xref: /dragonfly/sys/dev/drm/amd/amdgpu/amdgpu_ttm.c (revision 7d3e9a5b)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #if 0
46 #include <linux/iommu.h>
47 #endif
48 #include "amdgpu.h"
49 #include "amdgpu_object.h"
50 #include "amdgpu_trace.h"
51 #include "amdgpu_amdkfd.h"
52 #include "bif/bif_4_1_d.h"
53 
54 #include <linux/pfn_t.h>
55 
56 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
57 
58 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
59 			     struct ttm_mem_reg *mem, unsigned num_pages,
60 			     uint64_t offset, unsigned window,
61 			     struct amdgpu_ring *ring,
62 			     uint64_t *addr);
63 
64 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
65 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
66 
67 /*
68  * Global memory.
69  */
70 
71 /**
72  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
73  * memory object
74  *
75  * @ref: Object for initialization.
76  *
77  * This is called by drm_global_item_ref() when an object is being
78  * initialized.
79  */
80 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
81 {
82 	return ttm_mem_global_init(ref->object);
83 }
84 
85 /**
86  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
87  *
88  * @ref: Object being removed
89  *
90  * This is called by drm_global_item_unref() when an object is being
91  * released.
92  */
93 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
94 {
95 	ttm_mem_global_release(ref->object);
96 }
97 
98 /**
99  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
100  *
101  * @adev: AMDGPU device for which the global structures need to be registered.
102  *
103  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
104  * during bring up.
105  */
106 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
107 {
108 	struct drm_global_reference *global_ref;
109 	int r;
110 
111 	/* ensure reference is false in case init fails */
112 	adev->mman.mem_global_referenced = false;
113 
114 	global_ref = &adev->mman.mem_global_ref;
115 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
116 	global_ref->size = sizeof(struct ttm_mem_global);
117 	global_ref->init = &amdgpu_ttm_mem_global_init;
118 	global_ref->release = &amdgpu_ttm_mem_global_release;
119 	r = drm_global_item_ref(global_ref);
120 	if (r) {
121 		DRM_ERROR("Failed setting up TTM memory accounting "
122 			  "subsystem.\n");
123 		goto error_mem;
124 	}
125 
126 	adev->mman.bo_global_ref.mem_glob =
127 		adev->mman.mem_global_ref.object;
128 	global_ref = &adev->mman.bo_global_ref.ref;
129 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
130 	global_ref->size = sizeof(struct ttm_bo_global);
131 	global_ref->init = &ttm_bo_global_init;
132 	global_ref->release = &ttm_bo_global_release;
133 	r = drm_global_item_ref(global_ref);
134 	if (r) {
135 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
136 		goto error_bo;
137 	}
138 
139 	lockinit(&adev->mman.gtt_window_lock, "agmgtwl", 0, LK_CANRECURSE);
140 
141 	adev->mman.mem_global_referenced = true;
142 
143 	return 0;
144 
145 error_bo:
146 	drm_global_item_unref(&adev->mman.mem_global_ref);
147 error_mem:
148 	return r;
149 }
150 
151 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
152 {
153 	if (adev->mman.mem_global_referenced) {
154 		mutex_destroy(&adev->mman.gtt_window_lock);
155 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
156 		drm_global_item_unref(&adev->mman.mem_global_ref);
157 		adev->mman.mem_global_referenced = false;
158 	}
159 }
160 
161 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
162 {
163 	return 0;
164 }
165 
166 /**
167  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
168  * memory request.
169  *
170  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
171  * @type: The type of memory requested
172  * @man: The memory type manager for each domain
173  *
174  * This is called by ttm_bo_init_mm() when a buffer object is being
175  * initialized.
176  */
177 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
178 				struct ttm_mem_type_manager *man)
179 {
180 	struct amdgpu_device *adev;
181 
182 	adev = amdgpu_ttm_adev(bdev);
183 
184 	switch (type) {
185 	case TTM_PL_SYSTEM:
186 		/* System memory */
187 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
188 		man->available_caching = TTM_PL_MASK_CACHING;
189 		man->default_caching = TTM_PL_FLAG_CACHED;
190 		break;
191 	case TTM_PL_TT:
192 		/* GTT memory  */
193 		man->func = &amdgpu_gtt_mgr_func;
194 		man->gpu_offset = adev->gmc.gart_start;
195 		man->available_caching = TTM_PL_MASK_CACHING;
196 		man->default_caching = TTM_PL_FLAG_CACHED;
197 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
198 		break;
199 	case TTM_PL_VRAM:
200 		/* "On-card" video ram */
201 		man->func = &amdgpu_vram_mgr_func;
202 		man->gpu_offset = adev->gmc.vram_start;
203 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
204 			     TTM_MEMTYPE_FLAG_MAPPABLE;
205 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
206 		man->default_caching = TTM_PL_FLAG_WC;
207 		break;
208 	case AMDGPU_PL_GDS:
209 	case AMDGPU_PL_GWS:
210 	case AMDGPU_PL_OA:
211 		/* On-chip GDS memory*/
212 		man->func = &ttm_bo_manager_func;
213 		man->gpu_offset = 0;
214 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
215 		man->available_caching = TTM_PL_FLAG_UNCACHED;
216 		man->default_caching = TTM_PL_FLAG_UNCACHED;
217 		break;
218 	default:
219 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
220 		return -EINVAL;
221 	}
222 	return 0;
223 }
224 
225 /**
226  * amdgpu_evict_flags - Compute placement flags
227  *
228  * @bo: The buffer object to evict
229  * @placement: Possible destination(s) for evicted BO
230  *
231  * Fill in placement data when ttm_bo_evict() is called
232  */
233 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
234 				struct ttm_placement *placement)
235 {
236 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
237 	struct amdgpu_bo *abo;
238 	static const struct ttm_place placements = {
239 		.fpfn = 0,
240 		.lpfn = 0,
241 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
242 	};
243 
244 	/* Don't handle scatter gather BOs */
245 	if (bo->type == ttm_bo_type_sg) {
246 		placement->num_placement = 0;
247 		placement->num_busy_placement = 0;
248 		return;
249 	}
250 
251 	/* Object isn't an AMDGPU object so ignore */
252 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
253 		placement->placement = &placements;
254 		placement->busy_placement = &placements;
255 		placement->num_placement = 1;
256 		placement->num_busy_placement = 1;
257 		return;
258 	}
259 
260 	abo = ttm_to_amdgpu_bo(bo);
261 	switch (bo->mem.mem_type) {
262 	case TTM_PL_VRAM:
263 		if (!adev->mman.buffer_funcs_enabled) {
264 			/* Move to system memory */
265 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
266 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
267 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
268 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
269 
270 			/* Try evicting to the CPU inaccessible part of VRAM
271 			 * first, but only set GTT as busy placement, so this
272 			 * BO will be evicted to GTT rather than causing other
273 			 * BOs to be evicted from VRAM
274 			 */
275 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
276 							 AMDGPU_GEM_DOMAIN_GTT);
277 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
278 			abo->placements[0].lpfn = 0;
279 			abo->placement.busy_placement = &abo->placements[1];
280 			abo->placement.num_busy_placement = 1;
281 		} else {
282 			/* Move to GTT memory */
283 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
284 		}
285 		break;
286 	case TTM_PL_TT:
287 	default:
288 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
289 	}
290 	*placement = abo->placement;
291 }
292 
293 /**
294  * amdgpu_verify_access - Verify access for a mmap call
295  *
296  * @bo:	The buffer object to map
297  * @filp: The file pointer from the process performing the mmap
298  *
299  * This is called by ttm_bo_mmap() to verify whether a process
300  * has the right to mmap a BO to their process space.
301  */
302 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
303 {
304 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
305 
306 	/*
307 	 * Don't verify access for KFD BOs. They don't have a GEM
308 	 * object associated with them.
309 	 */
310 	if (abo->kfd_bo)
311 		return 0;
312 
313 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
314 		return -EPERM;
315 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
316 					  filp->private_data);
317 }
318 
319 /**
320  * amdgpu_move_null - Register memory for a buffer object
321  *
322  * @bo: The bo to assign the memory to
323  * @new_mem: The memory to be assigned.
324  *
325  * Assign the memory from new_mem to the memory of the buffer object bo.
326  */
327 static void amdgpu_move_null(struct ttm_buffer_object *bo,
328 			     struct ttm_mem_reg *new_mem)
329 {
330 	struct ttm_mem_reg *old_mem = &bo->mem;
331 
332 	BUG_ON(old_mem->mm_node != NULL);
333 	*old_mem = *new_mem;
334 	new_mem->mm_node = NULL;
335 }
336 
337 /**
338  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
339  *
340  * @bo: The bo to assign the memory to.
