1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include "dm_services.h"
26 #include "dc.h"
27 #include "dc_bios_types.h"
28 #include "core_types.h"
29 #include "core_status.h"
30 #include "resource.h"
31 #include "dm_helpers.h"
32 #include "dce110_hw_sequencer.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36 
37 #include "dce110_compressor.h"
38 
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_hwss.h"
48 #include "clock_source.h"
49 #include "abm.h"
50 #include "audio.h"
51 #include "reg_helper.h"
52 
53 /* include DCE11 register header files */
54 #include "dce/dce_11_0_d.h"
55 #include "dce/dce_11_0_sh_mask.h"
56 #include "custom_float.h"
57 
58 #include "atomfirmware.h"
59 
60 /*
61  * All values are in milliseconds;
62  * For eDP, after power-up/power/down,
63  * 300/500 msec max. delay from LCDVCC to black video generation
64  */
65 #define PANEL_POWER_UP_TIMEOUT 300
66 #define PANEL_POWER_DOWN_TIMEOUT 500
67 #define HPD_CHECK_INTERVAL 10
68 
69 #define CTX \
70 	hws->ctx
71 
72 #define DC_LOGGER_INIT()
73 
74 #define REG(reg)\
75 	hws->regs->reg
76 
77 #undef FN
78 #define FN(reg_name, field_name) \
79 	hws->shifts->field_name, hws->masks->field_name
80 
81 struct dce110_hw_seq_reg_offsets {
82 	uint32_t crtc;
83 };
84 
85 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
86 {
87 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
88 },
89 {
90 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
91 },
92 {
93 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
94 },
95 {
96 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
97 }
98 };
99 
100 #define HW_REG_BLND(reg, id)\
101 	(reg + reg_offsets[id].blnd)
102 
103 #define HW_REG_CRTC(reg, id)\
104 	(reg + reg_offsets[id].crtc)
105 
106 #define MAX_WATERMARK 0xFFFF
107 #define SAFE_NBP_MARK 0x7FFF
108 
109 /*******************************************************************************
110  * Private definitions
111  ******************************************************************************/
112 /***************************PIPE_CONTROL***********************************/
113 static void dce110_init_pte(struct dc_context *ctx)
114 {
115 	uint32_t addr;
116 	uint32_t value = 0;
117 	uint32_t chunk_int = 0;
118 	uint32_t chunk_mul = 0;
119 
120 	addr = mmUNP_DVMM_PTE_CONTROL;
121 	value = dm_read_reg(ctx, addr);
122 
123 	set_reg_field_value(
124 		value,
125 		0,
126 		DVMM_PTE_CONTROL,
127 		DVMM_USE_SINGLE_PTE);
128 
129 	set_reg_field_value(
130 		value,
131 		1,
132 		DVMM_PTE_CONTROL,
133 		DVMM_PTE_BUFFER_MODE0);
134 
135 	set_reg_field_value(
136 		value,
137 		1,
138 		DVMM_PTE_CONTROL,
139 		DVMM_PTE_BUFFER_MODE1);
140 
141 	dm_write_reg(ctx, addr, value);
142 
143 	addr = mmDVMM_PTE_REQ;
144 	value = dm_read_reg(ctx, addr);
145 
146 	chunk_int = get_reg_field_value(
147 		value,
148 		DVMM_PTE_REQ,
149 		HFLIP_PTEREQ_PER_CHUNK_INT);
150 
151 	chunk_mul = get_reg_field_value(
152 		value,
153 		DVMM_PTE_REQ,
154 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
155 
156 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
157 
158 		set_reg_field_value(
159 			value,
160 			255,
161 			DVMM_PTE_REQ,
162 			MAX_PTEREQ_TO_ISSUE);
163 
164 		set_reg_field_value(
165 			value,
166 			4,
167 			DVMM_PTE_REQ,
168 			HFLIP_PTEREQ_PER_CHUNK_INT);
169 
170 		set_reg_field_value(
171 			value,
172 			4,
173 			DVMM_PTE_REQ,
174 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
175 
176 		dm_write_reg(ctx, addr, value);
177 	}
178 }
179 /**************************************************************************/
180 
181 static void enable_display_pipe_clock_gating(
182 	struct dc_context *ctx,
183 	bool clock_gating)
184 {
185 	/*TODO*/
186 }
187 
188 static bool dce110_enable_display_power_gating(
189 	struct dc *dc,
190 	uint8_t controller_id,
191 	struct dc_bios *dcb,
192 	enum pipe_gating_control power_gating)
193 {
194 	enum bp_result bp_result = BP_RESULT_OK;
195 	enum bp_pipe_control_action cntl;
196 	struct dc_context *ctx = dc->ctx;
197 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
198 
199 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
200 		return true;
201 
202 	if (power_gating == PIPE_GATING_CONTROL_INIT)
203 		cntl = ASIC_PIPE_INIT;
204 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
205 		cntl = ASIC_PIPE_ENABLE;
206 	else
207 		cntl = ASIC_PIPE_DISABLE;
208 
209 	if (controller_id == underlay_idx)
210 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
211 
212 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
213 
214 		bp_result = dcb->funcs->enable_disp_power_gating(
215 						dcb, controller_id + 1, cntl);
216 
217 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
218 		 * by default when command table is called
219 		 *
220 		 * Bios parser accepts controller_id = 6 as indicative of
221 		 * underlay pipe in dce110. But we do not support more
222 		 * than 3.
223 		 */
224 		if (controller_id < CONTROLLER_ID_MAX - 1)
225 			dm_write_reg(ctx,
226 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
227 				0);
228 	}
229 
230 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
231 		dce110_init_pte(ctx);
232 
233 	if (bp_result == BP_RESULT_OK)
234 		return true;
235 	else
236 		return false;
237 }
238 
239 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
240 		const struct dc_plane_state *plane_state)
241 {
242 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
243 
244 	switch (plane_state->format) {
245 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
246 		prescale_params->scale = 0x2082;
247 		break;
248 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
249 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
250 		prescale_params->scale = 0x2020;
251 		break;
252 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
253 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
254 		prescale_params->scale = 0x2008;
255 		break;
256 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
257 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
258 		prescale_params->scale = 0x2000;
259 		break;
260 	default:
261 		ASSERT(false);
262 		break;
263 	}
264 }
265 
266 static bool
267 dce110_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
268 			       const struct dc_plane_state *plane_state)
269 {
270 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
271 	const struct dc_transfer_func *tf = NULL;
272 	struct ipp_prescale_params prescale_params = { 0 };
273 	bool result = true;
274 
275 	if (ipp == NULL)
276 		return false;
277 
278 	if (plane_state->in_transfer_func)
279 		tf = plane_state->in_transfer_func;
280 
281 	build_prescale_params(&prescale_params, plane_state);
282 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
283 
284 	if (plane_state->gamma_correction &&
285 			!plane_state->gamma_correction->is_identity &&
286 			dce_use_lut(plane_state->format))
287 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
288 
289 	if (tf == NULL) {
290 		/* Default case if no input transfer function specified */
291 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
292 	} else if (tf->type == TF_TYPE_PREDEFINED) {
293 		switch (tf->tf) {
294 		case TRANSFER_FUNCTION_SRGB:
295 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
296 			break;
297 		case TRANSFER_FUNCTION_BT709:
298 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
299 			break;
300 		case TRANSFER_FUNCTION_LINEAR:
301 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
302 			break;
303 		case TRANSFER_FUNCTION_PQ:
304 		default:
305 			result = false;
306 			break;
307 		}
308 	} else if (tf->type == TF_TYPE_BYPASS) {
309 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
310 	} else {
311 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
312 		result = false;
313 	}
314 
315 	return result;
316 }
317 
318 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
319 				    struct curve_points *arr_points,
320 				    uint32_t hw_points_num)
321 {
322 	struct custom_float_format fmt;
323 
324 	struct pwl_result_data *rgb = rgb_resulted;
325 
326 	uint32_t i = 0;
327 
328 	fmt.exponenta_bits = 6;
329 	fmt.mantissa_bits = 12;
330 	fmt.sign = true;
331 
332 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
333 					    &arr_points[0].custom_float_x)) {
334 		BREAK_TO_DEBUGGER();
335 		return false;
336 	}
337 
338 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
339 					    &arr_points[0].custom_float_offset)) {
340 		BREAK_TO_DEBUGGER();
341 		return false;
342 	}
343 
344 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
345 					    &arr_points[0].custom_float_slope)) {
346 		BREAK_TO_DEBUGGER();
347 		return false;
348 	}
349 
350 	fmt.mantissa_bits = 10;
351 	fmt.sign = false;
352 
353 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
354 					    &arr_points[1].custom_float_x)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
360 					    &arr_points[1].custom_float_y)) {
361 		BREAK_TO_DEBUGGER();
362 		return false;
363 	}
364 
365 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
366 					    &arr_points[1].custom_float_slope)) {
367 		BREAK_TO_DEBUGGER();
368 		return false;
369 	}
370 
371 	fmt.mantissa_bits = 12;
372 	fmt.sign = true;
373 
374 	while (i != hw_points_num) {
375 		if (!convert_to_custom_float_format(rgb->red, &fmt,
376 						    &rgb->red_reg)) {
377 			BREAK_TO_DEBUGGER();
378 			return false;
379 		}
380 
381 		if (!convert_to_custom_float_format(rgb->green, &fmt,
382 						    &rgb->green_reg)) {
383 			BREAK_TO_DEBUGGER();
384 			return false;
385 		}
386 
387 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
388 						    &rgb->blue_reg)) {
389 			BREAK_TO_DEBUGGER();
390 			return false;
391 		}
392 
393 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
394 						    &rgb->delta_red_reg)) {
395 			BREAK_TO_DEBUGGER();
396 			return false;
397 		}
398 
399 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
400 						    &rgb->delta_green_reg)) {
401 			BREAK_TO_DEBUGGER();
402 			return false;
403 		}
404 
405 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
406 						    &rgb->delta_blue_reg)) {
407 			BREAK_TO_DEBUGGER();
408 			return false;
409 		}
410 
411 		++rgb;
412 		++i;
413 	}
414 
415 	return true;
416 }
417 
418 #define MAX_LOW_POINT      25
419 #define NUMBER_REGIONS     16
420 #define NUMBER_SW_SEGMENTS 16
421 
422 static bool
423 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
424 				      struct pwl_params *regamma_params)
425 {
426 	struct curve_points *arr_points;
427 	struct pwl_result_data *rgb_resulted;
428 	struct pwl_result_data *rgb;
429 	struct pwl_result_data *rgb_plus_1;
430 	struct fixed31_32 y_r;
431 	struct fixed31_32 y_g;
432 	struct fixed31_32 y_b;
433 	struct fixed31_32 y1_min;
434 	struct fixed31_32 y3_max;
435 
436 	int32_t region_start, region_end;
437 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
438 
439 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
440 		return false;
441 
442 	arr_points = regamma_params->arr_points;
443 	rgb_resulted = regamma_params->rgb_resulted;
444 	hw_points = 0;
445 
446 	memset(regamma_params, 0, sizeof(struct pwl_params));
447 
448 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
449 		/* 16 segments
450 		 * segments are from 2^-11 to 2^5
451 		 */
452 		region_start = -11;
453 		region_end = region_start + NUMBER_REGIONS;
454 
455 		for (i = 0; i < NUMBER_REGIONS; i++)
456 			seg_distr[i] = 4;
457 
458 	} else {
459 		/* 10 segments
460 		 * segment is from 2^-10 to 2^1
461 		 * We include an extra segment for range [2^0, 2^1). This is to
462 		 * ensure that colors with normalized values of 1 don't miss the
463 		 * LUT.
