[msglen++] = 6;
2894 		msgptr[msglen++] = M_X_PPR_REQ;
2895 		msgptr[msglen++] = tp->tinfo.goal.period;
2896 		msgptr[msglen++] = 0;
2897 		msgptr[msglen++] = tp->tinfo.goal.offset;
2898 		msgptr[msglen++] = tp->tinfo.goal.width;
2899 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2900 		break;
2901 	};
2902 
2903 	cp->nego_status = nego;
2904 
2905 	if (nego) {
2906 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2907 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2908 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2909 					  nego == NS_WIDE ? "wide msgout" :
2910 					  "ppr msgout", msgptr);
2911 		};
2912 	};
2913 
2914 	return msglen;
2915 }
2916 
2917 /*
2918  *  Insert a job into the start queue.
2919  */
2920 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2921 {
2922 	u_short	qidx;
2923 
2924 #ifdef SYM_CONF_IARB_SUPPORT
2925 	/*
2926 	 *  If the previously queued CCB is not yet done,
2927 	 *  set the IARB hint. The SCRIPTS will go with IARB
2928 	 *  for this job when starting the previous one.
2929 	 *  We leave devices a chance to win arbitration by
2930 	 *  not using more than 'iarb_max' consecutive
2931 	 *  immediate arbitrations.
2932 	 */
2933 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2934 		np->last_cp->host_flags |= HF_HINT_IARB;
2935 		++np->iarb_count;
2936 	}
2937 	else
2938 		np->iarb_count = 0;
2939 	np->last_cp = cp;
2940 #endif
2941 
2942 	/*
2943 	 *  Insert first the idle task and then our job.
2944 	 *  The MB should ensure proper ordering.
2945 	 */
2946 	qidx = np->squeueput + 2;
2947 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2948 
2949 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2950 	MEMORY_BARRIER();
2951 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2952 
2953 	np->squeueput = qidx;
2954 
2955 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2956 		kprintf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2957 
2958 	/*
2959 	 *  Script processor may be waiting for reselect.
2960 	 *  Wake it up.
2961 	 */
2962 	MEMORY_BARRIER();
2963 	OUTB (nc_istat, SIGP|np->istat_sem);
2964 }
2965 
2966 
2967 /*
2968  *  Soft reset the chip.
2969  *
2970  *  Raising SRST when the chip is running may cause
2971  *  problems on dual function chips (see below).
2972  *  On the other hand, LVD devices need some delay
2973  *  to settle and report actual BUS mode in STEST4.
2974  */
2975 static void sym_chip_reset (hcb_p np)
2976 {
2977 	OUTB (nc_istat, SRST);
2978 	UDELAY (10);
2979 	OUTB (nc_istat, 0);
2980 	UDELAY(2000);	/* For BUS MODE to settle */
2981 }
2982 
2983 /*
2984  *  Soft reset the chip.
2985  *
2986  *  Some 896 and 876 chip revisions may hang-up if we set
2987  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2988  *  are running.
2989  *  So, we need to abort the current operation prior to
2990  *  soft resetting the chip.
2991  */
2992 static void sym_soft_reset (hcb_p np)
2993 {
2994 	u_char istat;
2995 	int i;
2996 
2997 	OUTB (nc_istat, CABRT);
2998 	for (i = 1000000 ; i ; --i) {
2999 		istat = INB (nc_istat);
3000 		if (istat & SIP) {
3001 			INW (nc_sist);
3002 			continue;
3003 		}
3004 		if (istat & DIP) {
3005 			OUTB (nc_istat, 0);
3006 			INB (nc_dstat);
3007 			break;
3008 		}
3009 	}
3010 	if (!i)
3011 		kprintf("%s: unable to abort current chip operation.\n",
3012 			sym_name(np));
3013 	sym_chip_reset (np);
3014 }
3015 
3016 /*
3017  *  Start reset process.
3018  *
3019  *  The interrupt handler will reinitialize the chip.
3020  */
3021 static void sym_start_reset(hcb_p np)
3022 {
3023 	(void) sym_reset_scsi_bus(np, 1);
3024 }
3025 
3026 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3027 {
3028 	u32 term;
3029 	int retv = 0;
3030 
3031 	sym_soft_reset(np);	/* Soft reset the chip */
3032 	if (enab_int)
3033 		OUTW (nc_sien, RST);
3034 	/*
3035 	 *  Enable Tolerant, reset IRQD if present and
3036 	 *  properly set IRQ mode, prior to resetting the bus.
3037 	 */
3038 	OUTB (nc_stest3, TE);
3039 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3040 	OUTB (nc_scntl1, CRST);
3041 	UDELAY (200);
3042 
3043 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3044 		goto out;
3045 	/*
3046 	 *  Check for no terminators or SCSI bus shorts to ground.
3047 	 *  Read SCSI data bus, data parity bits and control signals.
3048 	 *  We are expecting RESET to be TRUE and other signals to be
3049 	 *  FALSE.
3050 	 */
3051 	term =	INB(nc_sstat0);
3052 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3053 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3054 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3055 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3056 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3057 
3058 	if (!(np->features & FE_WIDE))
3059 		term &= 0x3ffff;
3060 
3061 	if (term != (2<<7)) {
3062 		kprintf("%s: suspicious SCSI data while resetting the BUS.\n",
3063 			sym_name(np));
3064 		kprintf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3065 			"0x%lx, expecting 0x%lx\n",
3066 			sym_name(np),
3067 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3068 			(u_long)term, (u_long)(2<<7));
3069 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3070 			retv = 1;
3071 	}
3072 out:
3073 	OUTB (nc_scntl1, 0);
3074 	/* MDELAY(100); */
3075 	return retv;
3076 }
3077 
3078 /*
3079  *  The chip may have completed jobs. Look at the DONE QUEUE.
3080  *
3081  *  On architectures that may reorder LOAD/STORE operations,
3082  *  a memory barrier may be needed after the reading of the
3083  *  so-called `flag' and prior to dealing with the data.
3084  */
3085 static int sym_wakeup_done (hcb_p np)
3086 {
3087 	ccb_p cp;
3088 	int i, n;
3089 	u32 dsa;
3090 
3091 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3092 
3093 	n = 0;
3094 	i = np->dqueueget;
3095 	while (1) {
3096 		dsa = scr_to_cpu(np->dqueue[i]);
3097 		if (!dsa)
3098 			break;
3099 		np->dqueue[i] = 0;
3100 		if ((i = i+2) >= MAX_QUEUE*2)
3101 			i = 0;
3102 
3103 		cp = sym_ccb_from_dsa(np, dsa);
3104 		if (cp) {
3105 			MEMORY_BARRIER();
3106 			sym_complete_ok (np, cp);
3107 			++n;
3108 		}
3109 		else
3110 			kprintf ("%s: bad DSA (%x) in done queue.\n",
3111 				sym_name(np), (u_int) dsa);
3112 	}
3113 	np->dqueueget = i;
3114 
3115 	return n;
3116 }
3117 
3118 /*
3119  *  Complete all active CCBs with error.
3120  *  Used on CHIP/SCSI RESET.
3121  */
3122 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3123 {
3124 	/*
3125 	 *  Move all active CCBs to the COMP queue
3126 	 *  and flush this queue.
3127 	 */
3128 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3129 	sym_que_init(&np->busy_ccbq);
3130 	sym_flush_comp_queue(np, cam_status);
3131 }
3132 
3133 /*
3134  *  Start chip.
3135  *
3136  *  'reason' means:
3137  *     0: initialisation.
3138  *     1: SCSI BUS RESET delivered or received.
3139  *     2: SCSI BUS MODE changed.
3140  */
3141 static void sym_init (hcb_p np, int reason)
3142 {
3143  	int	i;
3144 	u32	phys;
3145 
3146 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3147 
3148  	/*
3149 	 *  Reset chip if asked, otherwise just clear fifos.
3150  	 */
3151 	if (reason == 1)
3152 		sym_soft_reset(np);
3153 	else {
3154 		OUTB (nc_stest3, TE|CSF);
3155 		OUTONB (nc_ctest3, CLF);
3156 	}
3157 
3158 	/*
3159 	 *  Clear Start Queue
3160 	 */
3161 	phys = np->squeue_ba;
3162 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3163 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3164 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3165 	}
3166 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3167 
3168 	/*
3169 	 *  Start at first entry.
3170 	 */
3171 	np->squeueput = 0;
3172 
3173 	/*
3174 	 *  Clear Done Queue
3175 	 */
3176 	phys = np->dqueue_ba;
3177 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3178 		np->dqueue[i]   = 0;
3179 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3180 	}
3181 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3182 
3183 	/*
3184 	 *  Start at first entry.
3185 	 */
3186 	np->dqueueget = 0;
3187 
3188 	/*
3189 	 *  Install patches in scripts.
3190 	 *  This also let point to first position the start
3191 	 *  and done queue pointers used from SCRIPTS.
3192 	 */
3193 	np->fw_patch(np);
3194 
3195 	/*
3196 	 *  Wakeup all pending jobs.
3197 	 */
3198 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3199 
3200 	/*
3201 	 *  Init chip.
3202 	 */
3203 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3204 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3205 
3206 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3207 					/*  full arb., ena parity, par->ATN  */
3208 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3209 
3210 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3211 
3212 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3213 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3214 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3215 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3216 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3217 
3218 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3219 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3220 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3221 
3222 	/* Extended Sreq/Sack filtering not supported on the C10 */
3223 	if (np->features & FE_C10)
3224 		OUTB (nc_stest2, np->rv_stest2);
3225 	else
3226 		OUTB (nc_stest2, EXT|np->rv_stest2);
3227 
3228 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3229 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3230 
3231 	/*
3232 	 *  For now, disable AIP generation on C1010-66.
3233 	 */
3234 	if (np->device_id == PCI_ID_LSI53C1010_2)
3235 		OUTB (nc_aipcntl1, DISAIP);
3236 
3237 	/*
3238 	 *  C10101 Errata.
3239 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3240 	 *  STEST1 register to disable SGE. We probably should do
3241 	 *  that from SCRIPTS for each selection/reselection, but
3242 	 *  I just don't want. :)
3243 	 */
3244 	if (np->device_id == PCI_ID_LSI53C1010 &&
3245 	    /* np->revision_id < 0xff */ 1)
3246 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3247 
3248 	/*
3249 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3250 	 *  Disable overlapped arbitration for some dual function devices,
3251 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3252 	 */
3253 	if (np->device_id == PCI_ID_SYM53C875)
3254 		OUTB (nc_ctest0, (1<<5));
3255 	else if (np->device_id == PCI_ID_SYM53C896)
3256 		np->rv_ccntl0 |= DPR;
3257 
3258 	/*
3259 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3260 	 *  and/or hardware phase mismatch, since only such chips
3261 	 *  seem to support those IO registers.
3262 	 */
3263 	if (np->features & (FE_DAC|FE_NOPM)) {
3264 		OUTB (nc_ccntl0, np->rv_ccntl0);
3265 		OUTB (nc_ccntl1, np->rv_ccntl1);
3266 	}
3267 
3268 	/*
3269 	 *  If phase mismatch handled by scripts (895A/896/1010),
3270 	 *  set PM jump addresses.
3271 	 */
3272 	if (np->features & FE_NOPM) {
3273 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3274 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3275 	}
3276 
3277 	/*
3278 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3279 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3280 	 */
3281 	if (np->features & FE_LED0)
3282 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3283 	else if (np->features & FE_LEDC)
3284 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3285 
3286 	/*
3287 	 *      enable ints
3288 	 */
3289 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3290 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3291 
3292 	/*
3293 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3294 	 *  Try to eat the spurious SBMC interrupt that may occur when
3295 	 *  we reset the chip but not the SCSI BUS (at initialization).
3296 	 */
3297 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3298 		OUTONW (nc_sien, SBMC);
3299 		if (reason == 0) {
3300 			MDELAY(100);
3301 			INW (nc_sist);
3302 		}
3303 		np->scsi_mode = INB (nc_stest4) & SMODE;
3304 	}
3305 
3306 	/*
3307 	 *  Fill in target structure.
3308 	 *  Reinitialize usrsync.
3309 	 *  Reinitialize usrwide.
3310 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3311 	 */
3312 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3313 		tcb_p tp = &np->target[i];
3314 
3315 		tp->to_reset  = 0;
3316 		tp->head.sval = 0;
3317 		tp->head.wval = np->rv_scntl3;
3318 		tp->head.uval = 0;
3319 
3320 		tp->tinfo.current.period = 0;
3321 		tp->tinfo.current.offset = 0;
3322 		tp->tinfo.current.width  = BUS_8_BIT;
3323 		tp->tinfo.current.options = 0;
3324 	}
3325 
3326 	/*
3327 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3328 	 *  and start script processor.
3329 	 */
3330 	if (np->ram_ba) {
3331 		if (sym_verbose > 1)
3332 			kprintf ("%s: Downloading SCSI SCRIPTS.\n",
3333 				sym_name(np));
3334 		if (np->ram_ws == 8192) {
3335 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3336 			OUTL (nc_mmws, np->scr_ram_seg);
3337 			OUTL (nc_mmrs, np->scr_ram_seg);
3338 			OUTL (nc_sfs,  np->scr_ram_seg);
3339 			phys = SCRIPTB_BA (np, start64);
3340 		}
3341 		else
3342 			phys = SCRIPTA_BA (np, init);
3343 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3344 	}
3345 	else
3346 		phys = SCRIPTA_BA (np, init);
3347 
3348 	np->istat_sem = 0;
3349 
3350 	OUTL (nc_dsa, np->hcb_ba);
3351 	OUTL_DSP (phys);
3352 
3353 	/*
3354 	 *  Notify the XPT about the RESET condition.
3355 	 */
3356 	if (reason != 0)
3357 		xpt_async(AC_BUS_RESET, np->path, NULL);
3358 }
3359 
3360 /*
3361  *  Get clock factor and sync divisor for a given
3362  *  synchronous factor period.
3363  */
3364 static int
3365 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3366 {
3367 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3368 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3369 	u32	fak;			/* Sync factor in sxfer		*/
3370 	u32	per;			/* Period in tenths of ns	*/
3371 	u32	kpc;			/* (per * clk)			*/
3372 	int	ret;
3373 
3374 	/*
3375 	 *  Compute the synchronous period in tenths of nano-seconds
3376 	 */
3377 	if (dt && sfac <= 9)	per = 125;
3378 	else if	(sfac <= 10)	per = 250;
3379 	else if	(sfac == 11)	per = 303;
3380 	else if	(sfac == 12)	per = 500;
3381 	else			per = 40 * sfac;
3382 	ret = per;
3383 
3384 	kpc = per * clk;
3385 	if (dt)
3386 		kpc <<= 1;
3387 
3388 	/*
3389 	 *  For earliest C10 revision 0, we cannot use extra
3390 	 *  clocks for the setting of the SCSI clocking.
3391 	 *  Note that this limits the lowest sync data transfer
3392 	 *  to 5 Mega-transfers per second and may result in
3393 	 *  using higher clock divisors.
3394 	 */
3395 #if 1
3396 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3397 		/*
3398 		 *  Look for the lowest clock divisor that allows an
3399 		 *  output speed not faster than the period.
3400 		 */
3401 		while (div > 0) {
3402 			--div;
3403 			if (kpc > (div_10M[div] << 2)) {
3404 				++div;
3405 				break;
3406 			}
3407 		}
3408 		fak = 0;			/* No extra clocks */
3409 		if (div == np->clock_divn) {	/* Are we too fast ? */
3410 			ret = -1;
3411 		}
3412 		*divp = div;
3413 		*fakp = fak;
3414 		return ret;
3415 	}
3416 #endif
3417 
3418 	/*
3419 	 *  Look for the greatest clock divisor that allows an
3420 	 *  input speed faster than the period.
3421 	 */
3422 	while (div-- > 0)
3423 		if (kpc >= (div_10M[div] << 2)) break;
3424 
3425 	/*
3426 	 *  Calculate the lowest clock factor that allows an output
3427 	 *  speed not faster than the period, and the max output speed.
3428 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3429 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3430 	 */
3431 	if (dt) {
3432 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3433 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3434 	}
3435 	else {
3436 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3437 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3438 	}
3439 
3440 	/*
3441 	 *  Check against our hardware limits, or bugs :).
3442 	 */
3443 	if (fak < 0)	{fak = 0; ret = -1;}
3444 	if (fak > 2)	{fak = 2; ret = -1;}
3445 
3446 	/*
3447 	 *  Compute and return sync parameters.
3448 	 */
3449 	*divp = div;
3450 	*fakp = fak;
3451 
3452 	return ret;
3453 }
3454 
3455 /*
3456  *  Tell the SCSI layer about the new transfer parameters.
3457  */
3458 static void
3459 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3460 {
3461 	struct ccb_trans_settings cts;
3462 	struct cam_path *path;
3463 	int sts;
3464 	tcb_p tp = &np->target[target];
3465 
3466 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3467 	                      CAM_LUN_WILDCARD);
3468 	if (sts != CAM_REQ_CMP)
3469 		return;
3470 
3471 	bzero(&cts, sizeof(cts));
3472 
3473 #define	cts__scsi (cts.proto_specific.scsi)
3474 #define	cts__spi  (cts.xport_specific.spi)
3475 
3476 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3477 	cts.protocol  = PROTO_SCSI;
3478 	cts.transport = XPORT_SPI;
3479 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3480 	cts.transport_version = tp->tinfo.current.spi_version;
3481 
3482 	cts__spi.valid = spi_valid;
3483 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3484 		cts__spi.sync_period = tp->tinfo.current.period;
3485 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3486 		cts__spi.sync_offset = tp->tinfo.current.offset;
3487 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3488 		cts__spi.bus_width   = tp->tinfo.current.width;
3489 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3490 		cts__spi.ppr_options = tp->tinfo.current.options;
3491 #undef cts__spi
3492 #undef cts__scsi
3493 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3494 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3495 	xpt_free_path(path);
3496 }
3497 
3498 #define SYM_SPI_VALID_WDTR		\
3499 	CTS_SPI_VALID_BUS_WIDTH |	\
3500 	CTS_SPI_VALID_SYNC_RATE |	\
3501 	CTS_SPI_VALID_SYNC_OFFSET
3502 #define SYM_SPI_VALID_SDTR		\
3503 	CTS_SPI_VALID_SYNC_RATE |	\
3504 	CTS_SPI_VALID_SYNC_OFFSET
3505 #define SYM_SPI_VALID_PPR		\
3506 	CTS_SPI_VALID_PPR_OPTIONS |	\
3507 	CTS_SPI_VALID_BUS_WIDTH |	\
3508 	CTS_SPI_VALID_SYNC_RATE |	\
3509 	CTS_SPI_VALID_SYNC_OFFSET
3510 
3511 /*
3512  *  We received a WDTR.
3513  *  Let everything be aware of the changes.
3514  */
3515 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3516 {
3517 	tcb_p tp = &np->target[cp->target];
3518 
3519 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3520 
3521 	/*
3522 	 *  Tell the SCSI layer about the new transfer parameters.
3523 	 */
3524 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3525 	tp->tinfo.current.offset = 0;
3526 	tp->tinfo.current.period = 0;
3527 	tp->tinfo.current.options = 0;
3528 
3529 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3530 }
3531 
3532 /*
3533  *  We received a SDTR.
3534  *  Let everything be aware of the changes.
3535  */
3536 static void
3537 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3538 {
3539 	tcb_p tp = &np->target[cp->target];
3540 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3541 
3542 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3543 
3544 	/*
3545 	 *  Tell the SCSI layer about the new transfer parameters.
3546 	 */
3547 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3548 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3549 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3550 
3551 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3552 }
3553 
3554 /*
3555  *  We received a PPR.
3556  *  Let everything be aware of the changes.
3557  */
3558 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3559 			 u_char per, u_char wide, u_char div, u_char fak)
3560 {
3561 	tcb_p tp = &np->target[cp->target];
3562 
3563 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3564 
3565 	/*
3566 	 *  Tell the SCSI layer about the new transfer parameters.
3567 	 */
3568 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3569 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3570 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3571 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3572 
3573 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3574 }
3575 
3576 /*
3577  *  Switch trans mode for current job and it's target.
3578  */
3579 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3580 			 u_char per, u_char wide, u_char div, u_char fak)
3581 {
3582 	SYM_QUEHEAD *qp;
3583 	union	ccb *ccb;
3584 	tcb_p tp;
3585 	u_char target = INB (nc_sdid) & 0x0f;
3586 	u_char sval, wval, uval;
3587 
3588 	assert (cp);
3589 	if (!cp) return;
3590 	ccb = cp->cam_ccb;
3591 	assert (ccb);
3592 	if (!ccb) return;
3593 	assert (target == (cp->target & 0xf));
3594 	tp = &np->target[target];
3595 
3596 	sval = tp->head.sval;
3597 	wval = tp->head.wval;
3598 	uval = tp->head.uval;
3599 
3600 #if 0
3601 	kprintf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3602 		sval, wval, uval, np->rv_scntl3);
3603 #endif
3604 	/*
3605 	 *  Set the offset.
3606 	 */
3607 	if (!(np->features & FE_C10))
3608 		sval = (sval & ~0x1f) | ofs;
3609 	else
3610 		sval = (sval & ~0x3f) | ofs;
3611 
3612 	/*
3613 	 *  Set the sync divisor and extra clock factor.
3614 	 */
3615 	if (ofs != 0) {
3616 		wval = (wval & ~0x70) | ((div+1) << 4);
3617 		if (!(np->features & FE_C10))
3618 			sval = (sval & ~0xe0) | (fak << 5);
3619 		else {
3620 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3621 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3622 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3623 		}
3624 	}
3625 
3626 	/*
3627 	 *  Set the bus width.
3628 	 */
3629 	wval = wval & ~EWS;
3630 	if (wide != 0)
3631 		wval |= EWS;
3632 
3633 	/*
3634 	 *  Set misc. ultra enable bits.
3635 	 */
3636 	if (np->features & FE_C10) {
3637 		uval = uval & ~(U3EN|AIPCKEN);
3638 		if (dt)	{
3639 			assert(np->features & FE_U3EN);
3640 			uval |= U3EN;
3641 		}
3642 	}
3643 	else {
3644 		wval = wval & ~ULTRA;
3645 		if (per <= 12)	wval |= ULTRA;
3646 	}
3647 
3648 	/*
3649 	 *   Stop there if sync parameters are unchanged.
3650 	 */
3651 	if (tp->head.sval == sval &&
3652 	    tp->head.wval == wval &&
3653 	    tp->head.uval == uval)
3654 		return;
3655 	tp->head.sval = sval;
3656 	tp->head.wval = wval;
3657 	tp->head.uval = uval;
3658 
3659 	/*
3660 	 *  Disable extended Sreq/Sack filtering if per < 50.
3661 	 *  Not supported on the C1010.
3662 	 */
3663 	if (per < 50 && !(np->features & FE_C10))
3664 		OUTOFFB (nc_stest2, EXT);
3665 
3666 	/*
3667 	 *  set actual value and sync_status
3668 	 */
3669 	OUTB (nc_sxfer,  tp->head.sval);
3670 	OUTB (nc_scntl3, tp->head.wval);
3671 
3672 	if (np->features & FE_C10) {
3673 		OUTB (nc_scntl4, tp->head.uval);
3674 	}
3675 
3676 	/*
3677 	 *  patch ALL busy ccbs of this target.
3678 	 */
3679 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3680 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3681 		if (cp->target != target)
3682 			continue;
3683 		cp->phys.select.sel_scntl3 = tp->head.wval;
3684 		cp->phys.select.sel_sxfer  = tp->head.sval;
3685 		if (np->features & FE_C10) {
3686 			cp->phys.select.sel_scntl4 = tp->head.uval;
3687 		}
3688 	}
3689 }
3690 
3691 /*
3692  *  log message for real hard errors
3693  *
3694  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3695  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3696  *
3697  *  exception register:
3698  *  	ds:	dstat
3699  *  	si:	sist
3700  *
3701  *  SCSI bus lines:
3702  *  	so:	control lines as driven by chip.
3703  *  	si:	control lines as seen by chip.
3704  *  	sd:	scsi data lines as seen by chip.
3705  *
3706  *  wide/fastmode:
3707  *  	sxfer:	(see the manual)
3708  *  	scntl3:	(see the manual)
3709  *
3710  *  current script command:
3711  *  	dsp:	script address (relative to start of script).
3712  *  	dbc:	first word of script command.
3713  *
3714  *  First 24 register of the chip:
3715  *  	r0..rf
3716  */
3717 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3718 {
3719 	u32	dsp;
3720 	int	script_ofs;
3721 	int	script_size;
3722 	char	*script_name;
3723 	u_char	*script_base;
3724 	int	i;
3725 
3726 	dsp	= INL (nc_dsp);
3727 
3728 	if	(dsp > np->scripta_ba &&
3729 		 dsp <= np->scripta_ba + np->scripta_sz) {
3730 		script_ofs	= dsp - np->scripta_ba;
3731 		script_size	= np->scripta_sz;
3732 		script_base	= np->scripta0;
3733 		script_name	= "scripta";
3734 	}
3735 	else if (np->scriptb_ba < dsp &&
3736 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3737 		script_ofs	= dsp - np->scriptb_ba;
3738 		script_size	= np->scriptb_sz;
3739 		script_base	= np->scriptb0;
3740 		script_name	= "scriptb";
3741 	} else {
3742 		script_ofs	= dsp;
3743 		script_size	= 0;
3744 		script_base	= NULL;
3745 		script_name	= "mem";
3746 	}
3747 
3748 	kprintf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3749 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3750 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3751 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3752 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3753 		(unsigned)INL (nc_dbc));
3754 
3755 	if (((script_ofs & 3) == 0) &&
3756 	    (unsigned)script_ofs < script_size) {
3757 		kprintf ("%s: script cmd = %08x\n", sym_name(np),
3758 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3759 	}
3760 
3761         kprintf ("%s: regdump:", sym_name(np));
3762         for (i=0; i<24;i++)
3763             kprintf (" %02x", (unsigned)INB_OFF(i));
3764         kprintf (".\n");
3765 
3766 	/*
3767 	 *  PCI BUS error, read the PCI ststus register.