341  * @mm_node: Memory manager node for drm allocator.
342  * @mem: The region where the bo resides.
343  *
344  */
345 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
346 				    struct drm_mm_node *mm_node,
347 				    struct ttm_mem_reg *mem)
348 {
349 	uint64_t addr = 0;
350 
351 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
352 		addr = mm_node->start << PAGE_SHIFT;
353 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
354 	}
355 	return addr;
356 }
357 
358 /**
359  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
360  * @offset. It also modifies the offset to be within the drm_mm_node returned
361  *
362  * @mem: The region where the bo resides.
363  * @offset: The offset that drm_mm_node is used for finding.
364  *
365  */
366 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
367 					       unsigned long *offset)
368 {
369 	struct drm_mm_node *mm_node = mem->mm_node;
370 
371 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
372 		*offset -= (mm_node->size << PAGE_SHIFT);
373 		++mm_node;
374 	}
375 	return mm_node;
376 }
377 
378 /**
379  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
380  *
381  * The function copies @size bytes from {src->mem + src->offset} to
382  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
383  * move and different for a BO to BO copy.
384  *
385  * @f: Returns the last fence if multiple jobs are submitted.
386  */
387 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
388 			       struct amdgpu_copy_mem *src,
389 			       struct amdgpu_copy_mem *dst,
390 			       uint64_t size,
391 			       struct reservation_object *resv,
392 			       struct dma_fence **f)
393 {
394 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
395 	struct drm_mm_node *src_mm, *dst_mm;
396 	uint64_t src_node_start, dst_node_start, src_node_size,
397 		 dst_node_size, src_page_offset, dst_page_offset;
398 	struct dma_fence *fence = NULL;
399 	int r = 0;
400 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
401 					AMDGPU_GPU_PAGE_SIZE);
402 
403 	if (!adev->mman.buffer_funcs_enabled) {
404 		DRM_ERROR("Trying to move memory with ring turned off.\n");
405 		return -EINVAL;
406 	}
407 
408 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
409 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
410 					     src->offset;
411 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
412 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
413 
414 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
415 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
416 					     dst->offset;
417 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
418 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
419 
420 	mutex_lock(&adev->mman.gtt_window_lock);
421 
422 	while (size) {
423 		unsigned long cur_size;
424 		uint64_t from = src_node_start, to = dst_node_start;
425 		struct dma_fence *next;
426 
427 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
428 		 * begins at an offset, then adjust the size accordingly
429 		 */
430 		cur_size = min3(min(src_node_size, dst_node_size), size,
431 				GTT_MAX_BYTES);
432 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
433 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
434 			cur_size -= max(src_page_offset, dst_page_offset);
435 
436 		/* Map only what needs to be accessed. Map src to window 0 and
437 		 * dst to window 1
438 		 */
439 		if (src->mem->mem_type == TTM_PL_TT &&
440 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
441 			r = amdgpu_map_buffer(src->bo, src->mem,
442 					PFN_UP(cur_size + src_page_offset),
443 					src_node_start, 0, ring,
444 					&from);
445 			if (r)
446 				goto error;
447 			/* Adjust the offset because amdgpu_map_buffer returns
448 			 * start of mapped page
449 			 */
450 			from += src_page_offset;
451 		}
452 
453 		if (dst->mem->mem_type == TTM_PL_TT &&
454 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
455 			r = amdgpu_map_buffer(dst->bo, dst->mem,
456 					PFN_UP(cur_size + dst_page_offset),
457 					dst_node_start, 1, ring,
458 					&to);
459 			if (r)
460 				goto error;
461 			to += dst_page_offset;
462 		}
463 
464 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
465 				       resv, &next, false, true);
466 		if (r)
467 			goto error;
468 
469 		dma_fence_put(fence);
470 		fence = next;
471 
472 		size -= cur_size;
473 		if (!size)
474 			break;
475 
476 		src_node_size -= cur_size;
477 		if (!src_node_size) {
478 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
479 							     src->mem);
480 			src_node_size = (src_mm->size << PAGE_SHIFT);
481 		} else {
482 			src_node_start += cur_size;
483 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
484 		}
485 		dst_node_size -= cur_size;
486 		if (!dst_node_size) {
487 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
488 							     dst->mem);
489 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
490 		} else {
491 			dst_node_start += cur_size;
492 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
493 		}
494 	}
495 error:
496 	mutex_unlock(&adev->mman.gtt_window_lock);
497 	if (f)
498 		*f = dma_fence_get(fence);
499 	dma_fence_put(fence);
500 	return r;
501 }
502 
503 /**
504  * amdgpu_move_blit - Copy an entire buffer to another buffer
505  *
506  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
507  * help move buffers to and from VRAM.
508  */
509 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
510 			    bool evict, bool no_wait_gpu,
511 			    struct ttm_mem_reg *new_mem,
512 			    struct ttm_mem_reg *old_mem)
513 {
514 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
515 	struct amdgpu_copy_mem src, dst;
516 	struct dma_fence *fence = NULL;
517 	int r;
518 
519 	src.bo = bo;
520 	dst.bo = bo;
521 	src.mem = old_mem;
522 	dst.mem = new_mem;
523 	src.offset = 0;
524 	dst.offset = 0;
525 
526 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
527 				       new_mem->num_pages << PAGE_SHIFT,
528 				       bo->resv, &fence);
529 	if (r)
530 		goto error;
531 
532 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
533 	dma_fence_put(fence);
534 	return r;
535 
536 error:
537 	if (fence)
538 		dma_fence_wait(fence, false);
539 	dma_fence_put(fence);
540 	return r;
541 }
542 
543 /**
544  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
545  *
546  * Called by amdgpu_bo_move().
547  */
548 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
549 				struct ttm_operation_ctx *ctx,
550 				struct ttm_mem_reg *new_mem)
551 {
552 	struct amdgpu_device *adev;
553 	struct ttm_mem_reg *old_mem = &bo->mem;
554 	struct ttm_mem_reg tmp_mem;
555 	struct ttm_place placements;
556 	struct ttm_placement placement;
557 	int r;
558 
559 	adev = amdgpu_ttm_adev(bo->bdev);
560 
561 	/* create space/pages for new_mem in GTT space */
562 	tmp_mem = *new_mem;
563 	tmp_mem.mm_node = NULL;
564 	placement.num_placement = 1;
565 	placement.placement = &placements;
566 	placement.num_busy_placement = 1;
567 	placement.busy_placement = &placements;
568 	placements.fpfn = 0;
569 	placements.lpfn = 0;
570 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
571 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
572 	if (unlikely(r)) {
573 		return r;
574 	}
575 
576 	/* set caching flags */
577 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
578 	if (unlikely(r)) {
579 		goto out_cleanup;
580 	}
581 
582 	/* Bind the memory to the GTT space */
583 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
584 	if (unlikely(r)) {
585 		goto out_cleanup;
586 	}
587 
588 	/* blit VRAM to GTT */
589 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
590 	if (unlikely(r)) {
591 		goto out_cleanup;
592 	}
593 
594 	/* move BO (in tmp_mem) to new_mem */
595 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
596 out_cleanup:
597 	ttm_bo_mem_put(bo, &tmp_mem);
598 	return r;
599 }
600 
601 /**
602  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
603  *
604  * Called by amdgpu_bo_move().
