xref: /dragonfly/sys/dev/drm/amd/amdgpu/sdma_v4_0.c (revision 655933d6)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_0_offset.h"
31 #include "sdma0/sdma0_4_0_sh_mask.h"
32 #include "sdma1/sdma1_4_0_offset.h"
33 #include "sdma1/sdma1_4_0_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 MODULE_FIRMWARE("amdgpufw_vega10_sdma");
45 MODULE_FIRMWARE("amdgpufw_vega10_sdma1");
46 MODULE_FIRMWARE("amdgpufw_vega12_sdma");
47 MODULE_FIRMWARE("amdgpufw_vega12_sdma1");
48 MODULE_FIRMWARE("amdgpufw_vega20_sdma");
49 MODULE_FIRMWARE("amdgpufw_vega20_sdma1");
50 MODULE_FIRMWARE("amdgpufw_raven_sdma");
51 
52 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
53 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
54 
55 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
58 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
59 
60 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
61 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
62 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
63 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
64 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
65 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
66 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
67 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
68 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
69 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
75 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
76 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
80 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
81 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
86 };
87 
88 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
91 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
94 };
95 
96 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
99 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
102 };
103 
104 static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
105 {
106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
109 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
111 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
112 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
117 };
118 
119 static const struct soc15_reg_golden golden_settings_sdma_4_2[] =
120 {
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
125 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
135 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
137 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
139 };
140 
141 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
142 {
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
145 };
146 
147 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
148 		u32 instance, u32 offset)
149 {
150 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
151 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
152 }
153 
154 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
155 {
156 	switch (adev->asic_type) {
157 	case CHIP_VEGA10:
158 		soc15_program_register_sequence(adev,
159 						 golden_settings_sdma_4,
160 						 ARRAY_SIZE(golden_settings_sdma_4));
161 		soc15_program_register_sequence(adev,
162 						 golden_settings_sdma_vg10,
163 						 ARRAY_SIZE(golden_settings_sdma_vg10));
164 		break;
165 	case CHIP_VEGA12:
166 		soc15_program_register_sequence(adev,
167 						golden_settings_sdma_4,
168 						ARRAY_SIZE(golden_settings_sdma_4));
169 		soc15_program_register_sequence(adev,
170 						golden_settings_sdma_vg12,
171 						ARRAY_SIZE(golden_settings_sdma_vg12));
172 		break;
173 	case CHIP_VEGA20:
174 		soc15_program_register_sequence(adev,
175 						golden_settings_sdma_4_2,
176 						ARRAY_SIZE(golden_settings_sdma_4_2));
177 		break;
178 	case CHIP_RAVEN:
179 		soc15_program_register_sequence(adev,
180 						 golden_settings_sdma_4_1,
181 						 ARRAY_SIZE(golden_settings_sdma_4_1));
182 		soc15_program_register_sequence(adev,
183 						 golden_settings_sdma_rv1,
184 						 ARRAY_SIZE(golden_settings_sdma_rv1));
185 		break;
186 	default:
187 		break;
188 	}
189 }
190 
191 /**
192  * sdma_v4_0_init_microcode - load ucode images from disk
193  *
194  * @adev: amdgpu_device pointer
195  *
196  * Use the firmware interface to load the ucode images into
197  * the driver (not loaded into hw).
198  * Returns 0 on success, error on failure.
199  */
200 
201 // emulation only, won't work on real chip
202 // vega10 real chip need to use PSP to load firmware
203 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
204 {
205 	const char *chip_name;
206 	char fw_name[30];
207 	int err = 0, i;
208 	struct amdgpu_firmware_info *info = NULL;
209 	const struct common_firmware_header *header = NULL;
210 	const struct sdma_firmware_header_v1_0 *hdr;
211 
212 	DRM_DEBUG("\n");
213 
214 	switch (adev->asic_type) {
215 	case CHIP_VEGA10:
216 		chip_name = "vega10";
217 		break;
218 	case CHIP_VEGA12:
219 		chip_name = "vega12";
220 		break;
221 	case CHIP_VEGA20:
222 		chip_name = "vega20";
223 		break;
224 	case CHIP_RAVEN:
225 		chip_name = "raven";
226 		break;
227 	default:
228 		BUG();
229 	}
230 
231 	for (i = 0; i < adev->sdma.num_instances; i++) {
232 		if (i == 0)
233 			snprintf(fw_name, sizeof(fw_name), "amdgpufw_%s_sdma", chip_name);
234 		else
235 			snprintf(fw_name, sizeof(fw_name), "amdgpufw_%s_sdma1", chip_name);
236 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
237 		if (err)
238 			goto out;
239 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
240 		if (err)
241 			goto out;
242 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
243 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
244 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
245 		if (adev->sdma.instance[i].feature_version >= 20)
246 			adev->sdma.instance[i].burst_nop = true;
247 		DRM_DEBUG("psp_load == '%s'\n",
248 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
249 
250 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
251 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
252 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
253 			info->fw = adev->sdma.instance[i].fw;
254 			header = (const struct common_firmware_header *)info->fw->data;
255 			adev->firmware.fw_size +=
256 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
257 		}
258 	}
259 out:
260 	if (err) {
261 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
262 		for (i = 0; i < adev->sdma.num_instances; i++) {
263 			release_firmware(adev->sdma.instance[i].fw);
264 			adev->sdma.instance[i].fw = NULL;
265 		}
266 	}
267 	return err;
268 }
269 
270 /**
271  * sdma_v4_0_ring_get_rptr - get the current read pointer
272  *
273  * @ring: amdgpu ring pointer
274  *
275  * Get the current rptr from the hardware (VEGA10+).
