xref: /dragonfly/sys/dev/drm/amd/amdgpu/sdma_v3_0.c (revision 7d3e9a5b)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 #include "ivsrcid/ivsrcid_vislands30.h"
48 
49 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
51 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
52 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
53 
54 MODULE_FIRMWARE("amdgpufw_tonga_sdma");
55 MODULE_FIRMWARE("amdgpufw_tonga_sdma1");
56 MODULE_FIRMWARE("amdgpufw_carrizo_sdma");
57 MODULE_FIRMWARE("amdgpufw_carrizo_sdma1");
58 MODULE_FIRMWARE("amdgpufw_fiji_sdma");
59 MODULE_FIRMWARE("amdgpufw_fiji_sdma1");
60 MODULE_FIRMWARE("amdgpufw_stoney_sdma");
61 MODULE_FIRMWARE("amdgpufw_polaris10_sdma");
62 MODULE_FIRMWARE("amdgpufw_polaris10_sdma1");
63 MODULE_FIRMWARE("amdgpufw_polaris11_sdma");
64 MODULE_FIRMWARE("amdgpufw_polaris11_sdma1");
65 MODULE_FIRMWARE("amdgpufw_polaris12_sdma");
66 MODULE_FIRMWARE("amdgpufw_polaris12_sdma1");
67 MODULE_FIRMWARE("amdgpufw_vegam_sdma");
68 MODULE_FIRMWARE("amdgpufw_vegam_sdma1");
69 
70 
71 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
72 {
73 	SDMA0_REGISTER_OFFSET,
74 	SDMA1_REGISTER_OFFSET
75 };
76 
77 static const u32 golden_settings_tonga_a11[] =
78 {
79 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
80 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
81 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
82 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
85 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
86 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
88 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
89 };
90 
91 static const u32 tonga_mgcg_cgcg_init[] =
92 {
93 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
94 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
95 };
96 
97 static const u32 golden_settings_fiji_a10[] =
98 {
99 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
104 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
107 };
108 
109 static const u32 fiji_mgcg_cgcg_init[] =
110 {
111 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
112 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
113 };
114 
115 static const u32 golden_settings_polaris11_a11[] =
116 {
117 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
118 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
119 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
120 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
123 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
124 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
126 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
127 };
128 
129 static const u32 golden_settings_polaris10_a11[] =
130 {
131 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
132 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
133 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
137 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
138 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
140 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
141 };
142 
143 static const u32 cz_golden_settings_a11[] =
144 {
145 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
147 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
149 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
152 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
153 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
155 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
156 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
157 };
158 
159 static const u32 cz_mgcg_cgcg_init[] =
160 {
161 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
162 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
163 };
164 
165 static const u32 stoney_golden_settings_a11[] =
166 {
167 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
168 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
169 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
170 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
171 };
172 
173 static const u32 stoney_mgcg_cgcg_init[] =
174 {
175 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
176 };
177 
178 /*
179  * sDMA - System DMA
180  * Starting with CIK, the GPU has new asynchronous
181  * DMA engines.  These engines are used for compute
182  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
183  * and each one supports 1 ring buffer used for gfx
184  * and 2 queues used for compute.
185  *
186  * The programming model is very similar to the CP
187  * (ring buffer, IBs, etc.), but sDMA has it's own
188  * packet format that is different from the PM4 format
189  * used by the CP. sDMA supports copying data, writing
190  * embedded data, solid fills, and a number of other
191  * things.  It also has support for tiling/detiling of
192  * buffers.
193  */
194 
195 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
196 {
197 	switch (adev->asic_type) {
198 	case CHIP_FIJI:
199 		amdgpu_device_program_register_sequence(adev,
200 							fiji_mgcg_cgcg_init,
201 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
202 		amdgpu_device_program_register_sequence(adev,
203 							golden_settings_fiji_a10,
204 							ARRAY_SIZE(golden_settings_fiji_a10));
205 		break;
206 	case CHIP_TONGA:
207 		amdgpu_device_program_register_sequence(adev,
208 							tonga_mgcg_cgcg_init,
209 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
210 		amdgpu_device_program_register_sequence(adev,
211 							golden_settings_tonga_a11,
212 							ARRAY_SIZE(golden_settings_tonga_a11));
213 		break;
214 	case CHIP_POLARIS11:
215 	case CHIP_POLARIS12:
216 	case CHIP_VEGAM:
217 		amdgpu_device_program_register_sequence(adev,
218 							golden_settings_polaris11_a11,
219 							ARRAY_SIZE(golden_settings_polaris11_a11));
220 		break;
221 	case CHIP_POLARIS10:
222 		amdgpu_device_program_register_sequence(adev,
223 							golden_settings_polaris10_a11,
224 							ARRAY_SIZE(golden_settings_polaris10_a11));
225 		break;
226 	case CHIP_CARRIZO:
227 		amdgpu_device_program_register_sequence(adev,
228 							cz_mgcg_cgcg_init,
229 							ARRAY_SIZE(cz_mgcg_cgcg_init));
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_golden_settings_a11,
232 							ARRAY_SIZE(cz_golden_settings_a11));
233 		break;
234 	case CHIP_STONEY:
235 		amdgpu_device_program_register_sequence(adev,
236 							stoney_mgcg_cgcg_init,
237 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_golden_settings_a11,
240 							ARRAY_SIZE(stoney_golden_settings_a11));
241 		break;
242 	default:
243 		break;
244 	}
245 }
246 
247 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
248 {
249 	int i;
250 	for (i = 0; i < adev->sdma.num_instances; i++) {
251 		release_firmware(adev->sdma.instance[i].fw);
252 		adev->sdma.instance[i].fw = NULL;
253 	}
254 }
255 
256 /**
257  * sdma_v3_0_init_microcode - load ucode images from disk
258  *
259  * @adev: amdgpu_device pointer
260  *
261  * Use the firmware interface to load the ucode images into
262  * the driver (not loaded into hw).
