xref: /dragonfly/sys/dev/disk/sym/sym_hipd.c (revision d3d5dcf2)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD: src/sys/dev/sym/sym_hipd.c,v 1.6.2.12 2001/12/02 19:01:10 groudier Exp $ */
59 /* $DragonFly: src/sys/dev/disk/sym/sym_hipd.c,v 1.24 2008/05/18 20:30:22 pavalos Exp $ */
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include "use_pci.h"
66 #include <sys/param.h>
67 
68 /*
69  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
70  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
71  *  about 1 KB for the driver object file.
72  */
73 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
74 #define	FreeBSD_Bus_Dma_Abstraction
75 #define	FreeBSD_Bus_Io_Abstraction
76 #define	FreeBSD_Bus_Space_Abstraction
77 #endif
78 
79 /*
80  *  Driver configuration options.
81  */
82 #include "opt_sym.h"
83 #include "sym_conf.h"
84 
85 #ifndef FreeBSD_Bus_Io_Abstraction
86 #include "use_ncr.h"	/* To know if the ncr has been configured */
87 #endif
88 
89 #include <sys/systm.h>
90 #include <sys/malloc.h>
91 #include <sys/kernel.h>
92 #ifdef FreeBSD_Bus_Io_Abstraction
93 #include <sys/module.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 #endif
97 #include <sys/thread2.h>
98 
99 #include <sys/proc.h>
100 
101 #include <bus/pci/pcireg.h>
102 #include <bus/pci/pcivar.h>
103 
104 #include <machine/clock.h>
105 
106 #include <bus/cam/cam.h>
107 #include <bus/cam/cam_ccb.h>
108 #include <bus/cam/cam_sim.h>
109 #include <bus/cam/cam_xpt_sim.h>
110 #include <bus/cam/cam_debug.h>
111 
112 #include <bus/cam/scsi/scsi_all.h>
113 #include <bus/cam/scsi/scsi_message.h>
114 
115 #include <vm/vm.h>
116 #include <vm/vm_param.h>
117 #include <vm/pmap.h>
118 
119 /* Short and quite clear integer types */
120 typedef int8_t    s8;
121 typedef int16_t   s16;
122 typedef	int32_t   s32;
123 typedef u_int8_t  u8;
124 typedef u_int16_t u16;
125 typedef	u_int32_t u32;
126 
127 /*
128  *  Driver definitions.
129  */
130 #include "sym_defs.h"
131 #include "sym_fw.h"
132 
133 /*
134  *  IA32 architecture does not reorder STORES and prevents
135  *  LOADS from passing STORES. It is called `program order'
136  *  by Intel and allows device drivers to deal with memory
137  *  ordering by only ensuring that the code is not reordered
138  *  by the compiler when ordering is required.
139  *  Other architectures implement a weaker ordering that
140  *  requires memory barriers (and also IO barriers when they
141  *  make sense) to be used.
142  */
143 
144 #if	defined	__i386__ || defined __x86_64__
145 #define MEMORY_BARRIER()	do { ; } while(0)
146 #elif	defined	__powerpc__
147 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
148 #elif	defined	__ia64__
149 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
150 #elif	defined	__sparc64__
151 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
152 #else
153 #error	"Not supported platform"
154 #endif
155 
156 /*
157  *  Portable but silly implemented byte order primitives.
158  *  We define the primitives we need, since FreeBSD doesn't
159  *  seem to have them yet.
160  */
161 #if	BYTE_ORDER == BIG_ENDIAN
162 
163 #define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \
164 			(((u16)(x) & (u16)0xff00U) >> 8) 	)
165 #define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \
166 			(((u32)(x) & 0x0000ff00U) <<  8) | \
167 			(((u32)(x) & 0x00ff0000U) >>  8) | \
168 			(((u32)(x) & 0xff000000U) >> 24)	)
169 
170 #define __htole16(v)	__revb16(v)
171 #define __htole32(v)	__revb32(v)
172 #define __le16toh(v)	__htole16(v)
173 #define __le32toh(v)	__htole32(v)
174 
175 static __inline u16	_htole16(u16 v) { return __htole16(v); }
176 static __inline u32	_htole32(u32 v) { return __htole32(v); }
177 #define _le16toh	_htole16
178 #define _le32toh	_htole32
179 
180 #else	/* LITTLE ENDIAN */
181 
182 #define __htole16(v)	(v)
183 #define __htole32(v)	(v)
184 #define __le16toh(v)	(v)
185 #define __le32toh(v)	(v)
186 
187 #define _htole16(v)	(v)
188 #define _htole32(v)	(v)
189 #define _le16toh(v)	(v)
190 #define _le32toh(v)	(v)
191 
192 #endif	/* BYTE_ORDER */
193 
194 /*
195  *  A la VMS/CAM-3 queue management.
196  */
197 
198 typedef struct sym_quehead {
199 	struct sym_quehead *flink;	/* Forward  pointer */
200 	struct sym_quehead *blink;	/* Backward pointer */
201 } SYM_QUEHEAD;
202 
203 #define sym_que_init(ptr) do { \
204 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
205 } while (0)
206 
207 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
208 {
209 	return (head->flink == head) ? 0 : head->flink;
210 }
211 
212 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
213 {
214 	return (head->blink == head) ? 0 : head->blink;
215 }
216 
217 static __inline void __sym_que_add(struct sym_quehead * new,
218 	struct sym_quehead * blink,
219 	struct sym_quehead * flink)
220 {
221 	flink->blink	= new;
222 	new->flink	= flink;
223 	new->blink	= blink;
224 	blink->flink	= new;
225 }
226 
227 static __inline void __sym_que_del(struct sym_quehead * blink,
228 	struct sym_quehead * flink)
229 {
230 	flink->blink = blink;
231 	blink->flink = flink;
232 }
233 
234 static __inline int sym_que_empty(struct sym_quehead *head)
235 {
236 	return head->flink == head;
237 }
238 
239 static __inline void sym_que_splice(struct sym_quehead *list,
240 	struct sym_quehead *head)
241 {
242 	struct sym_quehead *first = list->flink;
243 
244 	if (first != list) {
245 		struct sym_quehead *last = list->blink;
246 		struct sym_quehead *at   = head->flink;
247 
248 		first->blink = head;
249 		head->flink  = first;
250 
251 		last->flink = at;
252 		at->blink   = last;
253 	}
254 }
255 
256 #define sym_que_entry(ptr, type, member) \
257 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
258 
259 
260 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
261 
262 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
263 
264 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
265 
266 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
267 {
268 	struct sym_quehead *elem = head->flink;
269 
270 	if (elem != head)
271 		__sym_que_del(head, elem->flink);
272 	else
273 		elem = 0;
274 	return elem;
275 }
276 
277 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
278 
279 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
280 {
281 	struct sym_quehead *elem = head->blink;
282 
283 	if (elem != head)
284 		__sym_que_del(elem->blink, head);
285 	else
286 		elem = 0;
287 	return elem;
288 }
289 
290 /*
291  *  This one may be useful.
292  */
293 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
294 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
295 /*
296  *  FreeBSD does not offer our kind of queue in the CAM CCB.
297  *  So, we have to cast.
298  */
299 #define sym_qptr(p)	((struct sym_quehead *) (p))
300 
301 /*
302  *  Simple bitmap operations.
303  */
304 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
305 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
306 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
307 
308 /*
309  *  Number of tasks per device we want to handle.
310  */
311 #if	SYM_CONF_MAX_TAG_ORDER > 8
312 #error	"more than 256 tags per logical unit not allowed."
313 #endif
314 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
315 
316 /*
317  *  Donnot use more tasks that we can handle.
318  */
319 #ifndef	SYM_CONF_MAX_TAG
320 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
321 #endif
322 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
323 #undef	SYM_CONF_MAX_TAG
324 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
325 #endif
326 
327 /*
328  *    This one means 'NO TAG for this job'
329  */
330 #define NO_TAG	(256)
331 
332 /*
333  *  Number of SCSI targets.
334  */
335 #if	SYM_CONF_MAX_TARGET > 16
336 #error	"more than 16 targets not allowed."
337 #endif
338 
339 /*
340  *  Number of logical units per target.
341  */
342 #if	SYM_CONF_MAX_LUN > 64
343 #error	"more than 64 logical units per target not allowed."
344 #endif
345 
346 /*
347  *    Asynchronous pre-scaler (ns). Shall be 40 for
348  *    the SCSI timings to be compliant.
349  */
350 #define	SYM_CONF_MIN_ASYNC (40)
351 
352 /*
353  *  Number of entries in the START and DONE queues.
354  *
355  *  We limit to 1 PAGE in order to succeed allocation of
356  *  these queues. Each entry is 8 bytes long (2 DWORDS).
357  */
358 #ifdef	SYM_CONF_MAX_START
359 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
360 #else
361 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
362 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
363 #endif
364 
365 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
366 #undef	SYM_CONF_MAX_QUEUE
367 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
368 #undef	SYM_CONF_MAX_START
369 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
370 #endif
371 
372 /*
373  *  For this one, we want a short name :-)
374  */
375 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
376 
377 /*
378  *  Active debugging tags and verbosity.
379  */
380 #define DEBUG_ALLOC	(0x0001)
381 #define DEBUG_PHASE	(0x0002)
382 #define DEBUG_POLL	(0x0004)
383 #define DEBUG_QUEUE	(0x0008)
384 #define DEBUG_RESULT	(0x0010)
385 #define DEBUG_SCATTER	(0x0020)
386 #define DEBUG_SCRIPT	(0x0040)
387 #define DEBUG_TINY	(0x0080)
388 #define DEBUG_TIMING	(0x0100)
389 #define DEBUG_NEGO	(0x0200)
390 #define DEBUG_TAGS	(0x0400)
391 #define DEBUG_POINTER	(0x0800)
392 
393 #if 0
394 static int sym_debug = 0;
395 	#define DEBUG_FLAGS sym_debug
396 #else
397 /*	#define DEBUG_FLAGS (0x0631) */
398 	#define DEBUG_FLAGS (0x0000)
399 
400 #endif
401 #define sym_verbose	(np->verbose)
402 
403 /*
404  *  Insert a delay in micro-seconds and milli-seconds.
405  */
406 static void UDELAY(int us) { DELAY(us); }
407 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
408 
409 /*
410  *  Simple power of two buddy-like allocator.
411  *
412  *  This simple code is not intended to be fast, but to
413  *  provide power of 2 aligned memory allocations.
414  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
415  *  this allocator allows simple and fast address calculations
416  *  from the SCRIPTS code. In addition, cache line alignment
417  *  is guaranteed for power of 2 cache line size.
418  *
419  *  This allocator has been developped for the Linux sym53c8xx
420  *  driver, since this O/S does not provide naturally aligned
421  *  allocations.
422  *  It has the advantage of allowing the driver to use private
423  *  pages of memory that will be useful if we ever need to deal
424  *  with IO MMUs for PCI.
425  */
426 
427 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
428 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
429 #if 0
430 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
431 #endif
432 #define MEMO_WARN	1
433 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
434 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
435 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
436 
437 #define get_pages()		kmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_INTWAIT)
438 #define free_pages(p)		kfree((p), M_DEVBUF)
439 
440 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
441 
442 typedef struct m_link {		/* Link between free memory chunks */
443 	struct m_link *next;
444 } m_link_s;
445 
446 #ifdef	FreeBSD_Bus_Dma_Abstraction
447 typedef struct m_vtob {		/* Virtual to Bus address translation */
448 	struct m_vtob	*next;
449 	bus_dmamap_t	dmamap;	/* Map for this chunk */
450 	m_addr_t	vaddr;	/* Virtual address */
451 	m_addr_t	baddr;	/* Bus physical address */
452 } m_vtob_s;
453 /* Hash this stuff a bit to speed up translations */
454 #define VTOB_HASH_SHIFT		5
455 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
456 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
457 #define VTOB_HASH_CODE(m)	\
458 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
459 #endif
460 
461 typedef struct m_pool {		/* Memory pool of a given kind */
462 #ifdef	FreeBSD_Bus_Dma_Abstraction
463 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
464 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
465 	m_addr_t (*getp)(struct m_pool *);
466 #ifdef	MEMO_FREE_UNUSED
467 	void (*freep)(struct m_pool *, m_addr_t);
468 #endif
469 #define M_GETP()		mp->getp(mp)
470 #define M_FREEP(p)		mp->freep(mp, p)
471 	int nump;
472 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
473 	struct m_pool *next;
474 #else
475 #define M_GETP()		get_pages()
476 #define M_FREEP(p)		free_pages(p)
477 #endif	/* FreeBSD_Bus_Dma_Abstraction */
478 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
479 } m_pool_s;
480 
481 static void *___sym_malloc(m_pool_s *mp, int size)
482 {
483 	int i = 0;
484 	int s = (1 << MEMO_SHIFT);
485 	int j;
486 	m_addr_t a;
487 	m_link_s *h = mp->h;
488 
489 	if (size > MEMO_CLUSTER_SIZE)
490 		return 0;
491 
492 	while (size > s) {
493 		s <<= 1;
494 		++i;
495 	}
496 
497 	j = i;
498 	while (!h[j].next) {
499 		if (s == MEMO_CLUSTER_SIZE) {
500 			h[j].next = (m_link_s *) M_GETP();
501 			if (h[j].next)
502 				h[j].next->next = 0;
503 			break;
504 		}
505 		++j;
506 		s <<= 1;
507 	}
508 	a = (m_addr_t) h[j].next;
509 	if (a) {
510 		h[j].next = h[j].next->next;
511 		while (j > i) {
512 			j -= 1;
513 			s >>= 1;
514 			h[j].next = (m_link_s *) (a+s);
515 			h[j].next->next = 0;
516 		}
517 	}
518 #ifdef DEBUG
519 	kprintf("___sym_malloc(%d) = %p\n", size, (void *) a);
520 #endif
521 	return (void *) a;
522 }
523 
524 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
525 {
526 	int i = 0;
527 	int s = (1 << MEMO_SHIFT);
528 	m_link_s *q;
529 	m_addr_t a, b;
530 	m_link_s *h = mp->h;
531 
532 #ifdef DEBUG
533 	kprintf("___sym_mfree(%p, %d)\n", ptr, size);
534 #endif
535 
536 	if (size > MEMO_CLUSTER_SIZE)
537 		return;
538 
539 	while (size > s) {
540 		s <<= 1;
541 		++i;
542 	}
543 
544 	a = (m_addr_t) ptr;
545 
546 	while (1) {
547 #ifdef MEMO_FREE_UNUSED
548 		if (s == MEMO_CLUSTER_SIZE) {
549 			M_FREEP(a);
550 			break;
551 		}
552 #endif
553 		b = a ^ s;
554 		q = &h[i];
555 		while (q->next && q->next != (m_link_s *) b) {
556 			q = q->next;
557 		}
558 		if (!q->next) {
559 			((m_link_s *) a)->next = h[i].next;
560 			h[i].next = (m_link_s *) a;
561 			break;
562 		}
563 		q->next = q->next->next;
564 		a = a & b;
565 		s <<= 1;
566 		++i;
567 	}
568 }
569 
570 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
571 {
572 	void *p;
573 
574 	p = ___sym_malloc(mp, size);
575 
576 	if (DEBUG_FLAGS & DEBUG_ALLOC)
577 		kprintf ("new %-10s[%4d] @%p.\n", name, size, p);
578 
579 	if (p)
580 		bzero(p, size);
581 	else if (uflags & MEMO_WARN)
582 		kprintf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
583 
584 	return p;
585 }
586 
587 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
588 
589 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
590 {
591 	if (DEBUG_FLAGS & DEBUG_ALLOC)
592 		kprintf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
593 
594 	___sym_mfree(mp, ptr, size);
595 
596 }
597 
598 /*
599  * Default memory pool we donnot need to involve in DMA.
600  */
601 #ifndef	FreeBSD_Bus_Dma_Abstraction
602 /*
603  * Without the `bus dma abstraction', all the memory is assumed
604  * DMAable and a single pool is all what we need.
605  */
606 static m_pool_s mp0;
607 
608 #else
609 /*
610  * With the `bus dma abstraction', we use a separate pool for
611  * memory we donnot need to involve in DMA.
612  */
613 static m_addr_t ___mp0_getp(m_pool_s *mp)
614 {
615 	m_addr_t m = (m_addr_t) get_pages();
616 	if (m)
617 		++mp->nump;
618 	return m;
619 }
620 
621 #ifdef	MEMO_FREE_UNUSED
622 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
623 {
624 	free_pages(m);
625 	--mp->nump;
626 }
627 #endif
628 
629 #ifdef	MEMO_FREE_UNUSED
630 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
631 #else
632 static m_pool_s mp0 = {0, 0, ___mp0_getp};
633 #endif
634 
635 #endif	/* FreeBSD_Bus_Dma_Abstraction */
636 
637 /*
638  * Actual memory allocation routine for non-DMAed memory.
639  */
640 static void *sym_calloc(int size, char *name)
641 {
642 	void *m;
643 	/* Lock */
644 	m = __sym_calloc(&mp0, size, name);
645 	/* Unlock */
646 	return m;
647 }
648 
649 /*
650  * Actual memory allocation routine for non-DMAed memory.
651  */
652 static void sym_mfree(void *ptr, int size, char *name)
653 {
654 	/* Lock */
655 	__sym_mfree(&mp0, ptr, size, name);
656 	/* Unlock */
657 }
658 
659 /*
660  * DMAable pools.
661  */
662 #ifndef	FreeBSD_Bus_Dma_Abstraction
663 /*
664  * Without `bus dma abstraction', all the memory is DMAable, and
665  * only a single pool is needed (vtophys() is our friend).
666  */
667 #define __sym_calloc_dma(b, s, n)	sym_calloc(s, n)
668 #define __sym_mfree_dma(b, p, s, n)	sym_mfree(p, s, n)
669 #define __vtobus(b, p)	vtophys(p)
670 
671 #else
672 /*
673  * With `bus dma abstraction', we use a separate pool per parent
674  * BUS handle. A reverse table (hashed) is maintained for virtual
675  * to BUS address translation.
676  */
677 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
678 {
679 	bus_addr_t *baddr;
680 	baddr = (bus_addr_t *)arg;
681 	*baddr = segs->ds_addr;
682 }
683 
684 static m_addr_t ___dma_getp(m_pool_s *mp)
685 {
686 	m_vtob_s *vbp;
687 	void *vaddr = 0;
688 	bus_addr_t baddr = 0;
689 
690 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
691 	if (!vbp)
692 		goto out_err;
693 
694 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
695 			      BUS_DMA_NOWAIT, &vbp->dmamap))
696 		goto out_err;
697 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
698 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
699 	if (baddr) {
700 		int hc = VTOB_HASH_CODE(vaddr);
701 		vbp->vaddr = (m_addr_t) vaddr;
702 		vbp->baddr = (m_addr_t) baddr;
703 		vbp->next = mp->vtob[hc];
704 		mp->vtob[hc] = vbp;
705 		++mp->nump;
706 		return (m_addr_t) vaddr;
707 	}
708 out_err:
709 	if (baddr)
710 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
711 	if (vaddr)
712 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
713 	if (vbp->dmamap)
714 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
715 	if (vbp)
716 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
717 	return 0;
718 }
719 
720 #ifdef	MEMO_FREE_UNUSED
721 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
722 {
723 	m_vtob_s **vbpp, *vbp;
724 	int hc = VTOB_HASH_CODE(m);
725 
726 	vbpp = &mp->vtob[hc];
727 	while (*vbpp && (*vbpp)->vaddr != m)
728 		vbpp = &(*vbpp)->next;
729 	if (*vbpp) {
730 		vbp = *vbpp;
731 		*vbpp = (*vbpp)->next;
732 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
733 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
734 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
735 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
736 		--mp->nump;
737 	}
738 }
739 #endif
740 
741 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
742 {
743 	m_pool_s *mp;
744 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
745 	return mp;
746 }
747 
748 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
749 {
750 	m_pool_s *mp = 0;
751 
752 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
753 	if (mp) {
754 		mp->dev_dmat = dev_dmat;
755 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
756 			       BUS_SPACE_MAXADDR_32BIT,
757 			       BUS_SPACE_MAXADDR_32BIT,
758 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
759 			       MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
760 			mp->getp = ___dma_getp;
761 #ifdef	MEMO_FREE_UNUSED
762 			mp->freep = ___dma_freep;
763 #endif
764 			mp->next = mp0.next;
765 			mp0.next = mp;
766 			return mp;
767 		}
768 	}
769 	if (mp)
770 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
771 	return 0;
772 }
773 
774 #ifdef	MEMO_FREE_UNUSED
775 static void ___del_dma_pool(m_pool_s *p)
776 {
777 	struct m_pool **pp = &mp0.next;
778 
779 	while (*pp && *pp != p)
780 		pp = &(*pp)->next;
781 	if (*pp) {
782 		*pp = (*pp)->next;
783 		bus_dma_tag_destroy(p->dmat);
784 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
785 	}
786 }
787 #endif
788 
789 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
790 {
791 	struct m_pool *mp;
792 	void *m = 0;
793 
794 	/* Lock */
795 	mp = ___get_dma_pool(dev_dmat);
796 	if (!mp)
797 		mp = ___cre_dma_pool(dev_dmat);
798 	if (mp)
799 		m = __sym_calloc(mp, size, name);
800 #ifdef	MEMO_FREE_UNUSED
801 	if (mp && !mp->nump)
802 		___del_dma_pool(mp);
803 #endif
804 	/* Unlock */
805 
806 	return m;
807 }
808 
809 static void
810 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
811 {
812 	struct m_pool *mp;
813 
814 	/* Lock */
815 	mp = ___get_dma_pool(dev_dmat);
816 	if (mp)
817 		__sym_mfree(mp, m, size, name);
818 #ifdef	MEMO_FREE_UNUSED
819 	if (mp && !mp->nump)
820 		___del_dma_pool(mp);
821 #endif
822 	/* Unlock */
823 }
824 
825 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
826 {
827 	m_pool_s *mp;
828 	int hc = VTOB_HASH_CODE(m);
829 	m_vtob_s *vp = 0;
830 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
831 
832 	/* Lock */
833 	mp = ___get_dma_pool(dev_dmat);
834 	if (mp) {
835 		vp = mp->vtob[hc];
836 		while (vp && (m_addr_t) vp->vaddr != a)
837 			vp = vp->next;
838 	}
839 	/* Unlock */
840 	if (!vp)
841 		panic("sym: VTOBUS FAILED!\n");
842 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
843 }
844 
845 #endif	/* FreeBSD_Bus_Dma_Abstraction */
846 
847 /*
848  * Verbs for DMAable memory handling.
849  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
850  * being discarded.
851  */
852 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
853 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
854 #define _sym_mfree_dma(np, p, s, n)	\
855 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
856 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
857 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
858 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
859 #define vtobus(p)			_vtobus(np, p)
860 
861 
862 /*
863  *  Print a buffer in hexadecimal format.
864  */
865 static void sym_printb_hex (u_char *p, int n)
866 {
867 	while (n-- > 0)
868 		kprintf (" %x", *p++);
869 }
870 
871 /*
872  *  Same with a label at beginning and .\n at end.
873  */
874 static void sym_printl_hex (char *label, u_char *p, int n)
875 {
876 	kprintf ("%s", label);
877 	sym_printb_hex (p, n);
878 	kprintf (".\n");
879 }
880 
881 /*
882  *  Return a string for SCSI BUS mode.
883  */
884 static char *sym_scsi_bus_mode(int mode)
885 {
886 	switch(mode) {
887 	case SMODE_HVD:	return "HVD";
888 	case SMODE_SE:	return "SE";
889 	case SMODE_LVD: return "LVD";
890 	}
891 	return "??";
892 }
893 
894 /*
895  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
896  */
897 #ifdef SYM_CONF_NVRAM_SUPPORT
898 static u_char Tekram_sync[16] =
899 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
900 #endif
901 
902 /*
903  *  Union of supported NVRAM formats.
904  */
905 struct sym_nvram {
906 	int type;
907 #define	SYM_SYMBIOS_NVRAM	(1)
908 #define	SYM_TEKRAM_NVRAM	(2)
909 #ifdef	SYM_CONF_NVRAM_SUPPORT
910 	union {
911 		Symbios_nvram Symbios;
912 		Tekram_nvram Tekram;
913 	} data;
914 #endif
915 };
916 
917 /*
918  *  This one is hopefully useless, but actually useful. :-)
919  */
920 #ifndef assert
921 #define	assert(expression) { \
922 	if (!(expression)) { \
923 		(void)panic( \
924 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
925 			#expression, \
926 			__FILE__, __LINE__); \
927 	} \
928 }
929 #endif
930 
931 /*
932  *  Some provision for a possible big endian mode supported by
933  *  Symbios chips (never seen, by the way).
934  *  For now, this stuff does not deserve any comments. :)
935  */
936 
937 #define sym_offb(o)	(o)
938 #define sym_offw(o)	(o)
939 
940 /*
941  *  Some provision for support for BIG ENDIAN CPU.
942  *  Btw, FreeBSD does not seem to be ready yet for big endian.
943  */
944 
945 #if	BYTE_ORDER == BIG_ENDIAN
946 #define cpu_to_scr(dw)	_htole32(dw)
947 #define scr_to_cpu(dw)	_le32toh(dw)
948 #else
949 #define cpu_to_scr(dw)	(dw)
950 #define scr_to_cpu(dw)	(dw)
951 #endif
952 
953 /*
954  *  Access to the chip IO registers and on-chip RAM.
955  *  We use the `bus space' interface under FreeBSD-4 and
956  *  later kernel versions.
957  */
958 
959 #ifdef	FreeBSD_Bus_Space_Abstraction
960 
961 #if defined(SYM_CONF_IOMAPPED)
962 
963 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
964 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
965 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
966 
967 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
968 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
969 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
970 
971 #else	/* Memory mapped IO */
972 
973 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
974 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
975 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
976 
977 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
978 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
979 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
980 
981 #endif	/* SYM_CONF_IOMAPPED */
982 
983 #define OUTRAM_OFF(o, a, l)	\
984 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
985 
986 #else	/* not defined FreeBSD_Bus_Space_Abstraction */
987 
988 #if	BYTE_ORDER == BIG_ENDIAN
989 #error	"BIG ENDIAN support requires bus space kernel interface"
990 #endif
991 
992 /*
993  *  Access to the chip IO registers and on-chip RAM.
994  *  We use legacy MMIO and IO interface for FreeBSD 3.X versions.
995  */
996 
997 /*
998  *  Define some understable verbs for IO and MMIO.
999  */
1000 #define io_read8(p)	 scr_to_cpu(inb((p)))
1001 #define	io_read16(p)	 scr_to_cpu(inw((p)))
1002 #define io_read32(p)	 scr_to_cpu(inl((p)))
1003 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
1004 #define io_write16(p, v) outw((p), cpu_to_scr(v))
1005 #define io_write32(p, v) outl((p), cpu_to_scr(v))
1006 
1007 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
1008 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
1009 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
1010 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
1011 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
1012 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
1013 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
1014 
1015 /*
1016  *  Normal IO
1017  */
1018 #if defined(SYM_CONF_IOMAPPED)
1019 
1020 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
1021 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
1022 
1023 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
1024 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
1025 
1026 #define	INL_OFF(o)	io_read32(np->io_port + (o))
1027 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
1028 
1029 #else	/* Memory mapped IO */
1030 
1031 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
1032 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
1033 
1034 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
1035 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
1036 
1037 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
1038 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
1039 
1040 #endif
1041 
1042 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
1043 
1044 #endif	/* FreeBSD_Bus_Space_Abstraction */
1045 
1046 /*
1047  *  Common definitions for both bus space and legacy IO methods.
1048  */
1049 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
1050 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
1051 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
1052 
1053 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
1054 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
1055 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
1056 
1057 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
1058 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
1059 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
1060 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
1061 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
1062 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
1063 
1064 /*
1065  *  We normally want the chip to have a consistent view
1066  *  of driver internal data structures when we restart it.
1067  *  Thus these macros.
1068  */
1069 #define OUTL_DSP(v)				\
1070 	do {					\
1071 		MEMORY_BARRIER();		\
1072 		OUTL (nc_dsp, (v));		\
1073 	} while (0)
1074 
1075 #define OUTONB_STD()				\
1076 	do {					\
1077 		MEMORY_BARRIER();		\
1078 		OUTONB (nc_dcntl, (STD|NOCOM));	\
1079 	} while (0)
1080 
1081 /*
1082  *  Command control block states.
1083  */
1084 #define HS_IDLE		(0)
1085 #define HS_BUSY		(1)
1086 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1087 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1088 #define HS_WAIT		(4)	/* waiting for resource	  */
1089 
1090 #define HS_DONEMASK	(0x80)
1091 #define HS_COMPLETE	(4|HS_DONEMASK)
1092 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1093 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
1094 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
1095 
1096 /*
1097  *  Software Interrupt Codes
1098  */
1099 #define	SIR_BAD_SCSI_STATUS	(1)
1100 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
1101 #define	SIR_MSG_RECEIVED	(3)
1102 #define	SIR_MSG_WEIRD		(4)
1103 #define	SIR_NEGO_FAILED		(5)
1104 #define	SIR_NEGO_PROTO		(6)
1105 #define	SIR_SCRIPT_STOPPED	(7)
1106 #define	SIR_REJECT_TO_SEND	(8)
1107 #define	SIR_SWIDE_OVERRUN	(9)
1108 #define	SIR_SODL_UNDERRUN	(10)
1109 #define	SIR_RESEL_NO_MSG_IN	(11)
1110 #define	SIR_RESEL_NO_IDENTIFY	(12)
1111 #define	SIR_RESEL_BAD_LUN	(13)
1112 #define	SIR_TARGET_SELECTED	(14)
1113 #define	SIR_RESEL_BAD_I_T_L	(15)
1114 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1115 #define	SIR_ABORT_SENT		(17)
1116 #define	SIR_RESEL_ABORTED	(18)
1117 #define	SIR_MSG_OUT_DONE	(19)
1118 #define	SIR_COMPLETE_ERROR	(20)
1119 #define	SIR_DATA_OVERRUN	(21)
1120 #define	SIR_BAD_PHASE		(22)
1121 #define	SIR_MAX			(22)
1122 
1123 /*
1124  *  Extended error bit codes.
1125  *  xerr_status field of struct sym_ccb.
1126  */
1127 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1128 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1129 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1130 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1131 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1132 
1133 /*
1134  *  Negotiation status.
1135  *  nego_status field of struct sym_ccb.
1136  */
1137 #define NS_SYNC		(1)
1138 #define NS_WIDE		(2)
1139 #define NS_PPR		(3)
1140 
1141 /*
1142  *  A CCB hashed table is used to retrieve CCB address
1143  *  from DSA value.
1144  */
1145 #define CCB_HASH_SHIFT		8
1146 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1147 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1148 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1149 
1150 /*
1151  *  Device flags.
1152  */
1153 #define SYM_DISC_ENABLED	(1)
1154 #define SYM_TAGS_ENABLED	(1<<1)
1155 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1156 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1157 
1158 /*
1159  *  Host adapter miscellaneous flags.
1160  */
1161 #define SYM_AVOID_BUS_RESET	(1)
1162 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1163 
1164 /*
1165  *  Device quirks.
1166  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1167  *  saving the DATA POINTER then reselects and terminates the IO.
1168  *  On reselection, the automatic RESTORE DATA POINTER makes the
1169  *  CURRENT DATA POINTER not point at the end of the IO.
1170  *  This behaviour just breaks our calculation of the residual.
1171  *  For now, we just force an AUTO SAVE on disconnection and will
1172  *  fix that in a further driver version.
1173  */
1174 #define SYM_QUIRK_AUTOSAVE 1
1175 
1176 /*
1177  *  Misc.
1178  */
1179 #define SYM_SNOOP_TIMEOUT (10000000)
1180 #define SYM_PCI_IO	PCIR_MAPS
1181 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
1182 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
1183 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
1184 
1185 /*
1186  *  Back-pointer from the CAM CCB to our data structures.
1187  */
1188 #define sym_hcb_ptr	spriv_ptr0
1189 /* #define sym_ccb_ptr	spriv_ptr1 */
1190 
1191 /*
1192  *  We mostly have to deal with pointers.
1193  *  Thus these typedef's.
1194  */
1195 typedef struct sym_tcb *tcb_p;
1196 typedef struct sym_lcb *lcb_p;
1197 typedef struct sym_ccb *ccb_p;
1198 typedef struct sym_hcb *hcb_p;
1199 
1200 /*
1201  *  Gather negotiable parameters value
1202  */
1203 struct sym_trans {
1204 	u8 scsi_version;
1205 	u8 spi_version;
1206 	u8 period;
1207 	u8 offset;
1208 	u8 width;
1209 	u8 options;	/* PPR options */
1210 };
1211 
1212 struct sym_tinfo {
1213 	struct sym_trans current;
1214 	struct sym_trans goal;
1215 	struct sym_trans user;
1216 };
1217 
1218 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1219 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1220 
1221 /*
1222  *  Global TCB HEADER.
1223  *
1224  *  Due to lack of indirect addressing on earlier NCR chips,
1225  *  this substructure is copied from the TCB to a global
1226  *  address after selection.
1227  *  For SYMBIOS chips that support LOAD/STORE this copy is
1228  *  not needed and thus not performed.
1229  */
1230 struct sym_tcbh {
1231 	/*
1232 	 *  Scripts bus addresses of LUN table accessed from scripts.
1233 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1234 	 *  and we we want to speed-up the general case and not waste
1235 	 *  resources.
1236 	 */
1237 	u32	luntbl_sa;	/* bus address of this table	*/
1238 	u32	lun0_sa;	/* bus address of LCB #0	*/
1239 	/*
1240 	 *  Actual SYNC/WIDE IO registers value for this target.
1241 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1242 	 *  so have alignment constraints.
1243 	 */
1244 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1245 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1246 /*2*/	u_char	filler1;
1247 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1248 };
1249 
1250 /*
1251  *  Target Control Block
1252  */
1253 struct sym_tcb {
1254 	/*
1255 	 *  TCB header.
1256 	 *  Assumed at offset 0.
1257 	 */
1258 /*0*/	struct sym_tcbh head;
1259 
1260 	/*
1261 	 *  LUN table used by the SCRIPTS processor.
1262 	 *  An array of bus addresses is used on reselection.
1263 	 */
1264 	u32	*luntbl;	/* LCBs bus address table	*/
1265 
1266 	/*
1267 	 *  LUN table used by the C code.
1268 	 */
1269 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1270 #if SYM_CONF_MAX_LUN > 1
1271 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1272 #endif
1273 
1274 	/*
1275 	 *  Bitmap that tells about LUNs that succeeded at least
1276 	 *  1 IO and therefore assumed to be a real device.
1277 	 *  Avoid useless allocation of the LCB structure.
1278 	 */
1279 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1280 
1281 	/*
1282 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1283 	 *  allocated (not discovered or LCB allocation failed).
1284 	 */
1285 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1286 
1287 	/*
1288 	 *  Transfer capabilities (SIP)
1289 	 */
1290 	struct sym_tinfo tinfo;
1291 
1292 	/*
1293 	 * Keep track of the CCB used for the negotiation in order
1294 	 * to ensure that only 1 negotiation is queued at a time.
1295 	 */
1296 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1297 
1298 	/*
1299 	 *  Set when we want to reset the device.
1300 	 */
1301 	u_char	to_reset;
1302 
1303 	/*
1304 	 *  Other user settable limits and options.
1305 	 *  These limits are read from the NVRAM if present.
1306 	 */
1307 	u_char	usrflags;
1308 	u_short	usrtags;
1309 };
1310 
1311 /*
1312  *  Global LCB HEADER.
1313  *
1314  *  Due to lack of indirect addressing on earlier NCR chips,
1315  *  this substructure is copied from the LCB to a global
1316  *  address after selection.
1317  *  For SYMBIOS chips that support LOAD/STORE this copy is
1318  *  not needed and thus not performed.
1319  */
1320 struct sym_lcbh {
1321 	/*
1322 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1323 	 *  For not probed logical units, this address points to
1324 	 *  SCRIPTS that deal with bad LU handling (must be at
1325 	 *  offset zero of the LCB for that reason).
1326 	 */
1327 /*0*/	u32	resel_sa;
1328 
1329 	/*
1330 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1331 	 *  to the unique ITL nexus allowed to be disconnected.
1332 	 */
1333 	u32	itl_task_sa;
1334 
1335 	/*
1336 	 *  Task table bus address (read from SCRIPTS).
1337 	 */
1338 	u32	itlq_tbl_sa;
1339 };
1340 
1341 /*
1342  *  Logical Unit Control Block
1343  */
1344 struct sym_lcb {
1345 	/*
1346 	 *  TCB header.
1347 	 *  Assumed at offset 0.
1348 	 */
1349 /*0*/	struct sym_lcbh head;
1350 
1351 	/*
1352 	 *  Task table read from SCRIPTS that contains pointers to
1353 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1354 	 *  inside the header.
1355 	 */
1356 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1357 
1358 	/*
1359 	 *  Busy CCBs management.
1360 	 */
1361 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1362 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1363 
1364 	/*
1365 	 *  Circular tag allocation buffer.
1366 	 */
1367 	u_short	ia_tag;		/* Tag allocation index		*/
1368 	u_short	if_tag;		/* Tag release index		*/
1369 	u_char	*cb_tags;	/* Circular tags buffer		*/
1370 
1371 	/*
1372 	 *  Set when we want to clear all tasks.
1373 	 */
1374 	u_char to_clear;
1375 
1376 	/*
1377 	 *  Capabilities.
1378 	 */
1379 	u_char	user_flags;
1380 	u_char	current_flags;
1381 };
1382 
1383 /*
1384  *  Action from SCRIPTS on a task.
1385  *  Is part of the CCB, but is also used separately to plug
1386  *  error handling action to perform from SCRIPTS.
1387  */
1388 struct sym_actscr {
1389 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1390 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1391 };
1392 
1393 /*
1394  *  Phase mismatch context.
1395  *
1396  *  It is part of the CCB and is used as parameters for the
1397  *  DATA pointer. We need two contexts to handle correctly the
1398  *  SAVED DATA POINTER.
1399  */
1400 struct sym_pmc {
1401 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1402 	u32	ret;		/* SCRIPT return address	*/
1403 };
1404 
1405 /*
1406  *  LUN control block lookup.