605  */
606 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
607 				struct ttm_operation_ctx *ctx,
608 				struct ttm_mem_reg *new_mem)
609 {
610 	struct amdgpu_device *adev;
611 	struct ttm_mem_reg *old_mem = &bo->mem;
612 	struct ttm_mem_reg tmp_mem;
613 	struct ttm_placement placement;
614 	struct ttm_place placements;
615 	int r;
616 
617 	adev = amdgpu_ttm_adev(bo->bdev);
618 
619 	/* make space in GTT for old_mem buffer */
620 	tmp_mem = *new_mem;
621 	tmp_mem.mm_node = NULL;
622 	placement.num_placement = 1;
623 	placement.placement = &placements;
624 	placement.num_busy_placement = 1;
625 	placement.busy_placement = &placements;
626 	placements.fpfn = 0;
627 	placements.lpfn = 0;
628 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
629 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
630 	if (unlikely(r)) {
631 		return r;
632 	}
633 
634 	/* move/bind old memory to GTT space */
635 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
636 	if (unlikely(r)) {
637 		goto out_cleanup;
638 	}
639 
640 	/* copy to VRAM */
641 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
642 	if (unlikely(r)) {
643 		goto out_cleanup;
644 	}
645 out_cleanup:
646 	ttm_bo_mem_put(bo, &tmp_mem);
647 	return r;
648 }
649 
650 /**
651  * amdgpu_bo_move - Move a buffer object to a new memory location
652  *
653  * Called by ttm_bo_handle_move_mem()
654  */
655 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
656 			  struct ttm_operation_ctx *ctx,
657 			  struct ttm_mem_reg *new_mem)
658 {
659 	struct amdgpu_device *adev;
660 	struct amdgpu_bo *abo;
661 	struct ttm_mem_reg *old_mem = &bo->mem;
662 	int r;
663 
664 	/* Can't move a pinned BO */
665 	abo = ttm_to_amdgpu_bo(bo);
666 	if (WARN_ON_ONCE(abo->pin_count > 0))
667 		return -EINVAL;
668 
669 	adev = amdgpu_ttm_adev(bo->bdev);
670 
671 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
672 		amdgpu_move_null(bo, new_mem);
673 		return 0;
674 	}
675 	if ((old_mem->mem_type == TTM_PL_TT &&
676 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
677 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
678 	     new_mem->mem_type == TTM_PL_TT)) {
679 		/* bind is enough */
680 		amdgpu_move_null(bo, new_mem);
681 		return 0;
682 	}
683 
684 	if (!adev->mman.buffer_funcs_enabled)
685 		goto memcpy;
686 
687 	if (old_mem->mem_type == TTM_PL_VRAM &&
688 	    new_mem->mem_type == TTM_PL_SYSTEM) {
689 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
690 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
691 		   new_mem->mem_type == TTM_PL_VRAM) {
692 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
693 	} else {
694 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
695 				     new_mem, old_mem);
696 	}
697 
698 	if (r) {
699 memcpy:
700 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
701 		if (r) {
702 			return r;
703 		}
704 	}
705 
706 	if (bo->type == ttm_bo_type_device &&
707 	    new_mem->mem_type == TTM_PL_VRAM &&
708 	    old_mem->mem_type != TTM_PL_VRAM) {
709 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
710 		 * accesses the BO after it's moved.
711 		 */
712 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
713 	}
714 
715 	/* update statistics */
716 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
717 	return 0;
718 }
719 
720 /**
721  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
722  *
723  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
724  */
725 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
726 {
727 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
728 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
729 	struct drm_mm_node *mm_node = mem->mm_node;
730 
731 	mem->bus.addr = NULL;
732 	mem->bus.offset = 0;
733 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
734 	mem->bus.base = 0;
735 	mem->bus.is_iomem = false;
736 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
737 		return -EINVAL;
738 	switch (mem->mem_type) {
739 	case TTM_PL_SYSTEM:
740 		/* system memory */
741 		return 0;
742 	case TTM_PL_TT:
743 		break;
744 	case TTM_PL_VRAM:
745 		mem->bus.offset = mem->start << PAGE_SHIFT;
746 		/* check if it's visible */
747 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
748 			return -EINVAL;
749 		/* Only physically contiguous buffers apply. In a contiguous
750 		 * buffer, size of the first mm_node would match the number of
751 		 * pages in ttm_mem_reg.
752 		 */
753 		if (adev->mman.aper_base_kaddr &&
754 		    (mm_node->size == mem->num_pages))
755 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
756 					mem->bus.offset;
757 
758 		mem->bus.base = adev->gmc.aper_base;
759 		mem->bus.is_iomem = true;
760 		break;
761 	default:
762 		return -EINVAL;
763 	}
764 	return 0;
765 }
766 
767 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
768 {
769 }
770 
771 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
772 					   unsigned long page_offset)
773 {
774 	struct drm_mm_node *mm;
775 	unsigned long offset = (page_offset << PAGE_SHIFT);
776 
777 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
778 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
779 		(offset >> PAGE_SHIFT);
780 }
781 
782 /*
783  * TTM backend functions.
784  */
785 struct amdgpu_ttm_gup_task_list {
786 	struct list_head	list;
787 	struct task_struct	*task;
788 };
789 
790 struct amdgpu_ttm_tt {
791 	struct ttm_dma_tt	ttm;
792 	u64			offset;
793 	uint64_t		userptr;
794 	struct task_struct	*usertask;
795 	uint32_t		userflags;
796 	struct spinlock		guptasklock;
797 	struct list_head        guptasks;
798 	atomic_t		mmu_invalidations;
799 	uint32_t		last_set_pages;
800 };
801 
802 /**
803  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
804  * pointer to memory
805  *
806  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
807  * This provides a wrapper around the get_user_pages() call to provide
808  * device accessible pages that back user memory.
809  */
810 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
811 {
812 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
813 	struct mm_struct *mm = gtt->usertask->mm;
814 	unsigned int flags = 0;
815 	unsigned pinned = 0;
816 	int r;
817 
818 	if (!mm) /* Happens during process shutdown */
819 		return -ESRCH;
820 
821 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
822 		flags |= FOLL_WRITE;
823 
824 	down_read(&mm->mmap_sem);
825 
826 #if 0
827 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
828 		/*
829 		 * check that we only use anonymous memory to prevent problems
830 		 * with writeback
831 		 */
832 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
833 		struct vm_area_struct *vma;
834 
835 		vma = find_vma(mm, gtt->userptr);
836 		if (!vma || vma->vm_file || vma->vm_end < end) {
837 			up_read(&mm->mmap_sem);
838 			return -EPERM;
839 		}
840 	}
841 #endif
842 
843 	/* loop enough times using contiguous pages of memory */
844 	do {
845 		unsigned num_pages = ttm->num_pages - pinned;
846 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
847 		struct page **p = pages + pinned;
848 		struct amdgpu_ttm_gup_task_list guptask;
849 
850 		guptask.task = current;
851 		spin_lock(&gtt->guptasklock);
852 		list_add(&guptask.list, &gtt->guptasks);
853 		spin_unlock(&gtt->guptasklock);
854 
855 		r = get_user_pages(userptr, num_pages, flags, p, NULL);
856 
857 #if 0
858 		if (mm == current->mm)
859 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
860 		else
861 			r = get_user_pages_remote(gtt->usertask,
862 					mm, userptr, num_pages,
863 					flags, p, NULL, NULL);
864 #endif
865 
866 		spin_lock(&gtt->guptasklock);
867 		list_del(&guptask.list);
868 		spin_unlock(&gtt->guptasklock);
869 
870 		if (r < 0)
871 			goto release_pages;
872 
873 		pinned += r;
874 
875 	} while (pinned < ttm->num_pages);
876 
877 	up_read(&mm->mmap_sem);
878 	return 0;
879 
880 release_pages:
881 	release_pages(pages, pinned);
882 	up_read(&mm->mmap_sem);
883 	return r;
884 }
885 
886 /**
887  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
888  *
889  * Called by amdgpu_cs_list_validate(). This creates the page list
890  * that backs user memory and will ultimately be mapped into the device
891  * address space.
892  */
893 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
894 {
895 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
896 	unsigned i;
897 
898 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
899 	for (i = 0; i < ttm->num_pages; ++i) {
900 		if (ttm->pages[i])
901 			put_page(ttm->pages[i]);
902 
903 		ttm->pages[i] = pages ? pages[i] : NULL;
904 	}
905 }
906 
907 /**
908  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
909  *
910  * Called while unpinning userptr pages
911  */
912 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
913 {
914 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
915 	unsigned i;
916 
917 	for (i = 0; i < ttm->num_pages; ++i) {
918 		struct page *page = ttm->pages[i];
919 
920 		if (!page)
921 			continue;
922 
923 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
924 			set_page_dirty(page);
925 
926 		mark_page_accessed(page);
927 	}
928 }
929 
930 /**
931  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
932  *
933  * Called by amdgpu_ttm_backend_bind()
934  **/
935 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
936 {
937 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
938 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
939 	unsigned nents;
940 	int r;
941 
942 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
943 	enum dma_data_direction direction = write ?
944 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
945 
946 	/* Allocate an SG array and squash pages into it */
947 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
948 				      ttm->num_pages << PAGE_SHIFT,
949 				      GFP_KERNEL);
950 	if (r)
951 		goto release_sg;
952 
953 	/* Map SG to device */
954 	r = -ENOMEM;
955 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
956 	if (nents != ttm->sg->nents)
957 		goto release_sg;
958 
959 	/* convert SG to linear array of pages and dma addresses */
960 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
961 					 gtt->ttm.dma_address, ttm->num_pages);
962 
963 	return 0;
964 
965 release_sg:
966 	kfree(ttm->sg);
967 	ttm->sg = NULL;
968 	return r;
969 }
970 
971 /**
972  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
973  */
974 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
975 {
976 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
977 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
978 
979 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
980 	enum dma_data_direction direction = write ?