464 		 */
465 		region_start = -10;
466 		region_end = 1;
467 
468 		seg_distr[0] = 4;
469 		seg_distr[1] = 4;
470 		seg_distr[2] = 4;
471 		seg_distr[3] = 4;
472 		seg_distr[4] = 4;
473 		seg_distr[5] = 4;
474 		seg_distr[6] = 4;
475 		seg_distr[7] = 4;
476 		seg_distr[8] = 4;
477 		seg_distr[9] = 4;
478 		seg_distr[10] = 0;
479 		seg_distr[11] = -1;
480 		seg_distr[12] = -1;
481 		seg_distr[13] = -1;
482 		seg_distr[14] = -1;
483 		seg_distr[15] = -1;
484 	}
485 
486 	for (k = 0; k < 16; k++) {
487 		if (seg_distr[k] != -1)
488 			hw_points += (1 << seg_distr[k]);
489 	}
490 
491 	j = 0;
492 	for (k = 0; k < (region_end - region_start); k++) {
493 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
494 		start_index = (region_start + k + MAX_LOW_POINT) *
495 				NUMBER_SW_SEGMENTS;
496 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
497 				i += increment) {
498 			if (j == hw_points - 1)
499 				break;
500 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
501 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
502 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
503 			j++;
504 		}
505 	}
506 
507 	/* last point */
508 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
509 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
510 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
511 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
512 
513 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
514 					     dc_fixpt_from_int(region_start));
515 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
516 					     dc_fixpt_from_int(region_end));
517 
518 	y_r = rgb_resulted[0].red;
519 	y_g = rgb_resulted[0].green;
520 	y_b = rgb_resulted[0].blue;
521 
522 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
523 
524 	arr_points[0].y = y1_min;
525 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
526 						 arr_points[0].x);
527 
528 	y_r = rgb_resulted[hw_points - 1].red;
529 	y_g = rgb_resulted[hw_points - 1].green;
530 	y_b = rgb_resulted[hw_points - 1].blue;
531 
532 	/* see comment above, m_arrPoints[1].y should be the Y value for the
533 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
534 	 */
535 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
536 
537 	arr_points[1].y = y3_max;
538 
539 	arr_points[1].slope = dc_fixpt_zero;
540 
541 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
542 		/* for PQ, we want to have a straight line from last HW X point,
543 		 * and the slope to be such that we hit 1.0 at 10000 nits.
544 		 */
545 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
546 
547 		arr_points[1].slope = dc_fixpt_div(
548 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
549 				dc_fixpt_sub(end_value, arr_points[1].x));
550 	}
551 
552 	regamma_params->hw_points_num = hw_points;
553 
554 	i = 1;
555 	for (k = 0; k < 16 && i < 16; k++) {
556 		if (seg_distr[k] != -1) {
557 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
558 			regamma_params->arr_curve_points[i].offset =
559 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
560 		}
561 		i++;
562 	}
563 
564 	if (seg_distr[k] != -1)
565 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
566 
567 	rgb = rgb_resulted;
568 	rgb_plus_1 = rgb_resulted + 1;
569 
570 	i = 1;
571 
572 	while (i != hw_points + 1) {
573 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
574 			rgb_plus_1->red = rgb->red;
575 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
576 			rgb_plus_1->green = rgb->green;
577 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
578 			rgb_plus_1->blue = rgb->blue;
579 
580 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
581 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
582 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
583 
584 		++rgb_plus_1;
585 		++rgb;
586 		++i;
587 	}
588 
589 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
590 
591 	return true;
592 }
593 
594 static bool
595 dce110_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
596 				const struct dc_stream_state *stream)
597 {
598 	struct transform *xfm = pipe_ctx->plane_res.xfm;
599 
600 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
601 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
602 
603 	if (stream->out_transfer_func &&
604 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
605 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
606 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
607 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
608 							 &xfm->regamma_params)) {
609 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
610 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
611 	} else {
612 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
613 	}
614 
615 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
616 
617 	return true;
618 }
619 
620 static enum dc_status bios_parser_crtc_source_select(
621 		struct pipe_ctx *pipe_ctx)
622 {
623 	struct dc_bios *dcb;
624 	/* call VBIOS table to set CRTC source for the HW
625 	 * encoder block
626 	 * note: video bios clears all FMT setting here. */
627 	struct bp_crtc_source_select crtc_source_select = {0};
628 	const struct dc_sink *sink = pipe_ctx->stream->sink;
629 
630 	crtc_source_select.engine_id = pipe_ctx->stream_res.stream_enc->id;
631 	crtc_source_select.controller_id = pipe_ctx->stream_res.tg->inst + 1;
632 	/*TODO: Need to un-hardcode color depth, dp_audio and account for
633 	 * the case where signal and sink signal is different (translator
634 	 * encoder)*/
635 	crtc_source_select.signal = pipe_ctx->stream->signal;
636 	crtc_source_select.enable_dp_audio = false;
637 	crtc_source_select.sink_signal = pipe_ctx->stream->signal;
638 
639 	switch (pipe_ctx->stream->timing.display_color_depth) {
640 	case COLOR_DEPTH_666:
641 		crtc_source_select.display_output_bit_depth = PANEL_6BIT_COLOR;
642 		break;
643 	case COLOR_DEPTH_888:
644 		crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
645 		break;
646 	case COLOR_DEPTH_101010:
647 		crtc_source_select.display_output_bit_depth = PANEL_10BIT_COLOR;
648 		break;
649 	case COLOR_DEPTH_121212:
650 		crtc_source_select.display_output_bit_depth = PANEL_12BIT_COLOR;
651 		break;
652 	default:
653 		BREAK_TO_DEBUGGER();
654 		crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
655 		break;
656 	}
657 
658 	dcb = sink->ctx->dc_bios;
659 
660 	if (BP_RESULT_OK != dcb->funcs->crtc_source_select(
661 		dcb,
662 		&crtc_source_select)) {
663 		return DC_ERROR_UNEXPECTED;
664 	}
665 
666 	return DC_OK;
667 }
668 
669 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
670 {
671 	bool is_hdmi;
672 	bool is_dp;
673 
674 	ASSERT(pipe_ctx->stream);
675 
676 	if (pipe_ctx->stream_res.stream_enc == NULL)
677 		return;  /* this is not root pipe */
678 
679 	is_hdmi = dc_is_hdmi_signal(pipe_ctx->stream->signal);
680 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
681 
682 	if (!is_hdmi && !is_dp)
683 		return;
684 
685 	if (is_hdmi)
686 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
687 			pipe_ctx->stream_res.stream_enc,
688 			&pipe_ctx->stream_res.encoder_info_frame);
689 	else
690 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
691 			pipe_ctx->stream_res.stream_enc,
692 			&pipe_ctx->stream_res.encoder_info_frame);
693 }
694 
695 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
696 {
697 	enum dc_lane_count lane_count =
698 		pipe_ctx->stream->sink->link->cur_link_settings.lane_count;
699 
700 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
701 	struct dc_link *link = pipe_ctx->stream->sink->link;
702 
703 
704 	uint32_t active_total_with_borders;
705 	uint32_t early_control = 0;
706 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
707 
708 	/* For MST, there are multiply stream go to only one link.
709 	 * connect DIG back_end to front_end while enable_stream and
710 	 * disconnect them during disable_stream
711 	 * BY this, it is logic clean to separate stream and link */
712 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
713 						    pipe_ctx->stream_res.stream_enc->id, true);
714 
715 	/* update AVI info frame (HDMI, DP)*/
716 	/* TODO: FPGA may change to hwss.update_info_frame */
717 	dce110_update_info_frame(pipe_ctx);
718 
719 	/* enable early control to avoid corruption on DP monitor*/
720 	active_total_with_borders =
721 			timing->h_addressable
722 				+ timing->h_border_left
723 				+ timing->h_border_right;
724 
725 	if (lane_count != 0)
726 		early_control = active_total_with_borders % lane_count;
727 
728 	if (early_control == 0)
729 		early_control = lane_count;
730 
731 	tg->funcs->set_early_control(tg, early_control);
732 
733 	/* enable audio only within mode set */
734 	if (pipe_ctx->stream_res.audio != NULL) {
735 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
736 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
737 	}
738 
739 
740 
741 
742 }
743 
744 /*todo: cloned in stream enc, fix*/
745 static bool is_panel_backlight_on(struct dce_hwseq *hws)
746 {
747 	uint32_t value;
748 
749 	REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
750 
751 	return value;
752 }
753 
754 static bool is_panel_powered_on(struct dce_hwseq *hws)
755 {
756 	uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
757 
758 
759 	REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
760 
761 	REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
762 
763 	return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
764 }
765 
766 static enum bp_result link_transmitter_control(
767 		struct dc_bios *bios,
768 	struct bp_transmitter_control *cntl)
769 {
770 	enum bp_result result;
771 
772 	result = bios->funcs->transmitter_control(bios, cntl);
773 
774 	return result;
775 }
776 
777 /*
778  * @brief
779  * eDP only.
780  */
781 void hwss_edp_wait_for_hpd_ready(
782 		struct dc_link *link,
783 		bool power_up)
784 {
785 	struct dc_context *ctx = link->ctx;
786 	struct graphics_object_id connector = link->link_enc->connector;
787 	struct gpio *hpd;
788 	bool edp_hpd_high = false;
789 	uint32_t time_elapsed = 0;
790 	uint32_t timeout = power_up ?
791 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
792 
793 	if (dal_graphics_object_id_get_connector_id(connector)
794 			!= CONNECTOR_ID_EDP) {
795 		BREAK_TO_DEBUGGER();
796 		return;
797 	}
798 
799 	if (!power_up)
800 		/*
801 		 * From KV, we will not HPD low after turning off VCC -
802 		 * instead, we will check the SW timer in power_up().
803 		 */
804 		return;
805 
806 	/*
807 	 * When we power on/off the eDP panel,
808 	 * we need to wait until SENSE bit is high/low.