3768 	 */
3769 	if (dstat & (MDPE|BF)) {
3770 		u_short pci_sts;
3771 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3772 		if (pci_sts & 0xf900) {
3773 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3774 			kprintf("%s: PCI STATUS = 0x%04x\n",
3775 				sym_name(np), pci_sts & 0xf900);
3776 		}
3777 	}
3778 }
3779 
3780 /*
3781  *  chip interrupt handler
3782  *
3783  *  In normal situations, interrupt conditions occur one at
3784  *  a time. But when something bad happens on the SCSI BUS,
3785  *  the chip may raise several interrupt flags before
3786  *  stopping and interrupting the CPU. The additionnal
3787  *  interrupt flags are stacked in some extra registers
3788  *  after the SIP and/or DIP flag has been raised in the
3789  *  ISTAT. After the CPU has read the interrupt condition
3790  *  flag from SIST or DSTAT, the chip unstacks the other
3791  *  interrupt flags and sets the corresponding bits in
3792  *  SIST or DSTAT. Since the chip starts stacking once the
3793  *  SIP or DIP flag is set, there is a small window of time
3794  *  where the stacking does not occur.
3795  *
3796  *  Typically, multiple interrupt conditions may happen in
3797  *  the following situations:
3798  *
3799  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3800  *    When a parity error is detected in input phase
3801  *    and the device switches to msg-in phase inside a
3802  *    block MOV.
3803  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3804  *    When a stupid device does not want to handle the
3805  *    recovery of an SCSI parity error.
3806  *  - Some combinations of STO, PAR, UDC, ...
3807  *    When using non compliant SCSI stuff, when user is
3808  *    doing non compliant hot tampering on the BUS, when
3809  *    something really bad happens to a device, etc ...
3810  *
3811  *  The heuristic suggested by SYMBIOS to handle
3812  *  multiple interrupts is to try unstacking all
3813  *  interrupts conditions and to handle them on some
3814  *  priority based on error severity.
3815  *  This will work when the unstacking has been
3816  *  successful, but we cannot be 100 % sure of that,
3817  *  since the CPU may have been faster to unstack than
3818  *  the chip is able to stack. Hmmm ... But it seems that
3819  *  such a situation is very unlikely to happen.
3820  *
3821  *  If this happen, for example STO caught by the CPU
3822  *  then UDC happenning before the CPU have restarted
3823  *  the SCRIPTS, the driver may wrongly complete the
3824  *  same command on UDC, since the SCRIPTS didn't restart
3825  *  and the DSA still points to the same command.
3826  *  We avoid this situation by setting the DSA to an
3827  *  invalid value when the CCB is completed and before
3828  *  restarting the SCRIPTS.
3829  *
3830  *  Another issue is that we need some section of our
3831  *  recovery procedures to be somehow uninterruptible but
3832  *  the SCRIPTS processor does not provides such a
3833  *  feature. For this reason, we handle recovery preferently
3834  *  from the C code and check against some SCRIPTS critical
3835  *  sections from the C code.
3836  *
3837  *  Hopefully, the interrupt handling of the driver is now
3838  *  able to resist to weird BUS error conditions, but donnot
3839  *  ask me for any guarantee that it will never fail. :-)
3840  *  Use at your own decision and risk.
3841  */
3842 
3843 static void sym_intr1 (hcb_p np)
3844 {
3845 	u_char	istat, istatc;
3846 	u_char	dstat;
3847 	u_short	sist;
3848 
3849 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
3850 
3851 	/*
3852 	 *  interrupt on the fly ?
3853 	 *
3854 	 *  A `dummy read' is needed to ensure that the
3855 	 *  clear of the INTF flag reaches the device
3856 	 *  before the scanning of the DONE queue.
3857 	 */
3858 	istat = INB (nc_istat);
3859 	if (istat & INTF) {
3860 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3861 		istat = INB (nc_istat);		/* DUMMY READ */
3862 		if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("F ");
3863 		(void)sym_wakeup_done (np);
3864 	};
3865 
3866 	if (!(istat & (SIP|DIP)))
3867 		return;
3868 
3869 #if 0	/* We should never get this one */
3870 	if (istat & CABRT)
3871 		OUTB (nc_istat, CABRT);
3872 #endif
3873 
3874 	/*
3875 	 *  PAR and MA interrupts may occur at the same time,
3876 	 *  and we need to know of both in order to handle
3877 	 *  this situation properly. We try to unstack SCSI
3878 	 *  interrupts for that reason. BTW, I dislike a LOT
3879 	 *  such a loop inside the interrupt routine.
3880 	 *  Even if DMA interrupt stacking is very unlikely to
3881 	 *  happen, we also try unstacking these ones, since
3882 	 *  this has no performance impact.
3883 	 */
3884 	sist	= 0;
3885 	dstat	= 0;
3886 	istatc	= istat;
3887 	do {
3888 		if (istatc & SIP)
3889 			sist  |= INW (nc_sist);
3890 		if (istatc & DIP)
3891 			dstat |= INB (nc_dstat);
3892 		istatc = INB (nc_istat);
3893 		istat |= istatc;
3894 	} while (istatc & (SIP|DIP));
3895 
3896 	if (DEBUG_FLAGS & DEBUG_TINY)
3897 		kprintf ("<%d|%x:%x|%x:%x>",
3898 			(int)INB(nc_scr0),
3899 			dstat,sist,
3900 			(unsigned)INL(nc_dsp),
3901 			(unsigned)INL(nc_dbc));
3902 	/*
3903 	 *  On paper, a memory barrier may be needed here.
3904 	 *  And since we are paranoid ... :)
3905 	 */
3906 	MEMORY_BARRIER();
3907 
3908 	/*
3909 	 *  First, interrupts we want to service cleanly.
3910 	 *
3911 	 *  Phase mismatch (MA) is the most frequent interrupt
3912 	 *  for chip earlier than the 896 and so we have to service
3913 	 *  it as quickly as possible.
3914 	 *  A SCSI parity error (PAR) may be combined with a phase
3915 	 *  mismatch condition (MA).
3916 	 *  Programmed interrupts (SIR) are used to call the C code
3917 	 *  from SCRIPTS.
3918 	 *  The single step interrupt (SSI) is not used in this
3919 	 *  driver.
3920 	 */
3921 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3922 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3923 		if	(sist & PAR)	sym_int_par (np, sist);
3924 		else if (sist & MA)	sym_int_ma (np);
3925 		else if (dstat & SIR)	sym_int_sir (np);
3926 		else if (dstat & SSI)	OUTONB_STD ();
3927 		else			goto unknown_int;
3928 		return;
3929 	};
3930 
3931 	/*
3932 	 *  Now, interrupts that donnot happen in normal
3933 	 *  situations and that we may need to recover from.
3934 	 *
3935 	 *  On SCSI RESET (RST), we reset everything.
3936 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3937 	 *  active CCBs with RESET status, prepare all devices
3938 	 *  for negotiating again and restart the SCRIPTS.
3939 	 *  On STO and UDC, we complete the CCB with the corres-
3940 	 *  ponding status and restart the SCRIPTS.
3941 	 */
3942 	if (sist & RST) {
3943 		xpt_print_path(np->path);
3944 		kprintf("SCSI BUS reset detected.\n");
3945 		sym_init (np, 1);
3946 		return;
3947 	};
3948 
3949 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3950 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3951 
3952 	if (!(sist  & (GEN|HTH|SGE)) &&
3953 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3954 		if	(sist & SBMC)	sym_int_sbmc (np);
3955 		else if (sist & STO)	sym_int_sto (np);
3956 		else if (sist & UDC)	sym_int_udc (np);
3957 		else			goto unknown_int;
3958 		return;
3959 	};
3960 
3961 	/*
3962 	 *  Now, interrupts we are not able to recover cleanly.
3963 	 *
3964 	 *  Log message for hard errors.
3965 	 *  Reset everything.
3966 	 */
3967 
3968 	sym_log_hard_error(np, sist, dstat);
3969 
3970 	if ((sist & (GEN|HTH|SGE)) ||
3971 		(dstat & (MDPE|BF|ABRT|IID))) {
3972 		sym_start_reset(np);
3973 		return;
3974 	};
3975 
3976 unknown_int:
3977 	/*
3978 	 *  We just miss the cause of the interrupt. :(
3979 	 *  Print a message. The timeout will do the real work.
3980 	 */
3981 	kprintf(	"%s: unknown interrupt(s) ignored, "
3982 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3983 		sym_name(np), istat, dstat, sist);
3984 }
3985 
3986 static void sym_intr(void *arg)
3987 {
3988 	hcb_p np = arg;
3989 
3990 	SYM_LOCK();
3991 
3992 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("[");
3993 	sym_intr1((hcb_p) arg);
3994 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("]");
3995 
3996 	SYM_UNLOCK();
3997 }
3998 
3999 static void sym_poll(struct cam_sim *sim)
4000 {
4001 	sym_intr1(cam_sim_softc(sim));
4002 }
4003 
4004 
4005 /*
4006  *  generic recovery from scsi interrupt
4007  *
4008  *  The doc says that when the chip gets an SCSI interrupt,
4009  *  it tries to stop in an orderly fashion, by completing
4010  *  an instruction fetch that had started or by flushing
4011  *  the DMA fifo for a write to memory that was executing.
4012  *  Such a fashion is not enough to know if the instruction
4013  *  that was just before the current DSP value has been
4014  *  executed or not.
4015  *
4016  *  There are some small SCRIPTS sections that deal with
4017  *  the start queue and the done queue that may break any
4018  *  assomption from the C code if we are interrupted
4019  *  inside, so we reset if this happens. Btw, since these
4020  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4021  *  started SCSI operations, it is very unlikely to happen.
4022  *
4023  *  All the driver data structures are supposed to be
4024  *  allocated from the same 4 GB memory window, so there
4025  *  is a 1 to 1 relationship between DSA and driver data
4026  *  structures. Since we are careful :) to invalidate the
4027  *  DSA when we complete a command or when the SCRIPTS
4028  *  pushes a DSA into a queue, we can trust it when it
4029  *  points to a CCB.
4030  */
4031 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4032 {
4033 	u32	dsp	= INL (nc_dsp);
4034 	u32	dsa	= INL (nc_dsa);
4035 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4036 
4037 	/*
4038 	 *  If we haven't been interrupted inside the SCRIPTS
4039 	 *  critical pathes, we can safely restart the SCRIPTS
4040 	 *  and trust the DSA value if it matches a CCB.
4041 	 */
4042 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4043 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4044 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4045 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4046 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4047 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4048 	    (!(dsp > SCRIPTA_BA (np, done) &&
4049 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4050 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4051 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4052 		/*
4053 		 *  If we have a CCB, let the SCRIPTS call us back for
4054 		 *  the handling of the error with SCRATCHA filled with
4055 		 *  STARTPOS. This way, we will be able to freeze the
4056 		 *  device queue and requeue awaiting IOs.
4057 		 */
4058 		if (cp) {
4059 			cp->host_status = hsts;
4060 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4061 		}
4062 		/*
4063 		 *  Otherwise just restart the SCRIPTS.
4064 		 */
4065 		else {
4066 			OUTL (nc_dsa, 0xffffff);
4067 			OUTL_DSP (SCRIPTA_BA (np, start));
4068 		}
4069 	}
4070 	else
4071 		goto reset_all;
4072 
4073 	return;
4074 
4075 reset_all:
4076 	sym_start_reset(np);
4077 }
4078 
4079 /*
4080  *  chip exception handler for selection timeout
4081  */
4082 static void sym_int_sto (hcb_p np)
4083 {
4084 	u32 dsp	= INL (nc_dsp);
4085 
4086 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("T");
4087 
4088 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4089 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4090 	else
4091 		sym_start_reset(np);
4092 }
4093 
4094 /*
4095  *  chip exception handler for unexpected disconnect
4096  */
4097 static void sym_int_udc (hcb_p np)
4098 {
4099 	kprintf ("%s: unexpected disconnect\n", sym_name(np));
4100 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4101 }
4102 
4103 /*
4104  *  chip exception handler for SCSI bus mode change
4105  *
4106  *  spi2-r12 11.2.3 says a transceiver mode change must
4107  *  generate a reset event and a device that detects a reset
4108  *  event shall initiate a hard reset. It says also that a
4109  *  device that detects a mode change shall set data transfer
4110  *  mode to eight bit asynchronous, etc...
4111  *  So, just reinitializing all except chip should be enough.
4112  */
4113 static void sym_int_sbmc (hcb_p np)
4114 {
4115 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4116 
4117 	/*
4118 	 *  Notify user.
4119 	 */
4120 	xpt_print_path(np->path);
4121 	kprintf("SCSI BUS mode change from %s to %s.\n",
4122 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4123 
4124 	/*
4125 	 *  Should suspend command processing for a few seconds and
4126 	 *  reinitialize all except the chip.
4127 	 */
4128 	sym_init (np, 2);
4129 }
4130 
4131 /*
4132  *  chip exception handler for SCSI parity error.
4133  *
4134  *  When the chip detects a SCSI parity error and is
4135  *  currently executing a (CH)MOV instruction, it does
4136  *  not interrupt immediately, but tries to finish the
4137  *  transfer of the current scatter entry before
4138  *  interrupting. The following situations may occur:
4139  *
4140  *  - The complete scatter entry has been transferred
4141  *    without the device having changed phase.
4142  *    The chip will then interrupt with the DSP pointing
4143  *    to the instruction that follows the MOV.
4144  *
4145  *  - A phase mismatch occurs before the MOV finished
4146  *    and phase errors are to be handled by the C code.
4147  *    The chip will then interrupt with both PAR and MA
4148  *    conditions set.
4149  *
4150  *  - A phase mismatch occurs before the MOV finished and
4151  *    phase errors are to be handled by SCRIPTS.
4152  *    The chip will load the DSP with the phase mismatch
4153  *    JUMP address and interrupt the host processor.
4154  */
4155 static void sym_int_par (hcb_p np, u_short sist)
4156 {
4157 	u_char	hsts	= INB (HS_PRT);
4158 	u32	dsp	= INL (nc_dsp);
4159 	u32	dbc	= INL (nc_dbc);
4160 	u32	dsa	= INL (nc_dsa);
4161 	u_char	sbcl	= INB (nc_sbcl);
4162 	u_char	cmd	= dbc >> 24;
4163 	int phase	= cmd & 7;
4164 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4165 
4166 	kprintf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4167 		sym_name(np), hsts, dbc, sbcl);
4168 
4169 	/*
4170 	 *  Check that the chip is connected to the SCSI BUS.
4171 	 */
4172 	if (!(INB (nc_scntl1) & ISCON)) {
4173 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4174 		return;
4175 	}
4176 
4177 	/*
4178 	 *  If the nexus is not clearly identified, reset the bus.
4179 	 *  We will try to do better later.
4180 	 */
4181 	if (!cp)
4182 		goto reset_all;
4183 
4184 	/*
4185 	 *  Check instruction was a MOV, direction was INPUT and
4186 	 *  ATN is asserted.
4187 	 */
4188 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4189 		goto reset_all;
4190 
4191 	/*
4192 	 *  Keep track of the parity error.
4193 	 */
4194 	OUTONB (HF_PRT, HF_EXT_ERR);
4195 	cp->xerr_status |= XE_PARITY_ERR;
4196 
4197 	/*
4198 	 *  Prepare the message to send to the device.
4199 	 */
4200 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4201 
4202 	/*
4203 	 *  If the old phase was DATA IN phase, we have to deal with
4204 	 *  the 3 situations described above.
4205 	 *  For other input phases (MSG IN and STATUS), the device
4206 	 *  must resend the whole thing that failed parity checking
4207 	 *  or signal error. So, jumping to dispatcher should be OK.
4208 	 */
4209 	if (phase == 1 || phase == 5) {
4210 		/* Phase mismatch handled by SCRIPTS */
4211 		if (dsp == SCRIPTB_BA (np, pm_handle))
4212 			OUTL_DSP (dsp);
4213 		/* Phase mismatch handled by the C code */
4214 		else if (sist & MA)
4215 			sym_int_ma (np);
4216 		/* No phase mismatch occurred */
4217 		else {
4218 			OUTL (nc_temp, dsp);
4219 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4220 		}
4221 	}
4222 	else
4223 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4224 	return;
4225 
4226 reset_all:
4227 	sym_start_reset(np);
4228 }
4229 
4230 /*
4231  *  chip exception handler for phase errors.
4232  *
4233  *  We have to construct a new transfer descriptor,
4234  *  to transfer the rest of the current block.
4235  */
4236 static void sym_int_ma (hcb_p np)
4237 {
4238 	u32	dbc;
4239 	u32	rest;
4240 	u32	dsp;
4241 	u32	dsa;
4242 	u32	nxtdsp;
4243 	u32	*vdsp;
4244 	u32	oadr, olen;
4245 	u32	*tblp;
4246         u32	newcmd;
4247 	u_int	delta;
4248 	u_char	cmd;
4249 	u_char	hflags, hflags0;
4250 	struct	sym_pmc *pm;
4251 	ccb_p	cp;
4252 
4253 	dsp	= INL (nc_dsp);
4254 	dbc	= INL (nc_dbc);
4255 	dsa	= INL (nc_dsa);
4256 
4257 	cmd	= dbc >> 24;
4258 	rest	= dbc & 0xffffff;
4259 	delta	= 0;
4260 
4261 	/*
4262 	 *  locate matching cp if any.
4263 	 */
4264 	cp = sym_ccb_from_dsa(np, dsa);
4265 
4266 	/*
4267 	 *  Donnot take into account dma fifo and various buffers in
4268 	 *  INPUT phase since the chip flushes everything before
4269 	 *  raising the MA interrupt for interrupted INPUT phases.
4270 	 *  For DATA IN phase, we will check for the SWIDE later.
4271 	 */
4272 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4273 		u_char ss0, ss2;
4274 
4275 		if (np->features & FE_DFBC)
4276 			delta = INW (nc_dfbc);
4277 		else {
4278 			u32 dfifo;
4279 
4280 			/*
4281 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4282 			 */
4283 			dfifo = INL(nc_dfifo);
4284 
4285 			/*
4286 			 *  Calculate remaining bytes in DMA fifo.
4287 			 *  (CTEST5 = dfifo >> 16)
4288 			 */
4289 			if (dfifo & (DFS << 16))
4290 				delta = ((((dfifo >> 8) & 0x300) |
4291 				          (dfifo & 0xff)) - rest) & 0x3ff;
4292 			else
4293 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4294 		}
4295 
4296 		/*
4297 		 *  The data in the dma fifo has not been transferred to
4298 		 *  the target -> add the amount to the rest
4299 		 *  and clear the data.
4300 		 *  Check the sstat2 register in case of wide transfer.
4301 		 */
4302 		rest += delta;
4303 		ss0  = INB (nc_sstat0);
4304 		if (ss0 & OLF) rest++;
4305 		if (!(np->features & FE_C10))
4306 			if (ss0 & ORF) rest++;
4307 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4308 			ss2 = INB (nc_sstat2);
4309 			if (ss2 & OLF1) rest++;
4310 			if (!(np->features & FE_C10))
4311 				if (ss2 & ORF1) rest++;
4312 		};
4313 
4314 		/*
4315 		 *  Clear fifos.
4316 		 */
4317 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4318 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4319 	}
4320 
4321 	/*
4322 	 *  log the information
4323 	 */
4324 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4325 		kprintf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4326 			(unsigned) rest, (unsigned) delta);
4327 
4328 	/*
4329 	 *  try to find the interrupted script command,
4330 	 *  and the address at which to continue.
4331 	 */
4332 	vdsp	= NULL;
4333 	nxtdsp	= 0;
4334 	if	(dsp >  np->scripta_ba &&
4335 		 dsp <= np->scripta_ba + np->scripta_sz) {
4336 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4337 		nxtdsp = dsp;
4338 	}
4339 	else if	(dsp >  np->scriptb_ba &&
4340 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4341 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4342 		nxtdsp = dsp;
4343 	}
4344 
4345 	/*
4346 	 *  log the information
4347 	 */
4348 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4349 		kprintf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4350 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4351 	};
4352 
4353 	if (!vdsp) {
4354 		kprintf ("%s: interrupted SCRIPT address not found.\n",
4355 			sym_name (np));
4356 		goto reset_all;
4357 	}
4358 
4359 	if (!cp) {
4360 		kprintf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4361 			sym_name (np));
4362 		goto reset_all;
4363 	}
4364 
4365 	/*
4366 	 *  get old startaddress and old length.
4367 	 */
4368 	oadr = scr_to_cpu(vdsp[1]);
4369 
4370 	if (cmd & 0x10) {	/* Table indirect */
4371 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4372 		olen = scr_to_cpu(tblp[0]);
4373 		oadr = scr_to_cpu(tblp[1]);
4374 	} else {
4375 		tblp = NULL;
4376 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4377 	};
4378 
4379 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4380 		kprintf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4381 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4382 			tblp,
4383 			(unsigned) olen,
4384 			(unsigned) oadr);
4385 	};
4386 
4387 	/*
4388 	 *  check cmd against assumed interrupted script command.
4389 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4390 	 *  the phase.
4391 	 */
4392 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4393 		PRINT_ADDR(cp);
4394 		kprintf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4395 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4396 
4397 		goto reset_all;
4398 	};
4399 
4400 	/*
4401 	 *  if old phase not dataphase, leave here.
4402 	 */
4403 	if (cmd & 2) {
4404 		PRINT_ADDR(cp);
4405 		kprintf ("phase change %x-%x %d@%08x resid=%d.\n",
4406 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4407 			(unsigned)oadr, (unsigned)rest);
4408 		goto unexpected_phase;
4409 	};
4410 
4411 	/*
4412 	 *  Choose the correct PM save area.
4413 	 *
4414 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4415 	 *  this stuff. The equivalent code is implemented in
4416 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4417 	 *  handle PM from the SCRIPTS processor.
4418 	 */
4419 	hflags0 = INB (HF_PRT);
4420 	hflags = hflags0;
4421 
4422 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4423 		if (hflags & HF_IN_PM0)
4424 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4425 		else if	(hflags & HF_IN_PM1)
4426 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4427 
4428 		if (hflags & HF_DP_SAVED)
4429 			hflags ^= HF_ACT_PM;
4430 	}
4431 
4432 	if (!(hflags & HF_ACT_PM)) {
4433 		pm = &cp->phys.pm0;
4434 		newcmd = SCRIPTA_BA (np, pm0_data);
4435 	}
4436 	else {
4437 		pm = &cp->phys.pm1;
4438 		newcmd = SCRIPTA_BA (np, pm1_data);
4439 	}
4440 
4441 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4442 	if (hflags != hflags0)
4443 		OUTB (HF_PRT, hflags);
4444 
4445 	/*
4446 	 *  fillin the phase mismatch context
4447 	 */
4448 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4449 	pm->sg.size = cpu_to_scr(rest);
4450 	pm->ret     = cpu_to_scr(nxtdsp);
4451 
4452 	/*
4453 	 *  If we have a SWIDE,
4454 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4455 	 *  - compute the SCRIPTS address to restart from,
4456 	 *  - move current data pointer context by one byte.
4457 	 */
4458 	nxtdsp = SCRIPTA_BA (np, dispatch);
4459 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4460 	    (INB (nc_scntl2) & WSR)) {
4461 		u32 tmp;
4462 
4463 		/*
4464 		 *  Set up the table indirect for the MOVE
4465 		 *  of the residual byte and adjust the data
4466 		 *  pointer context.
4467 		 */
4468 		tmp = scr_to_cpu(pm->sg.addr);
4469 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4470 		pm->sg.addr = cpu_to_scr(tmp + 1);
4471 		tmp = scr_to_cpu(pm->sg.size);
4472 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4473 		pm->sg.size = cpu_to_scr(tmp - 1);
4474 
4475 		/*
4476 		 *  If only the residual byte is to be moved,
4477 		 *  no PM context is needed.
4478 		 */
4479 		if ((tmp&0xffffff) == 1)
4480 			newcmd = pm->ret;
4481 
4482 		/*
4483 		 *  Prepare the address of SCRIPTS that will
4484 		 *  move the residual byte to memory.
4485 		 */
4486 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4487 	}
4488 
4489 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4490 		PRINT_ADDR(cp);
4491 		kprintf ("PM %x %x %x / %x %x %x.\n",
4492 			hflags0, hflags, newcmd,
4493 			(unsigned)scr_to_cpu(pm->sg.addr),
4494 			(unsigned)scr_to_cpu(pm->sg.size),
4495 			(unsigned)scr_to_cpu(pm->ret));
4496 	}
4497 
4498 	/*
4499 	 *  Restart the SCRIPTS processor.
4500 	 */
4501 	OUTL (nc_temp, newcmd);
4502 	OUTL_DSP (nxtdsp);
4503 	return;
4504 
4505 	/*
4506 	 *  Unexpected phase changes that occurs when the current phase
4507 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4508 	 *  Such event may only happen when the SCRIPTS is using a
4509 	 *  multibyte SCSI MOVE.
4510 	 *
4511 	 *  Phase change		Some possible cause
4512 	 *
4513 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4514 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4515 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4516 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4517 	 *  			negotiation messages.
4518 	 *
4519 	 *  The code below does not care of the new phase and so
4520 	 *  trusts the target. Why to annoy it ?
4521 	 *  If the interrupted phase is COMMAND phase, we restart at
4522 	 *  dispatcher.
4523 	 *  If a target does not get all the messages after selection,
4524 	 *  the code assumes blindly that the target discards extended
4525 	 *  messages and clears the negotiation status.