276  */
277 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
278 {
279 	u64 *rptr;
280 
281 	/* XXX check if swapping is necessary on BE */
282 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
283 
284 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
285 	return ((*rptr) >> 2);
286 }
287 
288 /**
289  * sdma_v4_0_ring_get_wptr - get the current write pointer
290  *
291  * @ring: amdgpu ring pointer
292  *
293  * Get the current wptr from the hardware (VEGA10+).
294  */
295 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
296 {
297 	struct amdgpu_device *adev = ring->adev;
298 	u64 wptr;
299 
300 	if (ring->use_doorbell) {
301 		/* XXX check if swapping is necessary on BE */
302 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
303 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
304 	} else {
305 		u32 lowbit, highbit;
306 
307 		lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
308 		highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
309 
310 		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
311 				ring->me, highbit, lowbit);
312 		wptr = highbit;
313 		wptr = wptr << 32;
314 		wptr |= lowbit;
315 	}
316 
317 	return wptr >> 2;
318 }
319 
320 /**
321  * sdma_v4_0_ring_set_wptr - commit the write pointer
322  *
323  * @ring: amdgpu ring pointer
324  *
325  * Write the wptr back to the hardware (VEGA10+).
326  */
327 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
328 {
329 	struct amdgpu_device *adev = ring->adev;
330 
331 	DRM_DEBUG("Setting write pointer\n");
332 	if (ring->use_doorbell) {
333 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
334 
335 		DRM_DEBUG("Using doorbell -- "
336 				"wptr_offs == 0x%08x "
337 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
338 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
339 				ring->wptr_offs,
340 				lower_32_bits(ring->wptr << 2),
341 				upper_32_bits(ring->wptr << 2));
342 		/* XXX check if swapping is necessary on BE */
343 		WRITE_ONCE(*wb, (ring->wptr << 2));
344 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
345 				ring->doorbell_index, ring->wptr << 2);
346 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
347 	} else {
348 		DRM_DEBUG("Not using doorbell -- "
349 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
350 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
351 				ring->me,
352 				lower_32_bits(ring->wptr << 2),
353 				ring->me,
354 				upper_32_bits(ring->wptr << 2));
355 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
356 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
357 	}
358 }
359 
360 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
361 {
362 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
363 	int i;
364 
365 	for (i = 0; i < count; i++)
366 		if (sdma && sdma->burst_nop && (i == 0))
367 			amdgpu_ring_write(ring, ring->funcs->nop |
368 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
369 		else
370 			amdgpu_ring_write(ring, ring->funcs->nop);
371 }
372 
373 /**
374  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
375  *
376  * @ring: amdgpu ring pointer
377  * @ib: IB object to schedule
378  *
379  * Schedule an IB in the DMA ring (VEGA10).
380  */
381 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
382 					struct amdgpu_ib *ib,
383 					unsigned vmid, bool ctx_switch)
384 {
385 	/* IB packet must end on a 8 DW boundary */
386 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
387 
388 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
389 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
390 	/* base must be 32 byte aligned */
391 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
392 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
393 	amdgpu_ring_write(ring, ib->length_dw);
394 	amdgpu_ring_write(ring, 0);
395 	amdgpu_ring_write(ring, 0);
396 
397 }
398 
399 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
400 				   int mem_space, int hdp,
401 				   uint32_t addr0, uint32_t addr1,
402 				   uint32_t ref, uint32_t mask,
403 				   uint32_t inv)
404 {
405 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
406 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
407 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
408 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
409 	if (mem_space) {
410 		/* memory */
411 		amdgpu_ring_write(ring, addr0);
412 		amdgpu_ring_write(ring, addr1);
413 	} else {
414 		/* registers */
415 		amdgpu_ring_write(ring, addr0 << 2);
416 		amdgpu_ring_write(ring, addr1 << 2);
417 	}
418 	amdgpu_ring_write(ring, ref); /* reference */
419 	amdgpu_ring_write(ring, mask); /* mask */
420 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
421 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
422 }
423 
424 /**
425  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
426  *
427  * @ring: amdgpu ring pointer
428  *
429  * Emit an hdp flush packet on the requested DMA ring.
430  */
431 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
432 {
433 	struct amdgpu_device *adev = ring->adev;
434 	u32 ref_and_mask = 0;
435 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
436 
437 	if (ring->me == 0)
438 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
439 	else
440 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
441 
442 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
443 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
444 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
445 			       ref_and_mask, ref_and_mask, 10);
446 }
447 
448 /**
449  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
450  *
451  * @ring: amdgpu ring pointer
452  * @fence: amdgpu fence object
453  *
454  * Add a DMA fence packet to the ring to write
455  * the fence seq number and DMA trap packet to generate
456  * an interrupt if needed (VEGA10).
457  */
458 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, uint64_t seq,
459 				      unsigned flags)
460 {
461 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
462 	/* write the fence */
463 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
464 	/* zero in first two bits */
465 	BUG_ON(addr & 0x3);
466 	amdgpu_ring_write(ring, lower_32_bits(addr));
467 	amdgpu_ring_write(ring, upper_32_bits(addr));
468 	amdgpu_ring_write(ring, lower_32_bits(seq));
469 
470 	/* optionally write high bits as well */
471 	if (write64bit) {
472 		addr += 4;
473 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
474 		/* zero in first two bits */
475 		BUG_ON(addr & 0x3);
476 		amdgpu_ring_write(ring, lower_32_bits(addr));
477 		amdgpu_ring_write(ring, upper_32_bits(addr));
478 		amdgpu_ring_write(ring, upper_32_bits(seq));
479 	}
480 
481 	/* generate an interrupt */
482 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
483 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
484 }
485 
486 
487 /**
488  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
489  *
490  * @adev: amdgpu_device pointer
491  *
492  * Stop the gfx async dma ring buffers (VEGA10).