809 	 */
810 
811 	/* obtain HPD */
812 	/* TODO what to do with this? */
813 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
814 
815 	if (!hpd) {
816 		BREAK_TO_DEBUGGER();
817 		return;
818 	}
819 
820 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
821 
822 	/* wait until timeout or panel detected */
823 
824 	do {
825 		uint32_t detected = 0;
826 
827 		dal_gpio_get_value(hpd, &detected);
828 
829 		if (!(detected ^ power_up)) {
830 			edp_hpd_high = true;
831 			break;
832 		}
833 
834 		msleep(HPD_CHECK_INTERVAL);
835 
836 		time_elapsed += HPD_CHECK_INTERVAL;
837 	} while (time_elapsed < timeout);
838 
839 	dal_gpio_close(hpd);
840 
841 	dal_gpio_destroy_irq(&hpd);
842 
843 	if (false == edp_hpd_high) {
844 		DC_LOG_ERROR(
845 				"%s: wait timed out!\n", __func__);
846 	}
847 }
848 
849 void hwss_edp_power_control(
850 		struct dc_link *link,
851 		bool power_up)
852 {
853 	struct dc_context *ctx = link->ctx;
854 	struct dce_hwseq *hwseq = ctx->dc->hwseq;
855 	struct bp_transmitter_control cntl = { 0 };
856 	enum bp_result bp_result;
857 
858 
859 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
860 			!= CONNECTOR_ID_EDP) {
861 		BREAK_TO_DEBUGGER();
862 		return;
863 	}
864 
865 	if (power_up != is_panel_powered_on(hwseq)) {
866 		/* Send VBIOS command to prompt eDP panel power */
867 		if (power_up) {
868 			unsigned long long current_ts = dm_get_timestamp(ctx);
869 			unsigned long long duration_in_ms =
870 					div64_u64(dm_get_elapse_time_in_ns(
871 							ctx,
872 							current_ts,
873 							link->link_trace.time_stamp.edp_poweroff), 1000000);
874 			unsigned long long wait_time_ms = 0;
875 
876 			/* max 500ms from LCDVDD off to on */
877 			unsigned long long edp_poweroff_time_ms = 500;
878 
879 			if (link->local_sink != NULL)
880 				edp_poweroff_time_ms =
881 						500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
882 			if (link->link_trace.time_stamp.edp_poweroff == 0)
883 				wait_time_ms = edp_poweroff_time_ms;
884 			else if (duration_in_ms < edp_poweroff_time_ms)
885 				wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
886 
887 			if (wait_time_ms) {
888 				msleep(wait_time_ms);
889 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
890 						__func__, wait_time_ms);
891 			}
892 
893 		}
894 
895 		DC_LOG_HW_RESUME_S3(
896 				"%s: Panel Power action: %s\n",
897 				__func__, (power_up ? "On":"Off"));
898 
899 		cntl.action = power_up ?
900 			TRANSMITTER_CONTROL_POWER_ON :
901 			TRANSMITTER_CONTROL_POWER_OFF;
902 		cntl.transmitter = link->link_enc->transmitter;
903 		cntl.connector_obj_id = link->link_enc->connector;
904 		cntl.coherent = false;
905 		cntl.lanes_number = LANE_COUNT_FOUR;
906 		cntl.hpd_sel = link->link_enc->hpd_source;
907 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
908 
909 		if (!power_up)
910 			/*save driver power off time stamp*/
911 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
912 		else
913 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
914 
915 		if (bp_result != BP_RESULT_OK)
916 			DC_LOG_ERROR(
917 					"%s: Panel Power bp_result: %d\n",
918 					__func__, bp_result);
919 	} else {
920 		DC_LOG_HW_RESUME_S3(
921 				"%s: Skipping Panel Power action: %s\n",
922 				__func__, (power_up ? "On":"Off"));
923 	}
924 }
925 
926 /*todo: cloned in stream enc, fix*/
927 /*
928  * @brief
929  * eDP only. Control the backlight of the eDP panel
930  */
931 void hwss_edp_backlight_control(
932 		struct dc_link *link,
933 		bool enable)
934 {
935 	struct dc_context *ctx = link->ctx;
936 	struct dce_hwseq *hws = ctx->dc->hwseq;
937 	struct bp_transmitter_control cntl = { 0 };
938 
939 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
940 		!= CONNECTOR_ID_EDP) {
941 		BREAK_TO_DEBUGGER();
942 		return;
943 	}
944 
945 	if (enable && is_panel_backlight_on(hws)) {
946 		DC_LOG_HW_RESUME_S3(
947 				"%s: panel already powered up. Do nothing.\n",
948 				__func__);
949 		return;
950 	}
951 
952 	/* Send VBIOS command to control eDP panel backlight */
953 
954 	DC_LOG_HW_RESUME_S3(
955 			"%s: backlight action: %s\n",
956 			__func__, (enable ? "On":"Off"));
957 
958 	cntl.action = enable ?
959 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
960 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
961 
962 	/*cntl.engine_id = ctx->engine;*/
963 	cntl.transmitter = link->link_enc->transmitter;
964 	cntl.connector_obj_id = link->link_enc->connector;
965 	/*todo: unhardcode*/
966 	cntl.lanes_number = LANE_COUNT_FOUR;
967 	cntl.hpd_sel = link->link_enc->hpd_source;
968 	cntl.signal = SIGNAL_TYPE_EDP;
969 
970 	/* For eDP, the following delays might need to be considered
971 	 * after link training completed:
972 	 * idle period - min. accounts for required BS-Idle pattern,
973 	 * max. allows for source frame synchronization);
974 	 * 50 msec max. delay from valid video data from source
975 	 * to video on dislpay or backlight enable.
976 	 *
977 	 * Disable the delay for now.
978 	 * Enable it in the future if necessary.
979 	 */
980 	/* dc_service_sleep_in_milliseconds(50); */
981 		/*edp 1.2*/
982 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
983 		edp_receiver_ready_T7(link);
984 	link_transmitter_control(ctx->dc_bios, &cntl);
985 	/*edp 1.2*/
986 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
987 		edp_receiver_ready_T9(link);
988 }
989 
990 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
991 {
992 	struct dc *core_dc = pipe_ctx->stream->ctx->dc;
993 	/* notify audio driver for audio modes of monitor */
994 	struct pp_smu_funcs_rv *pp_smu = core_dc->res_pool->pp_smu;
995 	unsigned int i, num_audio = 1;
996 
997 	if (pipe_ctx->stream_res.audio) {
998 		for (i = 0; i < MAX_PIPES; i++) {
999 			/*current_state not updated yet*/
1000 			if (core_dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1001 				num_audio++;
1002 		}
1003 
1004 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1005 
1006 		if (num_audio >= 1 && pp_smu != NULL && pp_smu->set_pme_wa_enable != NULL)
1007 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1008 			pp_smu->set_pme_wa_enable(&pp_smu->pp_smu);
1009 		/* un-mute audio */
1010 		/* TODO: audio should be per stream rather than per link */
1011 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1012 			pipe_ctx->stream_res.stream_enc, false);
1013 	}
1014 }
1015 
1016 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx, int option)
1017 {
1018 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1019 
1020 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1021 			pipe_ctx->stream_res.stream_enc, true);
1022 	if (pipe_ctx->stream_res.audio) {
1023 		struct pp_smu_funcs_rv *pp_smu = dc->res_pool->pp_smu;
1024 
1025 		if (option != KEEP_ACQUIRED_RESOURCE ||
1026 				!dc->debug.az_endpoint_mute_only) {
1027 			/*only disalbe az_endpoint if power down or free*/
1028 			pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1029 		}
1030 
1031 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1032 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1033 					pipe_ctx->stream_res.stream_enc);
1034 		else
1035 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1036 					pipe_ctx->stream_res.stream_enc);
1037 		/*don't free audio if it is from retrain or internal disable stream*/
1038 		if (option == FREE_ACQUIRED_RESOURCE && dc->caps.dynamic_audio == true) {
1039 			/*we have to dynamic arbitrate the audio endpoints*/
1040 			/*we free the resource, need reset is_audio_acquired*/
1041 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false);
1042 			pipe_ctx->stream_res.audio = NULL;
1043 		}
1044 		if (pp_smu != NULL && pp_smu->set_pme_wa_enable != NULL)
1045 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1046 			pp_smu->set_pme_wa_enable(&pp_smu->pp_smu);
1047 
1048 		/* TODO: notify audio driver for if audio modes list changed
1049 		 * add audio mode list change flag */
1050 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1051 		 * stream->stream_engine_id);
1052 		 */
1053 	}
1054 }
1055 
1056 void dce110_disable_stream(struct pipe_ctx *pipe_ctx, int option)
1057 {
1058 	struct dc_stream_state *stream = pipe_ctx->stream;
1059 	struct dc_link *link = stream->sink->link;
1060 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1061 
1062 	if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
1063 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1064 			pipe_ctx->stream_res.stream_enc);
1065 
1066 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1067 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1068 			pipe_ctx->stream_res.stream_enc);
1069 
1070 	dc->hwss.disable_audio_stream(pipe_ctx, option);
1071 
1072 	link->link_enc->funcs->connect_dig_be_to_fe(
1073 			link->link_enc,
1074 			pipe_ctx->stream_res.stream_enc->id,
1075 			false);
1076 
1077 }
1078 
1079 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1080 		struct dc_link_settings *link_settings)
1081 {
1082 	struct encoder_unblank_param params = { { 0 } };
1083 	struct dc_stream_state *stream = pipe_ctx->stream;
1084 	struct dc_link *link = stream->sink->link;
1085 
1086 	/* only 3 items below are used by unblank */
1087 	params.pixel_clk_khz =
1088 		pipe_ctx->stream->timing.pix_clk_khz;
1089 	params.link_settings.link_rate = link_settings->link_rate;
1090 
1091 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1092 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1093 
1094 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1095 		link->dc->hwss.edp_backlight_control(link, true);
1096 		stream->bl_pwm_level = EDP_BACKLIGHT_RAMP_DISABLE_LEVEL;
1097 	}
1098 }
1099 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1100 {
1101 	struct dc_stream_state *stream = pipe_ctx->stream;
1102 	struct dc_link *link = stream->sink->link;
1103 
1104 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1105 		link->dc->hwss.edp_backlight_control(link, false);
1106 		dc_link_set_abm_disable(link);
1107 	}
1108 
1109 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1110 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1111 }
1112 
1113 
1114 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1115 {
1116 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1117 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1118 }
1119 
1120 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1121 {
1122 	switch (crtc_id) {
1123 	case CONTROLLER_ID_D0:
1124 		return DTO_SOURCE_ID0;
1125 	case CONTROLLER_ID_D1:
1126 		return DTO_SOURCE_ID1;
1127 	case CONTROLLER_ID_D2:
1128 		return DTO_SOURCE_ID2;
1129 	case CONTROLLER_ID_D3:
1130 		return DTO_SOURCE_ID3;