263  * Returns 0 on success, error on failure.
264  */
265 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
266 {
267 	const char *chip_name;
268 	char fw_name[30];
269 	int err = 0, i;
270 	struct amdgpu_firmware_info *info = NULL;
271 	const struct common_firmware_header *header = NULL;
272 	const struct sdma_firmware_header_v1_0 *hdr;
273 
274 	DRM_DEBUG("\n");
275 
276 	switch (adev->asic_type) {
277 	case CHIP_TONGA:
278 		chip_name = "tonga";
279 		break;
280 	case CHIP_FIJI:
281 		chip_name = "fiji";
282 		break;
283 	case CHIP_POLARIS10:
284 		chip_name = "polaris10";
285 		break;
286 	case CHIP_POLARIS11:
287 		chip_name = "polaris11";
288 		break;
289 	case CHIP_POLARIS12:
290 		chip_name = "polaris12";
291 		break;
292 	case CHIP_VEGAM:
293 		chip_name = "vegam";
294 		break;
295 	case CHIP_CARRIZO:
296 		chip_name = "carrizo";
297 		break;
298 	case CHIP_STONEY:
299 		chip_name = "stoney";
300 		break;
301 	default: BUG();
302 	}
303 
304 	for (i = 0; i < adev->sdma.num_instances; i++) {
305 		if (i == 0)
306 			snprintf(fw_name, sizeof(fw_name), "amdgpufw_%s_sdma", chip_name);
307 		else
308 			snprintf(fw_name, sizeof(fw_name), "amdgpufw_%s_sdma1", chip_name);
309 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
310 		if (err)
311 			goto out;
312 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
313 		if (err)
314 			goto out;
315 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
316 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
317 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
318 		if (adev->sdma.instance[i].feature_version >= 20)
319 			adev->sdma.instance[i].burst_nop = true;
320 
321 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
322 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
323 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
324 			info->fw = adev->sdma.instance[i].fw;
325 			header = (const struct common_firmware_header *)info->fw->data;
326 			adev->firmware.fw_size +=
327 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
328 		}
329 	}
330 out:
331 	if (err) {
332 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
333 		for (i = 0; i < adev->sdma.num_instances; i++) {
334 			release_firmware(adev->sdma.instance[i].fw);
335 			adev->sdma.instance[i].fw = NULL;
336 		}
337 	}
338 	return err;
339 }
340 
341 /**
342  * sdma_v3_0_ring_get_rptr - get the current read pointer
343  *
344  * @ring: amdgpu ring pointer
345  *
346  * Get the current rptr from the hardware (VI+).
347  */
348 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
349 {
350 	/* XXX check if swapping is necessary on BE */
351 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
352 }
353 
354 /**
355  * sdma_v3_0_ring_get_wptr - get the current write pointer
356  *
357  * @ring: amdgpu ring pointer
358  *
359  * Get the current wptr from the hardware (VI+).
360  */
361 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
362 {
363 	struct amdgpu_device *adev = ring->adev;
364 	u32 wptr;
365 
366 	if (ring->use_doorbell || ring->use_pollmem) {
367 		/* XXX check if swapping is necessary on BE */
368 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
369 	} else {
370 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
371 	}
372 
373 	return wptr;
374 }
375 
376 /**
377  * sdma_v3_0_ring_set_wptr - commit the write pointer
378  *
379  * @ring: amdgpu ring pointer
380  *
381  * Write the wptr back to the hardware (VI+).
382  */
383 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
384 {
385 	struct amdgpu_device *adev = ring->adev;
386 
387 	if (ring->use_doorbell) {
388 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
389 		/* XXX check if swapping is necessary on BE */
390 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
391 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
392 	} else if (ring->use_pollmem) {
393 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
394 
395 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
396 	} else {
397 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
398 	}
399 }
400 
401 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
402 {
403 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
404 	int i;
405 
406 	for (i = 0; i < count; i++)
407 		if (sdma && sdma->burst_nop && (i == 0))
408 			amdgpu_ring_write(ring, ring->funcs->nop |
409 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
410 		else
411 			amdgpu_ring_write(ring, ring->funcs->nop);
412 }
413 
414 /**
415  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
416  *
417  * @ring: amdgpu ring pointer
418  * @ib: IB object to schedule
419  *
420  * Schedule an IB in the DMA ring (VI).
421  */
422 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
423 				   struct amdgpu_ib *ib,
424 				   unsigned vmid, bool ctx_switch)
425 {
426 	/* IB packet must end on a 8 DW boundary */
427 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
428 
429 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
430 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
431 	/* base must be 32 byte aligned */
432 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
433 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
434 	amdgpu_ring_write(ring, ib->length_dw);
435 	amdgpu_ring_write(ring, 0);
436 	amdgpu_ring_write(ring, 0);
437 
438 }
439 
440 /**
441  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
442  *
443  * @ring: amdgpu ring pointer
444  *
445  * Emit an hdp flush packet on the requested DMA ring.
446  */
447 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
448 {
449 	u32 ref_and_mask = 0;
450 
451 	if (ring->me == 0)
452 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
453 	else
454 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
455 
456 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
457 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
458 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
459 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
460 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
461 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
462 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
463 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
464 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
465 }
466 
467 /**
468  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
469  *
470  * @ring: amdgpu ring pointer
471  * @fence: amdgpu fence object
472  *
473  * Add a DMA fence packet to the ring to write
474  * the fence seq number and DMA trap packet to generate
475  * an interrupt if needed (VI).
