1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 /* include DCE11 register header files */
29 #include "dce/dce_11_0_d.h"
30 #include "dce/dce_11_0_sh_mask.h"
31 
32 #include "dc_types.h"
33 #include "dc_bios_types.h"
34 #include "dc.h"
35 
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce110_timing_generator.h"
39 
40 #include "timing_generator.h"
41 
42 
43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
44 
45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
47 
48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
50 
51 /* Flowing register offsets are same in files of
52  * dce/dce_11_0_d.h
53  * dce/vi_polaris10_p/vi_polaris10_d.h
54  *
55  * So we can create dce110 timing generator to use it.
56  */
57 
58 
59 /*
60 * apply_front_porch_workaround
61 *
62 * This is a workaround for a bug that has existed since R5xx and has not been
63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
64 */
65 static void dce110_timing_generator_apply_front_porch_workaround(
66 	struct timing_generator *tg,
67 	struct dc_crtc_timing *timing)
68 {
69 	if (timing->flags.INTERLACE == 1) {
70 		if (timing->v_front_porch < 2)
71 			timing->v_front_porch = 2;
72 	} else {
73 		if (timing->v_front_porch < 1)
74 			timing->v_front_porch = 1;
75 	}
76 }
77 
78 /**
79  *****************************************************************************
80  *  Function: is_in_vertical_blank
81  *
82  *  @brief
83  *     check the current status of CRTC to check if we are in Vertical Blank
84  *     regioneased" state
85  *
86  *  @return
87  *     true if currently in blank region, false otherwise
88  *
89  *****************************************************************************
90  */
91 static bool dce110_timing_generator_is_in_vertical_blank(
92 		struct timing_generator *tg)
93 {
94 	uint32_t addr = 0;
95 	uint32_t value = 0;
96 	uint32_t field = 0;
97 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
98 
99 	addr = CRTC_REG(mmCRTC_STATUS);
100 	value = dm_read_reg(tg->ctx, addr);
101 	field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
102 	return field == 1;
103 }
104 
105 void dce110_timing_generator_set_early_control(
106 		struct timing_generator *tg,
107 		uint32_t early_cntl)
108 {
109 	uint32_t regval;
110 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
111 	uint32_t address = CRTC_REG(mmCRTC_CONTROL);
112 
113 	regval = dm_read_reg(tg->ctx, address);
114 	set_reg_field_value(regval, early_cntl,
115 			CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
116 	dm_write_reg(tg->ctx, address, regval);
117 }
118 
119 /**
120  * Enable CRTC
121  * Enable CRTC - call ASIC Control Object to enable Timing generator.
122  */
123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
124 {
125 	enum bp_result result;
126 
127 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
128 	uint32_t value = 0;
129 
130 	/*
131 	 * 3 is used to make sure V_UPDATE occurs at the beginning of the first
132 	 * line of vertical front porch
133 	 */
134 	set_reg_field_value(
135 		value,
136 		0,
137 		CRTC_MASTER_UPDATE_MODE,
138 		MASTER_UPDATE_MODE);
139 
140 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
141 
142 	/* TODO: may want this on to catch underflow */
143 	value = 0;
144 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
145 
146 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
147 
148 	return result == BP_RESULT_OK;
149 }
150 
151 void dce110_timing_generator_program_blank_color(
152 		struct timing_generator *tg,
153 		const struct tg_color *black_color)
154 {
155 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
156 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
157 	uint32_t value = dm_read_reg(tg->ctx, addr);
158 
159 	set_reg_field_value(
160 		value,
161 		black_color->color_b_cb,
162 		CRTC_BLACK_COLOR,
163 		CRTC_BLACK_COLOR_B_CB);
164 	set_reg_field_value(
165 		value,
166 		black_color->color_g_y,
167 		CRTC_BLACK_COLOR,
168 		CRTC_BLACK_COLOR_G_Y);
169 	set_reg_field_value(
170 		value,
171 		black_color->color_r_cr,
172 		CRTC_BLACK_COLOR,
173 		CRTC_BLACK_COLOR_R_CR);
174 
175 	dm_write_reg(tg->ctx, addr, value);
176 }
177 
178 /**
179  *****************************************************************************
180  *  Function: disable_stereo
181  *
182  *  @brief
183  *     Disables active stereo on controller
184  *     Frame Packing need to be disabled in vBlank or when CRTC not running
185  *****************************************************************************
186  */
187 #if 0
188 @TODOSTEREO
189 static void disable_stereo(struct timing_generator *tg)
190 {
191 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
192 	uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
193 	uint32_t value = 0;
194 	uint32_t test = 0;
195 	uint32_t field = 0;
196 	uint32_t struc_en = 0;
197 	uint32_t struc_stereo_sel_ovr = 0;
198 
199 	value = dm_read_reg(tg->ctx, addr);
200 	struc_en = get_reg_field_value(
201 			value,
202 			CRTC_3D_STRUCTURE_CONTROL,
203 			CRTC_3D_STRUCTURE_EN);
204 
205 	struc_stereo_sel_ovr = get_reg_field_value(
206 			value,
207 			CRTC_3D_STRUCTURE_CONTROL,
208 			CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
209 
210 	/*
211 	 * When disabling Frame Packing in 2 step mode, we need to program both
212 	 * registers at the same frame
213 	 * Programming it in the beginning of VActive makes sure we are ok
214 	 */
215 
216 	if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
217 		tg->funcs->wait_for_vblank(tg);
218 		tg->funcs->wait_for_vactive(tg);
219 	}
220 
221 	value = 0;
222 	dm_write_reg(tg->ctx, addr, value);
223 
224 	addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
225 	dm_write_reg(tg->ctx, addr, value);
226 }
227 #endif
228 
229 /**
230  * disable_crtc - call ASIC Control Object to disable Timing generator.