1131 	case CONTROLLER_ID_D4:
1132 		return DTO_SOURCE_ID4;
1133 	case CONTROLLER_ID_D5:
1134 		return DTO_SOURCE_ID5;
1135 	default:
1136 		return DTO_SOURCE_UNKNOWN;
1137 	}
1138 }
1139 
1140 static void build_audio_output(
1141 	struct dc_state *state,
1142 	const struct pipe_ctx *pipe_ctx,
1143 	struct audio_output *audio_output)
1144 {
1145 	const struct dc_stream_state *stream = pipe_ctx->stream;
1146 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1147 
1148 	audio_output->signal = pipe_ctx->stream->signal;
1149 
1150 	/* audio_crtc_info  */
1151 
1152 	audio_output->crtc_info.h_total =
1153 		stream->timing.h_total;
1154 
1155 	/*
1156 	 * Audio packets are sent during actual CRTC blank physical signal, we
1157 	 * need to specify actual active signal portion
1158 	 */
1159 	audio_output->crtc_info.h_active =
1160 			stream->timing.h_addressable
1161 			+ stream->timing.h_border_left
1162 			+ stream->timing.h_border_right;
1163 
1164 	audio_output->crtc_info.v_active =
1165 			stream->timing.v_addressable
1166 			+ stream->timing.v_border_top
1167 			+ stream->timing.v_border_bottom;
1168 
1169 	audio_output->crtc_info.pixel_repetition = 1;
1170 
1171 	audio_output->crtc_info.interlaced =
1172 			stream->timing.flags.INTERLACE;
1173 
1174 	audio_output->crtc_info.refresh_rate =
1175 		(stream->timing.pix_clk_khz*1000)/
1176 		(stream->timing.h_total*stream->timing.v_total);
1177 
1178 	audio_output->crtc_info.color_depth =
1179 		stream->timing.display_color_depth;
1180 
1181 	audio_output->crtc_info.requested_pixel_clock =
1182 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1183 
1184 	audio_output->crtc_info.calculated_pixel_clock =
1185 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1186 
1187 /*for HDMI, audio ACR is with deep color ratio factor*/
1188 	if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
1189 		audio_output->crtc_info.requested_pixel_clock ==
1190 				stream->timing.pix_clk_khz) {
1191 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1192 			audio_output->crtc_info.requested_pixel_clock =
1193 					audio_output->crtc_info.requested_pixel_clock/2;
1194 			audio_output->crtc_info.calculated_pixel_clock =
1195 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk/2;
1196 
1197 		}
1198 	}
1199 
1200 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1201 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
1202 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1203 				state->dis_clk->funcs->get_dp_ref_clk_frequency(
1204 						state->dis_clk);
1205 	}
1206 
1207 	audio_output->pll_info.feed_back_divider =
1208 			pipe_ctx->pll_settings.feedback_divider;
1209 
1210 	audio_output->pll_info.dto_source =
1211 		translate_to_dto_source(
1212 			pipe_ctx->stream_res.tg->inst + 1);
1213 
1214 	/* TODO hard code to enable for now. Need get from stream */
1215 	audio_output->pll_info.ss_enabled = true;
1216 
1217 	audio_output->pll_info.ss_percentage =
1218 			pipe_ctx->pll_settings.ss_percentage;
1219 }
1220 
1221 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1222 		struct tg_color *color)
1223 {
1224 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1225 
1226 	switch (pipe_ctx->plane_res.scl_data.format) {
1227 	case PIXEL_FORMAT_ARGB8888:
1228 		/* set boarder color to red */
1229 		color->color_r_cr = color_value;
1230 		break;
1231 
1232 	case PIXEL_FORMAT_ARGB2101010:
1233 		/* set boarder color to blue */
1234 		color->color_b_cb = color_value;
1235 		break;
1236 	case PIXEL_FORMAT_420BPP8:
1237 		/* set boarder color to green */
1238 		color->color_g_y = color_value;
1239 		break;
1240 	case PIXEL_FORMAT_420BPP10:
1241 		/* set boarder color to yellow */
1242 		color->color_g_y = color_value;
1243 		color->color_r_cr = color_value;
1244 		break;
1245 	case PIXEL_FORMAT_FP16:
1246 		/* set boarder color to white */
1247 		color->color_r_cr = color_value;
1248 		color->color_b_cb = color_value;
1249 		color->color_g_y = color_value;
1250 		break;
1251 	default:
1252 		break;
1253 	}
1254 }
1255 
1256 static void program_scaler(const struct dc *dc,
1257 		const struct pipe_ctx *pipe_ctx)
1258 {
1259 	struct tg_color color = {0};
1260 
1261 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1262 	/* TOFPGA */
1263 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1264 		return;
1265 #endif
1266 
1267 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1268 		get_surface_visual_confirm_color(pipe_ctx, &color);
1269 	else
1270 		color_space_to_black_color(dc,
1271 				pipe_ctx->stream->output_color_space,
1272 				&color);
1273 
1274 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1275 		pipe_ctx->plane_res.xfm,
1276 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1277 		&pipe_ctx->stream->bit_depth_params);
1278 
1279 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1280 		/*
1281 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1282 		 * alternate between Cb and Cr, so both channels need the pixel
1283 		 * value for Y
1284 		 */
1285 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1286 			color.color_r_cr = color.color_g_y;
1287 
1288 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1289 				pipe_ctx->stream_res.tg,
1290 				&color);
1291 	}
1292 
1293 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1294 		&pipe_ctx->plane_res.scl_data);
1295 }
1296 
1297 static enum dc_status dce110_enable_stream_timing(
1298 		struct pipe_ctx *pipe_ctx,
1299 		struct dc_state *context,
1300 		struct dc *dc)
1301 {
1302 	struct dc_stream_state *stream = pipe_ctx->stream;
1303 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1304 			pipe_ctx[pipe_ctx->pipe_idx];
1305 	struct tg_color black_color = {0};
1306 
1307 	if (!pipe_ctx_old->stream) {
1308 
1309 		/* program blank color */
1310 		color_space_to_black_color(dc,
1311 				stream->output_color_space, &black_color);
1312 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1313 				pipe_ctx->stream_res.tg,
1314 				&black_color);
1315 
1316 		/*
1317 		 * Must blank CRTC after disabling power gating and before any
1318 		 * programming, otherwise CRTC will be hung in bad state
1319 		 */
1320 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1321 
1322 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1323 				pipe_ctx->clock_source,
1324 				&pipe_ctx->stream_res.pix_clk_params,
1325 				&pipe_ctx->pll_settings)) {
1326 			BREAK_TO_DEBUGGER();
1327 			return DC_ERROR_UNEXPECTED;
1328 		}
1329 
1330 		pipe_ctx->stream_res.tg->funcs->program_timing(
1331 				pipe_ctx->stream_res.tg,
1332 				&stream->timing,
1333 				true);
1334 
1335 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1336 				pipe_ctx->stream_res.tg,
1337 				0x182);
1338 	}
1339 
1340 	if (!pipe_ctx_old->stream) {
1341 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1342 				pipe_ctx->stream_res.tg)) {
1343 			BREAK_TO_DEBUGGER();
1344 			return DC_ERROR_UNEXPECTED;
1345 		}
1346 	}
1347 
1348 
1349 
1350 	return DC_OK;
1351 }
1352 
1353 static enum dc_status apply_single_controller_ctx_to_hw(
1354 		struct pipe_ctx *pipe_ctx,
1355 		struct dc_state *context,
1356 		struct dc *dc)
1357 {
1358 	struct dc_stream_state *stream = pipe_ctx->stream;
1359 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1360 			pipe_ctx[pipe_ctx->pipe_idx];
1361 
1362 	if (pipe_ctx->stream_res.audio != NULL) {
1363 		struct audio_output audio_output;
1364 
1365 		build_audio_output(context, pipe_ctx, &audio_output);
1366 
1367 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1368 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1369 					pipe_ctx->stream_res.stream_enc,
1370 					pipe_ctx->stream_res.audio->inst,
1371 					&pipe_ctx->stream->audio_info);
1372 		else
1373 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1374 					pipe_ctx->stream_res.stream_enc,
1375 					pipe_ctx->stream_res.audio->inst,
1376 					&pipe_ctx->stream->audio_info,
1377 					&audio_output.crtc_info);
1378 
1379 		pipe_ctx->stream_res.audio->funcs->az_configure(
1380 				pipe_ctx->stream_res.audio,
1381 				pipe_ctx->stream->signal,
1382 				&audio_output.crtc_info,
1383 				&pipe_ctx->stream->audio_info);
1384 	}
1385 
1386 	/*  */
1387 	dc->hwss.enable_stream_timing(pipe_ctx, context, dc);
1388 
1389 	/* FPGA does not program backend */
1390 	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
1391 		pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1392 		pipe_ctx->stream_res.opp,
1393 		COLOR_SPACE_YCBCR601,
1394 		stream->timing.display_color_depth,
1395 		pipe_ctx->stream->signal);
1396 
1397 		pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1398 			pipe_ctx->stream_res.opp,
1399 			&stream->bit_depth_params,
1400 			&stream->clamping);
1401 		return DC_OK;
1402 	}
1403 	/* TODO: move to stream encoder */
1404 	if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1405 		if (DC_OK != bios_parser_crtc_source_select(pipe_ctx)) {
1406 			BREAK_TO_DEBUGGER();
1407 			return DC_ERROR_UNEXPECTED;
1408 		}
1409 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1410 			pipe_ctx->stream_res.opp,
1411 			COLOR_SPACE_YCBCR601,
1412 			stream->timing.display_color_depth,
1413 			pipe_ctx->stream->signal);
1414 
1415 	if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1416 		stream->sink->link->link_enc->funcs->setup(
1417 			stream->sink->link->link_enc,
1418 			pipe_ctx->stream->signal);
1419 
1420 	if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1421 		pipe_ctx->stream_res.stream_enc->funcs->setup_stereo_sync(
1422 		pipe_ctx->stream_res.stream_enc,
1423 		pipe_ctx->stream_res.tg->inst,
1424 		stream->timing.timing_3d_format != TIMING_3D_FORMAT_NONE);
1425 
1426 
1427 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1428 		pipe_ctx->stream_res.opp,
1429 		&stream->bit_depth_params,
1430 		&stream->clamping);
1431 
1432 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1433 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_stream_attribute(
1434 			pipe_ctx->stream_res.stream_enc,
1435 			&stream->timing,
1436 			stream->output_color_space);
1437 
1438 	if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
1439 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_set_stream_attribute(
1440 			pipe_ctx->stream_res.stream_enc,
1441 			&stream->timing,
1442 			stream->phy_pix_clk,
1443 			pipe_ctx->stream_res.audio != NULL);
1444 
1445 	if (dc_is_dvi_signal(pipe_ctx->stream->signal))
1446 		pipe_ctx->stream_res.stream_enc->funcs->dvi_set_stream_attribute(
1447 			pipe_ctx->stream_res.stream_enc,
1448 			&stream->timing,
1449 			(pipe_ctx->stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) ?