493  */
494 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
495 {
496 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
497 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
498 	u32 rb_cntl, ib_cntl;
499 	int i;
500 
501 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
502 	    (adev->mman.buffer_funcs_ring == sdma1))
503 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
504 
505 	for (i = 0; i < adev->sdma.num_instances; i++) {
506 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
507 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
508 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
509 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
510 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
511 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
512 	}
513 
514 	sdma0->ready = false;
515 	sdma1->ready = false;
516 }
517 
518 /**
519  * sdma_v4_0_rlc_stop - stop the compute async dma engines
520  *
521  * @adev: amdgpu_device pointer
522  *
523  * Stop the compute async dma queues (VEGA10).
524  */
525 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
526 {
527 	/* XXX todo */
528 }
529 
530 /**
531  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
532  *
533  * @adev: amdgpu_device pointer
534  * @enable: enable/disable the DMA MEs context switch.
535  *
536  * Halt or unhalt the async dma engines context switch (VEGA10).
537  */
538 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
539 {
540 	u32 f32_cntl, phase_quantum = 0;
541 	int i;
542 
543 	if (amdgpu_sdma_phase_quantum) {
544 		unsigned value = amdgpu_sdma_phase_quantum;
545 		unsigned unit = 0;
546 
547 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
548 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
549 			value = (value + 1) >> 1;
550 			unit++;
551 		}
552 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
553 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
554 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
555 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
556 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
557 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
558 			WARN_ONCE(1,
559 			"clamping sdma_phase_quantum to %uK clock cycles\n",
560 				  value << unit);
561 		}
562 		phase_quantum =
563 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
564 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
565 	}
566 
567 	for (i = 0; i < adev->sdma.num_instances; i++) {
568 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
569 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
570 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
571 		if (enable && amdgpu_sdma_phase_quantum) {
572 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
573 			       phase_quantum);
574 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
575 			       phase_quantum);
576 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
577 			       phase_quantum);
578 		}
579 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
580 	}
581 
582 }
583 
584 /**
585  * sdma_v4_0_enable - stop the async dma engines
586  *
587  * @adev: amdgpu_device pointer
588  * @enable: enable/disable the DMA MEs.
589  *
590  * Halt or unhalt the async dma engines (VEGA10).
591  */
592 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
593 {
594 	u32 f32_cntl;
595 	int i;
596 
597 	if (enable == false) {
598 		sdma_v4_0_gfx_stop(adev);
599 		sdma_v4_0_rlc_stop(adev);
600 	}
601 
602 	for (i = 0; i < adev->sdma.num_instances; i++) {
603 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
604 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
605 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
606 	}
607 }
608 
609 /**
610  * sdma_v4_0_gfx_resume - setup and start the async dma engines
611  *
612  * @adev: amdgpu_device pointer
613  *
614  * Set up the gfx DMA ring buffers and enable them (VEGA10).
615  * Returns 0 for success, error for failure.
616  */
617 static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
618 {
619 	struct amdgpu_ring *ring;
620 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
621 	u32 rb_bufsz;
622 	u32 wb_offset;
623 	u32 doorbell;
624 	u32 doorbell_offset;
625 	u32 temp;
626 	u64 wptr_gpu_addr;
627 	int i, r;
628 
629 	for (i = 0; i < adev->sdma.num_instances; i++) {
630 		ring = &adev->sdma.instance[i].ring;
631 		wb_offset = (ring->rptr_offs * 4);
632 
633 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
634 
635 		/* Set ring buffer size in dwords */
636 		rb_bufsz = order_base_2(ring->ring_size / 4);
637 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
638 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
639 #ifdef __BIG_ENDIAN
640 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
641 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
642 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
643 #endif
644 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
645 
646 		/* Initialize the ring buffer's read and write pointers */
647 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
648 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
649 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
650 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
651 
652 		/* set the wb address whether it's enabled or not */
653 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
654 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
655 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
656 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
657 
658 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
659 
660 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
661 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
662 
663 		ring->wptr = 0;
664 
665 		/* before programing wptr to a less value, need set minor_ptr_update first */
666 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
667 
668 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
669 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
670 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
671 		}
672 
673 		doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
674 		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
675 
676 		if (ring->use_doorbell) {
677 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
678 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
679 					OFFSET, ring->doorbell_index);
680 		} else {
681 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
682 		}
683 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
684 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
685 		adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
686 						      ring->doorbell_index);
687 
688 		if (amdgpu_sriov_vf(adev))
689 			sdma_v4_0_ring_set_wptr(ring);
690 
691 		/* set minor_ptr_update to 0 after wptr programed */
692 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
