xref: /dragonfly/sys/dev/drm/amd/display/dc/calcs/bw_fixed.c (revision 7d3e9a5b)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include "dm_services.h"
26 #include "bw_fixed.h"
27 
28 
29 #define MIN_I64 \
30 	(int64_t)(-(1LL << 63))
31 
32 #define MAX_I64 \
33 	(int64_t)((1ULL << 63) - 1)
34 
35 #define FRACTIONAL_PART_MASK \
36 	((1ULL << BW_FIXED_BITS_PER_FRACTIONAL_PART) - 1)
37 
38 #define GET_FRACTIONAL_PART(x) \
39 	(FRACTIONAL_PART_MASK & (x))
40 
41 static uint64_t abs_i64(int64_t arg)
42 {
43 	if (arg >= 0)
44 		return (uint64_t)(arg);
45 	else
46 		return (uint64_t)(-arg);
47 }
48 
49 struct bw_fixed bw_int_to_fixed_nonconst(int64_t value)
50 {
51 	struct bw_fixed res;
52 	ASSERT(value < BW_FIXED_MAX_I32 && value > BW_FIXED_MIN_I32);
53 	res.value = value << BW_FIXED_BITS_PER_FRACTIONAL_PART;
54 	return res;
55 }
56 
57 struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator)
58 {
59 	struct bw_fixed res;
60 	bool arg1_negative = numerator < 0;
61 	bool arg2_negative = denominator < 0;
62 	uint64_t arg1_value;
63 	uint64_t arg2_value;
64 	uint64_t remainder;
65 
66 	/* determine integer part */
67 	uint64_t res_value;
68 
69 	ASSERT(denominator != 0);
70 
71 	arg1_value = abs_i64(numerator);
72 	arg2_value = abs_i64(denominator);
73 	/* XXX: int64_t* -> u64* conversion! */
74 	res_value = div64_u64_rem(arg1_value, arg2_value, (u64 *)&remainder);
75 
76 	ASSERT(res_value <= BW_FIXED_MAX_I32);
77 
78 	/* determine fractional part */
79 	{
80 		uint32_t i = BW_FIXED_BITS_PER_FRACTIONAL_PART;
81 
82 		do
83 		{
84 			remainder <<= 1;
85 
86 			res_value <<= 1;
87 
88 			if (remainder >= arg2_value)
89 			{
90 				res_value |= 1;
91 				remainder -= arg2_value;
92 			}
93 		} while (--i != 0);
94 	}
95 
96 	/* round up LSB */
97 	{
98 		uint64_t summand = (remainder << 1) >= arg2_value;
99 
100 		ASSERT(res_value <= MAX_I64 - summand);
101 
102 		res_value += summand;
103 	}
104 
105 	res.value = (int64_t)(res_value);
106 
107 	if (arg1_negative ^ arg2_negative)
108 		res.value = -res.value;
109 	return res;
110 }
111 
112 struct bw_fixed bw_floor2(
113 	const struct bw_fixed arg,
114 	const struct bw_fixed significance)
115 {
116 	struct bw_fixed result;
117 	int64_t multiplicand;
118 
119 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
120 	result.value = abs_i64(significance.value) * multiplicand;
121 	ASSERT(abs_i64(result.value) <= abs_i64(arg.value));
122 	return result;
123 }
124 
125 struct bw_fixed bw_ceil2(
126 	const struct bw_fixed arg,
127 	const struct bw_fixed significance)
128 {
129 	struct bw_fixed result;
130 	int64_t multiplicand;
131 
132 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
133 	result.value = abs_i64(significance.value) * multiplicand;
134 	if (abs_i64(result.value) < abs_i64(arg.value)) {
135 		if (arg.value < 0)
136 			result.value -= abs_i64(significance.value);
137 		else
138 			result.value += abs_i64(significance.value);
139 	}
140 	return result;
141 }
142 
143 struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2)
144 {
145 	struct bw_fixed res;
146 
147 	bool arg1_negative = arg1.value < 0;
148 	bool arg2_negative = arg2.value < 0;
149 
150 	uint64_t arg1_value = abs_i64(arg1.value);
151 	uint64_t arg2_value = abs_i64(arg2.value);
152 
153 	uint64_t arg1_int = BW_FIXED_GET_INTEGER_PART(arg1_value);
154 	uint64_t arg2_int = BW_FIXED_GET_INTEGER_PART(arg2_value);
155 
156 	uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
157 	uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
158 
159 	uint64_t tmp;
160 
161 	res.value = arg1_int * arg2_int;
162 
163 	ASSERT(res.value <= BW_FIXED_MAX_I32);
164 
165 	res.value <<= BW_FIXED_BITS_PER_FRACTIONAL_PART;
166 
167 	tmp = arg1_int * arg2_fra;
168 
169 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
170 
171 	res.value += tmp;
172 
173 	tmp = arg2_int * arg1_fra;
174 
175 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
176 
177 	res.value += tmp;
178 
179 	tmp = arg1_fra * arg2_fra;
180 
181 	tmp = (tmp >> BW_FIXED_BITS_PER_FRACTIONAL_PART) +
182 		(tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value));
183 
184 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
185 
186 	res.value += tmp;
187 
188 	if (arg1_negative ^ arg2_negative)
189 		res.value = -res.value;
190 	return res;
191 }
192 
193