1450 			true : false);
1451 
1452 	resource_build_info_frame(pipe_ctx);
1453 	dce110_update_info_frame(pipe_ctx);
1454 	if (!pipe_ctx_old->stream)
1455 		core_link_enable_stream(context, pipe_ctx);
1456 
1457 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1458 
1459 	pipe_ctx->stream->sink->link->psr_enabled = false;
1460 
1461 	return DC_OK;
1462 }
1463 
1464 /******************************************************************************/
1465 
1466 static void power_down_encoders(struct dc *dc)
1467 {
1468 	int i;
1469 	enum connector_id connector_id;
1470 	enum signal_type signal = SIGNAL_TYPE_NONE;
1471 
1472 	/* do not know BIOS back-front mapping, simply blank all. It will not
1473 	 * hurt for non-DP
1474 	 */
1475 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1476 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1477 					dc->res_pool->stream_enc[i]);
1478 	}
1479 
1480 	for (i = 0; i < dc->link_count; i++) {
1481 		connector_id = dal_graphics_object_id_get_connector_id(dc->links[i]->link_id);
1482 		if ((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
1483 			(connector_id == CONNECTOR_ID_EDP)) {
1484 
1485 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1486 				dp_receiver_power_ctrl(dc->links[i], false);
1487 			if (connector_id == CONNECTOR_ID_EDP)
1488 				signal = SIGNAL_TYPE_EDP;
1489 		}
1490 
1491 		dc->links[i]->link_enc->funcs->disable_output(
1492 				dc->links[i]->link_enc, signal);
1493 	}
1494 }
1495 
1496 static void power_down_controllers(struct dc *dc)
1497 {
1498 	int i;
1499 
1500 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1501 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1502 				dc->res_pool->timing_generators[i]);
1503 	}
1504 }
1505 
1506 static void power_down_clock_sources(struct dc *dc)
1507 {
1508 	int i;
1509 
1510 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1511 		dc->res_pool->dp_clock_source) == false)
1512 		dm_error("Failed to power down pll! (dp clk src)\n");
1513 
1514 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1515 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1516 				dc->res_pool->clock_sources[i]) == false)
1517 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1518 	}
1519 }
1520 
1521 static void power_down_all_hw_blocks(struct dc *dc)
1522 {
1523 	power_down_encoders(dc);
1524 
1525 	power_down_controllers(dc);
1526 
1527 	power_down_clock_sources(dc);
1528 
1529 	if (dc->fbc_compressor)
1530 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1531 }
1532 
1533 static void disable_vga_and_power_gate_all_controllers(
1534 		struct dc *dc)
1535 {
1536 	int i;
1537 	struct timing_generator *tg;
1538 	struct dc_context *ctx = dc->ctx;
1539 
1540 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1541 		tg = dc->res_pool->timing_generators[i];
1542 
1543 		if (tg->funcs->disable_vga)
1544 			tg->funcs->disable_vga(tg);
1545 	}
1546 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1547 		/* Enable CLOCK gating for each pipe BEFORE controller
1548 		 * powergating. */
1549 		enable_display_pipe_clock_gating(ctx,
1550 				true);
1551 
1552 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1553 		dc->hwss.disable_plane(dc,
1554 			&dc->current_state->res_ctx.pipe_ctx[i]);
1555 	}
1556 }
1557 
1558 static struct dc_link *get_link_for_edp(struct dc *dc)
1559 {
1560 	int i;
1561 
1562 	for (i = 0; i < dc->link_count; i++) {
1563 		if (dc->links[i]->connector_signal == SIGNAL_TYPE_EDP)
1564 			return dc->links[i];
1565 	}
1566 	return NULL;
1567 }
1568 
1569 static struct dc_link *get_link_for_edp_not_in_use(
1570 		struct dc *dc,
1571 		struct dc_state *context)
1572 {
1573 	int i;
1574 	struct dc_link *link = NULL;
1575 
1576 	/* check if eDP panel is suppose to be set mode, if yes, no need to disable */
1577 	for (i = 0; i < context->stream_count; i++) {
1578 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1579 			return NULL;
1580 	}
1581 
1582 	/* check if there is an eDP panel not in use */
1583 	for (i = 0; i < dc->link_count; i++) {
1584 		if (dc->links[i]->local_sink &&
1585 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1586 			link = dc->links[i];
1587 			break;
1588 		}
1589 	}
1590 
1591 	return link;
1592 }
1593 
1594 /**
1595  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1596  *  1. Power down all DC HW blocks
1597  *  2. Disable VGA engine on all controllers
1598  *  3. Enable power gating for controller
1599  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1600  */
1601 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1602 {
1603 	struct dc_link *edp_link_to_turnoff = NULL;
1604 	struct dc_link *edp_link = get_link_for_edp(dc);
1605 	bool can_eDP_fast_boot_optimize = false;
1606 
1607 	if (edp_link) {
1608 		/* this seems to cause blank screens on DCE8 */
1609 		if ((dc->ctx->dce_version == DCE_VERSION_8_0) ||
1610 		    (dc->ctx->dce_version == DCE_VERSION_8_1) ||
1611 		    (dc->ctx->dce_version == DCE_VERSION_8_3))
1612 			can_eDP_fast_boot_optimize = false;
1613 		else
1614 			can_eDP_fast_boot_optimize =
1615 				edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc);
1616 	}
1617 
1618 	if (can_eDP_fast_boot_optimize) {
1619 		edp_link_to_turnoff = get_link_for_edp_not_in_use(dc, context);
1620 
1621 		/* if OS doesn't light up eDP and eDP link is available, we want to disable
1622 		 * If resume from S4/S5, should optimization.
1623 		 */
1624 		if (!edp_link_to_turnoff)
1625 			dc->apply_edp_fast_boot_optimization = true;
1626 	}
1627 
1628 	if (!dc->apply_edp_fast_boot_optimization) {
1629 		if (edp_link_to_turnoff) {
1630 			/*turn off backlight before DP_blank and encoder powered down*/
1631 			dc->hwss.edp_backlight_control(edp_link_to_turnoff, false);
1632 		}
1633 		/*resume from S3, no vbios posting, no need to power down again*/
1634 		power_down_all_hw_blocks(dc);
1635 		disable_vga_and_power_gate_all_controllers(dc);
1636 		if (edp_link_to_turnoff)
1637 			dc->hwss.edp_power_control(edp_link_to_turnoff, false);
1638 	}
1639 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1640 }
1641 
1642 static uint32_t compute_pstate_blackout_duration(
1643 	struct bw_fixed blackout_duration,
1644 	const struct dc_stream_state *stream)
1645 {
1646 	uint32_t total_dest_line_time_ns;
1647 	uint32_t pstate_blackout_duration_ns;
1648 
1649 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1650 
1651 	total_dest_line_time_ns = 1000000UL *
1652 		stream->timing.h_total /
1653 		stream->timing.pix_clk_khz +
1654 		pstate_blackout_duration_ns;
1655 
1656 	return total_dest_line_time_ns;
1657 }
1658 
1659 static void dce110_set_displaymarks(
1660 	const struct dc *dc,
1661 	struct dc_state *context)
1662 {
1663 	uint8_t i, num_pipes;
1664 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1665 
1666 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1667 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1668 		uint32_t total_dest_line_time_ns;
1669 
1670 		if (pipe_ctx->stream == NULL)
1671 			continue;
1672 
1673 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1674 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1675 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1676 			pipe_ctx->plane_res.mi,
1677 			context->bw.dce.nbp_state_change_wm_ns[num_pipes],
1678 			context->bw.dce.stutter_exit_wm_ns[num_pipes],
1679 			context->bw.dce.stutter_entry_wm_ns[num_pipes],
1680 			context->bw.dce.urgent_wm_ns[num_pipes],
1681 			total_dest_line_time_ns);
1682 		if (i == underlay_idx) {
1683 			num_pipes++;
1684 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1685 				pipe_ctx->plane_res.mi,
1686 				context->bw.dce.nbp_state_change_wm_ns[num_pipes],
1687 				context->bw.dce.stutter_exit_wm_ns[num_pipes],
1688 				context->bw.dce.urgent_wm_ns[num_pipes],
1689 				total_dest_line_time_ns);
1690 		}
1691 		num_pipes++;
1692 	}
1693 }
1694 
1695 void dce110_set_safe_displaymarks(
1696 		struct resource_context *res_ctx,
1697 		const struct resource_pool *pool)
1698 {
1699 	int i;
1700 	int underlay_idx = pool->underlay_pipe_index;
1701 	struct dce_watermarks max_marks = {
1702 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1703 	struct dce_watermarks nbp_marks = {
1704 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1705 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1706 
1707 	for (i = 0; i < MAX_PIPES; i++) {
1708 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1709 			continue;
1710 
1711 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1712 				res_ctx->pipe_ctx[i].plane_res.mi,
1713 				nbp_marks,
1714 				max_marks,
1715 				min_marks,
1716 				max_marks,
1717 				MAX_WATERMARK);
1718 
1719 		if (i == underlay_idx)
1720 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1721 				res_ctx->pipe_ctx[i].plane_res.mi,
1722 				nbp_marks,
1723 				max_marks,
1724 				max_marks,
1725 				MAX_WATERMARK);
1726 
1727 	}
1728 }
1729 
1730 /*******************************************************************************
1731  * Public functions
1732  ******************************************************************************/
1733 
1734 static void set_drr(struct pipe_ctx **pipe_ctx,
1735 		int num_pipes, int vmin, int vmax)
1736 {
1737 	int i = 0;
1738 	struct drr_params params = {0};
1739 
1740 	params.vertical_total_max = vmax;
1741 	params.vertical_total_min = vmin;
1742 
1743 	/* TODO: If multiple pipes are to be supported, you need
1744 	 * some GSL stuff
1745 	 */
1746 
1747 	for (i = 0; i < num_pipes; i++) {
1748 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(pipe_ctx[i]->stream_res.tg, &params);
1749 	}
1750 }
1751 
1752 static void get_position(struct pipe_ctx **pipe_ctx,
1753 		int num_pipes,
1754 		struct crtc_position *position)
1755 {
1756 	int i = 0;
1757 
1758 	/* TODO: handle pipes > 1
1759 	 */
1760 	for (i = 0; i < num_pipes; i++)
1761 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1762 }
1763 
1764 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1765 		int num_pipes, const struct dc_static_screen_events *events)
1766 {
1767 	unsigned int i;
1768 	unsigned int value = 0;
1769 
1770 	if (events->overlay_update)
1771 		value |= 0x100;
1772 	if (events->surface_update)
1773 		value |= 0x80;
1774 	if (events->cursor_update)
1775 		value |= 0x2;
1776 	if (events->force_trigger)
1777 		value |= 0x1;
1778 
1779 	value |= 0x84;
1780 
1781 	for (i = 0; i < num_pipes; i++)
1782 		pipe_ctx[i]->stream_res.tg->funcs->
1783 			set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
1784 }
1785 
1786 /* unit: in_khz before mode set, get pixel clock from context. ASIC register
1787  * may not be programmed yet
1788  */
1789 static uint32_t get_max_pixel_clock_for_all_paths(
1790 	struct dc *dc,
1791 	struct dc_state *context)
1792 {
1793 	uint32_t max_pix_clk = 0;
1794 	int i;
1795 
1796 	for (i = 0; i < MAX_PIPES; i++) {
1797 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1798 
1799 		if (pipe_ctx->stream == NULL)
1800 			continue;
1801 
1802 		/* do not check under lay */
1803 		if (pipe_ctx->top_pipe)
1804 			continue;
1805 
1806 		if (pipe_ctx->stream_res.pix_clk_params.requested_pix_clk > max_pix_clk)
1807 			max_pix_clk =
1808 				pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1809 	}
1810 
1811 	return max_pix_clk;
1812 }
1813 
1814 /*
1815  *  Check if FBC can be enabled
1816  */
1817 static bool should_enable_fbc(struct dc *dc,
1818 			      struct dc_state *context,
1819 			      uint32_t *pipe_idx)
1820 {
1821 	uint32_t i;
1822 	struct pipe_ctx *pipe_ctx = NULL;
1823 	struct resource_context *res_ctx = &context->res_ctx;
1824 
1825 
1826 	ASSERT(dc->fbc_compressor);
1827 
1828 	/* FBC memory should be allocated */
1829 	if (!dc->ctx->fbc_gpu_addr)
1830 		return false;
1831 
1832 	/* Only supports single display */
1833 	if (context->stream_count != 1)
1834 		return false;
1835 
1836 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1837 		if (res_ctx->pipe_ctx[i].stream) {
1838 			pipe_ctx = &res_ctx->pipe_ctx[i];
1839 			*pipe_idx = i;
1840 			break;
1841 		}
1842 	}
1843 
1844 	/* Pipe context should be found */
1845 	ASSERT(pipe_ctx);
1846 
1847 	/* Only supports eDP */
1848 	if (pipe_ctx->stream->sink->link->connector_signal != SIGNAL_TYPE_EDP)
1849 		return false;
1850 
1851 	/* PSR should not be enabled */
1852 	if (pipe_ctx->stream->sink->link->psr_enabled)
1853 		return false;
1854 
1855 	/* Nothing to compress */
1856 	if (!pipe_ctx->plane_state)
1857 		return false;
1858 
1859 	/* Only for non-linear tiling */
1860 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1861 		return false;
1862 
1863 	return true;
1864 }
1865 
1866 /*
1867  *  Enable FBC
1868  */
1869 static void enable_fbc(struct dc *dc,
1870 		       struct dc_state *context)
1871 {
1872 	uint32_t pipe_idx = 0;
1873 
1874 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1875 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1876 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1877 		struct compressor *compr = dc->fbc_compressor;
1878 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1879 
1880 
1881 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1882 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1883 
1884 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1885 
1886 		compr->funcs->surface_address_and_pitch(compr, &params);
1887 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1888 
1889 		compr->funcs->enable_fbc(compr, &params);
1890 	}
1891 }
1892 
1893 static void dce110_reset_hw_ctx_wrap(
1894 		struct dc *dc,
1895 		struct dc_state *context)
1896 {
1897 	int i;
1898 
1899 	/* Reset old context */
1900 	/* look up the targets that have been removed since last commit */
1901 	for (i = 0; i < MAX_PIPES; i++) {
1902 		struct pipe_ctx *pipe_ctx_old =
1903 			&dc->current_state->res_ctx.pipe_ctx[i];
1904 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1905 
1906 		/* Note: We need to disable output if clock sources change,
1907 		 * since bios does optimization and doesn't apply if changing
1908 		 * PHY when not already disabled.