981 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
982 
983 	/* double check that we don't free the table twice */
984 	if (!ttm->sg || !ttm->sg->sgl)
985 		return;
986 
987 	/* unmap the pages mapped to the device */
988 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
989 
990 	/* mark the pages as dirty */
991 	amdgpu_ttm_tt_mark_user_pages(ttm);
992 
993 	sg_free_table(ttm->sg);
994 }
995 
996 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
997 				struct ttm_buffer_object *tbo,
998 				uint64_t flags);
999 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1000 				struct ttm_buffer_object *tbo,
1001 				uint64_t flags)
1002 {
1003 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1004 	struct ttm_tt *ttm = tbo->ttm;
1005 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1006 	int r;
1007 
1008 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1009 		uint64_t page_idx = 1;
1010 
1011 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1012 				ttm->pages, gtt->ttm.dma_address, flags);
1013 		if (r)
1014 			goto gart_bind_fail;
1015 
1016 		/* Patch mtype of the second part BO */
1017 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1018 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1019 
1020 		r = amdgpu_gart_bind(adev,
1021 				gtt->offset + (page_idx << PAGE_SHIFT),
1022 				ttm->num_pages - page_idx,
1023 				&ttm->pages[page_idx],
1024 				&(gtt->ttm.dma_address[page_idx]), flags);
1025 	} else {
1026 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1027 				     ttm->pages, gtt->ttm.dma_address, flags);
1028 	}
1029 
1030 gart_bind_fail:
1031 	if (r)
1032 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1033 			  ttm->num_pages, gtt->offset);
1034 
1035 	return r;
1036 }
1037 
1038 /**
1039  * amdgpu_ttm_backend_bind - Bind GTT memory
1040  *
1041  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1042  * This handles binding GTT memory to the device address space.
1043  */
1044 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1045 				   struct ttm_mem_reg *bo_mem)
1046 {
1047 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1048 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1049 	uint64_t flags;
1050 	int r = 0;
1051 
1052 	if (gtt->userptr) {
1053 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1054 		if (r) {
1055 			DRM_ERROR("failed to pin userptr\n");
1056 			return r;
1057 		}
1058 	}
1059 	if (!ttm->num_pages) {
1060 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1061 		     ttm->num_pages, bo_mem, ttm);
1062 	}
1063 
1064 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1065 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1066 	    bo_mem->mem_type == AMDGPU_PL_OA)
1067 		return -EINVAL;
1068 
1069 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1070 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1071 		return 0;
1072 	}
1073 
1074 	/* compute PTE flags relevant to this BO memory */
1075 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1076 
1077 	/* bind pages into GART page tables */
1078 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1079 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1080 		ttm->pages, gtt->ttm.dma_address, flags);
1081 
1082 	if (r)
1083 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1084 			  ttm->num_pages, gtt->offset);
1085 	return r;
1086 }
1087 
1088 /**
1089  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1090  */
1091 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1092 {
1093 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1094 	struct ttm_operation_ctx ctx = { false, false };
1095 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1096 	struct ttm_mem_reg tmp;
1097 	struct ttm_placement placement;
1098 	struct ttm_place placements;
1099 	uint64_t flags;
1100 	int r;
1101 
1102 	if (bo->mem.mem_type != TTM_PL_TT ||
1103 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1104 		return 0;
1105 
1106 	/* allocate GTT space */
1107 	tmp = bo->mem;
1108 	tmp.mm_node = NULL;
1109 	placement.num_placement = 1;
1110 	placement.placement = &placements;
1111 	placement.num_busy_placement = 1;
1112 	placement.busy_placement = &placements;
1113 	placements.fpfn = 0;
1114 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1115 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1116 		TTM_PL_FLAG_TT;
1117 
1118 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1119 	if (unlikely(r))
1120 		return r;
1121 
1122 	/* compute PTE flags for this buffer object */
1123 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1124 
1125 	/* Bind pages */
1126 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1127 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1128 	if (unlikely(r)) {
1129 		ttm_bo_mem_put(bo, &tmp);
1130 		return r;
1131 	}
1132 
1133 	ttm_bo_mem_put(bo, &bo->mem);
1134 	bo->mem = tmp;
1135 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1136 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * amdgpu_ttm_recover_gart - Rebind GTT pages
1143  *
1144  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1145  * rebind GTT pages during a GPU reset.
1146  */
1147 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1148 {
1149 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1150 	uint64_t flags;
1151 	int r;
1152 
1153 	if (!tbo->ttm)
1154 		return 0;
1155 
1156 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1157 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1158 
1159 	return r;
1160 }
1161 
1162 /**
1163  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1164  *
1165  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1166  * ttm_tt_destroy().
1167  */
1168 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1169 {
1170 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1171 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1172 	int r;
1173 
1174 	/* if the pages have userptr pinning then clear that first */
1175 	if (gtt->userptr)
1176 		amdgpu_ttm_tt_unpin_userptr(ttm);
1177 
1178 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1179 		return 0;
1180 
1181 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1182 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1183 	if (r)
1184 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1185 			  gtt->ttm.ttm.num_pages, gtt->offset);
1186 	return r;
1187 }
1188 
1189 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1190 {
1191 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1192 
1193 	if (gtt->usertask)
1194 		put_task_struct(gtt->usertask);
1195 
1196 	ttm_dma_tt_fini(&gtt->ttm);
1197 	kfree(gtt);
1198 }
1199 
1200 static struct ttm_backend_func amdgpu_backend_func = {
1201 	.bind = &amdgpu_ttm_backend_bind,
1202 	.unbind = &amdgpu_ttm_backend_unbind,
1203 	.destroy = &amdgpu_ttm_backend_destroy,
1204 };
1205 
1206 /**
1207  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1208  *
1209  * @bo: The buffer object to create a GTT ttm_tt object around
1210  *
1211  * Called by ttm_tt_create().
1212  */
1213 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1214 					   uint32_t page_flags)
1215 {
1216 	struct amdgpu_device *adev;
1217 	struct amdgpu_ttm_tt *gtt;
1218 
1219 	adev = amdgpu_ttm_adev(bo->bdev);
1220 
1221 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1222 	if (gtt == NULL) {
1223 		return NULL;
1224 	}
1225 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1226 
1227 	/* allocate space for the uninitialized page entries */
1228 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1229 		kfree(gtt);
1230 		return NULL;
1231 	}
1232 	return &gtt->ttm.ttm;
1233 }
1234 
1235 /**
1236  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1237  *
1238  * Map the pages of a ttm_tt object to an address space visible
1239  * to the underlying device.
1240  */
1241 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1242 			struct ttm_operation_ctx *ctx)
1243 {
1244 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1245 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1246 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1247 
1248 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1249 	if (gtt && gtt->userptr) {
1250 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1251 		if (!ttm->sg)
1252 			return -ENOMEM;
1253 
1254 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1255 		ttm->state = tt_unbound;
1256 		return 0;
1257 	}
1258 
1259 	if (slave && ttm->sg) {
1260 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1261 						 gtt->ttm.dma_address,
1262 						 ttm->num_pages);
1263 		ttm->state = tt_unbound;
1264 		return 0;
1265 	}
1266 
1267 #ifdef CONFIG_SWIOTLB
1268 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1269 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1270 	}
1271 #endif
1272 
1273 	/* fall back to generic helper to populate the page array
1274 	 * and map them to the device */
1275 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1276 }
1277 
1278 /**
1279  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1280  *
1281  * Unmaps pages of a ttm_tt object from the device address space and
1282  * unpopulates the page array backing it.
1283  */
1284 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1285 {
1286 	struct amdgpu_device *adev;
1287 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1288 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1289 
1290 	if (gtt && gtt->userptr) {
1291 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1292 		kfree(ttm->sg);
1293 		ttm->sg = NULL;
1294 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1295 		return;
1296 	}
1297 
1298 	if (slave)
1299 		return;
1300 
1301 	adev = amdgpu_ttm_adev(ttm->bdev);
1302 
1303 #ifdef CONFIG_SWIOTLB
1304 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1305 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1306 		return;
1307 	}
1308 #endif
1309 
1310 	/* fall back to generic helper to unmap and unpopulate array */
1311 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1312 }
1313 
1314 /**
1315  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1316  * task
1317  *
1318  * @ttm: The ttm_tt object to bind this userptr object to
1319  * @addr:  The address in the current tasks VM space to use
1320  * @flags: Requirements of userptr object.