4526 	 *  If the target does not want all our response to negotiation,
4527 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4528 	 *  bloat for such a should_not_happen situation).
4529 	 *  In all other situation, we reset the BUS.
4530 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4531 	 */
4532 unexpected_phase:
4533 	dsp -= 8;
4534 	nxtdsp = 0;
4535 
4536 	switch (cmd & 7) {
4537 	case 2:	/* COMMAND phase */
4538 		nxtdsp = SCRIPTA_BA (np, dispatch);
4539 		break;
4540 #if 0
4541 	case 3:	/* STATUS  phase */
4542 		nxtdsp = SCRIPTA_BA (np, dispatch);
4543 		break;
4544 #endif
4545 	case 6:	/* MSG OUT phase */
4546 		/*
4547 		 *  If the device may want to use untagged when we want
4548 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4549 		 *  since we will not be able to handle reselect.
4550 		 *  Otherwise, we just don't care.
4551 		 */
4552 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4553 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4554 				cp->host_status = HS_BUSY;
4555 				np->msgout[0] = M_IDENTIFY | cp->lun;
4556 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4557 			}
4558 			else
4559 				nxtdsp = SCRIPTB_BA (np, ident_break);
4560 		}
4561 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4562 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4563 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4564 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4565 		}
4566 		break;
4567 #if 0
4568 	case 7:	/* MSG IN  phase */
4569 		nxtdsp = SCRIPTA_BA (np, clrack);
4570 		break;
4571 #endif
4572 	}
4573 
4574 	if (nxtdsp) {
4575 		OUTL_DSP (nxtdsp);
4576 		return;
4577 	}
4578 
4579 reset_all:
4580 	sym_start_reset(np);
4581 }
4582 
4583 /*
4584  *  Dequeue from the START queue all CCBs that match
4585  *  a given target/lun/task condition (-1 means all),
4586  *  and move them from the BUSY queue to the COMP queue
4587  *  with CAM_REQUEUE_REQ status condition.
4588  *  This function is used during error handling/recovery.
4589  *  It is called with SCRIPTS not running.
4590  */
4591 static int
4592 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4593 {
4594 	int j;
4595 	ccb_p cp;
4596 
4597 	/*
4598 	 *  Make sure the starting index is within range.
4599 	 */
4600 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4601 
4602 	/*
4603 	 *  Walk until end of START queue and dequeue every job
4604 	 *  that matches the target/lun/task condition.
4605 	 */
4606 	j = i;
4607 	while (i != np->squeueput) {
4608 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4609 		assert(cp);
4610 #ifdef SYM_CONF_IARB_SUPPORT
4611 		/* Forget hints for IARB, they may be no longer relevant */
4612 		cp->host_flags &= ~HF_HINT_IARB;
4613 #endif
4614 		if ((target == -1 || cp->target == target) &&
4615 		    (lun    == -1 || cp->lun    == lun)    &&
4616 		    (task   == -1 || cp->tag    == task)) {
4617 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4618 			sym_remque(&cp->link_ccbq);
4619 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4620 		}
4621 		else {
4622 			if (i != j)
4623 				np->squeue[j] = np->squeue[i];
4624 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4625 		}
4626 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4627 	}
4628 	if (i != j)		/* Copy back the idle task if needed */
4629 		np->squeue[j] = np->squeue[i];
4630 	np->squeueput = j;	/* Update our current start queue pointer */
4631 
4632 	return (i - j) / 2;
4633 }
4634 
4635 /*
4636  *  Complete all CCBs queued to the COMP queue.
4637  *
4638  *  These CCBs are assumed:
4639  *  - Not to be referenced either by devices or
4640  *    SCRIPTS-related queues and datas.
4641  *  - To have to be completed with an error condition
4642  *    or requeued.
4643  *
4644  *  The device queue freeze count is incremented
4645  *  for each CCB that does not prevent this.
4646  *  This function is called when all CCBs involved
4647  *  in error handling/recovery have been reaped.
4648  */
4649 static void
4650 sym_flush_comp_queue(hcb_p np, int cam_status)
4651 {
4652 	SYM_QUEHEAD *qp;
4653 	ccb_p cp;
4654 
4655 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4656 		union ccb *ccb;
4657 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4658 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4659 		/* Leave quiet CCBs waiting for resources */
4660 		if (cp->host_status == HS_WAIT)
4661 			continue;
4662 		ccb = cp->cam_ccb;
4663 		if (cam_status)
4664 			sym_set_cam_status(ccb, cam_status);
4665 		sym_freeze_cam_ccb(ccb);
4666 		sym_xpt_done(np, ccb, cp);
4667 		sym_free_ccb(np, cp);
4668 	}
4669 }
4670 
4671 /*
4672  *  chip handler for bad SCSI status condition
4673  *
4674  *  In case of bad SCSI status, we unqueue all the tasks
4675  *  currently queued to the controller but not yet started
4676  *  and then restart the SCRIPTS processor immediately.
4677  *
4678  *  QUEUE FULL and BUSY conditions are handled the same way.
4679  *  Basically all the not yet started tasks are requeued in
4680  *  device queue and the queue is frozen until a completion.
4681  *
4682  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4683  *  the CCB of the failed command to prepare a REQUEST SENSE
4684  *  SCSI command and queue it to the controller queue.
4685  *
4686  *  SCRATCHA is assumed to have been loaded with STARTPOS
4687  *  before the SCRIPTS called the C code.
4688  */
4689 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4690 {
4691 	tcb_p tp	= &np->target[cp->target];
4692 	u32		startp;
4693 	u_char		s_status = cp->ssss_status;
4694 	u_char		h_flags  = cp->host_flags;
4695 	int		msglen;
4696 	int		nego;
4697 	int		i;
4698 
4699 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
4700 
4701 	/*
4702 	 *  Compute the index of the next job to start from SCRIPTS.
4703 	 */
4704 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4705 
4706 	/*
4707 	 *  The last CCB queued used for IARB hint may be
4708 	 *  no longer relevant. Forget it.
4709 	 */
4710 #ifdef SYM_CONF_IARB_SUPPORT
4711 	if (np->last_cp)
4712 		np->last_cp = NULL;
4713 #endif
4714 
4715 	/*
4716 	 *  Now deal with the SCSI status.
4717 	 */
4718 	switch(s_status) {
4719 	case S_BUSY:
4720 	case S_QUEUE_FULL:
4721 		if (sym_verbose >= 2) {
4722 			PRINT_ADDR(cp);
4723 			kprintf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4724 		}
4725 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4726 		sym_complete_error (np, cp);
4727 		break;
4728 	case S_TERMINATED:
4729 	case S_CHECK_COND:
4730 		/*
4731 		 *  If we get an SCSI error when requesting sense, give up.
4732 		 */
4733 		if (h_flags & HF_SENSE) {
4734 			sym_complete_error (np, cp);
4735 			break;
4736 		}
4737 
4738 		/*
4739 		 *  Dequeue all queued CCBs for that device not yet started,
4740 		 *  and restart the SCRIPTS processor immediately.
4741 		 */
4742 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4743 		OUTL_DSP (SCRIPTA_BA (np, start));
4744 
4745  		/*
4746 		 *  Save some info of the actual IO.
4747 		 *  Compute the data residual.
4748 		 */
4749 		cp->sv_scsi_status = cp->ssss_status;
4750 		cp->sv_xerr_status = cp->xerr_status;
4751 		cp->sv_resid = sym_compute_residual(np, cp);
4752 
4753 		/*
4754 		 *  Prepare all needed data structures for
4755 		 *  requesting sense data.
4756 		 */
4757 
4758 		/*
4759 		 *  identify message
4760 		 */
4761 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4762 		msglen = 1;
4763 
4764 		/*
4765 		 *  If we are currently using anything different from
4766 		 *  async. 8 bit data transfers with that target,
4767 		 *  start a negotiation, since the device may want
4768 		 *  to report us a UNIT ATTENTION condition due to
4769 		 *  a cause we currently ignore, and we donnot want
4770 		 *  to be stuck with WIDE and/or SYNC data transfer.
4771 		 *
4772 		 *  cp->nego_status is filled by sym_prepare_nego().
4773 		 */
4774 		cp->nego_status = 0;
4775 		nego = 0;
4776 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4777 			nego = NS_PPR;
4778 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4779 			nego = NS_WIDE;
4780 		else if (tp->tinfo.current.offset != 0)
4781 			nego = NS_SYNC;
4782 		if (nego)
4783 			msglen +=
4784 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4785 		/*
4786 		 *  Message table indirect structure.
4787 		 */
4788 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4789 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4790 
4791 		/*
4792 		 *  sense command
4793 		 */
4794 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4795 		cp->phys.cmd.size	= cpu_to_scr(6);
4796 
4797 		/*
4798 		 *  patch requested size into sense command
4799 		 */
4800 		cp->sensecmd[0]		= 0x03;
4801 		cp->sensecmd[1]		= cp->lun << 5;
4802 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4803 			cp->sensecmd[1]	= 0;
4804 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4805 		cp->data_len		= SYM_SNS_BBUF_LEN;
4806 
4807 		/*
4808 		 *  sense data
4809 		 */
4810 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4811 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4812 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4813 
4814 		/*
4815 		 *  requeue the command.
4816 		 */
4817 		startp = SCRIPTB_BA (np, sdata_in);
4818 
4819 		cp->phys.head.savep	= cpu_to_scr(startp);
4820 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4821 		cp->phys.head.lastp	= cpu_to_scr(startp);
4822 		cp->startp	= cpu_to_scr(startp);
4823 
4824 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4825 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4826 		cp->ssss_status = S_ILLEGAL;
4827 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4828 		cp->xerr_status = 0;
4829 		cp->extra_bytes = 0;
4830 
4831 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4832 
4833 		/*
4834 		 *  Requeue the command.
4835 		 */
4836 		sym_put_start_queue(np, cp);
4837 
4838 		/*
4839 		 *  Give back to upper layer everything we have dequeued.
4840 		 */
4841 		sym_flush_comp_queue(np, 0);
4842 		break;
4843 	}
4844 }
4845 
4846 /*
4847  *  After a device has accepted some management message
4848  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4849  *  a device signals a UNIT ATTENTION condition, some
4850  *  tasks are thrown away by the device. We are required
4851  *  to reflect that on our tasks list since the device
4852  *  will never complete these tasks.
4853  *
4854  *  This function move from the BUSY queue to the COMP
4855  *  queue all disconnected CCBs for a given target that
4856  *  match the following criteria:
4857  *  - lun=-1  means any logical UNIT otherwise a given one.
4858  *  - task=-1 means any task, otherwise a given one.
4859  */
4860 static int
4861 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4862 {
4863 	SYM_QUEHEAD qtmp, *qp;
4864 	int i = 0;
4865 	ccb_p cp;
4866 
4867 	/*
4868 	 *  Move the entire BUSY queue to our temporary queue.
4869 	 */
4870 	sym_que_init(&qtmp);
4871 	sym_que_splice(&np->busy_ccbq, &qtmp);
4872 	sym_que_init(&np->busy_ccbq);
4873 
4874 	/*
4875 	 *  Put all CCBs that matches our criteria into
4876 	 *  the COMP queue and put back other ones into
4877 	 *  the BUSY queue.
4878 	 */
4879 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4880 		union ccb *ccb;
4881 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4882 		ccb = cp->cam_ccb;
4883 		if (cp->host_status != HS_DISCONNECT ||
4884 		    cp->target != target	     ||
4885 		    (lun  != -1 && cp->lun != lun)   ||
4886 		    (task != -1 &&
4887 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4888 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4889 			continue;
4890 		}
4891 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4892 
4893 		/* Preserve the software timeout condition */
4894 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4895 			sym_set_cam_status(ccb, cam_status);
4896 		++i;
4897 #if 0
4898 kprintf("XXXX TASK @%p CLEARED\n", cp);
4899 #endif
4900 	}
4901 	return i;
4902 }
4903 
4904 /*
4905  *  chip handler for TASKS recovery
4906  *
4907  *  We cannot safely abort a command, while the SCRIPTS
4908  *  processor is running, since we just would be in race
4909  *  with it.
4910  *
4911  *  As long as we have tasks to abort, we keep the SEM
4912  *  bit set in the ISTAT. When this bit is set, the
4913  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4914  *  each time it enters the scheduler.
4915  *
4916  *  If we have to reset a target, clear tasks of a unit,
4917  *  or to perform the abort of a disconnected job, we
4918  *  restart the SCRIPTS for selecting the target. Once
4919  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4920  *  If it loses arbitration, the SCRIPTS will interrupt again
4921  *  the next time it will enter its scheduler, and so on ...
4922  *
4923  *  On SIR_TARGET_SELECTED, we scan for the more
4924  *  appropriate thing to do:
4925  *
4926  *  - If nothing, we just sent a M_ABORT message to the
4927  *    target to get rid of the useless SCSI bus ownership.
4928  *    According to the specs, no tasks shall be affected.
4929  *  - If the target is to be reset, we send it a M_RESET
4930  *    message.
4931  *  - If a logical UNIT is to be cleared , we send the
4932  *    IDENTIFY(lun) + M_ABORT.
4933  *  - If an untagged task is to be aborted, we send the
4934  *    IDENTIFY(lun) + M_ABORT.
4935  *  - If a tagged task is to be aborted, we send the
4936  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4937  *
4938  *  Once our 'kiss of death' :) message has been accepted
4939  *  by the target, the SCRIPTS interrupts again
4940  *  (SIR_ABORT_SENT). On this interrupt, we complete
4941  *  all the CCBs that should have been aborted by the
4942  *  target according to our message.
4943  */
4944 static void sym_sir_task_recovery(hcb_p np, int num)
4945 {
4946 	SYM_QUEHEAD *qp;
4947 	ccb_p cp;
4948 	tcb_p tp;
4949 	int target=-1, lun=-1, task;
4950 	int i, k;
4951 
4952 	switch(num) {
4953 	/*
4954 	 *  The SCRIPTS processor stopped before starting
4955 	 *  the next command in order to allow us to perform
4956 	 *  some task recovery.
4957 	 */
4958 	case SIR_SCRIPT_STOPPED:
4959 		/*
4960 		 *  Do we have any target to reset or unit to clear ?
4961 		 */
4962 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4963 			tp = &np->target[i];
4964 			if (tp->to_reset ||
4965 			    (tp->lun0p && tp->lun0p->to_clear)) {
4966 				target = i;
4967 				break;
4968 			}
4969 			if (!tp->lunmp)
4970 				continue;
4971 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4972 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4973 					target	= i;
4974 					break;
4975 				}
4976 			}
4977 			if (target != -1)
4978 				break;
4979 		}
4980 
4981 		/*
4982 		 *  If not, walk the busy queue for any
4983 		 *  disconnected CCB to be aborted.
4984 		 */
4985 		if (target == -1) {
4986 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4987 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4988 				if (cp->host_status != HS_DISCONNECT)
4989 					continue;
4990 				if (cp->to_abort) {
4991 					target = cp->target;
4992 					break;
4993 				}
4994 			}
4995 		}
4996 
4997 		/*
4998 		 *  If some target is to be selected,
4999 		 *  prepare and start the selection.
5000 		 */
5001 		if (target != -1) {
5002 			tp = &np->target[target];
5003 			np->abrt_sel.sel_id	= target;
5004 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5005 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5006 			OUTL(nc_dsa, np->hcb_ba);
5007 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5008 			return;
5009 		}
5010 
5011 		/*
5012 		 *  Now look for a CCB to abort that haven't started yet.
5013 		 *  Btw, the SCRIPTS processor is still stopped, so
5014 		 *  we are not in race.
5015 		 */
5016 		i = 0;
5017 		cp = NULL;
5018 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5019 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5020 			if (cp->host_status != HS_BUSY &&
5021 			    cp->host_status != HS_NEGOTIATE)
5022 				continue;
5023 			if (!cp->to_abort)
5024 				continue;
5025 #ifdef SYM_CONF_IARB_SUPPORT
5026 			/*
5027 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5028 			 *    want to cancel the last queued CCB, since the
5029 			 *    SCRIPTS may have anticipated the selection.
5030 			 */
5031 			if (cp == np->last_cp) {
5032 				cp->to_abort = 0;
5033 				continue;
5034 			}
5035 #endif
5036 			i = 1;	/* Means we have found some */
5037 			break;
5038 		}
5039 		if (!i) {
5040 			/*
5041 			 *  We are done, so we donnot need
5042 			 *  to synchronize with the SCRIPTS anylonger.
5043 			 *  Remove the SEM flag from the ISTAT.
5044 			 */
5045 			np->istat_sem = 0;
5046 			OUTB (nc_istat, SIGP);
5047 			break;
5048 		}
5049 		/*
5050 		 *  Compute index of next position in the start
5051 		 *  queue the SCRIPTS intends to start and dequeue
5052 		 *  all CCBs for that device that haven't been started.
5053 		 */
5054 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5055 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5056 
5057 		/*
5058 		 *  Make sure at least our IO to abort has been dequeued.
5059 		 */
5060 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5061 
5062 		/*
5063 		 *  Keep track in cam status of the reason of the abort.
5064 		 */
5065 		if (cp->to_abort == 2)
5066 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5067 		else
5068 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5069 
5070 		/*
5071 		 *  Complete with error everything that we have dequeued.
5072 	 	 */
5073 		sym_flush_comp_queue(np, 0);
5074 		break;
5075 	/*
5076 	 *  The SCRIPTS processor has selected a target
5077 	 *  we may have some manual recovery to perform for.
5078 	 */
5079 	case SIR_TARGET_SELECTED:
5080 		target = (INB (nc_sdid) & 0xf);
5081 		tp = &np->target[target];
5082 
5083 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5084 
5085 		/*
5086 		 *  If the target is to be reset, prepare a
5087 		 *  M_RESET message and clear the to_reset flag
5088 		 *  since we donnot expect this operation to fail.
5089 		 */
5090 		if (tp->to_reset) {
5091 			np->abrt_msg[0] = M_RESET;
5092 			np->abrt_tbl.size = 1;
5093 			tp->to_reset = 0;
5094 			break;
5095 		}
5096 
5097 		/*
5098 		 *  Otherwise, look for some logical unit to be cleared.
5099 		 */
5100 		if (tp->lun0p && tp->lun0p->to_clear)
5101 			lun = 0;
5102 		else if (tp->lunmp) {
5103 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5104 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5105 					lun = k;
5106 					break;
5107 				}
5108 			}
5109 		}
5110 
5111 		/*
5112 		 *  If a logical unit is to be cleared, prepare
5113 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5114 		 */
5115 		if (lun != -1) {
5116 			lcb_p lp = sym_lp(np, tp, lun);
5117 			lp->to_clear = 0; /* We donnot expect to fail here */
5118 			np->abrt_msg[0] = M_IDENTIFY | lun;
5119 			np->abrt_msg[1] = M_ABORT;
5120 			np->abrt_tbl.size = 2;
5121 			break;
5122 		}
5123 
5124 		/*
5125 		 *  Otherwise, look for some disconnected job to
5126 		 *  abort for this target.
5127 		 */
5128 		i = 0;
5129 		cp = NULL;
5130 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5131 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5132 			if (cp->host_status != HS_DISCONNECT)
5133 				continue;
5134 			if (cp->target != target)
5135 				continue;
5136 			if (!cp->to_abort)
5137 				continue;
5138 			i = 1;	/* Means we have some */
5139 			break;
5140 		}
5141 
5142 		/*
5143 		 *  If we have none, probably since the device has
5144 		 *  completed the command before we won abitration,
5145 		 *  send a M_ABORT message without IDENTIFY.
5146 		 *  According to the specs, the device must just
5147 		 *  disconnect the BUS and not abort any task.
5148 		 */
5149 		if (!i) {
5150 			np->abrt_msg[0] = M_ABORT;
5151 			np->abrt_tbl.size = 1;
5152 			break;
5153 		}
5154 
5155 		/*
5156 		 *  We have some task to abort.
5157 		 *  Set the IDENTIFY(lun)
5158 		 */
5159 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5160 
5161 		/*
5162 		 *  If we want to abort an untagged command, we
5163 		 *  will send an IDENTIFY + M_ABORT.
5164 		 *  Otherwise (tagged command), we will send
5165 		 *  an IDENTIFY + task attributes + ABORT TAG.
5166 		 */
5167 		if (cp->tag == NO_TAG) {
5168 			np->abrt_msg[1] = M_ABORT;
5169 			np->abrt_tbl.size = 2;
5170 		}
5171 		else {
5172 			np->abrt_msg[1] = cp->scsi_smsg[1];
5173 			np->abrt_msg[2] = cp->scsi_smsg[2];
5174 			np->abrt_msg[3] = M_ABORT_TAG;
5175 			np->abrt_tbl.size = 4;
5176 		}
5177 		/*
5178 		 *  Keep track of software timeout condition, since the
5179 		 *  peripheral driver may not count retries on abort
5180 		 *  conditions not due to timeout.
5181 		 */
5182 		if (cp->to_abort == 2)
5183 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5184 		cp->to_abort = 0; /* We donnot expect to fail here */
5185 		break;
5186 
5187 	/*
5188 	 *  The target has accepted our message and switched
5189 	 *  to BUS FREE phase as we expected.
5190 	 */
5191 	case SIR_ABORT_SENT:
5192 		target = (INB (nc_sdid) & 0xf);
5193 		tp = &np->target[target];
5194 
5195 		/*
5196 		**  If we didn't abort anything, leave here.
5197 		*/
5198 		if (np->abrt_msg[0] == M_ABORT)
5199 			break;
5200 
5201 		/*
5202 		 *  If we sent a M_RESET, then a hardware reset has
5203 		 *  been performed by the target.
5204 		 *  - Reset everything to async 8 bit
5205 		 *  - Tell ourself to negotiate next time :-)
5206 		 *  - Prepare to clear all disconnected CCBs for
5207 		 *    this target from our task list (lun=task=-1)
5208 		 */
5209 		lun = -1;
5210 		task = -1;
5211 		if (np->abrt_msg[0] == M_RESET) {
5212 			tp->head.sval = 0;
5213 			tp->head.wval = np->rv_scntl3;
5214 			tp->head.uval = 0;
5215 			tp->tinfo.current.period = 0;
5216 			tp->tinfo.current.offset = 0;
5217 			tp->tinfo.current.width  = BUS_8_BIT;
5218 			tp->tinfo.current.options = 0;
5219 		}
5220 
5221 		/*
5222 		 *  Otherwise, check for the LUN and TASK(s)
5223 		 *  concerned by the cancelation.
5224 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5225 		 *  or an ABORT message :-)
5226 		 */
5227 		else {
5228 			lun = np->abrt_msg[0] & 0x3f;
5229 			if (np->abrt_msg[1] == M_ABORT_TAG)
5230 				task = np->abrt_msg[2];
5231 		}
5232 
5233 		/*
5234 		 *  Complete all the CCBs the device should have
5235 		 *  aborted due to our 'kiss of death' message.
5236 		 */
5237 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5238 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5239 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5240 		sym_flush_comp_queue(np, 0);
5241 
5242 		/*
5243 		 *  If we sent a BDR, make uper layer aware of that.
5244 		 */
5245 		if (np->abrt_msg[0] == M_RESET)
5246 			xpt_async(AC_SENT_BDR, np->path, NULL);
5247 		break;
5248 	}
5249 
5250 	/*
5251 	 *  Print to the log the message we intend to send.
5252 	 */
5253 	if (num == SIR_TARGET_SELECTED) {
5254 		PRINT_TARGET(np, target);
5255 		sym_printl_hex("control msgout:", np->abrt_msg,
5256 			      np->abrt_tbl.size);
5257 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5258 	}
5259 
5260 	/*
5261 	 *  Let the SCRIPTS processor continue.
5262 	 */
5263 	OUTONB_STD ();
5264 }
5265 
5266 /*
5267  *  Gerard's alchemy:) that deals with with the data
5268  *  pointer for both MDP and the residual calculation.
5269  *
5270  *  I didn't want to bloat the code by more than 200
5271  *  lignes for the handling of both MDP and the residual.
5272  *  This has been achieved by using a data pointer
5273  *  representation consisting in an index in the data
5274  *  array (dp_sg) and a negative offset (dp_ofs) that
5275  *  have the following meaning:
5276  *
5277  *  - dp_sg = SYM_CONF_MAX_SG
5278  *    we are at the end of the data script.
5279  *  - dp_sg < SYM_CONF_MAX_SG
5280  *    dp_sg points to the next entry of the scatter array
5281  *    we want to transfer.
5282  *  - dp_ofs < 0
5283  *    dp_ofs represents the residual of bytes of the
5284  *    previous entry scatter entry we will send first.
5285  *  - dp_ofs = 0
5286  *    no residual to send first.
5287  *
5288  *  The function sym_evaluate_dp() accepts an arbitray
5289  *  offset (basically from the MDP message) and returns
5290  *  the corresponding values of dp_sg and dp_ofs.
5291  */
5292 
5293 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5294 {
5295 	u32	dp_scr;
5296 	int	dp_ofs, dp_sg, dp_sgmin;
5297 	int	tmp;
5298 	struct sym_pmc *pm;
5299 
5300 	/*
5301 	 *  Compute the resulted data pointer in term of a script
5302 	 *  address within some DATA script and a signed byte offset.
5303 	 */
5304 	dp_scr = scr;
5305 	dp_ofs = *ofs;
5306 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5307 		pm = &cp->phys.pm0;
5308 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5309 		pm = &cp->phys.pm1;
5310 	else
5311 		pm = NULL;
5312 
5313 	if (pm) {
5314 		dp_scr  = scr_to_cpu(pm->ret);
5315 		dp_ofs -= scr_to_cpu(pm->sg.size);
5316 	}
5317 
5318 	/*
5319 	 *  If we are auto-sensing, then we are done.