1407  *  We use a direct pointer for LUN #0, and a table of
1408  *  pointers which is only allocated for devices that support
1409  *  LUN(s) > 0.
1410  */
1411 #if SYM_CONF_MAX_LUN <= 1
1412 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1413 #else
1414 #define sym_lp(np, tp, lun) \
1415 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1416 #endif
1417 
1418 /*
1419  *  Status are used by the host and the script processor.
1420  *
1421  *  The last four bytes (status[4]) are copied to the
1422  *  scratchb register (declared as scr0..scr3) just after the
1423  *  select/reselect, and copied back just after disconnecting.
1424  *  Inside the script the XX_REG are used.
1425  */
1426 
1427 /*
1428  *  Last four bytes (script)
1429  */
1430 #define  QU_REG	scr0
1431 #define  HS_REG	scr1
1432 #define  HS_PRT	nc_scr1
1433 #define  SS_REG	scr2
1434 #define  SS_PRT	nc_scr2
1435 #define  HF_REG	scr3
1436 #define  HF_PRT	nc_scr3
1437 
1438 /*
1439  *  Last four bytes (host)
1440  */
1441 #define  actualquirks  phys.head.status[0]
1442 #define  host_status   phys.head.status[1]
1443 #define  ssss_status   phys.head.status[2]
1444 #define  host_flags    phys.head.status[3]
1445 
1446 /*
1447  *  Host flags
1448  */
1449 #define HF_IN_PM0	1u
1450 #define HF_IN_PM1	(1u<<1)
1451 #define HF_ACT_PM	(1u<<2)
1452 #define HF_DP_SAVED	(1u<<3)
1453 #define HF_SENSE	(1u<<4)
1454 #define HF_EXT_ERR	(1u<<5)
1455 #define HF_DATA_IN	(1u<<6)
1456 #ifdef SYM_CONF_IARB_SUPPORT
1457 #define HF_HINT_IARB	(1u<<7)
1458 #endif
1459 
1460 /*
1461  *  Global CCB HEADER.
1462  *
1463  *  Due to lack of indirect addressing on earlier NCR chips,
1464  *  this substructure is copied from the ccb to a global
1465  *  address after selection (or reselection) and copied back
1466  *  before disconnect.
1467  *  For SYMBIOS chips that support LOAD/STORE this copy is
1468  *  not needed and thus not performed.
1469  */
1470 
1471 struct sym_ccbh {
1472 	/*
1473 	 *  Start and restart SCRIPTS addresses (must be at 0).
1474 	 */
1475 /*0*/	struct sym_actscr go;
1476 
1477 	/*
1478 	 *  SCRIPTS jump address that deal with data pointers.
1479 	 *  'savep' points to the position in the script responsible
1480 	 *  for the actual transfer of data.
1481 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1482 	 */
1483 	u32	savep;		/* Jump address to saved data pointer	*/
1484 	u32	lastp;		/* SCRIPTS address at end of data	*/
1485 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1486 
1487 	/*
1488 	 *  Status fields.
1489 	 */
1490 	u8	status[4];
1491 };
1492 
1493 /*
1494  *  Data Structure Block
1495  *
1496  *  During execution of a ccb by the script processor, the
1497  *  DSA (data structure address) register points to this
1498  *  substructure of the ccb.
1499  */
1500 struct sym_dsb {
1501 	/*
1502 	 *  CCB header.
1503 	 *  Also assumed at offset 0 of the sym_ccb structure.
1504 	 */
1505 /*0*/	struct sym_ccbh head;
1506 
1507 	/*
1508 	 *  Phase mismatch contexts.
1509 	 *  We need two to handle correctly the SAVED DATA POINTER.
1510 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1511 	 *  for address calculation from SCRIPTS.
1512 	 */
1513 	struct sym_pmc pm0;
1514 	struct sym_pmc pm1;
1515 
1516 	/*
1517 	 *  Table data for Script
1518 	 */
1519 	struct sym_tblsel  select;
1520 	struct sym_tblmove smsg;
1521 	struct sym_tblmove smsg_ext;
1522 	struct sym_tblmove cmd;
1523 	struct sym_tblmove sense;
1524 	struct sym_tblmove wresid;
1525 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1526 };
1527 
1528 /*
1529  *  Our Command Control Block
1530  */
1531 struct sym_ccb {
1532 	/*
1533 	 *  This is the data structure which is pointed by the DSA
1534 	 *  register when it is executed by the script processor.
1535 	 *  It must be the first entry.
1536 	 */
1537 	struct sym_dsb phys;
1538 
1539 	/*
1540 	 *  Pointer to CAM ccb and related stuff.
1541 	 */
1542 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1543 	u8	cdb_buf[16];	/* Copy of CDB			*/
1544 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1545 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1546 	int	data_len;	/* Total data length		*/
1547 	int	segments;	/* Number of SG segments	*/
1548 
1549 	/*
1550 	 *  Miscellaneous status'.
1551 	 */
1552 	u_char	nego_status;	/* Negotiation status		*/
1553 	u_char	xerr_status;	/* Extended error flags		*/
1554 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1555 
1556 	/*
1557 	 *  Message areas.
1558 	 *  We prepare a message to be sent after selection.
1559 	 *  We may use a second one if the command is rescheduled
1560 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1561 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1562 	 *  While negotiating sync or wide transfer,
1563 	 *  a SDTR or WDTR message is appended.
1564 	 */
1565 	u_char	scsi_smsg [12];
1566 	u_char	scsi_smsg2[12];
1567 
1568 	/*
1569 	 *  Auto request sense related fields.
1570 	 */
1571 	u_char	sensecmd[6];	/* Request Sense command	*/
1572 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1573 	u_char	sv_xerr_status;	/* Saved extended status	*/
1574 	int	sv_resid;	/* Saved residual		*/
1575 
1576 	/*
1577 	 *  Map for the DMA of user data.
1578 	 */
1579 #ifdef	FreeBSD_Bus_Dma_Abstraction
1580 	void		*arg;	/* Argument for some callback	*/
1581 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1582 	u_char		dmamapped;
1583 #define SYM_DMA_NONE	0
1584 #define SYM_DMA_READ	1
1585 #define SYM_DMA_WRITE	2
1586 #endif
1587 	/*
1588 	 *  Other fields.
1589 	 */
1590 	u32	ccb_ba;		/* BUS address of this CCB	*/
1591 	u_short	tag;		/* Tag for this transfer	*/
1592 				/*  NO_TAG means no tag		*/
1593 	u_char	target;
1594 	u_char	lun;
1595 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1596 	SYM_QUEHEAD
1597 		link_ccbq;	/* Link to free/busy CCB queue	*/
1598 	u32	startp;		/* Initial data pointer		*/
1599 	int	ext_sg;		/* Extreme data pointer, used	*/
1600 	int	ext_ofs;	/*  to calculate the residual.	*/
1601 	u_char	to_abort;	/* Want this IO to be aborted	*/
1602 };
1603 
1604 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1605 
1606 /*
1607  *  Host Control Block
1608  */
1609 struct sym_hcb {
1610 	/*
1611 	 *  Global headers.
1612 	 *  Due to poorness of addressing capabilities, earlier
1613 	 *  chips (810, 815, 825) copy part of the data structures
1614 	 *  (CCB, TCB and LCB) in fixed areas.
1615 	 */
1616 #ifdef	SYM_CONF_GENERIC_SUPPORT
1617 	struct sym_ccbh	ccb_head;
1618 	struct sym_tcbh	tcb_head;
1619 	struct sym_lcbh	lcb_head;
1620 #endif
1621 	/*
1622 	 *  Idle task and invalid task actions and
1623 	 *  their bus addresses.
1624 	 */
1625 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1626 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1627 
1628 	/*
1629 	 *  Dummy lun table to protect us against target
1630 	 *  returning bad lun number on reselection.
1631 	 */
1632 	u32	*badluntbl;	/* Table physical address	*/
1633 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1634 
1635 	/*
1636 	 *  Bus address of this host control block.
1637 	 */
1638 	u32	hcb_ba;
1639 
1640 	/*
1641 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1642 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1643 	 *  field.
1644 	 */
1645 	u32	scr_ram_seg;
1646 
1647 	/*
1648 	 *  Chip and controller indentification.
1649 	 */
1650 #ifdef FreeBSD_Bus_Io_Abstraction
1651 	device_t device;
1652 #else
1653 	pcici_t	pci_tag;
1654 #endif
1655 	int	unit;
1656 	char	inst_name[8];
1657 
1658 	/*
1659 	 *  Initial value of some IO register bits.
1660 	 *  These values are assumed to have been set by BIOS, and may
1661 	 *  be used to probe adapter implementation differences.
1662 	 */
1663 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1664 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1665 		sv_stest1;
1666 
1667 	/*
1668 	 *  Actual initial value of IO register bits used by the
1669 	 *  driver. They are loaded at initialisation according to
1670 	 *  features that are to be enabled/disabled.
1671 	 */
1672 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1673 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1674 
1675 	/*
1676 	 *  Target data.
1677 	 */
1678 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1679 
1680 	/*
1681 	 *  Target control block bus address array used by the SCRIPT
1682 	 *  on reselection.
1683 	 */
1684 	u32		*targtbl;
1685 	u32		targtbl_ba;
1686 
1687 	/*
1688 	 *  CAM SIM information for this instance.
1689 	 */
1690 	struct		cam_sim  *sim;
1691 	struct		cam_path *path;
1692 
1693 	/*
1694 	 *  Allocated hardware resources.
1695 	 */
1696 #ifdef FreeBSD_Bus_Io_Abstraction
1697 	struct resource	*irq_res;
1698 	struct resource	*io_res;
1699 	struct resource	*mmio_res;
1700 	struct resource	*ram_res;
1701 	int		ram_id;
1702 	void *intr;
1703 #endif
1704 
1705 	/*
1706 	 *  Bus stuff.
1707 	 *
1708 	 *  My understanding of PCI is that all agents must share the
1709 	 *  same addressing range and model.
1710 	 *  But some hardware architecture guys provide complex and
1711 	 *  brain-deaded stuff that makes shit.
1712 	 *  This driver only support PCI compliant implementations and
1713 	 *  deals with part of the BUS stuff complexity only to fit O/S
1714 	 *  requirements.
1715 	 */
1716 #ifdef FreeBSD_Bus_Io_Abstraction
1717 	bus_space_handle_t	io_bsh;
1718 	bus_space_tag_t		io_tag;
1719 	bus_space_handle_t	mmio_bsh;
1720 	bus_space_tag_t		mmio_tag;
1721 	bus_space_handle_t	ram_bsh;
1722 	bus_space_tag_t		ram_tag;
1723 #endif
1724 
1725 	/*
1726 	 *  DMA stuff.
1727 	 */
1728 #ifdef	FreeBSD_Bus_Dma_Abstraction
1729 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1730 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1731 #endif
1732 	/*
1733 	 *  Virtual and physical bus addresses of the chip.
1734 	 */
1735 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1736 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1737 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1738 	int		mmio_ws;	/* MMIO Window size		*/
1739 
1740 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1741 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1742 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1743 	int		ram_ws;		/* RAM window size		*/
1744 	u32		io_port;	/* IO port address		*/
1745 
1746 	/*
1747 	 *  SCRIPTS virtual and physical bus addresses.
1748 	 *  'script'  is loaded in the on-chip RAM if present.
1749 	 *  'scripth' stays in main memory for all chips except the
1750 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1751 	 */
1752 	u_char		*scripta0;	/* Copies of script and scripth	*/
1753 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1754 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1755 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1756 	vm_offset_t	scriptb0_ba;
1757 	u_short		scripta_sz;	/* Actual size of script A	*/
1758 	u_short		scriptb_sz;	/* Actual size of script B	*/
1759 
1760 	/*
1761 	 *  Bus addresses, setup and patch methods for
1762 	 *  the selected firmware.
1763 	 */
1764 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1765 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1766 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1767 	void		(*fw_patch)(hcb_p np);
1768 	char		*fw_name;
1769 
1770 	/*
1771 	 *  General controller parameters and configuration.
1772 	 */
1773 	u_short	device_id;	/* PCI device id		*/
1774 	u_char	revision_id;	/* PCI device revision id	*/
1775 	u_int	features;	/* Chip features map		*/
1776 	u_char	myaddr;		/* SCSI id of the adapter	*/
1777 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1778 	u_char	maxwide;	/* Maximum transfer width	*/
1779 	u_char	minsync;	/* Min sync period factor (ST)	*/
1780 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1781 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1782 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1783 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1784 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1785 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1786 	u_char	clock_divn;	/* Number of clock divisors	*/
1787 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1788 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1789 	/*
1790 	 *  Start queue management.
1791 	 *  It is filled up by the host processor and accessed by the
1792 	 *  SCRIPTS processor in order to start SCSI commands.
1793 	 */
1794 	volatile		/* Prevent code optimizations	*/
1795 	u32	*squeue;	/* Start queue virtual address	*/
1796 	u32	squeue_ba;	/* Start queue BUS address	*/
1797 	u_short	squeueput;	/* Next free slot of the queue	*/
1798 	u_short	actccbs;	/* Number of allocated CCBs	*/
1799 
1800 	/*
1801 	 *  Command completion queue.
1802 	 *  It is the same size as the start queue to avoid overflow.
1803 	 */
1804 	u_short	dqueueget;	/* Next position to scan	*/
1805 	volatile		/* Prevent code optimizations	*/
1806 	u32	*dqueue;	/* Completion (done) queue	*/
1807 	u32	dqueue_ba;	/* Done queue BUS address	*/
1808 
1809 	/*
1810 	 *  Miscellaneous buffers accessed by the scripts-processor.
1811 	 *  They shall be DWORD aligned, because they may be read or
1812 	 *  written with a script command.
1813 	 */
1814 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1815 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1816 	u32		lastmsg;	/* Last SCSI message sent	*/
1817 	u_char		scratch;	/* Scratch for SCSI receive	*/
1818 
1819 	/*
1820 	 *  Miscellaneous configuration and status parameters.
1821 	 */
1822 	u_char		usrflags;	/* Miscellaneous user flags	*/
1823 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1824 	u_char		verbose;	/* Verbosity for this controller*/
1825 	u32		cache;		/* Used for cache test at init.	*/
1826 
1827 	/*
1828 	 *  CCB lists and queue.
1829 	 */
1830 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1831 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1832 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1833 
1834 	/*
1835 	 *  During error handling and/or recovery,
1836 	 *  active CCBs that are to be completed with
1837 	 *  error or requeued are moved from the busy_ccbq
1838 	 *  to the comp_ccbq prior to completion.
1839 	 */
1840 	SYM_QUEHEAD	comp_ccbq;
1841 
1842 	/*
1843 	 *  CAM CCB pending queue.
1844 	 */
1845 	SYM_QUEHEAD	cam_ccbq;
1846 
1847 	/*
1848 	 *  IMMEDIATE ARBITRATION (IARB) control.
1849 	 *
1850 	 *  We keep track in 'last_cp' of the last CCB that has been
1851 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1852 	 *  this CCB completes. If last_cp is not zero at the moment
1853 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1854 	 *  used by the SCRIPTS as a hint for setting IARB.
1855 	 *  We donnot set more than 'iarb_max' consecutive hints for
1856 	 *  IARB in order to leave devices a chance to reselect.
1857 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1858 	 */
1859 #ifdef SYM_CONF_IARB_SUPPORT
1860 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1861 	u_short		iarb_count;	/* Actual # of these hints	*/
1862 	ccb_p		last_cp;
1863 #endif
1864 
1865 	/*
1866 	 *  Command abort handling.
1867 	 *  We need to synchronize tightly with the SCRIPTS
1868 	 *  processor in order to handle things correctly.
1869 	 */
1870 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1871 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1872 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1873 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1874 };
1875 
1876 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1877 
1878 /*
1879  *  Return the name of the controller.
1880  */
1881 static __inline char *sym_name(hcb_p np)
1882 {
1883 	return np->inst_name;
1884 }
1885 
1886 /*--------------------------------------------------------------------------*/
1887 /*------------------------------ FIRMWARES ---------------------------------*/
1888 /*--------------------------------------------------------------------------*/
1889 
1890 /*
1891  *  This stuff will be moved to a separate source file when
1892  *  the driver will be broken into several source modules.
1893  */
1894 
1895 /*
1896  *  Macros used for all firmwares.
1897  */
1898 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1899 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1900 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1901 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1902 
1903 
1904 #ifdef	SYM_CONF_GENERIC_SUPPORT
1905 /*
1906  *  Allocate firmware #1 script area.
1907  */
1908 #define	SYM_FWA_SCR		sym_fw1a_scr
1909 #define	SYM_FWB_SCR		sym_fw1b_scr
1910 #include "sym_fw1.h"
1911 struct sym_fwa_ofs sym_fw1a_ofs = {
1912 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1913 };
1914 struct sym_fwb_ofs sym_fw1b_ofs = {
1915 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1916 };
1917 #undef	SYM_FWA_SCR
1918 #undef	SYM_FWB_SCR
1919 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1920 
1921 /*
1922  *  Allocate firmware #2 script area.
1923  */
1924 #define	SYM_FWA_SCR		sym_fw2a_scr
1925 #define	SYM_FWB_SCR		sym_fw2b_scr
1926 #include "sym_fw2.h"
1927 struct sym_fwa_ofs sym_fw2a_ofs = {
1928 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1929 };
1930 struct sym_fwb_ofs sym_fw2b_ofs = {
1931 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1932 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1933 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1934 };
1935 #undef	SYM_FWA_SCR
1936 #undef	SYM_FWB_SCR
1937 
1938 #undef	SYM_GEN_A
1939 #undef	SYM_GEN_B
1940 #undef	PADDR_A
1941 #undef	PADDR_B
1942 
1943 #ifdef	SYM_CONF_GENERIC_SUPPORT
1944 /*
1945  *  Patch routine for firmware #1.
1946  */
1947 static void
1948 sym_fw1_patch(hcb_p np)
1949 {
1950 	struct sym_fw1a_scr *scripta0;
1951 	struct sym_fw1b_scr *scriptb0;
1952 
1953 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1954 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1955 
1956 	/*
1957 	 *  Remove LED support if not needed.
1958 	 */
1959 	if (!(np->features & FE_LED0)) {
1960 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1961 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1962 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1963 	}
1964 
1965 #ifdef SYM_CONF_IARB_SUPPORT
1966 	/*
1967 	 *    If user does not want to use IMMEDIATE ARBITRATION
1968 	 *    when we are reselected while attempting to arbitrate,
1969 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1970 	 */
1971 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1972 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1973 #endif
1974 	/*
1975 	 *  Patch some data in SCRIPTS.
1976 	 *  - start and done queue initial bus address.
1977 	 *  - target bus address table bus address.
1978 	 */
1979 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1980 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1981 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1982 }
1983 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1984 
1985 /*
1986  *  Patch routine for firmware #2.
1987  */
1988 static void
1989 sym_fw2_patch(hcb_p np)
1990 {
1991 	struct sym_fw2a_scr *scripta0;
1992 	struct sym_fw2b_scr *scriptb0;
1993 
1994 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1995 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1996 
1997 	/*
1998 	 *  Remove LED support if not needed.
1999 	 */
2000 	if (!(np->features & FE_LED0)) {
2001 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2002 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2003 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2004 	}
2005 
2006 #ifdef SYM_CONF_IARB_SUPPORT
2007 	/*
2008 	 *    If user does not want to use IMMEDIATE ARBITRATION
2009 	 *    when we are reselected while attempting to arbitrate,
2010 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2011 	 */
2012 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2013 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2014 #endif
2015 	/*
2016 	 *  Patch some variable in SCRIPTS.
2017 	 *  - start and done queue initial bus address.
2018 	 *  - target bus address table bus address.
2019 	 */
2020 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2021 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2022 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2023 
2024 	/*
2025 	 *  Remove the load of SCNTL4 on reselection if not a C10.
2026 	 */
2027 	if (!(np->features & FE_C10)) {
2028 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
2029 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
2030 	}
2031 
2032 	/*
2033 	 *  Remove a couple of work-arounds specific to C1010 if
2034 	 *  they are not desirable. See `sym_fw2.h' for more details.
2035 	 */
2036 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
2037 	      np->revision_id < 0x1 &&
2038 	      np->pciclk_khz < 60000)) {
2039 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
2040 		scripta0->datao_phase[1] = cpu_to_scr(0);
2041 	}
2042 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
2043 	      /* np->revision_id < 0xff */ 1)) {
2044 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
2045 		scripta0->sel_done[1] = cpu_to_scr(0);
2046 	}
2047 
2048 	/*
2049 	 *  Patch some other variables in SCRIPTS.
2050 	 *  These ones are loaded by the SCRIPTS processor.
2051 	 */
2052 	scriptb0->pm0_data_addr[0] =
2053 		cpu_to_scr(np->scripta_ba +
2054 			   offsetof(struct sym_fw2a_scr, pm0_data));
2055 	scriptb0->pm1_data_addr[0] =
2056 		cpu_to_scr(np->scripta_ba +
2057 			   offsetof(struct sym_fw2a_scr, pm1_data));
2058 }
2059 
2060 /*
2061  *  Fill the data area in scripts.
2062  *  To be done for all firmwares.
2063  */
2064 static void
2065 sym_fw_fill_data (u32 *in, u32 *out)
2066 {
2067 	int	i;
2068 
2069 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
2070 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
2071 		*in++  = offsetof (struct sym_dsb, data[i]);
2072 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
2073 		*out++ = offsetof (struct sym_dsb, data[i]);
2074 	}
2075 }
2076 
2077 /*
2078  *  Setup useful script bus addresses.
2079  *  To be done for all firmwares.
2080  */
2081 static void
2082 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
2083 {
2084 	u32 *pa;
2085 	u_short *po;
2086 	int i;
2087 
2088 	/*
2089 	 *  Build the bus address table for script A
2090 	 *  from the script A offset table.
2091 	 */
2092 	po = (u_short *) fw->a_ofs;
2093 	pa = (u32 *) &np->fwa_bas;
2094 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
2095 		pa[i] = np->scripta_ba + po[i];
2096 
2097 	/*
2098 	 *  Same for script B.
2099 	 */
2100 	po = (u_short *) fw->b_ofs;
2101 	pa = (u32 *) &np->fwb_bas;
2102 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
2103 		pa[i] = np->scriptb_ba + po[i];
2104 }
2105 
2106 #ifdef	SYM_CONF_GENERIC_SUPPORT
2107 /*
2108  *  Setup routine for firmware #1.
2109  */
2110 static void
2111 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
2112 {
2113 	struct sym_fw1a_scr *scripta0;
2114 	struct sym_fw1b_scr *scriptb0;
2115 
2116 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2117 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2118 
2119 	/*
2120 	 *  Fill variable parts in scripts.
2121 	 */
2122 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2123 
2124 	/*
2125 	 *  Setup bus addresses used from the C code..
2126 	 */
2127 	sym_fw_setup_bus_addresses(np, fw);
2128 }
2129 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2130 
2131 /*
2132  *  Setup routine for firmware #2.
2133  */
2134 static void
2135 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2136 {
2137 	struct sym_fw2a_scr *scripta0;
2138 	struct sym_fw2b_scr *scriptb0;
2139 
2140 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2141 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2142 
2143 	/*
2144 	 *  Fill variable parts in scripts.
2145 	 */
2146 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2147 
2148 	/*
2149 	 *  Setup bus addresses used from the C code..
2150 	 */
2151 	sym_fw_setup_bus_addresses(np, fw);
2152 }
2153 
2154 /*
2155  *  Allocate firmware descriptors.
2156  */
2157 #ifdef	SYM_CONF_GENERIC_SUPPORT
2158 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2159 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2160 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2161 
2162 /*
2163  *  Find the most appropriate firmware for a chip.
2164  */
2165 static struct sym_fw *
2166 sym_find_firmware(struct sym_pci_chip *chip)
2167 {
2168 	if (chip->features & FE_LDSTR)
2169 		return &sym_fw2;
2170 #ifdef	SYM_CONF_GENERIC_SUPPORT
2171 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2172 		return &sym_fw1;
2173 #endif
2174 	else
2175 		return 0;
2176 }
2177 
2178 /*
2179  *  Bind a script to physical addresses.
2180  */
2181 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2182 {
2183 	u32 opcode, new, old, tmp1, tmp2;
2184 	u32 *end, *cur;
2185 	int relocs;
2186 
2187 	cur = start;
2188 	end = start + len/4;
2189 
2190 	while (cur < end) {
2191 
2192 		opcode = *cur;
2193 
2194 		/*
2195 		 *  If we forget to change the length
2196 		 *  in scripts, a field will be
2197 		 *  padded with 0. This is an illegal
2198 		 *  command.
2199 		 */
2200 		if (opcode == 0) {
2201 			kprintf ("%s: ERROR0 IN SCRIPT at %d.\n",
2202 				sym_name(np), (int) (cur-start));
2203 			MDELAY (10000);
2204 			++cur;
2205 			continue;
2206 		};
2207 
2208 		/*
2209 		 *  We use the bogus value 0xf00ff00f ;-)
2210 		 *  to reserve data area in SCRIPTS.
2211 		 */
2212 		if (opcode == SCR_DATA_ZERO) {
2213 			*cur++ = 0;
2214 			continue;
2215 		}
2216 
2217 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2218 			kprintf ("%d:  <%x>\n", (int) (cur-start),
2219 				(unsigned)opcode);
2220 
2221 		/*
2222 		 *  We don't have to decode ALL commands
2223 		 */
2224 		switch (opcode >> 28) {
2225 		case 0xf:
2226 			/*
2227 			 *  LOAD / STORE DSA relative, don't relocate.
2228 			 */
2229 			relocs = 0;
2230 			break;
2231 		case 0xe:
2232 			/*
2233 			 *  LOAD / STORE absolute.
2234 			 */
2235 			relocs = 1;
2236 			break;
2237 		case 0xc:
2238 			/*
2239 			 *  COPY has TWO arguments.
2240 			 */
2241 			relocs = 2;
2242 			tmp1 = cur[1];
2243 			tmp2 = cur[2];
2244 			if ((tmp1 ^ tmp2) & 3) {
2245 				kprintf ("%s: ERROR1 IN SCRIPT at %d.\n",
2246 					sym_name(np), (int) (cur-start));
2247 				MDELAY (10000);
2248 			}
2249 			/*
2250 			 *  If PREFETCH feature not enabled, remove
2251 			 *  the NO FLUSH bit if present.
2252 			 */
2253 			if ((opcode & SCR_NO_FLUSH) &&
2254 			    !(np->features & FE_PFEN)) {
2255 				opcode = (opcode & ~SCR_NO_FLUSH);
2256 			}
2257 			break;
2258 		case 0x0:
2259 			/*
2260 			 *  MOVE/CHMOV (absolute address)
2261 			 */
2262 			if (!(np->features & FE_WIDE))
2263 				opcode = (opcode | OPC_MOVE);
2264 			relocs = 1;
2265 			break;
2266 		case 0x1:
2267 			/*
2268 			 *  MOVE/CHMOV (table indirect)
2269 			 */
2270 			if (!(np->features & FE_WIDE))
2271 				opcode = (opcode | OPC_MOVE);
2272 			relocs = 0;
2273 			break;
2274 		case 0x8:
2275 			/*
2276 			 *  JUMP / CALL
2277 			 *  dont't relocate if relative :-)
2278 			 */
2279 			if (opcode & 0x00800000)
2280 				relocs = 0;
2281 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2282 				relocs = 2;
2283 			else
2284 				relocs = 1;
2285 			break;
2286 		case 0x4:
2287 		case 0x5:
2288 		case 0x6:
2289 		case 0x7:
2290 			relocs = 1;
2291 			break;
2292 		default:
2293 			relocs = 0;
2294 			break;
2295 		};
2296 
2297 		/*
2298 		 *  Scriptify:) the opcode.
2299 		 */
2300 		*cur++ = cpu_to_scr(opcode);
2301 
2302 		/*
2303 		 *  If no relocation, assume 1 argument
2304 		 *  and just scriptize:) it.
2305 		 */
2306 		if (!relocs) {
2307 			*cur = cpu_to_scr(*cur);
2308 			++cur;
2309 			continue;
2310 		}
2311 
2312 		/*
2313 		 *  Otherwise performs all needed relocations.
2314 		 */
2315 		while (relocs--) {
2316 			old = *cur;
2317 
2318 			switch (old & RELOC_MASK) {
2319 			case RELOC_REGISTER:
2320 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2321 				break;
2322 			case RELOC_LABEL_A:
2323 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2324 				break;
2325 			case RELOC_LABEL_B:
2326 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2327 				break;
2328 			case RELOC_SOFTC:
2329 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2330 				break;
2331 			case 0:
2332 				/*
2333 				 *  Don't relocate a 0 address.
2334 				 *  They are mostly used for patched or
2335 				 *  script self-modified areas.
2336 				 */
2337 				if (old == 0) {
2338 					new = old;
2339 					break;
2340 				}
2341 				/* fall through */
2342 			default:
2343 				new = 0;
2344 				panic("sym_fw_bind_script: "
2345 				      "weird relocation %x\n", old);
2346 				break;
2347 			}
2348 
2349 			*cur++ = cpu_to_scr(new);
2350 		}
2351 	};
2352 }
2353 
2354 /*--------------------------------------------------------------------------*/
2355 /*--------------------------- END OF FIRMWARES  ----------------------------*/
2356 /*--------------------------------------------------------------------------*/
2357 
2358 /*
2359  *  Function prototypes.
2360  */
2361 static void sym_save_initial_setting (hcb_p np);
2362 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2363 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2364 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2365 static void sym_chip_reset (hcb_p np);
2366 static void sym_soft_reset (hcb_p np);
2367 static void sym_start_reset (hcb_p np);
2368 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2369 static int  sym_wakeup_done (hcb_p np);
2370 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2371 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2372 static void sym_init (hcb_p np, int reason);
2373 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2374 		        u_char *fakp);
2375 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2376 			 u_char div, u_char fak);
2377 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2378 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2379 			 u_char per, u_char wide, u_char div, u_char fak);
2380 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2381 			 u_char per, u_char wide, u_char div, u_char fak);
2382 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2383 static void sym_intr (void *arg);
2384 static void sym_poll (struct cam_sim *sim);
2385 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2386 static void sym_int_sto (hcb_p np);
2387 static void sym_int_udc (hcb_p np);
2388 static void sym_int_sbmc (hcb_p np);
2389 static void sym_int_par (hcb_p np, u_short sist);
2390 static void sym_int_ma (hcb_p np);
2391 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2392 				    int task);
2393 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2394 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2395 static void sym_sir_task_recovery (hcb_p np, int num);
2396 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2397 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2398 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2399 static int  sym_show_msg (u_char * msg);
2400 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2401 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2402 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2403 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2404 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2405 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2406 static void sym_int_sir (hcb_p np);
2407 static void sym_free_ccb (hcb_p np, ccb_p cp);
2408 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2409 static ccb_p sym_alloc_ccb (hcb_p np);
2410 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2411 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2412 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2413 static int  sym_snooptest (hcb_p np);
2414 static void sym_selectclock(hcb_p np, u_char scntl3);
2415 static void sym_getclock (hcb_p np, int mult);
2416 static int  sym_getpciclock (hcb_p np);
2417 static void sym_complete_ok (hcb_p np, ccb_p cp);
2418 static void sym_complete_error (hcb_p np, ccb_p cp);
2419 static void sym_timeout (void *arg);
2420 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2421 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2422 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2423 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2424 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2425 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2426 				      ccb_p cp);
2427 #ifdef	FreeBSD_Bus_Dma_Abstraction
2428 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2429 					bus_dma_segment_t *psegs, int nsegs);
2430 #else
2431 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
2432 				 vm_size_t len);
2433 static int  sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
2434 				    bus_dma_segment_t *psegs, int nsegs);
2435 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
2436 				  vm_size_t len);
2437 #endif
2438 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2439 				    bus_dma_segment_t *psegs, int nsegs);
2440 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2441 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2442 			      struct ccb_trans_settings *cts);
2443 static void sym_update_dflags(hcb_p np, u_char *flags,
2444 			      struct ccb_trans_settings *cts);
2445 
2446 #ifdef FreeBSD_Bus_Io_Abstraction
2447 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2448 static int  sym_pci_probe (device_t dev);
2449 static int  sym_pci_attach (device_t dev);
2450 #else
2451 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
2452 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
2453 static void sym_pci_attach (pcici_t tag, int unit);
2454 static int sym_pci_attach2 (pcici_t tag, int unit);
2455 #endif
2456 
2457 static void sym_pci_free (hcb_p np);
2458 static int  sym_cam_attach (hcb_p np);
2459 static void sym_cam_free (hcb_p np);
2460 
2461 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2462 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2463 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2464 
2465 /*
2466  *  Print something which allows to retrieve the controler type,
2467  *  unit, target, lun concerned by a kernel message.
2468  */
2469 static void PRINT_TARGET (hcb_p np, int target)
2470 {
2471 	kprintf ("%s:%d:", sym_name(np), target);
2472 }
2473 
2474 static void PRINT_LUN(hcb_p np, int target, int lun)
2475 {
2476 	kprintf ("%s:%d:%d:", sym_name(np), target, lun);
2477 }
2478 
2479 static void PRINT_ADDR (ccb_p cp)
2480 {
2481 	if (cp && cp->cam_ccb)
2482 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2483 }
2484 
2485 /*
2486  *  Take into account this ccb in the freeze count.
2487  */
2488 static void sym_freeze_cam_ccb(union ccb *ccb)
2489 {
2490 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2491 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2492 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2493 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2494 		}
2495 	}
2496 }
2497 
2498 /*
2499  *  Set the status field of a CAM CCB.
2500  */
2501 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2502 {
2503 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2504 	ccb->ccb_h.status |= status;
2505 }
2506 
2507 /*
2508  *  Get the status field of a CAM CCB.
2509  */
2510 static __inline int sym_get_cam_status(union ccb *ccb)
2511 {
2512 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2513 }
2514 
2515 /*
2516  *  Enqueue a CAM CCB.
2517  */
2518 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2519 {
2520 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2521 	ccb->ccb_h.status = CAM_REQ_INPROG;
2522 
2523 	callout_reset(&ccb->ccb_h.timeout_ch, ccb->ccb_h.timeout*hz/1000,
2524 		      sym_timeout, ccb);
2525 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2526 	ccb->ccb_h.sym_hcb_ptr = np;
2527 
2528 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2529 }
2530 
2531 /*
2532  *  Complete a pending CAM CCB.
2533  */
2534 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2535 {
2536 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2537 		callout_stop(&ccb->ccb_h.timeout_ch);
2538 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2539 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2540 		ccb->ccb_h.sym_hcb_ptr = 0;
2541 	}
2542 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2543 		sym_freeze_cam_ccb(ccb);
2544 	xpt_done(ccb);
2545 }
2546 
2547 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2548 {
2549 	sym_set_cam_status(ccb, cam_status);
2550 	sym_xpt_done(np, ccb);
2551 }
2552 
2553 /*
2554  *  SYMBIOS chip clock divisor table.
2555  *
2556  *  Divisors are multiplied by 10,000,000 in order to make
2557  *  calculations more simple.
2558  */
2559 #define _5M 5000000
2560 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2561 
2562 /*
2563  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2564  *  128 transfers. All chips support at least 16 transfers
2565  *  bursts. The 825A, 875 and 895 chips support bursts of up
2566  *  to 128 transfers and the 895A and 896 support bursts of up
2567  *  to 64 transfers. All other chips support up to 16
2568  *  transfers bursts.
2569  *
2570  *  For PCI 32 bit data transfers each transfer is a DWORD.
2571  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2572  *
2573  *  We use log base 2 (burst length) as internal code, with
2574  *  value 0 meaning "burst disabled".
2575  */
2576 
2577 /*
2578  *  Burst length from burst code.
2579  */
2580 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2581 
2582 /*
2583  *  Burst code from io register bits.
2584  */
2585 #define burst_code(dmode, ctest4, ctest5) \
2586 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2587 
2588 /*
2589  *  Set initial io register bits from burst code.
2590  */
2591 static __inline void sym_init_burst(hcb_p np, u_char bc)
2592 {
2593 	np->rv_ctest4	&= ~0x80;
2594 	np->rv_dmode	&= ~(0x3 << 6);
2595 	np->rv_ctest5	&= ~0x4;
2596 
2597 	if (!bc) {
2598 		np->rv_ctest4	|= 0x80;
2599 	}
2600 	else {
2601 		--bc;
2602 		np->rv_dmode	|= ((bc & 0x3) << 6);
2603 		np->rv_ctest5	|= (bc & 0x4);
2604 	}
2605 }
2606 
2607 
2608 /*
2609  * Print out the list of targets that have some flag disabled by user.
2610  */
2611 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2612 {
2613 	int cnt;
2614 	int i;
2615 
2616 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2617 		if (i == np->myaddr)
2618 			continue;
2619 		if (np->target[i].usrflags & mask) {
2620 			if (!cnt++)
2621 				kprintf("%s: %s disabled for targets",
2622 					sym_name(np), msg);
2623 			kprintf(" %d", i);
2624 		}
2625 	}
2626 	if (cnt)
2627 		kprintf(".\n");
2628 }
2629 
2630 /*
2631  *  Save initial settings of some IO registers.
2632  *  Assumed to have been set by BIOS.
2633  *  We cannot reset the chip prior to reading the
2634  *  IO registers, since informations will be lost.
2635  *  Since the SCRIPTS processor may be running, this
2636  *  is not safe on paper, but it seems to work quite
2637  *  well. :)
2638  */
2639 static void sym_save_initial_setting (hcb_p np)
2640 {
2641 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2642 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2643 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2644 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2645 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2646 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2647 	np->sv_gpcntl	= INB(nc_gpcntl);
2648 	np->sv_stest1	= INB(nc_stest1);
2649 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2650 	np->sv_stest4	= INB(nc_stest4);
2651 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2652 		np->sv_scntl4	= INB(nc_scntl4);
2653 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2654 	}
2655 	else
2656 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2657 }
2658 
2659 /*
2660  *  Prepare io register values used by sym_init() according
2661  *  to selected and supported features.
2662  */
2663 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2664 {
2665 	u_char	burst_max;
2666 	u32	period;
2667 	int i;
2668 
2669 	/*
2670 	 *  Wide ?
2671 	 */
2672 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2673 
2674 	/*
2675 	 *  Get the frequency of the chip's clock.