693 
694 		/* set utc l1 enable flag always to 1 */
695 		temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
696 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
697 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
698 
699 		if (!amdgpu_sriov_vf(adev)) {
700 			/* unhalt engine */
701 			temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
702 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
703 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
704 		}
705 
706 		/* setup the wptr shadow polling */
707 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
708 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
709 		       lower_32_bits(wptr_gpu_addr));
710 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
711 		       upper_32_bits(wptr_gpu_addr));
712 		wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
713 		if (amdgpu_sriov_vf(adev))
714 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
715 		else
716 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
717 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
718 
719 		/* enable DMA RB */
720 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
721 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
722 
723 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
724 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
725 #ifdef __BIG_ENDIAN
726 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
727 #endif
728 		/* enable DMA IBs */
729 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
730 
731 		ring->ready = true;
732 
733 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
734 			sdma_v4_0_ctx_switch_enable(adev, true);
735 			sdma_v4_0_enable(adev, true);
736 		}
737 
738 		r = amdgpu_ring_test_ring(ring);
739 		if (r) {
740 			ring->ready = false;
741 			return r;
742 		}
743 
744 		if (adev->mman.buffer_funcs_ring == ring)
745 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
746 
747 	}
748 
749 	return 0;
750 }
751 
752 static void
753 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
754 {
755 	uint32_t def, data;
756 
757 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
758 		/* disable idle interrupt */
759 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
760 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
761 
762 		if (data != def)
763 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
764 	} else {
765 		/* disable idle interrupt */
766 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
767 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
768 		if (data != def)
769 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
770 	}
771 }
772 
773 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
774 {
775 	uint32_t def, data;
776 
777 	/* Enable HW based PG. */
778 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
779 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
780 	if (data != def)
781 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
782 
783 	/* enable interrupt */
784 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
785 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
786 	if (data != def)
787 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
788 
789 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
790 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
791 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
792 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
793 	/* Configure switch time for hysteresis purpose. Use default right now */
794 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
795 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
796 	if(data != def)
797 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
798 }
799 
800 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
801 {
802 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
803 		return;
804 
805 	switch (adev->asic_type) {
806 	case CHIP_RAVEN:
807 		sdma_v4_1_init_power_gating(adev);
808 		sdma_v4_1_update_power_gating(adev, true);
809 		break;
810 	default:
811 		break;
812 	}
813 }
814 
815 /**
816  * sdma_v4_0_rlc_resume - setup and start the async dma engines
817  *
818  * @adev: amdgpu_device pointer
819  *
820  * Set up the compute DMA queues and enable them (VEGA10).
821  * Returns 0 for success, error for failure.
822  */
823 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
824 {
825 	sdma_v4_0_init_pg(adev);
826 
827 	return 0;
828 }
829 
830 /**
831  * sdma_v4_0_load_microcode - load the sDMA ME ucode
832  *
833  * @adev: amdgpu_device pointer
834  *
835  * Loads the sDMA0/1 ucode.
836  * Returns 0 for success, -EINVAL if the ucode is not available.
837  */
838 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
839 {
840 	const struct sdma_firmware_header_v1_0 *hdr;
841 	const __le32 *fw_data;
842 	u32 fw_size;
843 	int i, j;
844 
845 	/* halt the MEs */
846 	sdma_v4_0_enable(adev, false);
847 
848 	for (i = 0; i < adev->sdma.num_instances; i++) {
849 		if (!adev->sdma.instance[i].fw)
850 			return -EINVAL;
851 
852 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
853 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
854 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
855 
856 		fw_data = (const __le32 *)
857 			(adev->sdma.instance[i].fw->data +
858 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
859 
860 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
861 
862 		for (j = 0; j < fw_size; j++)
863 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
864 
865 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
866 	}
867 
868 	return 0;
869 }
870 
871 /**
872  * sdma_v4_0_start - setup and start the async dma engines
873  *
874  * @adev: amdgpu_device pointer
875  *
876  * Set up the DMA engines and enable them (VEGA10).
877  * Returns 0 for success, error for failure.
878  */
879 static int sdma_v4_0_start(struct amdgpu_device *adev)
880 {
881 	int r = 0;
882 
883 	if (amdgpu_sriov_vf(adev)) {
884 		sdma_v4_0_ctx_switch_enable(adev, false);
885 		sdma_v4_0_enable(adev, false);
886 
887 		/* set RB registers */
888 		r = sdma_v4_0_gfx_resume(adev);
889 		return r;
890 	}
891 
892 	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
893 		r = sdma_v4_0_load_microcode(adev);
894 		if (r)
895 			return r;
896 	}
897 
898 	/* unhalt the MEs */
899 	sdma_v4_0_enable(adev, true);
900 	/* enable sdma ring preemption */
901 	sdma_v4_0_ctx_switch_enable(adev, true);
902 
903 	/* start the gfx rings and rlc compute queues */
904 	r = sdma_v4_0_gfx_resume(adev);
905 	if (r)
906 		return r;
907 	r = sdma_v4_0_rlc_resume(adev);
908 
909 	return r;
910 }
911 
912 /**
913  * sdma_v4_0_ring_test_ring - simple async dma engine test
914  *
915  * @ring: amdgpu_ring structure holding ring information
916  *
917  * Test the DMA engine by writing using it to write an
918  * value to memory. (VEGA10).
919  * Returns 0 for success, error for failure.