5320 	 */
5321 	if (cp->host_flags & HF_SENSE) {
5322 		*ofs = dp_ofs;
5323 		return 0;
5324 	}
5325 
5326 	/*
5327 	 *  Deduce the index of the sg entry.
5328 	 *  Keep track of the index of the first valid entry.
5329 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5330 	 *  end of the data.
5331 	 */
5332 	tmp = scr_to_cpu(cp->phys.head.goalp);
5333 	dp_sg = SYM_CONF_MAX_SG;
5334 	if (dp_scr != tmp)
5335 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5336 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5337 
5338 	/*
5339 	 *  Move to the sg entry the data pointer belongs to.
5340 	 *
5341 	 *  If we are inside the data area, we expect result to be:
5342 	 *
5343 	 *  Either,
5344 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5345 	 *      the data pointer belongs to (or the end of the data)
5346 	 *  Or,
5347 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5348 	 *      the data pointer belongs to + 1.
5349 	 */
5350 	if (dp_ofs < 0) {
5351 		int n;
5352 		while (dp_sg > dp_sgmin) {
5353 			--dp_sg;
5354 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5355 			n = dp_ofs + (tmp & 0xffffff);
5356 			if (n > 0) {
5357 				++dp_sg;
5358 				break;
5359 			}
5360 			dp_ofs = n;
5361 		}
5362 	}
5363 	else if (dp_ofs > 0) {
5364 		while (dp_sg < SYM_CONF_MAX_SG) {
5365 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5366 			dp_ofs -= (tmp & 0xffffff);
5367 			++dp_sg;
5368 			if (dp_ofs <= 0)
5369 				break;
5370 		}
5371 	}
5372 
5373 	/*
5374 	 *  Make sure the data pointer is inside the data area.
5375 	 *  If not, return some error.
5376 	 */
5377 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5378 		goto out_err;
5379 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5380 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5381 		goto out_err;
5382 
5383 	/*
5384 	 *  Save the extreme pointer if needed.
5385 	 */
5386 	if (dp_sg > cp->ext_sg ||
5387             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5388 		cp->ext_sg  = dp_sg;
5389 		cp->ext_ofs = dp_ofs;
5390 	}
5391 
5392 	/*
5393 	 *  Return data.
5394 	 */
5395 	*ofs = dp_ofs;
5396 	return dp_sg;
5397 
5398 out_err:
5399 	return -1;
5400 }
5401 
5402 /*
5403  *  chip handler for MODIFY DATA POINTER MESSAGE
5404  *
5405  *  We also call this function on IGNORE WIDE RESIDUE
5406  *  messages that do not match a SWIDE full condition.
5407  *  Btw, we assume in that situation that such a message
5408  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5409  */
5410 
5411 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5412 {
5413 	int dp_ofs	= ofs;
5414 	u32	dp_scr	= INL (nc_temp);
5415 	u32	dp_ret;
5416 	u32	tmp;
5417 	u_char	hflags;
5418 	int	dp_sg;
5419 	struct	sym_pmc *pm;
5420 
5421 	/*
5422 	 *  Not supported for auto-sense.
5423 	 */
5424 	if (cp->host_flags & HF_SENSE)
5425 		goto out_reject;
5426 
5427 	/*
5428 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5429 	 *  to the resulted data pointer.
5430 	 */
5431 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5432 	if (dp_sg < 0)
5433 		goto out_reject;
5434 
5435 	/*
5436 	 *  And our alchemy:) allows to easily calculate the data
5437 	 *  script address we want to return for the next data phase.
5438 	 */
5439 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5440 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5441 
5442 	/*
5443 	 *  If offset / scatter entry is zero we donnot need
5444 	 *  a context for the new current data pointer.
5445 	 */
5446 	if (dp_ofs == 0) {
5447 		dp_scr = dp_ret;
5448 		goto out_ok;
5449 	}
5450 
5451 	/*
5452 	 *  Get a context for the new current data pointer.
5453 	 */
5454 	hflags = INB (HF_PRT);
5455 
5456 	if (hflags & HF_DP_SAVED)
5457 		hflags ^= HF_ACT_PM;
5458 
5459 	if (!(hflags & HF_ACT_PM)) {
5460 		pm  = &cp->phys.pm0;
5461 		dp_scr = SCRIPTA_BA (np, pm0_data);
5462 	}
5463 	else {
5464 		pm = &cp->phys.pm1;
5465 		dp_scr = SCRIPTA_BA (np, pm1_data);
5466 	}
5467 
5468 	hflags &= ~(HF_DP_SAVED);
5469 
5470 	OUTB (HF_PRT, hflags);
5471 
5472 	/*
5473 	 *  Set up the new current data pointer.
5474 	 *  ofs < 0 there, and for the next data phase, we
5475 	 *  want to transfer part of the data of the sg entry
5476 	 *  corresponding to index dp_sg-1 prior to returning
5477 	 *  to the main data script.
5478 	 */
5479 	pm->ret = cpu_to_scr(dp_ret);
5480 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5481 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5482 	pm->sg.addr = cpu_to_scr(tmp);
5483 	pm->sg.size = cpu_to_scr(-dp_ofs);
5484 
5485 out_ok:
5486 	OUTL (nc_temp, dp_scr);
5487 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5488 	return;
5489 
5490 out_reject:
5491 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5492 }
5493 
5494 
5495 /*
5496  *  chip calculation of the data residual.
5497  *
5498  *  As I used to say, the requirement of data residual
5499  *  in SCSI is broken, useless and cannot be achieved
5500  *  without huge complexity.
5501  *  But most OSes and even the official CAM require it.
5502  *  When stupidity happens to be so widely spread inside
5503  *  a community, it gets hard to convince.
5504  *
5505  *  Anyway, I don't care, since I am not going to use
5506  *  any software that considers this data residual as
5507  *  a relevant information. :)
5508  */
5509 
5510 static int sym_compute_residual(hcb_p np, ccb_p cp)
5511 {
5512 	int dp_sg, resid = 0;
5513 	int dp_ofs = 0;
5514 
5515 	/*
5516 	 *  Check for some data lost or just thrown away.
5517 	 *  We are not required to be quite accurate in this
5518 	 *  situation. Btw, if we are odd for output and the
5519 	 *  device claims some more data, it may well happen
5520 	 *  than our residual be zero. :-)
5521 	 */
5522 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5523 		if (cp->xerr_status & XE_EXTRA_DATA)
5524 			resid -= cp->extra_bytes;
5525 		if (cp->xerr_status & XE_SODL_UNRUN)
5526 			++resid;
5527 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5528 			--resid;
5529 	}
5530 
5531 	/*
5532 	 *  If all data has been transferred,
5533 	 *  there is no residual.
5534 	 */
5535 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5536 		return resid;
5537 
5538 	/*
5539 	 *  If no data transfer occurs, or if the data
5540 	 *  pointer is weird, return full residual.
5541 	 */
5542 	if (cp->startp == cp->phys.head.lastp ||
5543 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5544 			    &dp_ofs) < 0) {
5545 		return cp->data_len;
5546 	}
5547 
5548 	/*
5549 	 *  If we were auto-sensing, then we are done.
5550 	 */
5551 	if (cp->host_flags & HF_SENSE) {
5552 		return -dp_ofs;
5553 	}
5554 
5555 	/*
5556 	 *  We are now full comfortable in the computation
5557 	 *  of the data residual (2's complement).
5558 	 */
5559 	resid = -cp->ext_ofs;
5560 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5561 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5562 		resid += (tmp & 0xffffff);
5563 	}
5564 
5565 	/*
5566 	 *  Hopefully, the result is not too wrong.
5567 	 */
5568 	return resid;
5569 }
5570 
5571 /*
5572  *  Print out the content of a SCSI message.
5573  */
5574 
5575 static int sym_show_msg (u_char * msg)
5576 {
5577 	u_char i;
5578 	kprintf ("%x",*msg);
5579 	if (*msg==M_EXTENDED) {
5580 		for (i=1;i<8;i++) {
5581 			if (i-1>msg[1]) break;
5582 			kprintf ("-%x",msg[i]);
5583 		};
5584 		return (i+1);
5585 	} else if ((*msg & 0xf0) == 0x20) {
5586 		kprintf ("-%x",msg[1]);
5587 		return (2);
5588 	};
5589 	return (1);
5590 }
5591 
5592 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5593 {
5594 	PRINT_ADDR(cp);
5595 	if (label)
5596 		kprintf ("%s: ", label);
5597 
5598 	(void) sym_show_msg (msg);
5599 	kprintf (".\n");
5600 }
5601 
5602 /*
5603  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5604  *
5605  *  When we try to negotiate, we append the negotiation message
5606  *  to the identify and (maybe) simple tag message.
5607  *  The host status field is set to HS_NEGOTIATE to mark this
5608  *  situation.
5609  *
5610  *  If the target doesn't answer this message immediately
5611  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5612  *  will be raised eventually.
5613  *  The handler removes the HS_NEGOTIATE status, and sets the
5614  *  negotiated value to the default (async / nowide).
5615  *
5616  *  If we receive a matching answer immediately, we check it
5617  *  for validity, and set the values.
5618  *
5619  *  If we receive a Reject message immediately, we assume the
5620  *  negotiation has failed, and fall back to standard values.
5621  *
5622  *  If we receive a negotiation message while not in HS_NEGOTIATE
5623  *  state, it's a target initiated negotiation. We prepare a
5624  *  (hopefully) valid answer, set our parameters, and send back
5625  *  this answer to the target.
5626  *
5627  *  If the target doesn't fetch the answer (no message out phase),
5628  *  we assume the negotiation has failed, and fall back to default
5629  *  settings (SIR_NEGO_PROTO interrupt).
5630  *
5631  *  When we set the values, we adjust them in all ccbs belonging
5632  *  to this target, in the controller's register, and in the "phys"
5633  *  field of the controller's struct sym_hcb.
5634  */
5635 
5636 /*
5637  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5638  */
5639 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5640 {
5641 	u_char	chg, ofs, per, fak, div;
5642 	int	req = 1;
5643 
5644 	/*
5645 	 *  Synchronous request message received.
5646 	 */
5647 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5648 		sym_print_msg(cp, "sync msgin", np->msgin);
5649 	};
5650 
5651 	/*
5652 	 * request or answer ?
5653 	 */
5654 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5655 		OUTB (HS_PRT, HS_BUSY);
5656 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5657 			goto reject_it;
5658 		req = 0;
5659 	}
5660 
5661 	/*
5662 	 *  get requested values.
5663 	 */
5664 	chg = 0;
5665 	per = np->msgin[3];
5666 	ofs = np->msgin[4];
5667 
5668 	/*
5669 	 *  check values against our limits.
5670 	 */
5671 	if (ofs) {
5672 		if (ofs > np->maxoffs)
5673 			{chg = 1; ofs = np->maxoffs;}
5674 		if (req) {
5675 			if (ofs > tp->tinfo.user.offset)
5676 				{chg = 1; ofs = tp->tinfo.user.offset;}
5677 		}
5678 	}
5679 
5680 	if (ofs) {
5681 		if (per < np->minsync)
5682 			{chg = 1; per = np->minsync;}
5683 		if (req) {
5684 			if (per < tp->tinfo.user.period)
5685 				{chg = 1; per = tp->tinfo.user.period;}
5686 		}
5687 	}
5688 
5689 	div = fak = 0;
5690 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5691 		goto reject_it;
5692 
5693 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5694 		PRINT_ADDR(cp);
5695 		kprintf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5696 			ofs, per, div, fak, chg);
5697 	}
5698 
5699 	/*
5700 	 *  This was an answer message
5701 	 */
5702 	if (req == 0) {
5703 		if (chg) 	/* Answer wasn't acceptable. */
5704 			goto reject_it;
5705 		sym_setsync (np, cp, ofs, per, div, fak);
5706 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5707 		return;
5708 	}
5709 
5710 	/*
5711 	 *  It was a request. Set value and
5712 	 *  prepare an answer message
5713 	 */
5714 	sym_setsync (np, cp, ofs, per, div, fak);
5715 
5716 	np->msgout[0] = M_EXTENDED;
5717 	np->msgout[1] = 3;
5718 	np->msgout[2] = M_X_SYNC_REQ;
5719 	np->msgout[3] = per;
5720 	np->msgout[4] = ofs;
5721 
5722 	cp->nego_status = NS_SYNC;
5723 
5724 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5725 		sym_print_msg(cp, "sync msgout", np->msgout);
5726 	}
5727 
5728 	np->msgin [0] = M_NOOP;
5729 
5730 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5731 	return;
5732 reject_it:
5733 	sym_setsync (np, cp, 0, 0, 0, 0);
5734 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5735 }
5736 
5737 /*
5738  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5739  */
5740 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5741 {
5742 	u_char	chg, ofs, per, fak, dt, div, wide;
5743 	int	req = 1;
5744 
5745 	/*
5746 	 * Synchronous request message received.
5747 	 */
5748 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5749 		sym_print_msg(cp, "ppr msgin", np->msgin);
5750 	};
5751 
5752 	/*
5753 	 *  get requested values.
5754 	 */
5755 	chg  = 0;
5756 	per  = np->msgin[3];
5757 	ofs  = np->msgin[5];
5758 	wide = np->msgin[6];
5759 	dt   = np->msgin[7] & PPR_OPT_DT;
5760 
5761 	/*
5762 	 * request or answer ?
5763 	 */
5764 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5765 		OUTB (HS_PRT, HS_BUSY);
5766 		if (cp->nego_status && cp->nego_status != NS_PPR)
5767 			goto reject_it;
5768 		req = 0;
5769 	}
5770 
5771 	/*
5772 	 *  check values against our limits.
5773 	 */
5774 	if (wide > np->maxwide)
5775 		{chg = 1; wide = np->maxwide;}
5776 	if (!wide || !(np->features & FE_ULTRA3))
5777 		dt &= ~PPR_OPT_DT;
5778 	if (req) {
5779 		if (wide > tp->tinfo.user.width)
5780 			{chg = 1; wide = tp->tinfo.user.width;}
5781 	}
5782 
5783 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5784 		dt &= ~PPR_OPT_DT;
5785 
5786 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5787 
5788 	if (ofs) {
5789 		if (dt) {
5790 			if (ofs > np->maxoffs_dt)
5791 				{chg = 1; ofs = np->maxoffs_dt;}
5792 		}
5793 		else if (ofs > np->maxoffs)
5794 			{chg = 1; ofs = np->maxoffs;}
5795 		if (req) {
5796 			if (ofs > tp->tinfo.user.offset)
5797 				{chg = 1; ofs = tp->tinfo.user.offset;}
5798 		}
5799 	}
5800 
5801 	if (ofs) {
5802 		if (dt) {
5803 			if (per < np->minsync_dt)
5804 				{chg = 1; per = np->minsync_dt;}
5805 		}
5806 		else if (per < np->minsync)
5807 			{chg = 1; per = np->minsync;}
5808 		if (req) {
5809 			if (per < tp->tinfo.user.period)
5810 				{chg = 1; per = tp->tinfo.user.period;}
5811 		}
5812 	}
5813 
5814 	div = fak = 0;
5815 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5816 		goto reject_it;
5817 
5818 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5819 		PRINT_ADDR(cp);
5820 		kprintf ("ppr: "
5821 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5822 			dt, ofs, per, wide, div, fak, chg);
5823 	}
5824 
5825 	/*
5826 	 *  It was an answer.
5827 	 */
5828 	if (req == 0) {
5829 		if (chg) 	/* Answer wasn't acceptable */
5830 			goto reject_it;
5831 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5832 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5833 		return;
5834 	}
5835 
5836 	/*
5837 	 *  It was a request. Set value and
5838 	 *  prepare an answer message
5839 	 */
5840 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5841 
5842 	np->msgout[0] = M_EXTENDED;
5843 	np->msgout[1] = 6;
5844 	np->msgout[2] = M_X_PPR_REQ;
5845 	np->msgout[3] = per;
5846 	np->msgout[4] = 0;
5847 	np->msgout[5] = ofs;
5848 	np->msgout[6] = wide;
5849 	np->msgout[7] = dt;
5850 
5851 	cp->nego_status = NS_PPR;
5852 
5853 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5854 		sym_print_msg(cp, "ppr msgout", np->msgout);
5855 	}
5856 
5857 	np->msgin [0] = M_NOOP;
5858 
5859 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5860 	return;
5861 reject_it:
5862 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5863 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5864 	/*
5865 	 *  If it was a device response that should result in
5866 	 *  ST, we may want to try a legacy negotiation later.
5867 	 */
5868 	if (!req && !dt) {
5869 		tp->tinfo.goal.options = 0;
5870 		tp->tinfo.goal.width   = wide;
5871 		tp->tinfo.goal.period  = per;
5872 		tp->tinfo.goal.offset  = ofs;
5873 	}
5874 }
5875 
5876 /*
5877  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5878  */
5879 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5880 {
5881 	u_char	chg, wide;
5882 	int	req = 1;
5883 
5884 	/*
5885 	 *  Wide request message received.
5886 	 */
5887 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5888 		sym_print_msg(cp, "wide msgin", np->msgin);
5889 	};
5890 
5891 	/*
5892 	 * Is it a request from the device?
5893 	 */
5894 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5895 		OUTB (HS_PRT, HS_BUSY);
5896 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5897 			goto reject_it;
5898 		req = 0;
5899 	}
5900 
5901 	/*
5902 	 *  get requested values.
5903 	 */
5904 	chg  = 0;
5905 	wide = np->msgin[3];
5906 
5907 	/*
5908 	 *  check values against driver limits.
5909 	 */
5910 	if (wide > np->maxwide)
5911 		{chg = 1; wide = np->maxwide;}
5912 	if (req) {
5913 		if (wide > tp->tinfo.user.width)
5914 			{chg = 1; wide = tp->tinfo.user.width;}
5915 	}
5916 
5917 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5918 		PRINT_ADDR(cp);
5919 		kprintf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5920 	}
5921 
5922 	/*
5923 	 * This was an answer message
5924 	 */
5925 	if (req == 0) {
5926 		if (chg)	/*  Answer wasn't acceptable. */
5927 			goto reject_it;
5928 		sym_setwide (np, cp, wide);
5929 
5930 		/*
5931 		 * Negotiate for SYNC immediately after WIDE response.
5932 		 * This allows to negotiate for both WIDE and SYNC on
5933 		 * a single SCSI command (Suggested by Justin Gibbs).
5934 		 */
5935 		if (tp->tinfo.goal.offset) {
5936 			np->msgout[0] = M_EXTENDED;
5937 			np->msgout[1] = 3;
5938 			np->msgout[2] = M_X_SYNC_REQ;
5939 			np->msgout[3] = tp->tinfo.goal.period;
5940 			np->msgout[4] = tp->tinfo.goal.offset;
5941 
5942 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5943 				sym_print_msg(cp, "sync msgout", np->msgout);
5944 			}
5945 
5946 			cp->nego_status = NS_SYNC;
5947 			OUTB (HS_PRT, HS_NEGOTIATE);
5948 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5949 			return;
5950 		}
5951 
5952 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5953 		return;
5954 	};
5955 
5956 	/*
5957 	 *  It was a request, set value and
5958 	 *  prepare an answer message
5959 	 */
5960 	sym_setwide (np, cp, wide);
5961 
5962 	np->msgout[0] = M_EXTENDED;
5963 	np->msgout[1] = 2;
5964 	np->msgout[2] = M_X_WIDE_REQ;
5965 	np->msgout[3] = wide;
5966 
5967 	np->msgin [0] = M_NOOP;
5968 
5969 	cp->nego_status = NS_WIDE;
5970 
5971 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5972 		sym_print_msg(cp, "wide msgout", np->msgout);
5973 	}
5974 
5975 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5976 	return;
5977 reject_it:
5978 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5979 }
5980 
5981 /*
5982  *  Reset SYNC or WIDE to default settings.
5983  *
5984  *  Called when a negotiation does not succeed either
5985  *  on rejection or on protocol error.
5986  *
5987  *  If it was a PPR that made problems, we may want to
5988  *  try a legacy negotiation later.
5989  */
5990 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5991 {
5992 	/*
5993 	 *  any error in negotiation:
5994 	 *  fall back to default mode.
5995 	 */
5996 	switch (cp->nego_status) {
5997 	case NS_PPR:
5998 #if 0
5999 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6000 #else
6001 		tp->tinfo.goal.options = 0;
6002 		if (tp->tinfo.goal.period < np->minsync)
6003 			tp->tinfo.goal.period = np->minsync;
6004 		if (tp->tinfo.goal.offset > np->maxoffs)
6005 			tp->tinfo.goal.offset = np->maxoffs;
6006 #endif
6007 		break;
6008 	case NS_SYNC:
6009 		sym_setsync (np, cp, 0, 0, 0, 0);
6010 		break;
6011 	case NS_WIDE:
6012 		sym_setwide (np, cp, 0);
6013 		break;
6014 	};
6015 	np->msgin [0] = M_NOOP;
6016 	np->msgout[0] = M_NOOP;
6017 	cp->nego_status = 0;
6018 }
6019 
6020 /*
6021  *  chip handler for MESSAGE REJECT received in response to
6022  *  a WIDE or SYNCHRONOUS negotiation.
6023  */
6024 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6025 {
6026 	sym_nego_default(np, tp, cp);
6027 	OUTB (HS_PRT, HS_BUSY);
6028 }
6029 
6030 /*
6031  *  chip exception handler for programmed interrupts.
6032  */
6033 static void sym_int_sir (hcb_p np)
6034 {
6035 	u_char	num	= INB (nc_dsps);
6036 	u32	dsa	= INL (nc_dsa);
6037 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6038 	u_char	target	= INB (nc_sdid) & 0x0f;
6039 	tcb_p	tp	= &np->target[target];
6040 	int	tmp;
6041 
6042 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
6043 
6044 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("I#%d", num);
6045 
6046 	switch (num) {
6047 	/*
6048 	 *  Command has been completed with error condition
6049 	 *  or has been auto-sensed.
6050 	 */
6051 	case SIR_COMPLETE_ERROR:
6052 		sym_complete_error(np, cp);
6053 		return;
6054 	/*
6055 	 *  The C code is currently trying to recover from something.
6056 	 *  Typically, user want to abort some command.
6057 	 */
6058 	case SIR_SCRIPT_STOPPED:
6059 	case SIR_TARGET_SELECTED:
6060 	case SIR_ABORT_SENT:
6061 		sym_sir_task_recovery(np, num);
6062 		return;
6063 	/*
6064 	 *  The device didn't go to MSG OUT phase after having
6065 	 *  been selected with ATN. We donnot want to handle
6066 	 *  that.
6067 	 */
6068 	case SIR_SEL_ATN_NO_MSG_OUT:
6069 		kprintf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6070 			sym_name (np), target);
6071 		goto out_stuck;
6072 	/*
6073 	 *  The device didn't switch to MSG IN phase after
6074 	 *  having reseleted the initiator.
6075 	 */
6076 	case SIR_RESEL_NO_MSG_IN:
6077 		kprintf ("%s:%d: No MSG IN phase after reselection.\n",
6078 			sym_name (np), target);
6079 		goto out_stuck;
6080 	/*
6081 	 *  After reselection, the device sent a message that wasn't
6082 	 *  an IDENTIFY.
6083 	 */
6084 	case SIR_RESEL_NO_IDENTIFY:
6085 		kprintf ("%s:%d: No IDENTIFY after reselection.\n",
6086 			sym_name (np), target);
6087 		goto out_stuck;
6088 	/*
6089 	 *  The device reselected a LUN we donnot know about.
6090 	 */
6091 	case SIR_RESEL_BAD_LUN:
6092 		np->msgout[0] = M_RESET;
6093 		goto out;
6094 	/*
6095 	 *  The device reselected for an untagged nexus and we
6096 	 *  haven't any.
6097 	 */
6098 	case SIR_RESEL_BAD_I_T_L:
6099 		np->msgout[0] = M_ABORT;
6100 		goto out;
6101 	/*
6102 	 *  The device reselected for a tagged nexus that we donnot
6103 	 *  have.
6104 	 */
6105 	case SIR_RESEL_BAD_I_T_L_Q:
6106 		np->msgout[0] = M_ABORT_TAG;
6107 		goto out;
6108 	/*
6109 	 *  The SCRIPTS let us know that the device has grabbed
6110 	 *  our message and will abort the job.
6111 	 */
6112 	case SIR_RESEL_ABORTED:
6113 		np->lastmsg = np->msgout[0];
6114 		np->msgout[0] = M_NOOP;
6115 		kprintf ("%s:%d: message %x sent on bad reselection.\n",
6116 			sym_name (np), target, np->lastmsg);
6117 		goto out;
6118 	/*
6119 	 *  The SCRIPTS let us know that a message has been
6120 	 *  successfully sent to the device.
6121 	 */
6122 	case SIR_MSG_OUT_DONE:
6123 		np->lastmsg = np->msgout[0];
6124 		np->msgout[0] = M_NOOP;
6125 		/* Should we really care of that */
6126 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6127 			if (cp) {
6128 				cp->xerr_status &= ~XE_PARITY_ERR;
6129 				if (!cp->xerr_status)
6130 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6131 			}
6132 		}
6133 		goto out;
6134 	/*
6135 	 *  The device didn't send a GOOD SCSI status.
6136 	 *  We may have some work to do prior to allow
6137 	 *  the SCRIPTS processor to continue.
6138 	 */
6139 	case SIR_BAD_SCSI_STATUS:
6140 		if (!cp)
6141 			goto out;
6142 		sym_sir_bad_scsi_status(np, num, cp);
6143 		return;
6144 	/*
6145 	 *  We are asked by the SCRIPTS to prepare a
6146 	 *  REJECT message.