476  */
477 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, uint64_t seq,
478 				      unsigned flags)
479 {
480 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
481 	/* write the fence */
482 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
483 	amdgpu_ring_write(ring, lower_32_bits(addr));
484 	amdgpu_ring_write(ring, upper_32_bits(addr));
485 	amdgpu_ring_write(ring, lower_32_bits(seq));
486 
487 	/* optionally write high bits as well */
488 	if (write64bit) {
489 		addr += 4;
490 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
491 		amdgpu_ring_write(ring, lower_32_bits(addr));
492 		amdgpu_ring_write(ring, upper_32_bits(addr));
493 		amdgpu_ring_write(ring, upper_32_bits(seq));
494 	}
495 
496 	/* generate an interrupt */
497 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
498 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
499 }
500 
501 /**
502  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
503  *
504  * @adev: amdgpu_device pointer
505  *
506  * Stop the gfx async dma ring buffers (VI).
507  */
508 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
509 {
510 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
511 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
512 	u32 rb_cntl, ib_cntl;
513 	int i;
514 
515 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
516 	    (adev->mman.buffer_funcs_ring == sdma1))
517 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
518 
519 	for (i = 0; i < adev->sdma.num_instances; i++) {
520 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
521 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
522 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
523 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
524 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
525 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
526 	}
527 	sdma0->ready = false;
528 	sdma1->ready = false;
529 }
530 
531 /**
532  * sdma_v3_0_rlc_stop - stop the compute async dma engines
533  *
534  * @adev: amdgpu_device pointer
535  *
536  * Stop the compute async dma queues (VI).
537  */
538 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
539 {
540 	/* XXX todo */
541 }
542 
543 /**
544  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
545  *
546  * @adev: amdgpu_device pointer
547  * @enable: enable/disable the DMA MEs context switch.
548  *
549  * Halt or unhalt the async dma engines context switch (VI).
550  */
551 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
552 {
553 	u32 f32_cntl, phase_quantum = 0;
554 	int i;
555 
556 	if (amdgpu_sdma_phase_quantum) {
557 		unsigned value = amdgpu_sdma_phase_quantum;
558 		unsigned unit = 0;
559 
560 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
561 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
562 			value = (value + 1) >> 1;
563 			unit++;
564 		}
565 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
566 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
567 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
568 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
569 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
570 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
571 			WARN_ONCE(1,
572 			"clamping sdma_phase_quantum to %uK clock cycles\n",
573 				  value << unit);
574 		}
575 		phase_quantum =
576 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
577 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
578 	}
579 
580 	for (i = 0; i < adev->sdma.num_instances; i++) {
581 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
582 		if (enable) {
583 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
584 					AUTO_CTXSW_ENABLE, 1);
585 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
586 					ATC_L1_ENABLE, 1);
587 			if (amdgpu_sdma_phase_quantum) {
588 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
589 				       phase_quantum);
590 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
591 				       phase_quantum);
592 			}
593 		} else {
594 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
595 					AUTO_CTXSW_ENABLE, 0);
596 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
597 					ATC_L1_ENABLE, 1);
598 		}
599 
600 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
601 	}
602 }
603 
604 /**
605  * sdma_v3_0_enable - stop the async dma engines
606  *
607  * @adev: amdgpu_device pointer
608  * @enable: enable/disable the DMA MEs.
609  *
610  * Halt or unhalt the async dma engines (VI).
611  */
612 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
613 {
614 	u32 f32_cntl;
615 	int i;
616 
617 	if (!enable) {
618 		sdma_v3_0_gfx_stop(adev);
619 		sdma_v3_0_rlc_stop(adev);
620 	}
621 
622 	for (i = 0; i < adev->sdma.num_instances; i++) {
623 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
624 		if (enable)
625 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
626 		else
627 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
628 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
629 	}
630 }
631 
632 /**
633  * sdma_v3_0_gfx_resume - setup and start the async dma engines
634  *
635  * @adev: amdgpu_device pointer
636  *
637  * Set up the gfx DMA ring buffers and enable them (VI).
638  * Returns 0 for success, error for failure.