2676 	 */
2677 	if	(np->features & FE_QUAD)
2678 		np->multiplier	= 4;
2679 	else if	(np->features & FE_DBLR)
2680 		np->multiplier	= 2;
2681 	else
2682 		np->multiplier	= 1;
2683 
2684 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2685 	np->clock_khz	*= np->multiplier;
2686 
2687 	if (np->clock_khz != 40000)
2688 		sym_getclock(np, np->multiplier);
2689 
2690 	/*
2691 	 * Divisor to be used for async (timer pre-scaler).
2692 	 */
2693 	i = np->clock_divn - 1;
2694 	while (--i >= 0) {
2695 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2696 			++i;
2697 			break;
2698 		}
2699 	}
2700 	np->rv_scntl3 = i+1;
2701 
2702 	/*
2703 	 * The C1010 uses hardwired divisors for async.
2704 	 * So, we just throw away, the async. divisor.:-)
2705 	 */
2706 	if (np->features & FE_C10)
2707 		np->rv_scntl3 = 0;
2708 
2709 	/*
2710 	 * Minimum synchronous period factor supported by the chip.
2711 	 * Btw, 'period' is in tenths of nanoseconds.
2712 	 */
2713 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2714 	if	(period <= 250)		np->minsync = 10;
2715 	else if	(period <= 303)		np->minsync = 11;
2716 	else if	(period <= 500)		np->minsync = 12;
2717 	else				np->minsync = (period + 40 - 1) / 40;
2718 
2719 	/*
2720 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2721 	 */
2722 	if	(np->minsync < 25 &&
2723 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2724 		np->minsync = 25;
2725 	else if	(np->minsync < 12 &&
2726 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2727 		np->minsync = 12;
2728 
2729 	/*
2730 	 * Maximum synchronous period factor supported by the chip.
2731 	 */
2732 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2733 	np->maxsync = period > 2540 ? 254 : period / 10;
2734 
2735 	/*
2736 	 * If chip is a C1010, guess the sync limits in DT mode.
2737 	 */
2738 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2739 		if (np->clock_khz == 160000) {
2740 			np->minsync_dt = 9;
2741 			np->maxsync_dt = 50;
2742 			np->maxoffs_dt = 62;
2743 		}
2744 	}
2745 
2746 	/*
2747 	 *  64 bit addressing  (895A/896/1010) ?
2748 	 */
2749 	if (np->features & FE_DAC)
2750 #if BITS_PER_LONG > 32
2751 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2752 #else
2753 		np->rv_ccntl1	|= (DDAC);
2754 #endif
2755 
2756 	/*
2757 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2758   	 */
2759 	if (np->features & FE_NOPM)
2760 		np->rv_ccntl0	|= (ENPMJ);
2761 
2762  	/*
2763 	 *  C1010 Errata.
2764 	 *  In dual channel mode, contention occurs if internal cycles
2765 	 *  are used. Disable internal cycles.
2766 	 */
2767 	if (np->device_id == PCI_ID_LSI53C1010 &&
2768 	    np->revision_id < 0x2)
2769 		np->rv_ccntl0	|=  DILS;
2770 
2771 	/*
2772 	 *  Select burst length (dwords)
2773 	 */
2774 	burst_max	= SYM_SETUP_BURST_ORDER;
2775 	if (burst_max == 255)
2776 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2777 				       np->sv_ctest5);
2778 	if (burst_max > 7)
2779 		burst_max = 7;
2780 	if (burst_max > np->maxburst)
2781 		burst_max = np->maxburst;
2782 
2783 	/*
2784 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2785 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2786 	 *  based transactions on LOAD/STORE instructions. So we have
2787 	 *  to prevent these chips from using such PCI transactions in
2788 	 *  this driver. The generic ncr driver that does not use
2789 	 *  LOAD/STORE instructions does not need this work-around.
2790 	 */
2791 	if ((np->device_id == PCI_ID_SYM53C810 &&
2792 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2793 	    (np->device_id == PCI_ID_SYM53C860 &&
2794 	     np->revision_id <= 0x1))
2795 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2796 
2797 	/*
2798 	 *  Select all supported special features.
2799 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2800 	 *  does not help, but burst op fetch (BOF) does.
2801 	 *  Disabling PFEN makes sure BOF will be used.
2802 	 */
2803 	if (np->features & FE_ERL)
2804 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2805 	if (np->features & FE_BOF)
2806 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2807 	if (np->features & FE_ERMP)
2808 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2809 #if 1
2810 	if ((np->features & FE_PFEN) && !np->ram_ba)
2811 #else
2812 	if (np->features & FE_PFEN)
2813 #endif
2814 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2815 	if (np->features & FE_CLSE)
2816 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2817 	if (np->features & FE_WRIE)
2818 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2819 	if (np->features & FE_DFS)
2820 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2821 
2822 	/*
2823 	 *  Select some other
2824 	 */
2825 	if (SYM_SETUP_PCI_PARITY)
2826 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2827 	if (SYM_SETUP_SCSI_PARITY)
2828 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2829 
2830 	/*
2831 	 *  Get parity checking, host ID and verbose mode from NVRAM
2832 	 */
2833 	np->myaddr = 255;
2834 	sym_nvram_setup_host (np, nvram);
2835 
2836 	/*
2837 	 *  Get SCSI addr of host adapter (set by bios?).
2838 	 */
2839 	if (np->myaddr == 255) {
2840 		np->myaddr = INB(nc_scid) & 0x07;
2841 		if (!np->myaddr)
2842 			np->myaddr = SYM_SETUP_HOST_ID;
2843 	}
2844 
2845 	/*
2846 	 *  Prepare initial io register bits for burst length
2847 	 */
2848 	sym_init_burst(np, burst_max);
2849 
2850 	/*
2851 	 *  Set SCSI BUS mode.
2852 	 *  - LVD capable chips (895/895A/896/1010) report the
2853 	 *    current BUS mode through the STEST4 IO register.
2854 	 *  - For previous generation chips (825/825A/875),
2855 	 *    user has to tell us how to check against HVD,
2856 	 *    since a 100% safe algorithm is not possible.
2857 	 */
2858 	np->scsi_mode = SMODE_SE;
2859 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2860 		np->scsi_mode = (np->sv_stest4 & SMODE);
2861 	else if	(np->features & FE_DIFF) {
2862 		if (SYM_SETUP_SCSI_DIFF == 1) {
2863 			if (np->sv_scntl3) {
2864 				if (np->sv_stest2 & 0x20)
2865 					np->scsi_mode = SMODE_HVD;
2866 			}
2867 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2868 				if (!(INB(nc_gpreg) & 0x08))
2869 					np->scsi_mode = SMODE_HVD;
2870 			}
2871 		}
2872 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2873 			np->scsi_mode = SMODE_HVD;
2874 	}
2875 	if (np->scsi_mode == SMODE_HVD)
2876 		np->rv_stest2 |= 0x20;
2877 
2878 	/*
2879 	 *  Set LED support from SCRIPTS.
2880 	 *  Ignore this feature for boards known to use a
2881 	 *  specific GPIO wiring and for the 895A, 896
2882 	 *  and 1010 that drive the LED directly.
2883 	 */
2884 	if ((SYM_SETUP_SCSI_LED ||
2885 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2886 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2887 	       np->device_id == PCI_ID_SYM53C895))) &&
2888 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2889 		np->features |= FE_LED0;
2890 
2891 	/*
2892 	 *  Set irq mode.
2893 	 */
2894 	switch(SYM_SETUP_IRQ_MODE & 3) {
2895 	case 2:
2896 		np->rv_dcntl	|= IRQM;
2897 		break;
2898 	case 1:
2899 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2900 		break;
2901 	default:
2902 		break;
2903 	}
2904 
2905 	/*
2906 	 *  Configure targets according to driver setup.
2907 	 *  If NVRAM present get targets setup from NVRAM.
2908 	 */
2909 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2910 		tcb_p tp = &np->target[i];
2911 
2912 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2913 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2914 		tp->tinfo.user.period = np->minsync;
2915 		tp->tinfo.user.offset = np->maxoffs;
2916 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2917 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2918 		tp->usrtags = SYM_SETUP_MAX_TAG;
2919 
2920 		sym_nvram_setup_target (np, i, nvram);
2921 
2922 		/*
2923 		 *  For now, guess PPR/DT support from the period
2924 		 *  and BUS width.
2925 		 */
2926 		if (np->features & FE_ULTRA3) {
2927 			if (tp->tinfo.user.period <= 9	&&
2928 			    tp->tinfo.user.width == BUS_16_BIT) {
2929 				tp->tinfo.user.options |= PPR_OPT_DT;
2930 				tp->tinfo.user.offset   = np->maxoffs_dt;
2931 				tp->tinfo.user.spi_version = 3;
2932 			}
2933 		}
2934 
2935 		if (!tp->usrtags)
2936 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2937 	}
2938 
2939 	/*
2940 	 *  Let user know about the settings.
2941 	 */
2942 	i = nvram->type;
2943 	kprintf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2944 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2945 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2946 		np->myaddr,
2947 		(np->features & FE_ULTRA3) ? 80 :
2948 		(np->features & FE_ULTRA2) ? 40 :
2949 		(np->features & FE_ULTRA)  ? 20 : 10,
2950 		sym_scsi_bus_mode(np->scsi_mode),
2951 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2952 	/*
2953 	 *  Tell him more on demand.
2954 	 */
2955 	if (sym_verbose) {
2956 		kprintf("%s: %s IRQ line driver%s\n",
2957 			sym_name(np),
2958 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2959 			np->ram_ba ? ", using on-chip SRAM" : "");
2960 		kprintf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2961 		if (np->features & FE_NOPM)
2962 			kprintf("%s: handling phase mismatch from SCRIPTS.\n",
2963 			       sym_name(np));
2964 	}
2965 	/*
2966 	 *  And still more.
2967 	 */
2968 	if (sym_verbose > 1) {
2969 		kprintf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2970 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2971 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2972 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2973 
2974 		kprintf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2975 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2976 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2977 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2978 	}
2979 	/*
2980 	 *  Let user be aware of targets that have some disable flags set.
2981 	 */
2982 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2983 	if (sym_verbose)
2984 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2985 				       "SCAN FOR LUNS");
2986 
2987 	return 0;
2988 }
2989 
2990 /*
2991  *  Prepare the next negotiation message if needed.
2992  *
2993  *  Fill in the part of message buffer that contains the
2994  *  negotiation and the nego_status field of the CCB.
2995  *  Returns the size of the message in bytes.
2996  */
2997 
2998 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2999 {
3000 	tcb_p tp = &np->target[cp->target];
3001 	int msglen = 0;
3002 
3003 	/*
3004 	 *  Early C1010 chips need a work-around for DT
3005 	 *  data transfer to work.
3006 	 */
3007 	if (!(np->features & FE_U3EN))
3008 		tp->tinfo.goal.options = 0;
3009 	/*
3010 	 *  negotiate using PPR ?
3011 	 */
3012 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
3013 		nego = NS_PPR;
3014 	/*
3015 	 *  negotiate wide transfers ?
3016 	 */
3017 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
3018 		nego = NS_WIDE;
3019 	/*
3020 	 *  negotiate synchronous transfers?
3021 	 */
3022 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
3023 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
3024 		nego = NS_SYNC;
3025 
3026 	switch (nego) {
3027 	case NS_SYNC:
3028 		msgptr[msglen++] = M_EXTENDED;
3029 		msgptr[msglen++] = 3;
3030 		msgptr[msglen++] = M_X_SYNC_REQ;
3031 		msgptr[msglen++] = tp->tinfo.goal.period;
3032 		msgptr[msglen++] = tp->tinfo.goal.offset;
3033 		break;
3034 	case NS_WIDE:
3035 		msgptr[msglen++] = M_EXTENDED;
3036 		msgptr[msglen++] = 2;
3037 		msgptr[msglen++] = M_X_WIDE_REQ;
3038 		msgptr[msglen++] = tp->tinfo.goal.width;
3039 		break;
3040 	case NS_PPR:
3041 		msgptr[msglen++] = M_EXTENDED;
3042 		msgptr[msglen++] = 6;
3043 		msgptr[msglen++] = M_X_PPR_REQ;
3044 		msgptr[msglen++] = tp->tinfo.goal.period;
3045 		msgptr[msglen++] = 0;
3046 		msgptr[msglen++] = tp->tinfo.goal.offset;
3047 		msgptr[msglen++] = tp->tinfo.goal.width;
3048 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
3049 		break;
3050 	};
3051 
3052 	cp->nego_status = nego;
3053 
3054 	if (nego) {
3055 		tp->nego_cp = cp; /* Keep track a nego will be performed */
3056 		if (DEBUG_FLAGS & DEBUG_NEGO) {
3057 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
3058 					  nego == NS_WIDE ? "wide msgout" :
3059 					  "ppr msgout", msgptr);
3060 		};
3061 	};
3062 
3063 	return msglen;
3064 }
3065 
3066 /*
3067  *  Insert a job into the start queue.
3068  */
3069 static void sym_put_start_queue(hcb_p np, ccb_p cp)
3070 {
3071 	u_short	qidx;
3072 
3073 #ifdef SYM_CONF_IARB_SUPPORT
3074 	/*
3075 	 *  If the previously queued CCB is not yet done,
3076 	 *  set the IARB hint. The SCRIPTS will go with IARB
3077 	 *  for this job when starting the previous one.
3078 	 *  We leave devices a chance to win arbitration by
3079 	 *  not using more than 'iarb_max' consecutive
3080 	 *  immediate arbitrations.
3081 	 */
3082 	if (np->last_cp && np->iarb_count < np->iarb_max) {
3083 		np->last_cp->host_flags |= HF_HINT_IARB;
3084 		++np->iarb_count;
3085 	}
3086 	else
3087 		np->iarb_count = 0;
3088 	np->last_cp = cp;
3089 #endif
3090 
3091 	/*
3092 	 *  Insert first the idle task and then our job.
3093 	 *  The MB should ensure proper ordering.
3094 	 */
3095 	qidx = np->squeueput + 2;
3096 	if (qidx >= MAX_QUEUE*2) qidx = 0;
3097 
3098 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
3099 	MEMORY_BARRIER();
3100 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
3101 
3102 	np->squeueput = qidx;
3103 
3104 	if (DEBUG_FLAGS & DEBUG_QUEUE)
3105 		kprintf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
3106 
3107 	/*
3108 	 *  Script processor may be waiting for reselect.
3109 	 *  Wake it up.
3110 	 */
3111 	MEMORY_BARRIER();
3112 	OUTB (nc_istat, SIGP|np->istat_sem);
3113 }
3114 
3115 
3116 /*
3117  *  Soft reset the chip.
3118  *
3119  *  Raising SRST when the chip is running may cause
3120  *  problems on dual function chips (see below).
3121  *  On the other hand, LVD devices need some delay
3122  *  to settle and report actual BUS mode in STEST4.
3123  */
3124 static void sym_chip_reset (hcb_p np)
3125 {
3126 	OUTB (nc_istat, SRST);
3127 	UDELAY (10);
3128 	OUTB (nc_istat, 0);
3129 	UDELAY(2000);	/* For BUS MODE to settle */
3130 }
3131 
3132 /*
3133  *  Soft reset the chip.
3134  *
3135  *  Some 896 and 876 chip revisions may hang-up if we set
3136  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
3137  *  are running.
3138  *  So, we need to abort the current operation prior to
3139  *  soft resetting the chip.
3140  */
3141 static void sym_soft_reset (hcb_p np)
3142 {
3143 	u_char istat;
3144 	int i;
3145 
3146 	OUTB (nc_istat, CABRT);
3147 	for (i = 1000000 ; i ; --i) {
3148 		istat = INB (nc_istat);
3149 		if (istat & SIP) {
3150 			INW (nc_sist);
3151 			continue;
3152 		}
3153 		if (istat & DIP) {
3154 			OUTB (nc_istat, 0);
3155 			INB (nc_dstat);
3156 			break;
3157 		}
3158 	}
3159 	if (!i)
3160 		kprintf("%s: unable to abort current chip operation.\n",
3161 			sym_name(np));
3162 	sym_chip_reset (np);
3163 }
3164 
3165 /*
3166  *  Start reset process.
3167  *
3168  *  The interrupt handler will reinitialize the chip.
3169  */
3170 static void sym_start_reset(hcb_p np)
3171 {
3172 	(void) sym_reset_scsi_bus(np, 1);
3173 }
3174 
3175 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3176 {
3177 	u32 term;
3178 	int retv = 0;
3179 
3180 	sym_soft_reset(np);	/* Soft reset the chip */
3181 	if (enab_int)
3182 		OUTW (nc_sien, RST);
3183 	/*
3184 	 *  Enable Tolerant, reset IRQD if present and
3185 	 *  properly set IRQ mode, prior to resetting the bus.
3186 	 */
3187 	OUTB (nc_stest3, TE);
3188 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3189 	OUTB (nc_scntl1, CRST);
3190 	UDELAY (200);
3191 
3192 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3193 		goto out;
3194 	/*
3195 	 *  Check for no terminators or SCSI bus shorts to ground.
3196 	 *  Read SCSI data bus, data parity bits and control signals.
3197 	 *  We are expecting RESET to be TRUE and other signals to be
3198 	 *  FALSE.
3199 	 */
3200 	term =	INB(nc_sstat0);
3201 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3202 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3203 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3204 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3205 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3206 
3207 	if (!(np->features & FE_WIDE))
3208 		term &= 0x3ffff;
3209 
3210 	if (term != (2<<7)) {
3211 		kprintf("%s: suspicious SCSI data while resetting the BUS.\n",
3212 			sym_name(np));
3213 		kprintf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3214 			"0x%lx, expecting 0x%lx\n",
3215 			sym_name(np),
3216 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3217 			(u_long)term, (u_long)(2<<7));
3218 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3219 			retv = 1;
3220 	}
3221 out:
3222 	OUTB (nc_scntl1, 0);
3223 	/* MDELAY(100); */
3224 	return retv;
3225 }
3226 
3227 /*
3228  *  The chip may have completed jobs. Look at the DONE QUEUE.
3229  *
3230  *  On architectures that may reorder LOAD/STORE operations,
3231  *  a memory barrier may be needed after the reading of the
3232  *  so-called `flag' and prior to dealing with the data.
3233  */
3234 static int sym_wakeup_done (hcb_p np)
3235 {
3236 	ccb_p cp;
3237 	int i, n;
3238 	u32 dsa;
3239 
3240 	n = 0;
3241 	i = np->dqueueget;
3242 	while (1) {
3243 		dsa = scr_to_cpu(np->dqueue[i]);
3244 		if (!dsa)
3245 			break;
3246 		np->dqueue[i] = 0;
3247 		if ((i = i+2) >= MAX_QUEUE*2)
3248 			i = 0;
3249 
3250 		cp = sym_ccb_from_dsa(np, dsa);
3251 		if (cp) {
3252 			MEMORY_BARRIER();
3253 			sym_complete_ok (np, cp);
3254 			++n;
3255 		}
3256 		else
3257 			kprintf ("%s: bad DSA (%x) in done queue.\n",
3258 				sym_name(np), (u_int) dsa);
3259 	}
3260 	np->dqueueget = i;
3261 
3262 	return n;
3263 }
3264 
3265 /*
3266  *  Complete all active CCBs with error.
3267  *  Used on CHIP/SCSI RESET.
3268  */
3269 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3270 {
3271 	/*
3272 	 *  Move all active CCBs to the COMP queue
3273 	 *  and flush this queue.
3274 	 */
3275 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3276 	sym_que_init(&np->busy_ccbq);
3277 	sym_flush_comp_queue(np, cam_status);
3278 }
3279 
3280 /*
3281  *  Start chip.
3282  *
3283  *  'reason' means:
3284  *     0: initialisation.
3285  *     1: SCSI BUS RESET delivered or received.
3286  *     2: SCSI BUS MODE changed.
3287  */
3288 static void sym_init (hcb_p np, int reason)
3289 {
3290  	int	i;
3291 	u32	phys;
3292 
3293  	/*
3294 	 *  Reset chip if asked, otherwise just clear fifos.
3295  	 */
3296 	if (reason == 1)
3297 		sym_soft_reset(np);
3298 	else {
3299 		OUTB (nc_stest3, TE|CSF);
3300 		OUTONB (nc_ctest3, CLF);
3301 	}
3302 
3303 	/*
3304 	 *  Clear Start Queue
3305 	 */
3306 	phys = np->squeue_ba;
3307 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3308 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3309 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3310 	}
3311 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3312 
3313 	/*
3314 	 *  Start at first entry.
3315 	 */
3316 	np->squeueput = 0;
3317 
3318 	/*
3319 	 *  Clear Done Queue
3320 	 */
3321 	phys = np->dqueue_ba;
3322 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3323 		np->dqueue[i]   = 0;
3324 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3325 	}
3326 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3327 
3328 	/*
3329 	 *  Start at first entry.
3330 	 */
3331 	np->dqueueget = 0;
3332 
3333 	/*
3334 	 *  Install patches in scripts.
3335 	 *  This also let point to first position the start
3336 	 *  and done queue pointers used from SCRIPTS.
3337 	 */
3338 	np->fw_patch(np);
3339 
3340 	/*
3341 	 *  Wakeup all pending jobs.
3342 	 */
3343 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3344 
3345 	/*
3346 	 *  Init chip.
3347 	 */
3348 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3349 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3350 
3351 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3352 					/*  full arb., ena parity, par->ATN  */
3353 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3354 
3355 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3356 
3357 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3358 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3359 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3360 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3361 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3362 
3363 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3364 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3365 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3366 
3367 	/* Extended Sreq/Sack filtering not supported on the C10 */
3368 	if (np->features & FE_C10)
3369 		OUTB (nc_stest2, np->rv_stest2);
3370 	else
3371 		OUTB (nc_stest2, EXT|np->rv_stest2);
3372 
3373 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3374 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3375 
3376 	/*
3377 	 *  For now, disable AIP generation on C1010-66.
3378 	 */
3379 	if (np->device_id == PCI_ID_LSI53C1010_2)
3380 		OUTB (nc_aipcntl1, DISAIP);
3381 
3382 	/*
3383 	 *  C10101 Errata.
3384 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3385 	 *  STEST1 register to disable SGE. We probably should do
3386 	 *  that from SCRIPTS for each selection/reselection, but
3387 	 *  I just don't want. :)
3388 	 */
3389 	if (np->device_id == PCI_ID_LSI53C1010 &&
3390 	    /* np->revision_id < 0xff */ 1)
3391 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3392 
3393 	/*
3394 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3395 	 *  Disable overlapped arbitration for some dual function devices,
3396 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3397 	 */
3398 	if (np->device_id == PCI_ID_SYM53C875)
3399 		OUTB (nc_ctest0, (1<<5));
3400 	else if (np->device_id == PCI_ID_SYM53C896)
3401 		np->rv_ccntl0 |= DPR;
3402 
3403 	/*
3404 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3405 	 *  and/or hardware phase mismatch, since only such chips
3406 	 *  seem to support those IO registers.
3407 	 */
3408 	if (np->features & (FE_DAC|FE_NOPM)) {
3409 		OUTB (nc_ccntl0, np->rv_ccntl0);
3410 		OUTB (nc_ccntl1, np->rv_ccntl1);
3411 	}
3412 
3413 	/*
3414 	 *  If phase mismatch handled by scripts (895A/896/1010),
3415 	 *  set PM jump addresses.
3416 	 */
3417 	if (np->features & FE_NOPM) {
3418 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3419 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3420 	}
3421 
3422 	/*
3423 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3424 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3425 	 */
3426 	if (np->features & FE_LED0)
3427 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3428 	else if (np->features & FE_LEDC)
3429 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3430 
3431 	/*
3432 	 *      enable ints
3433 	 */
3434 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3435 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3436 
3437 	/*
3438 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3439 	 *  Try to eat the spurious SBMC interrupt that may occur when
3440 	 *  we reset the chip but not the SCSI BUS (at initialization).
3441 	 */
3442 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3443 		OUTONW (nc_sien, SBMC);
3444 		if (reason == 0) {
3445 			MDELAY(100);
3446 			INW (nc_sist);
3447 		}
3448 		np->scsi_mode = INB (nc_stest4) & SMODE;
3449 	}
3450 
3451 	/*
3452 	 *  Fill in target structure.
3453 	 *  Reinitialize usrsync.
3454 	 *  Reinitialize usrwide.
3455 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3456 	 */
3457 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3458 		tcb_p tp = &np->target[i];
3459 
3460 		tp->to_reset  = 0;
3461 		tp->head.sval = 0;
3462 		tp->head.wval = np->rv_scntl3;
3463 		tp->head.uval = 0;
3464 
3465 		tp->tinfo.current.period = 0;
3466 		tp->tinfo.current.offset = 0;
3467 		tp->tinfo.current.width  = BUS_8_BIT;
3468 		tp->tinfo.current.options = 0;
3469 	}
3470 
3471 	/*
3472 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3473 	 *  and start script processor.
3474 	 */
3475 	if (np->ram_ba) {
3476 		if (sym_verbose > 1)
3477 			kprintf ("%s: Downloading SCSI SCRIPTS.\n",
3478 				sym_name(np));
3479 		if (np->ram_ws == 8192) {
3480 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3481 			OUTL (nc_mmws, np->scr_ram_seg);
3482 			OUTL (nc_mmrs, np->scr_ram_seg);
3483 			OUTL (nc_sfs,  np->scr_ram_seg);
3484 			phys = SCRIPTB_BA (np, start64);
3485 		}
3486 		else
3487 			phys = SCRIPTA_BA (np, init);
3488 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3489 	}
3490 	else
3491 		phys = SCRIPTA_BA (np, init);
3492 
3493 	np->istat_sem = 0;
3494 
3495 	OUTL (nc_dsa, np->hcb_ba);
3496 	OUTL_DSP (phys);
3497 
3498 	/*
3499 	 *  Notify the XPT about the RESET condition.
3500 	 */
3501 	if (reason != 0)
3502 		xpt_async(AC_BUS_RESET, np->path, NULL);
3503 }
3504 
3505 /*
3506  *  Get clock factor and sync divisor for a given
3507  *  synchronous factor period.
3508  */
3509 static int
3510 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3511 {
3512 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3513 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3514 	u32	fak;			/* Sync factor in sxfer		*/
3515 	u32	per;			/* Period in tenths of ns	*/
3516 	u32	kpc;			/* (per * clk)			*/
3517 	int	ret;
3518 
3519 	/*
3520 	 *  Compute the synchronous period in tenths of nano-seconds
3521 	 */
3522 	if (dt && sfac <= 9)	per = 125;
3523 	else if	(sfac <= 10)	per = 250;
3524 	else if	(sfac == 11)	per = 303;
3525 	else if	(sfac == 12)	per = 500;
3526 	else			per = 40 * sfac;
3527 	ret = per;
3528 
3529 	kpc = per * clk;
3530 	if (dt)
3531 		kpc <<= 1;
3532 
3533 	/*
3534 	 *  For earliest C10 revision 0, we cannot use extra
3535 	 *  clocks for the setting of the SCSI clocking.
3536 	 *  Note that this limits the lowest sync data transfer
3537 	 *  to 5 Mega-transfers per second and may result in
3538 	 *  using higher clock divisors.
3539 	 */
3540 #if 1
3541 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3542 		/*
3543 		 *  Look for the lowest clock divisor that allows an
3544 		 *  output speed not faster than the period.
3545 		 */
3546 		while (div > 0) {
3547 			--div;
3548 			if (kpc > (div_10M[div] << 2)) {
3549 				++div;
3550 				break;
3551 			}
3552 		}
3553 		fak = 0;			/* No extra clocks */
3554 		if (div == np->clock_divn) {	/* Are we too fast ? */
3555 			ret = -1;
3556 		}
3557 		*divp = div;
3558 		*fakp = fak;
3559 		return ret;
3560 	}
3561 #endif
3562 
3563 	/*
3564 	 *  Look for the greatest clock divisor that allows an
3565 	 *  input speed faster than the period.
3566 	 */
3567 	while (div-- > 0)
3568 		if (kpc >= (div_10M[div] << 2)) break;
3569 
3570 	/*
3571 	 *  Calculate the lowest clock factor that allows an output
3572 	 *  speed not faster than the period, and the max output speed.
3573 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3574 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3575 	 */
3576 	if (dt) {
3577 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3578 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3579 	}
3580 	else {
3581 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3582 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3583 	}
3584 
3585 	/*
3586 	 *  Check against our hardware limits, or bugs :).
3587 	 */
3588 	if (fak < 0)	{fak = 0; ret = -1;}
3589 	if (fak > 2)	{fak = 2; ret = -1;}
3590 
3591 	/*
3592 	 *  Compute and return sync parameters.
3593 	 */
3594 	*divp = div;
3595 	*fakp = fak;
3596 
3597 	return ret;
3598 }
3599 
3600 /*
3601  *  Tell the SCSI layer about the new transfer parameters.
3602  */
3603 static void
3604 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3605 {
3606 	struct ccb_trans_settings cts;
3607 	struct cam_path *path;
3608 	int sts;
3609 	tcb_p tp = &np->target[target];
3610 
3611 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3612 	                      CAM_LUN_WILDCARD);
3613 	if (sts != CAM_REQ_CMP)
3614 		return;
3615 
3616 	bzero(&cts, sizeof(cts));
3617 
3618 #define	cts__scsi (cts.proto_specific.scsi)
3619 #define	cts__spi  (cts.xport_specific.spi)
3620 
3621 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3622 	cts.protocol  = PROTO_SCSI;
3623 	cts.transport = XPORT_SPI;
3624 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3625 	cts.transport_version = tp->tinfo.current.spi_version;
3626 
3627 	cts__spi.valid = spi_valid;
3628 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3629 		cts__spi.sync_period = tp->tinfo.current.period;
3630 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3631 		cts__spi.sync_offset = tp->tinfo.current.offset;
3632 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3633 		cts__spi.bus_width   = tp->tinfo.current.width;
3634 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3635 		cts__spi.ppr_options = tp->tinfo.current.options;
3636 #undef cts__spi
3637 #undef cts__scsi
3638 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3639 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3640 	xpt_free_path(path);
3641 }
3642 
3643 #define SYM_SPI_VALID_WDTR		\
3644 	CTS_SPI_VALID_BUS_WIDTH |	\
3645 	CTS_SPI_VALID_SYNC_RATE |	\
3646 	CTS_SPI_VALID_SYNC_OFFSET
3647 #define SYM_SPI_VALID_SDTR		\
3648 	CTS_SPI_VALID_SYNC_RATE |	\
3649 	CTS_SPI_VALID_SYNC_OFFSET
3650 #define SYM_SPI_VALID_PPR		\
3651 	CTS_SPI_VALID_PPR_OPTIONS |	\
3652 	CTS_SPI_VALID_BUS_WIDTH |	\
3653 	CTS_SPI_VALID_SYNC_RATE |	\
3654 	CTS_SPI_VALID_SYNC_OFFSET
3655 
3656 /*
3657  *  We received a WDTR.
3658  *  Let everything be aware of the changes.
3659  */
3660 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3661 {
3662 	tcb_p tp = &np->target[cp->target];
3663 
3664 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3665 
3666 	/*
3667 	 *  Tell the SCSI layer about the new transfer parameters.
3668 	 */
3669 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3670 	tp->tinfo.current.offset = 0;
3671 	tp->tinfo.current.period = 0;
3672 	tp->tinfo.current.options = 0;
3673 
3674 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3675 }
3676 
3677 /*
3678  *  We received a SDTR.
3679  *  Let everything be aware of the changes.
3680  */
3681 static void
3682 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3683 {
3684 	tcb_p tp = &np->target[cp->target];
3685 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3686 
3687 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3688 
3689 	/*
3690 	 *  Tell the SCSI layer about the new transfer parameters.
3691 	 */
3692 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3693 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3694 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3695 
3696 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3697 }
3698 
3699 /*
3700  *  We received a PPR.
3701  *  Let everything be aware of the changes.
3702  */
3703 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3704 			 u_char per, u_char wide, u_char div, u_char fak)
3705 {
3706 	tcb_p tp = &np->target[cp->target];
3707 
3708 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3709 
3710 	/*
3711 	 *  Tell the SCSI layer about the new transfer parameters.
3712 	 */
3713 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3714 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3715 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3716 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3717 
3718 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3719 }
3720 
3721 /*
3722  *  Switch trans mode for current job and it's target.
3723  */
3724 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3725 			 u_char per, u_char wide, u_char div, u_char fak)
3726 {
3727 	SYM_QUEHEAD *qp;
3728 	union	ccb *ccb;
3729 	tcb_p tp;
3730 	u_char target = INB (nc_sdid) & 0x0f;
3731 	u_char sval, wval, uval;
3732 
3733 	assert (cp);
3734 	if (!cp) return;
3735 	ccb = cp->cam_ccb;
3736 	assert (ccb);
3737 	if (!ccb) return;
3738 	assert (target == (cp->target & 0xf));
3739 	tp = &np->target[target];
3740 
3741 	sval = tp->head.sval;
3742 	wval = tp->head.wval;
3743 	uval = tp->head.uval;
3744 
3745 #if 0
3746 	kprintf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3747 		sval, wval, uval, np->rv_scntl3);
3748 #endif
3749 	/*
3750 	 *  Set the offset.
3751 	 */
3752 	if (!(np->features & FE_C10))
3753 		sval = (sval & ~0x1f) | ofs;
3754 	else
3755 		sval = (sval & ~0x3f) | ofs;
3756 
3757 	/*
3758 	 *  Set the sync divisor and extra clock factor.
3759 	 */
3760 	if (ofs != 0) {
3761 		wval = (wval & ~0x70) | ((div+1) << 4);
3762 		if (!(np->features & FE_C10))
3763 			sval = (sval & ~0xe0) | (fak << 5);
3764 		else {
3765 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3766 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3767 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3768 		}
3769 	}
3770 
3771 	/*
3772 	 *  Set the bus width.
3773 	 */
3774 	wval = wval & ~EWS;
3775 	if (wide != 0)
3776 		wval |= EWS;
3777 
3778 	/*
3779 	 *  Set misc. ultra enable bits.
3780 	 */
3781 	if (np->features & FE_C10) {
3782 		uval = uval & ~(U3EN|AIPCKEN);
3783 		if (dt)	{
3784 			assert(np->features & FE_U3EN);
3785 			uval |= U3EN;
3786 		}
3787 	}
3788 	else {
3789 		wval = wval & ~ULTRA;
3790 		if (per <= 12)	wval |= ULTRA;
3791 	}
3792 
3793 	/*
3794 	 *   Stop there if sync parameters are unchanged.
3795 	 */
3796 	if (tp->head.sval == sval &&
3797 	    tp->head.wval == wval &&
3798 	    tp->head.uval == uval)
3799 		return;
3800 	tp->head.sval = sval;
3801 	tp->head.wval = wval;
3802 	tp->head.uval = uval;
3803 
3804 	/*
3805 	 *  Disable extended Sreq/Sack filtering if per < 50.
3806 	 *  Not supported on the C1010.
3807 	 */
3808 	if (per < 50 && !(np->features & FE_C10))
3809 		OUTOFFB (nc_stest2, EXT);
3810 
3811 	/*
3812 	 *  set actual value and sync_status
3813 	 */
3814 	OUTB (nc_sxfer,  tp->head.sval);
3815 	OUTB (nc_scntl3, tp->head.wval);
3816 
3817 	if (np->features & FE_C10) {
3818 		OUTB (nc_scntl4, tp->head.uval);
3819 	}
3820 
3821 	/*
3822 	 *  patch ALL busy ccbs of this target.
3823 	 */
3824 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3825 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3826 		if (cp->target != target)
3827 			continue;
3828 		cp->phys.select.sel_scntl3 = tp->head.wval;
3829 		cp->phys.select.sel_sxfer  = tp->head.sval;
3830 		if (np->features & FE_C10) {
3831 			cp->phys.select.sel_scntl4 = tp->head.uval;
3832 		}
3833 	}
3834 }
3835 
3836 /*
3837  *  log message for real hard errors
3838  *
3839  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3840  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3841  *
3842  *  exception register:
3843  *  	ds:	dstat
3844  *  	si:	sist
3845  *
3846  *  SCSI bus lines:
3847  *  	so:	control lines as driven by chip.
3848  *  	si:	control lines as seen by chip.
3849  *  	sd:	scsi data lines as seen by chip.
3850  *
3851  *  wide/fastmode:
3852  *  	sxfer:	(see the manual)
3853  *  	scntl3:	(see the manual)
3854  *
3855  *  current script command:
3856  *  	dsp:	script adress (relative to start of script).
3857  *  	dbc:	first word of script command.
3858  *
3859  *  First 24 register of the chip:
3860  *  	r0..rf
3861  */
3862 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3863 {
3864 	u32	dsp;
3865 	int	script_ofs;
3866 	int	script_size;
3867 	char	*script_name;
3868 	u_char	*script_base;
3869 	int	i;
3870 
3871 	dsp	= INL (nc_dsp);
3872 
3873 	if	(dsp > np->scripta_ba &&
3874 		 dsp <= np->scripta_ba + np->scripta_sz) {
3875 		script_ofs	= dsp - np->scripta_ba;
3876 		script_size	= np->scripta_sz;
3877 		script_base	= (u_char *) np->scripta0;
3878 		script_name	= "scripta";
3879 	}
3880 	else if (np->scriptb_ba < dsp &&
3881 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3882 		script_ofs	= dsp - np->scriptb_ba;
3883 		script_size	= np->scriptb_sz;
3884 		script_base	= (u_char *) np->scriptb0;
3885 		script_name	= "scriptb";
3886 	} else {
3887 		script_ofs	= dsp;
3888 		script_size	= 0;
3889 		script_base	= 0;
3890 		script_name	= "mem";
3891 	}
3892 
3893 	kprintf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3894 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3895 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3896 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3897 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3898 		(unsigned)INL (nc_dbc));
3899 
3900 	if (((script_ofs & 3) == 0) &&
3901 	    (unsigned)script_ofs < script_size) {
3902 		kprintf ("%s: script cmd = %08x\n", sym_name(np),
3903 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3904 	}
3905 
3906         kprintf ("%s: regdump:", sym_name(np));
3907         for (i=0; i<24;i++)
3908             kprintf (" %02x", (unsigned)INB_OFF(i));
3909         kprintf (".\n");
3910 
3911 	/*
3912 	 *  PCI BUS error, read the PCI ststus register.