231  */
232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
233 {
234 	enum bp_result result;
235 
236 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
237 
238 	result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
239 
240 	/* Need to make sure stereo is disabled according to the DCE5.0 spec */
241 
242 	/*
243 	 * @TODOSTEREO call this when adding stereo support
244 	 * tg->funcs->disable_stereo(tg);
245 	 */
246 
247 	return result == BP_RESULT_OK;
248 }
249 
250 /**
251 * program_horz_count_by_2
252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
253 *
254 */
255 static void program_horz_count_by_2(
256 	struct timing_generator *tg,
257 	const struct dc_crtc_timing *timing)
258 {
259 	uint32_t regval;
260 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
261 
262 	regval = dm_read_reg(tg->ctx,
263 			CRTC_REG(mmCRTC_COUNT_CONTROL));
264 
265 	set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
266 			CRTC_HORZ_COUNT_BY2_EN);
267 
268 	if (timing->flags.HORZ_COUNT_BY_TWO)
269 		set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
270 					CRTC_HORZ_COUNT_BY2_EN);
271 
272 	dm_write_reg(tg->ctx,
273 			CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
274 }
275 
276 /**
277  * program_timing_generator
278  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
279  * Call ASIC Control Object to program Timings.
280  */
281 bool dce110_timing_generator_program_timing_generator(
282 	struct timing_generator *tg,
283 	const struct dc_crtc_timing *dc_crtc_timing)
284 {
285 	enum bp_result result;
286 	struct bp_hw_crtc_timing_parameters bp_params;
287 	struct dc_crtc_timing patched_crtc_timing;
288 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
289 
290 	uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
291 			dc_crtc_timing->v_front_porch;
292 	uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
293 
294 	uint32_t hsync_offset = dc_crtc_timing->h_border_right +
295 			dc_crtc_timing->h_front_porch;
296 	uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
297 
298 	memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
299 
300 	/* Due to an asic bug we need to apply the Front Porch workaround prior
301 	 * to programming the timing.
302 	 */
303 
304 	patched_crtc_timing = *dc_crtc_timing;
305 
306 	dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
307 
308 	bp_params.controller_id = tg110->controller_id;
309 
310 	bp_params.h_total = patched_crtc_timing.h_total;
311 	bp_params.h_addressable =
312 		patched_crtc_timing.h_addressable;
313 	bp_params.v_total = patched_crtc_timing.v_total;
314 	bp_params.v_addressable = patched_crtc_timing.v_addressable;
315 
316 	bp_params.h_sync_start = h_sync_start;
317 	bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
318 	bp_params.v_sync_start = v_sync_start;
319 	bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
320 
321 	/* Set overscan */
322 	bp_params.h_overscan_left =
323 		patched_crtc_timing.h_border_left;
324 	bp_params.h_overscan_right =
325 		patched_crtc_timing.h_border_right;
326 	bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
327 	bp_params.v_overscan_bottom =
328 		patched_crtc_timing.v_border_bottom;
329 
330 	/* Set flags */
331 	if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
332 		bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
333 
334 	if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
335 		bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
336 
337 	if (patched_crtc_timing.flags.INTERLACE == 1)
338 		bp_params.flags.INTERLACE = 1;
339 
340 	if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
341 		bp_params.flags.HORZ_COUNT_BY_TWO = 1;
342 
343 	result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
344 
345 	program_horz_count_by_2(tg, &patched_crtc_timing);
346 
347 	tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
348 
349 	/* Enable stereo - only when we need to pack 3D frame. Other types
350 	 * of stereo handled in explicit call */
351 
352 	return result == BP_RESULT_OK;
353 }
354 
355 /**
356  *****************************************************************************
357  *  Function: set_drr
358  *
359  *  @brief
360  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
361  *
362  *  @param [in] pHwCrtcTiming: point to H
363  *  wCrtcTiming struct
364  *****************************************************************************
365  */
366 void dce110_timing_generator_set_drr(
367 	struct timing_generator *tg,
368 	const struct drr_params *params)
369 {
370 	/* register values */
371 	uint32_t v_total_min = 0;
372 	uint32_t v_total_max = 0;
373 	uint32_t v_total_cntl = 0;
374 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
375 
376 	uint32_t addr = 0;
377 
378 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
379 	v_total_min = dm_read_reg(tg->ctx, addr);
380 
381 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
382 	v_total_max = dm_read_reg(tg->ctx, addr);
383 
384 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
385 	v_total_cntl = dm_read_reg(tg->ctx, addr);
386 
387 	if (params != NULL &&
388 		params->vertical_total_max > 0 &&
389 		params->vertical_total_min > 0) {
390 
391 		set_reg_field_value(v_total_max,
392 				params->vertical_total_max - 1,
393 				CRTC_V_TOTAL_MAX,
394 				CRTC_V_TOTAL_MAX);
395 
396 		set_reg_field_value(v_total_min,
397 				params->vertical_total_min - 1,
398 				CRTC_V_TOTAL_MIN,
399 				CRTC_V_TOTAL_MIN);
400 
401 		set_reg_field_value(v_total_cntl,
402 				1,
403 				CRTC_V_TOTAL_CONTROL,
404 				CRTC_V_TOTAL_MIN_SEL);
405 
406 		set_reg_field_value(v_total_cntl,
407 				1,
408 				CRTC_V_TOTAL_CONTROL,
409 				CRTC_V_TOTAL_MAX_SEL);
410 
411 		set_reg_field_value(v_total_cntl,
412 				0,
413 				CRTC_V_TOTAL_CONTROL,
414 				CRTC_FORCE_LOCK_ON_EVENT);
415 		set_reg_field_value(v_total_cntl,
416 				0,
417 				CRTC_V_TOTAL_CONTROL,
418 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
419 
420 		set_reg_field_value(v_total_cntl,
421 				0,
422 				CRTC_V_TOTAL_CONTROL,
423 				CRTC_SET_V_TOTAL_MIN_MASK_EN);
424 
425 		set_reg_field_value(v_total_cntl,
426 				0,
427 				CRTC_V_TOTAL_CONTROL,
428 				CRTC_SET_V_TOTAL_MIN_MASK);