639  */
640 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
641 {
642 	struct amdgpu_ring *ring;
643 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
644 	u32 rb_bufsz;
645 	u32 wb_offset;
646 	u32 doorbell;
647 	u64 wptr_gpu_addr;
648 	int i, j, r;
649 
650 	for (i = 0; i < adev->sdma.num_instances; i++) {
651 		ring = &adev->sdma.instance[i].ring;
652 		amdgpu_ring_clear_ring(ring);
653 		wb_offset = (ring->rptr_offs * 4);
654 
655 		mutex_lock(&adev->srbm_mutex);
656 		for (j = 0; j < 16; j++) {
657 			vi_srbm_select(adev, 0, 0, 0, j);
658 			/* SDMA GFX */
659 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
660 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
661 		}
662 		vi_srbm_select(adev, 0, 0, 0, 0);
663 		mutex_unlock(&adev->srbm_mutex);
664 
665 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
666 		       adev->gfx.config.gb_addr_config & 0x70);
667 
668 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
669 
670 		/* Set ring buffer size in dwords */
671 		rb_bufsz = order_base_2(ring->ring_size / 4);
672 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
673 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
674 #ifdef __BIG_ENDIAN
675 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
676 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
677 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
678 #endif
679 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
680 
681 		/* Initialize the ring buffer's read and write pointers */
682 		ring->wptr = 0;
683 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
684 		sdma_v3_0_ring_set_wptr(ring);
685 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
686 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
687 
688 		/* set the wb address whether it's enabled or not */
689 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
690 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
691 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
692 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
693 
694 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
695 
696 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
697 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
698 
699 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
700 
701 		if (ring->use_doorbell) {
702 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
703 						 OFFSET, ring->doorbell_index);
704 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
705 		} else {
706 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
707 		}
708 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
709 
710 		/* setup the wptr shadow polling */
711 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
712 
713 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
714 		       lower_32_bits(wptr_gpu_addr));
715 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
716 		       upper_32_bits(wptr_gpu_addr));
717 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
718 		if (ring->use_pollmem) {
719 			/*wptr polling is not enogh fast, directly clean the wptr register */
720 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
721 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
722 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
723 						       ENABLE, 1);
724 		} else {
725 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
726 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
727 						       ENABLE, 0);
728 		}
729 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
730 
731 		/* enable DMA RB */
732 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
733 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
734 
735 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
736 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
737 #ifdef __BIG_ENDIAN
738 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
739 #endif
740 		/* enable DMA IBs */
741 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
742 
743 		ring->ready = true;
744 	}
745 
746 	/* unhalt the MEs */
747 	sdma_v3_0_enable(adev, true);
748 	/* enable sdma ring preemption */
749 	sdma_v3_0_ctx_switch_enable(adev, true);
750 
751 	for (i = 0; i < adev->sdma.num_instances; i++) {
752 		ring = &adev->sdma.instance[i].ring;
753 		r = amdgpu_ring_test_ring(ring);
754 		if (r) {
755 			ring->ready = false;
756 			return r;
757 		}
758 
759 		if (adev->mman.buffer_funcs_ring == ring)
760 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
761 	}
762 
763 	return 0;
764 }
765 
766 /**
767  * sdma_v3_0_rlc_resume - setup and start the async dma engines
768  *
769  * @adev: amdgpu_device pointer
770  *
771  * Set up the compute DMA queues and enable them (VI).
772  * Returns 0 for success, error for failure.
773  */
774 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
775 {
776 	/* XXX todo */
777 	return 0;
778 }
779 
780 /**
781  * sdma_v3_0_load_microcode - load the sDMA ME ucode
782  *
783  * @adev: amdgpu_device pointer
784  *
785  * Loads the sDMA0/1 ucode.
786  * Returns 0 for success, -EINVAL if the ucode is not available.
787  */
788 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
789 {
790 	const struct sdma_firmware_header_v1_0 *hdr;
791 	const __le32 *fw_data;
792 	u32 fw_size;
793 	int i, j;
794 
795 	/* halt the MEs */
796 	sdma_v3_0_enable(adev, false);
797 
798 	for (i = 0; i < adev->sdma.num_instances; i++) {
799 		if (!adev->sdma.instance[i].fw)
800 			return -EINVAL;
801 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
802 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
803 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
804 		fw_data = (const __le32 *)
805 			(adev->sdma.instance[i].fw->data +
806 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
807 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
808 		for (j = 0; j < fw_size; j++)
809 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
810 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
811 	}
812 
813 	return 0;
814 }
815 
816 /**
817  * sdma_v3_0_start - setup and start the async dma engines
818  *
819  * @adev: amdgpu_device pointer
820  *
821  * Set up the DMA engines and enable them (VI).
822  * Returns 0 for success, error for failure.
823  */
824 static int sdma_v3_0_start(struct amdgpu_device *adev)
825 {
826 	int r;
827 
828 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
829 		r = sdma_v3_0_load_microcode(adev);
830 		if (r)
831 			return r;
832 	}
833 
834 	/* disable sdma engine before programing it */
835 	sdma_v3_0_ctx_switch_enable(adev, false);
836 	sdma_v3_0_enable(adev, false);
837 
838 	/* start the gfx rings and rlc compute queues */
839 	r = sdma_v3_0_gfx_resume(adev);
840 	if (r)
841 		return r;
842 	r = sdma_v3_0_rlc_resume(adev);
843 	if (r)
844 		return r;
845 
846 	return 0;
847 }
848 
849 /**
850  * sdma_v3_0_ring_test_ring - simple async dma engine test
851  *
852  * @ring: amdgpu_ring structure holding ring information
853  *
854  * Test the DMA engine by writing using it to write an
855  * value to memory. (VI).
856  * Returns 0 for success, error for failure.
857  */
858 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
859 {
860 	struct amdgpu_device *adev = ring->adev;
861 	unsigned i;
862 	unsigned index;
863 	int r;
864 	u32 tmp;
865 	u64 gpu_addr;
866 
867 	r = amdgpu_device_wb_get(adev, &index);
868 	if (r) {
869 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
870 		return r;
871 	}
872 
873 	gpu_addr = adev->wb.gpu_addr + (index * 4);
874 	tmp = 0xCAFEDEAD;
875 	adev->wb.wb[index] = cpu_to_le32(tmp);
876 
877 	r = amdgpu_ring_alloc(ring, 5);
878 	if (r) {
879 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
880 		amdgpu_device_wb_free(adev, index);
881 		return r;
882 	}
883 
884 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
885 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
886 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
887 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
888 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
889 	amdgpu_ring_write(ring, 0xDEADBEEF);
890 	amdgpu_ring_commit(ring);
891 
892 	for (i = 0; i < adev->usec_timeout; i++) {
893 		tmp = le32_to_cpu(adev->wb.wb[index]);
894 		if (tmp == 0xDEADBEEF)
895 			break;
896 		DRM_UDELAY(1);
897 	}
898 
899 	if (i < adev->usec_timeout) {
900 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
901 	} else {
902 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
903 			  ring->idx, tmp);
904 		r = -EINVAL;
905 	}
906 	amdgpu_device_wb_free(adev, index);
907 
908 	return r;
909 }
910 
911 /**
912  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
913  *
914  * @ring: amdgpu_ring structure holding ring information
915  *
916  * Test a simple IB in the DMA ring (VI).