3913 	 */
3914 	if (dstat & (MDPE|BF)) {
3915 		u_short pci_sts;
3916 #ifdef FreeBSD_Bus_Io_Abstraction
3917 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3918 #else
3919 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
3920 #endif
3921 		if (pci_sts & 0xf900) {
3922 #ifdef FreeBSD_Bus_Io_Abstraction
3923 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3924 #else
3925 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
3926 #endif
3927 			kprintf("%s: PCI STATUS = 0x%04x\n",
3928 				sym_name(np), pci_sts & 0xf900);
3929 		}
3930 	}
3931 }
3932 
3933 /*
3934  *  chip interrupt handler
3935  *
3936  *  In normal situations, interrupt conditions occur one at
3937  *  a time. But when something bad happens on the SCSI BUS,
3938  *  the chip may raise several interrupt flags before
3939  *  stopping and interrupting the CPU. The additionnal
3940  *  interrupt flags are stacked in some extra registers
3941  *  after the SIP and/or DIP flag has been raised in the
3942  *  ISTAT. After the CPU has read the interrupt condition
3943  *  flag from SIST or DSTAT, the chip unstacks the other
3944  *  interrupt flags and sets the corresponding bits in
3945  *  SIST or DSTAT. Since the chip starts stacking once the
3946  *  SIP or DIP flag is set, there is a small window of time
3947  *  where the stacking does not occur.
3948  *
3949  *  Typically, multiple interrupt conditions may happen in
3950  *  the following situations:
3951  *
3952  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3953  *    When an parity error is detected in input phase
3954  *    and the device switches to msg-in phase inside a
3955  *    block MOV.
3956  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3957  *    When a stupid device does not want to handle the
3958  *    recovery of an SCSI parity error.
3959  *  - Some combinations of STO, PAR, UDC, ...
3960  *    When using non compliant SCSI stuff, when user is
3961  *    doing non compliant hot tampering on the BUS, when
3962  *    something really bad happens to a device, etc ...
3963  *
3964  *  The heuristic suggested by SYMBIOS to handle
3965  *  multiple interrupts is to try unstacking all
3966  *  interrupts conditions and to handle them on some
3967  *  priority based on error severity.
3968  *  This will work when the unstacking has been
3969  *  successful, but we cannot be 100 % sure of that,
3970  *  since the CPU may have been faster to unstack than
3971  *  the chip is able to stack. Hmmm ... But it seems that
3972  *  such a situation is very unlikely to happen.
3973  *
3974  *  If this happen, for example STO caught by the CPU
3975  *  then UDC happenning before the CPU have restarted
3976  *  the SCRIPTS, the driver may wrongly complete the
3977  *  same command on UDC, since the SCRIPTS didn't restart
3978  *  and the DSA still points to the same command.
3979  *  We avoid this situation by setting the DSA to an
3980  *  invalid value when the CCB is completed and before
3981  *  restarting the SCRIPTS.
3982  *
3983  *  Another issue is that we need some section of our
3984  *  recovery procedures to be somehow uninterruptible but
3985  *  the SCRIPTS processor does not provides such a
3986  *  feature. For this reason, we handle recovery preferently
3987  *  from the C code and check against some SCRIPTS critical
3988  *  sections from the C code.
3989  *
3990  *  Hopefully, the interrupt handling of the driver is now
3991  *  able to resist to weird BUS error conditions, but donnot
3992  *  ask me for any guarantee that it will never fail. :-)
3993  *  Use at your own decision and risk.
3994  */
3995 
3996 static void sym_intr1 (hcb_p np)
3997 {
3998 	u_char	istat, istatc;
3999 	u_char	dstat;
4000 	u_short	sist;
4001 
4002 	/*
4003 	 *  interrupt on the fly ?
4004 	 *
4005 	 *  A `dummy read' is needed to ensure that the
4006 	 *  clear of the INTF flag reaches the device
4007 	 *  before the scanning of the DONE queue.
4008 	 */
4009 	istat = INB (nc_istat);
4010 	if (istat & INTF) {
4011 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
4012 		istat = INB (nc_istat);		/* DUMMY READ */
4013 		if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("F ");
4014 		(void)sym_wakeup_done (np);
4015 	};
4016 
4017 	if (!(istat & (SIP|DIP)))
4018 		return;
4019 
4020 #if 0	/* We should never get this one */
4021 	if (istat & CABRT)
4022 		OUTB (nc_istat, CABRT);
4023 #endif
4024 
4025 	/*
4026 	 *  PAR and MA interrupts may occur at the same time,
4027 	 *  and we need to know of both in order to handle
4028 	 *  this situation properly. We try to unstack SCSI
4029 	 *  interrupts for that reason. BTW, I dislike a LOT
4030 	 *  such a loop inside the interrupt routine.
4031 	 *  Even if DMA interrupt stacking is very unlikely to
4032 	 *  happen, we also try unstacking these ones, since
4033 	 *  this has no performance impact.
4034 	 */
4035 	sist	= 0;
4036 	dstat	= 0;
4037 	istatc	= istat;
4038 	do {
4039 		if (istatc & SIP)
4040 			sist  |= INW (nc_sist);
4041 		if (istatc & DIP)
4042 			dstat |= INB (nc_dstat);
4043 		istatc = INB (nc_istat);
4044 		istat |= istatc;
4045 	} while (istatc & (SIP|DIP));
4046 
4047 	if (DEBUG_FLAGS & DEBUG_TINY)
4048 		kprintf ("<%d|%x:%x|%x:%x>",
4049 			(int)INB(nc_scr0),
4050 			dstat,sist,
4051 			(unsigned)INL(nc_dsp),
4052 			(unsigned)INL(nc_dbc));
4053 	/*
4054 	 *  On paper, a memory barrier may be needed here.
4055 	 *  And since we are paranoid ... :)
4056 	 */
4057 	MEMORY_BARRIER();
4058 
4059 	/*
4060 	 *  First, interrupts we want to service cleanly.
4061 	 *
4062 	 *  Phase mismatch (MA) is the most frequent interrupt
4063 	 *  for chip earlier than the 896 and so we have to service
4064 	 *  it as quickly as possible.
4065 	 *  A SCSI parity error (PAR) may be combined with a phase
4066 	 *  mismatch condition (MA).
4067 	 *  Programmed interrupts (SIR) are used to call the C code
4068 	 *  from SCRIPTS.
4069 	 *  The single step interrupt (SSI) is not used in this
4070 	 *  driver.
4071 	 */
4072 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
4073 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4074 		if	(sist & PAR)	sym_int_par (np, sist);
4075 		else if (sist & MA)	sym_int_ma (np);
4076 		else if (dstat & SIR)	sym_int_sir (np);
4077 		else if (dstat & SSI)	OUTONB_STD ();
4078 		else			goto unknown_int;
4079 		return;
4080 	};
4081 
4082 	/*
4083 	 *  Now, interrupts that donnot happen in normal
4084 	 *  situations and that we may need to recover from.
4085 	 *
4086 	 *  On SCSI RESET (RST), we reset everything.
4087 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
4088 	 *  active CCBs with RESET status, prepare all devices
4089 	 *  for negotiating again and restart the SCRIPTS.
4090 	 *  On STO and UDC, we complete the CCB with the corres-
4091 	 *  ponding status and restart the SCRIPTS.
4092 	 */
4093 	if (sist & RST) {
4094 		xpt_print_path(np->path);
4095 		kprintf("SCSI BUS reset detected.\n");
4096 		sym_init (np, 1);
4097 		return;
4098 	};
4099 
4100 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4101 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4102 
4103 	if (!(sist  & (GEN|HTH|SGE)) &&
4104 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4105 		if	(sist & SBMC)	sym_int_sbmc (np);
4106 		else if (sist & STO)	sym_int_sto (np);
4107 		else if (sist & UDC)	sym_int_udc (np);
4108 		else			goto unknown_int;
4109 		return;
4110 	};
4111 
4112 	/*
4113 	 *  Now, interrupts we are not able to recover cleanly.
4114 	 *
4115 	 *  Log message for hard errors.
4116 	 *  Reset everything.
4117 	 */
4118 
4119 	sym_log_hard_error(np, sist, dstat);
4120 
4121 	if ((sist & (GEN|HTH|SGE)) ||
4122 		(dstat & (MDPE|BF|ABRT|IID))) {
4123 		sym_start_reset(np);
4124 		return;
4125 	};
4126 
4127 unknown_int:
4128 	/*
4129 	 *  We just miss the cause of the interrupt. :(
4130 	 *  Print a message. The timeout will do the real work.
4131 	 */
4132 	kprintf(	"%s: unknown interrupt(s) ignored, "
4133 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4134 		sym_name(np), istat, dstat, sist);
4135 }
4136 
4137 static void sym_intr(void *arg)
4138 {
4139 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("[");
4140 	sym_intr1((hcb_p) arg);
4141 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("]");
4142 	return;
4143 }
4144 
4145 static void sym_poll(struct cam_sim *sim)
4146 {
4147 	crit_enter();
4148 	sym_intr(cam_sim_softc(sim));
4149 	crit_exit();
4150 }
4151 
4152 
4153 /*
4154  *  generic recovery from scsi interrupt
4155  *
4156  *  The doc says that when the chip gets an SCSI interrupt,
4157  *  it tries to stop in an orderly fashion, by completing
4158  *  an instruction fetch that had started or by flushing
4159  *  the DMA fifo for a write to memory that was executing.
4160  *  Such a fashion is not enough to know if the instruction
4161  *  that was just before the current DSP value has been
4162  *  executed or not.
4163  *
4164  *  There are some small SCRIPTS sections that deal with
4165  *  the start queue and the done queue that may break any
4166  *  assomption from the C code if we are interrupted
4167  *  inside, so we reset if this happens. Btw, since these
4168  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4169  *  started SCSI operations, it is very unlikely to happen.
4170  *
4171  *  All the driver data structures are supposed to be
4172  *  allocated from the same 4 GB memory window, so there
4173  *  is a 1 to 1 relationship between DSA and driver data
4174  *  structures. Since we are careful :) to invalidate the
4175  *  DSA when we complete a command or when the SCRIPTS
4176  *  pushes a DSA into a queue, we can trust it when it
4177  *  points to a CCB.
4178  */
4179 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4180 {
4181 	u32	dsp	= INL (nc_dsp);
4182 	u32	dsa	= INL (nc_dsa);
4183 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4184 
4185 	/*
4186 	 *  If we haven't been interrupted inside the SCRIPTS
4187 	 *  critical pathes, we can safely restart the SCRIPTS
4188 	 *  and trust the DSA value if it matches a CCB.
4189 	 */
4190 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4191 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4192 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4193 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4194 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4195 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4196 	    (!(dsp > SCRIPTA_BA (np, done) &&
4197 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4198 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4199 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4200 		/*
4201 		 *  If we have a CCB, let the SCRIPTS call us back for
4202 		 *  the handling of the error with SCRATCHA filled with
4203 		 *  STARTPOS. This way, we will be able to freeze the
4204 		 *  device queue and requeue awaiting IOs.
4205 		 */
4206 		if (cp) {
4207 			cp->host_status = hsts;
4208 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4209 		}
4210 		/*
4211 		 *  Otherwise just restart the SCRIPTS.
4212 		 */
4213 		else {
4214 			OUTL (nc_dsa, 0xffffff);
4215 			OUTL_DSP (SCRIPTA_BA (np, start));
4216 		}
4217 	}
4218 	else
4219 		goto reset_all;
4220 
4221 	return;
4222 
4223 reset_all:
4224 	sym_start_reset(np);
4225 }
4226 
4227 /*
4228  *  chip exception handler for selection timeout
4229  */
4230 void sym_int_sto (hcb_p np)
4231 {
4232 	u32 dsp	= INL (nc_dsp);
4233 
4234 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("T");
4235 
4236 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4237 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4238 	else
4239 		sym_start_reset(np);
4240 }
4241 
4242 /*
4243  *  chip exception handler for unexpected disconnect
4244  */
4245 void sym_int_udc (hcb_p np)
4246 {
4247 	kprintf ("%s: unexpected disconnect\n", sym_name(np));
4248 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4249 }
4250 
4251 /*
4252  *  chip exception handler for SCSI bus mode change
4253  *
4254  *  spi2-r12 11.2.3 says a transceiver mode change must
4255  *  generate a reset event and a device that detects a reset
4256  *  event shall initiate a hard reset. It says also that a
4257  *  device that detects a mode change shall set data transfer
4258  *  mode to eight bit asynchronous, etc...
4259  *  So, just reinitializing all except chip should be enough.
4260  */
4261 static void sym_int_sbmc (hcb_p np)
4262 {
4263 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4264 
4265 	/*
4266 	 *  Notify user.
4267 	 */
4268 	xpt_print_path(np->path);
4269 	kprintf("SCSI BUS mode change from %s to %s.\n",
4270 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4271 
4272 	/*
4273 	 *  Should suspend command processing for a few seconds and
4274 	 *  reinitialize all except the chip.
4275 	 */
4276 	sym_init (np, 2);
4277 }
4278 
4279 /*
4280  *  chip exception handler for SCSI parity error.
4281  *
4282  *  When the chip detects a SCSI parity error and is
4283  *  currently executing a (CH)MOV instruction, it does
4284  *  not interrupt immediately, but tries to finish the
4285  *  transfer of the current scatter entry before
4286  *  interrupting. The following situations may occur:
4287  *
4288  *  - The complete scatter entry has been transferred
4289  *    without the device having changed phase.
4290  *    The chip will then interrupt with the DSP pointing
4291  *    to the instruction that follows the MOV.
4292  *
4293  *  - A phase mismatch occurs before the MOV finished
4294  *    and phase errors are to be handled by the C code.
4295  *    The chip will then interrupt with both PAR and MA
4296  *    conditions set.
4297  *
4298  *  - A phase mismatch occurs before the MOV finished and
4299  *    phase errors are to be handled by SCRIPTS.
4300  *    The chip will load the DSP with the phase mismatch
4301  *    JUMP address and interrupt the host processor.
4302  */
4303 static void sym_int_par (hcb_p np, u_short sist)
4304 {
4305 	u_char	hsts	= INB (HS_PRT);
4306 	u32	dsp	= INL (nc_dsp);
4307 	u32	dbc	= INL (nc_dbc);
4308 	u32	dsa	= INL (nc_dsa);
4309 	u_char	sbcl	= INB (nc_sbcl);
4310 	u_char	cmd	= dbc >> 24;
4311 	int phase	= cmd & 7;
4312 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4313 
4314 	kprintf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4315 		sym_name(np), hsts, dbc, sbcl);
4316 
4317 	/*
4318 	 *  Check that the chip is connected to the SCSI BUS.
4319 	 */
4320 	if (!(INB (nc_scntl1) & ISCON)) {
4321 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4322 		return;
4323 	}
4324 
4325 	/*
4326 	 *  If the nexus is not clearly identified, reset the bus.
4327 	 *  We will try to do better later.
4328 	 */
4329 	if (!cp)
4330 		goto reset_all;
4331 
4332 	/*
4333 	 *  Check instruction was a MOV, direction was INPUT and
4334 	 *  ATN is asserted.
4335 	 */
4336 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4337 		goto reset_all;
4338 
4339 	/*
4340 	 *  Keep track of the parity error.
4341 	 */
4342 	OUTONB (HF_PRT, HF_EXT_ERR);
4343 	cp->xerr_status |= XE_PARITY_ERR;
4344 
4345 	/*
4346 	 *  Prepare the message to send to the device.
4347 	 */
4348 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4349 
4350 	/*
4351 	 *  If the old phase was DATA IN phase, we have to deal with
4352 	 *  the 3 situations described above.
4353 	 *  For other input phases (MSG IN and STATUS), the device
4354 	 *  must resend the whole thing that failed parity checking
4355 	 *  or signal error. So, jumping to dispatcher should be OK.
4356 	 */
4357 	if (phase == 1 || phase == 5) {
4358 		/* Phase mismatch handled by SCRIPTS */
4359 		if (dsp == SCRIPTB_BA (np, pm_handle))
4360 			OUTL_DSP (dsp);
4361 		/* Phase mismatch handled by the C code */
4362 		else if (sist & MA)
4363 			sym_int_ma (np);
4364 		/* No phase mismatch occurred */
4365 		else {
4366 			OUTL (nc_temp, dsp);
4367 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4368 		}
4369 	}
4370 	else
4371 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4372 	return;
4373 
4374 reset_all:
4375 	sym_start_reset(np);
4376 	return;
4377 }
4378 
4379 /*
4380  *  chip exception handler for phase errors.
4381  *
4382  *  We have to construct a new transfer descriptor,
4383  *  to transfer the rest of the current block.
4384  */
4385 static void sym_int_ma (hcb_p np)
4386 {
4387 	u32	dbc;
4388 	u32	rest;
4389 	u32	dsp;
4390 	u32	dsa;
4391 	u32	nxtdsp;
4392 	u32	*vdsp;
4393 	u32	oadr, olen;
4394 	u32	*tblp;
4395         u32	newcmd;
4396 	u_int	delta;
4397 	u_char	cmd;
4398 	u_char	hflags, hflags0;
4399 	struct	sym_pmc *pm;
4400 	ccb_p	cp;
4401 
4402 	dsp	= INL (nc_dsp);
4403 	dbc	= INL (nc_dbc);
4404 	dsa	= INL (nc_dsa);
4405 
4406 	cmd	= dbc >> 24;
4407 	rest	= dbc & 0xffffff;
4408 	delta	= 0;
4409 
4410 	/*
4411 	 *  locate matching cp if any.
4412 	 */
4413 	cp = sym_ccb_from_dsa(np, dsa);
4414 
4415 	/*
4416 	 *  Donnot take into account dma fifo and various buffers in
4417 	 *  INPUT phase since the chip flushes everything before
4418 	 *  raising the MA interrupt for interrupted INPUT phases.
4419 	 *  For DATA IN phase, we will check for the SWIDE later.
4420 	 */
4421 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4422 		u_char ss0, ss2;
4423 
4424 		if (np->features & FE_DFBC)
4425 			delta = INW (nc_dfbc);
4426 		else {
4427 			u32 dfifo;
4428 
4429 			/*
4430 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4431 			 */
4432 			dfifo = INL(nc_dfifo);
4433 
4434 			/*
4435 			 *  Calculate remaining bytes in DMA fifo.
4436 			 *  (CTEST5 = dfifo >> 16)
4437 			 */
4438 			if (dfifo & (DFS << 16))
4439 				delta = ((((dfifo >> 8) & 0x300) |
4440 				          (dfifo & 0xff)) - rest) & 0x3ff;
4441 			else
4442 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4443 		}
4444 
4445 		/*
4446 		 *  The data in the dma fifo has not been transfered to
4447 		 *  the target -> add the amount to the rest
4448 		 *  and clear the data.
4449 		 *  Check the sstat2 register in case of wide transfer.
4450 		 */
4451 		rest += delta;
4452 		ss0  = INB (nc_sstat0);
4453 		if (ss0 & OLF) rest++;
4454 		if (!(np->features & FE_C10))
4455 			if (ss0 & ORF) rest++;
4456 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4457 			ss2 = INB (nc_sstat2);
4458 			if (ss2 & OLF1) rest++;
4459 			if (!(np->features & FE_C10))
4460 				if (ss2 & ORF1) rest++;
4461 		};
4462 
4463 		/*
4464 		 *  Clear fifos.
4465 		 */
4466 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4467 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4468 	}
4469 
4470 	/*
4471 	 *  log the information
4472 	 */
4473 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4474 		kprintf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4475 			(unsigned) rest, (unsigned) delta);
4476 
4477 	/*
4478 	 *  try to find the interrupted script command,
4479 	 *  and the address at which to continue.
4480 	 */
4481 	vdsp	= 0;
4482 	nxtdsp	= 0;
4483 	if	(dsp >  np->scripta_ba &&
4484 		 dsp <= np->scripta_ba + np->scripta_sz) {
4485 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4486 		nxtdsp = dsp;
4487 	}
4488 	else if	(dsp >  np->scriptb_ba &&
4489 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4490 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4491 		nxtdsp = dsp;
4492 	}
4493 
4494 	/*
4495 	 *  log the information
4496 	 */
4497 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4498 		kprintf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4499 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4500 	};
4501 
4502 	if (!vdsp) {
4503 		kprintf ("%s: interrupted SCRIPT address not found.\n",
4504 			sym_name (np));
4505 		goto reset_all;
4506 	}
4507 
4508 	if (!cp) {
4509 		kprintf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4510 			sym_name (np));
4511 		goto reset_all;
4512 	}
4513 
4514 	/*
4515 	 *  get old startaddress and old length.
4516 	 */
4517 	oadr = scr_to_cpu(vdsp[1]);
4518 
4519 	if (cmd & 0x10) {	/* Table indirect */
4520 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4521 		olen = scr_to_cpu(tblp[0]);
4522 		oadr = scr_to_cpu(tblp[1]);
4523 	} else {
4524 		tblp = NULL;
4525 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4526 	};
4527 
4528 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4529 		kprintf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4530 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4531 			tblp,
4532 			(unsigned) olen,
4533 			(unsigned) oadr);
4534 	};
4535 
4536 	/*
4537 	 *  check cmd against assumed interrupted script command.
4538 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4539 	 *  the phase.
4540 	 */
4541 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4542 		PRINT_ADDR(cp);
4543 		kprintf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4544 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4545 
4546 		goto reset_all;
4547 	};
4548 
4549 	/*
4550 	 *  if old phase not dataphase, leave here.
4551 	 */
4552 	if (cmd & 2) {
4553 		PRINT_ADDR(cp);
4554 		kprintf ("phase change %x-%x %d@%08x resid=%d.\n",
4555 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4556 			(unsigned)oadr, (unsigned)rest);
4557 		goto unexpected_phase;
4558 	};
4559 
4560 	/*
4561 	 *  Choose the correct PM save area.
4562 	 *
4563 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4564 	 *  this stuff. The equivalent code is implemented in
4565 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4566 	 *  handle PM from the SCRIPTS processor.
4567 	 */
4568 	hflags0 = INB (HF_PRT);
4569 	hflags = hflags0;
4570 
4571 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4572 		if (hflags & HF_IN_PM0)
4573 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4574 		else if	(hflags & HF_IN_PM1)
4575 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4576 
4577 		if (hflags & HF_DP_SAVED)
4578 			hflags ^= HF_ACT_PM;
4579 	}
4580 
4581 	if (!(hflags & HF_ACT_PM)) {
4582 		pm = &cp->phys.pm0;
4583 		newcmd = SCRIPTA_BA (np, pm0_data);
4584 	}
4585 	else {
4586 		pm = &cp->phys.pm1;
4587 		newcmd = SCRIPTA_BA (np, pm1_data);
4588 	}
4589 
4590 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4591 	if (hflags != hflags0)
4592 		OUTB (HF_PRT, hflags);
4593 
4594 	/*
4595 	 *  fillin the phase mismatch context
4596 	 */
4597 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4598 	pm->sg.size = cpu_to_scr(rest);
4599 	pm->ret     = cpu_to_scr(nxtdsp);
4600 
4601 	/*
4602 	 *  If we have a SWIDE,
4603 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4604 	 *  - compute the SCRIPTS address to restart from,
4605 	 *  - move current data pointer context by one byte.
4606 	 */
4607 	nxtdsp = SCRIPTA_BA (np, dispatch);
4608 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4609 	    (INB (nc_scntl2) & WSR)) {
4610 		u32 tmp;
4611 
4612 		/*
4613 		 *  Set up the table indirect for the MOVE
4614 		 *  of the residual byte and adjust the data
4615 		 *  pointer context.
4616 		 */
4617 		tmp = scr_to_cpu(pm->sg.addr);
4618 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4619 		pm->sg.addr = cpu_to_scr(tmp + 1);
4620 		tmp = scr_to_cpu(pm->sg.size);
4621 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4622 		pm->sg.size = cpu_to_scr(tmp - 1);
4623 
4624 		/*
4625 		 *  If only the residual byte is to be moved,
4626 		 *  no PM context is needed.
4627 		 */
4628 		if ((tmp&0xffffff) == 1)
4629 			newcmd = pm->ret;
4630 
4631 		/*
4632 		 *  Prepare the address of SCRIPTS that will
4633 		 *  move the residual byte to memory.
4634 		 */
4635 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4636 	}
4637 
4638 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4639 		PRINT_ADDR(cp);
4640 		kprintf ("PM %x %x %x / %x %x %x.\n",
4641 			hflags0, hflags, newcmd,
4642 			(unsigned)scr_to_cpu(pm->sg.addr),
4643 			(unsigned)scr_to_cpu(pm->sg.size),
4644 			(unsigned)scr_to_cpu(pm->ret));
4645 	}
4646 
4647 	/*
4648 	 *  Restart the SCRIPTS processor.
4649 	 */
4650 	OUTL (nc_temp, newcmd);
4651 	OUTL_DSP (nxtdsp);
4652 	return;
4653 
4654 	/*
4655 	 *  Unexpected phase changes that occurs when the current phase
4656 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4657 	 *  Such event may only happen when the SCRIPTS is using a
4658 	 *  multibyte SCSI MOVE.
4659 	 *
4660 	 *  Phase change		Some possible cause
4661 	 *
4662 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4663 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4664 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4665 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4666 	 *  			negotiation messages.
4667 	 *
4668 	 *  The code below does not care of the new phase and so
4669 	 *  trusts the target. Why to annoy it ?
4670 	 *  If the interrupted phase is COMMAND phase, we restart at
4671 	 *  dispatcher.
4672 	 *  If a target does not get all the messages after selection,
4673 	 *  the code assumes blindly that the target discards extended
4674 	 *  messages and clears the negotiation status.
4675 	 *  If the target does not want all our response to negotiation,
4676 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4677 	 *  bloat for such a should_not_happen situation).
4678 	 *  In all other situation, we reset the BUS.
4679 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4680 	 */
4681 unexpected_phase:
4682 	dsp -= 8;
4683 	nxtdsp = 0;
4684 
4685 	switch (cmd & 7) {
4686 	case 2:	/* COMMAND phase */
4687 		nxtdsp = SCRIPTA_BA (np, dispatch);
4688 		break;
4689 #if 0
4690 	case 3:	/* STATUS  phase */
4691 		nxtdsp = SCRIPTA_BA (np, dispatch);
4692 		break;
4693 #endif
4694 	case 6:	/* MSG OUT phase */
4695 		/*
4696 		 *  If the device may want to use untagged when we want
4697 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4698 		 *  since we will not be able to handle reselect.
4699 		 *  Otherwise, we just don't care.
4700 		 */
4701 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4702 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4703 				cp->host_status = HS_BUSY;
4704 				np->msgout[0] = M_IDENTIFY | cp->lun;
4705 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4706 			}
4707 			else
4708 				nxtdsp = SCRIPTB_BA (np, ident_break);
4709 		}
4710 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4711 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4712 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4713 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4714 		}
4715 		break;
4716 #if 0
4717 	case 7:	/* MSG IN  phase */
4718 		nxtdsp = SCRIPTA_BA (np, clrack);
4719 		break;
4720 #endif
4721 	}
4722 
4723 	if (nxtdsp) {
4724 		OUTL_DSP (nxtdsp);
4725 		return;
4726 	}
4727 
4728 reset_all:
4729 	sym_start_reset(np);
4730 }
4731 
4732 /*
4733  *  Dequeue from the START queue all CCBs that match
4734  *  a given target/lun/task condition (-1 means all),
4735  *  and move them from the BUSY queue to the COMP queue
4736  *  with CAM_REQUEUE_REQ status condition.
4737  *  This function is used during error handling/recovery.
4738  *  It is called with SCRIPTS not running.
4739  */
4740 static int
4741 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4742 {
4743 	int j;
4744 	ccb_p cp;
4745 
4746 	/*
4747 	 *  Make sure the starting index is within range.
4748 	 */
4749 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4750 
4751 	/*
4752 	 *  Walk until end of START queue and dequeue every job
4753 	 *  that matches the target/lun/task condition.
4754 	 */
4755 	j = i;
4756 	while (i != np->squeueput) {
4757 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4758 		assert(cp);
4759 #ifdef SYM_CONF_IARB_SUPPORT
4760 		/* Forget hints for IARB, they may be no longer relevant */
4761 		cp->host_flags &= ~HF_HINT_IARB;
4762 #endif
4763 		if ((target == -1 || cp->target == target) &&
4764 		    (lun    == -1 || cp->lun    == lun)    &&
4765 		    (task   == -1 || cp->tag    == task)) {
4766 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4767 			sym_remque(&cp->link_ccbq);
4768 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4769 		}
4770 		else {
4771 			if (i != j)
4772 				np->squeue[j] = np->squeue[i];
4773 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4774 		}
4775 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4776 	}
4777 	if (i != j)		/* Copy back the idle task if needed */
4778 		np->squeue[j] = np->squeue[i];
4779 	np->squeueput = j;	/* Update our current start queue pointer */
4780 
4781 	return (i - j) / 2;
4782 }
4783 
4784 /*
4785  *  Complete all CCBs queued to the COMP queue.
4786  *
4787  *  These CCBs are assumed:
4788  *  - Not to be referenced either by devices or
4789  *    SCRIPTS-related queues and datas.
4790  *  - To have to be completed with an error condition
4791  *    or requeued.
4792  *
4793  *  The device queue freeze count is incremented
4794  *  for each CCB that does not prevent this.
4795  *  This function is called when all CCBs involved
4796  *  in error handling/recovery have been reaped.
4797  */
4798 static void
4799 sym_flush_comp_queue(hcb_p np, int cam_status)
4800 {
4801 	SYM_QUEHEAD *qp;
4802 	ccb_p cp;
4803 
4804 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4805 		union ccb *ccb;
4806 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4807 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4808 		/* Leave quiet CCBs waiting for resources */
4809 		if (cp->host_status == HS_WAIT)
4810 			continue;
4811 		ccb = cp->cam_ccb;
4812 		if (cam_status)
4813 			sym_set_cam_status(ccb, cam_status);
4814 		sym_free_ccb(np, cp);
4815 		sym_freeze_cam_ccb(ccb);
4816 		sym_xpt_done(np, ccb);
4817 	}
4818 }
4819 
4820 /*
4821  *  chip handler for bad SCSI status condition
4822  *
4823  *  In case of bad SCSI status, we unqueue all the tasks
4824  *  currently queued to the controller but not yet started
4825  *  and then restart the SCRIPTS processor immediately.
4826  *
4827  *  QUEUE FULL and BUSY conditions are handled the same way.
4828  *  Basically all the not yet started tasks are requeued in
4829  *  device queue and the queue is frozen until a completion.
4830  *
4831  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4832  *  the CCB of the failed command to prepare a REQUEST SENSE
4833  *  SCSI command and queue it to the controller queue.
4834  *
4835  *  SCRATCHA is assumed to have been loaded with STARTPOS
4836  *  before the SCRIPTS called the C code.
4837  */
4838 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4839 {
4840 	tcb_p tp	= &np->target[cp->target];
4841 	u32		startp;
4842 	u_char		s_status = cp->ssss_status;
4843 	u_char		h_flags  = cp->host_flags;
4844 	int		msglen;
4845 	int		nego;
4846 	int		i;
4847 
4848 	/*
4849 	 *  Compute the index of the next job to start from SCRIPTS.
4850 	 */
4851 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4852 
4853 	/*
4854 	 *  The last CCB queued used for IARB hint may be
4855 	 *  no longer relevant. Forget it.
4856 	 */
4857 #ifdef SYM_CONF_IARB_SUPPORT
4858 	if (np->last_cp)
4859 		np->last_cp = 0;
4860 #endif
4861 
4862 	/*
4863 	 *  Now deal with the SCSI status.
4864 	 */
4865 	switch(s_status) {
4866 	case S_BUSY:
4867 	case S_QUEUE_FULL:
4868 		if (sym_verbose >= 2) {
4869 			PRINT_ADDR(cp);
4870 			kprintf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4871 		}
4872 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4873 		sym_complete_error (np, cp);
4874 		break;
4875 	case S_TERMINATED:
4876 	case S_CHECK_COND:
4877 		/*
4878 		 *  If we get an SCSI error when requesting sense, give up.
4879 		 */
4880 		if (h_flags & HF_SENSE) {
4881 			sym_complete_error (np, cp);
4882 			break;
4883 		}
4884 
4885 		/*
4886 		 *  Dequeue all queued CCBs for that device not yet started,
4887 		 *  and restart the SCRIPTS processor immediately.
4888 		 */
4889 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4890 		OUTL_DSP (SCRIPTA_BA (np, start));
4891 
4892  		/*
4893 		 *  Save some info of the actual IO.
4894 		 *  Compute the data residual.
4895 		 */
4896 		cp->sv_scsi_status = cp->ssss_status;
4897 		cp->sv_xerr_status = cp->xerr_status;
4898 		cp->sv_resid = sym_compute_residual(np, cp);
4899 
4900 		/*
4901 		 *  Prepare all needed data structures for
4902 		 *  requesting sense data.
4903 		 */
4904 
4905 		/*
4906 		 *  identify message
4907 		 */
4908 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4909 		msglen = 1;
4910 
4911 		/*
4912 		 *  If we are currently using anything different from
4913 		 *  async. 8 bit data transfers with that target,
4914 		 *  start a negotiation, since the device may want
4915 		 *  to report us a UNIT ATTENTION condition due to
4916 		 *  a cause we currently ignore, and we donnot want
4917 		 *  to be stuck with WIDE and/or SYNC data transfer.
4918 		 *
4919 		 *  cp->nego_status is filled by sym_prepare_nego().
4920 		 */
4921 		cp->nego_status = 0;
4922 		nego = 0;
4923 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4924 			nego = NS_PPR;
4925 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4926 			nego = NS_WIDE;
4927 		else if (tp->tinfo.current.offset != 0)
4928 			nego = NS_SYNC;
4929 		if (nego)
4930 			msglen +=
4931 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4932 		/*
4933 		 *  Message table indirect structure.
4934 		 */
4935 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4936 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4937 
4938 		/*
4939 		 *  sense command
4940 		 */
4941 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4942 		cp->phys.cmd.size	= cpu_to_scr(6);
4943 
4944 		/*
4945 		 *  patch requested size into sense command
4946 		 */
4947 		cp->sensecmd[0]		= 0x03;
4948 		cp->sensecmd[1]		= cp->lun << 5;
4949 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4950 			cp->sensecmd[1]	= 0;
4951 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4952 		cp->data_len		= SYM_SNS_BBUF_LEN;
4953 
4954 		/*
4955 		 *  sense data
4956 		 */
4957 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4958 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4959 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4960 
4961 		/*
4962 		 *  requeue the command.
4963 		 */
4964 		startp = SCRIPTB_BA (np, sdata_in);
4965 
4966 		cp->phys.head.savep	= cpu_to_scr(startp);
4967 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4968 		cp->phys.head.lastp	= cpu_to_scr(startp);
4969 		cp->startp	= cpu_to_scr(startp);
4970 
4971 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4972 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4973 		cp->ssss_status = S_ILLEGAL;
4974 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4975 		cp->xerr_status = 0;
4976 		cp->extra_bytes = 0;
4977 
4978 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4979 
4980 		/*
4981 		 *  Requeue the command.
4982 		 */
4983 		sym_put_start_queue(np, cp);
4984 
4985 		/*
4986 		 *  Give back to upper layer everything we have dequeued.
4987 		 */
4988 		sym_flush_comp_queue(np, 0);
4989 		break;
4990 	}
4991 }
4992 
4993 /*
4994  *  After a device has accepted some management message
4995  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4996  *  a device signals a UNIT ATTENTION condition, some
4997  *  tasks are thrown away by the device. We are required
4998  *  to reflect that on our tasks list since the device
4999  *  will never complete these tasks.
5000  *
5001  *  This function move from the BUSY queue to the COMP
5002  *  queue all disconnected CCBs for a given target that
5003  *  match the following criteria:
5004  *  - lun=-1  means any logical UNIT otherwise a given one.
5005  *  - task=-1 means any task, otherwise a given one.
5006  */
5007 static int
5008 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
5009 {
5010 	SYM_QUEHEAD qtmp, *qp;
5011 	int i = 0;
5012 	ccb_p cp;
5013 
5014 	/*
5015 	 *  Move the entire BUSY queue to our temporary queue.
5016 	 */
5017 	sym_que_init(&qtmp);
5018 	sym_que_splice(&np->busy_ccbq, &qtmp);
5019 	sym_que_init(&np->busy_ccbq);
5020 
5021 	/*
5022 	 *  Put all CCBs that matches our criteria into
5023 	 *  the COMP queue and put back other ones into
5024 	 *  the BUSY queue.
5025 	 */
5026 	while ((qp = sym_remque_head(&qtmp)) != 0) {
5027 		union ccb *ccb;
5028 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5029 		ccb = cp->cam_ccb;
5030 		if (cp->host_status != HS_DISCONNECT ||
5031 		    cp->target != target	     ||
5032 		    (lun  != -1 && cp->lun != lun)   ||
5033 		    (task != -1 &&
5034 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
5035 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5036 			continue;
5037 		}
5038 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5039 
5040 		/* Preserve the software timeout condition */
5041 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
5042 			sym_set_cam_status(ccb, cam_status);
5043 		++i;
5044 #if 0
5045 kprintf("XXXX TASK @%p CLEARED\n", cp);
5046 #endif
5047 	}
5048 	return i;
5049 }
5050 
5051 /*
5052  *  chip handler for TASKS recovery
5053  *
5054  *  We cannot safely abort a command, while the SCRIPTS
5055  *  processor is running, since we just would be in race
5056  *  with it.
5057  *
5058  *  As long as we have tasks to abort, we keep the SEM
5059  *  bit set in the ISTAT. When this bit is set, the
5060  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
5061  *  each time it enters the scheduler.
5062  *
5063  *  If we have to reset a target, clear tasks of a unit,
5064  *  or to perform the abort of a disconnected job, we
5065  *  restart the SCRIPTS for selecting the target. Once
5066  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
5067  *  If it loses arbitration, the SCRIPTS will interrupt again
5068  *  the next time it will enter its scheduler, and so on ...
5069  *
5070  *  On SIR_TARGET_SELECTED, we scan for the more
5071  *  appropriate thing to do:
5072  *
5073  *  - If nothing, we just sent a M_ABORT message to the
5074  *    target to get rid of the useless SCSI bus ownership.