1321  *
1322  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1323  * to current task
1324  */
1325 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1326 			      uint32_t flags)
1327 {
1328 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1329 
1330 	if (gtt == NULL)
1331 		return -EINVAL;
1332 
1333 	gtt->userptr = addr;
1334 	gtt->userflags = flags;
1335 
1336 	if (gtt->usertask)
1337 		put_task_struct(gtt->usertask);
1338 kprintf("amdgpu_ttm_tt_set_userptr: gtt->usertask will not be set\n");
1339 #if 0
1340 	gtt->usertask = current->group_leader;
1341 	get_task_struct(gtt->usertask);
1342 #endif
1343 
1344 	spin_init(&gtt->guptasklock, "agttgutl");
1345 	INIT_LIST_HEAD(&gtt->guptasks);
1346 	atomic_set(&gtt->mmu_invalidations, 0);
1347 	gtt->last_set_pages = 0;
1348 
1349 	return 0;
1350 }
1351 
1352 /**
1353  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1354  */
1355 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1356 {
1357 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1358 
1359 	if (gtt == NULL)
1360 		return NULL;
1361 
1362 	if (gtt->usertask == NULL)
1363 		return NULL;
1364 
1365 	return gtt->usertask->mm;
1366 }
1367 
1368 /**
1369  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1370  * address range for the current task.
1371  *
1372  */
1373 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1374 				  unsigned long end)
1375 {
1376 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1377 	struct amdgpu_ttm_gup_task_list *entry;
1378 	unsigned long size;
1379 
1380 	if (gtt == NULL || !gtt->userptr)
1381 		return false;
1382 
1383 	/* Return false if no part of the ttm_tt object lies within
1384 	 * the range
1385 	 */
1386 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1387 	if (gtt->userptr > end || gtt->userptr + size <= start)
1388 		return false;
1389 
1390 	/* Search the lists of tasks that hold this mapping and see
1391 	 * if current is one of them.  If it is return false.
1392 	 */
1393 	spin_lock(&gtt->guptasklock);
1394 	list_for_each_entry(entry, &gtt->guptasks, list) {
1395 		if (entry->task == current) {
1396 			spin_unlock(&gtt->guptasklock);
1397 			return false;
1398 		}
1399 	}
1400 	spin_unlock(&gtt->guptasklock);
1401 
1402 	atomic_inc(&gtt->mmu_invalidations);
1403 
1404 	return true;
1405 }
1406 
1407 /**
1408  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1409  */
1410 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1411 				       int *last_invalidated)
1412 {
1413 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1414 	int prev_invalidated = *last_invalidated;
1415 
1416 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1417 	return prev_invalidated != *last_invalidated;
1418 }
1419 
1420 /**
1421  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1422  * been invalidated since the last time they've been set?
1423  */
1424 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1425 {
1426 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1427 
1428 	if (gtt == NULL || !gtt->userptr)
1429 		return false;
1430 
1431 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1432 }
1433 
1434 /**
1435  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1436  */
1437 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1438 {
1439 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1440 
1441 	if (gtt == NULL)
1442 		return false;
1443 
1444 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1445 }
1446 
1447 /**
1448  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1449  *
1450  * @ttm: The ttm_tt object to compute the flags for
1451  * @mem: The memory registry backing this ttm_tt object
1452  */
1453 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1454 				 struct ttm_mem_reg *mem)
1455 {
1456 	uint64_t flags = 0;
1457 
1458 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1459 		flags |= AMDGPU_PTE_VALID;
1460 
1461 	if (mem && mem->mem_type == TTM_PL_TT) {
1462 		flags |= AMDGPU_PTE_SYSTEM;
1463 
1464 		if (ttm->caching_state == tt_cached)
1465 			flags |= AMDGPU_PTE_SNOOPED;
1466 	}
1467 
1468 	flags |= adev->gart.gart_pte_flags;
1469 	flags |= AMDGPU_PTE_READABLE;
1470 
1471 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1472 		flags |= AMDGPU_PTE_WRITEABLE;
1473 
1474 	return flags;
1475 }
1476 
1477 /**
1478  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1479  * object.
1480  *
1481  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1482  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1483  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1484  * used to clean out a memory space.
1485  */
1486 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1487 					    const struct ttm_place *place)
1488 {
1489 	unsigned long num_pages = bo->mem.num_pages;
1490 	struct drm_mm_node *node = bo->mem.mm_node;
1491 	struct reservation_object_list *flist;
1492 	struct dma_fence *f;
1493 	int i;
1494 
1495 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1496 	 * If true, then return false as any KFD process needs all its BOs to
1497 	 * be resident to run successfully
1498 	 */
1499 	flist = reservation_object_get_list(bo->resv);
1500 	if (flist) {
1501 		for (i = 0; i < flist->shared_count; ++i) {
1502 			f = rcu_dereference_protected(flist->shared[i],
1503 				reservation_object_held(bo->resv));
1504 			if (amdkfd_fence_check_mm(f, current->mm))
1505 				return false;
1506 		}
1507 	}
1508 
1509 	switch (bo->mem.mem_type) {
1510 	case TTM_PL_TT:
1511 		return true;
1512 
1513 	case TTM_PL_VRAM:
1514 		/* Check each drm MM node individually */
1515 		while (num_pages) {
1516 			if (place->fpfn < (node->start + node->size) &&
1517 			    !(place->lpfn && place->lpfn <= node->start))
1518 				return true;
1519 
1520 			num_pages -= node->size;
1521 			++node;
1522 		}
1523 		return false;
1524 
1525 	default:
1526 		break;
1527 	}
1528 
1529 	return ttm_bo_eviction_valuable(bo, place);
1530 }
1531 
1532 /**
1533  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1534  *
1535  * @bo:  The buffer object to read/write
1536  * @offset:  Offset into buffer object
1537  * @buf:  Secondary buffer to write/read from
1538  * @len: Length in bytes of access
1539  * @write:  true if writing
1540  *
1541  * This is used to access VRAM that backs a buffer object via MMIO
1542  * access for debugging purposes.
1543  */
1544 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1545 				    unsigned long offset,
1546 				    void *buf, int len, int write)
1547 {
1548 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1549 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1550 	struct drm_mm_node *nodes;
1551 	uint32_t value = 0;
1552 	int ret = 0;
1553 	uint64_t pos;
1554 	unsigned long flags;
1555 
1556 	if (bo->mem.mem_type != TTM_PL_VRAM)
1557 		return -EIO;
1558 
1559 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1560 	pos = (nodes->start << PAGE_SHIFT) + offset;
1561 
1562 	while (len && pos < adev->gmc.mc_vram_size) {
1563 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1564 		uint32_t bytes = 4 - (pos & 3);
1565 		uint32_t shift = (pos & 3) * 8;
1566 		uint32_t mask = 0xffffffff << shift;
1567 
1568 		if (len < bytes) {
1569 			mask &= 0xffffffff >> (bytes - len) * 8;
1570 			bytes = len;
1571 		}
1572 
1573 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1574 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1575 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1576 		if (!write || mask != 0xffffffff)
1577 			value = RREG32_NO_KIQ(mmMM_DATA);
1578 		if (write) {
1579 			value &= ~mask;
1580 			value |= (*(uint32_t *)buf << shift) & mask;
1581 			WREG32_NO_KIQ(mmMM_DATA, value);
1582 		}
1583 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1584 		if (!write) {
1585 			value = (value & mask) >> shift;
1586 			memcpy(buf, &value, bytes);
1587 		}
1588 
1589 		ret += bytes;
1590 		buf = (uint8_t *)buf + bytes;
1591 		pos += bytes;
1592 		len -= bytes;
1593 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1594 			++nodes;
1595 			pos = (nodes->start << PAGE_SHIFT);
1596 		}
1597 	}
1598 
1599 	return ret;
1600 }
1601 
1602 static struct ttm_bo_driver amdgpu_bo_driver = {
1603 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1604 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1605 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1606 	.invalidate_caches = &amdgpu_invalidate_caches,
1607 	.init_mem_type = &amdgpu_init_mem_type,
1608 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1609 	.evict_flags = &amdgpu_evict_flags,
1610 	.move = &amdgpu_bo_move,
1611 	.verify_access = &amdgpu_verify_access,
1612 	.move_notify = &amdgpu_bo_move_notify,
1613 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1614 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1615 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1616 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1617 	.access_memory = &amdgpu_ttm_access_memory
1618 };
1619 
1620 /*
1621  * Firmware Reservation functions
1622  */
1623 /**
1624  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1625  *
1626  * @adev: amdgpu_device pointer
1627  *
1628  * free fw reserved vram if it has been reserved.
1629  */
1630 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1631 {
1632 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1633 		NULL, &adev->fw_vram_usage.va);
1634 }
1635 
1636 /**
1637  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1638  *
1639  * @adev: amdgpu_device pointer
1640  *
1641  * create bo vram reservation from fw.