920  */
921 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
922 {
923 	struct amdgpu_device *adev = ring->adev;
924 	unsigned i;
925 	unsigned index;
926 	int r;
927 	u32 tmp;
928 	u64 gpu_addr;
929 
930 	r = amdgpu_device_wb_get(adev, &index);
931 	if (r) {
932 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
933 		return r;
934 	}
935 
936 	gpu_addr = adev->wb.gpu_addr + (index * 4);
937 	tmp = 0xCAFEDEAD;
938 	adev->wb.wb[index] = cpu_to_le32(tmp);
939 
940 	r = amdgpu_ring_alloc(ring, 5);
941 	if (r) {
942 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
943 		amdgpu_device_wb_free(adev, index);
944 		return r;
945 	}
946 
947 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
948 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
949 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
950 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
951 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
952 	amdgpu_ring_write(ring, 0xDEADBEEF);
953 	amdgpu_ring_commit(ring);
954 
955 	for (i = 0; i < adev->usec_timeout; i++) {
956 		tmp = le32_to_cpu(adev->wb.wb[index]);
957 		if (tmp == 0xDEADBEEF)
958 			break;
959 		DRM_UDELAY(1);
960 	}
961 
962 	if (i < adev->usec_timeout) {
963 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
964 	} else {
965 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
966 			  ring->idx, tmp);
967 		r = -EINVAL;
968 	}
969 	amdgpu_device_wb_free(adev, index);
970 
971 	return r;
972 }
973 
974 /**
975  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
976  *
977  * @ring: amdgpu_ring structure holding ring information
978  *
979  * Test a simple IB in the DMA ring (VEGA10).
980  * Returns 0 on success, error on failure.
981  */
982 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
983 {
984 	struct amdgpu_device *adev = ring->adev;
985 	struct amdgpu_ib ib;
986 	struct dma_fence *f = NULL;
987 	unsigned index;
988 	long r;
989 	u32 tmp = 0;
990 	u64 gpu_addr;
991 
992 	r = amdgpu_device_wb_get(adev, &index);
993 	if (r) {
994 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
995 		return r;
996 	}
997 
998 	gpu_addr = adev->wb.gpu_addr + (index * 4);
999 	tmp = 0xCAFEDEAD;
1000 	adev->wb.wb[index] = cpu_to_le32(tmp);
1001 	memset(&ib, 0, sizeof(ib));
1002 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1003 	if (r) {
1004 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1005 		goto err0;
1006 	}
1007 
1008 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1009 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1010 	ib.ptr[1] = lower_32_bits(gpu_addr);
1011 	ib.ptr[2] = upper_32_bits(gpu_addr);
1012 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1013 	ib.ptr[4] = 0xDEADBEEF;
1014 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1015 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1016 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1017 	ib.length_dw = 8;
1018 
1019 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1020 	if (r)
1021 		goto err1;
1022 
1023 	r = dma_fence_wait_timeout(f, false, timeout);
1024 	if (r == 0) {
1025 		DRM_ERROR("amdgpu: IB test timed out\n");
1026 		r = -ETIMEDOUT;
1027 		goto err1;
1028 	} else if (r < 0) {
1029 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1030 		goto err1;
1031 	}
1032 	tmp = le32_to_cpu(adev->wb.wb[index]);
1033 	if (tmp == 0xDEADBEEF) {
1034 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
1035 		r = 0;
1036 	} else {
1037 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
1038 		r = -EINVAL;
1039 	}
1040 err1:
1041 	amdgpu_ib_free(adev, &ib, NULL);
1042 	dma_fence_put(f);
1043 err0:
1044 	amdgpu_device_wb_free(adev, index);
1045 	return r;
1046 }
1047 
1048 
1049 /**
1050  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1051  *
1052  * @ib: indirect buffer to fill with commands
1053  * @pe: addr of the page entry
1054  * @src: src addr to copy from
1055  * @count: number of page entries to update
1056  *
1057  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1058  */
1059 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1060 				  uint64_t pe, uint64_t src,
1061 				  unsigned count)
1062 {
1063 	unsigned bytes = count * 8;
1064 
1065 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1066 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1067 	ib->ptr[ib->length_dw++] = bytes - 1;
1068 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1069 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1070 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1071 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1072 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1073 
1074 }
1075 
1076 /**
1077  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1078  *
1079  * @ib: indirect buffer to fill with commands
1080  * @pe: addr of the page entry
1081  * @addr: dst addr to write into pe
1082  * @count: number of page entries to update
1083  * @incr: increase next addr by incr bytes
1084  * @flags: access flags
1085  *
1086  * Update PTEs by writing them manually using sDMA (VEGA10).
1087  */
1088 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1089 				   uint64_t value, unsigned count,
1090 				   uint32_t incr)
1091 {
1092 	unsigned ndw = count * 2;
1093 
1094 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1095 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1096 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1097 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1098 	ib->ptr[ib->length_dw++] = ndw - 1;
1099 	for (; ndw > 0; ndw -= 2) {
1100 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1101 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1102 		value += incr;
1103 	}
1104 }
1105 
1106 /**
1107  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1108  *
1109  * @ib: indirect buffer to fill with commands
1110  * @pe: addr of the page entry
1111  * @addr: dst addr to write into pe
1112  * @count: number of page entries to update
1113  * @incr: increase next addr by incr bytes
1114  * @flags: access flags
1115  *
1116  * Update the page tables using sDMA (VEGA10).
1117  */
1118 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1119 				     uint64_t pe,
1120 				     uint64_t addr, unsigned count,
1121 				     uint32_t incr, uint64_t flags)
1122 {
1123 	/* for physically contiguous pages (vram) */
1124 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1125 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1126 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1127 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1128 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1129 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1130 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1131 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1132 	ib->ptr[ib->length_dw++] = 0;
1133 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1134 }
1135 
1136 /**
1137  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1138  *
1139  * @ib: indirect buffer to fill with padding
1140  *
1141  */
1142 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1143 {
1144 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1145 	u32 pad_count;
1146 	int i;
1147 
1148 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1149 	for (i = 0; i < pad_count; i++)
1150 		if (sdma && sdma->burst_nop && (i == 0))
1151 			ib->ptr[ib->length_dw++] =
1152 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1153 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1154 		else
1155 			ib->ptr[ib->length_dw++] =
1156 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1157 }
1158 
1159 
1160 /**
1161  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1162  *
1163  * @ring: amdgpu_ring pointer
1164  *
1165  * Make sure all previous operations are completed (CIK).