5075  *    According to the specs, no tasks shall be affected.
5076  *  - If the target is to be reset, we send it a M_RESET
5077  *    message.
5078  *  - If a logical UNIT is to be cleared , we send the
5079  *    IDENTIFY(lun) + M_ABORT.
5080  *  - If an untagged task is to be aborted, we send the
5081  *    IDENTIFY(lun) + M_ABORT.
5082  *  - If a tagged task is to be aborted, we send the
5083  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
5084  *
5085  *  Once our 'kiss of death' :) message has been accepted
5086  *  by the target, the SCRIPTS interrupts again
5087  *  (SIR_ABORT_SENT). On this interrupt, we complete
5088  *  all the CCBs that should have been aborted by the
5089  *  target according to our message.
5090  */
5091 static void sym_sir_task_recovery(hcb_p np, int num)
5092 {
5093 	SYM_QUEHEAD *qp;
5094 	ccb_p cp;
5095 	tcb_p tp;
5096 	int target=-1, lun=-1, task;
5097 	int i, k;
5098 
5099 	switch(num) {
5100 	/*
5101 	 *  The SCRIPTS processor stopped before starting
5102 	 *  the next command in order to allow us to perform
5103 	 *  some task recovery.
5104 	 */
5105 	case SIR_SCRIPT_STOPPED:
5106 		/*
5107 		 *  Do we have any target to reset or unit to clear ?
5108 		 */
5109 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5110 			tp = &np->target[i];
5111 			if (tp->to_reset ||
5112 			    (tp->lun0p && tp->lun0p->to_clear)) {
5113 				target = i;
5114 				break;
5115 			}
5116 			if (!tp->lunmp)
5117 				continue;
5118 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5119 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5120 					target	= i;
5121 					break;
5122 				}
5123 			}
5124 			if (target != -1)
5125 				break;
5126 		}
5127 
5128 		/*
5129 		 *  If not, walk the busy queue for any
5130 		 *  disconnected CCB to be aborted.
5131 		 */
5132 		if (target == -1) {
5133 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5134 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5135 				if (cp->host_status != HS_DISCONNECT)
5136 					continue;
5137 				if (cp->to_abort) {
5138 					target = cp->target;
5139 					break;
5140 				}
5141 			}
5142 		}
5143 
5144 		/*
5145 		 *  If some target is to be selected,
5146 		 *  prepare and start the selection.
5147 		 */
5148 		if (target != -1) {
5149 			tp = &np->target[target];
5150 			np->abrt_sel.sel_id	= target;
5151 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5152 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5153 			OUTL(nc_dsa, np->hcb_ba);
5154 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5155 			return;
5156 		}
5157 
5158 		/*
5159 		 *  Now look for a CCB to abort that haven't started yet.
5160 		 *  Btw, the SCRIPTS processor is still stopped, so
5161 		 *  we are not in race.
5162 		 */
5163 		i = 0;
5164 		cp = 0;
5165 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5166 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5167 			if (cp->host_status != HS_BUSY &&
5168 			    cp->host_status != HS_NEGOTIATE)
5169 				continue;
5170 			if (!cp->to_abort)
5171 				continue;
5172 #ifdef SYM_CONF_IARB_SUPPORT
5173 			/*
5174 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5175 			 *    want to cancel the last queued CCB, since the
5176 			 *    SCRIPTS may have anticipated the selection.
5177 			 */
5178 			if (cp == np->last_cp) {
5179 				cp->to_abort = 0;
5180 				continue;
5181 			}
5182 #endif
5183 			i = 1;	/* Means we have found some */
5184 			break;
5185 		}
5186 		if (!i) {
5187 			/*
5188 			 *  We are done, so we donnot need
5189 			 *  to synchronize with the SCRIPTS anylonger.
5190 			 *  Remove the SEM flag from the ISTAT.
5191 			 */
5192 			np->istat_sem = 0;
5193 			OUTB (nc_istat, SIGP);
5194 			break;
5195 		}
5196 		/*
5197 		 *  Compute index of next position in the start
5198 		 *  queue the SCRIPTS intends to start and dequeue
5199 		 *  all CCBs for that device that haven't been started.
5200 		 */
5201 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5202 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5203 
5204 		/*
5205 		 *  Make sure at least our IO to abort has been dequeued.
5206 		 */
5207 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5208 
5209 		/*
5210 		 *  Keep track in cam status of the reason of the abort.
5211 		 */
5212 		if (cp->to_abort == 2)
5213 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5214 		else
5215 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5216 
5217 		/*
5218 		 *  Complete with error everything that we have dequeued.
5219 	 	 */
5220 		sym_flush_comp_queue(np, 0);
5221 		break;
5222 	/*
5223 	 *  The SCRIPTS processor has selected a target
5224 	 *  we may have some manual recovery to perform for.
5225 	 */
5226 	case SIR_TARGET_SELECTED:
5227 		target = (INB (nc_sdid) & 0xf);
5228 		tp = &np->target[target];
5229 
5230 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5231 
5232 		/*
5233 		 *  If the target is to be reset, prepare a
5234 		 *  M_RESET message and clear the to_reset flag
5235 		 *  since we donnot expect this operation to fail.
5236 		 */
5237 		if (tp->to_reset) {
5238 			np->abrt_msg[0] = M_RESET;
5239 			np->abrt_tbl.size = 1;
5240 			tp->to_reset = 0;
5241 			break;
5242 		}
5243 
5244 		/*
5245 		 *  Otherwise, look for some logical unit to be cleared.
5246 		 */
5247 		if (tp->lun0p && tp->lun0p->to_clear)
5248 			lun = 0;
5249 		else if (tp->lunmp) {
5250 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5251 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5252 					lun = k;
5253 					break;
5254 				}
5255 			}
5256 		}
5257 
5258 		/*
5259 		 *  If a logical unit is to be cleared, prepare
5260 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5261 		 */
5262 		if (lun != -1) {
5263 			lcb_p lp = sym_lp(np, tp, lun);
5264 			lp->to_clear = 0; /* We donnot expect to fail here */
5265 			np->abrt_msg[0] = M_IDENTIFY | lun;
5266 			np->abrt_msg[1] = M_ABORT;
5267 			np->abrt_tbl.size = 2;
5268 			break;
5269 		}
5270 
5271 		/*
5272 		 *  Otherwise, look for some disconnected job to
5273 		 *  abort for this target.
5274 		 */
5275 		i = 0;
5276 		cp = 0;
5277 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5278 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5279 			if (cp->host_status != HS_DISCONNECT)
5280 				continue;
5281 			if (cp->target != target)
5282 				continue;
5283 			if (!cp->to_abort)
5284 				continue;
5285 			i = 1;	/* Means we have some */
5286 			break;
5287 		}
5288 
5289 		/*
5290 		 *  If we have none, probably since the device has
5291 		 *  completed the command before we won abitration,
5292 		 *  send a M_ABORT message without IDENTIFY.
5293 		 *  According to the specs, the device must just
5294 		 *  disconnect the BUS and not abort any task.
5295 		 */
5296 		if (!i) {
5297 			np->abrt_msg[0] = M_ABORT;
5298 			np->abrt_tbl.size = 1;
5299 			break;
5300 		}
5301 
5302 		/*
5303 		 *  We have some task to abort.
5304 		 *  Set the IDENTIFY(lun)
5305 		 */
5306 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5307 
5308 		/*
5309 		 *  If we want to abort an untagged command, we
5310 		 *  will send a IDENTIFY + M_ABORT.
5311 		 *  Otherwise (tagged command), we will send
5312 		 *  a IDENTITFY + task attributes + ABORT TAG.
5313 		 */
5314 		if (cp->tag == NO_TAG) {
5315 			np->abrt_msg[1] = M_ABORT;
5316 			np->abrt_tbl.size = 2;
5317 		}
5318 		else {
5319 			np->abrt_msg[1] = cp->scsi_smsg[1];
5320 			np->abrt_msg[2] = cp->scsi_smsg[2];
5321 			np->abrt_msg[3] = M_ABORT_TAG;
5322 			np->abrt_tbl.size = 4;
5323 		}
5324 		/*
5325 		 *  Keep track of software timeout condition, since the
5326 		 *  peripheral driver may not count retries on abort
5327 		 *  conditions not due to timeout.
5328 		 */
5329 		if (cp->to_abort == 2)
5330 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5331 		cp->to_abort = 0; /* We donnot expect to fail here */
5332 		break;
5333 
5334 	/*
5335 	 *  The target has accepted our message and switched
5336 	 *  to BUS FREE phase as we expected.
5337 	 */
5338 	case SIR_ABORT_SENT:
5339 		target = (INB (nc_sdid) & 0xf);
5340 		tp = &np->target[target];
5341 
5342 		/*
5343 		**  If we didn't abort anything, leave here.
5344 		*/
5345 		if (np->abrt_msg[0] == M_ABORT)
5346 			break;
5347 
5348 		/*
5349 		 *  If we sent a M_RESET, then a hardware reset has
5350 		 *  been performed by the target.
5351 		 *  - Reset everything to async 8 bit
5352 		 *  - Tell ourself to negotiate next time :-)
5353 		 *  - Prepare to clear all disconnected CCBs for
5354 		 *    this target from our task list (lun=task=-1)
5355 		 */
5356 		lun = -1;
5357 		task = -1;
5358 		if (np->abrt_msg[0] == M_RESET) {
5359 			tp->head.sval = 0;
5360 			tp->head.wval = np->rv_scntl3;
5361 			tp->head.uval = 0;
5362 			tp->tinfo.current.period = 0;
5363 			tp->tinfo.current.offset = 0;
5364 			tp->tinfo.current.width  = BUS_8_BIT;
5365 			tp->tinfo.current.options = 0;
5366 		}
5367 
5368 		/*
5369 		 *  Otherwise, check for the LUN and TASK(s)
5370 		 *  concerned by the cancelation.
5371 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5372 		 *  or an ABORT message :-)
5373 		 */
5374 		else {
5375 			lun = np->abrt_msg[0] & 0x3f;
5376 			if (np->abrt_msg[1] == M_ABORT_TAG)
5377 				task = np->abrt_msg[2];
5378 		}
5379 
5380 		/*
5381 		 *  Complete all the CCBs the device should have
5382 		 *  aborted due to our 'kiss of death' message.
5383 		 */
5384 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5385 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5386 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5387 		sym_flush_comp_queue(np, 0);
5388 
5389 		/*
5390 		 *  If we sent a BDR, make uper layer aware of that.
5391 		 */
5392 		if (np->abrt_msg[0] == M_RESET)
5393 			xpt_async(AC_SENT_BDR, np->path, NULL);
5394 		break;
5395 	}
5396 
5397 	/*
5398 	 *  Print to the log the message we intend to send.
5399 	 */
5400 	if (num == SIR_TARGET_SELECTED) {
5401 		PRINT_TARGET(np, target);
5402 		sym_printl_hex("control msgout:", np->abrt_msg,
5403 			      np->abrt_tbl.size);
5404 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5405 	}
5406 
5407 	/*
5408 	 *  Let the SCRIPTS processor continue.
5409 	 */
5410 	OUTONB_STD ();
5411 }
5412 
5413 /*
5414  *  Gerard's alchemy:) that deals with with the data
5415  *  pointer for both MDP and the residual calculation.
5416  *
5417  *  I didn't want to bloat the code by more than 200
5418  *  lignes for the handling of both MDP and the residual.
5419  *  This has been achieved by using a data pointer
5420  *  representation consisting in an index in the data
5421  *  array (dp_sg) and a negative offset (dp_ofs) that
5422  *  have the following meaning:
5423  *
5424  *  - dp_sg = SYM_CONF_MAX_SG
5425  *    we are at the end of the data script.
5426  *  - dp_sg < SYM_CONF_MAX_SG
5427  *    dp_sg points to the next entry of the scatter array
5428  *    we want to transfer.
5429  *  - dp_ofs < 0
5430  *    dp_ofs represents the residual of bytes of the
5431  *    previous entry scatter entry we will send first.
5432  *  - dp_ofs = 0
5433  *    no residual to send first.
5434  *
5435  *  The function sym_evaluate_dp() accepts an arbitray
5436  *  offset (basically from the MDP message) and returns
5437  *  the corresponding values of dp_sg and dp_ofs.
5438  */
5439 
5440 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5441 {
5442 	u32	dp_scr;
5443 	int	dp_ofs, dp_sg, dp_sgmin;
5444 	int	tmp;
5445 	struct sym_pmc *pm;
5446 
5447 	/*
5448 	 *  Compute the resulted data pointer in term of a script
5449 	 *  address within some DATA script and a signed byte offset.
5450 	 */
5451 	dp_scr = scr;
5452 	dp_ofs = *ofs;
5453 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5454 		pm = &cp->phys.pm0;
5455 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5456 		pm = &cp->phys.pm1;
5457 	else
5458 		pm = 0;
5459 
5460 	if (pm) {
5461 		dp_scr  = scr_to_cpu(pm->ret);
5462 		dp_ofs -= scr_to_cpu(pm->sg.size);
5463 	}
5464 
5465 	/*
5466 	 *  If we are auto-sensing, then we are done.
5467 	 */
5468 	if (cp->host_flags & HF_SENSE) {
5469 		*ofs = dp_ofs;
5470 		return 0;
5471 	}
5472 
5473 	/*
5474 	 *  Deduce the index of the sg entry.
5475 	 *  Keep track of the index of the first valid entry.
5476 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5477 	 *  end of the data.
5478 	 */
5479 	tmp = scr_to_cpu(cp->phys.head.goalp);
5480 	dp_sg = SYM_CONF_MAX_SG;
5481 	if (dp_scr != tmp)
5482 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5483 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5484 
5485 	/*
5486 	 *  Move to the sg entry the data pointer belongs to.
5487 	 *
5488 	 *  If we are inside the data area, we expect result to be:
5489 	 *
5490 	 *  Either,
5491 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5492 	 *      the data pointer belongs to (or the end of the data)
5493 	 *  Or,
5494 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5495 	 *      the data pointer belongs to + 1.
5496 	 */
5497 	if (dp_ofs < 0) {
5498 		int n;
5499 		while (dp_sg > dp_sgmin) {
5500 			--dp_sg;
5501 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5502 			n = dp_ofs + (tmp & 0xffffff);
5503 			if (n > 0) {
5504 				++dp_sg;
5505 				break;
5506 			}
5507 			dp_ofs = n;
5508 		}
5509 	}
5510 	else if (dp_ofs > 0) {
5511 		while (dp_sg < SYM_CONF_MAX_SG) {
5512 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5513 			dp_ofs -= (tmp & 0xffffff);
5514 			++dp_sg;
5515 			if (dp_ofs <= 0)
5516 				break;
5517 		}
5518 	}
5519 
5520 	/*
5521 	 *  Make sure the data pointer is inside the data area.
5522 	 *  If not, return some error.
5523 	 */
5524 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5525 		goto out_err;
5526 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5527 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5528 		goto out_err;
5529 
5530 	/*
5531 	 *  Save the extreme pointer if needed.
5532 	 */
5533 	if (dp_sg > cp->ext_sg ||
5534             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5535 		cp->ext_sg  = dp_sg;
5536 		cp->ext_ofs = dp_ofs;
5537 	}
5538 
5539 	/*
5540 	 *  Return data.
5541 	 */
5542 	*ofs = dp_ofs;
5543 	return dp_sg;
5544 
5545 out_err:
5546 	return -1;
5547 }
5548 
5549 /*
5550  *  chip handler for MODIFY DATA POINTER MESSAGE
5551  *
5552  *  We also call this function on IGNORE WIDE RESIDUE
5553  *  messages that do not match a SWIDE full condition.
5554  *  Btw, we assume in that situation that such a message
5555  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5556  */
5557 
5558 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5559 {
5560 	int dp_ofs	= ofs;
5561 	u32	dp_scr	= INL (nc_temp);
5562 	u32	dp_ret;
5563 	u32	tmp;
5564 	u_char	hflags;
5565 	int	dp_sg;
5566 	struct	sym_pmc *pm;
5567 
5568 	/*
5569 	 *  Not supported for auto-sense.
5570 	 */
5571 	if (cp->host_flags & HF_SENSE)
5572 		goto out_reject;
5573 
5574 	/*
5575 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5576 	 *  to the resulted data pointer.
5577 	 */
5578 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5579 	if (dp_sg < 0)
5580 		goto out_reject;
5581 
5582 	/*
5583 	 *  And our alchemy:) allows to easily calculate the data
5584 	 *  script address we want to return for the next data phase.
5585 	 */
5586 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5587 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5588 
5589 	/*
5590 	 *  If offset / scatter entry is zero we donnot need
5591 	 *  a context for the new current data pointer.
5592 	 */
5593 	if (dp_ofs == 0) {
5594 		dp_scr = dp_ret;
5595 		goto out_ok;
5596 	}
5597 
5598 	/*
5599 	 *  Get a context for the new current data pointer.
5600 	 */
5601 	hflags = INB (HF_PRT);
5602 
5603 	if (hflags & HF_DP_SAVED)
5604 		hflags ^= HF_ACT_PM;
5605 
5606 	if (!(hflags & HF_ACT_PM)) {
5607 		pm  = &cp->phys.pm0;
5608 		dp_scr = SCRIPTA_BA (np, pm0_data);
5609 	}
5610 	else {
5611 		pm = &cp->phys.pm1;
5612 		dp_scr = SCRIPTA_BA (np, pm1_data);
5613 	}
5614 
5615 	hflags &= ~(HF_DP_SAVED);
5616 
5617 	OUTB (HF_PRT, hflags);
5618 
5619 	/*
5620 	 *  Set up the new current data pointer.
5621 	 *  ofs < 0 there, and for the next data phase, we
5622 	 *  want to transfer part of the data of the sg entry
5623 	 *  corresponding to index dp_sg-1 prior to returning
5624 	 *  to the main data script.
5625 	 */
5626 	pm->ret = cpu_to_scr(dp_ret);
5627 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5628 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5629 	pm->sg.addr = cpu_to_scr(tmp);
5630 	pm->sg.size = cpu_to_scr(-dp_ofs);
5631 
5632 out_ok:
5633 	OUTL (nc_temp, dp_scr);
5634 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5635 	return;
5636 
5637 out_reject:
5638 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5639 }
5640 
5641 
5642 /*
5643  *  chip calculation of the data residual.
5644  *
5645  *  As I used to say, the requirement of data residual
5646  *  in SCSI is broken, useless and cannot be achieved
5647  *  without huge complexity.
5648  *  But most OSes and even the official CAM require it.
5649  *  When stupidity happens to be so widely spread inside
5650  *  a community, it gets hard to convince.
5651  *
5652  *  Anyway, I don't care, since I am not going to use
5653  *  any software that considers this data residual as
5654  *  a relevant information. :)
5655  */
5656 
5657 static int sym_compute_residual(hcb_p np, ccb_p cp)
5658 {
5659 	int dp_sg, dp_sgmin, resid = 0;
5660 	int dp_ofs = 0;
5661 
5662 	/*
5663 	 *  Check for some data lost or just thrown away.
5664 	 *  We are not required to be quite accurate in this
5665 	 *  situation. Btw, if we are odd for output and the
5666 	 *  device claims some more data, it may well happen
5667 	 *  than our residual be zero. :-)
5668 	 */
5669 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5670 		if (cp->xerr_status & XE_EXTRA_DATA)
5671 			resid -= cp->extra_bytes;
5672 		if (cp->xerr_status & XE_SODL_UNRUN)
5673 			++resid;
5674 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5675 			--resid;
5676 	}
5677 
5678 	/*
5679 	 *  If all data has been transferred,
5680 	 *  there is no residual.
5681 	 */
5682 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5683 		return resid;
5684 
5685 	/*
5686 	 *  If no data transfer occurs, or if the data
5687 	 *  pointer is weird, return full residual.
5688 	 */
5689 	if (cp->startp == cp->phys.head.lastp ||
5690 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5691 			    &dp_ofs) < 0) {
5692 		return cp->data_len;
5693 	}
5694 
5695 	/*
5696 	 *  If we were auto-sensing, then we are done.
5697 	 */
5698 	if (cp->host_flags & HF_SENSE) {
5699 		return -dp_ofs;
5700 	}
5701 
5702 	/*
5703 	 *  We are now full comfortable in the computation
5704 	 *  of the data residual (2's complement).
5705 	 */
5706 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5707 	resid = -cp->ext_ofs;
5708 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5709 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5710 		resid += (tmp & 0xffffff);
5711 	}
5712 
5713 	/*
5714 	 *  Hopefully, the result is not too wrong.
5715 	 */
5716 	return resid;
5717 }
5718 
5719 /*
5720  *  Print out the content of a SCSI message.
5721  */
5722 
5723 static int sym_show_msg (u_char * msg)
5724 {
5725 	u_char i;
5726 	kprintf ("%x",*msg);
5727 	if (*msg==M_EXTENDED) {
5728 		for (i=1;i<8;i++) {
5729 			if (i-1>msg[1]) break;
5730 			kprintf ("-%x",msg[i]);
5731 		};
5732 		return (i+1);
5733 	} else if ((*msg & 0xf0) == 0x20) {
5734 		kprintf ("-%x",msg[1]);
5735 		return (2);
5736 	};
5737 	return (1);
5738 }
5739 
5740 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5741 {
5742 	PRINT_ADDR(cp);
5743 	if (label)
5744 		kprintf ("%s: ", label);
5745 
5746 	(void) sym_show_msg (msg);
5747 	kprintf (".\n");
5748 }
5749 
5750 /*
5751  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5752  *
5753  *  When we try to negotiate, we append the negotiation message
5754  *  to the identify and (maybe) simple tag message.
5755  *  The host status field is set to HS_NEGOTIATE to mark this
5756  *  situation.
5757  *
5758  *  If the target doesn't answer this message immediately
5759  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5760  *  will be raised eventually.
5761  *  The handler removes the HS_NEGOTIATE status, and sets the
5762  *  negotiated value to the default (async / nowide).
5763  *
5764  *  If we receive a matching answer immediately, we check it
5765  *  for validity, and set the values.
5766  *
5767  *  If we receive a Reject message immediately, we assume the
5768  *  negotiation has failed, and fall back to standard values.
5769  *
5770  *  If we receive a negotiation message while not in HS_NEGOTIATE
5771  *  state, it's a target initiated negotiation. We prepare a
5772  *  (hopefully) valid answer, set our parameters, and send back
5773  *  this answer to the target.
5774  *
5775  *  If the target doesn't fetch the answer (no message out phase),
5776  *  we assume the negotiation has failed, and fall back to default
5777  *  settings (SIR_NEGO_PROTO interrupt).
5778  *
5779  *  When we set the values, we adjust them in all ccbs belonging
5780  *  to this target, in the controller's register, and in the "phys"
5781  *  field of the controller's struct sym_hcb.
5782  */
5783 
5784 /*
5785  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5786  */
5787 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5788 {
5789 	u_char	chg, ofs, per, fak, div;
5790 	int	req = 1;
5791 
5792 	/*
5793 	 *  Synchronous request message received.
5794 	 */
5795 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5796 		sym_print_msg(cp, "sync msgin", np->msgin);
5797 	};
5798 
5799 	/*
5800 	 * request or answer ?
5801 	 */
5802 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5803 		OUTB (HS_PRT, HS_BUSY);
5804 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5805 			goto reject_it;
5806 		req = 0;
5807 	}
5808 
5809 	/*
5810 	 *  get requested values.
5811 	 */
5812 	chg = 0;
5813 	per = np->msgin[3];
5814 	ofs = np->msgin[4];
5815 
5816 	/*
5817 	 *  check values against our limits.
5818 	 */
5819 	if (ofs) {
5820 		if (ofs > np->maxoffs)
5821 			{chg = 1; ofs = np->maxoffs;}
5822 		if (req) {
5823 			if (ofs > tp->tinfo.user.offset)
5824 				{chg = 1; ofs = tp->tinfo.user.offset;}
5825 		}
5826 	}
5827 
5828 	if (ofs) {
5829 		if (per < np->minsync)
5830 			{chg = 1; per = np->minsync;}
5831 		if (req) {
5832 			if (per < tp->tinfo.user.period)
5833 				{chg = 1; per = tp->tinfo.user.period;}
5834 		}
5835 	}
5836 
5837 	div = fak = 0;
5838 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5839 		goto reject_it;
5840 
5841 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5842 		PRINT_ADDR(cp);
5843 		kprintf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5844 			ofs, per, div, fak, chg);
5845 	}
5846 
5847 	/*
5848 	 *  This was an answer message
5849 	 */
5850 	if (req == 0) {
5851 		if (chg) 	/* Answer wasn't acceptable. */
5852 			goto reject_it;
5853 		sym_setsync (np, cp, ofs, per, div, fak);
5854 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5855 		return;
5856 	}
5857 
5858 	/*
5859 	 *  It was a request. Set value and
5860 	 *  prepare an answer message
5861 	 */
5862 	sym_setsync (np, cp, ofs, per, div, fak);
5863 
5864 	np->msgout[0] = M_EXTENDED;
5865 	np->msgout[1] = 3;
5866 	np->msgout[2] = M_X_SYNC_REQ;
5867 	np->msgout[3] = per;
5868 	np->msgout[4] = ofs;
5869 
5870 	cp->nego_status = NS_SYNC;
5871 
5872 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5873 		sym_print_msg(cp, "sync msgout", np->msgout);
5874 	}
5875 
5876 	np->msgin [0] = M_NOOP;
5877 
5878 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5879 	return;
5880 reject_it:
5881 	sym_setsync (np, cp, 0, 0, 0, 0);
5882 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5883 }
5884 
5885 /*
5886  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5887  */
5888 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5889 {
5890 	u_char	chg, ofs, per, fak, dt, div, wide;
5891 	int	req = 1;
5892 
5893 	/*
5894 	 * Synchronous request message received.
5895 	 */
5896 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5897 		sym_print_msg(cp, "ppr msgin", np->msgin);
5898 	};
5899 
5900 	/*
5901 	 *  get requested values.
5902 	 */
5903 	chg  = 0;
5904 	per  = np->msgin[3];
5905 	ofs  = np->msgin[5];
5906 	wide = np->msgin[6];
5907 	dt   = np->msgin[7] & PPR_OPT_DT;
5908 
5909 	/*
5910 	 * request or answer ?
5911 	 */
5912 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5913 		OUTB (HS_PRT, HS_BUSY);
5914 		if (cp->nego_status && cp->nego_status != NS_PPR)
5915 			goto reject_it;
5916 		req = 0;
5917 	}
5918 
5919 	/*
5920 	 *  check values against our limits.
5921 	 */
5922 	if (wide > np->maxwide)
5923 		{chg = 1; wide = np->maxwide;}
5924 	if (!wide || !(np->features & FE_ULTRA3))
5925 		dt &= ~PPR_OPT_DT;
5926 	if (req) {
5927 		if (wide > tp->tinfo.user.width)
5928 			{chg = 1; wide = tp->tinfo.user.width;}
5929 	}
5930 
5931 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5932 		dt &= ~PPR_OPT_DT;
5933 
5934 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5935 
5936 	if (ofs) {
5937 		if (dt) {
5938 			if (ofs > np->maxoffs_dt)
5939 				{chg = 1; ofs = np->maxoffs_dt;}
5940 		}
5941 		else if (ofs > np->maxoffs)
5942 			{chg = 1; ofs = np->maxoffs;}
5943 		if (req) {
5944 			if (ofs > tp->tinfo.user.offset)
5945 				{chg = 1; ofs = tp->tinfo.user.offset;}
5946 		}
5947 	}
5948 
5949 	if (ofs) {
5950 		if (dt) {
5951 			if (per < np->minsync_dt)
5952 				{chg = 1; per = np->minsync_dt;}
5953 		}
5954 		else if (per < np->minsync)
5955 			{chg = 1; per = np->minsync;}
5956 		if (req) {
5957 			if (per < tp->tinfo.user.period)
5958 				{chg = 1; per = tp->tinfo.user.period;}
5959 		}
5960 	}
5961 
5962 	div = fak = 0;
5963 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5964 		goto reject_it;
5965 
5966 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5967 		PRINT_ADDR(cp);
5968 		kprintf ("ppr: "
5969 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5970 			dt, ofs, per, wide, div, fak, chg);
5971 	}
5972 
5973 	/*
5974 	 *  It was an answer.
5975 	 */
5976 	if (req == 0) {
5977 		if (chg) 	/* Answer wasn't acceptable */
5978 			goto reject_it;
5979 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5980 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5981 		return;
5982 	}
5983 
5984 	/*
5985 	 *  It was a request. Set value and
5986 	 *  prepare an answer message
5987 	 */
5988 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5989 
5990 	np->msgout[0] = M_EXTENDED;
5991 	np->msgout[1] = 6;
5992 	np->msgout[2] = M_X_PPR_REQ;
5993 	np->msgout[3] = per;
5994 	np->msgout[4] = 0;
5995 	np->msgout[5] = ofs;
5996 	np->msgout[6] = wide;
5997 	np->msgout[7] = dt;
5998 
5999 	cp->nego_status = NS_PPR;
6000 
6001 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6002 		sym_print_msg(cp, "ppr msgout", np->msgout);
6003 	}
6004 
6005 	np->msgin [0] = M_NOOP;
6006 
6007 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
6008 	return;
6009 reject_it:
6010 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6011 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6012 	/*
6013 	 *  If it was a device response that should result in
6014 	 *  ST, we may want to try a legacy negotiation later.
6015 	 */
6016 	if (!req && !dt) {
6017 		tp->tinfo.goal.options = 0;
6018 		tp->tinfo.goal.width   = wide;
6019 		tp->tinfo.goal.period  = per;
6020 		tp->tinfo.goal.offset  = ofs;
6021 	}
6022 	return;
6023 }
6024 
6025 /*
6026  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
6027  */
6028 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
6029 {
6030 	u_char	chg, wide;
6031 	int	req = 1;
6032 
6033 	/*
6034 	 *  Wide request message received.
6035 	 */
6036 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6037 		sym_print_msg(cp, "wide msgin", np->msgin);
6038 	};
6039 
6040 	/*
6041 	 * Is it an request from the device?
6042 	 */
6043 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6044 		OUTB (HS_PRT, HS_BUSY);
6045 		if (cp->nego_status && cp->nego_status != NS_WIDE)
6046 			goto reject_it;
6047 		req = 0;
6048 	}
6049 
6050 	/*
6051 	 *  get requested values.
6052 	 */
6053 	chg  = 0;
6054 	wide = np->msgin[3];
6055 
6056 	/*
6057 	 *  check values against driver limits.
6058 	 */
6059 	if (wide > np->maxwide)
6060 		{chg = 1; wide = np->maxwide;}
6061 	if (req) {
6062 		if (wide > tp->tinfo.user.width)
6063 			{chg = 1; wide = tp->tinfo.user.width;}
6064 	}
6065 
6066 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6067 		PRINT_ADDR(cp);
6068 		kprintf ("wdtr: wide=%d chg=%d.\n", wide, chg);
6069 	}
6070 
6071 	/*
6072 	 * This was an answer message
6073 	 */
6074 	if (req == 0) {
6075 		if (chg)	/*  Answer wasn't acceptable. */
6076 			goto reject_it;
6077 		sym_setwide (np, cp, wide);
6078 
6079 		/*
6080 		 * Negotiate for SYNC immediately after WIDE response.
6081 		 * This allows to negotiate for both WIDE and SYNC on
6082 		 * a single SCSI command (Suggested by Justin Gibbs).
6083 		 */
6084 		if (tp->tinfo.goal.offset) {
6085 			np->msgout[0] = M_EXTENDED;
6086 			np->msgout[1] = 3;
6087 			np->msgout[2] = M_X_SYNC_REQ;
6088 			np->msgout[3] = tp->tinfo.goal.period;
6089 			np->msgout[4] = tp->tinfo.goal.offset;
6090 
6091 			if (DEBUG_FLAGS & DEBUG_NEGO) {
6092 				sym_print_msg(cp, "sync msgout", np->msgout);
6093 			}
6094 
6095 			cp->nego_status = NS_SYNC;
6096 			OUTB (HS_PRT, HS_NEGOTIATE);
6097 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
6098 			return;
6099 		}
6100 
6101 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6102 		return;
6103 	};
6104 
6105 	/*
6106 	 *  It was a request, set value and
6107 	 *  prepare an answer message
6108 	 */
6109 	sym_setwide (np, cp, wide);
6110 
6111 	np->msgout[0] = M_EXTENDED;
6112 	np->msgout[1] = 2;
6113 	np->msgout[2] = M_X_WIDE_REQ;
6114 	np->msgout[3] = wide;
6115 
6116 	np->msgin [0] = M_NOOP;
6117 
6118 	cp->nego_status = NS_WIDE;
6119 
6120 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6121 		sym_print_msg(cp, "wide msgout", np->msgout);
6122 	}
6123 
6124 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
6125 	return;
6126 reject_it:
6127 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6128 }
6129 
6130 /*
6131  *  Reset SYNC or WIDE to default settings.
6132  *
6133  *  Called when a negotiation does not succeed either
6134  *  on rejection or on protocol error.
6135  *
6136  *  If it was a PPR that made problems, we may want to
6137  *  try a legacy negotiation later.
6138  */
6139 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6140 {
6141 	/*
6142 	 *  any error in negotiation:
6143 	 *  fall back to default mode.
6144 	 */
6145 	switch (cp->nego_status) {
6146 	case NS_PPR:
6147 #if 0
6148 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6149 #else
6150 		tp->tinfo.goal.options = 0;
6151 		if (tp->tinfo.goal.period < np->minsync)
6152 			tp->tinfo.goal.period = np->minsync;
6153 		if (tp->tinfo.goal.offset > np->maxoffs)
6154 			tp->tinfo.goal.offset = np->maxoffs;
6155 #endif
6156 		break;
6157 	case NS_SYNC:
6158 		sym_setsync (np, cp, 0, 0, 0, 0);
6159 		break;
6160 	case NS_WIDE:
6161 		sym_setwide (np, cp, 0);
6162 		break;
6163 	};
6164 	np->msgin [0] = M_NOOP;
6165 	np->msgout[0] = M_NOOP;
6166 	cp->nego_status = 0;
6167 }
6168 
6169 /*
6170  *  chip handler for MESSAGE REJECT received in response to
6171  *  a WIDE or SYNCHRONOUS negotiation.
6172  */
6173 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6174 {
6175 	sym_nego_default(np, tp, cp);
6176 	OUTB (HS_PRT, HS_BUSY);
6177 }
6178 
6179 /*
6180  *  chip exception handler for programmed interrupts.
6181  */
6182 void sym_int_sir (hcb_p np)
6183 {
6184 	u_char	num	= INB (nc_dsps);
6185 	u32	dsa	= INL (nc_dsa);
6186 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6187 	u_char	target	= INB (nc_sdid) & 0x0f;
6188 	tcb_p	tp	= &np->target[target];
6189 	int	tmp;
6190 
6191 	if (DEBUG_FLAGS & DEBUG_TINY) kprintf ("I#%d", num);
6192 
6193 	switch (num) {
6194 	/*
6195 	 *  Command has been completed with error condition
6196 	 *  or has been auto-sensed.
6197 	 */
6198 	case SIR_COMPLETE_ERROR:
6199 		sym_complete_error(np, cp);
6200 		return;
6201 	/*
6202 	 *  The C code is currently trying to recover from something.
6203 	 *  Typically, user want to abort some command.
6204 	 */
6205 	case SIR_SCRIPT_STOPPED:
6206 	case SIR_TARGET_SELECTED:
6207 	case SIR_ABORT_SENT:
6208 		sym_sir_task_recovery(np, num);
6209 		return;
6210 	/*
6211 	 *  The device didn't go to MSG OUT phase after having
6212 	 *  been selected with ATN. We donnot want to handle
6213 	 *  that.
6214 	 */
6215 	case SIR_SEL_ATN_NO_MSG_OUT:
6216 		kprintf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6217 			sym_name (np), target);
6218 		goto out_stuck;
6219 	/*
6220 	 *  The device didn't switch to MSG IN phase after
6221 	 *  having reseleted the initiator.
6222 	 */
6223 	case SIR_RESEL_NO_MSG_IN:
6224 		kprintf ("%s:%d: No MSG IN phase after reselection.\n",
6225 			sym_name (np), target);
6226 		goto out_stuck;
6227 	/*
6228 	 *  After reselection, the device sent a message that wasn't
6229 	 *  an IDENTIFY.
6230 	 */
6231 	case SIR_RESEL_NO_IDENTIFY:
6232 		kprintf ("%s:%d: No IDENTIFY after reselection.\n",
6233 			sym_name (np), target);
6234 		goto out_stuck;
6235 	/*
6236 	 *  The device reselected a LUN we donnot know about.
6237 	 */
6238 	case SIR_RESEL_BAD_LUN:
6239 		np->msgout[0] = M_RESET;
6240 		goto out;
6241 	/*
6242 	 *  The device reselected for an untagged nexus and we
6243 	 *  haven't any.
6244 	 */
6245 	case SIR_RESEL_BAD_I_T_L:
6246 		np->msgout[0] = M_ABORT;
6247 		goto out;
6248 	/*
6249 	 *  The device reselected for a tagged nexus that we donnot
6250 	 *  have.
6251 	 */
6252 	case SIR_RESEL_BAD_I_T_L_Q:
6253 		np->msgout[0] = M_ABORT_TAG;
6254 		goto out;
6255 	/*
6256 	 *  The SCRIPTS let us know that the device has grabbed
6257 	 *  our message and will abort the job.
6258 	 */
6259 	case SIR_RESEL_ABORTED:
6260 		np->lastmsg = np->msgout[0];
6261 		np->msgout[0] = M_NOOP;
6262 		kprintf ("%s:%d: message %x sent on bad reselection.\n",
6263 			sym_name (np), target, np->lastmsg);
6264 		goto out;
6265 	/*
6266 	 *  The SCRIPTS let us know that a message has been
6267 	 *  successfully sent to the device.
6268 	 */
6269 	case SIR_MSG_OUT_DONE:
6270 		np->lastmsg = np->msgout[0];
6271 		np->msgout[0] = M_NOOP;
6272 		/* Should we really care of that */
6273 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6274 			if (cp) {
6275 				cp->xerr_status &= ~XE_PARITY_ERR;
6276 				if (!cp->xerr_status)
6277 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6278 			}
6279 		}
6280 		goto out;
6281 	/*
6282 	 *  The device didn't send a GOOD SCSI status.