429 	} else {
430 		set_reg_field_value(v_total_cntl,
431 			0,
432 			CRTC_V_TOTAL_CONTROL,
433 			CRTC_SET_V_TOTAL_MIN_MASK);
434 		set_reg_field_value(v_total_cntl,
435 				0,
436 				CRTC_V_TOTAL_CONTROL,
437 				CRTC_V_TOTAL_MIN_SEL);
438 		set_reg_field_value(v_total_cntl,
439 				0,
440 				CRTC_V_TOTAL_CONTROL,
441 				CRTC_V_TOTAL_MAX_SEL);
442 		set_reg_field_value(v_total_min,
443 				0,
444 				CRTC_V_TOTAL_MIN,
445 				CRTC_V_TOTAL_MIN);
446 		set_reg_field_value(v_total_max,
447 				0,
448 				CRTC_V_TOTAL_MAX,
449 				CRTC_V_TOTAL_MAX);
450 		set_reg_field_value(v_total_cntl,
451 				0,
452 				CRTC_V_TOTAL_CONTROL,
453 				CRTC_FORCE_LOCK_ON_EVENT);
454 		set_reg_field_value(v_total_cntl,
455 				0,
456 				CRTC_V_TOTAL_CONTROL,
457 				CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
458 	}
459 
460 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
461 	dm_write_reg(tg->ctx, addr, v_total_min);
462 
463 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
464 	dm_write_reg(tg->ctx, addr, v_total_max);
465 
466 	addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
467 	dm_write_reg(tg->ctx, addr, v_total_cntl);
468 }
469 
470 void dce110_timing_generator_set_static_screen_control(
471 	struct timing_generator *tg,
472 	uint32_t value)
473 {
474 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
475 	uint32_t static_screen_cntl = 0;
476 	uint32_t addr = 0;
477 
478 	addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
479 	static_screen_cntl = dm_read_reg(tg->ctx, addr);
480 
481 	set_reg_field_value(static_screen_cntl,
482 				value,
483 				CRTC_STATIC_SCREEN_CONTROL,
484 				CRTC_STATIC_SCREEN_EVENT_MASK);
485 
486 	set_reg_field_value(static_screen_cntl,
487 				2,
488 				CRTC_STATIC_SCREEN_CONTROL,
489 				CRTC_STATIC_SCREEN_FRAME_COUNT);
490 
491 	dm_write_reg(tg->ctx, addr, static_screen_cntl);
492 }
493 
494 /*
495  * get_vblank_counter
496  *
497  * @brief
498  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
499  * holds the counter of frames.
500  *
501  * @param
502  * struct timing_generator *tg - [in] timing generator which controls the
503  * desired CRTC
504  *
505  * @return
506  * Counter of frames, which should equal to number of vblanks.
507  */
508 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
509 {
510 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
511 	uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
512 	uint32_t value = dm_read_reg(tg->ctx, addr);
513 	uint32_t field = get_reg_field_value(
514 			value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
515 
516 	return field;
517 }
518 
519 /**
520  *****************************************************************************
521  *  Function: dce110_timing_generator_get_position
522  *
523  *  @brief
524  *     Returns CRTC vertical/horizontal counters
525  *
526  *  @param [out] position
527  *****************************************************************************
528  */
529 void dce110_timing_generator_get_position(struct timing_generator *tg,
530 	struct crtc_position *position)
531 {
532 	uint32_t value;
533 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
534 
535 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
536 
537 	position->horizontal_count = get_reg_field_value(
538 			value,
539 			CRTC_STATUS_POSITION,
540 			CRTC_HORZ_COUNT);
541 
542 	position->vertical_count = get_reg_field_value(
543 			value,
544 			CRTC_STATUS_POSITION,
545 			CRTC_VERT_COUNT);
546 
547 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
548 
549 	position->nominal_vcount = get_reg_field_value(
550 			value,
551 			CRTC_NOM_VERT_POSITION,
552 			CRTC_VERT_COUNT_NOM);
553 }
554 
555 /**
556  *****************************************************************************
557  *  Function: get_crtc_scanoutpos
558  *
559  *  @brief
560  *     Returns CRTC vertical/horizontal counters
561  *
562  *  @param [out] vpos, hpos
563  *****************************************************************************
564  */
565 void dce110_timing_generator_get_crtc_scanoutpos(
566 	struct timing_generator *tg,
567 	uint32_t *v_blank_start,
568 	uint32_t *v_blank_end,
569 	uint32_t *h_position,
570 	uint32_t *v_position)
571 {
572 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
573 	struct crtc_position position;
574 
575 	uint32_t value  = dm_read_reg(tg->ctx,
576 			CRTC_REG(mmCRTC_V_BLANK_START_END));
577 
578 	*v_blank_start = get_reg_field_value(value,
579 					     CRTC_V_BLANK_START_END,
580 					     CRTC_V_BLANK_START);
581 	*v_blank_end = get_reg_field_value(value,
582 					   CRTC_V_BLANK_START_END,
583 					   CRTC_V_BLANK_END);
584 
585 	dce110_timing_generator_get_position(
586 			tg, &position);
587 
588 	*h_position = position.horizontal_count;
589 	*v_position = position.vertical_count;
590 }
591 
592 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
593  * are the same?
594  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
595  * guaranteed? */
596 void dce110_timing_generator_program_blanking(
597 	struct timing_generator *tg,
598 	const struct dc_crtc_timing *timing)
599 {
600 	uint32_t vsync_offset = timing->v_border_bottom +
601 			timing->v_front_porch;
602 	uint32_t v_sync_start =timing->v_addressable + vsync_offset;
603 
604 	uint32_t hsync_offset = timing->h_border_right +
605 			timing->h_front_porch;
606 	uint32_t h_sync_start = timing->h_addressable + hsync_offset;
607 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
608 
609 	struct dc_context *ctx = tg->ctx;
610 	uint32_t value = 0;
611 	uint32_t addr = 0;
612 	uint32_t tmp = 0;
613 
614 	addr = CRTC_REG(mmCRTC_H_TOTAL);
615 	value = dm_read_reg(ctx, addr);
616 	set_reg_field_value(
617 		value,
618 		timing->h_total - 1,
619 		CRTC_H_TOTAL,
620 		CRTC_H_TOTAL);
621 	dm_write_reg(ctx, addr, value);
622 
623 	addr = CRTC_REG(mmCRTC_V_TOTAL);
624 	value = dm_read_reg(ctx, addr);
625 	set_reg_field_value(
626 		value,
627 		timing->v_total - 1,
628 		CRTC_V_TOTAL,
629 		CRTC_V_TOTAL);
630 	dm_write_reg(ctx, addr, value);
631 
632 	/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
633 	 * V_TOTAL_MIN are equal to V_TOTAL.