1909 		 */
1910 
1911 		/* Skip underlay pipe since it will be handled in commit surface*/
1912 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1913 			continue;
1914 
1915 		if (!pipe_ctx->stream ||
1916 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1917 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1918 
1919 			/* Disable if new stream is null. O/w, if stream is
1920 			 * disabled already, no need to disable again.
1921 			 */
1922 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off)
1923 				core_link_disable_stream(pipe_ctx_old, FREE_ACQUIRED_RESOURCE);
1924 
1925 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1926 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1927 				dm_error("DC: failed to blank crtc!\n");
1928 				BREAK_TO_DEBUGGER();
1929 			}
1930 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1931 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1932 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1933 
1934 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1935 										dc->res_pool,
1936 										old_clk))
1937 				old_clk->funcs->cs_power_down(old_clk);
1938 
1939 			dc->hwss.disable_plane(dc, pipe_ctx_old);
1940 
1941 			pipe_ctx_old->stream = NULL;
1942 		}
1943 	}
1944 }
1945 
1946 static void dce110_setup_audio_dto(
1947 		struct dc *dc,
1948 		struct dc_state *context)
1949 {
1950 	int i;
1951 
1952 	/* program audio wall clock. use HDMI as clock source if HDMI
1953 	 * audio active. Otherwise, use DP as clock source
1954 	 * first, loop to find any HDMI audio, if not, loop find DP audio
1955 	 */
1956 	/* Setup audio rate clock source */
1957 	/* Issue:
1958 	* Audio lag happened on DP monitor when unplug a HDMI monitor
1959 	*
1960 	* Cause:
1961 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1962 	* is set to either dto0 or dto1, audio should work fine.
1963 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1964 	* set to dto0 will cause audio lag.
1965 	*
1966 	* Solution:
1967 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1968 	* find first available pipe with audio, setup audio wall DTO per topology
1969 	* instead of per pipe.
1970 	*/
1971 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1972 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1973 
1974 		if (pipe_ctx->stream == NULL)
1975 			continue;
1976 
1977 		if (pipe_ctx->top_pipe)
1978 			continue;
1979 
1980 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1981 			continue;
1982 
1983 		if (pipe_ctx->stream_res.audio != NULL) {
1984 			struct audio_output audio_output;
1985 
1986 			build_audio_output(context, pipe_ctx, &audio_output);
1987 
1988 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
1989 				pipe_ctx->stream_res.audio,
1990 				pipe_ctx->stream->signal,
1991 				&audio_output.crtc_info,
1992 				&audio_output.pll_info);
1993 			break;
1994 		}
1995 	}
1996 
1997 	/* no HDMI audio is found, try DP audio */
1998 	if (i == dc->res_pool->pipe_count) {
1999 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2000 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2001 
2002 			if (pipe_ctx->stream == NULL)
2003 				continue;
2004 
2005 			if (pipe_ctx->top_pipe)
2006 				continue;
2007 
2008 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2009 				continue;
2010 
2011 			if (pipe_ctx->stream_res.audio != NULL) {
2012 				struct audio_output audio_output;
2013 
2014 				build_audio_output(context, pipe_ctx, &audio_output);
2015 
2016 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2017 					pipe_ctx->stream_res.audio,
2018 					pipe_ctx->stream->signal,
2019 					&audio_output.crtc_info,
2020 					&audio_output.pll_info);
2021 				break;
2022 			}
2023 		}
2024 	}
2025 }
2026 
2027 enum dc_status dce110_apply_ctx_to_hw(
2028 		struct dc *dc,
2029 		struct dc_state *context)
2030 {
2031 	struct dc_bios *dcb = dc->ctx->dc_bios;
2032 	enum dc_status status;
2033 	int i;
2034 
2035 	/* Reset old context */
2036 	/* look up the targets that have been removed since last commit */
2037 	dc->hwss.reset_hw_ctx_wrap(dc, context);
2038 
2039 	/* Skip applying if no targets */
2040 	if (context->stream_count <= 0)
2041 		return DC_OK;
2042 
2043 	/* Apply new context */
2044 	dcb->funcs->set_scratch_critical_state(dcb, true);
2045 
2046 	/* below is for real asic only */
2047 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2048 		struct pipe_ctx *pipe_ctx_old =
2049 					&dc->current_state->res_ctx.pipe_ctx[i];
2050 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2051 
2052 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2053 			continue;
2054 
2055 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2056 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2057 				dce_crtc_switch_to_clk_src(dc->hwseq,
2058 						pipe_ctx->clock_source, i);
2059 			continue;
2060 		}
2061 
2062 		dc->hwss.enable_display_power_gating(
2063 				dc, i, dc->ctx->dc_bios,
2064 				PIPE_GATING_CONTROL_DISABLE);
2065 	}
2066 
2067 	if (dc->fbc_compressor)
2068 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2069 
2070 	dce110_setup_audio_dto(dc, context);
2071 
2072 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2073 		struct pipe_ctx *pipe_ctx_old =
2074 					&dc->current_state->res_ctx.pipe_ctx[i];
2075 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2076 
2077 		if (pipe_ctx->stream == NULL)
2078 			continue;
2079 
2080 		if (pipe_ctx->stream == pipe_ctx_old->stream)
2081 			continue;
2082 
2083 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2084 			continue;
2085 
2086 		if (pipe_ctx->top_pipe)
2087 			continue;
2088 
2089 		status = apply_single_controller_ctx_to_hw(
2090 				pipe_ctx,
2091 				context,
2092 				dc);
2093 
2094 		if (DC_OK != status)
2095 			return status;
2096 	}
2097 
2098 	dcb->funcs->set_scratch_critical_state(dcb, false);
2099 
2100 	if (dc->fbc_compressor)
2101 		enable_fbc(dc, context);
2102 
2103 	return DC_OK;
2104 }
2105 
2106 /*******************************************************************************
2107  * Front End programming
2108  ******************************************************************************/
2109 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2110 {
2111 	struct default_adjustment default_adjust = { 0 };
2112 
2113 	default_adjust.force_hw_default = false;
2114 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2115 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2116 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2117 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2118 
2119 	/* display color depth */
2120 	default_adjust.color_depth =
2121 		pipe_ctx->stream->timing.display_color_depth;
2122 
2123 	/* Lb color depth */
2124 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2125 
2126 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2127 					pipe_ctx->plane_res.xfm, &default_adjust);
2128 }
2129 
2130 
2131 /*******************************************************************************
2132  * In order to turn on/off specific surface we will program
2133  * Blender + CRTC
2134  *
2135  * In case that we have two surfaces and they have a different visibility
2136  * we can't turn off the CRTC since it will turn off the entire display
2137  *
2138  * |----------------------------------------------- |
2139  * |bottom pipe|curr pipe  |              |         |
2140  * |Surface    |Surface    | Blender      |  CRCT   |
2141  * |visibility |visibility | Configuration|         |
2142  * |------------------------------------------------|
2143  * |   off     |    off    | CURRENT_PIPE | blank   |
2144  * |   off     |    on     | CURRENT_PIPE | unblank |
2145  * |   on      |    off    | OTHER_PIPE   | unblank |
2146  * |   on      |    on     | BLENDING     | unblank |
2147  * -------------------------------------------------|
2148  *
2149  ******************************************************************************/
2150 static void program_surface_visibility(const struct dc *dc,
2151 		struct pipe_ctx *pipe_ctx)
2152 {
2153 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2154 	bool blank_target = false;
2155 
2156 	if (pipe_ctx->bottom_pipe) {
2157 
2158 		/* For now we are supporting only two pipes */
2159 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2160 
2161 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2162 			if (pipe_ctx->plane_state->visible)
2163 				blender_mode = BLND_MODE_BLENDING;
2164 			else
2165 				blender_mode = BLND_MODE_OTHER_PIPE;
2166 
2167 		} else if (!pipe_ctx->plane_state->visible)
2168 			blank_target = true;
2169 
2170 	} else if (!pipe_ctx->plane_state->visible)
2171 		blank_target = true;
2172 
2173 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2174 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2175 
2176 }
2177 
2178 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2179 {
2180 	int i = 0;
2181 	struct xfm_grph_csc_adjustment adjust;
2182 	memset(&adjust, 0, sizeof(adjust));
2183 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2184 
2185 
2186 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2187 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2188 
2189 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2190 			adjust.temperature_matrix[i] =
2191 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2192 	}
2193 
2194 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2195 }
2196 static void update_plane_addr(const struct dc *dc,
2197 		struct pipe_ctx *pipe_ctx)
2198 {
2199 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2200 
2201 	if (plane_state == NULL)
2202 		return;
2203 
2204 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2205 			pipe_ctx->plane_res.mi,
2206 			&plane_state->address,
2207 			plane_state->flip_immediate);
2208 
2209 	plane_state->status.requested_address = plane_state->address;
2210 }
2211 
2212 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2213 {
2214 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2215 
2216 	if (plane_state == NULL)
2217 		return;
2218 
2219 	plane_state->status.is_flip_pending =
2220 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2221 					pipe_ctx->plane_res.mi);
2222 
2223 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2224 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2225 
2226 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2227 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2228 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2229 		plane_state->status.is_right_eye =\
2230 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2231 	}
2232 }
2233 
2234 void dce110_power_down(struct dc *dc)
2235 {
2236 	power_down_all_hw_blocks(dc);
2237 	disable_vga_and_power_gate_all_controllers(dc);
2238 }
2239 
2240 static bool wait_for_reset_trigger_to_occur(
2241 	struct dc_context *dc_ctx,
2242 	struct timing_generator *tg)
2243 {
2244 	bool rc = false;
2245 
2246 	/* To avoid endless loop we wait at most
2247 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2248 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2249 	uint32_t i;
2250 
2251 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2252 
2253 		if (!tg->funcs->is_counter_moving(tg)) {
2254 			DC_ERROR("TG counter is not moving!\n");
2255 			break;
2256 		}
2257 
2258 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2259 			rc = true;
2260 			/* usually occurs at i=1 */
2261 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2262 					i);
2263 			break;
2264 		}
2265 
2266 		/* Wait for one frame. */
2267 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2268 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2269 	}
2270 
2271 	if (false == rc)
2272 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2273 
2274 	return rc;
2275 }
2276 
2277 /* Enable timing synchronization for a group of Timing Generators. */
2278 static void dce110_enable_timing_synchronization(
2279 		struct dc *dc,
2280 		int group_index,
2281 		int group_size,
2282 		struct pipe_ctx *grouped_pipes[])
2283 {
2284 	struct dc_context *dc_ctx = dc->ctx;
2285 	struct dcp_gsl_params gsl_params = { 0 };
2286 	int i;
2287 
2288 	DC_SYNC_INFO("GSL: Setting-up...\n");
2289 
2290 	/* Designate a single TG in the group as a master.