6283 	 *  We may have some work to do prior to allow
6284 	 *  the SCRIPTS processor to continue.
6285 	 */
6286 	case SIR_BAD_SCSI_STATUS:
6287 		if (!cp)
6288 			goto out;
6289 		sym_sir_bad_scsi_status(np, num, cp);
6290 		return;
6291 	/*
6292 	 *  We are asked by the SCRIPTS to prepare a
6293 	 *  REJECT message.
6294 	 */
6295 	case SIR_REJECT_TO_SEND:
6296 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6297 		np->msgout[0] = M_REJECT;
6298 		goto out;
6299 	/*
6300 	 *  We have been ODD at the end of a DATA IN
6301 	 *  transfer and the device didn't send a
6302 	 *  IGNORE WIDE RESIDUE message.
6303 	 *  It is a data overrun condition.
6304 	 */
6305 	case SIR_SWIDE_OVERRUN:
6306 		if (cp) {
6307 			OUTONB (HF_PRT, HF_EXT_ERR);
6308 			cp->xerr_status |= XE_SWIDE_OVRUN;
6309 		}
6310 		goto out;
6311 	/*
6312 	 *  We have been ODD at the end of a DATA OUT
6313 	 *  transfer.
6314 	 *  It is a data underrun condition.
6315 	 */
6316 	case SIR_SODL_UNDERRUN:
6317 		if (cp) {
6318 			OUTONB (HF_PRT, HF_EXT_ERR);
6319 			cp->xerr_status |= XE_SODL_UNRUN;
6320 		}
6321 		goto out;
6322 	/*
6323 	 *  The device wants us to tranfer more data than
6324 	 *  expected or in the wrong direction.
6325 	 *  The number of extra bytes is in scratcha.
6326 	 *  It is a data overrun condition.
6327 	 */
6328 	case SIR_DATA_OVERRUN:
6329 		if (cp) {
6330 			OUTONB (HF_PRT, HF_EXT_ERR);
6331 			cp->xerr_status |= XE_EXTRA_DATA;
6332 			cp->extra_bytes += INL (nc_scratcha);
6333 		}
6334 		goto out;
6335 	/*
6336 	 *  The device switched to an illegal phase (4/5).
6337 	 */
6338 	case SIR_BAD_PHASE:
6339 		if (cp) {
6340 			OUTONB (HF_PRT, HF_EXT_ERR);
6341 			cp->xerr_status |= XE_BAD_PHASE;
6342 		}
6343 		goto out;
6344 	/*
6345 	 *  We received a message.
6346 	 */
6347 	case SIR_MSG_RECEIVED:
6348 		if (!cp)
6349 			goto out_stuck;
6350 		switch (np->msgin [0]) {
6351 		/*
6352 		 *  We received an extended message.
6353 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6354 		 *  and reject all other extended messages.
6355 		 */
6356 		case M_EXTENDED:
6357 			switch (np->msgin [2]) {
6358 			case M_X_MODIFY_DP:
6359 				if (DEBUG_FLAGS & DEBUG_POINTER)
6360 					sym_print_msg(cp,"modify DP",np->msgin);
6361 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6362 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6363 				sym_modify_dp(np, tp, cp, tmp);
6364 				return;
6365 			case M_X_SYNC_REQ:
6366 				sym_sync_nego(np, tp, cp);
6367 				return;
6368 			case M_X_PPR_REQ:
6369 				sym_ppr_nego(np, tp, cp);
6370 				return;
6371 			case M_X_WIDE_REQ:
6372 				sym_wide_nego(np, tp, cp);
6373 				return;
6374 			default:
6375 				goto out_reject;
6376 			}
6377 			break;
6378 		/*
6379 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6380 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6381 		 *  RESIDUE messages that haven't been anticipated by
6382 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6383 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6384 		 */
6385 		case M_IGN_RESIDUE:
6386 			if (DEBUG_FLAGS & DEBUG_POINTER)
6387 				sym_print_msg(cp,"ign wide residue", np->msgin);
6388 			sym_modify_dp(np, tp, cp, -1);
6389 			return;
6390 		case M_REJECT:
6391 			if (INB (HS_PRT) == HS_NEGOTIATE)
6392 				sym_nego_rejected(np, tp, cp);
6393 			else {
6394 				PRINT_ADDR(cp);
6395 				kprintf ("M_REJECT received (%x:%x).\n",
6396 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6397 			}
6398 			goto out_clrack;
6399 			break;
6400 		default:
6401 			goto out_reject;
6402 		}
6403 		break;
6404 	/*
6405 	 *  We received an unknown message.
6406 	 *  Ignore all MSG IN phases and reject it.
6407 	 */
6408 	case SIR_MSG_WEIRD:
6409 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6410 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6411 		return;
6412 	/*
6413 	 *  Negotiation failed.
6414 	 *  Target does not send us the reply.
6415 	 *  Remove the HS_NEGOTIATE status.
6416 	 */
6417 	case SIR_NEGO_FAILED:
6418 		OUTB (HS_PRT, HS_BUSY);
6419 	/*
6420 	 *  Negotiation failed.
6421 	 *  Target does not want answer message.
6422 	 */
6423 	case SIR_NEGO_PROTO:
6424 		sym_nego_default(np, tp, cp);
6425 		goto out;
6426 	};
6427 
6428 out:
6429 	OUTONB_STD ();
6430 	return;
6431 out_reject:
6432 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6433 	return;
6434 out_clrack:
6435 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6436 	return;
6437 out_stuck:
6438 	;
6439 }
6440 
6441 /*
6442  *  Acquire a control block
6443  */
6444 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6445 {
6446 	tcb_p tp = &np->target[tn];
6447 	lcb_p lp = sym_lp(np, tp, ln);
6448 	u_short tag = NO_TAG;
6449 	SYM_QUEHEAD *qp;
6450 	ccb_p cp = (ccb_p) 0;
6451 
6452 	/*
6453 	 *  Look for a free CCB
6454 	 */
6455 	if (sym_que_empty(&np->free_ccbq))
6456 		(void) sym_alloc_ccb(np);
6457 	qp = sym_remque_head(&np->free_ccbq);
6458 	if (!qp)
6459 		goto out;
6460 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6461 
6462 	/*
6463 	 *  If the LCB is not yet available and the LUN
6464 	 *  has been probed ok, try to allocate the LCB.
6465 	 */
6466 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6467 		lp = sym_alloc_lcb(np, tn, ln);
6468 		if (!lp)
6469 			goto out_free;
6470 	}
6471 
6472 	/*
6473 	 *  If the LCB is not available here, then the
6474 	 *  logical unit is not yet discovered. For those
6475 	 *  ones only accept 1 SCSI IO per logical unit,
6476 	 *  since we cannot allow disconnections.
6477 	 */
6478 	if (!lp) {
6479 		if (!sym_is_bit(tp->busy0_map, ln))
6480 			sym_set_bit(tp->busy0_map, ln);
6481 		else
6482 			goto out_free;
6483 	} else {
6484 		/*
6485 		 *  If we have been asked for a tagged command.
6486 		 */
6487 		if (tag_order) {
6488 			/*
6489 			 *  Debugging purpose.
6490 			 */
6491 			assert(lp->busy_itl == 0);
6492 			/*
6493 			 *  Allocate resources for tags if not yet.
6494 			 */
6495 			if (!lp->cb_tags) {
6496 				sym_alloc_lcb_tags(np, tn, ln);
6497 				if (!lp->cb_tags)
6498 					goto out_free;
6499 			}
6500 			/*
6501 			 *  Get a tag for this SCSI IO and set up
6502 			 *  the CCB bus address for reselection,
6503 			 *  and count it for this LUN.
6504 			 *  Toggle reselect path to tagged.
6505 			 */
6506 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6507 				tag = lp->cb_tags[lp->ia_tag];
6508 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6509 					lp->ia_tag = 0;
6510 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6511 				++lp->busy_itlq;
6512 				lp->head.resel_sa =
6513 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6514 			}
6515 			else
6516 				goto out_free;
6517 		}
6518 		/*
6519 		 *  This command will not be tagged.
6520 		 *  If we already have either a tagged or untagged
6521 		 *  one, refuse to overlap this untagged one.
6522 		 */
6523 		else {
6524 			/*
6525 			 *  Debugging purpose.
6526 			 */
6527 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6528 			/*
6529 			 *  Count this nexus for this LUN.
6530 			 *  Set up the CCB bus address for reselection.
6531 			 *  Toggle reselect path to untagged.
6532 			 */
6533 			if (++lp->busy_itl == 1) {
6534 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6535 				lp->head.resel_sa =
6536 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6537 			}
6538 			else
6539 				goto out_free;
6540 		}
6541 	}
6542 	/*
6543 	 *  Put the CCB into the busy queue.
6544 	 */
6545 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6546 
6547 	/*
6548 	 *  Remember all informations needed to free this CCB.
6549 	 */
6550 	cp->to_abort = 0;
6551 	cp->tag	   = tag;
6552 	cp->target = tn;
6553 	cp->lun    = ln;
6554 
6555 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6556 		PRINT_LUN(np, tn, ln);
6557 		kprintf ("ccb @%p using tag %d.\n", cp, tag);
6558 	}
6559 
6560 out:
6561 	return cp;
6562 out_free:
6563 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6564 	return (ccb_p) 0;
6565 }
6566 
6567 /*
6568  *  Release one control block
6569  */
6570 static void sym_free_ccb (hcb_p np, ccb_p cp)
6571 {
6572 	tcb_p tp = &np->target[cp->target];
6573 	lcb_p lp = sym_lp(np, tp, cp->lun);
6574 
6575 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6576 		PRINT_LUN(np, cp->target, cp->lun);
6577 		kprintf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6578 	}
6579 
6580 	/*
6581 	 *  If LCB available,
6582 	 */
6583 	if (lp) {
6584 		/*
6585 		 *  If tagged, release the tag, set the relect path
6586 		 */
6587 		if (cp->tag != NO_TAG) {
6588 			/*
6589 			 *  Free the tag value.
6590 			 */
6591 			lp->cb_tags[lp->if_tag] = cp->tag;
6592 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6593 				lp->if_tag = 0;
6594 			/*
6595 			 *  Make the reselect path invalid,
6596 			 *  and uncount this CCB.
6597 			 */
6598 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6599 			--lp->busy_itlq;
6600 		} else {	/* Untagged */
6601 			/*
6602 			 *  Make the reselect path invalid,
6603 			 *  and uncount this CCB.
6604 			 */
6605 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6606 			--lp->busy_itl;
6607 		}
6608 		/*
6609 		 *  If no JOB active, make the LUN reselect path invalid.
6610 		 */
6611 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6612 			lp->head.resel_sa =
6613 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6614 	}
6615 	/*
6616 	 *  Otherwise, we only accept 1 IO per LUN.
6617 	 *  Clear the bit that keeps track of this IO.
6618 	 */
6619 	else
6620 		sym_clr_bit(tp->busy0_map, cp->lun);
6621 
6622 	/*
6623 	 *  We donnot queue more than 1 ccb per target
6624 	 *  with negotiation at any time. If this ccb was
6625 	 *  used for negotiation, clear this info in the tcb.
6626 	 */
6627 	if (cp == tp->nego_cp)
6628 		tp->nego_cp = 0;
6629 
6630 #ifdef SYM_CONF_IARB_SUPPORT
6631 	/*
6632 	 *  If we just complete the last queued CCB,
6633 	 *  clear this info that is no longer relevant.
6634 	 */
6635 	if (cp == np->last_cp)
6636 		np->last_cp = 0;
6637 #endif
6638 
6639 #ifdef	FreeBSD_Bus_Dma_Abstraction
6640 	/*
6641 	 *  Unmap user data from DMA map if needed.
6642 	 */
6643 	if (cp->dmamapped) {
6644 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6645 		cp->dmamapped = 0;
6646 	}
6647 #endif
6648 
6649 	/*
6650 	 *  Make this CCB available.
6651 	 */
6652 	cp->cam_ccb = 0;
6653 	cp->host_status = HS_IDLE;
6654 	sym_remque(&cp->link_ccbq);
6655 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6656 }
6657 
6658 /*
6659  *  Allocate a CCB from memory and initialize its fixed part.
6660  */
6661 static ccb_p sym_alloc_ccb(hcb_p np)
6662 {
6663 	ccb_p cp = 0;
6664 	int hcode;
6665 
6666 	/*
6667 	 *  Prevent from allocating more CCBs than we can
6668 	 *  queue to the controller.
6669 	 */
6670 	if (np->actccbs >= SYM_CONF_MAX_START)
6671 		return 0;
6672 
6673 	/*
6674 	 *  Allocate memory for this CCB.
6675 	 */
6676 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6677 	if (!cp)
6678 		goto out_free;
6679 
6680 	/*
6681 	 *  Allocate a bounce buffer for sense data.
6682 	 */
6683 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6684 	if (!cp->sns_bbuf)
6685 		goto out_free;
6686 
6687 	/*
6688 	 *  Allocate a map for the DMA of user data.
6689 	 */
6690 #ifdef	FreeBSD_Bus_Dma_Abstraction
6691 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6692 		goto out_free;
6693 #endif
6694 	/*
6695 	 *  Count it.
6696 	 */
6697 	np->actccbs++;
6698 
6699 	/*
6700 	 *  Compute the bus address of this ccb.
6701 	 */
6702 	cp->ccb_ba = vtobus(cp);
6703 
6704 	/*
6705 	 *  Insert this ccb into the hashed list.
6706 	 */
6707 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6708 	cp->link_ccbh = np->ccbh[hcode];
6709 	np->ccbh[hcode] = cp;
6710 
6711 	/*
6712 	 *  Initialyze the start and restart actions.
6713 	 */
6714 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6715 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6716 
6717  	/*
6718 	 *  Initilialyze some other fields.
6719 	 */
6720 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6721 
6722 	/*
6723 	 *  Chain into free ccb queue.
6724 	 */
6725 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6726 
6727 	return cp;
6728 out_free:
6729 	if (cp) {
6730 		if (cp->sns_bbuf)
6731 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6732 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6733 	}
6734 	return 0;
6735 }
6736 
6737 /*
6738  *  Look up a CCB from a DSA value.
6739  */
6740 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6741 {
6742 	int hcode;
6743 	ccb_p cp;
6744 
6745 	hcode = CCB_HASH_CODE(dsa);
6746 	cp = np->ccbh[hcode];
6747 	while (cp) {
6748 		if (cp->ccb_ba == dsa)
6749 			break;
6750 		cp = cp->link_ccbh;
6751 	}
6752 
6753 	return cp;
6754 }
6755 
6756 /*
6757  *  Target control block initialisation.
6758  *  Nothing important to do at the moment.
6759  */
6760 static void sym_init_tcb (hcb_p np, u_char tn)
6761 {
6762 	/*
6763 	 *  Check some alignments required by the chip.
6764 	 */
6765 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6766 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6767 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6768 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6769 }
6770 
6771 /*
6772  *  Lun control block allocation and initialization.
6773  */
6774 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6775 {
6776 	tcb_p tp = &np->target[tn];
6777 	lcb_p lp = sym_lp(np, tp, ln);
6778 
6779 	/*
6780 	 *  Already done, just return.
6781 	 */
6782 	if (lp)
6783 		return lp;
6784 	/*
6785 	 *  Check against some race.
6786 	 */
6787 	assert(!sym_is_bit(tp->busy0_map, ln));
6788 
6789 	/*
6790 	 *  Initialize the target control block if not yet.
6791 	 */
6792 	sym_init_tcb (np, tn);
6793 
6794 	/*
6795 	 *  Allocate the LCB bus address array.
6796 	 *  Compute the bus address of this table.
6797 	 */
6798 	if (ln && !tp->luntbl) {
6799 		int i;
6800 
6801 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6802 		if (!tp->luntbl)
6803 			goto fail;
6804 		for (i = 0 ; i < 64 ; i++)
6805 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6806 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6807 	}
6808 
6809 	/*
6810 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6811 	 */
6812 	if (ln && !tp->lunmp) {
6813 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6814 				   "LUNMP");
6815 		if (!tp->lunmp)
6816 			goto fail;
6817 	}
6818 
6819 	/*
6820 	 *  Allocate the lcb.
6821 	 *  Make it available to the chip.
6822 	 */
6823 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6824 	if (!lp)
6825 		goto fail;
6826 	if (ln) {
6827 		tp->lunmp[ln] = lp;
6828 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6829 	}
6830 	else {
6831 		tp->lun0p = lp;
6832 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6833 	}
6834 
6835 	/*
6836 	 *  Let the itl task point to error handling.
6837 	 */
6838 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6839 
6840 	/*
6841 	 *  Set the reselect pattern to our default. :)
6842 	 */
6843 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6844 
6845 	/*
6846 	 *  Set user capabilities.
6847 	 */
6848 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6849 
6850 fail:
6851 	return lp;
6852 }
6853 
6854 /*
6855  *  Allocate LCB resources for tagged command queuing.
6856  */
6857 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6858 {
6859 	tcb_p tp = &np->target[tn];
6860 	lcb_p lp = sym_lp(np, tp, ln);
6861 	int i;
6862 
6863 	/*
6864 	 *  If LCB not available, try to allocate it.
6865 	 */
6866 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6867 		goto fail;
6868 
6869 	/*
6870 	 *  Allocate the task table and and the tag allocation
6871 	 *  circular buffer. We want both or none.
6872 	 */
6873 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6874 	if (!lp->itlq_tbl)
6875 		goto fail;
6876 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6877 	if (!lp->cb_tags) {
6878 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6879 		lp->itlq_tbl = 0;
6880 		goto fail;
6881 	}
6882 
6883 	/*
6884 	 *  Initialize the task table with invalid entries.
6885 	 */
6886 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6887 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6888 
6889 	/*
6890 	 *  Fill up the tag buffer with tag numbers.
6891 	 */
6892 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6893 		lp->cb_tags[i] = i;
6894 
6895 	/*
6896 	 *  Make the task table available to SCRIPTS,
6897 	 *  And accept tagged commands now.
6898 	 */
6899 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6900 fail:
6901 	;
6902 }
6903 
6904 /*
6905  *  Test the pci bus snoop logic :-(
6906  *
6907  *  Has to be called with interrupts disabled.
6908  */
6909 #ifndef SYM_CONF_IOMAPPED
6910 static int sym_regtest (hcb_p np)
6911 {
6912 	volatile u32 data;
6913 	/*
6914 	 *  chip registers may NOT be cached.
6915 	 *  write 0xffffffff to a read only register area,
6916 	 *  and try to read it back.
6917 	 */
6918 	data = 0xffffffff;
6919 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6920 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6921 #if 1
6922 	if (data == 0xffffffff) {
6923 #else
6924 	if ((data & 0xe2f0fffd) != 0x02000080) {
6925 #endif
6926 		kprintf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6927 			(unsigned) data);
6928 		return (0x10);
6929 	};
6930 	return (0);
6931 }
6932 #endif
6933 
6934 static int sym_snooptest (hcb_p np)
6935 {
6936 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6937 	int	i, err=0;
6938 #ifndef SYM_CONF_IOMAPPED
6939 	err |= sym_regtest (np);
6940 	if (err) return (err);
6941 #endif
6942 restart_test:
6943 	/*
6944 	 *  Enable Master Parity Checking as we intend
6945 	 *  to enable it for normal operations.
6946 	 */
6947 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6948 	/*
6949 	 *  init
6950 	 */
6951 	pc  = SCRIPTB0_BA (np, snooptest);
6952 	host_wr = 1;
6953 	sym_wr  = 2;
6954 	/*
6955 	 *  Set memory and register.
6956 	 */
6957 	np->cache = cpu_to_scr(host_wr);
6958 	OUTL (nc_temp, sym_wr);
6959 	/*
6960 	 *  Start script (exchange values)
6961 	 */
6962 	OUTL (nc_dsa, np->hcb_ba);
6963 	OUTL_DSP (pc);
6964 	/*
6965 	 *  Wait 'til done (with timeout)
6966 	 */
6967 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6968 		if (INB(nc_istat) & (INTF|SIP|DIP))
6969 			break;
6970 	if (i>=SYM_SNOOP_TIMEOUT) {
6971 		kprintf ("CACHE TEST FAILED: timeout.\n");
6972 		return (0x20);
6973 	};
6974 	/*
6975 	 *  Check for fatal DMA errors.
6976 	 */
6977 	dstat = INB (nc_dstat);
6978 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6979 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6980 		kprintf ("%s: PCI DATA PARITY ERROR DETECTED - "
6981 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6982 			sym_name(np));
6983 		np->rv_ctest4 &= ~MPEE;
6984 		goto restart_test;
6985 	}
6986 #endif
6987 	if (dstat & (MDPE|BF|IID)) {
6988 		kprintf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6989 		return (0x80);
6990 	}
6991 	/*
6992 	 *  Save termination position.
6993 	 */
6994 	pc = INL (nc_dsp);
6995 	/*
6996 	 *  Read memory and register.
6997 	 */
6998 	host_rd = scr_to_cpu(np->cache);
6999 	sym_rd  = INL (nc_scratcha);
7000 	sym_bk  = INL (nc_temp);
7001 
7002 	/*
7003 	 *  Check termination position.
7004 	 */
7005 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
7006 		kprintf ("CACHE TEST FAILED: script execution failed.\n");
7007 		kprintf ("start=%08lx, pc=%08lx, end=%08lx\n",
7008 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
7009 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
7010 		return (0x40);
7011 	};
7012 	/*
7013 	 *  Show results.
7014 	 */
7015 	if (host_wr != sym_rd) {
7016 		kprintf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7017 			(int) host_wr, (int) sym_rd);
7018 		err |= 1;
7019 	};
7020 	if (host_rd != sym_wr) {
7021 		kprintf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7022 			(int) sym_wr, (int) host_rd);
7023 		err |= 2;
7024 	};
7025 	if (sym_bk != sym_wr) {
7026 		kprintf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7027 			(int) sym_wr, (int) sym_bk);
7028 		err |= 4;
7029 	};
7030 
7031 	return (err);
7032 }
7033 
7034 /*
7035  *  Determine the chip's clock frequency.
7036  *
7037  *  This is essential for the negotiation of the synchronous
7038  *  transfer rate.
7039  *
7040  *  Note: we have to return the correct value.
7041  *  THERE IS NO SAFE DEFAULT VALUE.
7042  *
7043  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7044  *  53C860 and 53C875 rev. 1 support fast20 transfers but
7045  *  do not have a clock doubler and so are provided with a
7046  *  80 MHz clock. All other fast20 boards incorporate a doubler
7047  *  and so should be delivered with a 40 MHz clock.
7048  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
7049  *  clock and provide a clock quadrupler (160 Mhz).
7050  */
7051 
7052 /*
7053  *  Select SCSI clock frequency
7054  */
7055 static void sym_selectclock(hcb_p np, u_char scntl3)
7056 {
7057 	/*
7058 	 *  If multiplier not present or not selected, leave here.
7059 	 */
7060 	if (np->multiplier <= 1) {
7061 		OUTB(nc_scntl3,	scntl3);
7062 		return;
7063 	}
7064 
7065 	if (sym_verbose >= 2)
7066 		kprintf ("%s: enabling clock multiplier\n", sym_name(np));
7067 
7068 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7069 	/*
7070 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
7071 	 *  Otherwise wait 20 micro-seconds.
7072 	 */
7073 	if (np->features & FE_LCKFRQ) {
7074 		int i = 20;
7075 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7076 			UDELAY (20);
7077 		if (!i)
7078 			kprintf("%s: the chip cannot lock the frequency\n",
7079 				sym_name(np));
7080 	} else
7081 		UDELAY (20);
7082 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7083 	OUTB(nc_scntl3,	scntl3);
7084 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7085 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7086 }
7087 
7088 /*
7089  *  calculate SCSI clock frequency (in KHz)
7090  */
7091 static unsigned getfreq (hcb_p np, int gen)
7092 {
7093 	unsigned int ms = 0;
7094 	unsigned int f;
7095 
7096 	/*
7097 	 * Measure GEN timer delay in order
7098 	 * to calculate SCSI clock frequency
7099 	 *
7100 	 * This code will never execute too
7101 	 * many loop iterations (if DELAY is
7102 	 * reasonably correct). It could get
7103 	 * too low a delay (too high a freq.)
7104 	 * if the CPU is slow executing the
7105 	 * loop for some reason (an NMI, for
7106 	 * example). For this reason we will
7107 	 * if multiple measurements are to be
7108 	 * performed trust the higher delay
7109 	 * (lower frequency returned).
7110 	 */
7111 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7112 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7113 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7114 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7115 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7116 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7117 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7118 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
7119 		UDELAY (1000);	/* count ms */
7120 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7121  	/*
7122  	 * set prescaler to divide by whatever 0 means
7123  	 * 0 ought to choose divide by 2, but appears
7124  	 * to set divide by 3.5 mode in my 53c810 ...
7125  	 */
7126  	OUTB (nc_scntl3, 0);
7127 
7128   	/*
7129  	 * adjust for prescaler, and convert into KHz
7130   	 */
7131 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7132 
7133 	if (sym_verbose >= 2)
7134 		kprintf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7135 			sym_name(np), gen, ms, f);
7136 
7137 	return f;
7138 }
7139 
7140 static unsigned sym_getfreq (hcb_p np)
7141 {
7142 	u_int f1, f2;
7143 	int gen = 11;
7144 
7145 	(void) getfreq (np, gen);	/* throw away first result */
7146 	f1 = getfreq (np, gen);
7147 	f2 = getfreq (np, gen);
7148 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7149 	return f1;
7150 }
7151 
7152 /*
7153  *  Get/probe chip SCSI clock frequency
7154  */
7155 static void sym_getclock (hcb_p np, int mult)
7156 {
7157 	unsigned char scntl3 = np->sv_scntl3;
7158 	unsigned char stest1 = np->sv_stest1;
7159 	unsigned f1;
7160 
7161 	/*
7162 	 *  For the C10 core, assume 40 MHz.
7163 	 */
7164 	if (np->features & FE_C10) {
7165 		np->multiplier = mult;
7166 		np->clock_khz = 40000 * mult;
7167 		return;
7168 	}
7169 
7170 	np->multiplier = 1;
7171 	f1 = 40000;
7172 	/*
7173 	 *  True with 875/895/896/895A with clock multiplier selected
7174 	 */
7175 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7176 		if (sym_verbose >= 2)
7177 			kprintf ("%s: clock multiplier found\n", sym_name(np));
7178 		np->multiplier = mult;
7179 	}
7180 
7181 	/*
7182 	 *  If multiplier not found or scntl3 not 7,5,3,
7183 	 *  reset chip and get frequency from general purpose timer.
7184 	 *  Otherwise trust scntl3 BIOS setting.
7185 	 */
7186 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7187 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7188 		f1 = sym_getfreq (np);
7189 
7190 		if (sym_verbose)
7191 			kprintf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7192 
7193 		if	(f1 <	45000)		f1 =  40000;
7194 		else if (f1 <	55000)		f1 =  50000;
7195 		else				f1 =  80000;
7196 
7197 		if (f1 < 80000 && mult > 1) {
7198 			if (sym_verbose >= 2)
7199 				kprintf ("%s: clock multiplier assumed\n",
7200 					sym_name(np));
7201 			np->multiplier	= mult;
7202 		}
7203 	} else {
7204 		if	((scntl3 & 7) == 3)	f1 =  40000;
7205 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7206 		else 				f1 = 160000;
7207 
7208 		f1 /= np->multiplier;
7209 	}
7210 
7211 	/*
7212 	 *  Compute controller synchronous parameters.
7213 	 */
7214 	f1		*= np->multiplier;
7215 	np->clock_khz	= f1;
7216 }
7217 
7218 /*
7219  *  Get/probe PCI clock frequency
7220  */
7221 static int sym_getpciclock (hcb_p np)
7222 {
7223 	int f = 0;
7224 
7225 	/*
7226 	 *  For the C1010-33, this doesn't work.
7227 	 *  For the C1010-66, this will be tested when I'll have
7228 	 *  such a beast to play with.
7229 	 */
7230 	if (!(np->features & FE_C10)) {
7231 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7232 		f = (int) sym_getfreq (np);
7233 		OUTB (nc_stest1, 0);
7234 	}
7235 	np->pciclk_khz = f;
7236 
7237 	return f;
7238 }
7239 
7240 /*============= DRIVER ACTION/COMPLETION ====================*/
7241 
7242 /*
7243  *  Print something that tells about extended errors.
7244  */
7245 static void sym_print_xerr(ccb_p cp, int x_status)
7246 {
7247 	if (x_status & XE_PARITY_ERR) {
7248 		PRINT_ADDR(cp);
7249 		kprintf ("unrecovered SCSI parity error.\n");
7250 	}
7251 	if (x_status & XE_EXTRA_DATA) {
7252 		PRINT_ADDR(cp);
7253 		kprintf ("extraneous data discarded.\n");
7254 	}
7255 	if (x_status & XE_BAD_PHASE) {
7256 		PRINT_ADDR(cp);
7257 		kprintf ("illegal scsi phase (4/5).\n");
7258 	}
7259 	if (x_status & XE_SODL_UNRUN) {
7260 		PRINT_ADDR(cp);
7261 		kprintf ("ODD transfer in DATA OUT phase.\n");
7262 	}
7263 	if (x_status & XE_SWIDE_OVRUN) {
7264 		PRINT_ADDR(cp);
7265 		kprintf ("ODD transfer in DATA IN phase.\n");
7266 	}
7267 }
7268 
7269 /*
7270  *  Choose the more appropriate CAM status if
7271  *  the IO encountered an extended error.
7272  */
7273 static int sym_xerr_cam_status(int cam_status, int x_status)
7274 {
7275 	if (x_status) {
7276 		if	(x_status & XE_PARITY_ERR)
7277 			cam_status = CAM_UNCOR_PARITY;
7278 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7279 			cam_status = CAM_DATA_RUN_ERR;
7280 		else if	(x_status & XE_BAD_PHASE)
7281 			cam_status = CAM_REQ_CMP_ERR;
7282 		else
7283 			cam_status = CAM_REQ_CMP_ERR;
7284 	}
7285 	return cam_status;
7286 }
7287 
7288 /*
7289  *  Complete execution of a SCSI command with extented
7290  *  error, SCSI status error, or having been auto-sensed.
7291  *
7292  *  The SCRIPTS processor is not running there, so we
7293  *  can safely access IO registers and remove JOBs from
7294  *  the START queue.
7295  *  SCRATCHA is assumed to have been loaded with STARTPOS
7296  *  before the SCRIPTS called the C code.
7297  */
7298 static void sym_complete_error (hcb_p np, ccb_p cp)
7299 {
7300 	struct ccb_scsiio *csio;
7301 	u_int cam_status;
7302 	int i;
7303 
7304 	/*
7305 	 *  Paranoid check. :)
7306 	 */
7307 	if (!cp || !cp->cam_ccb)
7308 		return;
7309 
7310 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7311 		kprintf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7312 			cp->host_status, cp->ssss_status, cp->host_flags,
7313 			cp->target, cp->lun);
7314 		MDELAY(100);
7315 	}
7316 
7317 	/*
7318 	 *  Get CAM command pointer.
7319 	 */
7320 	csio = &cp->cam_ccb->csio;
7321 
7322 	/*
7323 	 *  Check for extended errors.
7324 	 */
7325 	if (cp->xerr_status) {
7326 		if (sym_verbose)
7327 			sym_print_xerr(cp, cp->xerr_status);
7328 		if (cp->host_status == HS_COMPLETE)
7329 			cp->host_status = HS_COMP_ERR;
7330 	}
7331 
7332 	/*
7333 	 *  Calculate the residual.
7334 	 */
7335 	csio->sense_resid = 0;
7336 	csio->resid = sym_compute_residual(np, cp);
7337 
7338 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7339 		csio->resid  = 0;	/* throw them away. :)		   */
7340 		cp->sv_resid = 0;
7341 	}
7342 
7343 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7344 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7345 		csio->sense_resid = csio->resid;	/* Swap residuals */
7346 		csio->resid       = cp->sv_resid;
7347 		cp->sv_resid	  = 0;
7348 		if (sym_verbose && cp->sv_xerr_status)
7349 			sym_print_xerr(cp, cp->sv_xerr_status);
7350 		if (cp->host_status == HS_COMPLETE &&
7351 		    cp->ssss_status == S_GOOD &&
7352 		    cp->xerr_status == 0) {
7353 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7354 							 cp->sv_xerr_status);
7355 			cam_status |= CAM_AUTOSNS_VALID;
7356 			/*
7357 			 *  Bounce back the sense data to user and
7358 			 *  fix the residual.
7359 			 */
7360 			bzero(&csio->sense_data, csio->sense_len);
7361 			bcopy(cp->sns_bbuf, &csio->sense_data,
7362 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7363 			csio->sense_resid += csio->sense_len;
7364 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7365 #if 0
7366 			/*
7367 			 *  If the device reports a UNIT ATTENTION condition
7368 			 *  due to a RESET condition, we should consider all
7369 			 *  disconnect CCBs for this unit as aborted.
7370 			 */
7371 			if (1) {
7372 				u_char *p;
7373 				p  = (u_char *) csio->sense_data;
7374 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7375 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7376 							cp->target,cp->lun, -1);
7377 			}
7378 #endif
7379 		}
7380 		else
7381 			cam_status = CAM_AUTOSENSE_FAIL;
7382 	}
7383 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7384 		csio->scsi_status = cp->ssss_status;
7385 		cam_status = CAM_SCSI_STATUS_ERROR;
7386 	}
7387 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7388 		cam_status = CAM_SEL_TIMEOUT;
7389 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7390 		cam_status = CAM_UNEXP_BUSFREE;
7391 	else {						/* Extended error */
7392 		if (sym_verbose) {
7393 			PRINT_ADDR(cp);
7394 			kprintf ("COMMAND FAILED (%x %x %x).\n",
7395 				cp->host_status, cp->ssss_status,
7396 				cp->xerr_status);
7397 		}
7398 		csio->scsi_status = cp->ssss_status;
7399 		/*
7400 		 *  Set the most appropriate value for CAM status.
7401 		 */
7402 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7403 						 cp->xerr_status);
7404 	}
7405 
7406 	/*
7407 	 *  Dequeue all queued CCBs for that device
7408 	 *  not yet started by SCRIPTS.
7409 	 */
7410 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7411 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7412 
7413 	/*
7414 	 *  Restart the SCRIPTS processor.
7415 	 */
7416 	OUTL_DSP (SCRIPTA_BA (np, start));
7417 
7418 #ifdef	FreeBSD_Bus_Dma_Abstraction
7419 	/*
7420 	 *  Synchronize DMA map if needed.
7421 	 */
7422 	if (cp->dmamapped) {
7423 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7424 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7425 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7426 	}
7427 #endif
7428 	/*
7429 	 *  Add this one to the COMP queue.
7430 	 *  Complete all those commands with either error
7431 	 *  or requeue condition.
7432 	 */
7433 	sym_set_cam_status((union ccb *) csio, cam_status);
7434 	sym_remque(&cp->link_ccbq);
7435 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7436 	sym_flush_comp_queue(np, 0);
7437 }
7438 
7439 /*
7440  *  Complete execution of a successful SCSI command.
7441  *
7442  *  Only successful commands go to the DONE queue,
7443  *  since we need to have the SCRIPTS processor
7444  *  stopped on any error condition.
7445  *  The SCRIPTS processor is running while we are
7446  *  completing successful commands.
7447  */
7448 static void sym_complete_ok (hcb_p np, ccb_p cp)
7449 {
7450 	struct ccb_scsiio *csio;
7451 	tcb_p tp;
7452 	lcb_p lp;
7453 
7454 	/*
7455 	 *  Paranoid check. :)
7456 	 */
7457 	if (!cp || !cp->cam_ccb)
7458 		return;
7459 	assert (cp->host_status == HS_COMPLETE);
7460 
7461 	/*
7462 	 *  Get command, target and lun pointers.
7463 	 */
7464 	csio = &cp->cam_ccb->csio;
7465 	tp = &np->target[cp->target];
7466 	lp = sym_lp(np, tp, cp->lun);
7467 
7468 	/*
7469 	 *  Assume device discovered on first success.
7470 	 */
7471 	if (!lp)
7472 		sym_set_bit(tp->lun_map, cp->lun);
7473 
7474 	/*
7475 	 *  If all data have been transferred, given than no
7476 	 *  extended error did occur, there is no residual.
7477 	 */
7478 	csio->resid = 0;
7479 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7480 		csio->resid = sym_compute_residual(np, cp);
7481 
7482 	/*
7483 	 *  Wrong transfer residuals may be worse than just always
7484 	 *  returning zero. User can disable this feature from
7485 	 *  sym_conf.h. Residual support is enabled by default.
7486 	 */
7487 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7488 		csio->resid  = 0;
7489 
7490 #ifdef	FreeBSD_Bus_Dma_Abstraction
7491 	/*
7492 	 *  Synchronize DMA map if needed.
7493 	 */
7494 	if (cp->dmamapped) {
7495 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7496 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7497 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7498 	}
7499 #endif
7500 	/*
7501 	 *  Set status and complete the command.
7502 	 */
7503 	csio->scsi_status = cp->ssss_status;
7504 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7505 	sym_free_ccb (np, cp);
7506 	sym_xpt_done(np, (union ccb *) csio);
7507 }
7508 
7509 /*
7510  *  Our timeout handler.
7511  */
7512 static void sym_timeout1(void *arg)
7513 {
7514 	union ccb *ccb = (union ccb *) arg;
7515 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7516 
7517 	/*
7518 	 *  Check that the CAM CCB is still queued.
7519 	 */
7520 	if (!np)
7521 		return;
7522 
7523 	switch(ccb->ccb_h.func_code) {
7524 	case XPT_SCSI_IO:
7525 		(void) sym_abort_scsiio(np, ccb, 1);
7526 		break;
7527 	default:
7528 		break;
7529 	}
7530 }
7531 
7532 static void sym_timeout(void *arg)
7533 {
7534 	crit_enter();
7535 	sym_timeout1(arg);
7536 	crit_exit();
7537 }
7538 
7539 /*
7540  *  Abort an SCSI IO.