634 	 */
635 	addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
636 	value = dm_read_reg(ctx, addr);
637 	set_reg_field_value(
638 		value,
639 		timing->v_total - 1,
640 		CRTC_V_TOTAL_MAX,
641 		CRTC_V_TOTAL_MAX);
642 	dm_write_reg(ctx, addr, value);
643 
644 	addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
645 	value = dm_read_reg(ctx, addr);
646 	set_reg_field_value(
647 		value,
648 		timing->v_total - 1,
649 		CRTC_V_TOTAL_MIN,
650 		CRTC_V_TOTAL_MIN);
651 	dm_write_reg(ctx, addr, value);
652 
653 	addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
654 	value = dm_read_reg(ctx, addr);
655 
656 	tmp = timing->h_total -
657 		(h_sync_start + timing->h_border_left);
658 
659 	set_reg_field_value(
660 		value,
661 		tmp,
662 		CRTC_H_BLANK_START_END,
663 		CRTC_H_BLANK_END);
664 
665 	tmp = tmp + timing->h_addressable +
666 		timing->h_border_left + timing->h_border_right;
667 
668 	set_reg_field_value(
669 		value,
670 		tmp,
671 		CRTC_H_BLANK_START_END,
672 		CRTC_H_BLANK_START);
673 
674 	dm_write_reg(ctx, addr, value);
675 
676 	addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
677 	value = dm_read_reg(ctx, addr);
678 
679 	tmp = timing->v_total - (v_sync_start + timing->v_border_top);
680 
681 	set_reg_field_value(
682 		value,
683 		tmp,
684 		CRTC_V_BLANK_START_END,
685 		CRTC_V_BLANK_END);
686 
687 	tmp = tmp + timing->v_addressable + timing->v_border_top +
688 		timing->v_border_bottom;
689 
690 	set_reg_field_value(
691 		value,
692 		tmp,
693 		CRTC_V_BLANK_START_END,
694 		CRTC_V_BLANK_START);
695 
696 	dm_write_reg(ctx, addr, value);
697 }
698 
699 void dce110_timing_generator_set_test_pattern(
700 	struct timing_generator *tg,
701 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
702 	 * because this is not DP-specific (which is probably somewhere in DP
703 	 * encoder) */
704 	enum controller_dp_test_pattern test_pattern,
705 	enum dc_color_depth color_depth)
706 {
707 	struct dc_context *ctx = tg->ctx;
708 	uint32_t value;
709 	uint32_t addr;
710 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
711 	enum test_pattern_color_format bit_depth;
712 	enum test_pattern_dyn_range dyn_range;
713 	enum test_pattern_mode mode;
714 	/* color ramp generator mixes 16-bits color */
715 	uint32_t src_bpc = 16;
716 	/* requested bpc */
717 	uint32_t dst_bpc;
718 	uint32_t index;
719 	/* RGB values of the color bars.
720 	 * Produce two RGB colors: RGB0 - white (all Fs)
721 	 * and RGB1 - black (all 0s)
722 	 * (three RGB components for two colors)
723 	 */
724 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
725 						0x0000, 0x0000};
726 	/* dest color (converted to the specified color format) */
727 	uint16_t dst_color[6];
728 	uint32_t inc_base;
729 
730 	/* translate to bit depth */
731 	switch (color_depth) {
732 	case COLOR_DEPTH_666:
733 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
734 	break;
735 	case COLOR_DEPTH_888:
736 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
737 	break;
738 	case COLOR_DEPTH_101010:
739 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
740 	break;
741 	case COLOR_DEPTH_121212:
742 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
743 	break;
744 	default:
745 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
746 	break;
747 	}
748 
749 	switch (test_pattern) {
750 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
751 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
752 	{
753 		dyn_range = (test_pattern ==
754 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
755 				TEST_PATTERN_DYN_RANGE_CEA :
756 				TEST_PATTERN_DYN_RANGE_VESA);
757 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
758 		value = 0;
759 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
760 
761 		set_reg_field_value(
762 			value,
763 			6,
764 			CRTC_TEST_PATTERN_PARAMETERS,
765 			CRTC_TEST_PATTERN_VRES);
766 		set_reg_field_value(
767 			value,
768 			6,
769 			CRTC_TEST_PATTERN_PARAMETERS,
770 			CRTC_TEST_PATTERN_HRES);
771 
772 		dm_write_reg(ctx, addr, value);
773 
774 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
775 		value = 0;
776 
777 		set_reg_field_value(
778 			value,
779 			1,
780 			CRTC_TEST_PATTERN_CONTROL,
781 			CRTC_TEST_PATTERN_EN);
782 
783 		set_reg_field_value(
784 			value,
785 			mode,
786 			CRTC_TEST_PATTERN_CONTROL,
787 			CRTC_TEST_PATTERN_MODE);
788 
789 		set_reg_field_value(
790 			value,
791 			dyn_range,
792 			CRTC_TEST_PATTERN_CONTROL,
793 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
794 		set_reg_field_value(
795 			value,
796 			bit_depth,
797 			CRTC_TEST_PATTERN_CONTROL,
798 			CRTC_TEST_PATTERN_COLOR_FORMAT);
799 		dm_write_reg(ctx, addr, value);
800 	}
801 	break;
802 
803 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
804 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
805 	{
806 		mode = (test_pattern ==
807 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
808 			TEST_PATTERN_MODE_VERTICALBARS :
809 			TEST_PATTERN_MODE_HORIZONTALBARS);
810 
811 		switch (bit_depth) {
812 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
813 			dst_bpc = 6;
814 		break;
815 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
816 			dst_bpc = 8;
817 		break;
818 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
819 			dst_bpc = 10;
820 		break;
821 		default:
822 			dst_bpc = 8;
823 		break;
824 		}
825 
826 		/* adjust color to the required colorFormat */
827 		for (index = 0; index < 6; index++) {
828 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
829 			 * (srcBpc - dstBpc);
830 			 */
831 			dst_color[index] =
832 				src_color[index] >> (src_bpc - dst_bpc);
833 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
834 		 * lowest 6 are hardwired to ZERO
835 		 * color bits should be left aligned aligned to MSB
836 		 * XXXXXXXXXX000000 for 10 bit,
837 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
838 		 */
839 			dst_color[index] <<= (16 - dst_bpc);
840 		}
841 
842 		value = 0;
843 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
844 		dm_write_reg(ctx, addr, value);
845 
846 		/* We have to write the mask before data, similar to pipeline.