917  * Returns 0 on success, error on failure.
918  */
919 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
920 {
921 	struct amdgpu_device *adev = ring->adev;
922 	struct amdgpu_ib ib;
923 	struct dma_fence *f = NULL;
924 	unsigned index;
925 	u32 tmp = 0;
926 	u64 gpu_addr;
927 	long r;
928 
929 	r = amdgpu_device_wb_get(adev, &index);
930 	if (r) {
931 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
932 		return r;
933 	}
934 
935 	gpu_addr = adev->wb.gpu_addr + (index * 4);
936 	tmp = 0xCAFEDEAD;
937 	adev->wb.wb[index] = cpu_to_le32(tmp);
938 	memset(&ib, 0, sizeof(ib));
939 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
940 	if (r) {
941 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
942 		goto err0;
943 	}
944 
945 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
946 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
947 	ib.ptr[1] = lower_32_bits(gpu_addr);
948 	ib.ptr[2] = upper_32_bits(gpu_addr);
949 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
950 	ib.ptr[4] = 0xDEADBEEF;
951 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
952 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
953 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
954 	ib.length_dw = 8;
955 
956 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
957 	if (r)
958 		goto err1;
959 
960 	r = dma_fence_wait_timeout(f, false, timeout);
961 	if (r == 0) {
962 		DRM_ERROR("amdgpu: IB test timed out\n");
963 		r = -ETIMEDOUT;
964 		goto err1;
965 	} else if (r < 0) {
966 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
967 		goto err1;
968 	}
969 	tmp = le32_to_cpu(adev->wb.wb[index]);
970 	if (tmp == 0xDEADBEEF) {
971 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
972 		r = 0;
973 	} else {
974 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
975 		r = -EINVAL;
976 	}
977 err1:
978 	amdgpu_ib_free(adev, &ib, NULL);
979 	dma_fence_put(f);
980 err0:
981 	amdgpu_device_wb_free(adev, index);
982 	return r;
983 }
984 
985 /**
986  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
987  *
988  * @ib: indirect buffer to fill with commands
989  * @pe: addr of the page entry
990  * @src: src addr to copy from
991  * @count: number of page entries to update
992  *
993  * Update PTEs by copying them from the GART using sDMA (CIK).
994  */
995 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
996 				  uint64_t pe, uint64_t src,
997 				  unsigned count)
998 {
999 	unsigned bytes = count * 8;
1000 
1001 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1002 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1003 	ib->ptr[ib->length_dw++] = bytes;
1004 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1005 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1006 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1007 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1008 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1009 }
1010 
1011 /**
1012  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1013  *
1014  * @ib: indirect buffer to fill with commands
1015  * @pe: addr of the page entry
1016  * @value: dst addr to write into pe
1017  * @count: number of page entries to update
1018  * @incr: increase next addr by incr bytes
1019  *
1020  * Update PTEs by writing them manually using sDMA (CIK).
1021  */
1022 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1023 				   uint64_t value, unsigned count,
1024 				   uint32_t incr)
1025 {
1026 	unsigned ndw = count * 2;
1027 
1028 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1029 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1030 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1031 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1032 	ib->ptr[ib->length_dw++] = ndw;
1033 	for (; ndw > 0; ndw -= 2) {
1034 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1035 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1036 		value += incr;
1037 	}
1038 }
1039 
1040 /**
1041  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1042  *
1043  * @ib: indirect buffer to fill with commands
1044  * @pe: addr of the page entry
1045  * @addr: dst addr to write into pe
1046  * @count: number of page entries to update
1047  * @incr: increase next addr by incr bytes
1048  * @flags: access flags
1049  *
1050  * Update the page tables using sDMA (CIK).
1051  */
1052 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1053 				     uint64_t addr, unsigned count,
1054 				     uint32_t incr, uint64_t flags)
1055 {
1056 	/* for physically contiguous pages (vram) */
1057 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1058 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1059 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1060 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1061 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1062 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1063 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1064 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1065 	ib->ptr[ib->length_dw++] = 0;
1066 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1067 }
1068 
1069 /**
1070  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1071  *
1072  * @ib: indirect buffer to fill with padding
1073  *
1074  */
1075 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1076 {
1077 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1078 	u32 pad_count;
1079 	int i;
1080 
1081 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1082 	for (i = 0; i < pad_count; i++)
1083 		if (sdma && sdma->burst_nop && (i == 0))
1084 			ib->ptr[ib->length_dw++] =
1085 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1086 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1087 		else
1088 			ib->ptr[ib->length_dw++] =
1089 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1090 }
1091 
1092 /**
1093  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1094  *
1095  * @ring: amdgpu_ring pointer
1096  *
1097  * Make sure all previous operations are completed (CIK).
1098  */
1099 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1100 {
1101 	uint32_t seq = ring->fence_drv.sync_seq;
1102 	uint64_t addr = ring->fence_drv.gpu_addr;
1103 
1104 	/* wait for idle */
1105 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1106 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1107 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1108 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1109 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1110 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1111 	amdgpu_ring_write(ring, seq); /* reference */
1112 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1113 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1114 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1115 }
1116 
1117 /**
1118  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1119  *
1120  * @ring: amdgpu_ring pointer
1121  * @vm: amdgpu_vm pointer
1122  *
1123  * Update the page table base and flush the VM TLB
1124  * using sDMA (VI).