7541  */
7542 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7543 {
7544 	ccb_p cp;
7545 	SYM_QUEHEAD *qp;
7546 
7547 	/*
7548 	 *  Look up our CCB control block.
7549 	 */
7550 	cp = 0;
7551 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7552 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7553 		if (cp2->cam_ccb == ccb) {
7554 			cp = cp2;
7555 			break;
7556 		}
7557 	}
7558 	if (!cp || cp->host_status == HS_WAIT)
7559 		return -1;
7560 
7561 	/*
7562 	 *  If a previous abort didn't succeed in time,
7563 	 *  perform a BUS reset.
7564 	 */
7565 	if (cp->to_abort) {
7566 		sym_reset_scsi_bus(np, 1);
7567 		return 0;
7568 	}
7569 
7570 	/*
7571 	 *  Mark the CCB for abort and allow time for.
7572 	 */
7573 	cp->to_abort = timed_out ? 2 : 1;
7574 	callout_reset(&ccb->ccb_h.timeout_ch, 10 * hz, sym_timeout, ccb);
7575 
7576 	/*
7577 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7578 	 */
7579 	np->istat_sem = SEM;
7580 	OUTB (nc_istat, SIGP|SEM);
7581 	return 0;
7582 }
7583 
7584 /*
7585  *  Reset a SCSI device (all LUNs of a target).
7586  */
7587 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7588 {
7589 	tcb_p tp;
7590 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7591 
7592 	if (ccb_h->target_id   == np->myaddr ||
7593 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7594 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7595 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7596 		return;
7597 	}
7598 
7599 	tp = &np->target[ccb_h->target_id];
7600 
7601 	tp->to_reset = 1;
7602 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7603 
7604 	np->istat_sem = SEM;
7605 	OUTB (nc_istat, SIGP|SEM);
7606 	return;
7607 }
7608 
7609 /*
7610  *  SIM action entry point.
7611  */
7612 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7613 {
7614 	crit_enter();
7615 	sym_action1(sim, ccb);
7616 	crit_exit();
7617 }
7618 
7619 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7620 {
7621 	hcb_p	np;
7622 	tcb_p	tp;
7623 	lcb_p	lp;
7624 	ccb_p	cp;
7625 	int 	tmp;
7626 	u_char	idmsg, *msgptr;
7627 	u_int   msglen;
7628 	struct	ccb_scsiio *csio;
7629 	struct	ccb_hdr  *ccb_h;
7630 
7631 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7632 
7633 	/*
7634 	 *  Retrieve our controller data structure.
7635 	 */
7636 	np = (hcb_p) cam_sim_softc(sim);
7637 
7638 	/*
7639 	 *  The common case is SCSI IO.
7640 	 *  We deal with other ones elsewhere.
7641 	 */
7642 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7643 		sym_action2(sim, ccb);
7644 		return;
7645 	}
7646 	csio  = &ccb->csio;
7647 	ccb_h = &csio->ccb_h;
7648 
7649 	/*
7650 	 *  Work around races.
7651 	 */
7652 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7653 		xpt_done(ccb);
7654 		return;
7655 	}
7656 
7657 	/*
7658 	 *  Minimal checkings, so that we will not
7659 	 *  go outside our tables.
7660 	 */
7661 	if (ccb_h->target_id   == np->myaddr ||
7662 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7663 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7664 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7665 		return;
7666         }
7667 
7668 	/*
7669 	 *  Retreive the target and lun descriptors.
7670 	 */
7671 	tp = &np->target[ccb_h->target_id];
7672 	lp = sym_lp(np, tp, ccb_h->target_lun);
7673 
7674 	/*
7675 	 *  Complete the 1st INQUIRY command with error
7676 	 *  condition if the device is flagged NOSCAN
7677 	 *  at BOOT in the NVRAM. This may speed up
7678 	 *  the boot and maintain coherency with BIOS
7679 	 *  device numbering. Clearing the flag allows
7680 	 *  user to rescan skipped devices later.
7681 	 *  We also return error for devices not flagged
7682 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7683 	 *  devices behave badly when asked for some non
7684 	 *  zero LUN. Btw, this is an absolute hack.:-)
7685 	 */
7686 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7687 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7688 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7689 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7690 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7691 		     ccb_h->target_lun != 0)) {
7692 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7693 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7694 			return;
7695 		}
7696 	}
7697 
7698 	/*
7699 	 *  Get a control block for this IO.
7700 	 */
7701 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7702 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7703 	if (!cp) {
7704 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7705 		return;
7706 	}
7707 
7708 	/*
7709 	 *  Keep track of the IO in our CCB.
7710 	 */
7711 	cp->cam_ccb = ccb;
7712 
7713 	/*
7714 	 *  Build the IDENTIFY message.
7715 	 */
7716 	idmsg = M_IDENTIFY | cp->lun;
7717 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7718 		idmsg |= 0x40;
7719 
7720 	msgptr = cp->scsi_smsg;
7721 	msglen = 0;
7722 	msgptr[msglen++] = idmsg;
7723 
7724 	/*
7725 	 *  Build the tag message if present.
7726 	 */
7727 	if (cp->tag != NO_TAG) {
7728 		u_char order = csio->tag_action;
7729 
7730 		switch(order) {
7731 		case M_ORDERED_TAG:
7732 			break;
7733 		case M_HEAD_TAG:
7734 			break;
7735 		default:
7736 			order = M_SIMPLE_TAG;
7737 		}
7738 		msgptr[msglen++] = order;
7739 
7740 		/*
7741 		 *  For less than 128 tags, actual tags are numbered
7742 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7743 		 *  with devices that have problems with #TAG 0 or too
7744 		 *  great #TAG numbers. For more tags (up to 256),
7745 		 *  we use directly our tag number.
7746 		 */
7747 #if SYM_CONF_MAX_TASK > (512/4)
7748 		msgptr[msglen++] = cp->tag;
7749 #else
7750 		msgptr[msglen++] = (cp->tag << 1) + 1;
7751 #endif
7752 	}
7753 
7754 	/*
7755 	 *  Build a negotiation message if needed.
7756 	 *  (nego_status is filled by sym_prepare_nego())
7757 	 */
7758 	cp->nego_status = 0;
7759 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7760 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7761 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7762 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7763 		if (!tp->nego_cp && lp)
7764 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7765 	}
7766 
7767 	/*
7768 	 *  Fill in our ccb
7769 	 */
7770 
7771 	/*
7772 	 *  Startqueue
7773 	 */
7774 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7775 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7776 
7777 	/*
7778 	 *  select
7779 	 */
7780 	cp->phys.select.sel_id		= cp->target;
7781 	cp->phys.select.sel_scntl3	= tp->head.wval;
7782 	cp->phys.select.sel_sxfer	= tp->head.sval;
7783 	cp->phys.select.sel_scntl4	= tp->head.uval;
7784 
7785 	/*
7786 	 *  message
7787 	 */
7788 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7789 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7790 
7791 	/*
7792 	 *  command
7793 	 */
7794 	if (sym_setup_cdb(np, csio, cp) < 0) {
7795 		sym_free_ccb(np, cp);
7796 		sym_xpt_done(np, ccb);
7797 		return;
7798 	}
7799 
7800 	/*
7801 	 *  status
7802 	 */
7803 #if	0	/* Provision */
7804 	cp->actualquirks	= tp->quirks;
7805 #endif
7806 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7807 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7808 	cp->ssss_status		= S_ILLEGAL;
7809 	cp->xerr_status		= 0;
7810 	cp->host_flags		= 0;
7811 	cp->extra_bytes		= 0;
7812 
7813 	/*
7814 	 *  extreme data pointer.
7815 	 *  shall be positive, so -1 is lower than lowest.:)
7816 	 */
7817 	cp->ext_sg  = -1;
7818 	cp->ext_ofs = 0;
7819 
7820 	/*
7821 	 *  Build the data descriptor block
7822 	 *  and start the IO.
7823 	 */
7824 	sym_setup_data_and_start(np, csio, cp);
7825 }
7826 
7827 /*
7828  *  Setup buffers and pointers that address the CDB.
7829  *  I bet, physical CDBs will never be used on the planet,
7830  *  since they can be bounced without significant overhead.
7831  */
7832 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7833 {
7834 	struct ccb_hdr *ccb_h;
7835 	u32	cmd_ba;
7836 	int	cmd_len;
7837 
7838 	ccb_h = &csio->ccb_h;
7839 
7840 	/*
7841 	 *  CDB is 16 bytes max.
7842 	 */
7843 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7844 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7845 		return -1;
7846 	}
7847 	cmd_len = csio->cdb_len;
7848 
7849 	if (ccb_h->flags & CAM_CDB_POINTER) {
7850 		/* CDB is a pointer */
7851 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7852 			/* CDB pointer is virtual */
7853 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7854 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7855 		} else {
7856 			/* CDB pointer is physical */
7857 #if 0
7858 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7859 #else
7860 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7861 			return -1;
7862 #endif
7863 		}
7864 	} else {
7865 		/* CDB is in the CAM ccb (buffer) */
7866 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7867 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7868 	}
7869 
7870 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7871 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7872 
7873 	return 0;
7874 }
7875 
7876 /*
7877  *  Set up data pointers used by SCRIPTS.
7878  */
7879 static void __inline
7880 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7881 {
7882 	u32 lastp, goalp;
7883 
7884 	/*
7885 	 *  No segments means no data.
7886 	 */
7887 	if (!cp->segments)
7888 		dir = CAM_DIR_NONE;
7889 
7890 	/*
7891 	 *  Set the data pointer.
7892 	 */
7893 	switch(dir) {
7894 	case CAM_DIR_OUT:
7895 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7896 		lastp = goalp - 8 - (cp->segments * (2*4));
7897 		break;
7898 	case CAM_DIR_IN:
7899 		cp->host_flags |= HF_DATA_IN;
7900 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7901 		lastp = goalp - 8 - (cp->segments * (2*4));
7902 		break;
7903 	case CAM_DIR_NONE:
7904 	default:
7905 		lastp = goalp = SCRIPTB_BA (np, no_data);
7906 		break;
7907 	}
7908 
7909 	cp->phys.head.lastp = cpu_to_scr(lastp);
7910 	cp->phys.head.goalp = cpu_to_scr(goalp);
7911 	cp->phys.head.savep = cpu_to_scr(lastp);
7912 	cp->startp	    = cp->phys.head.savep;
7913 }
7914 
7915 
7916 #ifdef	FreeBSD_Bus_Dma_Abstraction
7917 /*
7918  *  Call back routine for the DMA map service.
7919  *  If bounce buffers are used (why ?), we may sleep and then
7920  *  be called there in another context.
7921  */
7922 static void
7923 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7924 {
7925 	ccb_p	cp;
7926 	hcb_p	np;
7927 	union	ccb *ccb;
7928 
7929 	crit_enter();
7930 
7931 	cp  = (ccb_p) arg;
7932 	ccb = cp->cam_ccb;
7933 	np  = (hcb_p) cp->arg;
7934 
7935 	/*
7936 	 *  Deal with weird races.
7937 	 */
7938 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7939 		goto out_abort;
7940 
7941 	/*
7942 	 *  Deal with weird errors.
7943 	 */
7944 	if (error) {
7945 		cp->dmamapped = 0;
7946 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7947 		goto out_abort;
7948 	}
7949 
7950 	/*
7951 	 *  Build the data descriptor for the chip.
7952 	 */
7953 	if (nsegs) {
7954 		int retv;
7955 		/* 896 rev 1 requires to be careful about boundaries */
7956 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7957 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7958 		else
7959 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7960 		if (retv < 0) {
7961 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7962 			goto out_abort;
7963 		}
7964 	}
7965 
7966 	/*
7967 	 *  Synchronize the DMA map only if we have
7968 	 *  actually mapped the data.
7969 	 */
7970 	if (cp->dmamapped) {
7971 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7972 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7973 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7974 	}
7975 
7976 	/*
7977 	 *  Set host status to busy state.
7978 	 *  May have been set back to HS_WAIT to avoid a race.
7979 	 */
7980 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7981 
7982 	/*
7983 	 *  Set data pointers.
7984 	 */
7985 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7986 
7987 	/*
7988 	 *  Enqueue this IO in our pending queue.
7989 	 */
7990 	sym_enqueue_cam_ccb(np, ccb);
7991 
7992 	/*
7993 	 *  When `#ifed 1', the code below makes the driver
7994 	 *  panic on the first attempt to write to a SCSI device.
7995 	 *  It is the first test we want to do after a driver
7996 	 *  change that does not seem obviously safe. :)
7997 	 */
7998 #if 0
7999 	switch (cp->cdb_buf[0]) {
8000 	case 0x0A: case 0x2A: case 0xAA:
8001 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
8002 		MDELAY(10000);
8003 		break;
8004 	default:
8005 		break;
8006 	}
8007 #endif
8008 	/*
8009 	 *  Activate this job.
8010 	 */
8011 	sym_put_start_queue(np, cp);
8012 out:
8013 	crit_exit();
8014 	return;
8015 out_abort:
8016 	sym_free_ccb(np, cp);
8017 	sym_xpt_done(np, ccb);
8018 	goto out;
8019 }
8020 
8021 /*
8022  *  How complex it gets to deal with the data in CAM.
8023  *  The Bus Dma stuff makes things still more complex.
8024  */
8025 static void
8026 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8027 {
8028 	struct ccb_hdr *ccb_h;
8029 	int dir, retv;
8030 
8031 	ccb_h = &csio->ccb_h;
8032 
8033 	/*
8034 	 *  Now deal with the data.
8035 	 */
8036 	cp->data_len = csio->dxfer_len;
8037 	cp->arg      = np;
8038 
8039 	/*
8040 	 *  No direction means no data.
8041 	 */
8042 	dir = (ccb_h->flags & CAM_DIR_MASK);
8043 	if (dir == CAM_DIR_NONE) {
8044 		sym_execute_ccb(cp, NULL, 0, 0);
8045 		return;
8046 	}
8047 
8048 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8049 		/* Single buffer */
8050 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8051 			/* Buffer is virtual */
8052 			cp->dmamapped = (dir == CAM_DIR_IN) ?
8053 						SYM_DMA_READ : SYM_DMA_WRITE;
8054 			crit_enter();
8055 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
8056 					       csio->data_ptr, csio->dxfer_len,
8057 					       sym_execute_ccb, cp, 0);
8058 			if (retv == EINPROGRESS) {
8059 				cp->host_status	= HS_WAIT;
8060 				xpt_freeze_simq(np->sim, 1);
8061 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
8062 			}
8063 			crit_exit();
8064 		} else {
8065 			/* Buffer is physical */
8066 			struct bus_dma_segment seg;
8067 
8068 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
8069 			sym_execute_ccb(cp, &seg, 1, 0);
8070 		}
8071 	} else {
8072 		/* Scatter/gather list */
8073 		struct bus_dma_segment *segs;
8074 
8075 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8076 			/* The SG list pointer is physical */
8077 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8078 			goto out_abort;
8079 		}
8080 
8081 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8082 			/* SG buffer pointers are virtual */
8083 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8084 			goto out_abort;
8085 		}
8086 
8087 		/* SG buffer pointers are physical */
8088 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8089 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
8090 	}
8091 	return;
8092 out_abort:
8093 	sym_free_ccb(np, cp);
8094 	sym_xpt_done(np, (union ccb *) csio);
8095 }
8096 
8097 /*
8098  *  Move the scatter list to our data block.
8099  */
8100 static int
8101 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
8102 			     bus_dma_segment_t *psegs, int nsegs)
8103 {
8104 	struct sym_tblmove *data;
8105 	bus_dma_segment_t *psegs2;
8106 
8107 	if (nsegs > SYM_CONF_MAX_SG)
8108 		return -1;
8109 
8110 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
8111 	psegs2 = &psegs[nsegs-1];
8112 	cp->segments = nsegs;
8113 
8114 	while (1) {
8115 		data->addr = cpu_to_scr(psegs2->ds_addr);
8116 		data->size = cpu_to_scr(psegs2->ds_len);
8117 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8118 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8119 				sym_name(np), (long) psegs2->ds_addr,
8120 				(long) psegs2->ds_len);
8121 		}
8122 		if (psegs2 != psegs) {
8123 			--data;
8124 			--psegs2;
8125 			continue;
8126 		}
8127 		break;
8128 	}
8129 	return 0;
8130 }
8131 
8132 #else	/* FreeBSD_Bus_Dma_Abstraction */
8133 
8134 /*
8135  *  How complex it gets to deal with the data in CAM.
8136  *  Variant without the Bus Dma Abstraction option.
8137  */
8138 static void
8139 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8140 {
8141 	struct ccb_hdr *ccb_h;
8142 	int dir, retv;
8143 
8144 	ccb_h = &csio->ccb_h;
8145 
8146 	/*
8147 	 *  Now deal with the data.
8148 	 */
8149 	cp->data_len = 0;
8150 	cp->segments = 0;
8151 
8152 	/*
8153 	 *  No direction means no data.
8154 	 */
8155 	dir = (ccb_h->flags & CAM_DIR_MASK);
8156 	if (dir == CAM_DIR_NONE)
8157 		goto end_scatter;
8158 
8159 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8160 		/* Single buffer */
8161 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8162 			/* Buffer is virtual */
8163 			retv = sym_scatter_virtual(np, cp,
8164 						(vm_offset_t) csio->data_ptr,
8165 						(vm_size_t) csio->dxfer_len);
8166 		} else {
8167 			/* Buffer is physical */
8168 			retv = sym_scatter_physical(np, cp,
8169 						(vm_offset_t) csio->data_ptr,
8170 						(vm_size_t) csio->dxfer_len);
8171 		}
8172 	} else {
8173 		/* Scatter/gather list */
8174 		int nsegs;
8175 		struct bus_dma_segment *segs;
8176 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8177 		nsegs = csio->sglist_cnt;
8178 
8179 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8180 			/* The SG list pointer is physical */
8181 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8182 			goto out_abort;
8183 		}
8184 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8185 			/* SG buffer pointers are virtual */
8186 			retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
8187 		} else {
8188 			/* SG buffer pointers are physical */
8189 			retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
8190 		}
8191 	}
8192 	if (retv < 0) {
8193 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8194 		goto out_abort;
8195 	}
8196 
8197 end_scatter:
8198 	/*
8199 	 *  Set data pointers.
8200 	 */
8201 	sym_setup_data_pointers(np, cp, dir);
8202 
8203 	/*
8204 	 *  Enqueue this IO in our pending queue.
8205 	 */
8206 	sym_enqueue_cam_ccb(np, (union ccb *) csio);
8207 
8208 	/*
8209 	 *  Activate this job.
8210 	 */
8211 	sym_put_start_queue(np, cp);
8212 
8213 	/*
8214 	 *  Command is successfully queued.
8215 	 */
8216 	return;
8217 out_abort:
8218 	sym_free_ccb(np, cp);
8219 	sym_xpt_done(np, (union ccb *) csio);
8220 }
8221 
8222 /*
8223  *  Scatter a virtual buffer into bus addressable chunks.
8224  */
8225 static int
8226 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8227 {
8228 	u_long	pe, pn;
8229 	u_long	n, k;
8230 	int s;
8231 
8232 	cp->data_len += len;
8233 
8234 	pe = vaddr + len;
8235 	n  = len;
8236 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8237 
8238 	while (n && s >= 0) {
8239 		pn = (pe - 1) & ~PAGE_MASK;
8240 		k = pe - pn;
8241 		if (k > n) {
8242 			k  = n;
8243 			pn = pe - n;
8244 		}
8245 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8246 			kprintf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
8247 				sym_name(np), pn, (u_long) vtobus(pn), k);
8248 		}
8249 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8250 		cp->phys.data[s].size = cpu_to_scr(k);
8251 		pe = pn;
8252 		n -= k;
8253 		--s;
8254 	}
8255 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8256 
8257 	return n ? -1 : 0;
8258 }
8259 
8260 /*
8261  *  Scatter a SG list with virtual addresses into bus addressable chunks.
8262  */
8263 static int
8264 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8265 {
8266 	int i, retv = 0;
8267 
8268 	for (i = nsegs - 1 ;  i >= 0 ; --i) {
8269 		retv = sym_scatter_virtual(np, cp,
8270 					   psegs[i].ds_addr, psegs[i].ds_len);
8271 		if (retv < 0)
8272 			break;
8273 	}
8274 	return retv;
8275 }
8276 
8277 /*
8278  *  Scatter a physical buffer into bus addressable chunks.
8279  */
8280 static int
8281 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
8282 {
8283 	struct bus_dma_segment seg;
8284 
8285 	seg.ds_addr = paddr;
8286 	seg.ds_len  = len;
8287 	return sym_scatter_sg_physical(np, cp, &seg, 1);
8288 }
8289 
8290 #endif	/* FreeBSD_Bus_Dma_Abstraction */
8291 
8292 /*
8293  *  Scatter a SG list with physical addresses into bus addressable chunks.
8294  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8295  *  each segment, due to some chips being flawed.
8296  */
8297 #define BOUND_MASK ((1UL<<24)-1)
8298 static int
8299 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8300 {
8301 	u_long	ps, pe, pn;
8302 	u_long	k;
8303 	int s, t;
8304 
8305 #ifndef	FreeBSD_Bus_Dma_Abstraction
8306 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8307 #else
8308 	s  = SYM_CONF_MAX_SG - 1;
8309 #endif
8310 	t  = nsegs - 1;
8311 	ps = psegs[t].ds_addr;
8312 	pe = ps + psegs[t].ds_len;
8313 
8314 	while (s >= 0) {
8315 		pn = (pe - 1) & ~BOUND_MASK;
8316 		if (pn <= ps)
8317 			pn = ps;
8318 		k = pe - pn;
8319 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8320 			kprintf ("%s scatter: paddr=%lx len=%ld\n",
8321 				sym_name(np), pn, k);
8322 		}
8323 		cp->phys.data[s].addr = cpu_to_scr(pn);
8324 		cp->phys.data[s].size = cpu_to_scr(k);
8325 #ifndef	FreeBSD_Bus_Dma_Abstraction
8326 		cp->data_len += k;
8327 #endif
8328 		--s;
8329 		if (pn == ps) {
8330 			if (--t < 0)
8331 				break;
8332 			ps = psegs[t].ds_addr;
8333 			pe = ps + psegs[t].ds_len;
8334 		}
8335 		else
8336 			pe = pn;
8337 	}
8338 
8339 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8340 
8341 	return t >= 0 ? -1 : 0;
8342 }
8343 #undef BOUND_MASK
8344 
8345 /*
8346  *  SIM action for non performance critical stuff.
8347  */
8348 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8349 {
8350 	hcb_p	np;
8351 	tcb_p	tp;
8352 	lcb_p	lp;
8353 	struct	ccb_hdr  *ccb_h;
8354 
8355 	/*
8356 	 *  Retrieve our controller data structure.
8357 	 */
8358 	np = (hcb_p) cam_sim_softc(sim);
8359 
8360 	ccb_h = &ccb->ccb_h;
8361 
8362 	switch (ccb_h->func_code) {
8363 	case XPT_SET_TRAN_SETTINGS:
8364 	{
8365 		struct ccb_trans_settings *cts;
8366 
8367 		cts  = &ccb->cts;
8368 		tp = &np->target[ccb_h->target_id];
8369 
8370 		/*
8371 		 *  Update SPI transport settings in TARGET control block.
8372 		 *  Update SCSI device settings in LUN control block.
8373 		 */
8374 		lp = sym_lp(np, tp, ccb_h->target_lun);
8375 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8376 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8377 			if (lp)
8378 				sym_update_dflags(np, &lp->current_flags, cts);
8379 		}
8380 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8381 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8382 			if (lp)
8383 				sym_update_dflags(np, &lp->user_flags, cts);
8384 		}
8385 
8386 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8387 		break;
8388 	}
8389 	case XPT_GET_TRAN_SETTINGS:
8390 	{
8391 		struct ccb_trans_settings *cts;
8392 		struct sym_trans *tip;
8393 		u_char dflags;
8394 
8395 		cts = &ccb->cts;
8396 		tp = &np->target[ccb_h->target_id];
8397 		lp = sym_lp(np, tp, ccb_h->target_lun);
8398 
8399 #define	cts__scsi (&cts->proto_specific.scsi)
8400 #define	cts__spi  (&cts->xport_specific.spi)
8401 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8402 			tip = &tp->tinfo.current;
8403 			dflags = lp ? lp->current_flags : 0;
8404 		}
8405 		else {
8406 			tip = &tp->tinfo.user;
8407 			dflags = lp ? lp->user_flags : tp->usrflags;
8408 		}
8409 
8410 		cts->protocol  = PROTO_SCSI;
8411 		cts->transport = XPORT_SPI;
8412 		cts->protocol_version  = tip->scsi_version;
8413 		cts->transport_version = tip->spi_version;
8414 
8415 		cts__spi->sync_period = tip->period;
8416 		cts__spi->sync_offset = tip->offset;
8417 		cts__spi->bus_width   = tip->width;
8418 		cts__spi->ppr_options = tip->options;
8419 
8420 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8421 		                | CTS_SPI_VALID_SYNC_OFFSET
8422 		                | CTS_SPI_VALID_BUS_WIDTH
8423 		                | CTS_SPI_VALID_PPR_OPTIONS;
8424 
8425 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8426 		if (dflags & SYM_DISC_ENABLED)
8427 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8428 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8429 
8430 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8431 		if (dflags & SYM_TAGS_ENABLED)
8432 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8433 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8434 #undef	cts__spi
8435 #undef	cts__scsi
8436 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8437 		break;
8438 	}
8439 	case XPT_CALC_GEOMETRY:
8440 	{
8441 		struct ccb_calc_geometry *ccg;
8442 		u32 size_mb;
8443 		u32 secs_per_cylinder;
8444 		int extended;
8445 
8446 		/*
8447 		 *  Silly DOS geometry.
8448 		 */
8449 		ccg = &ccb->ccg;
8450 		size_mb = ccg->volume_size
8451 			/ ((1024L * 1024L) / ccg->block_size);
8452 		extended = 1;
8453 
8454 		if (size_mb > 1024 && extended) {
8455 			ccg->heads = 255;
8456 			ccg->secs_per_track = 63;
8457 		} else {
8458 			ccg->heads = 64;
8459 			ccg->secs_per_track = 32;
8460 		}
8461 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
8462 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
8463 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8464 		break;
8465 	}
8466 	case XPT_PATH_INQ:
8467 	{
8468 		struct ccb_pathinq *cpi = &ccb->cpi;
8469 		cpi->version_num = 1;
8470 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8471 		if ((np->features & FE_WIDE) != 0)
8472 			cpi->hba_inquiry |= PI_WIDE_16;
8473 		cpi->target_sprt = 0;
8474 		cpi->hba_misc = 0;
8475 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8476 			cpi->hba_misc |= PIM_SCANHILO;
8477 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8478 			cpi->hba_misc |= PIM_NOBUSRESET;
8479 		cpi->hba_eng_cnt = 0;
8480 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8481 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8482 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8483 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8484 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8485 		cpi->bus_id = cam_sim_bus(sim);
8486 		cpi->initiator_id = np->myaddr;
8487 		cpi->base_transfer_speed = 3300;
8488 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8489 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8490 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8491 		cpi->unit_number = cam_sim_unit(sim);
8492 
8493 		cpi->protocol = PROTO_SCSI;
8494 		cpi->protocol_version = SCSI_REV_2;
8495 		cpi->transport = XPORT_SPI;
8496 		cpi->transport_version = 2;
8497 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8498 		if (np->features & FE_ULTRA3) {
8499 			cpi->transport_version = 3;
8500 			cpi->xport_specific.spi.ppr_options =
8501 			    SID_SPI_CLOCK_DT_ST;
8502 		}
8503 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8504 		break;
8505 	}
8506 	case XPT_ABORT:
8507 	{
8508 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8509 		switch(abort_ccb->ccb_h.func_code) {
8510 		case XPT_SCSI_IO:
8511 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8512 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8513 				break;
8514 			}
8515 		default:
8516 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8517 			break;
8518 		}
8519 		break;
8520 	}
8521 	case XPT_RESET_DEV:
8522 	{
8523 		sym_reset_dev(np, ccb);
8524 		break;
8525 	}
8526 	case XPT_RESET_BUS:
8527 	{
8528 		sym_reset_scsi_bus(np, 0);
8529 		if (sym_verbose) {
8530 			xpt_print_path(np->path);
8531 			kprintf("SCSI BUS reset delivered.\n");
8532 		}
8533 		sym_init (np, 1);
8534 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8535 		break;
8536 	}
8537 	case XPT_ACCEPT_TARGET_IO:
8538 	case XPT_CONT_TARGET_IO:
8539 	case XPT_EN_LUN:
8540 	case XPT_NOTIFY_ACK:
8541 	case XPT_IMMED_NOTIFY:
8542 	case XPT_TERM_IO:
8543 	default:
8544 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8545 		break;
8546 	}
8547 }
8548 
8549 /*
8550  *  Asynchronous notification handler.
8551  */
8552 static void
8553 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8554 {
8555 	hcb_p np;
8556 	struct cam_sim *sim;
8557 	u_int tn;
8558 	tcb_p tp;
8559 
8560 	crit_enter();
8561 
8562 	sim = (struct cam_sim *) cb_arg;
8563 	np  = (hcb_p) cam_sim_softc(sim);
8564 
8565 	switch (code) {
8566 	case AC_LOST_DEVICE:
8567 		tn = xpt_path_target_id(path);
8568 		if (tn >= SYM_CONF_MAX_TARGET)
8569 			break;
8570 
8571 		tp = &np->target[tn];
8572 
8573 		tp->to_reset  = 0;
8574 		tp->head.sval = 0;
8575 		tp->head.wval = np->rv_scntl3;
8576 		tp->head.uval = 0;
8577 
8578 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8579 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8580 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8581 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8582 
8583 		break;
8584 	default:
8585 		break;
8586 	}
8587 
8588 	crit_exit();
8589 }
8590 
8591 /*
8592  *  Update transfer settings of a target.
8593  */
8594 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8595 			    struct ccb_trans_settings *cts)
8596 {
8597 	/*
8598 	 *  Update the infos.
8599 	 */
8600 #define cts__spi (&cts->xport_specific.spi)
8601 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8602 		tip->width = cts__spi->bus_width;
8603 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8604 		tip->offset = cts__spi->sync_offset;
8605 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8606 		tip->period = cts__spi->sync_period;
8607 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8608 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8609 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8610 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8611 		tip->scsi_version = cts->protocol_version;
8612 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8613 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8614 		tip->spi_version = cts->transport_version;
8615 #undef cts__spi
8616 	/*
8617 	 *  Scale against driver configuration limits.
8618 	 */
8619 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8620 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8621 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8622 
8623 	/*
8624 	 *  Scale against actual controller BUS width.
8625 	 */
8626 	if (tip->width > np->maxwide)
8627 		tip->width  = np->maxwide;
8628 
8629 	/*
8630 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8631 	 */
8632 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8633 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8634 		tip->options &= ~PPR_OPT_DT;
8635 	}
8636 
8637 	/*
8638 	 *  Scale period factor and offset against controller limits.
8639 	 */
8640 	if (tip->options & PPR_OPT_DT) {
8641 		if (tip->period < np->minsync_dt)
8642 			tip->period = np->minsync_dt;
8643 		if (tip->period > np->maxsync_dt)
8644 			tip->period = np->maxsync_dt;
8645 		if (tip->offset > np->maxoffs_dt)
8646 			tip->offset = np->maxoffs_dt;
8647 	}
8648 	else {
8649 		if (tip->period < np->minsync)
8650 			tip->period = np->minsync;
8651 		if (tip->period > np->maxsync)
8652 			tip->period = np->maxsync;
8653 		if (tip->offset > np->maxoffs)
8654 			tip->offset = np->maxoffs;
8655 	}
8656 }
8657 
8658 /*
8659  *  Update flags for a device (logical unit).
8660  */
8661 static void
8662 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8663 {
8664 #define	cts__scsi (&cts->proto_specific.scsi)
8665 #define	cts__spi  (&cts->xport_specific.spi)
8666 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8667 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8668 			*flags |= SYM_DISC_ENABLED;
8669 		else
8670 			*flags &= ~SYM_DISC_ENABLED;
8671 	}
8672 
8673 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8674 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8675 			*flags |= SYM_TAGS_ENABLED;
8676 		else
8677 			*flags &= ~SYM_TAGS_ENABLED;
8678 	}
8679 #undef	cts__spi
8680 #undef	cts__scsi
8681 }
8682 
8683 
8684 /*============= DRIVER INITIALISATION ==================*/
8685 
8686 #ifdef FreeBSD_Bus_Io_Abstraction
8687 
8688 static device_method_t sym_pci_methods[] = {
8689 	DEVMETHOD(device_probe,	 sym_pci_probe),
8690 	DEVMETHOD(device_attach, sym_pci_attach),
8691 	{ 0, 0 }
8692 };
8693 
8694 static driver_t sym_pci_driver = {
8695 	"sym",
8696 	sym_pci_methods,
8697 	sizeof(struct sym_hcb)
8698 };
8699 
8700 static devclass_t sym_devclass;
8701 
8702 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8703 
8704 #else	/* Pre-FreeBSD_Bus_Io_Abstraction */
8705 
8706 static u_long sym_unit;
8707 
8708 static struct	pci_device sym_pci_driver = {
8709 	"sym",
8710 	sym_pci_probe,
8711 	sym_pci_attach,
8712 	&sym_unit,
8713 	NULL
8714 };
8715 
8716 #if 	defined(__DragonFly__) || __FreeBSD_version >= 400000
8717 COMPAT_PCI_DRIVER (sym, sym_pci_driver);
8718 #else
8719 DATA_SET (pcidevice_set, sym_pci_driver);
8720 #endif
8721 
8722 #endif /* FreeBSD_Bus_Io_Abstraction */
8723 
8724 static struct sym_pci_chip sym_pci_dev_table[] = {
8725  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8726  FE_ERL}
8727  ,
8728 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8729  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8730  FE_BOF}
8731  ,
8732 #else
8733  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8734  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8735  ,
8736 #endif
8737  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8738  FE_BOF|FE_ERL}
8739  ,
8740  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8741  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8742  ,
8743  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8744  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8745  ,
8746  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8747  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8748  ,
8749  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8750  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8751  FE_RAM|FE_DIFF}
8752  ,
8753  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8754  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8755  FE_RAM|FE_DIFF}
8756  ,
8757  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8758  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8759  FE_RAM|FE_DIFF}
8760  ,
8761  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8762  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8763  FE_RAM|FE_DIFF}
8764  ,
8765 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8766  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8767  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8768  FE_RAM|FE_LCKFRQ}
8769  ,
8770 #else
8771  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8772  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8773  FE_RAM|FE_LCKFRQ}
8774  ,
8775 #endif
8776  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8777  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8778  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8779  ,
8780  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8781  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8782  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8783  ,
8784  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8785  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8786  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8787  FE_C10}
8788  ,
8789  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8790  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8791  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8792  FE_C10|FE_U3EN}
8793  ,
8794  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8795  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8796  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8797  FE_C10|FE_U3EN}
8798  ,
8799  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8800  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8801  FE_RAM|FE_IO256|FE_LEDC}
8802 };
8803 
8804 #define sym_pci_num_devs \
8805 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8806 
8807 /*
8808  *  Look up the chip table.
8809  *
8810  *  Return a pointer to the chip entry if found,
8811  *  zero otherwise.
8812  */
8813 static struct sym_pci_chip *
8814 #ifdef FreeBSD_Bus_Io_Abstraction
8815 sym_find_pci_chip(device_t dev)
8816 #else
8817 sym_find_pci_chip(pcici_t pci_tag)
8818 #endif
8819 {
8820 	struct	sym_pci_chip *chip;
8821 	int	i;
8822 	u_short	device_id;
8823 	u_char	revision;
8824 
8825 #ifdef FreeBSD_Bus_Io_Abstraction
8826 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8827 		return 0;
8828 
8829 	device_id = pci_get_device(dev);
8830 	revision  = pci_get_revid(dev);
8831 #else
8832 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
8833 		return 0;
8834 
8835 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8836 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8837 #endif
8838 
8839 	for (i = 0; i < sym_pci_num_devs; i++) {
8840 		chip = &sym_pci_dev_table[i];
8841 		if (device_id != chip->device_id)
8842 			continue;
8843 		if (revision > chip->revision_id)
8844 			continue;
8845 		return chip;
8846 	}
8847 
8848 	return 0;
8849 }
8850 
8851 /*
8852  *  Tell upper layer if the chip is supported.
8853  */
8854 #ifdef FreeBSD_Bus_Io_Abstraction
8855 static int
8856 sym_pci_probe(device_t dev)
8857 {
8858 	struct	sym_pci_chip *chip;
8859 
8860 	chip = sym_find_pci_chip(dev);
8861 	if (chip && sym_find_firmware(chip)) {
8862 		device_set_desc(dev, chip->name);
8863 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
8864 	}
8865 	return ENXIO;
8866 }
8867 #else /* Pre-FreeBSD_Bus_Io_Abstraction */
8868 static const char *
8869 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
8870 {
8871 	struct	sym_pci_chip *chip;
8872 
8873 	chip = sym_find_pci_chip(pci_tag);
8874 	if (chip && sym_find_firmware(chip)) {
8875 #if NNCR > 0
8876 	/* Only claim chips we are allowed to take precedence over the ncr */
8877 	if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
8878 #else
8879 	if (1)
8880 #endif
8881 		return chip->name;
8882 	}
8883 	return 0;
8884 }
8885 #endif
8886 
8887 /*
8888  *  Attach a sym53c8xx device.
8889  */
8890 #ifdef FreeBSD_Bus_Io_Abstraction
8891 static int
8892 sym_pci_attach(device_t dev)
8893 #else
8894 static void
8895 sym_pci_attach(pcici_t pci_tag, int unit)
8896 {
8897 	int err = sym_pci_attach2(pci_tag, unit);
8898 	if (err)
8899 		kprintf("sym: failed to attach unit %d - err=%d.\n", unit, err);
8900 }
8901 static int
8902 sym_pci_attach2(pcici_t pci_tag, int unit)
8903 #endif
8904 {
8905 	struct	sym_pci_chip *chip;
8906 	u_short	command;
8907 	u_char	cachelnsz;
8908 	struct	sym_hcb *np = 0;
8909 	struct	sym_nvram nvram;
8910 	struct	sym_fw *fw = 0;
8911 	int 	i;
8912 #ifdef	FreeBSD_Bus_Dma_Abstraction
8913 	bus_dma_tag_t	bus_dmat;
8914 
8915 	/*
8916 	 *  I expected to be told about a parent
8917 	 *  DMA tag, but didn't find any.