1642  */
1643 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1644 {
1645 	struct ttm_operation_ctx ctx = { false, false };
1646 	struct amdgpu_bo_param bp;
1647 	int r = 0;
1648 	int i;
1649 	u64 vram_size = adev->gmc.visible_vram_size;
1650 	u64 offset = adev->fw_vram_usage.start_offset;
1651 	u64 size = adev->fw_vram_usage.size;
1652 	struct amdgpu_bo *bo;
1653 
1654 	memset(&bp, 0, sizeof(bp));
1655 	bp.size = adev->fw_vram_usage.size;
1656 	bp.byte_align = PAGE_SIZE;
1657 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1658 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1659 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1660 	bp.type = ttm_bo_type_kernel;
1661 	bp.resv = NULL;
1662 	adev->fw_vram_usage.va = NULL;
1663 	adev->fw_vram_usage.reserved_bo = NULL;
1664 
1665 	if (adev->fw_vram_usage.size > 0 &&
1666 		adev->fw_vram_usage.size <= vram_size) {
1667 
1668 		r = amdgpu_bo_create(adev, &bp,
1669 				     &adev->fw_vram_usage.reserved_bo);
1670 		if (r)
1671 			goto error_create;
1672 
1673 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1674 		if (r)
1675 			goto error_reserve;
1676 
1677 		/* remove the original mem node and create a new one at the
1678 		 * request position
1679 		 */
1680 		bo = adev->fw_vram_usage.reserved_bo;
1681 		offset = ALIGN(offset, PAGE_SIZE);
1682 		for (i = 0; i < bo->placement.num_placement; ++i) {
1683 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1684 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1685 		}
1686 
1687 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1688 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1689 				     &bo->tbo.mem, &ctx);
1690 		if (r)
1691 			goto error_pin;
1692 
1693 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1694 			AMDGPU_GEM_DOMAIN_VRAM,
1695 			adev->fw_vram_usage.start_offset,
1696 			(adev->fw_vram_usage.start_offset +
1697 			adev->fw_vram_usage.size));
1698 		if (r)
1699 			goto error_pin;
1700 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1701 			&adev->fw_vram_usage.va);
1702 		if (r)
1703 			goto error_kmap;
1704 
1705 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1706 	}
1707 	return r;
1708 
1709 error_kmap:
1710 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1711 error_pin:
1712 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1713 error_reserve:
1714 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1715 error_create:
1716 	adev->fw_vram_usage.va = NULL;
1717 	adev->fw_vram_usage.reserved_bo = NULL;
1718 	return r;
1719 }
1720 /**
1721  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1722  * gtt/vram related fields.
1723  *
1724  * This initializes all of the memory space pools that the TTM layer
1725  * will need such as the GTT space (system memory mapped to the device),
1726  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1727  * can be mapped per VMID.
1728  */
1729 int amdgpu_ttm_init(struct amdgpu_device *adev)
1730 {
1731 	uint64_t gtt_size;
1732 	int r;
1733 	u64 vis_vram_limit;
1734 
1735 	/* initialize global references for vram/gtt */
1736 	r = amdgpu_ttm_global_init(adev);
1737 	if (r) {
1738 		return r;
1739 	}
1740 	/* No others user of address space so set it to 0 */
1741 	r = ttm_bo_device_init(&adev->mman.bdev,
1742 			       adev->mman.bo_global_ref.ref.object,
1743 			       &amdgpu_bo_driver,
1744 #if 0
1745 			       adev->ddev->anon_inode->i_mapping,
1746 #endif
1747 			       NULL,
1748 			       DRM_FILE_PAGE_OFFSET,
1749 			       adev->need_dma32);
1750 	if (r) {
1751 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1752 		return r;
1753 	}
1754 	adev->ddev->drm_ttm_bdev = &adev->mman.bdev;
1755 	adev->mman.initialized = true;
1756 
1757 	/* We opt to avoid OOM on system pages allocations */
1758 	adev->mman.bdev.no_retry = true;
1759 
1760 	/* Initialize VRAM pool with all of VRAM divided into pages */
1761 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1762 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1763 	if (r) {
1764 		DRM_ERROR("Failed initializing VRAM heap.\n");
1765 		return r;
1766 	}
1767 
1768 	/* Reduce size of CPU-visible VRAM if requested */
1769 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1770 	if (amdgpu_vis_vram_limit > 0 &&
1771 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1772 		adev->gmc.visible_vram_size = vis_vram_limit;
1773 
1774 	/* Change the size here instead of the init above so only lpfn is affected */
1775 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1776 #ifdef CONFIG_64BIT
1777 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1778 						adev->gmc.visible_vram_size);
1779 #endif
1780 
1781 	/*
1782 	 *The reserved vram for firmware must be pinned to the specified
1783 	 *place on the VRAM, so reserve it early.
1784 	 */
1785 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1786 	if (r) {
1787 		return r;
1788 	}
1789 
1790 	/* allocate memory as required for VGA
1791 	 * This is used for VGA emulation and pre-OS scanout buffers to
1792 	 * avoid display artifacts while transitioning between pre-OS
1793 	 * and driver.  */
1794 	if (adev->gmc.stolen_size) {
1795 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1796 					    AMDGPU_GEM_DOMAIN_VRAM,
1797 					    &adev->stolen_vga_memory,
1798 					    NULL, NULL);
1799 		if (r)
1800 			return r;
1801 	}
1802 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1803 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1804 
1805 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1806 	 * or whatever the user passed on module init */
1807 	if (amdgpu_gtt_size == -1) {
1808 		struct sysinfo si;
1809 
1810 		si_meminfo(&si);
1811 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1812 			       adev->gmc.mc_vram_size),
1813 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1814 	}
1815 	else
1816 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1817 
1818 	/* Initialize GTT memory pool */
1819 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1820 	if (r) {
1821 		DRM_ERROR("Failed initializing GTT heap.\n");
1822 		return r;
1823 	}
1824 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1825 		 (unsigned)(gtt_size / (1024 * 1024)));
1826 
1827 	/* Initialize various on-chip memory pools */
1828 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1829 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1830 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1831 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1832 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1833 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1834 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1835 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1836 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1837 	/* GDS Memory */
1838 	if (adev->gds.mem.total_size) {
1839 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1840 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1841 		if (r) {
1842 			DRM_ERROR("Failed initializing GDS heap.\n");
1843 			return r;
1844 		}
1845 	}
1846 
1847 	/* GWS */
1848 	if (adev->gds.gws.total_size) {
1849 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1850 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1851 		if (r) {
1852 			DRM_ERROR("Failed initializing gws heap.\n");
1853 			return r;
1854 		}
1855 	}
1856 
1857 	/* OA */
1858 	if (adev->gds.oa.total_size) {
1859 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1860 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1861 		if (r) {
1862 			DRM_ERROR("Failed initializing oa heap.\n");
1863 			return r;
1864 		}
1865 	}
1866 
1867 	/* Register debugfs entries for amdgpu_ttm */
1868 	r = amdgpu_ttm_debugfs_init(adev);
1869 	if (r) {
1870 		DRM_ERROR("Failed to init debugfs\n");
1871 		return r;
1872 	}
1873 	return 0;
1874 }
1875 
1876 /**
1877  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1878  */
1879 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1880 {
1881 	/* return the VGA stolen memory (if any) back to VRAM */
1882 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1883 }
1884 
1885 /**
1886  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1887  */
1888 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1889 {
1890 	if (!adev->mman.initialized)
1891 		return;
1892 
1893 	amdgpu_ttm_debugfs_fini(adev);
1894 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1895 	if (adev->mman.aper_base_kaddr)
1896 		iounmap(adev->mman.aper_base_kaddr);
1897 	adev->mman.aper_base_kaddr = NULL;
1898 
1899 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1900 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1901 	if (adev->gds.mem.total_size)
1902 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1903 	if (adev->gds.gws.total_size)
1904 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1905 	if (adev->gds.oa.total_size)
1906 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1907 	ttm_bo_device_release(&adev->mman.bdev);
1908 	amdgpu_ttm_global_fini(adev);
1909 	adev->mman.initialized = false;
1910 	DRM_INFO("amdgpu: ttm finalized\n");
1911 }
1912 
1913 /**
1914  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1915  *
1916  * @adev: amdgpu_device pointer
1917  * @enable: true when we can use buffer functions.
1918  *
1919  * Enable/disable use of buffer functions during suspend/resume. This should
1920  * only be called at bootup or when userspace isn't running.