1125  */
1126 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1127 					 unsigned vmid, uint64_t pd_addr)
1128 {
1129 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1130 
1131 	/* wait for flush */
1132 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1133 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1134 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1135 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1136 	amdgpu_ring_write(ring, 0);
1137 	amdgpu_ring_write(ring, 0); /* reference */
1138 	amdgpu_ring_write(ring, 0); /* mask */
1139 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1140 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1141 }
1142 
1143 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1144 				     uint32_t reg, uint32_t val)
1145 {
1146 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1147 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1148 	amdgpu_ring_write(ring, reg);
1149 	amdgpu_ring_write(ring, val);
1150 }
1151 
1152 static int sdma_v3_0_early_init(void *handle)
1153 {
1154 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1155 
1156 	switch (adev->asic_type) {
1157 	case CHIP_STONEY:
1158 		adev->sdma.num_instances = 1;
1159 		break;
1160 	default:
1161 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1162 		break;
1163 	}
1164 
1165 	sdma_v3_0_set_ring_funcs(adev);
1166 	sdma_v3_0_set_buffer_funcs(adev);
1167 	sdma_v3_0_set_vm_pte_funcs(adev);
1168 	sdma_v3_0_set_irq_funcs(adev);
1169 
1170 	return 0;
1171 }
1172 
1173 static int sdma_v3_0_sw_init(void *handle)
1174 {
1175 	struct amdgpu_ring *ring;
1176 	int r, i;
1177 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 
1179 	/* SDMA trap event */
1180 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1181 			      &adev->sdma.trap_irq);
1182 	if (r)
1183 		return r;
1184 
1185 	/* SDMA Privileged inst */
1186 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
1187 			      &adev->sdma.illegal_inst_irq);
1188 	if (r)
1189 		return r;
1190 
1191 	/* SDMA Privileged inst */
1192 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1193 			      &adev->sdma.illegal_inst_irq);
1194 	if (r)
1195 		return r;
1196 
1197 	r = sdma_v3_0_init_microcode(adev);
1198 	if (r) {
1199 		DRM_ERROR("Failed to load sdma firmware!\n");
1200 		return r;
1201 	}
1202 
1203 	for (i = 0; i < adev->sdma.num_instances; i++) {
1204 		ring = &adev->sdma.instance[i].ring;
1205 		ring->ring_obj = NULL;
1206 		if (!amdgpu_sriov_vf(adev)) {
1207 			ring->use_doorbell = true;
1208 			ring->doorbell_index = (i == 0) ?
1209 				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1210 		} else {
1211 			ring->use_pollmem = true;
1212 		}
1213 
1214 		ksprintf(ring->name, "sdma%d", i);
1215 		r = amdgpu_ring_init(adev, ring, 1024,
1216 				     &adev->sdma.trap_irq,
1217 				     (i == 0) ?
1218 				     AMDGPU_SDMA_IRQ_TRAP0 :
1219 				     AMDGPU_SDMA_IRQ_TRAP1);
1220 		if (r)
1221 			return r;
1222 	}
1223 
1224 	return r;
1225 }
1226 
1227 static int sdma_v3_0_sw_fini(void *handle)
1228 {
1229 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1230 	int i;
1231 
1232 	for (i = 0; i < adev->sdma.num_instances; i++)
1233 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1234 
1235 	sdma_v3_0_free_microcode(adev);
1236 	return 0;
1237 }
1238 
1239 static int sdma_v3_0_hw_init(void *handle)
1240 {
1241 	int r;
1242 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1243 
1244 	sdma_v3_0_init_golden_registers(adev);
1245 
1246 	r = sdma_v3_0_start(adev);
1247 	if (r)
1248 		return r;
1249 
1250 	return r;
1251 }
1252 
1253 static int sdma_v3_0_hw_fini(void *handle)
1254 {
1255 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1256 
1257 	sdma_v3_0_ctx_switch_enable(adev, false);
1258 	sdma_v3_0_enable(adev, false);
1259 
1260 	return 0;
1261 }
1262 
1263 static int sdma_v3_0_suspend(void *handle)
1264 {
1265 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1266 
1267 	return sdma_v3_0_hw_fini(adev);
1268 }
1269 
1270 static int sdma_v3_0_resume(void *handle)
1271 {
1272 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273 
1274 	return sdma_v3_0_hw_init(adev);
1275 }
1276 
1277 static bool sdma_v3_0_is_idle(void *handle)
1278 {
1279 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280 	u32 tmp = RREG32(mmSRBM_STATUS2);
1281 
1282 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1283 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1284 	    return false;
1285 
1286 	return true;
1287 }
1288 
1289 static int sdma_v3_0_wait_for_idle(void *handle)
1290 {
1291 	unsigned i;
1292 	u32 tmp;
1293 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1294 
1295 	for (i = 0; i < adev->usec_timeout; i++) {
1296 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1297 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1298 
1299 		if (!tmp)
1300 			return 0;
1301 		udelay(1);
1302 	}
1303 	return -ETIMEDOUT;
1304 }
1305 
1306 static bool sdma_v3_0_check_soft_reset(void *handle)
1307 {
1308 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1309 	u32 srbm_soft_reset = 0;
1310 	u32 tmp = RREG32(mmSRBM_STATUS2);
1311 
1312 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1313 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1314 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1315 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1316 	}
1317 
1318 	if (srbm_soft_reset) {
1319 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1320 		return true;
1321 	} else {
1322 		adev->sdma.srbm_soft_reset = 0;
1323 		return false;
1324 	}
1325 }
1326 
1327 static int sdma_v3_0_pre_soft_reset(void *handle)
1328 {
1329 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1330 	u32 srbm_soft_reset = 0;
1331 
1332 	if (!adev->sdma.srbm_soft_reset)
1333 		return 0;
1334 
1335 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1336 
1337 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1338 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1339 		sdma_v3_0_ctx_switch_enable(adev, false);
1340 		sdma_v3_0_enable(adev, false);
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int sdma_v3_0_post_soft_reset(void *handle)
1347 {
1348 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1349 	u32 srbm_soft_reset = 0;
1350 
1351 	if (!adev->sdma.srbm_soft_reset)
1352 		return 0;
1353 
1354 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1355 
1356 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1357 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1358 		sdma_v3_0_gfx_resume(adev);
1359 		sdma_v3_0_rlc_resume(adev);
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 static int sdma_v3_0_soft_reset(void *handle)
1366 {
1367 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1368 	u32 srbm_soft_reset = 0;