8918 	 */
8919 	bus_dmat = NULL;
8920 #endif
8921 
8922 	/*
8923 	 *  Only probed devices should be attached.
8924 	 *  We just enjoy being paranoid. :)
8925 	 */
8926 #ifdef FreeBSD_Bus_Io_Abstraction
8927 	chip = sym_find_pci_chip(dev);
8928 #else
8929 	chip = sym_find_pci_chip(pci_tag);
8930 #endif
8931 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8932 		return (ENXIO);
8933 
8934 	/*
8935 	 *  Allocate immediately the host control block,
8936 	 *  since we are only expecting to succeed. :)
8937 	 *  We keep track in the HCB of all the resources that
8938 	 *  are to be released on error.
8939 	 */
8940 #ifdef	FreeBSD_Bus_Dma_Abstraction
8941 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8942 	if (np)
8943 		np->bus_dmat = bus_dmat;
8944 	else
8945 		goto attach_failed;
8946 #else
8947 	np = sym_calloc_dma(sizeof(*np), "HCB");
8948 	if (!np)
8949 		goto attach_failed;
8950 #endif
8951 
8952 	/*
8953 	 *  Copy some useful infos to the HCB.
8954 	 */
8955 	np->hcb_ba	 = vtobus(np);
8956 	np->verbose	 = bootverbose;
8957 #ifdef FreeBSD_Bus_Io_Abstraction
8958 	np->device	 = dev;
8959 	np->unit	 = device_get_unit(dev);
8960 	np->device_id	 = pci_get_device(dev);
8961 	np->revision_id  = pci_get_revid(dev);
8962 #else
8963 	np->pci_tag	 = pci_tag;
8964 	np->unit	 = unit;
8965 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8966 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8967 #endif
8968 	np->features	 = chip->features;
8969 	np->clock_divn	 = chip->nr_divisor;
8970 	np->maxoffs	 = chip->offset_max;
8971 	np->maxburst	 = chip->burst_max;
8972 	np->scripta_sz	 = fw->a_size;
8973 	np->scriptb_sz	 = fw->b_size;
8974 	np->fw_setup	 = fw->setup;
8975 	np->fw_patch	 = fw->patch;
8976 	np->fw_name	 = fw->name;
8977 
8978 	/*
8979 	 * Edit its name.
8980 	 */
8981 	ksnprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8982 
8983 	/*
8984 	 *  Initialyze the CCB free and busy queues.
8985 	 */
8986 	sym_que_init(&np->free_ccbq);
8987 	sym_que_init(&np->busy_ccbq);
8988 	sym_que_init(&np->comp_ccbq);
8989 	sym_que_init(&np->cam_ccbq);
8990 
8991 	/*
8992 	 *  Allocate a tag for the DMA of user data.
8993 	 */
8994 #ifdef	FreeBSD_Bus_Dma_Abstraction
8995 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8996 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8997 				NULL, NULL,
8998 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8999 				(1<<24), 0, &np->data_dmat)) {
9000 		device_printf(dev, "failed to create DMA tag.\n");
9001 		goto attach_failed;
9002 	}
9003 #endif
9004 	/*
9005 	 *  Read and apply some fix-ups to the PCI COMMAND
9006 	 *  register. We want the chip to be enabled for:
9007 	 *  - BUS mastering
9008 	 *  - PCI parity checking (reporting would also be fine)
9009 	 *  - Write And Invalidate.
9010 	 */
9011 #ifdef FreeBSD_Bus_Io_Abstraction
9012 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9013 #else
9014 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9015 #endif
9016 	command |= PCIM_CMD_BUSMASTEREN;
9017 	command |= PCIM_CMD_PERRESPEN;
9018 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9019 #ifdef FreeBSD_Bus_Io_Abstraction
9020 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9021 #else
9022 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9023 #endif
9024 
9025 	/*
9026 	 *  Let the device know about the cache line size,
9027 	 *  if it doesn't yet.
9028 	 */
9029 #ifdef FreeBSD_Bus_Io_Abstraction
9030 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9031 #else
9032 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9033 #endif
9034 	if (!cachelnsz) {
9035 		cachelnsz = 8;
9036 #ifdef FreeBSD_Bus_Io_Abstraction
9037 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9038 #else
9039 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9040 #endif
9041 	}
9042 
9043 	/*
9044 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9045 	 */
9046 #ifdef FreeBSD_Bus_Io_Abstraction
9047 	if ((command & PCIM_CMD_MEMEN) != 0) {
9048 		int regs_id = SYM_PCI_MMIO;
9049 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9050 						  0, ~0, 1, RF_ACTIVE);
9051 	}
9052 	if (!np->mmio_res) {
9053 		device_printf(dev, "failed to allocate MMIO resources\n");
9054 		goto attach_failed;
9055 	}
9056 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9057 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9058 	np->mmio_pa  = rman_get_start(np->mmio_res);
9059 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9060 	np->mmio_ba  = np->mmio_pa;
9061 #else
9062 	if ((command & PCIM_CMD_MEMEN) != 0) {
9063 		vm_offset_t vaddr, paddr;
9064 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9065 			kprintf("%s: failed to map MMIO window\n", sym_name(np));
9066 			goto attach_failed;
9067 		}
9068 		np->mmio_va = vaddr;
9069 		np->mmio_pa = paddr;
9070 		np->mmio_ba = paddr;
9071 	}
9072 #endif
9073 
9074 	/*
9075 	 *  Allocate the IRQ.
9076 	 */
9077 #ifdef FreeBSD_Bus_Io_Abstraction
9078 	i = 0;
9079 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9080 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9081 	if (!np->irq_res) {
9082 		device_printf(dev, "failed to allocate IRQ resource\n");
9083 		goto attach_failed;
9084 	}
9085 #endif
9086 
9087 #ifdef	SYM_CONF_IOMAPPED
9088 	/*
9089 	 *  User want us to use normal IO with PCI.
9090 	 *  Alloc/get/map/retrieve everything that deals with IO.
9091 	 */
9092 #ifdef FreeBSD_Bus_Io_Abstraction
9093 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9094 		int regs_id = SYM_PCI_IO;
9095 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9096 						0, ~0, 1, RF_ACTIVE);
9097 	}
9098 	if (!np->io_res) {
9099 		device_printf(dev, "failed to allocate IO resources\n");
9100 		goto attach_failed;
9101 	}
9102 	np->io_bsh  = rman_get_bushandle(np->io_res);
9103 	np->io_tag  = rman_get_bustag(np->io_res);
9104 	np->io_port = rman_get_start(np->io_res);
9105 #else
9106 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9107 		pci_port_t io_port;
9108 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9109 			kprintf("%s: failed to map IO window\n", sym_name(np));
9110 			goto attach_failed;
9111 		}
9112 		np->io_port = io_port;
9113 	}
9114 #endif
9115 
9116 #endif /* SYM_CONF_IOMAPPED */
9117 
9118 	/*
9119 	 *  If the chip has RAM.
9120 	 *  Alloc/get/map/retrieve the corresponding resources.
9121 	 */
9122 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9123 	    (command & PCIM_CMD_MEMEN) != 0) {
9124 #ifdef FreeBSD_Bus_Io_Abstraction
9125 		int regs_id = SYM_PCI_RAM;
9126 		if (np->features & FE_64BIT)
9127 			regs_id = SYM_PCI_RAM64;
9128 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9129 						 0, ~0, 1, RF_ACTIVE);
9130 		if (!np->ram_res) {
9131 			device_printf(dev,"failed to allocate RAM resources\n");
9132 			goto attach_failed;
9133 		}
9134 		np->ram_id  = regs_id;
9135 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9136 		np->ram_tag = rman_get_bustag(np->ram_res);
9137 		np->ram_pa  = rman_get_start(np->ram_res);
9138 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9139 		np->ram_ba  = np->ram_pa;
9140 #else
9141 		vm_offset_t vaddr, paddr;
9142 		int regs_id = SYM_PCI_RAM;
9143 		if (np->features & FE_64BIT)
9144 			regs_id = SYM_PCI_RAM64;
9145 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9146 			kprintf("%s: failed to map RAM window\n", sym_name(np));
9147 			goto attach_failed;
9148 		}
9149 		np->ram_va = vaddr;
9150 		np->ram_pa = paddr;
9151 		np->ram_ba = paddr;
9152 #endif
9153 	}
9154 
9155 	/*
9156 	 *  Save setting of some IO registers, so we will
9157 	 *  be able to probe specific implementations.
9158 	 */
9159 	sym_save_initial_setting (np);
9160 
9161 	/*
9162 	 *  Reset the chip now, since it has been reported
9163 	 *  that SCSI clock calibration may not work properly
9164 	 *  if the chip is currently active.
9165 	 */
9166 	sym_chip_reset (np);
9167 
9168 	/*
9169 	 *  Try to read the user set-up.
9170 	 */
9171 	(void) sym_read_nvram(np, &nvram);
9172 
9173 	/*
9174 	 *  Prepare controller and devices settings, according
9175 	 *  to chip features, user set-up and driver set-up.
9176 	 */
9177 	(void) sym_prepare_setting(np, &nvram);
9178 
9179 	/*
9180 	 *  Check the PCI clock frequency.
9181 	 *  Must be performed after prepare_setting since it destroys
9182 	 *  STEST1 that is used to probe for the clock doubler.
9183 	 */
9184 	i = sym_getpciclock(np);
9185 	if (i > 37000)
9186 #ifdef FreeBSD_Bus_Io_Abstraction
9187 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9188 #else
9189 		kprintf("%s: PCI BUS clock seems too high: %u KHz.\n",
9190 			sym_name(np), i);
9191 #endif
9192 
9193 	/*
9194 	 *  Allocate the start queue.
9195 	 */
9196 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
9197 	if (!np->squeue)
9198 		goto attach_failed;
9199 	np->squeue_ba = vtobus(np->squeue);
9200 
9201 	/*
9202 	 *  Allocate the done queue.
9203 	 */
9204 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
9205 	if (!np->dqueue)
9206 		goto attach_failed;
9207 	np->dqueue_ba = vtobus(np->dqueue);
9208 
9209 	/*
9210 	 *  Allocate the target bus address array.
9211 	 */
9212 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
9213 	if (!np->targtbl)
9214 		goto attach_failed;
9215 	np->targtbl_ba = vtobus(np->targtbl);
9216 
9217 	/*
9218 	 *  Allocate SCRIPTS areas.
9219 	 */
9220 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
9221 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
9222 	if (!np->scripta0 || !np->scriptb0)
9223 		goto attach_failed;
9224 
9225 	/*
9226 	 *  Allocate some CCB. We need at least ONE.
9227 	 */
9228 	if (!sym_alloc_ccb(np))
9229 		goto attach_failed;
9230 
9231 	/*
9232 	 *  Calculate BUS addresses where we are going
9233 	 *  to load the SCRIPTS.
9234 	 */
9235 	np->scripta_ba	= vtobus(np->scripta0);
9236 	np->scriptb_ba	= vtobus(np->scriptb0);
9237 	np->scriptb0_ba	= np->scriptb_ba;
9238 
9239 	if (np->ram_ba) {
9240 		np->scripta_ba	= np->ram_ba;
9241 		if (np->features & FE_RAM8K) {
9242 			np->ram_ws = 8192;
9243 			np->scriptb_ba = np->scripta_ba + 4096;
9244 #if BITS_PER_LONG > 32
9245 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
9246 #endif
9247 		}
9248 		else
9249 			np->ram_ws = 4096;
9250 	}
9251 
9252 	/*
9253 	 *  Copy scripts to controller instance.
9254 	 */
9255 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
9256 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
9257 
9258 	/*
9259 	 *  Setup variable parts in scripts and compute
9260 	 *  scripts bus addresses used from the C code.
9261 	 */
9262 	np->fw_setup(np, fw);
9263 
9264 	/*
9265 	 *  Bind SCRIPTS with physical addresses usable by the
9266 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9267 	 */
9268 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
9269 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
9270 
9271 #ifdef SYM_CONF_IARB_SUPPORT
9272 	/*
9273 	 *    If user wants IARB to be set when we win arbitration
9274 	 *    and have other jobs, compute the max number of consecutive
9275 	 *    settings of IARB hints before we leave devices a chance to
9276 	 *    arbitrate for reselection.
9277 	 */
9278 #ifdef	SYM_SETUP_IARB_MAX
9279 	np->iarb_max = SYM_SETUP_IARB_MAX;
9280 #else
9281 	np->iarb_max = 4;
9282 #endif
9283 #endif
9284 
9285 	/*
9286 	 *  Prepare the idle and invalid task actions.
9287 	 */
9288 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9289 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9290 	np->idletask_ba		= vtobus(&np->idletask);
9291 
9292 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9293 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9294 	np->notask_ba		= vtobus(&np->notask);
9295 
9296 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9297 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9298 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9299 
9300 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9301 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
9302 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9303 
9304 	/*
9305 	 *  Allocate and prepare the lun JUMP table that is used
9306 	 *  for a target prior the probing of devices (bad lun table).
9307 	 *  A private table will be allocated for the target on the
9308 	 *  first INQUIRY response received.
9309 	 */
9310 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
9311 	if (!np->badluntbl)
9312 		goto attach_failed;
9313 
9314 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
9315 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9316 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9317 
9318 	/*
9319 	 *  Prepare the bus address array that contains the bus
9320 	 *  address of each target control block.
9321 	 *  For now, assume all logical units are wrong. :)
9322 	 */
9323 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9324 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9325 		np->target[i].head.luntbl_sa =
9326 				cpu_to_scr(vtobus(np->badluntbl));
9327 		np->target[i].head.lun0_sa =
9328 				cpu_to_scr(vtobus(&np->badlun_sa));
9329 	}
9330 
9331 	/*
9332 	 *  Now check the cache handling of the pci chipset.
9333 	 */
9334 	if (sym_snooptest (np)) {
9335 #ifdef FreeBSD_Bus_Io_Abstraction
9336 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9337 #else
9338 		kprintf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9339 #endif
9340 		goto attach_failed;
9341 	};
9342 
9343 	/*
9344 	 *  Now deal with CAM.
9345 	 *  Hopefully, we will succeed with that one.:)
9346 	 */
9347 	if (!sym_cam_attach(np))
9348 		goto attach_failed;
9349 
9350 	/*
9351 	 *  Sigh! we are done.
9352 	 */
9353 	return 0;
9354 
9355 	/*
9356 	 *  We have failed.
9357 	 *  We will try to free all the resources we have
9358 	 *  allocated, but if we are a boot device, this
9359 	 *  will not help that much.;)
9360 	 */
9361 attach_failed:
9362 	if (np)
9363 		sym_pci_free(np);
9364 	return ENXIO;
9365 }
9366 
9367 /*
9368  *  Free everything that have been allocated for this device.
9369  */
9370 static void sym_pci_free(hcb_p np)
9371 {
9372 	SYM_QUEHEAD *qp;
9373 	ccb_p cp;
9374 	tcb_p tp;
9375 	lcb_p lp;
9376 	int target, lun;
9377 
9378 	/*
9379 	 *  First free CAM resources.
9380 	 */
9381 	crit_enter();
9382 	sym_cam_free(np);
9383 	crit_exit();
9384 
9385 	/*
9386 	 *  Now every should be quiet for us to
9387 	 *  free other resources.
9388 	 */
9389 #ifdef FreeBSD_Bus_Io_Abstraction
9390 	if (np->ram_res)
9391 		bus_release_resource(np->device, SYS_RES_MEMORY,
9392 				     np->ram_id, np->ram_res);
9393 	if (np->mmio_res)
9394 		bus_release_resource(np->device, SYS_RES_MEMORY,
9395 				     SYM_PCI_MMIO, np->mmio_res);
9396 	if (np->io_res)
9397 		bus_release_resource(np->device, SYS_RES_IOPORT,
9398 				     SYM_PCI_IO, np->io_res);
9399 	if (np->irq_res)
9400 		bus_release_resource(np->device, SYS_RES_IRQ,
9401 				     0, np->irq_res);
9402 #else
9403 	/*
9404 	 *  YEAH!!!
9405 	 *  It seems there is no means to free MMIO resources.
9406 	 */
9407 #endif
9408 
9409 	if (np->scriptb0)
9410 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9411 	if (np->scripta0)
9412 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9413 	if (np->squeue)
9414 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9415 	if (np->dqueue)
9416 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9417 
9418 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9419 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9420 #ifdef	FreeBSD_Bus_Dma_Abstraction
9421 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9422 #endif
9423 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9424 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9425 	}
9426 
9427 	if (np->badluntbl)
9428 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9429 
9430 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9431 		tp = &np->target[target];
9432 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9433 			lp = sym_lp(np, tp, lun);
9434 			if (!lp)
9435 				continue;
9436 			if (lp->itlq_tbl)
9437 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9438 				       "ITLQ_TBL");
9439 			if (lp->cb_tags)
9440 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9441 				       "CB_TAGS");
9442 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9443 		}
9444 #if SYM_CONF_MAX_LUN > 1
9445 		if (tp->lunmp)
9446 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9447 			       "LUNMP");
9448 #endif
9449 	}
9450 	if (np->targtbl)
9451 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9452 #ifdef	FreeBSD_Bus_Dma_Abstraction
9453 	if (np->data_dmat)
9454 		bus_dma_tag_destroy(np->data_dmat);
9455 #endif
9456 	sym_mfree_dma(np, sizeof(*np), "HCB");
9457 }
9458 
9459 /*
9460  *  Allocate CAM resources and register a bus to CAM.
9461  */
9462 int sym_cam_attach(hcb_p np)
9463 {
9464 	struct cam_devq *devq = 0;
9465 	struct cam_sim *sim = 0;
9466 	struct cam_path *path = 0;
9467 	struct ccb_setasync csa;
9468 	int err;
9469 
9470 	crit_enter();
9471 
9472 	/*
9473 	 *  Establish our interrupt handler.
9474 	 */
9475 #ifdef FreeBSD_Bus_Io_Abstraction
9476 	err = bus_setup_intr(np->device, np->irq_res, 0,
9477 			     sym_intr, np, &np->intr, NULL);
9478 	if (err) {
9479 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9480 			      err);
9481 		goto fail;
9482 	}
9483 #else
9484 	err = 0;
9485 	if (!pci_map_int (np->pci_tag, sym_intr, np)) {
9486 		kprintf("%s: failed to map interrupt\n", sym_name(np));
9487 		goto fail;
9488 	}
9489 #endif
9490 
9491 	/*
9492 	 *  Create the device queue for our sym SIM.
9493 	 */
9494 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9495 	if (devq == NULL) {
9496 		goto fail;
9497 	}
9498 
9499 	/*
9500 	 *  Construct our SIM entry.
9501 	 */
9502 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9503 			    &sim_mplock, 1, SYM_SETUP_MAX_TAG, devq);
9504 	cam_simq_release(devq);
9505 	if (sim == NULL)
9506 		goto fail;
9507 
9508 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9509 		goto fail;
9510 	np->sim = sim;
9511 	sim = 0;
9512 
9513 	if (xpt_create_path(&path, 0,
9514 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9515 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9516 		goto fail;
9517 	}
9518 	np->path = path;
9519 
9520 	/*
9521 	 *  Establish our async notification handler.
9522 	 */
9523 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9524 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9525 	csa.event_enable    = AC_LOST_DEVICE;
9526 	csa.callback	    = sym_async;
9527 	csa.callback_arg    = np->sim;
9528 	xpt_action((union ccb *)&csa);
9529 
9530 	/*
9531 	 *  Start the chip now, without resetting the BUS, since
9532 	 *  it seems that this must stay under control of CAM.
9533 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9534 	 *  get a spurious SMBC interrupt.
9535 	 */
9536 	sym_init (np, 0);
9537 
9538 	crit_exit();
9539 	return 1;
9540 fail:
9541 	if (sim)
9542 		cam_sim_free(sim);
9543 
9544 	sym_cam_free(np);
9545 
9546 	crit_exit();
9547 	return 0;
9548 }
9549 
9550 /*
9551  *  Free everything that deals with CAM.
9552  */
9553 void sym_cam_free(hcb_p np)
9554 {
9555 #ifdef FreeBSD_Bus_Io_Abstraction
9556 	if (np->intr)
9557 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9558 #else
9559 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
9560 #endif
9561 
9562 	if (np->sim) {
9563 		xpt_bus_deregister(cam_sim_path(np->sim));
9564 		cam_sim_free(np->sim);
9565 	}
9566 	if (np->path)
9567 		xpt_free_path(np->path);
9568 }
9569 
9570 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9571 
9572 /*
9573  *  Get host setup from NVRAM.
9574  */
9575 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9576 {
9577 #ifdef SYM_CONF_NVRAM_SUPPORT
9578 	/*
9579 	 *  Get parity checking, host ID, verbose mode
9580 	 *  and miscellaneous host flags from NVRAM.
9581 	 */
9582 	switch(nvram->type) {
9583 	case SYM_SYMBIOS_NVRAM:
9584 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9585 			np->rv_scntl0  &= ~0x0a;
9586 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9587 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9588 			np->verbose += 1;
9589 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9590 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9591 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9592 			np->usrflags |= SYM_AVOID_BUS_RESET;
9593 		break;
9594 	case SYM_TEKRAM_NVRAM:
9595 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9596 		break;
9597 	default:
9598 		break;
9599 	}
9600 #endif
9601 }
9602 
9603 /*
9604  *  Get target setup from NVRAM.
9605  */
9606 #ifdef SYM_CONF_NVRAM_SUPPORT
9607 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9608 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9609 #endif
9610 
9611 static void
9612 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9613 {
9614 #ifdef SYM_CONF_NVRAM_SUPPORT
9615 	switch(nvp->type) {
9616 	case SYM_SYMBIOS_NVRAM:
9617 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9618 		break;
9619 	case SYM_TEKRAM_NVRAM:
9620 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9621 		break;
9622 	default:
9623 		break;
9624 	}
9625 #endif
9626 }
9627 
9628 #ifdef SYM_CONF_NVRAM_SUPPORT
9629 /*
9630  *  Get target set-up from Symbios format NVRAM.
9631  */
9632 static void
9633 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9634 {
9635 	tcb_p tp = &np->target[target];
9636 	Symbios_target *tn = &nvram->target[target];
9637 
9638 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9639 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9640 	tp->usrtags =
9641 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9642 
9643 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9644 		tp->usrflags &= ~SYM_DISC_ENABLED;
9645 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9646 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9647 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9648 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9649 }
9650 
9651 /*
9652  *  Get target set-up from Tekram format NVRAM.
9653  */
9654 static void
9655 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9656 {
9657 	tcb_p tp = &np->target[target];
9658 	struct Tekram_target *tn = &nvram->target[target];
9659 	int i;
9660 
9661 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9662 		i = tn->sync_index & 0xf;
9663 		tp->tinfo.user.period = Tekram_sync[i];
9664 	}
9665 
9666 	tp->tinfo.user.width =
9667 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9668 
9669 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9670 		tp->usrtags = 2 << nvram->max_tags_index;
9671 	}
9672 
9673 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9674 		tp->usrflags |= SYM_DISC_ENABLED;
9675 
9676 	/* If any device does not support parity, we will not use this option */
9677 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9678 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9679 }
9680 
9681 #ifdef	SYM_CONF_DEBUG_NVRAM
9682 /*
9683  *  Dump Symbios format NVRAM for debugging purpose.
9684  */
9685 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9686 {
9687 	int i;
9688 
9689 	/* display Symbios nvram host data */
9690 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9691 		sym_name(np), nvram->host_id & 0x0f,
9692 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9693 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9694 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9695 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9696 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9697 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9698 
9699 	/* display Symbios nvram drive data */
9700 	for (i = 0 ; i < 15 ; i++) {
9701 		struct Symbios_target *tn = &nvram->target[i];
9702 		kprintf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9703 		sym_name(np), i,
9704 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9705 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9706 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9707 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9708 		tn->bus_width,
9709 		tn->sync_period / 4,
9710 		tn->timeout);
9711 	}
9712 }
9713 
9714 /*
9715  *  Dump TEKRAM format NVRAM for debugging purpose.
9716  */
9717 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9718 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9719 {
9720 	int i, tags, boot_delay;
9721 	char *rem;
9722 
9723 	/* display Tekram nvram host data */
9724 	tags = 2 << nvram->max_tags_index;
9725 	boot_delay = 0;
9726 	if (nvram->boot_delay_index < 6)
9727 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9728 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9729 	default:
9730 	case 0:	rem = "";			break;
9731 	case 1: rem = " REMOVABLE=boot device";	break;
9732 	case 2: rem = " REMOVABLE=all";		break;
9733 	}
9734 
9735 	kprintf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9736 		sym_name(np), nvram->host_id & 0x0f,
9737 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9738 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9739 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9740 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9741 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9742 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9743 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9744 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9745 		rem, boot_delay, tags);
9746 
9747 	/* display Tekram nvram drive data */
9748 	for (i = 0; i <= 15; i++) {
9749 		int sync, j;
9750 		struct Tekram_target *tn = &nvram->target[i];
9751 		j = tn->sync_index & 0xf;
9752 		sync = Tekram_sync[j];
9753 		kprintf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9754 		sym_name(np), i,
9755 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9756 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9757 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9758 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9759 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9760 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9761 		sync);
9762 	}
9763 }
9764 #endif	/* SYM_CONF_DEBUG_NVRAM */
9765 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9766 
9767 
9768 /*
9769  *  Try reading Symbios or Tekram NVRAM
9770  */
9771 #ifdef SYM_CONF_NVRAM_SUPPORT
9772 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9773 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9774 #endif
9775 
9776 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9777 {
9778 #ifdef SYM_CONF_NVRAM_SUPPORT
9779 	/*
9780 	 *  Try to read SYMBIOS nvram.
9781 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9782 	 */
9783 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9784 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9785 		nvp->type = SYM_SYMBIOS_NVRAM;
9786 #ifdef SYM_CONF_DEBUG_NVRAM
9787 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9788 #endif
9789 	}
9790 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9791 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9792 		nvp->type = SYM_TEKRAM_NVRAM;
9793 #ifdef SYM_CONF_DEBUG_NVRAM
9794 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9795 #endif
9796 	}
9797 	else
9798 		nvp->type = 0;
9799 #else
9800 	nvp->type = 0;
9801 #endif
9802 	return nvp->type;
9803 }
9804 
9805 
9806 #ifdef SYM_CONF_NVRAM_SUPPORT
9807 /*
9808  *  24C16 EEPROM reading.
9809  *
9810  *  GPOI0 - data in/data out
9811  *  GPIO1 - clock
9812  *  Symbios NVRAM wiring now also used by Tekram.
9813  */
9814 
9815 #define SET_BIT 0
9816 #define CLR_BIT 1
9817 #define SET_CLK 2
9818 #define CLR_CLK 3
9819 
9820 /*
9821  *  Set/clear data/clock bit in GPIO0
9822  */
9823 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9824 			  int bit_mode)
9825 {
9826 	UDELAY (5);
9827 	switch (bit_mode){
9828 	case SET_BIT:
9829 		*gpreg |= write_bit;
9830 		break;
9831 	case CLR_BIT:
9832 		*gpreg &= 0xfe;
9833 		break;
9834 	case SET_CLK:
9835 		*gpreg |= 0x02;
9836 		break;
9837 	case CLR_CLK:
9838 		*gpreg &= 0xfd;
9839 		break;
9840 
9841 	}
9842 	OUTB (nc_gpreg, *gpreg);
9843 	UDELAY (5);
9844 }
9845 
9846 /*
9847  *  Send START condition to NVRAM to wake it up.
9848  */
9849 static void S24C16_start(hcb_p np, u_char *gpreg)
9850 {
9851 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9852 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9853 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9854 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9855 }
9856 
9857 /*
9858  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9859  */
9860 static void S24C16_stop(hcb_p np, u_char *gpreg)
9861 {
9862 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9863 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9864 }
9865 
9866 /*
9867  *  Read or write a bit to the NVRAM,
9868  *  read if GPIO0 input else write if GPIO0 output
9869  */
9870 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9871 			 u_char *gpreg)
9872 {
9873 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9874 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9875 	if (read_bit)
9876 		*read_bit = INB (nc_gpreg);
9877 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9878 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9879 }
9880 
9881 /*
9882  *  Output an ACK to the NVRAM after reading,
9883  *  change GPIO0 to output and when done back to an input
9884  */
9885 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9886 			    u_char *gpcntl)
9887 {
9888 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9889 	S24C16_do_bit(np, 0, write_bit, gpreg);
9890 	OUTB (nc_gpcntl, *gpcntl);
9891 }
9892 
9893 /*
9894  *  Input an ACK from NVRAM after writing,
9895  *  change GPIO0 to input and when done back to an output
9896  */
9897 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9898 			   u_char *gpcntl)
9899 {
9900 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9901 	S24C16_do_bit(np, read_bit, 1, gpreg);
9902 	OUTB (nc_gpcntl, *gpcntl);
9903 }
9904 
9905 /*
9906  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9907  *  GPIO0 must already be set as an output
9908  */
9909 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9910 			     u_char *gpreg, u_char *gpcntl)
9911 {
9912 	int x;
9913 
9914 	for (x = 0; x < 8; x++)
9915 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9916 
9917 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9918 }
9919 
9920 /*
9921  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9922  *  GPIO0 must already be set as an input
9923  */
9924 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9925 			    u_char *gpreg, u_char *gpcntl)
9926 {
9927 	int x;
9928 	u_char read_bit;
9929 
9930 	*read_data = 0;
9931 	for (x = 0; x < 8; x++) {
9932 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9933 		*read_data |= ((read_bit & 0x01) << (7 - x));
9934 	}
9935 
9936 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9937 }
9938 
9939 /*
9940  *  Read 'len' bytes starting at 'offset'.
9941  */
9942 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9943 {
9944 	u_char	gpcntl, gpreg;
9945 	u_char	old_gpcntl, old_gpreg;
9946 	u_char	ack_data;
9947 	int	retv = 1;
9948 	int	x;
9949 
9950 	/* save current state of GPCNTL and GPREG */
9951 	old_gpreg	= INB (nc_gpreg);
9952 	old_gpcntl	= INB (nc_gpcntl);
9953 	gpcntl		= old_gpcntl & 0x1c;
9954 
9955 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9956 	OUTB (nc_gpreg,  old_gpreg);
9957 	OUTB (nc_gpcntl, gpcntl);
9958 
9959 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9960 	gpreg = old_gpreg;
9961 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9962 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9963 
9964 	/* now set NVRAM inactive with GPIO0/1 both high */
9965 	S24C16_stop(np, &gpreg);
9966 
9967 	/* activate NVRAM */
9968 	S24C16_start(np, &gpreg);
9969 
9970 	/* write device code and random address MSB */
9971 	S24C16_write_byte(np, &ack_data,
9972 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9973 	if (ack_data & 0x01)
9974 		goto out;
9975 
9976 	/* write random address LSB */
9977 	S24C16_write_byte(np, &ack_data,
9978 		offset & 0xff, &gpreg, &gpcntl);
9979 	if (ack_data & 0x01)
9980 		goto out;
9981 
9982 	/* regenerate START state to set up for reading */
9983 	S24C16_start(np, &gpreg);
9984 
9985 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9986 	S24C16_write_byte(np, &ack_data,
9987 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9988 	if (ack_data & 0x01)
9989 		goto out;
9990 
9991 	/* now set up GPIO0 for inputting data */
9992 	gpcntl |= 0x01;
9993 	OUTB (nc_gpcntl, gpcntl);
9994 
9995 	/* input all requested data - only part of total NVRAM */
9996 	for (x = 0; x < len; x++)
9997 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9998 
9999 	/* finally put NVRAM back in inactive mode */
10000 	gpcntl &= 0xfe;
10001 	OUTB (nc_gpcntl, gpcntl);
10002 	S24C16_stop(np, &gpreg);
10003 	retv = 0;
10004 out:
10005 	/* return GPIO0/1 to original states after having accessed NVRAM */
10006 	OUTB (nc_gpcntl, old_gpcntl);
10007 	OUTB (nc_gpreg,  old_gpreg);
10008 
10009 	return retv;
10010 }
10011 
10012 #undef SET_BIT
10013 #undef CLR_BIT
10014 #undef SET_CLK
10015 #undef CLR_CLK
10016 
10017 /*
10018  *  Try reading Symbios NVRAM.
10019  *  Return 0 if OK.
10020  */
10021 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10022 {
10023 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10024 	u_char *data = (u_char *) nvram;
10025 	int len  = sizeof(*nvram);
10026 	u_short	csum;
10027 	int x;
10028 
10029 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10030 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10031 		return 1;
10032 
10033 	/* check valid NVRAM signature, verify byte count and checksum */
10034 	if (nvram->type != 0 ||
10035 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10036 	    nvram->byte_count != len - 12)
10037 		return 1;
10038 
10039 	/* verify checksum */
10040 	for (x = 6, csum = 0; x < len - 6; x++)
10041 		csum += data[x];
10042 	if (csum != nvram->checksum)
10043 		return 1;
10044 
10045 	return 0;
10046 }
10047 
10048 /*
10049  *  93C46 EEPROM reading.
10050  *
10051  *  GPOI0 - data in
10052  *  GPIO1 - data out
10053  *  GPIO2 - clock
10054  *  GPIO4 - chip select
10055  *
10056  *  Used by Tekram.
10057  */
10058 
10059 /*
10060  *  Pulse clock bit in GPIO0
10061  */
10062 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10063 {
10064 	OUTB (nc_gpreg, *gpreg | 0x04);
10065 	UDELAY (2);
10066 	OUTB (nc_gpreg, *gpreg);
10067 }
10068 
10069 /*
10070  *  Read bit from NVRAM
10071  */
10072 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10073 {
10074 	UDELAY (2);
10075 	T93C46_Clk(np, gpreg);
10076 	*read_bit = INB (nc_gpreg);
10077 }
10078 
10079 /*
10080  *  Write bit to GPIO0
10081  */
10082 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10083 {
10084 	if (write_bit & 0x01)
10085 		*gpreg |= 0x02;
10086 	else
10087 		*gpreg &= 0xfd;
10088 
10089 	*gpreg |= 0x10;
10090 
10091 	OUTB (nc_gpreg, *gpreg);
10092 	UDELAY (2);
10093 
10094 	T93C46_Clk(np, gpreg);
10095 }
10096 
10097 /*
10098  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10099  */
10100 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10101 {
10102 	*gpreg &= 0xef;
10103 	OUTB (nc_gpreg, *gpreg);
10104 	UDELAY (2);
10105 
10106 	T93C46_Clk(np, gpreg);
10107 }
10108 
10109 /*
10110  *  Send read command and address to NVRAM
10111  */
10112 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10113 				u_char *read_bit, u_char *gpreg)
10114 {
10115 	int x;
10116 
10117 	/* send 9 bits, start bit (1), command (2), address (6)  */
10118 	for (x = 0; x < 9; x++)
10119 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10120 
10121 	*read_bit = INB (nc_gpreg);
10122 }
10123 
10124 /*
10125  *  READ 2 bytes from the NVRAM
10126  */
10127 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10128 {
10129 	int x;
10130 	u_char read_bit;
10131 
10132 	*nvram_data = 0;
10133 	for (x = 0; x < 16; x++) {
10134 		T93C46_Read_Bit(np, &read_bit, gpreg);
10135 
10136 		if (read_bit & 0x01)
10137 			*nvram_data |=  (0x01 << (15 - x));
10138 		else
10139 			*nvram_data &= ~(0x01 << (15 - x));
10140 	}
10141 }
10142 
10143 /*
10144  *  Read Tekram NvRAM data.
10145  */
10146 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10147 {
10148 	u_char	read_bit;
10149 	int	x;
10150 
10151 	for (x = 0; x < len; x++)  {
10152 
10153 		/* output read command and address */
10154 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10155 		if (read_bit & 0x01)
10156 			return 1; /* Bad */
10157 		T93C46_Read_Word(np, &data[x], gpreg);
10158 		T93C46_Stop(np, gpreg);
10159 	}
10160 
10161 	return 0;
10162 }
10163 
10164 /*
10165  *  Try reading 93C46 Tekram NVRAM.
10166  */
10167 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10168 {
10169 	u_char gpcntl, gpreg;
10170 	u_char old_gpcntl, old_gpreg;
10171 	int retv = 1;
10172 
10173 	/* save current state of GPCNTL and GPREG */
10174 	old_gpreg	= INB (nc_gpreg);
10175 	old_gpcntl	= INB (nc_gpcntl);
10176 
10177 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10178 	   1/2/4 out */
10179 	gpreg = old_gpreg & 0xe9;
10180 	OUTB (nc_gpreg, gpreg);
10181 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10182 	OUTB (nc_gpcntl, gpcntl);
10183 
10184 	/* input all of NVRAM, 64 words */
10185 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10186 				sizeof(*nvram) / sizeof(short), &gpreg);
10187 
10188 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10189 	OUTB (nc_gpcntl, old_gpcntl);
10190 	OUTB (nc_gpreg,  old_gpreg);
10191 
10192 	return retv;
10193 }
10194 
10195 /*
10196  *  Try reading Tekram NVRAM.
10197  *  Return 0 if OK.
10198  */
10199 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10200 {
10201 	u_char *data = (u_char *) nvram;
10202 	int len = sizeof(*nvram);
10203 	u_short	csum;
10204 	int x;
10205 
10206 	switch (np->device_id) {
10207 	case PCI_ID_SYM53C885:
10208 	case PCI_ID_SYM53C895:
10209 	case PCI_ID_SYM53C896:
10210 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10211 					  data, len);
10212 		break;
10213 	case PCI_ID_SYM53C875:
10214 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10215 					  data, len);
10216 		if (!x)
10217 			break;
10218 	default:
10219 		x = sym_read_T93C46_nvram(np, nvram);
10220 		break;
10221 	}
10222 	if (x)
10223 		return 1;
10224 
10225 	/* verify checksum */
10226 	for (x = 0, csum = 0; x < len - 1; x += 2)
10227 		csum += data[x] + (data[x+1] << 8);
10228 	if (csum != 0x1234)
10229 		return 1;
10230 
10231 	return 0;
10232 }
10233 
10234 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10235