1166  */
1167 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1168 {
1169 	uint32_t seq = ring->fence_drv.sync_seq;
1170 	uint64_t addr = ring->fence_drv.gpu_addr;
1171 
1172 	/* wait for idle */
1173 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1174 			       addr & 0xfffffffc,
1175 			       upper_32_bits(addr) & 0xffffffff,
1176 			       seq, 0xffffffff, 4);
1177 }
1178 
1179 
1180 /**
1181  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1182  *
1183  * @ring: amdgpu_ring pointer
1184  * @vm: amdgpu_vm pointer
1185  *
1186  * Update the page table base and flush the VM TLB
1187  * using sDMA (VEGA10).
1188  */
1189 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1190 					 unsigned vmid, uint64_t pd_addr)
1191 {
1192 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1193 }
1194 
1195 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1196 				     uint32_t reg, uint32_t val)
1197 {
1198 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1199 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1200 	amdgpu_ring_write(ring, reg);
1201 	amdgpu_ring_write(ring, val);
1202 }
1203 
1204 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1205 					 uint32_t val, uint32_t mask)
1206 {
1207 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1208 }
1209 
1210 static int sdma_v4_0_early_init(void *handle)
1211 {
1212 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1213 
1214 	if (adev->asic_type == CHIP_RAVEN)
1215 		adev->sdma.num_instances = 1;
1216 	else
1217 		adev->sdma.num_instances = 2;
1218 
1219 	sdma_v4_0_set_ring_funcs(adev);
1220 	sdma_v4_0_set_buffer_funcs(adev);
1221 	sdma_v4_0_set_vm_pte_funcs(adev);
1222 	sdma_v4_0_set_irq_funcs(adev);
1223 
1224 	return 0;
1225 }
1226 
1227 
1228 static int sdma_v4_0_sw_init(void *handle)
1229 {
1230 	struct amdgpu_ring *ring;
1231 	int r, i;
1232 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1233 
1234 	/* SDMA trap event */
1235 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1236 			      &adev->sdma.trap_irq);
1237 	if (r)
1238 		return r;
1239 
1240 	/* SDMA trap event */
1241 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1242 			      &adev->sdma.trap_irq);
1243 	if (r)
1244 		return r;
1245 
1246 	r = sdma_v4_0_init_microcode(adev);
1247 	if (r) {
1248 		DRM_ERROR("Failed to load sdma firmware!\n");
1249 		return r;
1250 	}
1251 
1252 	for (i = 0; i < adev->sdma.num_instances; i++) {
1253 		ring = &adev->sdma.instance[i].ring;
1254 		ring->ring_obj = NULL;
1255 		ring->use_doorbell = true;
1256 
1257 		DRM_INFO("use_doorbell being set to: [%s]\n",
1258 				ring->use_doorbell?"true":"false");
1259 
1260 		ring->doorbell_index = (i == 0) ?
1261 			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1262 			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1263 
1264 		ksprintf(ring->name, "sdma%d", i);
1265 		r = amdgpu_ring_init(adev, ring, 1024,
1266 				     &adev->sdma.trap_irq,
1267 				     (i == 0) ?
1268 				     AMDGPU_SDMA_IRQ_TRAP0 :
1269 				     AMDGPU_SDMA_IRQ_TRAP1);
1270 		if (r)
1271 			return r;
1272 	}
1273 
1274 	return r;
1275 }
1276 
1277 static int sdma_v4_0_sw_fini(void *handle)
1278 {
1279 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280 	int i;
1281 
1282 	for (i = 0; i < adev->sdma.num_instances; i++)
1283 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1284 
1285 	for (i = 0; i < adev->sdma.num_instances; i++) {
1286 		release_firmware(adev->sdma.instance[i].fw);
1287 		adev->sdma.instance[i].fw = NULL;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int sdma_v4_0_hw_init(void *handle)
1294 {
1295 	int r;
1296 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 
1298 	sdma_v4_0_init_golden_registers(adev);
1299 
1300 	r = sdma_v4_0_start(adev);
1301 
1302 	return r;
1303 }
1304 
1305 static int sdma_v4_0_hw_fini(void *handle)
1306 {
1307 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1308 
1309 	if (amdgpu_sriov_vf(adev))
1310 		return 0;
1311 
1312 	sdma_v4_0_ctx_switch_enable(adev, false);
1313 	sdma_v4_0_enable(adev, false);
1314 
1315 	return 0;
1316 }
1317 
1318 static int sdma_v4_0_suspend(void *handle)
1319 {
1320 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1321 
1322 	return sdma_v4_0_hw_fini(adev);
1323 }
1324 
1325 static int sdma_v4_0_resume(void *handle)
1326 {
1327 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1328 
1329 	return sdma_v4_0_hw_init(adev);
1330 }
1331 
1332 static bool sdma_v4_0_is_idle(void *handle)
1333 {
1334 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1335 	u32 i;
1336 
1337 	for (i = 0; i < adev->sdma.num_instances; i++) {
1338 		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1339 
1340 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1341 			return false;
1342 	}
1343 
1344 	return true;
1345 }
1346 
1347 static int sdma_v4_0_wait_for_idle(void *handle)
1348 {
1349 	unsigned i;
1350 	u32 sdma0, sdma1;
1351 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1352 
1353 	for (i = 0; i < adev->usec_timeout; i++) {
1354 		sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1355 		sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1356 
1357 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1358 			return 0;
1359 		udelay(1);
1360 	}
1361 	return -ETIMEDOUT;
1362 }
1363 
1364 static int sdma_v4_0_soft_reset(void *handle)
1365 {
1366 	/* todo */
1367 
1368 	return 0;
1369 }
1370 
1371 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1372 					struct amdgpu_irq_src *source,
1373 					unsigned type,
1374 					enum amdgpu_interrupt_state state)
1375 {
1376 	u32 sdma_cntl;
1377 
1378 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1379 		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1380 		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1381 
1382 	sdma_cntl = RREG32(reg_offset);
1383 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1384 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1385 	WREG32(reg_offset, sdma_cntl);
1386 
1387 	return 0;
1388 }
1389 
1390 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1391 				      struct amdgpu_irq_src *source,
1392 				      struct amdgpu_iv_entry *entry)
1393 {
1394 	DRM_DEBUG("IH: SDMA trap\n");
1395 	switch (entry->client_id) {
1396 	case SOC15_IH_CLIENTID_SDMA0:
1397 		switch (entry->ring_id) {
1398 		case 0:
1399 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1400 			break;
1401 		case 1:
1402 			/* XXX compute */
1403 			break;
1404 		case 2:
1405 			/* XXX compute */
1406 			break;
1407 		case 3:
1408 			/* XXX page queue*/
1409 			break;
1410 		}
1411 		break;
1412 	case SOC15_IH_CLIENTID_SDMA1:
1413 		switch (entry->ring_id) {
1414 		case 0:
1415 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1416 			break;
1417 		case 1:
1418 			/* XXX compute */
1419 			break;
1420 		case 2:
1421 			/* XXX compute */
1422 			break;
1423 		case 3:
1424 			/* XXX page queue*/
1425 			break;
1426 		}
1427 		break;
1428 	}
1429 	return 0;
1430 }
1431 
1432 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1433 					      struct amdgpu_irq_src *source,
1434 					      struct amdgpu_iv_entry *entry)
1435 {
1436 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1437 	schedule_work(&adev->reset_work);
1438 	return 0;
1439 }
1440 
1441 
1442 static void sdma_v4_0_update_medium_grain_clock_gating(
1443 		struct amdgpu_device *adev,
1444 		bool enable)
1445 {
1446 	uint32_t data, def;
1447 
1448 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1449 		/* enable sdma0 clock gating */
1450 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1451 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1452 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1453 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1454 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1455 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1456 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1457 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1458 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1459 		if (def != data)
1460 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1461 
1462 		if (adev->sdma.num_instances > 1) {
1463 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1464 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1465 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1466 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1467 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1468 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1469 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1470 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1471 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1472 			if (def != data)
1473 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1474 		}
1475 	} else {
1476 		/* disable sdma0 clock gating */
1477 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1478 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1479 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1480 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1481 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1482 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1483 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1484 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1485 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1486 
1487 		if (def != data)
1488 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1489 
1490 		if (adev->sdma.num_instances > 1) {
1491 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1492 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1493 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1494 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1495 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1496 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1497 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1498 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1499 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1500 			if (def != data)
1501 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1502 		}
1503 	}
1504 }
1505 
1506 
1507 static void sdma_v4_0_update_medium_grain_light_sleep(
1508 		struct amdgpu_device *adev,
1509 		bool enable)
1510 {
1511 	uint32_t data, def;
1512 
1513 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1514 		/* 1-not override: enable sdma0 mem light sleep */
1515 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1516 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1517 		if (def != data)
1518 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1519 
1520 		/* 1-not override: enable sdma1 mem light sleep */
1521 		if (adev->sdma.num_instances > 1) {
1522 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1523 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1524 			if (def != data)
1525 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1526 		}
1527 	} else {
1528 		/* 0-override:disable sdma0 mem light sleep */
1529 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1530 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1531 		if (def != data)
1532 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1533 
1534 		/* 0-override:disable sdma1 mem light sleep */
1535 		if (adev->sdma.num_instances > 1) {
1536 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1537 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1538 			if (def != data)
1539 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1540 		}
1541 	}
1542 }
1543 
1544 static int sdma_v4_0_set_clockgating_state(void *handle,
1545 					  enum amd_clockgating_state state)
1546 {
1547 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1548 
1549 	if (amdgpu_sriov_vf(adev))
1550 		return 0;
1551 
1552 	switch (adev->asic_type) {
1553 	case CHIP_VEGA10:
1554 	case CHIP_VEGA12:
1555 	case CHIP_VEGA20:
1556 	case CHIP_RAVEN:
1557 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1558 				state == AMD_CG_STATE_GATE ? true : false);
1559 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1560 				state == AMD_CG_STATE_GATE ? true : false);
1561 		break;
1562 	default:
1563 		break;
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int sdma_v4_0_set_powergating_state(void *handle,
1569 					  enum amd_powergating_state state)
1570 {
1571 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1572 
1573 	switch (adev->asic_type) {
1574 	case CHIP_RAVEN:
1575 		sdma_v4_1_update_power_gating(adev,
1576 				state == AMD_PG_STATE_GATE ? true : false);
1577 		break;
1578 	default:
1579 		break;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1586 {
1587 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1588 	int data;
1589 
1590 	if (amdgpu_sriov_vf(adev))
1591 		*flags = 0;
1592 
1593 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1594 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1595 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1596 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1597 