1369 	u32 tmp;
1370 
1371 	if (!adev->sdma.srbm_soft_reset)
1372 		return 0;
1373 
1374 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1375 
1376 	if (srbm_soft_reset) {
1377 		tmp = RREG32(mmSRBM_SOFT_RESET);
1378 		tmp |= srbm_soft_reset;
1379 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1380 		WREG32(mmSRBM_SOFT_RESET, tmp);
1381 		tmp = RREG32(mmSRBM_SOFT_RESET);
1382 
1383 		udelay(50);
1384 
1385 		tmp &= ~srbm_soft_reset;
1386 		WREG32(mmSRBM_SOFT_RESET, tmp);
1387 		tmp = RREG32(mmSRBM_SOFT_RESET);
1388 
1389 		/* Wait a little for things to settle down */
1390 		udelay(50);
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1397 					struct amdgpu_irq_src *source,
1398 					unsigned type,
1399 					enum amdgpu_interrupt_state state)
1400 {
1401 	u32 sdma_cntl;
1402 
1403 	switch (type) {
1404 	case AMDGPU_SDMA_IRQ_TRAP0:
1405 		switch (state) {
1406 		case AMDGPU_IRQ_STATE_DISABLE:
1407 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1408 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1409 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1410 			break;
1411 		case AMDGPU_IRQ_STATE_ENABLE:
1412 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1413 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1414 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1415 			break;
1416 		default:
1417 			break;
1418 		}
1419 		break;
1420 	case AMDGPU_SDMA_IRQ_TRAP1:
1421 		switch (state) {
1422 		case AMDGPU_IRQ_STATE_DISABLE:
1423 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1424 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1425 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1426 			break;
1427 		case AMDGPU_IRQ_STATE_ENABLE:
1428 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1429 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1430 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1431 			break;
1432 		default:
1433 			break;
1434 		}
1435 		break;
1436 	default:
1437 		break;
1438 	}
1439 	return 0;
1440 }
1441 
1442 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1443 				      struct amdgpu_irq_src *source,
1444 				      struct amdgpu_iv_entry *entry)
1445 {
1446 	u8 instance_id, queue_id;
1447 
1448 	instance_id = (entry->ring_id & 0x3) >> 0;
1449 	queue_id = (entry->ring_id & 0xc) >> 2;
1450 	DRM_DEBUG("IH: SDMA trap\n");
1451 	switch (instance_id) {
1452 	case 0:
1453 		switch (queue_id) {
1454 		case 0:
1455 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1456 			break;
1457 		case 1:
1458 			/* XXX compute */
1459 			break;
1460 		case 2:
1461 			/* XXX compute */
1462 			break;
1463 		}
1464 		break;
1465 	case 1:
1466 		switch (queue_id) {
1467 		case 0:
1468 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1469 			break;
1470 		case 1:
1471 			/* XXX compute */
1472 			break;
1473 		case 2:
1474 			/* XXX compute */
1475 			break;
1476 		}
1477 		break;
1478 	}
1479 	return 0;
1480 }
1481 
1482 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1483 					      struct amdgpu_irq_src *source,
1484 					      struct amdgpu_iv_entry *entry)
1485 {
1486 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1487 	schedule_work(&adev->reset_work);
1488 	return 0;
1489 }
1490 
1491 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1492 		struct amdgpu_device *adev,
1493 		bool enable)
1494 {
1495 	uint32_t temp, data;
1496 	int i;
1497 
1498 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1499 		for (i = 0; i < adev->sdma.num_instances; i++) {
1500 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1501 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1502 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1503 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1504 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1505 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1506 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1507 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1508 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1509 			if (data != temp)
1510 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1511 		}
1512 	} else {
1513 		for (i = 0; i < adev->sdma.num_instances; i++) {
1514 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1515 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1516 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1517 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1518 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1519 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1520 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1521 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1522 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1523 
1524 			if (data != temp)
1525 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1526 		}
1527 	}
1528 }
1529 
1530 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1531 		struct amdgpu_device *adev,
1532 		bool enable)
1533 {
1534 	uint32_t temp, data;
1535 	int i;
1536 
1537 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1538 		for (i = 0; i < adev->sdma.num_instances; i++) {
1539 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1540 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1541 
1542 			if (temp != data)
1543 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1544 		}
1545 	} else {
1546 		for (i = 0; i < adev->sdma.num_instances; i++) {
1547 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1548 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1549 
1550 			if (temp != data)
1551 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1552 		}
1553 	}
1554 }
1555 
1556 static int sdma_v3_0_set_clockgating_state(void *handle,
1557 					  enum amd_clockgating_state state)
1558 {
1559 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1560 
1561 	if (amdgpu_sriov_vf(adev))
1562 		return 0;
1563 
1564 	switch (adev->asic_type) {
1565 	case CHIP_FIJI:
1566 	case CHIP_CARRIZO:
1567 	case CHIP_STONEY:
1568 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1569 				state == AMD_CG_STATE_GATE);
1570 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1571 				state == AMD_CG_STATE_GATE);
1572 		break;
1573 	default:
1574 		break;
1575 	}
1576 	return 0;
1577 }
1578 
1579 static int sdma_v3_0_set_powergating_state(void *handle,
1580 					  enum amd_powergating_state state)
1581 {
1582 	return 0;
1583 }
1584 
1585 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1586 {
1587 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1588 	int data;
1589 
1590 	if (amdgpu_sriov_vf(adev))
1591 		*flags = 0;
1592 