6147 	 */
6148 	case SIR_REJECT_TO_SEND:
6149 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6150 		np->msgout[0] = M_REJECT;
6151 		goto out;
6152 	/*
6153 	 *  We have been ODD at the end of a DATA IN
6154 	 *  transfer and the device didn't send a
6155 	 *  IGNORE WIDE RESIDUE message.
6156 	 *  It is a data overrun condition.
6157 	 */
6158 	case SIR_SWIDE_OVERRUN:
6159 		if (cp) {
6160 			OUTONB (HF_PRT, HF_EXT_ERR);
6161 			cp->xerr_status |= XE_SWIDE_OVRUN;
6162 		}
6163 		goto out;
6164 	/*
6165 	 *  We have been ODD at the end of a DATA OUT
6166 	 *  transfer.
6167 	 *  It is a data underrun condition.
6168 	 */
6169 	case SIR_SODL_UNDERRUN:
6170 		if (cp) {
6171 			OUTONB (HF_PRT, HF_EXT_ERR);
6172 			cp->xerr_status |= XE_SODL_UNRUN;
6173 		}
6174 		goto out;
6175 	/*
6176 	 *  The device wants us to tranfer more data than
6177 	 *  expected or in the wrong direction.
6178 	 *  The number of extra bytes is in scratcha.
6179 	 *  It is a data overrun condition.
6180 	 */
6181 	case SIR_DATA_OVERRUN:
6182 		if (cp) {
6183 			OUTONB (HF_PRT, HF_EXT_ERR);
6184 			cp->xerr_status |= XE_EXTRA_DATA;
6185 			cp->extra_bytes += INL (nc_scratcha);
6186 		}
6187 		goto out;
6188 	/*
6189 	 *  The device switched to an illegal phase (4/5).
6190 	 */
6191 	case SIR_BAD_PHASE:
6192 		if (cp) {
6193 			OUTONB (HF_PRT, HF_EXT_ERR);
6194 			cp->xerr_status |= XE_BAD_PHASE;
6195 		}
6196 		goto out;
6197 	/*
6198 	 *  We received a message.
6199 	 */
6200 	case SIR_MSG_RECEIVED:
6201 		if (!cp)
6202 			goto out_stuck;
6203 		switch (np->msgin [0]) {
6204 		/*
6205 		 *  We received an extended message.
6206 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6207 		 *  and reject all other extended messages.
6208 		 */
6209 		case M_EXTENDED:
6210 			switch (np->msgin [2]) {
6211 			case M_X_MODIFY_DP:
6212 				if (DEBUG_FLAGS & DEBUG_POINTER)
6213 					sym_print_msg(cp,"modify DP",np->msgin);
6214 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6215 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6216 				sym_modify_dp(np, tp, cp, tmp);
6217 				return;
6218 			case M_X_SYNC_REQ:
6219 				sym_sync_nego(np, tp, cp);
6220 				return;
6221 			case M_X_PPR_REQ:
6222 				sym_ppr_nego(np, tp, cp);
6223 				return;
6224 			case M_X_WIDE_REQ:
6225 				sym_wide_nego(np, tp, cp);
6226 				return;
6227 			default:
6228 				goto out_reject;
6229 			}
6230 			break;
6231 		/*
6232 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6233 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6234 		 *  RESIDUE messages that haven't been anticipated by
6235 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6236 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6237 		 */
6238 		case M_IGN_RESIDUE:
6239 			if (DEBUG_FLAGS & DEBUG_POINTER)
6240 				sym_print_msg(cp,"ign wide residue", np->msgin);
6241 			sym_modify_dp(np, tp, cp, -1);
6242 			return;
6243 		case M_REJECT:
6244 			if (INB (HS_PRT) == HS_NEGOTIATE)
6245 				sym_nego_rejected(np, tp, cp);
6246 			else {
6247 				PRINT_ADDR(cp);
6248 				kprintf ("M_REJECT received (%x:%x).\n",
6249 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6250 			}
6251 			goto out_clrack;
6252 			break;
6253 		default:
6254 			goto out_reject;
6255 		}
6256 		break;
6257 	/*
6258 	 *  We received an unknown message.
6259 	 *  Ignore all MSG IN phases and reject it.
6260 	 */
6261 	case SIR_MSG_WEIRD:
6262 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6263 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6264 		return;
6265 	/*
6266 	 *  Negotiation failed.
6267 	 *  Target does not send us the reply.
6268 	 *  Remove the HS_NEGOTIATE status.
6269 	 */
6270 	case SIR_NEGO_FAILED:
6271 		OUTB (HS_PRT, HS_BUSY);
6272 	/*
6273 	 *  Negotiation failed.
6274 	 *  Target does not want answer message.
6275 	 */
6276 	case SIR_NEGO_PROTO:
6277 		sym_nego_default(np, tp, cp);
6278 		goto out;
6279 	};
6280 
6281 out:
6282 	OUTONB_STD ();
6283 	return;
6284 out_reject:
6285 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6286 	return;
6287 out_clrack:
6288 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6289 	return;
6290 out_stuck:
6291 	return;
6292 }
6293 
6294 /*
6295  *  Acquire a control block
6296  */
6297 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6298 {
6299 	tcb_p tp = &np->target[tn];
6300 	lcb_p lp = sym_lp(np, tp, ln);
6301 	u_short tag = NO_TAG;
6302 	SYM_QUEHEAD *qp;
6303 	ccb_p cp = NULL;
6304 
6305 	/*
6306 	 *  Look for a free CCB
6307 	 */
6308 	if (sym_que_empty(&np->free_ccbq))
6309 		goto out;
6310 	qp = sym_remque_head(&np->free_ccbq);
6311 	if (!qp)
6312 		goto out;
6313 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6314 
6315 	/*
6316 	 *  If the LCB is not yet available and the LUN
6317 	 *  has been probed ok, try to allocate the LCB.
6318 	 */
6319 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6320 		lp = sym_alloc_lcb(np, tn, ln);
6321 		if (!lp)
6322 			goto out_free;
6323 	}
6324 
6325 	/*
6326 	 *  If the LCB is not available here, then the
6327 	 *  logical unit is not yet discovered. For those
6328 	 *  ones only accept 1 SCSI IO per logical unit,
6329 	 *  since we cannot allow disconnections.
6330 	 */
6331 	if (!lp) {
6332 		if (!sym_is_bit(tp->busy0_map, ln))
6333 			sym_set_bit(tp->busy0_map, ln);
6334 		else
6335 			goto out_free;
6336 	} else {
6337 		/*
6338 		 *  If we have been asked for a tagged command.
6339 		 */
6340 		if (tag_order) {
6341 			/*
6342 			 *  Debugging purpose.
6343 			 */
6344 			assert(lp->busy_itl == 0);
6345 			/*
6346 			 *  Allocate resources for tags if not yet.
6347 			 */
6348 			if (!lp->cb_tags) {
6349 				sym_alloc_lcb_tags(np, tn, ln);
6350 				if (!lp->cb_tags)
6351 					goto out_free;
6352 			}
6353 			/*
6354 			 *  Get a tag for this SCSI IO and set up
6355 			 *  the CCB bus address for reselection,
6356 			 *  and count it for this LUN.
6357 			 *  Toggle reselect path to tagged.
6358 			 */
6359 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6360 				tag = lp->cb_tags[lp->ia_tag];
6361 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6362 					lp->ia_tag = 0;
6363 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6364 				++lp->busy_itlq;
6365 				lp->head.resel_sa =
6366 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6367 			}
6368 			else
6369 				goto out_free;
6370 		}
6371 		/*
6372 		 *  This command will not be tagged.
6373 		 *  If we already have either a tagged or untagged
6374 		 *  one, refuse to overlap this untagged one.
6375 		 */
6376 		else {
6377 			/*
6378 			 *  Debugging purpose.
6379 			 */
6380 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6381 			/*
6382 			 *  Count this nexus for this LUN.
6383 			 *  Set up the CCB bus address for reselection.
6384 			 *  Toggle reselect path to untagged.
6385 			 */
6386 			if (++lp->busy_itl == 1) {
6387 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6388 				lp->head.resel_sa =
6389 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6390 			}
6391 			else
6392 				goto out_free;
6393 		}
6394 	}
6395 	/*
6396 	 *  Put the CCB into the busy queue.
6397 	 */
6398 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6399 
6400 	/*
6401 	 *  Remember all informations needed to free this CCB.
6402 	 */
6403 	cp->to_abort = 0;
6404 	cp->tag	   = tag;
6405 	cp->target = tn;
6406 	cp->lun    = ln;
6407 
6408 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6409 		PRINT_LUN(np, tn, ln);
6410 		kprintf ("ccb @%p using tag %d.\n", cp, tag);
6411 	}
6412 
6413 out:
6414 	return cp;
6415 out_free:
6416 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6417 	return NULL;
6418 }
6419 
6420 /*
6421  *  Release one control block
6422  */
6423 static void sym_free_ccb (hcb_p np, ccb_p cp)
6424 {
6425 	tcb_p tp = &np->target[cp->target];
6426 	lcb_p lp = sym_lp(np, tp, cp->lun);
6427 
6428 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6429 		PRINT_LUN(np, cp->target, cp->lun);
6430 		kprintf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6431 	}
6432 
6433 	/*
6434 	 *  If LCB available,
6435 	 */
6436 	if (lp) {
6437 		/*
6438 		 *  If tagged, release the tag, set the relect path
6439 		 */
6440 		if (cp->tag != NO_TAG) {
6441 			/*
6442 			 *  Free the tag value.
6443 			 */
6444 			lp->cb_tags[lp->if_tag] = cp->tag;
6445 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6446 				lp->if_tag = 0;
6447 			/*
6448 			 *  Make the reselect path invalid,
6449 			 *  and uncount this CCB.
6450 			 */
6451 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6452 			--lp->busy_itlq;
6453 		} else {	/* Untagged */
6454 			/*
6455 			 *  Make the reselect path invalid,
6456 			 *  and uncount this CCB.
6457 			 */
6458 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6459 			--lp->busy_itl;
6460 		}
6461 		/*
6462 		 *  If no JOB active, make the LUN reselect path invalid.
6463 		 */
6464 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6465 			lp->head.resel_sa =
6466 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6467 	}
6468 	/*
6469 	 *  Otherwise, we only accept 1 IO per LUN.
6470 	 *  Clear the bit that keeps track of this IO.
6471 	 */
6472 	else
6473 		sym_clr_bit(tp->busy0_map, cp->lun);
6474 
6475 	/*
6476 	 *  We donnot queue more than 1 ccb per target
6477 	 *  with negotiation at any time. If this ccb was
6478 	 *  used for negotiation, clear this info in the tcb.
6479 	 */
6480 	if (cp == tp->nego_cp)
6481 		tp->nego_cp = NULL;
6482 
6483 #ifdef SYM_CONF_IARB_SUPPORT
6484 	/*
6485 	 *  If we just complete the last queued CCB,
6486 	 *  clear this info that is no longer relevant.
6487 	 */
6488 	if (cp == np->last_cp)
6489 		np->last_cp = NULL;
6490 #endif
6491 
6492 	/*
6493 	 *  Unmap user data from DMA map if needed.
6494 	 */
6495 	if (cp->dmamapped) {
6496 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6497 		cp->dmamapped = 0;
6498 	}
6499 
6500 	/*
6501 	 *  Make this CCB available.
6502 	 */
6503 	cp->cam_ccb = NULL;
6504 	cp->host_status = HS_IDLE;
6505 	sym_remque(&cp->link_ccbq);
6506 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6507 }
6508 
6509 /*
6510  *  Allocate a CCB from memory and initialize its fixed part.
6511  */
6512 static ccb_p sym_alloc_ccb(hcb_p np)
6513 {
6514 	ccb_p cp = NULL;
6515 	int hcode;
6516 
6517 	SYM_LOCK_ASSERT(0);
6518 
6519 	/*
6520 	 *  Prevent from allocating more CCBs than we can
6521 	 *  queue to the controller.
6522 	 */
6523 	if (np->actccbs >= SYM_CONF_MAX_START)
6524 		return NULL;
6525 
6526 	/*
6527 	 *  Allocate memory for this CCB.
6528 	 */
6529 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6530 	if (!cp)
6531 		return NULL;
6532 
6533 	/*
6534 	 *  Allocate a bounce buffer for sense data.
6535 	 */
6536 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6537 	if (!cp->sns_bbuf)
6538 		goto out_free;
6539 
6540 	/*
6541 	 *  Allocate a map for the DMA of user data.
6542 	 */
6543 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6544 		goto out_free;
6545 	/*
6546 	 *  Count it.
6547 	 */
6548 	np->actccbs++;
6549 
6550 	/*
6551 	 * Initialize the callout.
6552 	 */
6553 	callout_init(&cp->ch);
6554 
6555 	/*
6556 	 *  Compute the bus address of this ccb.
6557 	 */
6558 	cp->ccb_ba = vtobus(cp);
6559 
6560 	/*
6561 	 *  Insert this ccb into the hashed list.
6562 	 */
6563 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6564 	cp->link_ccbh = np->ccbh[hcode];
6565 	np->ccbh[hcode] = cp;
6566 
6567 	/*
6568 	 *  Initialize the start and restart actions.
6569 	 */
6570 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6571 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6572 
6573  	/*
6574 	 *  Initilialyze some other fields.
6575 	 */
6576 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6577 
6578 	/*
6579 	 *  Chain into free ccb queue.
6580 	 */
6581 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6582 
6583 	return cp;
6584 out_free:
6585 	if (cp->sns_bbuf)
6586 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6587 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6588 	return NULL;
6589 }
6590 
6591 /*
6592  *  Look up a CCB from a DSA value.
6593  */
6594 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6595 {
6596 	int hcode;
6597 	ccb_p cp;
6598 
6599 	hcode = CCB_HASH_CODE(dsa);
6600 	cp = np->ccbh[hcode];
6601 	while (cp) {
6602 		if (cp->ccb_ba == dsa)
6603 			break;
6604 		cp = cp->link_ccbh;
6605 	}
6606 
6607 	return cp;
6608 }
6609 
6610 /*
6611  *  Target control block initialisation.
6612  *  Nothing important to do at the moment.
6613  */
6614 static void sym_init_tcb (hcb_p np, u_char tn)
6615 {
6616 	/*
6617 	 *  Check some alignments required by the chip.
6618 	 */
6619 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6620 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6621 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6622 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6623 }
6624 
6625 /*
6626  *  Lun control block allocation and initialization.
6627  */
6628 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6629 {
6630 	tcb_p tp = &np->target[tn];
6631 	lcb_p lp = sym_lp(np, tp, ln);
6632 
6633 	/*
6634 	 *  Already done, just return.
6635 	 */
6636 	if (lp)
6637 		return lp;
6638 	/*
6639 	 *  Check against some race.
6640 	 */
6641 	assert(!sym_is_bit(tp->busy0_map, ln));
6642 
6643 	/*
6644 	 *  Initialize the target control block if not yet.
6645 	 */
6646 	sym_init_tcb (np, tn);
6647 
6648 	/*
6649 	 *  Allocate the LCB bus address array.
6650 	 *  Compute the bus address of this table.
6651 	 */
6652 	if (ln && !tp->luntbl) {
6653 		int i;
6654 
6655 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6656 		if (!tp->luntbl)
6657 			goto fail;
6658 		for (i = 0 ; i < 64 ; i++)
6659 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6660 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6661 	}
6662 
6663 	/*
6664 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6665 	 */
6666 	if (ln && !tp->lunmp) {
6667 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6668 				   "LUNMP");
6669 		if (!tp->lunmp)
6670 			goto fail;
6671 	}
6672 
6673 	/*
6674 	 *  Allocate the lcb.
6675 	 *  Make it available to the chip.
6676 	 */
6677 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6678 	if (!lp)
6679 		goto fail;
6680 	if (ln) {
6681 		tp->lunmp[ln] = lp;
6682 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6683 	}
6684 	else {
6685 		tp->lun0p = lp;
6686 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6687 	}
6688 
6689 	/*
6690 	 *  Let the itl task point to error handling.
6691 	 */
6692 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6693 
6694 	/*
6695 	 *  Set the reselect pattern to our default. :)
6696 	 */
6697 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6698 
6699 	/*
6700 	 *  Set user capabilities.
6701 	 */
6702 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6703 
6704 fail:
6705 	return lp;
6706 }
6707 
6708 /*
6709  *  Allocate LCB resources for tagged command queuing.
6710  */
6711 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6712 {
6713 	tcb_p tp = &np->target[tn];
6714 	lcb_p lp = sym_lp(np, tp, ln);
6715 	int i;
6716 
6717 	/*
6718 	 *  If LCB not available, try to allocate it.
6719 	 */
6720 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6721 		return;
6722 
6723 	/*
6724 	 *  Allocate the task table and and the tag allocation
6725 	 *  circular buffer. We want both or none.
6726 	 */
6727 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6728 	if (!lp->itlq_tbl)
6729 		return;
6730 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6731 	if (!lp->cb_tags) {
6732 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6733 		lp->itlq_tbl = NULL;
6734 		return;
6735 	}
6736 
6737 	/*
6738 	 *  Initialize the task table with invalid entries.
6739 	 */
6740 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6741 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6742 
6743 	/*
6744 	 *  Fill up the tag buffer with tag numbers.
6745 	 */
6746 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6747 		lp->cb_tags[i] = i;
6748 
6749 	/*
6750 	 *  Make the task table available to SCRIPTS,
6751 	 *  And accept tagged commands now.
6752 	 */
6753 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6754 }
6755 
6756 /*
6757  *  Test the pci bus snoop logic :-(
6758  *
6759  *  Has to be called with interrupts disabled.
6760  */
6761 #ifndef SYM_CONF_IOMAPPED
6762 static int sym_regtest (hcb_p np)
6763 {
6764 	volatile u32 data;
6765 	/*
6766 	 *  chip registers may NOT be cached.
6767 	 *  write 0xffffffff to a read only register area,
6768 	 *  and try to read it back.
6769 	 */
6770 	data = 0xffffffff;
6771 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6772 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6773 #if 1
6774 	if (data == 0xffffffff) {
6775 #else
6776 	if ((data & 0xe2f0fffd) != 0x02000080) {
6777 #endif
6778 		kprintf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6779 			(unsigned) data);
6780 		return (0x10);
6781 	};
6782 	return (0);
6783 }
6784 #endif
6785 
6786 static int sym_snooptest (hcb_p np)
6787 {
6788 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6789 	int	i, err=0;
6790 #ifndef SYM_CONF_IOMAPPED
6791 	err |= sym_regtest (np);
6792 	if (err) return (err);
6793 #endif
6794 restart_test:
6795 	/*
6796 	 *  Enable Master Parity Checking as we intend
6797 	 *  to enable it for normal operations.
6798 	 */
6799 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6800 	/*
6801 	 *  init
6802 	 */
6803 	pc  = SCRIPTB0_BA (np, snooptest);
6804 	host_wr = 1;
6805 	sym_wr  = 2;
6806 	/*
6807 	 *  Set memory and register.
6808 	 */
6809 	np->cache = cpu_to_scr(host_wr);
6810 	OUTL (nc_temp, sym_wr);
6811 	/*
6812 	 *  Start script (exchange values)
6813 	 */
6814 	OUTL (nc_dsa, np->hcb_ba);
6815 	OUTL_DSP (pc);
6816 	/*
6817 	 *  Wait 'til done (with timeout)
6818 	 */
6819 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6820 		if (INB(nc_istat) & (INTF|SIP|DIP))
6821 			break;
6822 	if (i>=SYM_SNOOP_TIMEOUT) {
6823 		kprintf ("CACHE TEST FAILED: timeout.\n");
6824 		return (0x20);
6825 	};
6826 	/*
6827 	 *  Check for fatal DMA errors.
6828 	 */
6829 	dstat = INB (nc_dstat);
6830 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6831 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6832 		kprintf ("%s: PCI DATA PARITY ERROR DETECTED - "
6833 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6834 			sym_name(np));
6835 		np->rv_ctest4 &= ~MPEE;
6836 		goto restart_test;
6837 	}
6838 #endif
6839 	if (dstat & (MDPE|BF|IID)) {
6840 		kprintf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6841 		return (0x80);
6842 	}
6843 	/*
6844 	 *  Save termination position.
6845 	 */
6846 	pc = INL (nc_dsp);
6847 	/*
6848 	 *  Read memory and register.
6849 	 */
6850 	host_rd = scr_to_cpu(np->cache);
6851 	sym_rd  = INL (nc_scratcha);
6852 	sym_bk  = INL (nc_temp);
6853 
6854 	/*
6855 	 *  Check termination position.
6856 	 */
6857 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6858 		kprintf ("CACHE TEST FAILED: script execution failed.\n");
6859 		kprintf ("start=%08lx, pc=%08lx, end=%08lx\n",
6860 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6861 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6862 		return (0x40);
6863 	};
6864 	/*
6865 	 *  Show results.
6866 	 */
6867 	if (host_wr != sym_rd) {
6868 		kprintf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6869 			(int) host_wr, (int) sym_rd);
6870 		err |= 1;
6871 	};
6872 	if (host_rd != sym_wr) {
6873 		kprintf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6874 			(int) sym_wr, (int) host_rd);
6875 		err |= 2;
6876 	};
6877 	if (sym_bk != sym_wr) {
6878 		kprintf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6879 			(int) sym_wr, (int) sym_bk);
6880 		err |= 4;
6881 	};
6882 
6883 	return (err);
6884 }
6885 
6886 /*
6887  *  Determine the chip's clock frequency.
6888  *
6889  *  This is essential for the negotiation of the synchronous
6890  *  transfer rate.
6891  *
6892  *  Note: we have to return the correct value.
6893  *  THERE IS NO SAFE DEFAULT VALUE.
6894  *
6895  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6896  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6897  *  do not have a clock doubler and so are provided with a
6898  *  80 MHz clock. All other fast20 boards incorporate a doubler
6899  *  and so should be delivered with a 40 MHz clock.
6900  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6901  *  clock and provide a clock quadrupler (160 Mhz).
6902  */
6903 
6904 /*
6905  *  Select SCSI clock frequency
6906  */
6907 static void sym_selectclock(hcb_p np, u_char scntl3)
6908 {
6909 	/*
6910 	 *  If multiplier not present or not selected, leave here.
6911 	 */
6912 	if (np->multiplier <= 1) {
6913 		OUTB(nc_scntl3,	scntl3);
6914 		return;
6915 	}
6916 
6917 	if (sym_verbose >= 2)
6918 		kprintf ("%s: enabling clock multiplier\n", sym_name(np));
6919 
6920 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6921 	/*
6922 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6923 	 *  Otherwise wait 20 micro-seconds.
6924 	 */
6925 	if (np->features & FE_LCKFRQ) {
6926 		int i = 20;
6927 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6928 			UDELAY (20);
6929 		if (!i)
6930 			kprintf("%s: the chip cannot lock the frequency\n",
6931 				sym_name(np));
6932 	} else
6933 		UDELAY (20);
6934 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6935 	OUTB(nc_scntl3,	scntl3);
6936 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6937 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6938 }
6939 
6940 /*
6941  *  calculate SCSI clock frequency (in KHz)
6942  */
6943 static unsigned getfreq (hcb_p np, int gen)
6944 {
6945 	unsigned int ms = 0;
6946 	unsigned int f;
6947 
6948 	/*
6949 	 * Measure GEN timer delay in order
6950 	 * to calculate SCSI clock frequency
6951 	 *
6952 	 * This code will never execute too
6953 	 * many loop iterations (if DELAY is
6954 	 * reasonably correct). It could get
6955 	 * too low a delay (too high a freq.)
6956 	 * if the CPU is slow executing the
6957 	 * loop for some reason (an NMI, for
6958 	 * example). For this reason we will
6959 	 * if multiple measurements are to be
6960 	 * performed trust the higher delay
6961 	 * (lower frequency returned).
6962 	 */
6963 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6964 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6965 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6966 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6967 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6968 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6969 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6970 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6971 		UDELAY (1000);	/* count ms */
6972 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6973  	/*
6974  	 * set prescaler to divide by whatever 0 means
6975  	 * 0 ought to choose divide by 2, but appears
6976  	 * to set divide by 3.5 mode in my 53c810 ...
6977  	 */
6978  	OUTB (nc_scntl3, 0);
6979 
6980   	/*
6981 	 * adjust for prescaler, and convert into KHz
6982   	 */
6983 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6984 
6985 	if (sym_verbose >= 2)
6986 		kprintf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6987 			sym_name(np), gen, ms, f);
6988 
6989 	return f;
6990 }
6991 
6992 static unsigned sym_getfreq (hcb_p np)
6993 {
6994 	u_int f1, f2;
6995 	int gen = 11;
6996 
6997 	(void) getfreq (np, gen);	/* throw away first result */
6998 	f1 = getfreq (np, gen);
6999 	f2 = getfreq (np, gen);
7000 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7001 	return f1;
7002 }
7003 
7004 /*
7005  *  Get/probe chip SCSI clock frequency
7006  */
7007 static void sym_getclock (hcb_p np, int mult)
7008 {
7009 	unsigned char scntl3 = np->sv_scntl3;
7010 	unsigned char stest1 = np->sv_stest1;
7011 	unsigned f1;
7012 
7013 	/*
7014 	 *  For the C10 core, assume 40 MHz.
7015 	 */
7016 	if (np->features & FE_C10) {
7017 		np->multiplier = mult;
7018 		np->clock_khz = 40000 * mult;
7019 		return;
7020 	}
7021 
7022 	np->multiplier = 1;
7023 	f1 = 40000;
7024 	/*
7025 	 *  True with 875/895/896/895A with clock multiplier selected
7026 	 */
7027 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7028 		if (sym_verbose >= 2)
7029 			kprintf ("%s: clock multiplier found\n", sym_name(np));
7030 		np->multiplier = mult;
7031 	}
7032 
7033 	/*
7034 	 *  If multiplier not found or scntl3 not 7,5,3,
7035 	 *  reset chip and get frequency from general purpose timer.