847 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
848 		 * and RGB1 to be cyan,
849 		 * we need to make 7 writes:
850 		 * MASK   DATA
851 		 * 000001 00000000 00000000                     set mask to R0
852 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
853 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
854 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
855 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
856 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
857 		 * 100000 11111111 00000000     B1 255, 0xFF00
858 		 *
859 		 * we will make a loop of 6 in which we prepare the mask,
860 		 * then write, then prepare the color for next write.
861 		 * first iteration will write mask only,
862 		 * but each next iteration color prepared in
863 		 * previous iteration will be written within new mask,
864 		 * the last component will written separately,
865 		 * mask is not changing between 6th and 7th write
866 		 * and color will be prepared by last iteration
867 		 */
868 
869 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
870 		 * is B1, G1, R1, B0, G0, R0
871 		 */
872 		value = 0;
873 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
874 		for (index = 0; index < 6; index++) {
875 			/* prepare color mask, first write PATTERN_DATA
876 			 * will have all zeros
877 			 */
878 			set_reg_field_value(
879 				value,
880 				(1 << index),
881 				CRTC_TEST_PATTERN_COLOR,
882 				CRTC_TEST_PATTERN_MASK);
883 			/* write color component */
884 			dm_write_reg(ctx, addr, value);
885 			/* prepare next color component,
886 			 * will be written in the next iteration
887 			 */
888 			set_reg_field_value(
889 				value,
890 				dst_color[index],
891 				CRTC_TEST_PATTERN_COLOR,
892 				CRTC_TEST_PATTERN_DATA);
893 		}
894 		/* write last color component,
895 		 * it's been already prepared in the loop
896 		 */
897 		dm_write_reg(ctx, addr, value);
898 
899 		/* enable test pattern */
900 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
901 		value = 0;
902 
903 		set_reg_field_value(
904 			value,
905 			1,
906 			CRTC_TEST_PATTERN_CONTROL,
907 			CRTC_TEST_PATTERN_EN);
908 
909 		set_reg_field_value(
910 			value,
911 			mode,
912 			CRTC_TEST_PATTERN_CONTROL,
913 			CRTC_TEST_PATTERN_MODE);
914 
915 		set_reg_field_value(
916 			value,
917 			0,
918 			CRTC_TEST_PATTERN_CONTROL,
919 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
920 
921 		set_reg_field_value(
922 			value,
923 			bit_depth,
924 			CRTC_TEST_PATTERN_CONTROL,
925 			CRTC_TEST_PATTERN_COLOR_FORMAT);
926 
927 		dm_write_reg(ctx, addr, value);
928 	}
929 	break;
930 
931 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
932 	{
933 		mode = (bit_depth ==
934 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
935 			TEST_PATTERN_MODE_DUALRAMP_RGB :
936 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
937 
938 		switch (bit_depth) {
939 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
940 			dst_bpc = 6;
941 		break;
942 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
943 			dst_bpc = 8;
944 		break;
945 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
946 			dst_bpc = 10;
947 		break;
948 		default:
949 			dst_bpc = 8;
950 		break;
951 		}
952 
953 		/* increment for the first ramp for one color gradation
954 		 * 1 gradation for 6-bit color is 2^10
955 		 * gradations in 16-bit color
956 		 */
957 		inc_base = (src_bpc - dst_bpc);
958 
959 		value = 0;
960 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
961 
962 		switch (bit_depth) {
963 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
964 		{
965 			set_reg_field_value(
966 				value,
967 				inc_base,
968 				CRTC_TEST_PATTERN_PARAMETERS,
969 				CRTC_TEST_PATTERN_INC0);
970 			set_reg_field_value(
971 				value,
972 				0,
973 				CRTC_TEST_PATTERN_PARAMETERS,
974 				CRTC_TEST_PATTERN_INC1);
975 			set_reg_field_value(
976 				value,
977 				6,
978 				CRTC_TEST_PATTERN_PARAMETERS,
979 				CRTC_TEST_PATTERN_HRES);
980 			set_reg_field_value(
981 				value,
982 				6,
983 				CRTC_TEST_PATTERN_PARAMETERS,
984 				CRTC_TEST_PATTERN_VRES);
985 			set_reg_field_value(
986 				value,
987 				0,
988 				CRTC_TEST_PATTERN_PARAMETERS,
989 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
990 		}
991 		break;
992 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
993 		{
994 			set_reg_field_value(
995 				value,
996 				inc_base,
997 				CRTC_TEST_PATTERN_PARAMETERS,
998 				CRTC_TEST_PATTERN_INC0);
999 			set_reg_field_value(
1000 				value,
1001 				0,
1002 				CRTC_TEST_PATTERN_PARAMETERS,
1003 				CRTC_TEST_PATTERN_INC1);
1004 			set_reg_field_value(
1005 				value,
1006 				8,
1007 				CRTC_TEST_PATTERN_PARAMETERS,
1008 				CRTC_TEST_PATTERN_HRES);
1009 			set_reg_field_value(
1010 				value,
1011 				6,
1012 				CRTC_TEST_PATTERN_PARAMETERS,
1013 				CRTC_TEST_PATTERN_VRES);
1014 			set_reg_field_value(
1015 				value,
1016 				0,
1017 				CRTC_TEST_PATTERN_PARAMETERS,
1018 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1019 		}
1020 		break;
1021 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1022 		{
1023 			set_reg_field_value(
1024 				value,
1025 				inc_base,
1026 				CRTC_TEST_PATTERN_PARAMETERS,
1027 				CRTC_TEST_PATTERN_INC0);
1028 			set_reg_field_value(
1029 				value,
1030 				inc_base + 2,
1031 				CRTC_TEST_PATTERN_PARAMETERS,
1032 				CRTC_TEST_PATTERN_INC1);
1033 			set_reg_field_value(
1034 				value,
1035 				8,
1036 				CRTC_TEST_PATTERN_PARAMETERS,
1037 				CRTC_TEST_PATTERN_HRES);
1038 			set_reg_field_value(
1039 				value,
1040 				5,
1041 				CRTC_TEST_PATTERN_PARAMETERS,
1042 				CRTC_TEST_PATTERN_VRES);
1043 			set_reg_field_value(
1044 				value,
1045 				384 << 6,
1046 				CRTC_TEST_PATTERN_PARAMETERS,
1047 				CRTC_TEST_PATTERN_RAMP0_OFFSET);