1921  */
1922 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1923 {
1924 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1925 	uint64_t size;
1926 	int r;
1927 
1928 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1929 	    adev->mman.buffer_funcs_enabled == enable)
1930 		return;
1931 
1932 	if (enable) {
1933 		struct amdgpu_ring *ring;
1934 		struct drm_sched_rq *rq;
1935 
1936 		ring = adev->mman.buffer_funcs_ring;
1937 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1938 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1939 		if (r) {
1940 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1941 				  r);
1942 			return;
1943 		}
1944 	} else {
1945 		drm_sched_entity_destroy(&adev->mman.entity);
1946 		dma_fence_put(man->move);
1947 		man->move = NULL;
1948 	}
1949 
1950 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1951 	if (enable)
1952 		size = adev->gmc.real_vram_size;
1953 	else
1954 		size = adev->gmc.visible_vram_size;
1955 	man->size = size >> PAGE_SHIFT;
1956 	adev->mman.buffer_funcs_enabled = enable;
1957 }
1958 
1959 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1960 {
1961 	struct drm_file *file_priv;
1962 	struct amdgpu_device *adev;
1963 
1964 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1965 		return -EINVAL;
1966 
1967 	file_priv = filp->private_data;
1968 	adev = file_priv->minor->dev->dev_private;
1969 	if (adev == NULL)
1970 		return -EINVAL;
1971 
1972 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1973 }
1974 
1975 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1976 			     struct ttm_mem_reg *mem, unsigned num_pages,
1977 			     uint64_t offset, unsigned window,
1978 			     struct amdgpu_ring *ring,
1979 			     uint64_t *addr)
1980 {
1981 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1982 	struct amdgpu_device *adev = ring->adev;
1983 	struct ttm_tt *ttm = bo->ttm;
1984 	struct amdgpu_job *job;
1985 	unsigned num_dw, num_bytes;
1986 	dma_addr_t *dma_address;
1987 	struct dma_fence *fence;
1988 	uint64_t src_addr, dst_addr;
1989 	uint64_t flags;
1990 	int r;
1991 
1992 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1993 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1994 
1995 	*addr = adev->gmc.gart_start;
1996 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1997 		AMDGPU_GPU_PAGE_SIZE;
1998 
1999 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
2000 	while (num_dw & 0x7)
2001 		num_dw++;
2002 
2003 	num_bytes = num_pages * 8;
2004 
2005 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2006 	if (r)
2007 		return r;
2008 
2009 	src_addr = num_dw * 4;
2010 	src_addr += job->ibs[0].gpu_addr;
2011 
2012 	dst_addr = adev->gart.table_addr;
2013 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2014 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2015 				dst_addr, num_bytes);
2016 
2017 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2018 	WARN_ON(job->ibs[0].length_dw > num_dw);
2019 
2020 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2021 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2022 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2023 			    &job->ibs[0].ptr[num_dw]);
2024 	if (r)
2025 		goto error_free;
2026 
2027 	r = amdgpu_job_submit(job, &adev->mman.entity,
2028 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2029 	if (r)
2030 		goto error_free;
2031 
2032 	dma_fence_put(fence);
2033 
2034 	return r;
2035 
2036 error_free:
2037 	amdgpu_job_free(job);
2038 	return r;
2039 }
2040 
2041 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2042 		       uint64_t dst_offset, uint32_t byte_count,
2043 		       struct reservation_object *resv,
2044 		       struct dma_fence **fence, bool direct_submit,
2045 		       bool vm_needs_flush)
2046 {
2047 	struct amdgpu_device *adev = ring->adev;
2048 	struct amdgpu_job *job;
2049 
2050 	uint32_t max_bytes;
2051 	unsigned num_loops, num_dw;
2052 	unsigned i;
2053 	int r;
2054 
2055 	if (direct_submit && !ring->ready) {
2056 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2057 		return -EINVAL;
2058 	}
2059 
2060 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2061 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2062 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2063 
2064 	/* for IB padding */
2065 	while (num_dw & 0x7)
2066 		num_dw++;
2067 
2068 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2069 	if (r)
2070 		return r;
2071 
2072 	job->vm_needs_flush = vm_needs_flush;
2073 	if (resv) {
2074 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2075 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2076 				     false);
2077 		if (r) {
2078 			DRM_ERROR("sync failed (%d).\n", r);
2079 			goto error_free;
2080 		}
2081 	}
2082 
2083 	for (i = 0; i < num_loops; i++) {
2084 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2085 
2086 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2087 					dst_offset, cur_size_in_bytes);
2088 
2089 		src_offset += cur_size_in_bytes;
2090 		dst_offset += cur_size_in_bytes;
2091 		byte_count -= cur_size_in_bytes;
2092 	}
2093 
2094 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2095 	WARN_ON(job->ibs[0].length_dw > num_dw);
2096 	if (direct_submit)
2097 		r = amdgpu_job_submit_direct(job, ring, fence);
2098 	else
2099 		r = amdgpu_job_submit(job, &adev->mman.entity,
2100 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2101 	if (r)
2102 		goto error_free;
2103 
2104 	return r;
2105 
2106 error_free:
2107 	amdgpu_job_free(job);
2108 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2109 	return r;
2110 }
2111 
2112 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2113 		       uint32_t src_data,
2114 		       struct reservation_object *resv,
2115 		       struct dma_fence **fence)
2116 {
2117 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2118 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2119 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2120 
2121 	struct drm_mm_node *mm_node;
2122 	unsigned long num_pages;
2123 	unsigned int num_loops, num_dw;
2124 
2125 	struct amdgpu_job *job;
2126 	int r;
2127 
2128 	if (!adev->mman.buffer_funcs_enabled) {
2129 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2130 		return -EINVAL;
2131 	}
2132 
2133 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2134 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2135 		if (r)
2136 			return r;
2137 	}
2138 
2139 	num_pages = bo->tbo.num_pages;
2140 	mm_node = bo->tbo.mem.mm_node;
2141 	num_loops = 0;
2142 	while (num_pages) {
2143 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2144 
2145 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2146 		num_pages -= mm_node->size;
2147 		++mm_node;
2148 	}
2149 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2150 
2151 	/* for IB padding */
2152 	num_dw += 64;
2153 
2154 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2155 	if (r)
2156 		return r;
2157 
2158 	if (resv) {
2159 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2160 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2161 		if (r) {
2162 			DRM_ERROR("sync failed (%d).\n", r);
2163 			goto error_free;
2164 		}
2165 	}
2166 
2167 	num_pages = bo->tbo.num_pages;
2168 	mm_node = bo->tbo.mem.mm_node;
2169 
2170 	while (num_pages) {
2171 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2172 		uint64_t dst_addr;
2173 
2174 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2175 		while (byte_count) {
2176 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2177 
2178 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2179 						dst_addr, cur_size_in_bytes);
2180 
2181 			dst_addr += cur_size_in_bytes;
2182 			byte_count -= cur_size_in_bytes;
2183 		}
2184 
2185 		num_pages -= mm_node->size;
2186 		++mm_node;
2187 	}
2188 
2189 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2190 	WARN_ON(job->ibs[0].length_dw > num_dw);
2191 	r = amdgpu_job_submit(job, &adev->mman.entity,
2192 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2193 	if (r)
2194 		goto error_free;
2195 
2196 	return 0;
2197 
2198 error_free:
2199 	amdgpu_job_free(job);
2200 	return r;
2201 }
2202 
2203 #if defined(CONFIG_DEBUG_FS)
2204 
2205 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2206 {
2207 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2208 	unsigned ttm_pl = *(int *)node->info_ent->data;
2209 	struct drm_device *dev = node->minor->dev;
2210 	struct amdgpu_device *adev = dev->dev_private;
2211 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2212 	struct drm_printer p = drm_seq_file_printer(m);
2213 
2214 	man->func->debug(man, &p);
2215 	return 0;
2216 }
2217 
2218 static int ttm_pl_vram = TTM_PL_VRAM;
2219 static int ttm_pl_tt = TTM_PL_TT;
2220 
2221 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2222 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2223 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2224 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2225 #ifdef CONFIG_SWIOTLB
2226 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2227 #endif
2228 };
2229 
2230 /**
2231  * amdgpu_ttm_vram_read - Linear read access to VRAM
2232  *
2233  * Accesses VRAM via MMIO for debugging purposes.