7036 	 *  Otherwise trust scntl3 BIOS setting.
7037 	 */
7038 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7039 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7040 		f1 = sym_getfreq (np);
7041 
7042 		if (sym_verbose)
7043 			kprintf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7044 
7045 		if	(f1 <	45000)		f1 =  40000;
7046 		else if (f1 <	55000)		f1 =  50000;
7047 		else				f1 =  80000;
7048 
7049 		if (f1 < 80000 && mult > 1) {
7050 			if (sym_verbose >= 2)
7051 				kprintf ("%s: clock multiplier assumed\n",
7052 					sym_name(np));
7053 			np->multiplier	= mult;
7054 		}
7055 	} else {
7056 		if	((scntl3 & 7) == 3)	f1 =  40000;
7057 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7058 		else 				f1 = 160000;
7059 
7060 		f1 /= np->multiplier;
7061 	}
7062 
7063 	/*
7064 	 *  Compute controller synchronous parameters.
7065 	 */
7066 	f1		*= np->multiplier;
7067 	np->clock_khz	= f1;
7068 }
7069 
7070 /*
7071  *  Get/probe PCI clock frequency
7072  */
7073 static int sym_getpciclock (hcb_p np)
7074 {
7075 	int f = 0;
7076 
7077 	/*
7078 	 *  For the C1010-33, this doesn't work.
7079 	 *  For the C1010-66, this will be tested when I'll have
7080 	 *  such a beast to play with.
7081 	 */
7082 	if (!(np->features & FE_C10)) {
7083 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7084 		f = (int) sym_getfreq (np);
7085 		OUTB (nc_stest1, 0);
7086 	}
7087 	np->pciclk_khz = f;
7088 
7089 	return f;
7090 }
7091 
7092 /*============= DRIVER ACTION/COMPLETION ====================*/
7093 
7094 /*
7095  *  Print something that tells about extended errors.
7096  */
7097 static void sym_print_xerr(ccb_p cp, int x_status)
7098 {
7099 	if (x_status & XE_PARITY_ERR) {
7100 		PRINT_ADDR(cp);
7101 		kprintf ("unrecovered SCSI parity error.\n");
7102 	}
7103 	if (x_status & XE_EXTRA_DATA) {
7104 		PRINT_ADDR(cp);
7105 		kprintf ("extraneous data discarded.\n");
7106 	}
7107 	if (x_status & XE_BAD_PHASE) {
7108 		PRINT_ADDR(cp);
7109 		kprintf ("illegal scsi phase (4/5).\n");
7110 	}
7111 	if (x_status & XE_SODL_UNRUN) {
7112 		PRINT_ADDR(cp);
7113 		kprintf ("ODD transfer in DATA OUT phase.\n");
7114 	}
7115 	if (x_status & XE_SWIDE_OVRUN) {
7116 		PRINT_ADDR(cp);
7117 		kprintf ("ODD transfer in DATA IN phase.\n");
7118 	}
7119 }
7120 
7121 /*
7122  *  Choose the more appropriate CAM status if
7123  *  the IO encountered an extended error.
7124  */
7125 static int sym_xerr_cam_status(int cam_status, int x_status)
7126 {
7127 	if (x_status) {
7128 		if	(x_status & XE_PARITY_ERR)
7129 			cam_status = CAM_UNCOR_PARITY;
7130 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7131 			cam_status = CAM_DATA_RUN_ERR;
7132 		else if	(x_status & XE_BAD_PHASE)
7133 			cam_status = CAM_REQ_CMP_ERR;
7134 		else
7135 			cam_status = CAM_REQ_CMP_ERR;
7136 	}
7137 	return cam_status;
7138 }
7139 
7140 /*
7141  *  Complete execution of a SCSI command with extented
7142  *  error, SCSI status error, or having been auto-sensed.
7143  *
7144  *  The SCRIPTS processor is not running there, so we
7145  *  can safely access IO registers and remove JOBs from
7146  *  the START queue.
7147  *  SCRATCHA is assumed to have been loaded with STARTPOS
7148  *  before the SCRIPTS called the C code.
7149  */
7150 static void sym_complete_error (hcb_p np, ccb_p cp)
7151 {
7152 	struct ccb_scsiio *csio;
7153 	u_int cam_status;
7154 	int i, sense_returned;
7155 
7156 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7157 
7158 	/*
7159 	 *  Paranoid check. :)
7160 	 */
7161 	if (!cp || !cp->cam_ccb)
7162 		return;
7163 
7164 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7165 		kprintf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7166 			cp->host_status, cp->ssss_status, cp->host_flags,
7167 			cp->target, cp->lun);
7168 		MDELAY(100);
7169 	}
7170 
7171 	/*
7172 	 *  Get CAM command pointer.
7173 	 */
7174 	csio = &cp->cam_ccb->csio;
7175 
7176 	/*
7177 	 *  Check for extended errors.
7178 	 */
7179 	if (cp->xerr_status) {
7180 		if (sym_verbose)
7181 			sym_print_xerr(cp, cp->xerr_status);
7182 		if (cp->host_status == HS_COMPLETE)
7183 			cp->host_status = HS_COMP_ERR;
7184 	}
7185 
7186 	/*
7187 	 *  Calculate the residual.
7188 	 */
7189 	csio->sense_resid = 0;
7190 	csio->resid = sym_compute_residual(np, cp);
7191 
7192 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7193 		csio->resid  = 0;	/* throw them away. :)		   */
7194 		cp->sv_resid = 0;
7195 	}
7196 
7197 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7198 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7199 		csio->sense_resid = csio->resid;	/* Swap residuals */
7200 		csio->resid       = cp->sv_resid;
7201 		cp->sv_resid	  = 0;
7202 		if (sym_verbose && cp->sv_xerr_status)
7203 			sym_print_xerr(cp, cp->sv_xerr_status);
7204 		if (cp->host_status == HS_COMPLETE &&
7205 		    cp->ssss_status == S_GOOD &&
7206 		    cp->xerr_status == 0) {
7207 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7208 							 cp->sv_xerr_status);
7209 			cam_status |= CAM_AUTOSNS_VALID;
7210 			/*
7211 			 *  Bounce back the sense data to user and
7212 			 *  fix the residual.
7213 			 */
7214 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7215 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7216 			if (sense_returned < csio->sense_len)
7217 				csio->sense_resid = csio->sense_len -
7218 				    sense_returned;
7219 			else
7220 				csio->sense_resid = 0;
7221 			bcopy(cp->sns_bbuf, &csio->sense_data,
7222 			    MIN(csio->sense_len, sense_returned));
7223 #if 0
7224 			/*
7225 			 *  If the device reports a UNIT ATTENTION condition
7226 			 *  due to a RESET condition, we should consider all
7227 			 *  disconnect CCBs for this unit as aborted.
7228 			 */
7229 			if (1) {
7230 				u_char *p;
7231 				p  = (u_char *) csio->sense_data;
7232 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7233 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7234 							cp->target,cp->lun, -1);
7235 			}
7236 #endif
7237 		}
7238 		else
7239 			cam_status = CAM_AUTOSENSE_FAIL;
7240 	}
7241 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7242 		csio->scsi_status = cp->ssss_status;
7243 		cam_status = CAM_SCSI_STATUS_ERROR;
7244 	}
7245 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7246 		cam_status = CAM_SEL_TIMEOUT;
7247 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7248 		cam_status = CAM_UNEXP_BUSFREE;
7249 	else {						/* Extended error */
7250 		if (sym_verbose) {
7251 			PRINT_ADDR(cp);
7252 			kprintf ("COMMAND FAILED (%x %x %x).\n",
7253 				cp->host_status, cp->ssss_status,
7254 				cp->xerr_status);
7255 		}
7256 		csio->scsi_status = cp->ssss_status;
7257 		/*
7258 		 *  Set the most appropriate value for CAM status.
7259 		 */
7260 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7261 						 cp->xerr_status);
7262 	}
7263 
7264 	/*
7265 	 *  Dequeue all queued CCBs for that device
7266 	 *  not yet started by SCRIPTS.
7267 	 */
7268 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7269 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7270 
7271 	/*
7272 	 *  Restart the SCRIPTS processor.
7273 	 */
7274 	OUTL_DSP (SCRIPTA_BA (np, start));
7275 
7276 	/*
7277 	 *  Synchronize DMA map if needed.
7278 	 */
7279 	if (cp->dmamapped) {
7280 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7281 			(cp->dmamapped == SYM_DMA_READ ?
7282 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7283 	}
7284 	/*
7285 	 *  Add this one to the COMP queue.
7286 	 *  Complete all those commands with either error
7287 	 *  or requeue condition.
7288 	 */
7289 	sym_set_cam_status((union ccb *) csio, cam_status);
7290 	sym_remque(&cp->link_ccbq);
7291 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7292 	sym_flush_comp_queue(np, 0);
7293 }
7294 
7295 /*
7296  *  Complete execution of a successful SCSI command.
7297  *
7298  *  Only successful commands go to the DONE queue,
7299  *  since we need to have the SCRIPTS processor
7300  *  stopped on any error condition.
7301  *  The SCRIPTS processor is running while we are
7302  *  completing successful commands.
7303  */
7304 static void sym_complete_ok (hcb_p np, ccb_p cp)
7305 {
7306 	struct ccb_scsiio *csio;
7307 	tcb_p tp;
7308 	lcb_p lp;
7309 
7310 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7311 
7312 	/*
7313 	 *  Paranoid check. :)
7314 	 */
7315 	if (!cp || !cp->cam_ccb)
7316 		return;
7317 	assert (cp->host_status == HS_COMPLETE);
7318 
7319 	/*
7320 	 *  Get command, target and lun pointers.
7321 	 */
7322 	csio = &cp->cam_ccb->csio;
7323 	tp = &np->target[cp->target];
7324 	lp = sym_lp(np, tp, cp->lun);
7325 
7326 	/*
7327 	 *  Assume device discovered on first success.
7328 	 */
7329 	if (!lp)
7330 		sym_set_bit(tp->lun_map, cp->lun);
7331 
7332 	/*
7333 	 *  If all data have been transferred, given than no
7334 	 *  extended error did occur, there is no residual.
7335 	 */
7336 	csio->resid = 0;
7337 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7338 		csio->resid = sym_compute_residual(np, cp);
7339 
7340 	/*
7341 	 *  Wrong transfer residuals may be worse than just always
7342 	 *  returning zero. User can disable this feature from
7343 	 *  sym_conf.h. Residual support is enabled by default.
7344 	 */
7345 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7346 		csio->resid  = 0;
7347 
7348 	/*
7349 	 *  Synchronize DMA map if needed.
7350 	 */
7351 	if (cp->dmamapped) {
7352 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7353 			(cp->dmamapped == SYM_DMA_READ ?
7354 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7355 	}
7356 	/*
7357 	 *  Set status and complete the command.
7358 	 */
7359 	csio->scsi_status = cp->ssss_status;
7360 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7361 	sym_xpt_done(np, (union ccb *) csio, cp);
7362 	sym_free_ccb(np, cp);
7363 }
7364 
7365 /*
7366  *  Our callout handler
7367  */
7368 static void sym_callout(void *arg)
7369 {
7370 	union ccb *ccb = (union ccb *) arg;
7371 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7372 
7373 	/*
7374 	 *  Check that the CAM CCB is still queued.
7375 	 */
7376 	if (!np)
7377 		return;
7378 
7379 	SYM_LOCK();
7380 
7381 	switch(ccb->ccb_h.func_code) {
7382 	case XPT_SCSI_IO:
7383 		(void) sym_abort_scsiio(np, ccb, 1);
7384 		break;
7385 	default:
7386 		break;
7387 	}
7388 
7389 	SYM_UNLOCK();
7390 }
7391 
7392 /*
7393  *  Abort an SCSI IO.
7394  */
7395 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7396 {
7397 	ccb_p cp;
7398 	SYM_QUEHEAD *qp;
7399 
7400 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7401 
7402 	/*
7403 	 *  Look up our CCB control block.
7404 	 */
7405 	cp = NULL;
7406 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7407 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7408 		if (cp2->cam_ccb == ccb) {
7409 			cp = cp2;
7410 			break;
7411 		}
7412 	}
7413 	if (!cp || cp->host_status == HS_WAIT)
7414 		return -1;
7415 
7416 	/*
7417 	 *  If a previous abort didn't succeed in time,
7418 	 *  perform a BUS reset.
7419 	 */
7420 	if (cp->to_abort) {
7421 		sym_reset_scsi_bus(np, 1);
7422 		return 0;
7423 	}
7424 
7425 	/*
7426 	 *  Mark the CCB for abort and allow time for.
7427 	 */
7428 	cp->to_abort = timed_out ? 2 : 1;
7429 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7430 
7431 	/*
7432 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7433 	 */
7434 	np->istat_sem = SEM;
7435 	OUTB (nc_istat, SIGP|SEM);
7436 	return 0;
7437 }
7438 
7439 /*
7440  *  Reset a SCSI device (all LUNs of a target).
7441  */
7442 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7443 {
7444 	tcb_p tp;
7445 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7446 
7447 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7448 
7449 	if (ccb_h->target_id   == np->myaddr ||
7450 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7451 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7452 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7453 		return;
7454 	}
7455 
7456 	tp = &np->target[ccb_h->target_id];
7457 
7458 	tp->to_reset = 1;
7459 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7460 
7461 	np->istat_sem = SEM;
7462 	OUTB (nc_istat, SIGP|SEM);
7463 }
7464 
7465 /*
7466  *  SIM action entry point.
7467  */
7468 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7469 {
7470 	hcb_p	np;
7471 	tcb_p	tp;
7472 	lcb_p	lp;
7473 	ccb_p	cp;
7474 	int 	tmp;
7475 	u_char	idmsg, *msgptr;
7476 	u_int   msglen;
7477 	struct	ccb_scsiio *csio;
7478 	struct	ccb_hdr  *ccb_h;
7479 
7480 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7481 
7482 	/*
7483 	 *  Retrieve our controller data structure.
7484 	 */
7485 	np = (hcb_p) cam_sim_softc(sim);
7486 
7487 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7488 
7489 	/*
7490 	 *  The common case is SCSI IO.
7491 	 *  We deal with other ones elsewhere.
7492 	 */
7493 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7494 		sym_action2(sim, ccb);
7495 		return;
7496 	}
7497 	csio  = &ccb->csio;
7498 	ccb_h = &csio->ccb_h;
7499 
7500 	/*
7501 	 *  Work around races.
7502 	 */
7503 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7504 		xpt_done(ccb);
7505 		return;
7506 	}
7507 
7508 	/*
7509 	 *  Minimal checkings, so that we will not
7510 	 *  go outside our tables.
7511 	 */
7512 	if (ccb_h->target_id   == np->myaddr ||
7513 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7514 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7515 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7516 		return;
7517         }
7518 
7519 	/*
7520 	 *  Retrieve the target and lun descriptors.
7521 	 */
7522 	tp = &np->target[ccb_h->target_id];
7523 	lp = sym_lp(np, tp, ccb_h->target_lun);
7524 
7525 	/*
7526 	 *  Complete the 1st INQUIRY command with error
7527 	 *  condition if the device is flagged NOSCAN
7528 	 *  at BOOT in the NVRAM. This may speed up
7529 	 *  the boot and maintain coherency with BIOS
7530 	 *  device numbering. Clearing the flag allows
7531 	 *  user to rescan skipped devices later.
7532 	 *  We also return error for devices not flagged
7533 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7534 	 *  devices behave badly when asked for some non
7535 	 *  zero LUN. Btw, this is an absolute hack.:-)
7536 	 */
7537 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7538 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7539 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7540 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7541 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7542 		     ccb_h->target_lun != 0)) {
7543 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7544 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7545 			return;
7546 		}
7547 	}
7548 
7549 	/*
7550 	 *  Get a control block for this IO.
7551 	 */
7552 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7553 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7554 	if (!cp) {
7555 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7556 		return;
7557 	}
7558 
7559 	/*
7560 	 *  Keep track of the IO in our CCB.
7561 	 */
7562 	cp->cam_ccb = ccb;
7563 
7564 	/*
7565 	 *  Build the IDENTIFY message.
7566 	 */
7567 	idmsg = M_IDENTIFY | cp->lun;
7568 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7569 		idmsg |= 0x40;
7570 
7571 	msgptr = cp->scsi_smsg;
7572 	msglen = 0;
7573 	msgptr[msglen++] = idmsg;
7574 
7575 	/*
7576 	 *  Build the tag message if present.
7577 	 */
7578 	if (cp->tag != NO_TAG) {
7579 		u_char order = csio->tag_action;
7580 
7581 		switch(order) {
7582 		case M_ORDERED_TAG:
7583 			break;
7584 		case M_HEAD_TAG:
7585 			break;
7586 		default:
7587 			order = M_SIMPLE_TAG;
7588 		}
7589 		msgptr[msglen++] = order;
7590 
7591 		/*
7592 		 *  For less than 128 tags, actual tags are numbered
7593 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7594 		 *  with devices that have problems with #TAG 0 or too
7595 		 *  great #TAG numbers. For more tags (up to 256),
7596 		 *  we use directly our tag number.
7597 		 */
7598 #if SYM_CONF_MAX_TASK > (512/4)
7599 		msgptr[msglen++] = cp->tag;
7600 #else
7601 		msgptr[msglen++] = (cp->tag << 1) + 1;
7602 #endif
7603 	}
7604 
7605 	/*
7606 	 *  Build a negotiation message if needed.
7607 	 *  (nego_status is filled by sym_prepare_nego())
7608 	 */
7609 	cp->nego_status = 0;
7610 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7611 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7612 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7613 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7614 		if (!tp->nego_cp && lp)
7615 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7616 	}
7617 
7618 	/*
7619 	 *  Fill in our ccb
7620 	 */
7621 
7622 	/*
7623 	 *  Startqueue
7624 	 */
7625 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7626 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7627 
7628 	/*
7629 	 *  select
7630 	 */
7631 	cp->phys.select.sel_id		= cp->target;
7632 	cp->phys.select.sel_scntl3	= tp->head.wval;
7633 	cp->phys.select.sel_sxfer	= tp->head.sval;
7634 	cp->phys.select.sel_scntl4	= tp->head.uval;
7635 
7636 	/*
7637 	 *  message
7638 	 */
7639 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7640 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7641 
7642 	/*
7643 	 *  command
7644 	 */
7645 	if (sym_setup_cdb(np, csio, cp) < 0) {
7646 		sym_xpt_done(np, ccb, cp);
7647 		sym_free_ccb(np, cp);
7648 		return;
7649 	}
7650 
7651 	/*
7652 	 *  status
7653 	 */
7654 #if	0	/* Provision */
7655 	cp->actualquirks	= tp->quirks;
7656 #endif
7657 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7658 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7659 	cp->ssss_status		= S_ILLEGAL;
7660 	cp->xerr_status		= 0;
7661 	cp->host_flags		= 0;
7662 	cp->extra_bytes		= 0;
7663 
7664 	/*
7665 	 *  extreme data pointer.
7666 	 *  shall be positive, so -1 is lower than lowest.:)
7667 	 */
7668 	cp->ext_sg  = -1;
7669 	cp->ext_ofs = 0;
7670 
7671 	/*
7672 	 *  Build the data descriptor block
7673 	 *  and start the IO.
7674 	 */
7675 	sym_setup_data_and_start(np, csio, cp);
7676 }
7677 
7678 /*
7679  *  Setup buffers and pointers that address the CDB.
7680  *  I bet, physical CDBs will never be used on the planet,
7681  *  since they can be bounced without significant overhead.
7682  */
7683 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7684 {
7685 	struct ccb_hdr *ccb_h;
7686 	u32	cmd_ba;
7687 	int	cmd_len;
7688 
7689 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7690 
7691 	ccb_h = &csio->ccb_h;
7692 
7693 	/*
7694 	 *  CDB is 16 bytes max.
7695 	 */
7696 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7697 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7698 		return -1;
7699 	}
7700 	cmd_len = csio->cdb_len;
7701 
7702 	if (ccb_h->flags & CAM_CDB_POINTER) {
7703 		/* CDB is a pointer */
7704 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7705 			/* CDB pointer is virtual */
7706 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7707 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7708 		} else {
7709 			/* CDB pointer is physical */
7710 #if 0
7711 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7712 #else
7713 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7714 			return -1;
7715 #endif
7716 		}
7717 	} else {
7718 		/* CDB is in the CAM ccb (buffer) */
7719 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7720 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7721 	}
7722 
7723 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7724 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7725 
7726 	return 0;
7727 }
7728 
7729 /*
7730  *  Set up data pointers used by SCRIPTS.
7731  */
7732 static __inline void
7733 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7734 {
7735 	u32 lastp, goalp;
7736 
7737 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7738 
7739 	/*
7740 	 *  No segments means no data.
7741 	 */
7742 	if (!cp->segments)
7743 		dir = CAM_DIR_NONE;
7744 
7745 	/*
7746 	 *  Set the data pointer.
7747 	 */
7748 	switch(dir) {
7749 	case CAM_DIR_OUT:
7750 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7751 		lastp = goalp - 8 - (cp->segments * (2*4));
7752 		break;
7753 	case CAM_DIR_IN:
7754 		cp->host_flags |= HF_DATA_IN;
7755 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7756 		lastp = goalp - 8 - (cp->segments * (2*4));
7757 		break;
7758 	case CAM_DIR_NONE:
7759 	default:
7760 		lastp = goalp = SCRIPTB_BA (np, no_data);
7761 		break;
7762 	}
7763 
7764 	cp->phys.head.lastp = cpu_to_scr(lastp);
7765 	cp->phys.head.goalp = cpu_to_scr(goalp);
7766 	cp->phys.head.savep = cpu_to_scr(lastp);
7767 	cp->startp	    = cp->phys.head.savep;
7768 }
7769 
7770 
7771 /*
7772  *  Call back routine for the DMA map service.
7773  *  If bounce buffers are used (why ?), we may sleep and then
7774  *  be called there in another context.
7775  */
7776 static void
7777 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7778 {
7779 	ccb_p	cp;
7780 	hcb_p	np;
7781 	union	ccb *ccb;
7782 
7783 	cp  = (ccb_p) arg;
7784 	ccb = cp->cam_ccb;
7785 	np  = (hcb_p) cp->arg;
7786 
7787 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7788 
7789 	/*
7790 	 *  Deal with weird races.
7791 	 */
7792 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7793 		goto out_abort;
7794 
7795 	/*
7796 	 *  Deal with weird errors.
7797 	 */
7798 	if (error) {
7799 		cp->dmamapped = 0;
7800 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7801 		goto out_abort;
7802 	}
7803 
7804 	/*
7805 	 *  Build the data descriptor for the chip.
7806 	 */
7807 	if (nsegs) {
7808 		int retv;
7809 		/* 896 rev 1 requires to be careful about boundaries */
7810 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7811 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7812 		else
7813 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7814 		if (retv < 0) {
7815 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7816 			goto out_abort;
7817 		}
7818 	}
7819 
7820 	/*
7821 	 *  Synchronize the DMA map only if we have
7822 	 *  actually mapped the data.
7823 	 */
7824 	if (cp->dmamapped) {
7825 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7826 			(cp->dmamapped == SYM_DMA_READ ?
7827 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7828 	}
7829 
7830 	/*
7831 	 *  Set host status to busy state.
7832 	 *  May have been set back to HS_WAIT to avoid a race.
7833 	 */
7834 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7835 
7836 	/*
7837 	 *  Set data pointers.
7838 	 */
7839 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7840 
7841 	/*
7842 	 *  Enqueue this IO in our pending queue.
7843 	 */
7844 	sym_enqueue_cam_ccb(cp);
7845 
7846 	/*
7847 	 *  When `#ifed 1', the code below makes the driver
7848 	 *  panic on the first attempt to write to a SCSI device.
7849 	 *  It is the first test we want to do after a driver
7850 	 *  change that does not seem obviously safe. :)
7851 	 */
7852 #if 0
7853 	switch (cp->cdb_buf[0]) {
7854 	case 0x0A: case 0x2A: case 0xAA:
7855 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX");
7856 		MDELAY(10000);
7857 		break;
7858 	default:
7859 		break;
7860 	}
7861 #endif
7862 	/*
7863 	 *  Activate this job.
7864 	 */
7865 	sym_put_start_queue(np, cp);
7866 	return;
7867 out_abort:
7868 	sym_xpt_done(np, ccb, cp);
7869 	sym_free_ccb(np, cp);
7870 }
7871 
7872 /*
7873  *  How complex it gets to deal with the data in CAM.
7874  *  The Bus Dma stuff makes things still more complex.
7875  */
7876 static void
7877 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7878 {
7879 	struct ccb_hdr *ccb_h;
7880 	int dir, retv;
7881 
7882 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7883 
7884 	ccb_h = &csio->ccb_h;
7885 
7886 	/*
7887 	 *  Now deal with the data.
7888 	 */
7889 	cp->data_len = csio->dxfer_len;
7890 	cp->arg      = np;
7891 
7892 	/*
7893 	 *  No direction means no data.