2291 	 * Since HW doesn't care which one, we always assign
2292 	 * the 1st one in the group. */
2293 	gsl_params.gsl_group = 0;
2294 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2295 
2296 	for (i = 0; i < group_size; i++)
2297 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2298 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2299 
2300 	/* Reset slave controllers on master VSync */
2301 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2302 
2303 	for (i = 1 /* skip the master */; i < group_size; i++)
2304 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2305 				grouped_pipes[i]->stream_res.tg,
2306 				gsl_params.gsl_group);
2307 
2308 	for (i = 1 /* skip the master */; i < group_size; i++) {
2309 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2310 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2311 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2312 				grouped_pipes[i]->stream_res.tg);
2313 	}
2314 
2315 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2316 	 * is that the sync'ed displays will not drift out of sync over time*/
2317 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2318 	for (i = 0; i < group_size; i++)
2319 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2320 
2321 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2322 }
2323 
2324 static void dce110_enable_per_frame_crtc_position_reset(
2325 		struct dc *dc,
2326 		int group_size,
2327 		struct pipe_ctx *grouped_pipes[])
2328 {
2329 	struct dc_context *dc_ctx = dc->ctx;
2330 	struct dcp_gsl_params gsl_params = { 0 };
2331 	int i;
2332 
2333 	gsl_params.gsl_group = 0;
2334 	gsl_params.gsl_master = grouped_pipes[0]->stream->triggered_crtc_reset.event_source->status.primary_otg_inst;
2335 
2336 	for (i = 0; i < group_size; i++)
2337 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2338 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2339 
2340 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2341 
2342 	for (i = 1; i < group_size; i++)
2343 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2344 				grouped_pipes[i]->stream_res.tg,
2345 				gsl_params.gsl_master,
2346 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2347 
2348 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2349 	for (i = 1; i < group_size; i++)
2350 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2351 
2352 	for (i = 0; i < group_size; i++)
2353 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2354 
2355 }
2356 
2357 static void init_hw(struct dc *dc)
2358 {
2359 	int i;
2360 	struct dc_bios *bp;
2361 	struct transform *xfm;
2362 	struct abm *abm;
2363 
2364 	bp = dc->ctx->dc_bios;
2365 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2366 		xfm = dc->res_pool->transforms[i];
2367 		xfm->funcs->transform_reset(xfm);
2368 
2369 		dc->hwss.enable_display_power_gating(
2370 				dc, i, bp,
2371 				PIPE_GATING_CONTROL_INIT);
2372 		dc->hwss.enable_display_power_gating(
2373 				dc, i, bp,
2374 				PIPE_GATING_CONTROL_DISABLE);
2375 		dc->hwss.enable_display_pipe_clock_gating(
2376 			dc->ctx,
2377 			true);
2378 	}
2379 
2380 	dce_clock_gating_power_up(dc->hwseq, false);
2381 	/***************************************/
2382 
2383 	for (i = 0; i < dc->link_count; i++) {
2384 		/****************************************/
2385 		/* Power up AND update implementation according to the
2386 		 * required signal (which may be different from the
2387 		 * default signal on connector). */
2388 		struct dc_link *link = dc->links[i];
2389 
2390 		if (link->link_enc->connector.id == CONNECTOR_ID_EDP)
2391 			dc->hwss.edp_power_control(link, true);
2392 
2393 		link->link_enc->funcs->hw_init(link->link_enc);
2394 	}
2395 
2396 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2397 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2398 
2399 		tg->funcs->disable_vga(tg);
2400 
2401 		/* Blank controller using driver code instead of
2402 		 * command table. */
2403 		tg->funcs->set_blank(tg, true);
2404 		hwss_wait_for_blank_complete(tg);
2405 	}
2406 
2407 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2408 		struct audio *audio = dc->res_pool->audios[i];
2409 		audio->funcs->hw_init(audio);
2410 	}
2411 
2412 	abm = dc->res_pool->abm;
2413 	if (abm != NULL) {
2414 		abm->funcs->init_backlight(abm);
2415 		abm->funcs->abm_init(abm);
2416 	}
2417 
2418 	if (dc->fbc_compressor)
2419 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2420 
2421 }
2422 
2423 void dce110_fill_display_configs(
2424 	const struct dc_state *context,
2425 	struct dm_pp_display_configuration *pp_display_cfg)
2426 {
2427 	int j;
2428 	int num_cfgs = 0;
2429 
2430 	for (j = 0; j < context->stream_count; j++) {
2431 		int k;
2432 
2433 		const struct dc_stream_state *stream = context->streams[j];
2434 		struct dm_pp_single_disp_config *cfg =
2435 			&pp_display_cfg->disp_configs[num_cfgs];
2436 		const struct pipe_ctx *pipe_ctx = NULL;
2437 
2438 		for (k = 0; k < MAX_PIPES; k++)
2439 			if (stream == context->res_ctx.pipe_ctx[k].stream) {
2440 				pipe_ctx = &context->res_ctx.pipe_ctx[k];
2441 				break;
2442 			}
2443 
2444 		ASSERT(pipe_ctx != NULL);
2445 
2446 		/* only notify active stream */
2447 		if (stream->dpms_off)
2448 			continue;
2449 
2450 		num_cfgs++;
2451 		cfg->signal = pipe_ctx->stream->signal;
2452 		cfg->pipe_idx = pipe_ctx->stream_res.tg->inst;
2453 		cfg->src_height = stream->src.height;
2454 		cfg->src_width = stream->src.width;
2455 		cfg->ddi_channel_mapping =
2456 			stream->sink->link->ddi_channel_mapping.raw;
2457 		cfg->transmitter =
2458 			stream->sink->link->link_enc->transmitter;
2459 		cfg->link_settings.lane_count =
2460 			stream->sink->link->cur_link_settings.lane_count;
2461 		cfg->link_settings.link_rate =
2462 			stream->sink->link->cur_link_settings.link_rate;
2463 		cfg->link_settings.link_spread =
2464 			stream->sink->link->cur_link_settings.link_spread;
2465 		cfg->sym_clock = stream->phy_pix_clk;
2466 		/* Round v_refresh*/
2467 		cfg->v_refresh = stream->timing.pix_clk_khz * 1000;
2468 		cfg->v_refresh /= stream->timing.h_total;
2469 		cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2)
2470 							/ stream->timing.v_total;
2471 	}
2472 
2473 	pp_display_cfg->display_count = num_cfgs;
2474 }
2475 
2476 uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context)
2477 {
2478 	uint8_t j;
2479 	uint32_t min_vertical_blank_time = -1;
2480 
2481 	for (j = 0; j < context->stream_count; j++) {
2482 		struct dc_stream_state *stream = context->streams[j];
2483 		uint32_t vertical_blank_in_pixels = 0;
2484 		uint32_t vertical_blank_time = 0;
2485 
2486 		vertical_blank_in_pixels = stream->timing.h_total *
2487 			(stream->timing.v_total
2488 			 - stream->timing.v_addressable);
2489 
2490 		vertical_blank_time = vertical_blank_in_pixels
2491 			* 1000 / stream->timing.pix_clk_khz;
2492 
2493 		if (min_vertical_blank_time > vertical_blank_time)
2494 			min_vertical_blank_time = vertical_blank_time;
2495 	}
2496 
2497 	return min_vertical_blank_time;
2498 }
2499 
2500 static int determine_sclk_from_bounding_box(
2501 		const struct dc *dc,
2502 		int required_sclk)
2503 {
2504 	int i;
2505 
2506 	/*
2507 	 * Some asics do not give us sclk levels, so we just report the actual
2508 	 * required sclk
2509 	 */
2510 	if (dc->sclk_lvls.num_levels == 0)
2511 		return required_sclk;
2512 
2513 	for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
2514 		if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
2515 			return dc->sclk_lvls.clocks_in_khz[i];
2516 	}
2517 	/*
2518 	 * even maximum level could not satisfy requirement, this
2519 	 * is unexpected at this stage, should have been caught at
2520 	 * validation time
2521 	 */
2522 	ASSERT(0);
2523 	return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
2524 }
2525 
2526 static void pplib_apply_display_requirements(
2527 	struct dc *dc,
2528 	struct dc_state *context)
2529 {
2530 	struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
2531 
2532 	pp_display_cfg->all_displays_in_sync =
2533 		context->bw.dce.all_displays_in_sync;
2534 	pp_display_cfg->nb_pstate_switch_disable =
2535 			context->bw.dce.nbp_state_change_enable == false;
2536 	pp_display_cfg->cpu_cc6_disable =
2537 			context->bw.dce.cpuc_state_change_enable == false;
2538 	pp_display_cfg->cpu_pstate_disable =
2539 			context->bw.dce.cpup_state_change_enable == false;
2540 	pp_display_cfg->cpu_pstate_separation_time =
2541 			context->bw.dce.blackout_recovery_time_us;
2542 
2543 	pp_display_cfg->min_memory_clock_khz = context->bw.dce.yclk_khz
2544 		/ MEMORY_TYPE_MULTIPLIER;
2545 
2546 	pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
2547 			dc,
2548 			context->bw.dce.sclk_khz);
2549 
2550 	pp_display_cfg->min_dcfclock_khz = pp_display_cfg->min_engine_clock_khz;
2551 
2552 	pp_display_cfg->min_engine_clock_deep_sleep_khz
2553 			= context->bw.dce.sclk_deep_sleep_khz;
2554 
2555 	pp_display_cfg->avail_mclk_switch_time_us =
2556 						dce110_get_min_vblank_time_us(context);
2557 	/* TODO: dce11.2*/
2558 	pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
2559 
2560 	pp_display_cfg->disp_clk_khz = dc->res_pool->dccg->clks.dispclk_khz;
2561 
2562 	dce110_fill_display_configs(context, pp_display_cfg);
2563 
2564 	/* TODO: is this still applicable?*/
2565 	if (pp_display_cfg->display_count == 1) {
2566 		const struct dc_crtc_timing *timing =
2567 			&context->streams[0]->timing;
2568 
2569 		pp_display_cfg->crtc_index =
2570 			pp_display_cfg->disp_configs[0].pipe_idx;
2571 		pp_display_cfg->line_time_in_us = timing->h_total * 1000
2572 							/ timing->pix_clk_khz;
2573 	}
2574 
2575 	if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
2576 			struct dm_pp_display_configuration)) !=  0)
2577 		dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
2578 
2579 	dc->prev_display_config = *pp_display_cfg;
2580 }
2581 
2582 static void dce110_set_bandwidth(
2583 		struct dc *dc,
2584 		struct dc_state *context,
2585 		bool decrease_allowed)
2586 {
2587 	struct dc_clocks req_clks;
2588 
2589 	req_clks.dispclk_khz = context->bw.dce.dispclk_khz;
2590 	req_clks.phyclk_khz = get_max_pixel_clock_for_all_paths(dc, context);
2591 
2592 	if (decrease_allowed)
2593 		dce110_set_displaymarks(dc, context);
2594 	else
2595 		dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2596 
2597 	dc->res_pool->dccg->funcs->update_clocks(
2598 			dc->res_pool->dccg,
2599 			&req_clks,
2600 			decrease_allowed);
2601 	pplib_apply_display_requirements(dc, context);
2602 }
2603 
2604 static void dce110_program_front_end_for_pipe(
2605 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2606 {
2607 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2608 	struct pipe_ctx *old_pipe = NULL;
2609 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2610 	struct xfm_grph_csc_adjustment adjust;
2611 	struct out_csc_color_matrix tbl_entry;
2612 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2613 	unsigned int i;
2614 	DC_LOGGER_INIT();
2615 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2616 
2617 	if (dc->current_state)
2618 		old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2619 
2620 	memset(&adjust, 0, sizeof(adjust));
2621 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2622 
2623 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2624 