2234  */
2235 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2236 				    size_t size, loff_t *pos)
2237 {
2238 	struct amdgpu_device *adev = file_inode(f)->i_private;
2239 	ssize_t result = 0;
2240 	int r;
2241 
2242 	if (size & 0x3 || *pos & 0x3)
2243 		return -EINVAL;
2244 
2245 	if (*pos >= adev->gmc.mc_vram_size)
2246 		return -ENXIO;
2247 
2248 	while (size) {
2249 		unsigned long flags;
2250 		uint32_t value;
2251 
2252 		if (*pos >= adev->gmc.mc_vram_size)
2253 			return result;
2254 
2255 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2256 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2257 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2258 		value = RREG32_NO_KIQ(mmMM_DATA);
2259 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2260 
2261 		r = put_user(value, (uint32_t *)buf);
2262 		if (r)
2263 			return r;
2264 
2265 		result += 4;
2266 		buf += 4;
2267 		*pos += 4;
2268 		size -= 4;
2269 	}
2270 
2271 	return result;
2272 }
2273 
2274 /**
2275  * amdgpu_ttm_vram_write - Linear write access to VRAM
2276  *
2277  * Accesses VRAM via MMIO for debugging purposes.
2278  */
2279 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2280 				    size_t size, loff_t *pos)
2281 {
2282 	struct amdgpu_device *adev = file_inode(f)->i_private;
2283 	ssize_t result = 0;
2284 	int r;
2285 
2286 	if (size & 0x3 || *pos & 0x3)
2287 		return -EINVAL;
2288 
2289 	if (*pos >= adev->gmc.mc_vram_size)
2290 		return -ENXIO;
2291 
2292 	while (size) {
2293 		unsigned long flags;
2294 		uint32_t value;
2295 
2296 		if (*pos >= adev->gmc.mc_vram_size)
2297 			return result;
2298 
2299 		r = get_user(value, (uint32_t *)buf);
2300 		if (r)
2301 			return r;
2302 
2303 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2304 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2305 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2306 		WREG32_NO_KIQ(mmMM_DATA, value);
2307 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2308 
2309 		result += 4;
2310 		buf += 4;
2311 		*pos += 4;
2312 		size -= 4;
2313 	}
2314 
2315 	return result;
2316 }
2317 
2318 static const struct file_operations amdgpu_ttm_vram_fops = {
2319 	.owner = THIS_MODULE,
2320 	.read = amdgpu_ttm_vram_read,
2321 	.write = amdgpu_ttm_vram_write,
2322 	.llseek = default_llseek,
2323 };
2324 
2325 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2326 
2327 /**
2328  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2329  */
2330 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2331 				   size_t size, loff_t *pos)
2332 {
2333 	struct amdgpu_device *adev = file_inode(f)->i_private;
2334 	ssize_t result = 0;
2335 	int r;
2336 
2337 	while (size) {
2338 		loff_t p = *pos / PAGE_SIZE;
2339 		unsigned off = *pos & ~PAGE_MASK;
2340 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2341 		struct page *page;
2342 		void *ptr;
2343 
2344 		if (p >= adev->gart.num_cpu_pages)
2345 			return result;
2346 
2347 		page = adev->gart.pages[p];
2348 		if (page) {
2349 			ptr = kmap(page);
2350 			ptr += off;
2351 
2352 			r = copy_to_user(buf, ptr, cur_size);
2353 			kunmap(adev->gart.pages[p]);
2354 		} else
2355 			r = clear_user(buf, cur_size);
2356 
2357 		if (r)
2358 			return -EFAULT;
2359 
2360 		result += cur_size;
2361 		buf += cur_size;
2362 		*pos += cur_size;
2363 		size -= cur_size;
2364 	}
2365 
2366 	return result;
2367 }
2368 
2369 static const struct file_operations amdgpu_ttm_gtt_fops = {
2370 	.owner = THIS_MODULE,
2371 	.read = amdgpu_ttm_gtt_read,
2372 	.llseek = default_llseek
2373 };
2374 
2375 #endif
2376 
2377 /**
2378  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2379  *
2380  * This function is used to read memory that has been mapped to the
2381  * GPU and the known addresses are not physical addresses but instead
2382  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2383  */
2384 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2385 				 size_t size, loff_t *pos)
2386 {
2387 	struct amdgpu_device *adev = file_inode(f)->i_private;
2388 	struct iommu_domain *dom;
2389 	ssize_t result = 0;
2390 	int r;
2391 
2392 	/* retrieve the IOMMU domain if any for this device */
2393 	dom = iommu_get_domain_for_dev(adev->dev);
2394 
2395 	while (size) {
2396 		phys_addr_t addr = *pos & PAGE_MASK;
2397 		loff_t off = *pos & ~PAGE_MASK;
2398 		size_t bytes = PAGE_SIZE - off;
2399 		unsigned long pfn;
2400 		struct page *p;
2401 		void *ptr;
2402 
2403 		bytes = bytes < size ? bytes : size;
2404 
2405 		/* Translate the bus address to a physical address.  If
2406 		 * the domain is NULL it means there is no IOMMU active
2407 		 * and the address translation is the identity
2408 		 */
2409 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2410 
2411 		pfn = addr >> PAGE_SHIFT;
2412 		if (!pfn_valid(pfn))
2413 			return -EPERM;
2414 
2415 		p = pfn_to_page(pfn);
2416 		if (p->mapping != adev->mman.bdev.dev_mapping)
2417 			return -EPERM;
2418 
2419 		ptr = kmap(p);
2420 		r = copy_to_user(buf, ptr + off, bytes);
2421 		kunmap(p);
2422 		if (r)
2423 			return -EFAULT;
2424 
2425 		size -= bytes;
2426 		*pos += bytes;
2427 		result += bytes;
2428 	}
2429 
2430 	return result;
2431 }
2432 
2433 /**
2434  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2435  *
2436  * This function is used to write memory that has been mapped to the
2437  * GPU and the known addresses are not physical addresses but instead
2438  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2439  */
2440 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2441 				 size_t size, loff_t *pos)
2442 {
2443 	struct amdgpu_device *adev = file_inode(f)->i_private;
2444 	struct iommu_domain *dom;
2445 	ssize_t result = 0;
2446 	int r;
2447 
2448 	dom = iommu_get_domain_for_dev(adev->dev);
2449 
2450 	while (size) {
2451 		phys_addr_t addr = *pos & PAGE_MASK;
2452 		loff_t off = *pos & ~PAGE_MASK;
2453 		size_t bytes = PAGE_SIZE - off;
2454 		unsigned long pfn;
2455 		struct page *p;
2456 		void *ptr;
2457 
2458 		bytes = bytes < size ? bytes : size;
2459 
2460 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2461 
2462 		pfn = addr >> PAGE_SHIFT;
2463 		if (!pfn_valid(pfn))
2464 			return -EPERM;
2465 
2466 		p = pfn_to_page(pfn);
2467 		if (p->mapping != adev->mman.bdev.dev_mapping)
2468 			return -EPERM;
2469 
2470 		ptr = kmap(p);
2471 		r = copy_from_user(ptr + off, buf, bytes);
2472 		kunmap(p);
2473 		if (r)
2474 			return -EFAULT;
2475 
2476 		size -= bytes;
2477 		*pos += bytes;
2478 		result += bytes;
2479 	}
2480 
2481 	return result;
2482 }
2483 
2484 static const struct file_operations amdgpu_ttm_iomem_fops = {
2485 	.owner = THIS_MODULE,
2486 	.read = amdgpu_iomem_read,
2487 	.write = amdgpu_iomem_write,
2488 	.llseek = default_llseek
2489 };
2490 
2491 static const struct {
2492 	char *name;
2493 	const struct file_operations *fops;
2494 	int domain;
2495 } ttm_debugfs_entries[] = {
2496 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2497 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2498 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2499 #endif
2500 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2501 };
2502 
2503 #endif
2504 
2505 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2506 {
2507 #if defined(CONFIG_DEBUG_FS)
2508 	unsigned count;
2509 
2510 	struct drm_minor *minor = adev->ddev->primary;
2511 	struct dentry *ent, *root = minor->debugfs_root;
2512 
2513 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2514 		ent = debugfs_create_file(
2515 				ttm_debugfs_entries[count].name,
2516 				S_IFREG | S_IRUGO, root,
2517 				adev,
2518 				ttm_debugfs_entries[count].fops);
2519 		if (IS_ERR(ent))
2520 			return PTR_ERR(ent);
2521 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2522 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2523 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2524 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2525 		adev->mman.debugfs_entries[count] = ent;
2526 	}
2527 
2528 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2529 
2530 #ifdef CONFIG_SWIOTLB
2531 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2532 		--count;
2533 #endif
2534 
2535 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2536 #else
2537 	return 0;
2538 #endif
2539 }
2540 
2541 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2542 {
2543 #if defined(CONFIG_DEBUG_FS)
2544 	unsigned i;
2545 
2546 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2547 		debugfs_remove(adev->mman.debugfs_entries[i]);
2548 #endif
2549 }
2550