7894 	 */
7895 	dir = (ccb_h->flags & CAM_DIR_MASK);
7896 	if (dir == CAM_DIR_NONE) {
7897 		sym_execute_ccb(cp, NULL, 0, 0);
7898 		return;
7899 	}
7900 
7901 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7902 		/* Single buffer */
7903 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7904 			/* Buffer is virtual */
7905 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7906 						SYM_DMA_READ : SYM_DMA_WRITE;
7907 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7908 					       csio->data_ptr, csio->dxfer_len,
7909 					       sym_execute_ccb, cp, 0);
7910 			if (retv == EINPROGRESS) {
7911 				cp->host_status	= HS_WAIT;
7912 				xpt_freeze_simq(np->sim, 1);
7913 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7914 			}
7915 		} else {
7916 			/* Buffer is physical */
7917 			struct bus_dma_segment seg;
7918 
7919 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7920 			sym_execute_ccb(cp, &seg, 1, 0);
7921 		}
7922 	} else {
7923 		/* Scatter/gather list */
7924 		struct bus_dma_segment *segs;
7925 
7926 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7927 			/* The SG list pointer is physical */
7928 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7929 			goto out_abort;
7930 		}
7931 
7932 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7933 			/* SG buffer pointers are virtual */
7934 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7935 			goto out_abort;
7936 		}
7937 
7938 		/* SG buffer pointers are physical */
7939 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7940 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7941 	}
7942 	return;
7943 out_abort:
7944 	sym_xpt_done(np, (union ccb *) csio, cp);
7945 	sym_free_ccb(np, cp);
7946 }
7947 
7948 /*
7949  *  Move the scatter list to our data block.
7950  */
7951 static int
7952 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7953 			     bus_dma_segment_t *psegs, int nsegs)
7954 {
7955 	struct sym_tblmove *data;
7956 	bus_dma_segment_t *psegs2;
7957 
7958 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
7959 
7960 	if (nsegs > SYM_CONF_MAX_SG)
7961 		return -1;
7962 
7963 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7964 	psegs2 = &psegs[nsegs-1];
7965 	cp->segments = nsegs;
7966 
7967 	while (1) {
7968 		data->addr = cpu_to_scr(psegs2->ds_addr);
7969 		data->size = cpu_to_scr(psegs2->ds_len);
7970 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7971 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
7972 				sym_name(np), (long) psegs2->ds_addr,
7973 				(long) psegs2->ds_len);
7974 		}
7975 		if (psegs2 != psegs) {
7976 			--data;
7977 			--psegs2;
7978 			continue;
7979 		}
7980 		break;
7981 	}
7982 	return 0;
7983 }
7984 
7985 
7986 /*
7987  *  Scatter a SG list with physical addresses into bus addressable chunks.
7988  *  We need to ensure 16MB boundaries not to be crossed during DMA of
7989  *  each segment, due to some chips being flawed.
7990  */
7991 #define BOUND_MASK ((1UL<<24)-1)
7992 static int
7993 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7994 {
7995 	u_long	ps, pe, pn;
7996 	u_long	k;
7997 	int s, t;
7998 
7999 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8000 
8001 	s  = SYM_CONF_MAX_SG - 1;
8002 	t  = nsegs - 1;
8003 	ps = psegs[t].ds_addr;
8004 	pe = ps + psegs[t].ds_len;
8005 
8006 	while (s >= 0) {
8007 		pn = (pe - 1) & ~BOUND_MASK;
8008 		if (pn <= ps)
8009 			pn = ps;
8010 		k = pe - pn;
8011 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8012 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8013 				sym_name(np), pn, k);
8014 		}
8015 		cp->phys.data[s].addr = cpu_to_scr(pn);
8016 		cp->phys.data[s].size = cpu_to_scr(k);
8017 		--s;
8018 		if (pn == ps) {
8019 			if (--t < 0)
8020 				break;
8021 			ps = psegs[t].ds_addr;
8022 			pe = ps + psegs[t].ds_len;
8023 		}
8024 		else
8025 			pe = pn;
8026 	}
8027 
8028 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8029 
8030 	return t >= 0 ? -1 : 0;
8031 }
8032 #undef BOUND_MASK
8033 
8034 /*
8035  *  SIM action for non performance critical stuff.
8036  */
8037 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8038 {
8039 	hcb_p	np;
8040 	tcb_p	tp;
8041 	lcb_p	lp;
8042 	struct	ccb_hdr  *ccb_h;
8043 
8044 	/*
8045 	 *  Retrieve our controller data structure.
8046 	 */
8047 	np = (hcb_p) cam_sim_softc(sim);
8048 
8049 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8050 
8051 	ccb_h = &ccb->ccb_h;
8052 
8053 	switch (ccb_h->func_code) {
8054 	case XPT_SET_TRAN_SETTINGS:
8055 	{
8056 		struct ccb_trans_settings *cts;
8057 
8058 		cts  = &ccb->cts;
8059 		tp = &np->target[ccb_h->target_id];
8060 
8061 		/*
8062 		 *  Update SPI transport settings in TARGET control block.
8063 		 *  Update SCSI device settings in LUN control block.
8064 		 */
8065 		lp = sym_lp(np, tp, ccb_h->target_lun);
8066 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8067 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8068 			if (lp)
8069 				sym_update_dflags(np, &lp->current_flags, cts);
8070 		}
8071 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8072 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8073 			if (lp)
8074 				sym_update_dflags(np, &lp->user_flags, cts);
8075 		}
8076 
8077 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8078 		break;
8079 	}
8080 	case XPT_GET_TRAN_SETTINGS:
8081 	{
8082 		struct ccb_trans_settings *cts;
8083 		struct sym_trans *tip;
8084 		u_char dflags;
8085 
8086 		cts = &ccb->cts;
8087 		tp = &np->target[ccb_h->target_id];
8088 		lp = sym_lp(np, tp, ccb_h->target_lun);
8089 
8090 #define	cts__scsi (&cts->proto_specific.scsi)
8091 #define	cts__spi  (&cts->xport_specific.spi)
8092 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8093 			tip = &tp->tinfo.current;
8094 			dflags = lp ? lp->current_flags : 0;
8095 		}
8096 		else {
8097 			tip = &tp->tinfo.user;
8098 			dflags = lp ? lp->user_flags : tp->usrflags;
8099 		}
8100 
8101 		cts->protocol  = PROTO_SCSI;
8102 		cts->transport = XPORT_SPI;
8103 		cts->protocol_version  = tip->scsi_version;
8104 		cts->transport_version = tip->spi_version;
8105 
8106 		cts__spi->sync_period = tip->period;
8107 		cts__spi->sync_offset = tip->offset;
8108 		cts__spi->bus_width   = tip->width;
8109 		cts__spi->ppr_options = tip->options;
8110 
8111 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8112 		                | CTS_SPI_VALID_SYNC_OFFSET
8113 		                | CTS_SPI_VALID_BUS_WIDTH
8114 		                | CTS_SPI_VALID_PPR_OPTIONS;
8115 
8116 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8117 		if (dflags & SYM_DISC_ENABLED)
8118 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8119 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8120 
8121 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8122 		if (dflags & SYM_TAGS_ENABLED)
8123 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8124 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8125 #undef	cts__spi
8126 #undef	cts__scsi
8127 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8128 		break;
8129 	}
8130 	case XPT_CALC_GEOMETRY:
8131 	{
8132 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8133 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8134 		break;
8135 	}
8136 	case XPT_PATH_INQ:
8137 	{
8138 		struct ccb_pathinq *cpi = &ccb->cpi;
8139 		cpi->version_num = 1;
8140 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8141 		if ((np->features & FE_WIDE) != 0)
8142 			cpi->hba_inquiry |= PI_WIDE_16;
8143 		cpi->target_sprt = 0;
8144 		cpi->hba_misc = 0;
8145 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8146 			cpi->hba_misc |= PIM_SCANHILO;
8147 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8148 			cpi->hba_misc |= PIM_NOBUSRESET;
8149 		cpi->hba_eng_cnt = 0;
8150 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8151 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8152 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8153 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8154 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8155 		cpi->bus_id = cam_sim_bus(sim);
8156 		cpi->initiator_id = np->myaddr;
8157 		cpi->base_transfer_speed = 3300;
8158 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8159 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8160 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8161 		cpi->unit_number = cam_sim_unit(sim);
8162 
8163 		cpi->protocol = PROTO_SCSI;
8164 		cpi->protocol_version = SCSI_REV_2;
8165 		cpi->transport = XPORT_SPI;
8166 		cpi->transport_version = 2;
8167 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8168 		if (np->features & FE_ULTRA3) {
8169 			cpi->transport_version = 3;
8170 			cpi->xport_specific.spi.ppr_options =
8171 			    SID_SPI_CLOCK_DT_ST;
8172 		}
8173 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8174 		break;
8175 	}
8176 	case XPT_ABORT:
8177 	{
8178 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8179 		switch(abort_ccb->ccb_h.func_code) {
8180 		case XPT_SCSI_IO:
8181 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8182 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8183 				break;
8184 			}
8185 		default:
8186 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8187 			break;
8188 		}
8189 		break;
8190 	}
8191 	case XPT_RESET_DEV:
8192 	{
8193 		sym_reset_dev(np, ccb);
8194 		break;
8195 	}
8196 	case XPT_RESET_BUS:
8197 	{
8198 		sym_reset_scsi_bus(np, 0);
8199 		if (sym_verbose) {
8200 			xpt_print_path(np->path);
8201 			kprintf("SCSI BUS reset delivered.\n");
8202 		}
8203 		sym_init (np, 1);
8204 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8205 		break;
8206 	}
8207 	case XPT_ACCEPT_TARGET_IO:
8208 	case XPT_CONT_TARGET_IO:
8209 	case XPT_EN_LUN:
8210 	case XPT_NOTIFY_ACK:
8211 	case XPT_IMMED_NOTIFY:
8212 	case XPT_TERM_IO:
8213 	default:
8214 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8215 		break;
8216 	}
8217 }
8218 
8219 /*
8220  *  Asynchronous notification handler.
8221  */
8222 static void
8223 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8224 {
8225 	hcb_p np;
8226 	struct cam_sim *sim;
8227 	u_int tn;
8228 	tcb_p tp;
8229 
8230 	sim = (struct cam_sim *) cb_arg;
8231 	np  = (hcb_p) cam_sim_softc(sim);
8232 
8233 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8234 
8235 	switch (code) {
8236 	case AC_LOST_DEVICE:
8237 		tn = xpt_path_target_id(path);
8238 		if (tn >= SYM_CONF_MAX_TARGET)
8239 			break;
8240 
8241 		tp = &np->target[tn];
8242 
8243 		tp->to_reset  = 0;
8244 		tp->head.sval = 0;
8245 		tp->head.wval = np->rv_scntl3;
8246 		tp->head.uval = 0;
8247 
8248 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8249 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8250 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8251 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8252 
8253 		break;
8254 	default:
8255 		break;
8256 	}
8257 }
8258 
8259 /*
8260  *  Update transfer settings of a target.
8261  */
8262 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8263 			    struct ccb_trans_settings *cts)
8264 {
8265 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8266 
8267 	/*
8268 	 *  Update the infos.
8269 	 */
8270 #define cts__spi (&cts->xport_specific.spi)
8271 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8272 		tip->width = cts__spi->bus_width;
8273 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8274 		tip->offset = cts__spi->sync_offset;
8275 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8276 		tip->period = cts__spi->sync_period;
8277 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8278 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8279 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8280 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8281 		tip->scsi_version = cts->protocol_version;
8282 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8283 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8284 		tip->spi_version = cts->transport_version;
8285 #undef cts__spi
8286 	/*
8287 	 *  Scale against driver configuration limits.
8288 	 */
8289 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8290 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8291 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8292 
8293 	/*
8294 	 *  Scale against actual controller BUS width.
8295 	 */
8296 	if (tip->width > np->maxwide)
8297 		tip->width  = np->maxwide;
8298 
8299 	/*
8300 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8301 	 */
8302 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8303 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8304 		tip->options &= ~PPR_OPT_DT;
8305 	}
8306 
8307 	/*
8308 	 *  Scale period factor and offset against controller limits.
8309 	 */
8310 	if (tip->options & PPR_OPT_DT) {
8311 		if (tip->period < np->minsync_dt)
8312 			tip->period = np->minsync_dt;
8313 		if (tip->period > np->maxsync_dt)
8314 			tip->period = np->maxsync_dt;
8315 		if (tip->offset > np->maxoffs_dt)
8316 			tip->offset = np->maxoffs_dt;
8317 	}
8318 	else {
8319 		if (tip->period < np->minsync)
8320 			tip->period = np->minsync;
8321 		if (tip->period > np->maxsync)
8322 			tip->period = np->maxsync;
8323 		if (tip->offset > np->maxoffs)
8324 			tip->offset = np->maxoffs;
8325 	}
8326 }
8327 
8328 /*
8329  *  Update flags for a device (logical unit).
8330  */
8331 static void
8332 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8333 {
8334 	SYM_LOCK_ASSERT(LK_EXCLUSIVE);
8335 
8336 #define	cts__scsi (&cts->proto_specific.scsi)
8337 #define	cts__spi  (&cts->xport_specific.spi)
8338 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8339 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8340 			*flags |= SYM_DISC_ENABLED;
8341 		else
8342 			*flags &= ~SYM_DISC_ENABLED;
8343 	}
8344 
8345 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8346 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8347 			*flags |= SYM_TAGS_ENABLED;
8348 		else
8349 			*flags &= ~SYM_TAGS_ENABLED;
8350 	}
8351 #undef	cts__spi
8352 #undef	cts__scsi
8353 }
8354 
8355 
8356 /*============= DRIVER INITIALISATION ==================*/
8357 
8358 
8359 static device_method_t sym_pci_methods[] = {
8360 	DEVMETHOD(device_probe,	 sym_pci_probe),
8361 	DEVMETHOD(device_attach, sym_pci_attach),
8362 	DEVMETHOD_END
8363 };
8364 
8365 static driver_t sym_pci_driver = {
8366 	"sym",
8367 	sym_pci_methods,
8368 	1	/* no softc */
8369 };
8370 
8371 static devclass_t sym_devclass;
8372 
8373 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8374 MODULE_VERSION(sym, 1);
8375 MODULE_DEPEND(sym, cam, 1, 1, 1);
8376 MODULE_DEPEND(sym, pci, 1, 1, 1);
8377 
8378 
8379 static const struct sym_pci_chip sym_pci_dev_table[] = {
8380  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8381  FE_ERL}
8382  ,
8383 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8384  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8385  FE_BOF}
8386  ,
8387 #else
8388  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8389  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8390  ,
8391 #endif
8392  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8393  FE_BOF|FE_ERL}
8394  ,
8395  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8396  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8397  ,
8398  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8399  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8400  ,
8401  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8402  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8403  ,
8404  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8405  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8406  FE_RAM|FE_DIFF}
8407  ,
8408  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8409  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8410  FE_RAM|FE_DIFF}
8411  ,
8412  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8413  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8414  FE_RAM|FE_DIFF}
8415  ,
8416  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8417  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8418  FE_RAM|FE_DIFF}
8419  ,
8420 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8421  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8422  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8423  FE_RAM|FE_LCKFRQ}
8424  ,
8425 #else
8426  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8427  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8428  FE_RAM|FE_LCKFRQ}
8429  ,
8430 #endif
8431  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8432  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8433  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8434  ,
8435  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8436  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8437  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8438  ,
8439  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8440  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8441  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8442  FE_C10}
8443  ,
8444  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8445  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8446  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8447  FE_C10|FE_U3EN}
8448  ,
8449  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8450  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8451  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8452  FE_C10|FE_U3EN}
8453  ,
8454  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8455  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8456  FE_RAM|FE_IO256|FE_LEDC}
8457 };
8458 
8459 #define sym_pci_num_devs NELEM(sym_pci_dev_table)
8460 
8461 /*
8462  *  Look up the chip table.
8463  *
8464  *  Return a pointer to the chip entry if found,
8465  *  zero otherwise.
8466  */
8467 static const struct sym_pci_chip *
8468 sym_find_pci_chip(device_t dev)
8469 {
8470 	const struct	sym_pci_chip *chip;
8471 	int	i;
8472 	u_short	device_id;
8473 	u_char	revision;
8474 
8475 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8476 		return NULL;
8477 
8478 	device_id = pci_get_device(dev);
8479 	revision  = pci_get_revid(dev);
8480 
8481 	for (i = 0; i < sym_pci_num_devs; i++) {
8482 		chip = &sym_pci_dev_table[i];
8483 		if (device_id != chip->device_id)
8484 			continue;
8485 		if (revision > chip->revision_id)
8486 			continue;
8487 		return chip;
8488 	}
8489 
8490 	return NULL;
8491 }
8492 
8493 /*
8494  *  Tell upper layer if the chip is supported.
8495  */
8496 static int
8497 sym_pci_probe(device_t dev)
8498 {
8499 	const struct	sym_pci_chip *chip;
8500 
8501 	chip = sym_find_pci_chip(dev);
8502 	if (chip && sym_find_firmware(chip)) {
8503 		device_set_desc(dev, chip->name);
8504 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8505 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8506 	}
8507 	return ENXIO;
8508 }
8509 
8510 /*
8511  *  Attach a sym53c8xx device.
8512  */
8513 static int
8514 sym_pci_attach(device_t dev)
8515 {
8516 	const struct	sym_pci_chip *chip;
8517 	u_short	command;
8518 	u_char	cachelnsz;
8519 	struct	sym_hcb *np = NULL;
8520 	struct	sym_nvram nvram;
8521 	const struct	sym_fw *fw = NULL;
8522 	int 	i;
8523 	bus_dma_tag_t	bus_dmat;
8524 
8525 #if 0 /* XXX swildner */
8526 	bus_dmat = bus_get_dma_tag(dev);
8527 #else
8528 	bus_dmat = NULL;
8529 #endif
8530 
8531 	/*
8532 	 *  Only probed devices should be attached.
8533 	 *  We just enjoy being paranoid. :)
8534 	 */
8535 	chip = sym_find_pci_chip(dev);
8536 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8537 		return (ENXIO);
8538 
8539 	/*
8540 	 *  Allocate immediately the host control block,
8541 	 *  since we are only expecting to succeed. :)
8542 	 *  We keep track in the HCB of all the resources that
8543 	 *  are to be released on error.
8544 	 */
8545 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8546 	if (np)
8547 		np->bus_dmat = bus_dmat;
8548 	else
8549 		return (ENXIO);
8550 	device_set_softc(dev, np);
8551 
8552 	SYM_LOCK_INIT();
8553 
8554 	/*
8555 	 *  Copy some useful infos to the HCB.
8556 	 */
8557 	np->hcb_ba	 = vtobus(np);
8558 	np->verbose	 = bootverbose;
8559 	np->device	 = dev;
8560 	np->device_id	 = pci_get_device(dev);
8561 	np->revision_id  = pci_get_revid(dev);
8562 	np->features	 = chip->features;
8563 	np->clock_divn	 = chip->nr_divisor;
8564 	np->maxoffs	 = chip->offset_max;
8565 	np->maxburst	 = chip->burst_max;
8566 	np->scripta_sz	 = fw->a_size;
8567 	np->scriptb_sz	 = fw->b_size;
8568 	np->fw_setup	 = fw->setup;
8569 	np->fw_patch	 = fw->patch;
8570 	np->fw_name	 = fw->name;
8571 
8572 #ifdef __x86_64__
8573 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8574 			"TARGET");
8575 	if (!np->target)
8576 		goto attach_failed;
8577 #endif
8578 
8579 	/*
8580 	 *  Initialize the CCB free and busy queues.
8581 	 */
8582 	sym_que_init(&np->free_ccbq);
8583 	sym_que_init(&np->busy_ccbq);
8584 	sym_que_init(&np->comp_ccbq);
8585 	sym_que_init(&np->cam_ccbq);
8586 
8587 	/*
8588 	 *  Allocate a tag for the DMA of user data.
8589 	 */
8590 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8591 				BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
8592 				NULL, NULL,
8593 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8594 				(1<<24), 0,
8595 				&np->data_dmat)) {
8596 		device_printf(dev, "failed to create DMA tag.\n");
8597 		goto attach_failed;
8598 	}
8599 	/*
8600 	 *  Read and apply some fix-ups to the PCI COMMAND
8601 	 *  register. We want the chip to be enabled for:
8602 	 *  - BUS mastering
8603 	 *  - PCI parity checking (reporting would also be fine)
8604 	 *  - Write And Invalidate.
8605 	 */
8606 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8607 	command |= PCIM_CMD_BUSMASTEREN;
8608 	command |= PCIM_CMD_PERRESPEN;
8609 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8610 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8611 
8612 	/*
8613 	 *  Let the device know about the cache line size,
8614 	 *  if it doesn't yet.
8615 	 */
8616 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8617 	if (!cachelnsz) {
8618 		cachelnsz = 8;
8619 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8620 	}
8621 
8622 	/*
8623 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8624 	 */
8625 	if ((command & PCIM_CMD_MEMEN) != 0) {
8626 		int regs_id = SYM_PCI_MMIO;
8627 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8628 						      &regs_id, RF_ACTIVE);
8629 	}
8630 	if (!np->mmio_res) {
8631 		device_printf(dev, "failed to allocate MMIO resources\n");
8632 		goto attach_failed;
8633 	}
8634 	np->mmio_ba = rman_get_start(np->mmio_res);
8635 
8636 	/*
8637 	 *  Allocate the IRQ.
8638 	 */
8639 	i = 0;
8640 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8641 					     RF_ACTIVE | RF_SHAREABLE);
8642 	if (!np->irq_res) {
8643 		device_printf(dev, "failed to allocate IRQ resource\n");
8644 		goto attach_failed;
8645 	}
8646 
8647 #ifdef	SYM_CONF_IOMAPPED
8648 	/*
8649 	 *  User want us to use normal IO with PCI.
8650 	 *  Alloc/get/map/retrieve everything that deals with IO.
8651 	 */
8652 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8653 		int regs_id = SYM_PCI_IO;
8654 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8655 						    &regs_id, RF_ACTIVE);
8656 	}
8657 	if (!np->io_res) {
8658 		device_printf(dev, "failed to allocate IO resources\n");
8659 		goto attach_failed;
8660 	}
8661 
8662 #endif /* SYM_CONF_IOMAPPED */
8663 
8664 	/*
8665 	 *  If the chip has RAM.
8666 	 *  Alloc/get/map/retrieve the corresponding resources.
8667 	 */
8668 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8669 	    (command & PCIM_CMD_MEMEN) != 0) {
8670 		int regs_id = SYM_PCI_RAM;
8671 		if (np->features & FE_64BIT)
8672 			regs_id = SYM_PCI_RAM64;
8673 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8674 						     &regs_id, RF_ACTIVE);
8675 		if (!np->ram_res) {
8676 			device_printf(dev,"failed to allocate RAM resources\n");
8677 			goto attach_failed;
8678 		}
8679 		np->ram_id  = regs_id;
8680 		np->ram_ba = rman_get_start(np->ram_res);
8681 	}
8682 
8683 	/*
8684 	 *  Save setting of some IO registers, so we will
8685 	 *  be able to probe specific implementations.
8686 	 */
8687 	sym_save_initial_setting (np);
8688 
8689 	/*
8690 	 *  Reset the chip now, since it has been reported
8691 	 *  that SCSI clock calibration may not work properly
8692 	 *  if the chip is currently active.
8693 	 */
8694 	sym_chip_reset (np);
8695 
8696 	/*
8697 	 *  Try to read the user set-up.
8698 	 */
8699 	(void) sym_read_nvram(np, &nvram);
8700 
8701 	/*
8702 	 *  Prepare controller and devices settings, according
8703 	 *  to chip features, user set-up and driver set-up.
8704 	 */
8705 	(void) sym_prepare_setting(np, &nvram);
8706 
8707 	/*
8708 	 *  Check the PCI clock frequency.
8709 	 *  Must be performed after prepare_setting since it destroys
8710 	 *  STEST1 that is used to probe for the clock doubler.
8711 	 */
8712 	i = sym_getpciclock(np);
8713 	if (i > 37000)
8714 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8715 
8716 	/*
8717 	 *  Allocate the start queue.
8718 	 */
8719 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8720 	if (!np->squeue)
8721 		goto attach_failed;
8722 	np->squeue_ba = vtobus(np->squeue);
8723 
8724 	/*
8725 	 *  Allocate the done queue.
8726 	 */
8727 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8728 	if (!np->dqueue)
8729 		goto attach_failed;
8730 	np->dqueue_ba = vtobus(np->dqueue);
8731 
8732 	/*
8733 	 *  Allocate the target bus address array.
8734 	 */
8735 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8736 	if (!np->targtbl)
8737 		goto attach_failed;
8738 	np->targtbl_ba = vtobus(np->targtbl);
8739 
8740 	/*
8741 	 *  Allocate SCRIPTS areas.
8742 	 */
8743 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8744 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8745 	if (!np->scripta0 || !np->scriptb0)
8746 		goto attach_failed;
8747 
8748 	/*
8749 	 *  Allocate the CCBs. We need at least ONE.
8750 	 */
8751 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8752 		;
8753 	if (i < 1)
8754 		goto attach_failed;
8755 
8756 	/*
8757 	 *  Calculate BUS addresses where we are going
8758 	 *  to load the SCRIPTS.
8759 	 */
8760 	np->scripta_ba	= vtobus(np->scripta0);
8761 	np->scriptb_ba	= vtobus(np->scriptb0);
8762 	np->scriptb0_ba	= np->scriptb_ba;
8763 
8764 	if (np->ram_ba) {
8765 		np->scripta_ba	= np->ram_ba;
8766 		if (np->features & FE_RAM8K) {
8767 			np->ram_ws = 8192;
8768 			np->scriptb_ba = np->scripta_ba + 4096;
8769 #ifdef __LP64__
8770 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8771 #endif
8772 		}
8773 		else
8774 			np->ram_ws = 4096;
8775 	}
8776 
8777 	/*
8778 	 *  Copy scripts to controller instance.
8779 	 */
8780 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8781 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8782 
8783 	/*
8784 	 *  Setup variable parts in scripts and compute
8785 	 *  scripts bus addresses used from the C code.
8786 	 */
8787 	np->fw_setup(np, fw);
8788 
8789 	/*
8790 	 *  Bind SCRIPTS with physical addresses usable by the
8791 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8792 	 */
8793 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8794 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8795 
8796 #ifdef SYM_CONF_IARB_SUPPORT
8797 	/*
8798 	 *    If user wants IARB to be set when we win arbitration
8799 	 *    and have other jobs, compute the max number of consecutive
8800 	 *    settings of IARB hints before we leave devices a chance to
8801 	 *    arbitrate for reselection.