1048 		}
1049 		break;
1050 		default:
1051 		break;
1052 		}
1053 		dm_write_reg(ctx, addr, value);
1054 
1055 		value = 0;
1056 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1057 		dm_write_reg(ctx, addr, value);
1058 
1059 		/* enable test pattern */
1060 		addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1061 		value = 0;
1062 
1063 		set_reg_field_value(
1064 			value,
1065 			1,
1066 			CRTC_TEST_PATTERN_CONTROL,
1067 			CRTC_TEST_PATTERN_EN);
1068 
1069 		set_reg_field_value(
1070 			value,
1071 			mode,
1072 			CRTC_TEST_PATTERN_CONTROL,
1073 			CRTC_TEST_PATTERN_MODE);
1074 
1075 		set_reg_field_value(
1076 			value,
1077 			0,
1078 			CRTC_TEST_PATTERN_CONTROL,
1079 			CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1080 		/* add color depth translation here */
1081 		set_reg_field_value(
1082 			value,
1083 			bit_depth,
1084 			CRTC_TEST_PATTERN_CONTROL,
1085 			CRTC_TEST_PATTERN_COLOR_FORMAT);
1086 
1087 		dm_write_reg(ctx, addr, value);
1088 	}
1089 	break;
1090 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1091 	{
1092 		value = 0;
1093 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1094 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1095 		dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1096 				value);
1097 	}
1098 	break;
1099 	default:
1100 	break;
1101 	}
1102 }
1103 
1104 /**
1105 * dce110_timing_generator_validate_timing
1106 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1107 * including both active display and blanking periods. Check H Total and V Total.
1108 */
1109 bool dce110_timing_generator_validate_timing(
1110 	struct timing_generator *tg,
1111 	const struct dc_crtc_timing *timing,
1112 	enum signal_type signal)
1113 {
1114 	uint32_t h_blank;
1115 	uint32_t h_back_porch, hsync_offset, h_sync_start;
1116 
1117 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1118 
1119 	ASSERT(timing != NULL);
1120 
1121 	if (!timing)
1122 		return false;
1123 
1124 	hsync_offset = timing->h_border_right + timing->h_front_porch;
1125 	h_sync_start = timing->h_addressable + hsync_offset;
1126 
1127 	/* Currently we don't support 3D, so block all 3D timings */
1128 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1129 		return false;
1130 
1131 	/* Temporarily blocking interlacing mode until it's supported */
1132 	if (timing->flags.INTERLACE == 1)
1133 		return false;
1134 
1135 	/* Check maximum number of pixels supported by Timing Generator
1136 	 * (Currently will never fail, in order to fail needs display which
1137 	 * needs more than 8192 horizontal and
1138 	 * more than 8192 vertical total pixels)
1139 	 */
1140 	if (timing->h_total > tg110->max_h_total ||
1141 		timing->v_total > tg110->max_v_total)
1142 		return false;
1143 
1144 	h_blank = (timing->h_total - timing->h_addressable -
1145 		timing->h_border_right -
1146 		timing->h_border_left);
1147 
1148 	if (h_blank < tg110->min_h_blank)
1149 		return false;
1150 
1151 	if (timing->h_front_porch < tg110->min_h_front_porch)
1152 		return false;
1153 
1154 	h_back_porch = h_blank - (h_sync_start -
1155 		timing->h_addressable -
1156 		timing->h_border_right -
1157 		timing->h_sync_width);
1158 
1159 	if (h_back_porch < tg110->min_h_back_porch)
1160 		return false;
1161 
1162 	return true;
1163 }
1164 
1165 /**
1166 * Wait till we are at the beginning of VBlank.
1167 */
1168 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1169 {
1170 	/* We want to catch beginning of VBlank here, so if the first try are
1171 	 * in VBlank, we might be very close to Active, in this case wait for
1172 	 * another frame
1173 	 */
1174 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1175 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1176 			/* error - no point to wait if counter is not moving */
1177 			break;
1178 		}
1179 	}
1180 
1181 	while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1182 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1183 			/* error - no point to wait if counter is not moving */
1184 			break;
1185 		}
1186 	}
1187 }
1188 
1189 /**
1190 * Wait till we are in VActive (anywhere in VActive)
1191 */
1192 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1193 {
1194 	while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1195 		if (!dce110_timing_generator_is_counter_moving(tg)) {
1196 			/* error - no point to wait if counter is not moving */
1197 			break;
1198 		}
1199 	}
1200 }
1201 
1202 /**
1203  *****************************************************************************
1204  *  Function: dce110_timing_generator_setup_global_swap_lock
1205  *
1206  *  @brief
1207  *     Setups Global Swap Lock group for current pipe
1208  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1209  *
1210  *  @param [in] gsl_params: setup data
1211  *****************************************************************************
1212  */
1213 
1214 void dce110_timing_generator_setup_global_swap_lock(
1215 	struct timing_generator *tg,
1216 	const struct dcp_gsl_params *gsl_params)
1217 {
1218 	uint32_t value;
1219 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1220 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1221 	uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1222 
1223 	value = dm_read_reg(tg->ctx, address);
1224 
1225 	/* This pipe will belong to GSL Group zero. */
1226 	set_reg_field_value(value,
1227 			    1,
1228 			    DCP_GSL_CONTROL,
1229 			    DCP_GSL0_EN);
1230 
1231 	set_reg_field_value(value,
1232 			    gsl_params->gsl_master == tg->inst,
1233 			    DCP_GSL_CONTROL,
1234 			    DCP_GSL_MASTER_EN);
1235 
1236 	set_reg_field_value(value,
1237 			    HFLIP_READY_DELAY,
1238 			    DCP_GSL_CONTROL,
1239 			    DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1240 
1241 	/* Keep signal low (pending high) during 6 lines.