1593 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1594 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1595 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1596 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1597 
1598 	/* AMD_CG_SUPPORT_SDMA_LS */
1599 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1600 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1601 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1602 }
1603 
1604 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1605 	.name = "sdma_v3_0",
1606 	.early_init = sdma_v3_0_early_init,
1607 	.late_init = NULL,
1608 	.sw_init = sdma_v3_0_sw_init,
1609 	.sw_fini = sdma_v3_0_sw_fini,
1610 	.hw_init = sdma_v3_0_hw_init,
1611 	.hw_fini = sdma_v3_0_hw_fini,
1612 	.suspend = sdma_v3_0_suspend,
1613 	.resume = sdma_v3_0_resume,
1614 	.is_idle = sdma_v3_0_is_idle,
1615 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1616 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1617 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1618 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1619 	.soft_reset = sdma_v3_0_soft_reset,
1620 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1621 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1622 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1623 };
1624 
1625 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1626 	.type = AMDGPU_RING_TYPE_SDMA,
1627 	.align_mask = 0xf,
1628 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1629 	.support_64bit_ptrs = false,
1630 	.get_rptr = sdma_v3_0_ring_get_rptr,
1631 	.get_wptr = sdma_v3_0_ring_get_wptr,
1632 	.set_wptr = sdma_v3_0_ring_set_wptr,
1633 	.emit_frame_size =
1634 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1635 		3 + /* hdp invalidate */
1636 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1637 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1638 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1639 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1640 	.emit_ib = sdma_v3_0_ring_emit_ib,
1641 	.emit_fence = sdma_v3_0_ring_emit_fence,
1642 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1643 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1644 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1645 	.test_ring = sdma_v3_0_ring_test_ring,
1646 	.test_ib = sdma_v3_0_ring_test_ib,
1647 	.insert_nop = sdma_v3_0_ring_insert_nop,
1648 	.pad_ib = sdma_v3_0_ring_pad_ib,
1649 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1650 };
1651 
1652 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adev->sdma.num_instances; i++) {
1657 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1658 		adev->sdma.instance[i].ring.me = i;
1659 	}
1660 }
1661 
1662 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1663 	.set = sdma_v3_0_set_trap_irq_state,
1664 	.process = sdma_v3_0_process_trap_irq,
1665 };
1666 
1667 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1668 	.process = sdma_v3_0_process_illegal_inst_irq,
1669 };
1670 
1671 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1672 {
1673 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1674 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1675 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1676 }
1677 
1678 /**
1679  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1680  *
1681  * @ring: amdgpu_ring structure holding ring information
1682  * @src_offset: src GPU address
1683  * @dst_offset: dst GPU address
1684  * @byte_count: number of bytes to xfer
1685  *
1686  * Copy GPU buffers using the DMA engine (VI).
1687  * Used by the amdgpu ttm implementation to move pages if
1688  * registered as the asic copy callback.
1689  */
1690 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1691 				       uint64_t src_offset,
1692 				       uint64_t dst_offset,
1693 				       uint32_t byte_count)
1694 {
1695 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1696 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1697 	ib->ptr[ib->length_dw++] = byte_count;
1698 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1699 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1700 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1701 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1702 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1703 }
1704 
1705 /**
1706  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1707  *
1708  * @ring: amdgpu_ring structure holding ring information
1709  * @src_data: value to write to buffer
1710  * @dst_offset: dst GPU address
1711  * @byte_count: number of bytes to xfer
1712  *
1713  * Fill GPU buffers using the DMA engine (VI).
1714  */
1715 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1716 				       uint32_t src_data,
1717 				       uint64_t dst_offset,
1718 				       uint32_t byte_count)
1719 {
1720 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1721 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1722 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1723 	ib->ptr[ib->length_dw++] = src_data;
1724 	ib->ptr[ib->length_dw++] = byte_count;
1725 }
1726 
1727 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1728 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1729 	.copy_num_dw = 7,
1730 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1731 
1732 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1733 	.fill_num_dw = 5,
1734 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1735 };
1736 
1737 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1738 {
1739 	if (adev->mman.buffer_funcs == NULL) {
1740 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1741 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1742 	}
1743 }
1744 
1745 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1746 	.copy_pte_num_dw = 7,
1747 	.copy_pte = sdma_v3_0_vm_copy_pte,
1748 
1749 	.write_pte = sdma_v3_0_vm_write_pte,
1750 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1751 };
1752 
1753 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1754 {
1755 	unsigned i;
1756 
1757 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1758 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1759 		for (i = 0; i < adev->sdma.num_instances; i++)
1760 			adev->vm_manager.vm_pte_rings[i] =
1761 				&adev->sdma.instance[i].ring;
1762 
1763 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1764 	}
1765 }
1766 
1767 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1768 {
1769 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1770 	.major = 3,
1771 	.minor = 0,
1772 	.rev = 0,
1773 	.funcs = &sdma_v3_0_ip_funcs,
1774 };
1775 
1776 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1777 {
1778 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1779 	.major = 3,
1780 	.minor = 1,
1781 	.rev = 0,
1782 	.funcs = &sdma_v3_0_ip_funcs,
1783 };
1784