8802 	 */
8803 #ifdef	SYM_SETUP_IARB_MAX
8804 	np->iarb_max = SYM_SETUP_IARB_MAX;
8805 #else
8806 	np->iarb_max = 4;
8807 #endif
8808 #endif
8809 
8810 	/*
8811 	 *  Prepare the idle and invalid task actions.
8812 	 */
8813 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8814 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8815 	np->idletask_ba		= vtobus(&np->idletask);
8816 
8817 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8818 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8819 	np->notask_ba		= vtobus(&np->notask);
8820 
8821 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8822 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8823 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8824 
8825 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8826 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8827 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8828 
8829 	/*
8830 	 *  Allocate and prepare the lun JUMP table that is used
8831 	 *  for a target prior the probing of devices (bad lun table).
8832 	 *  A private table will be allocated for the target on the
8833 	 *  first INQUIRY response received.
8834 	 */
8835 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8836 	if (!np->badluntbl)
8837 		goto attach_failed;
8838 
8839 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8840 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8841 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8842 
8843 	/*
8844 	 *  Prepare the bus address array that contains the bus
8845 	 *  address of each target control block.
8846 	 *  For now, assume all logical units are wrong. :)
8847 	 */
8848 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8849 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8850 		np->target[i].head.luntbl_sa =
8851 				cpu_to_scr(vtobus(np->badluntbl));
8852 		np->target[i].head.lun0_sa =
8853 				cpu_to_scr(vtobus(&np->badlun_sa));
8854 	}
8855 
8856 	/*
8857 	 *  Now check the cache handling of the pci chipset.
8858 	 */
8859 	if (sym_snooptest (np)) {
8860 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8861 		goto attach_failed;
8862 	};
8863 
8864 	/*
8865 	 *  Now deal with CAM.
8866 	 *  Hopefully, we will succeed with that one.:)
8867 	 */
8868 	if (!sym_cam_attach(np))
8869 		goto attach_failed;
8870 
8871 	/*
8872 	 *  Sigh! we are done.
8873 	 */
8874 	return 0;
8875 
8876 	/*
8877 	 *  We have failed.
8878 	 *  We will try to free all the resources we have
8879 	 *  allocated, but if we are a boot device, this
8880 	 *  will not help that much.;)
8881 	 */
8882 attach_failed:
8883 	if (np)
8884 		sym_pci_free(np);
8885 	return ENXIO;
8886 }
8887 
8888 /*
8889  *  Free everything that have been allocated for this device.
8890  */
8891 static void sym_pci_free(hcb_p np)
8892 {
8893 	SYM_QUEHEAD *qp;
8894 	ccb_p cp;
8895 	tcb_p tp;
8896 	lcb_p lp;
8897 	int target, lun;
8898 
8899 	/*
8900 	 *  First free CAM resources.
8901 	 */
8902 	sym_cam_free(np);
8903 
8904 	/*
8905 	 *  Now every should be quiet for us to
8906 	 *  free other resources.
8907 	 */
8908 	if (np->ram_res)
8909 		bus_release_resource(np->device, SYS_RES_MEMORY,
8910 				     np->ram_id, np->ram_res);
8911 	if (np->mmio_res)
8912 		bus_release_resource(np->device, SYS_RES_MEMORY,
8913 				     SYM_PCI_MMIO, np->mmio_res);
8914 	if (np->io_res)
8915 		bus_release_resource(np->device, SYS_RES_IOPORT,
8916 				     SYM_PCI_IO, np->io_res);
8917 	if (np->irq_res)
8918 		bus_release_resource(np->device, SYS_RES_IRQ,
8919 				     0, np->irq_res);
8920 
8921 	if (np->scriptb0)
8922 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8923 	if (np->scripta0)
8924 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8925 	if (np->squeue)
8926 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8927 	if (np->dqueue)
8928 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8929 
8930 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8931 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8932 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8933 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8934 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8935 	}
8936 
8937 	if (np->badluntbl)
8938 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8939 
8940 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8941 		tp = &np->target[target];
8942 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8943 			lp = sym_lp(np, tp, lun);
8944 			if (!lp)
8945 				continue;
8946 			if (lp->itlq_tbl)
8947 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8948 				       "ITLQ_TBL");
8949 			if (lp->cb_tags)
8950 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8951 				       "CB_TAGS");
8952 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8953 		}
8954 #if SYM_CONF_MAX_LUN > 1
8955 		if (tp->lunmp)
8956 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8957 			       "LUNMP");
8958 #endif
8959 	}
8960 #ifdef __x86_64__
8961 	if (np->target)
8962 		sym_mfree_dma(np->target,
8963 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8964 #endif
8965 	if (np->targtbl)
8966 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8967 	if (np->data_dmat)
8968 		bus_dma_tag_destroy(np->data_dmat);
8969 #if 0 /* XXX swildner */
8970 	if (SYM_LOCK_INITIALIZED() != 0)
8971 #endif
8972 		SYM_LOCK_DESTROY();
8973 	device_set_softc(np->device, NULL);
8974 	sym_mfree_dma(np, sizeof(*np), "HCB");
8975 }
8976 
8977 /*
8978  *  Allocate CAM resources and register a bus to CAM.
8979  */
8980 static int sym_cam_attach(hcb_p np)
8981 {
8982 	struct cam_devq *devq = NULL;
8983 	struct cam_sim *sim = NULL;
8984 	struct cam_path *path = NULL;
8985 	int err;
8986 
8987 	/*
8988 	 *  Establish our interrupt handler.
8989 	 */
8990 	err = bus_setup_intr(np->device, np->irq_res,
8991 			INTR_MPSAFE,
8992 			sym_intr, np, &np->intr, NULL);
8993 	if (err) {
8994 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8995 			      err);
8996 		goto fail;
8997 	}
8998 
8999 	/*
9000 	 *  Create the device queue for our sym SIM.
9001 	 */
9002 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9003 	if (!devq)
9004 		goto fail;
9005 
9006 	/*
9007 	 *  Construct our SIM entry.
9008 	 */
9009 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
9010 			device_get_unit(np->device),
9011 			&np->lock, 1, SYM_SETUP_MAX_TAG, devq);
9012 	cam_simq_release(devq);
9013 	if (!sim)
9014 		goto fail;
9015 
9016 	SYM_LOCK();
9017 
9018 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9019 		goto fail;
9020 	np->sim = sim;
9021 
9022 	if (xpt_create_path(&path, 0,
9023 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9024 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9025 		goto fail;
9026 	}
9027 	np->path = path;
9028 
9029 	/*
9030 	 *  Establish our async notification handler.
9031 	 */
9032 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
9033 	    CAM_REQ_CMP)
9034 		goto fail;
9035 
9036 	/*
9037 	 *  Start the chip now, without resetting the BUS, since
9038 	 *  it seems that this must stay under control of CAM.
9039 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9040 	 *  get a spurious SMBC interrupt.
9041 	 */
9042 	sym_init (np, 0);
9043 
9044 	SYM_UNLOCK();
9045 
9046 	return 1;
9047 fail:
9048 	if (sim)
9049 		cam_sim_free(sim);
9050 
9051 	SYM_UNLOCK();
9052 
9053 	sym_cam_free(np);
9054 
9055 	return 0;
9056 }
9057 
9058 /*
9059  *  Free everything that deals with CAM.
9060  */
9061 static void sym_cam_free(hcb_p np)
9062 {
9063 	SYM_LOCK_ASSERT(0);
9064 
9065 	if (np->intr) {
9066 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9067 		np->intr = NULL;
9068 	}
9069 
9070 	SYM_LOCK();
9071 
9072 	if (np->sim) {
9073 		xpt_bus_deregister(cam_sim_path(np->sim));
9074 		cam_sim_free(np->sim);
9075 		np->sim = NULL;
9076 	}
9077 	if (np->path) {
9078 		xpt_free_path(np->path);
9079 		np->path = NULL;
9080 	}
9081 
9082 	SYM_UNLOCK();
9083 }
9084 
9085 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9086 
9087 /*
9088  *  Get host setup from NVRAM.
9089  */
9090 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9091 {
9092 #ifdef SYM_CONF_NVRAM_SUPPORT
9093 	/*
9094 	 *  Get parity checking, host ID, verbose mode
9095 	 *  and miscellaneous host flags from NVRAM.
9096 	 */
9097 	switch(nvram->type) {
9098 	case SYM_SYMBIOS_NVRAM:
9099 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9100 			np->rv_scntl0  &= ~0x0a;
9101 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9102 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9103 			np->verbose += 1;
9104 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9105 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9106 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9107 			np->usrflags |= SYM_AVOID_BUS_RESET;
9108 		break;
9109 	case SYM_TEKRAM_NVRAM:
9110 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9111 		break;
9112 	default:
9113 		break;
9114 	}
9115 #endif
9116 }
9117 
9118 /*
9119  *  Get target setup from NVRAM.
9120  */
9121 #ifdef SYM_CONF_NVRAM_SUPPORT
9122 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9123 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9124 #endif
9125 
9126 static void
9127 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9128 {
9129 #ifdef SYM_CONF_NVRAM_SUPPORT
9130 	switch(nvp->type) {
9131 	case SYM_SYMBIOS_NVRAM:
9132 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9133 		break;
9134 	case SYM_TEKRAM_NVRAM:
9135 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9136 		break;
9137 	default:
9138 		break;
9139 	}
9140 #endif
9141 }
9142 
9143 #ifdef SYM_CONF_NVRAM_SUPPORT
9144 /*
9145  *  Get target set-up from Symbios format NVRAM.
9146  */
9147 static void
9148 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9149 {
9150 	tcb_p tp = &np->target[target];
9151 	Symbios_target *tn = &nvram->target[target];
9152 
9153 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9154 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9155 	tp->usrtags =
9156 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9157 
9158 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9159 		tp->usrflags &= ~SYM_DISC_ENABLED;
9160 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9161 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9162 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9163 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9164 }
9165 
9166 /*
9167  *  Get target set-up from Tekram format NVRAM.
9168  */
9169 static void
9170 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9171 {
9172 	tcb_p tp = &np->target[target];
9173 	struct Tekram_target *tn = &nvram->target[target];
9174 	int i;
9175 
9176 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9177 		i = tn->sync_index & 0xf;
9178 		tp->tinfo.user.period = Tekram_sync[i];
9179 	}
9180 
9181 	tp->tinfo.user.width =
9182 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9183 
9184 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9185 		tp->usrtags = 2 << nvram->max_tags_index;
9186 	}
9187 
9188 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9189 		tp->usrflags |= SYM_DISC_ENABLED;
9190 
9191 	/* If any device does not support parity, we will not use this option */
9192 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9193 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9194 }
9195 
9196 #ifdef	SYM_CONF_DEBUG_NVRAM
9197 /*
9198  *  Dump Symbios format NVRAM for debugging purpose.
9199  */
9200 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9201 {
9202 	int i;
9203 
9204 	/* display Symbios nvram host data */
9205 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9206 		sym_name(np), nvram->host_id & 0x0f,
9207 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9208 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9209 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9210 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9211 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9212 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9213 
9214 	/* display Symbios nvram drive data */
9215 	for (i = 0 ; i < 15 ; i++) {
9216 		struct Symbios_target *tn = &nvram->target[i];
9217 		kprintf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9218 		sym_name(np), i,
9219 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9220 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9221 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9222 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9223 		tn->bus_width,
9224 		tn->sync_period / 4,
9225 		tn->timeout);
9226 	}
9227 }
9228 
9229 /*
9230  *  Dump TEKRAM format NVRAM for debugging purpose.
9231  */
9232 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9233 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9234 {
9235 	int i, tags, boot_delay;
9236 	char *rem;
9237 
9238 	/* display Tekram nvram host data */
9239 	tags = 2 << nvram->max_tags_index;
9240 	boot_delay = 0;
9241 	if (nvram->boot_delay_index < 6)
9242 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9243 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9244 	default:
9245 	case 0:	rem = "";			break;
9246 	case 1: rem = " REMOVABLE=boot device";	break;
9247 	case 2: rem = " REMOVABLE=all";		break;
9248 	}
9249 
9250 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9251 		sym_name(np), nvram->host_id & 0x0f,
9252 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9253 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9254 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9255 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9256 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9257 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9258 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9259 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9260 		rem, boot_delay, tags);
9261 
9262 	/* display Tekram nvram drive data */
9263 	for (i = 0; i <= 15; i++) {
9264 		int sync, j;
9265 		struct Tekram_target *tn = &nvram->target[i];
9266 		j = tn->sync_index & 0xf;
9267 		sync = Tekram_sync[j];
9268 		kprintf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9269 		sym_name(np), i,
9270 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9271 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9272 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9273 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9274 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9275 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9276 		sync);
9277 	}
9278 }
9279 #endif	/* SYM_CONF_DEBUG_NVRAM */
9280 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9281 
9282 
9283 /*
9284  *  Try reading Symbios or Tekram NVRAM
9285  */
9286 #ifdef SYM_CONF_NVRAM_SUPPORT
9287 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9288 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9289 #endif
9290 
9291 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9292 {
9293 #ifdef SYM_CONF_NVRAM_SUPPORT
9294 	/*
9295 	 *  Try to read SYMBIOS nvram.
9296 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9297 	 */
9298 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9299 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9300 		nvp->type = SYM_SYMBIOS_NVRAM;
9301 #ifdef SYM_CONF_DEBUG_NVRAM
9302 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9303 #endif
9304 	}
9305 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9306 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9307 		nvp->type = SYM_TEKRAM_NVRAM;
9308 #ifdef SYM_CONF_DEBUG_NVRAM
9309 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9310 #endif
9311 	}
9312 	else
9313 		nvp->type = 0;
9314 #else
9315 	nvp->type = 0;
9316 #endif
9317 	return nvp->type;
9318 }
9319 
9320 
9321 #ifdef SYM_CONF_NVRAM_SUPPORT
9322 /*
9323  *  24C16 EEPROM reading.
9324  *
9325  *  GPOI0 - data in/data out
9326  *  GPIO1 - clock
9327  *  Symbios NVRAM wiring now also used by Tekram.
9328  */
9329 
9330 #define SET_BIT 0
9331 #define CLR_BIT 1
9332 #define SET_CLK 2
9333 #define CLR_CLK 3
9334 
9335 /*
9336  *  Set/clear data/clock bit in GPIO0
9337  */
9338 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9339 			  int bit_mode)
9340 {
9341 	UDELAY (5);
9342 	switch (bit_mode){
9343 	case SET_BIT:
9344 		*gpreg |= write_bit;
9345 		break;
9346 	case CLR_BIT:
9347 		*gpreg &= 0xfe;
9348 		break;
9349 	case SET_CLK:
9350 		*gpreg |= 0x02;
9351 		break;
9352 	case CLR_CLK:
9353 		*gpreg &= 0xfd;
9354 		break;
9355 
9356 	}
9357 	OUTB (nc_gpreg, *gpreg);
9358 	UDELAY (5);
9359 }
9360 
9361 /*
9362  *  Send START condition to NVRAM to wake it up.
9363  */
9364 static void S24C16_start(hcb_p np, u_char *gpreg)
9365 {
9366 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9367 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9368 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9369 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9370 }
9371 
9372 /*
9373  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9374  */
9375 static void S24C16_stop(hcb_p np, u_char *gpreg)
9376 {
9377 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9378 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9379 }
9380 
9381 /*
9382  *  Read or write a bit to the NVRAM,
9383  *  read if GPIO0 input else write if GPIO0 output
9384  */
9385 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9386 			 u_char *gpreg)
9387 {
9388 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9389 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9390 	if (read_bit)
9391 		*read_bit = INB (nc_gpreg);
9392 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9393 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9394 }
9395 
9396 /*
9397  *  Output an ACK to the NVRAM after reading,
9398  *  change GPIO0 to output and when done back to an input
9399  */
9400 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9401 			    u_char *gpcntl)
9402 {
9403 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9404 	S24C16_do_bit(np, 0, write_bit, gpreg);
9405 	OUTB (nc_gpcntl, *gpcntl);
9406 }
9407 
9408 /*
9409  *  Input an ACK from NVRAM after writing,
9410  *  change GPIO0 to input and when done back to an output
9411  */
9412 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9413 			   u_char *gpcntl)
9414 {
9415 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9416 	S24C16_do_bit(np, read_bit, 1, gpreg);
9417 	OUTB (nc_gpcntl, *gpcntl);
9418 }
9419 
9420 /*
9421  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9422  *  GPIO0 must already be set as an output
9423  */
9424 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9425 			     u_char *gpreg, u_char *gpcntl)
9426 {
9427 	int x;
9428 
9429 	for (x = 0; x < 8; x++)
9430 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9431 
9432 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9433 }
9434 
9435 /*
9436  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9437  *  GPIO0 must already be set as an input
9438  */
9439 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9440 			    u_char *gpreg, u_char *gpcntl)
9441 {
9442 	int x;
9443 	u_char read_bit;
9444 
9445 	*read_data = 0;
9446 	for (x = 0; x < 8; x++) {
9447 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9448 		*read_data |= ((read_bit & 0x01) << (7 - x));
9449 	}
9450 
9451 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9452 }
9453 
9454 /*
9455  *  Read 'len' bytes starting at 'offset'.
9456  */
9457 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9458 {
9459 	u_char	gpcntl, gpreg;
9460 	u_char	old_gpcntl, old_gpreg;
9461 	u_char	ack_data;
9462 	int	retv = 1;
9463 	int	x;
9464 
9465 	/* save current state of GPCNTL and GPREG */
9466 	old_gpreg	= INB (nc_gpreg);
9467 	old_gpcntl	= INB (nc_gpcntl);
9468 	gpcntl		= old_gpcntl & 0x1c;
9469 
9470 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9471 	OUTB (nc_gpreg,  old_gpreg);
9472 	OUTB (nc_gpcntl, gpcntl);
9473 
9474 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9475 	gpreg = old_gpreg;
9476 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9477 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9478 
9479 	/* now set NVRAM inactive with GPIO0/1 both high */
9480 	S24C16_stop(np, &gpreg);
9481 
9482 	/* activate NVRAM */
9483 	S24C16_start(np, &gpreg);
9484 
9485 	/* write device code and random address MSB */
9486 	S24C16_write_byte(np, &ack_data,
9487 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9488 	if (ack_data & 0x01)
9489 		goto out;
9490 
9491 	/* write random address LSB */
9492 	S24C16_write_byte(np, &ack_data,
9493 		offset & 0xff, &gpreg, &gpcntl);
9494 	if (ack_data & 0x01)
9495 		goto out;
9496 
9497 	/* regenerate START state to set up for reading */
9498 	S24C16_start(np, &gpreg);
9499 
9500 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9501 	S24C16_write_byte(np, &ack_data,
9502 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9503 	if (ack_data & 0x01)
9504 		goto out;
9505 
9506 	/* now set up GPIO0 for inputting data */
9507 	gpcntl |= 0x01;
9508 	OUTB (nc_gpcntl, gpcntl);
9509 
9510 	/* input all requested data - only part of total NVRAM */
9511 	for (x = 0; x < len; x++)
9512 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9513 
9514 	/* finally put NVRAM back in inactive mode */
9515 	gpcntl &= 0xfe;
9516 	OUTB (nc_gpcntl, gpcntl);
9517 	S24C16_stop(np, &gpreg);
9518 	retv = 0;
9519 out:
9520 	/* return GPIO0/1 to original states after having accessed NVRAM */
9521 	OUTB (nc_gpcntl, old_gpcntl);
9522 	OUTB (nc_gpreg,  old_gpreg);
9523 
9524 	return retv;
9525 }
9526 
9527 #undef SET_BIT /* 0 */
9528 #undef CLR_BIT /* 1 */
9529 #undef SET_CLK /* 2 */
9530 #undef CLR_CLK /* 3 */
9531 
9532 /*
9533  *  Try reading Symbios NVRAM.
9534  *  Return 0 if OK.
9535  */
9536 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9537 {
9538 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9539 	u_char *data = (u_char *) nvram;
9540 	int len  = sizeof(*nvram);
9541 	u_short	csum;
9542 	int x;
9543 
9544 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9545 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9546 		return 1;
9547 
9548 	/* check valid NVRAM signature, verify byte count and checksum */
9549 	if (nvram->type != 0 ||
9550 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9551 	    nvram->byte_count != len - 12)
9552 		return 1;
9553 
9554 	/* verify checksum */
9555 	for (x = 6, csum = 0; x < len - 6; x++)
9556 		csum += data[x];
9557 	if (csum != nvram->checksum)
9558 		return 1;
9559 
9560 	return 0;
9561 }
9562 
9563 /*
9564  *  93C46 EEPROM reading.
9565  *
9566  *  GPOI0 - data in
9567  *  GPIO1 - data out
9568  *  GPIO2 - clock
9569  *  GPIO4 - chip select
9570  *
9571  *  Used by Tekram.
9572  */
9573 
9574 /*
9575  *  Pulse clock bit in GPIO0
9576  */
9577 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9578 {
9579 	OUTB (nc_gpreg, *gpreg | 0x04);
9580 	UDELAY (2);
9581 	OUTB (nc_gpreg, *gpreg);
9582 }
9583 
9584 /*
9585  *  Read bit from NVRAM
9586  */
9587 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9588 {
9589 	UDELAY (2);
9590 	T93C46_Clk(np, gpreg);
9591 	*read_bit = INB (nc_gpreg);
9592 }
9593 
9594 /*
9595  *  Write bit to GPIO0
9596  */
9597 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9598 {
9599 	if (write_bit & 0x01)
9600 		*gpreg |= 0x02;
9601 	else
9602 		*gpreg &= 0xfd;
9603 
9604 	*gpreg |= 0x10;
9605 
9606 	OUTB (nc_gpreg, *gpreg);
9607 	UDELAY (2);
9608 
9609 	T93C46_Clk(np, gpreg);
9610 }
9611 
9612 /*
9613  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9614  */
9615 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9616 {
9617 	*gpreg &= 0xef;
9618 	OUTB (nc_gpreg, *gpreg);
9619 	UDELAY (2);
9620 
9621 	T93C46_Clk(np, gpreg);
9622 }
9623 
9624 /*
9625  *  Send read command and address to NVRAM
9626  */
9627 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9628 				u_char *read_bit, u_char *gpreg)
9629 {
9630 	int x;
9631 
9632 	/* send 9 bits, start bit (1), command (2), address (6)  */
9633 	for (x = 0; x < 9; x++)
9634 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9635 
9636 	*read_bit = INB (nc_gpreg);
9637 }
9638 
9639 /*
9640  *  READ 2 bytes from the NVRAM
9641  */
9642 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9643 {
9644 	int x;
9645 	u_char read_bit;
9646 
9647 	*nvram_data = 0;
9648 	for (x = 0; x < 16; x++) {
9649 		T93C46_Read_Bit(np, &read_bit, gpreg);
9650 
9651 		if (read_bit & 0x01)
9652 			*nvram_data |=  (0x01 << (15 - x));
9653 		else
9654 			*nvram_data &= ~(0x01 << (15 - x));
9655 	}
9656 }
9657 
9658 /*
9659  *  Read Tekram NvRAM data.
9660  */
9661 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9662 {
9663 	u_char	read_bit;
9664 	int	x;
9665 
9666 	for (x = 0; x < len; x++)  {
9667 
9668 		/* output read command and address */
9669 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9670 		if (read_bit & 0x01)
9671 			return 1; /* Bad */
9672 		T93C46_Read_Word(np, &data[x], gpreg);
9673 		T93C46_Stop(np, gpreg);
9674 	}
9675 
9676 	return 0;
9677 }
9678 
9679 /*
9680  *  Try reading 93C46 Tekram NVRAM.
9681  */
9682 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9683 {
9684 	u_char gpcntl, gpreg;
9685 	u_char old_gpcntl, old_gpreg;
9686 	int retv = 1;
9687 
9688 	/* save current state of GPCNTL and GPREG */
9689 	old_gpreg	= INB (nc_gpreg);
9690 	old_gpcntl	= INB (nc_gpcntl);
9691 
9692 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9693 	   1/2/4 out */
9694 	gpreg = old_gpreg & 0xe9;
9695 	OUTB (nc_gpreg, gpreg);
9696 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9697 	OUTB (nc_gpcntl, gpcntl);
9698 
9699 	/* input all of NVRAM, 64 words */
9700 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9701 				sizeof(*nvram) / sizeof(short), &gpreg);
9702 
9703 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9704 	OUTB (nc_gpcntl, old_gpcntl);
9705 	OUTB (nc_gpreg,  old_gpreg);
9706 
9707 	return retv;
9708 }
9709 
9710 /*
9711  *  Try reading Tekram NVRAM.
9712  *  Return 0 if OK.
9713  */
9714 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9715 {
9716 	u_char *data = (u_char *) nvram;
9717 	int len = sizeof(*nvram);
9718 	u_short	csum;
9719 	int x;
9720 
9721 	switch (np->device_id) {
9722 	case PCI_ID_SYM53C885:
9723 	case PCI_ID_SYM53C895:
9724 	case PCI_ID_SYM53C896:
9725 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9726 					  data, len);
9727 		break;
9728 	case PCI_ID_SYM53C875:
9729 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9730 					  data, len);
9731 		if (!x)
9732 			break;
9733 	default:
9734 		x = sym_read_T93C46_nvram(np, nvram);
9735 		break;
9736 	}
9737 	if (x)
9738 		return 1;
9739 
9740 	/* verify checksum */
9741 	for (x = 0, csum = 0; x < len - 1; x += 2)
9742 		csum += data[x] + (data[x+1] << 8);
9743 	if (csum != 0x1234)
9744 		return 1;
9745 
9746 	return 0;
9747 }
9748 
9749 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9750