1242 	 * Also defines minimum interval before re-checking signal. */
1243 	set_reg_field_value(value,
1244 			    HFLIP_CHECK_DELAY,
1245 			    DCP_GSL_CONTROL,
1246 			    DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1247 
1248 	dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1249 	value = 0;
1250 
1251 	set_reg_field_value(value,
1252 			    gsl_params->gsl_master,
1253 			    DCIO_GSL0_CNTL,
1254 			    DCIO_GSL0_VSYNC_SEL);
1255 
1256 	set_reg_field_value(value,
1257 			    0,
1258 			    DCIO_GSL0_CNTL,
1259 			    DCIO_GSL0_TIMING_SYNC_SEL);
1260 
1261 	set_reg_field_value(value,
1262 			    0,
1263 			    DCIO_GSL0_CNTL,
1264 			    DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1265 
1266 	dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1267 
1268 
1269 	{
1270 		uint32_t value_crtc_vtotal;
1271 
1272 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1273 				CRTC_REG(mmCRTC_V_TOTAL));
1274 
1275 		set_reg_field_value(value,
1276 				    0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1277 				    DCP_GSL_CONTROL,
1278 				    DCP_GSL_SYNC_SOURCE);
1279 
1280 		/* Checkpoint relative to end of frame */
1281 		check_point = get_reg_field_value(value_crtc_vtotal,
1282 						  CRTC_V_TOTAL,
1283 						  CRTC_V_TOTAL);
1284 
1285 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1286 	}
1287 
1288 	set_reg_field_value(value,
1289 			    1,
1290 			    DCP_GSL_CONTROL,
1291 			    DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1292 
1293 	dm_write_reg(tg->ctx, address, value);
1294 
1295 	/********************************************************************/
1296 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1297 
1298 	value = dm_read_reg(tg->ctx, address);
1299 	set_reg_field_value(value,
1300 			    check_point - FLIP_READY_BACK_LOOKUP,
1301 			    CRTC_GSL_CONTROL,
1302 			    CRTC_GSL_CHECK_LINE_NUM);
1303 
1304 	set_reg_field_value(value,
1305 			    VFLIP_READY_DELAY,
1306 			    CRTC_GSL_CONTROL,
1307 			    CRTC_GSL_FORCE_DELAY);
1308 
1309 	dm_write_reg(tg->ctx, address, value);
1310 }
1311 
1312 void dce110_timing_generator_tear_down_global_swap_lock(
1313 	struct timing_generator *tg)
1314 {
1315 	/* Clear all the register writes done by
1316 	 * dce110_timing_generator_setup_global_swap_lock
1317 	 */
1318 
1319 	uint32_t value;
1320 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1321 	uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1322 
1323 	value = 0;
1324 
1325 	/* This pipe will belong to GSL Group zero. */
1326 	/* Settig HW default values from reg specs */
1327 	set_reg_field_value(value,
1328 			0,
1329 			DCP_GSL_CONTROL,
1330 			DCP_GSL0_EN);
1331 
1332 	set_reg_field_value(value,
1333 			0,
1334 			DCP_GSL_CONTROL,
1335 			DCP_GSL_MASTER_EN);
1336 
1337 	set_reg_field_value(value,
1338 			0x2,
1339 			DCP_GSL_CONTROL,
1340 			DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1341 
1342 	set_reg_field_value(value,
1343 			0x6,
1344 			DCP_GSL_CONTROL,
1345 			DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1346 
1347 	/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1348 	{
1349 		uint32_t value_crtc_vtotal;
1350 
1351 		value_crtc_vtotal = dm_read_reg(tg->ctx,
1352 				CRTC_REG(mmCRTC_V_TOTAL));
1353 
1354 		set_reg_field_value(value,
1355 				0,
1356 				DCP_GSL_CONTROL,
1357 				DCP_GSL_SYNC_SOURCE);
1358 	}
1359 
1360 	set_reg_field_value(value,
1361 			0,
1362 			DCP_GSL_CONTROL,
1363 			DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1364 
1365 	dm_write_reg(tg->ctx, address, value);
1366 
1367 	/********************************************************************/
1368 	address = CRTC_REG(mmCRTC_GSL_CONTROL);
1369 
1370 	value = 0;
1371 	set_reg_field_value(value,
1372 			0,
1373 			CRTC_GSL_CONTROL,
1374 			CRTC_GSL_CHECK_LINE_NUM);
1375 
1376 	set_reg_field_value(value,
1377 			0x2,
1378 			CRTC_GSL_CONTROL,
1379 			CRTC_GSL_FORCE_DELAY);
1380 
1381 	dm_write_reg(tg->ctx, address, value);
1382 }
1383 /**
1384  *****************************************************************************
1385  *  Function: is_counter_moving
1386  *
1387  *  @brief
1388  *     check if the timing generator is currently going
1389  *
1390  *  @return
1391  *     true if currently going, false if currently paused or stopped.