1598 	/* AMD_CG_SUPPORT_SDMA_LS */
1599 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1600 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1601 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1602 }
1603 
1604 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1605 	.name = "sdma_v4_0",
1606 	.early_init = sdma_v4_0_early_init,
1607 	.late_init = NULL,
1608 	.sw_init = sdma_v4_0_sw_init,
1609 	.sw_fini = sdma_v4_0_sw_fini,
1610 	.hw_init = sdma_v4_0_hw_init,
1611 	.hw_fini = sdma_v4_0_hw_fini,
1612 	.suspend = sdma_v4_0_suspend,
1613 	.resume = sdma_v4_0_resume,
1614 	.is_idle = sdma_v4_0_is_idle,
1615 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1616 	.soft_reset = sdma_v4_0_soft_reset,
1617 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1618 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1619 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1620 };
1621 
1622 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1623 	.type = AMDGPU_RING_TYPE_SDMA,
1624 	.align_mask = 0xf,
1625 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1626 	.support_64bit_ptrs = true,
1627 	.vmhub = AMDGPU_MMHUB,
1628 	.get_rptr = sdma_v4_0_ring_get_rptr,
1629 	.get_wptr = sdma_v4_0_ring_get_wptr,
1630 	.set_wptr = sdma_v4_0_ring_set_wptr,
1631 	.emit_frame_size =
1632 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1633 		3 + /* hdp invalidate */
1634 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1635 		/* sdma_v4_0_ring_emit_vm_flush */
1636 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1637 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1638 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1639 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1640 	.emit_ib = sdma_v4_0_ring_emit_ib,
1641 	.emit_fence = sdma_v4_0_ring_emit_fence,
1642 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1643 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1644 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1645 	.test_ring = sdma_v4_0_ring_test_ring,
1646 	.test_ib = sdma_v4_0_ring_test_ib,
1647 	.insert_nop = sdma_v4_0_ring_insert_nop,
1648 	.pad_ib = sdma_v4_0_ring_pad_ib,
1649 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1650 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1651 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1652 };
1653 
1654 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < adev->sdma.num_instances; i++) {
1659 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1660 		adev->sdma.instance[i].ring.me = i;
1661 	}
1662 }
1663 
1664 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1665 	.set = sdma_v4_0_set_trap_irq_state,
1666 	.process = sdma_v4_0_process_trap_irq,
1667 };
1668 
1669 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1670 	.process = sdma_v4_0_process_illegal_inst_irq,
1671 };
1672 
1673 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1674 {
1675 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1676 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
1677 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
1678 }
1679 
1680 /**
1681  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
1682  *
1683  * @ring: amdgpu_ring structure holding ring information
1684  * @src_offset: src GPU address
1685  * @dst_offset: dst GPU address
1686  * @byte_count: number of bytes to xfer
1687  *
1688  * Copy GPU buffers using the DMA engine (VEGA10/12).
1689  * Used by the amdgpu ttm implementation to move pages if
1690  * registered as the asic copy callback.
1691  */
1692 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
1693 				       uint64_t src_offset,
1694 				       uint64_t dst_offset,
1695 				       uint32_t byte_count)
1696 {
1697 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1698 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1699 	ib->ptr[ib->length_dw++] = byte_count - 1;
1700 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1701 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1702 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1703 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1704 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1705 }
1706 
1707 /**
1708  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
1709  *
1710  * @ring: amdgpu_ring structure holding ring information
1711  * @src_data: value to write to buffer
1712  * @dst_offset: dst GPU address
1713  * @byte_count: number of bytes to xfer
1714  *
1715  * Fill GPU buffers using the DMA engine (VEGA10/12).
1716  */
1717 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
1718 				       uint32_t src_data,
1719 				       uint64_t dst_offset,
1720 				       uint32_t byte_count)
1721 {
1722 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1723 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1724 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1725 	ib->ptr[ib->length_dw++] = src_data;
1726 	ib->ptr[ib->length_dw++] = byte_count - 1;
1727 }
1728 
1729 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
1730 	.copy_max_bytes = 0x400000,
1731 	.copy_num_dw = 7,
1732 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
1733 
1734 	.fill_max_bytes = 0x400000,
1735 	.fill_num_dw = 5,
1736 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
1737 };
1738 
1739 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
1740 {
1741 	if (adev->mman.buffer_funcs == NULL) {
1742 		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
1743 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1744 	}
1745 }
1746 
1747 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1748 	.copy_pte_num_dw = 7,
1749 	.copy_pte = sdma_v4_0_vm_copy_pte,
1750 
1751 	.write_pte = sdma_v4_0_vm_write_pte,
1752 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
1753 };
1754 
1755 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1756 {
1757 	unsigned i;
1758 
1759 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1760 		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
1761 		for (i = 0; i < adev->sdma.num_instances; i++)
1762 			adev->vm_manager.vm_pte_rings[i] =
1763 				&adev->sdma.instance[i].ring;
1764 
1765 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1766 	}
1767 }
1768 
1769 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1770 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1771 	.major = 4,
1772 	.minor = 0,
1773 	.rev = 0,
1774 	.funcs = &sdma_v4_0_ip_funcs,
1775 };
1776