2625 	set_default_colors(pipe_ctx);
2626 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2627 			== true) {
2628 		tbl_entry.color_space =
2629 			pipe_ctx->stream->output_color_space;
2630 
2631 		for (i = 0; i < 12; i++)
2632 			tbl_entry.regval[i] =
2633 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2634 
2635 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2636 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2637 	}
2638 
2639 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2640 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2641 
2642 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2643 			adjust.temperature_matrix[i] =
2644 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2645 	}
2646 
2647 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2648 
2649 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2650 
2651 	program_scaler(dc, pipe_ctx);
2652 
2653 	/* fbc not applicable on Underlay pipe */
2654 	if (dc->fbc_compressor && old_pipe->stream &&
2655 	    pipe_ctx->pipe_idx != underlay_idx) {
2656 		if (plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2657 			dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2658 		else
2659 			enable_fbc(dc, dc->current_state);
2660 	}
2661 
2662 	mi->funcs->mem_input_program_surface_config(
2663 			mi,
2664 			plane_state->format,
2665 			&plane_state->tiling_info,
2666 			&plane_state->plane_size,
2667 			plane_state->rotation,
2668 			NULL,
2669 			false);
2670 	if (mi->funcs->set_blank)
2671 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2672 
2673 	if (dc->config.gpu_vm_support)
2674 		mi->funcs->mem_input_program_pte_vm(
2675 				pipe_ctx->plane_res.mi,
2676 				plane_state->format,
2677 				&plane_state->tiling_info,
2678 				plane_state->rotation);
2679 
2680 	/* Moved programming gamma from dc to hwss */
2681 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2682 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2683 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2684 		dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
2685 
2686 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2687 		dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
2688 
2689 	DC_LOG_SURFACE(
2690 			"Pipe:%d %p: addr hi:0x%x, "
2691 			"addr low:0x%x, "
2692 			"src: %d, %d, %d,"
2693 			" %d; dst: %d, %d, %d, %d;"
2694 			"clip: %d, %d, %d, %d\n",
2695 			pipe_ctx->pipe_idx,
2696 			(void *) pipe_ctx->plane_state,
2697 			pipe_ctx->plane_state->address.grph.addr.high_part,
2698 			pipe_ctx->plane_state->address.grph.addr.low_part,
2699 			pipe_ctx->plane_state->src_rect.x,
2700 			pipe_ctx->plane_state->src_rect.y,
2701 			pipe_ctx->plane_state->src_rect.width,
2702 			pipe_ctx->plane_state->src_rect.height,
2703 			pipe_ctx->plane_state->dst_rect.x,
2704 			pipe_ctx->plane_state->dst_rect.y,
2705 			pipe_ctx->plane_state->dst_rect.width,
2706 			pipe_ctx->plane_state->dst_rect.height,
2707 			pipe_ctx->plane_state->clip_rect.x,
2708 			pipe_ctx->plane_state->clip_rect.y,
2709 			pipe_ctx->plane_state->clip_rect.width,
2710 			pipe_ctx->plane_state->clip_rect.height);
2711 
2712 	DC_LOG_SURFACE(
2713 			"Pipe %d: width, height, x, y\n"
2714 			"viewport:%d, %d, %d, %d\n"
2715 			"recout:  %d, %d, %d, %d\n",
2716 			pipe_ctx->pipe_idx,
2717 			pipe_ctx->plane_res.scl_data.viewport.width,
2718 			pipe_ctx->plane_res.scl_data.viewport.height,
2719 			pipe_ctx->plane_res.scl_data.viewport.x,
2720 			pipe_ctx->plane_res.scl_data.viewport.y,
2721 			pipe_ctx->plane_res.scl_data.recout.width,
2722 			pipe_ctx->plane_res.scl_data.recout.height,
2723 			pipe_ctx->plane_res.scl_data.recout.x,
2724 			pipe_ctx->plane_res.scl_data.recout.y);
2725 }
2726 
2727 static void dce110_apply_ctx_for_surface(
2728 		struct dc *dc,
2729 		const struct dc_stream_state *stream,
2730 		int num_planes,
2731 		struct dc_state *context)
2732 {
2733 	int i;
2734 
2735 	if (num_planes == 0)
2736 		return;
2737 
2738 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2739 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2740 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2741 
2742 		if (stream == pipe_ctx->stream) {
2743 			if (!pipe_ctx->top_pipe &&
2744 				(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2745 				dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2746 		}
2747 	}
2748 
2749 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2750 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2751 
2752 		if (pipe_ctx->stream != stream)
2753 			continue;
2754 
2755 		/* Need to allocate mem before program front end for Fiji */
2756 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2757 				pipe_ctx->plane_res.mi,
2758 				pipe_ctx->stream->timing.h_total,
2759 				pipe_ctx->stream->timing.v_total,
2760 				pipe_ctx->stream->timing.pix_clk_khz,
2761 				context->stream_count);
2762 
2763 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2764 
2765 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2766 
2767 		program_surface_visibility(dc, pipe_ctx);
2768 
2769 	}
2770 
2771 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2772 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2773 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2774 
2775 		if ((stream == pipe_ctx->stream) &&
2776 			(!pipe_ctx->top_pipe) &&
2777 			(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2778 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2779 	}
2780 }
2781 
2782 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2783 {
2784 	int fe_idx = pipe_ctx->plane_res.mi ?
2785 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2786 
2787 	/* Do not power down fe when stream is active on dce*/
2788 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2789 		return;
2790 
2791 	dc->hwss.enable_display_power_gating(
2792 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2793 
2794 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2795 				dc->res_pool->transforms[fe_idx]);
2796 }
2797 
2798 static void dce110_wait_for_mpcc_disconnect(
2799 		struct dc *dc,
2800 		struct resource_pool *res_pool,
2801 		struct pipe_ctx *pipe_ctx)
2802 {
2803 	/* do nothing*/
2804 }
2805 
2806 static void program_csc_matrix(struct pipe_ctx *pipe_ctx,
2807 		enum dc_color_space colorspace,
2808 		uint16_t *matrix)
2809 {
2810 	int i;
2811 	struct out_csc_color_matrix tbl_entry;
2812 
2813 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2814 				== true) {
2815 			enum dc_color_space color_space =
2816 				pipe_ctx->stream->output_color_space;
2817 
2818 			//uint16_t matrix[12];
2819 			for (i = 0; i < 12; i++)
2820 				tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2821 
2822 			tbl_entry.color_space = color_space;
2823 			//tbl_entry.regval = matrix;
2824 			pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(pipe_ctx->plane_res.xfm, &tbl_entry);
2825 	}
2826 }
2827 
2828 static
2829 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2830 {
2831 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2832 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2833 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2834 	struct dc_cursor_mi_param param = {
2835 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_khz,
2836 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clock_inKhz,
2837 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2838 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2839 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2840 		.rotation = pipe_ctx->plane_state->rotation,
2841 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2842 	};
2843 
2844 	if (pipe_ctx->plane_state->address.type
2845 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2846 		pos_cpy.enable = false;
2847 
2848 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2849 		pos_cpy.enable = false;
2850 
2851 	if (ipp->funcs->ipp_cursor_set_position)
2852 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2853 	if (mi->funcs->set_cursor_position)
2854 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2855 }
2856 
2857 static
2858 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2859 {
2860 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2861 
2862 	if (pipe_ctx->plane_res.ipp &&
2863 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2864 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2865 				pipe_ctx->plane_res.ipp, attributes);
2866 
2867 	if (pipe_ctx->plane_res.mi &&
2868 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2869 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2870 				pipe_ctx->plane_res.mi, attributes);
2871 
2872 	if (pipe_ctx->plane_res.xfm &&
2873 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2874 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2875 				pipe_ctx->plane_res.xfm, attributes);
2876 }
2877 
2878 static void ready_shared_resources(struct dc *dc, struct dc_state *context) {}
2879 
2880 static void optimize_shared_resources(struct dc *dc) {}
2881 
2882 static const struct hw_sequencer_funcs dce110_funcs = {
2883 	.program_gamut_remap = program_gamut_remap,
2884 	.program_csc_matrix = program_csc_matrix,
2885 	.init_hw = init_hw,
2886 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2887 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2888 	.update_plane_addr = update_plane_addr,
2889 	.update_pending_status = dce110_update_pending_status,
2890 	.set_input_transfer_func = dce110_set_input_transfer_func,
2891 	.set_output_transfer_func = dce110_set_output_transfer_func,
2892 	.power_down = dce110_power_down,
2893 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2894 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2895 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2896 	.update_info_frame = dce110_update_info_frame,
2897 	.enable_stream = dce110_enable_stream,
2898 	.disable_stream = dce110_disable_stream,
2899 	.unblank_stream = dce110_unblank_stream,
2900 	.blank_stream = dce110_blank_stream,
2901 	.enable_audio_stream = dce110_enable_audio_stream,
2902 	.disable_audio_stream = dce110_disable_audio_stream,
2903 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2904 	.enable_display_power_gating = dce110_enable_display_power_gating,
2905 	.disable_plane = dce110_power_down_fe,
2906 	.pipe_control_lock = dce_pipe_control_lock,
2907 	.set_bandwidth = dce110_set_bandwidth,
2908 	.set_drr = set_drr,
2909 	.get_position = get_position,
2910 	.set_static_screen_control = set_static_screen_control,
2911 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2912 	.enable_stream_timing = dce110_enable_stream_timing,
2913 	.setup_stereo = NULL,
2914 	.set_avmute = dce110_set_avmute,
2915 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2916 	.ready_shared_resources = ready_shared_resources,
2917 	.optimize_shared_resources = optimize_shared_resources,
2918 	.pplib_apply_display_requirements = pplib_apply_display_requirements,
2919 	.edp_backlight_control = hwss_edp_backlight_control,
2920 	.edp_power_control = hwss_edp_power_control,
2921 	.edp_wait_for_hpd_ready = hwss_edp_wait_for_hpd_ready,
2922 	.set_cursor_position = dce110_set_cursor_position,
2923 	.set_cursor_attribute = dce110_set_cursor_attribute
2924 };
2925 
2926 void dce110_hw_sequencer_construct(struct dc *dc)
2927 {
2928 	dc->hwss = dce110_funcs;
2929 }
2930 
2931