1392  *
1393  *****************************************************************************
1394  */
1395 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1396 {
1397 	struct crtc_position position1, position2;
1398 
1399 	tg->funcs->get_position(tg, &position1);
1400 	tg->funcs->get_position(tg, &position2);
1401 
1402 	if (position1.horizontal_count == position2.horizontal_count &&
1403 		position1.vertical_count == position2.vertical_count)
1404 		return false;
1405 	else
1406 		return true;
1407 }
1408 
1409 void dce110_timing_generator_enable_advanced_request(
1410 	struct timing_generator *tg,
1411 	bool enable,
1412 	const struct dc_crtc_timing *timing)
1413 {
1414 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1415 	uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1416 	uint32_t value = dm_read_reg(tg->ctx, addr);
1417 
1418 	if (enable) {
1419 		set_reg_field_value(
1420 			value,
1421 			0,
1422 			CRTC_START_LINE_CONTROL,
1423 			CRTC_LEGACY_REQUESTOR_EN);
1424 	} else {
1425 		set_reg_field_value(
1426 			value,
1427 			1,
1428 			CRTC_START_LINE_CONTROL,
1429 			CRTC_LEGACY_REQUESTOR_EN);
1430 	}
1431 
1432 	if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1433 		set_reg_field_value(
1434 			value,
1435 			3,
1436 			CRTC_START_LINE_CONTROL,
1437 			CRTC_ADVANCED_START_LINE_POSITION);
1438 		set_reg_field_value(
1439 			value,
1440 			0,
1441 			CRTC_START_LINE_CONTROL,
1442 			CRTC_PREFETCH_EN);
1443 	} else {
1444 		set_reg_field_value(
1445 			value,
1446 			4,
1447 			CRTC_START_LINE_CONTROL,
1448 			CRTC_ADVANCED_START_LINE_POSITION);
1449 		set_reg_field_value(
1450 			value,
1451 			1,
1452 			CRTC_START_LINE_CONTROL,
1453 			CRTC_PREFETCH_EN);
1454 	}
1455 
1456 	set_reg_field_value(
1457 		value,
1458 		1,
1459 		CRTC_START_LINE_CONTROL,
1460 		CRTC_PROGRESSIVE_START_LINE_EARLY);
1461 
1462 	set_reg_field_value(
1463 		value,
1464 		1,
1465 		CRTC_START_LINE_CONTROL,
1466 		CRTC_INTERLACE_START_LINE_EARLY);
1467 
1468 	dm_write_reg(tg->ctx, addr, value);
1469 }
1470 
1471 /*TODO: Figure out if we need this function. */
1472 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1473 		bool lock)
1474 {
1475 	struct dc_context *ctx = tg->ctx;
1476 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1477 	uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1478 	uint32_t value = dm_read_reg(ctx, addr);
1479 
1480 	set_reg_field_value(
1481 		value,
1482 		lock ? 1 : 0,
1483 		CRTC_MASTER_UPDATE_LOCK,
1484 		MASTER_UPDATE_LOCK);
1485 
1486 	dm_write_reg(ctx, addr, value);
1487 }
1488 
1489 void dce110_timing_generator_enable_reset_trigger(
1490 	struct timing_generator *tg,
1491 	int source_tg_inst)
1492 {
1493 	uint32_t value;
1494 	uint32_t rising_edge = 0;
1495 	uint32_t falling_edge = 0;
1496 	enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1497 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1498 
1499 	/* Setup trigger edge */
1500 	{
1501 		uint32_t pol_value = dm_read_reg(tg->ctx,
1502 				CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1503 
1504 		/* Register spec has reversed definition:
1505 		 *	0 for positive, 1 for negative */
1506 		if (get_reg_field_value(pol_value,
1507 				CRTC_V_SYNC_A_CNTL,
1508 				CRTC_V_SYNC_A_POL) == 0) {
1509 			rising_edge = 1;
1510 		} else {
1511 			falling_edge = 1;
1512 		}
1513 	}
1514 
1515 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1516 
1517 	trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1518 
1519 	set_reg_field_value(value,
1520 			trig_src_select,
1521 			CRTC_TRIGB_CNTL,
1522 			CRTC_TRIGB_SOURCE_SELECT);
1523 
1524 	set_reg_field_value(value,
1525 			TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1526 			CRTC_TRIGB_CNTL,
1527 			CRTC_TRIGB_POLARITY_SELECT);
1528 
1529 	set_reg_field_value(value,
1530 			rising_edge,
1531 			CRTC_TRIGB_CNTL,
1532 			CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1533 
1534 	set_reg_field_value(value,
1535 			falling_edge,
1536 			CRTC_TRIGB_CNTL,
1537 			CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1538 
1539 	set_reg_field_value(value,
1540 			0, /* send every signal */
1541 			CRTC_TRIGB_CNTL,
1542 			CRTC_TRIGB_FREQUENCY_SELECT);
1543 
1544 	set_reg_field_value(value,
1545 			0, /* no delay */
1546 			CRTC_TRIGB_CNTL,
1547 			CRTC_TRIGB_DELAY);
1548 
1549 	set_reg_field_value(value,
1550 			1, /* clear trigger status */
1551 			CRTC_TRIGB_CNTL,
1552 			CRTC_TRIGB_CLEAR);
1553 
1554 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1555 
1556 	/**************************************************************/
1557 
1558 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1559 
1560 	set_reg_field_value(value,
1561 			2, /* force H count to H_TOTAL and V count to V_TOTAL */
1562 			CRTC_FORCE_COUNT_NOW_CNTL,
1563 			CRTC_FORCE_COUNT_NOW_MODE);
1564 
1565 	set_reg_field_value(value,
1566 			1, /* TriggerB - we never use TriggerA */
1567 			CRTC_FORCE_COUNT_NOW_CNTL,
1568 			CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1569 
1570 	set_reg_field_value(value,
1571 			1, /* clear trigger status */
1572 			CRTC_FORCE_COUNT_NOW_CNTL,
1573 			CRTC_FORCE_COUNT_NOW_CLEAR);
1574 
1575 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1576 }
1577 
1578 void dce110_timing_generator_enable_crtc_reset(
1579 		struct timing_generator *tg,
1580 		int source_tg_inst,
1581 		struct crtc_trigger_info *crtc_tp)
1582 {
1583 	uint32_t value = 0;
1584 	uint32_t rising_edge = 0;
1585 	uint32_t falling_edge = 0;
1586 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1587 
1588 	/* Setup trigger edge */
1589 	switch (crtc_tp->event) {
1590 	case CRTC_EVENT_VSYNC_RISING:
1591 			rising_edge = 1;
1592 			break;
1593 
1594 	case CRTC_EVENT_VSYNC_FALLING:
1595 		falling_edge = 1;
1596 		break;
1597 	}
1598 
1599 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1600 
1601 	set_reg_field_value(value,
1602 			    source_tg_inst,
1603 			    CRTC_TRIGB_CNTL,
1604 			    CRTC_TRIGB_SOURCE_SELECT);
1605 
1606 	set_reg_field_value(value,
1607 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1608 			    CRTC_TRIGB_CNTL,
1609 			    CRTC_TRIGB_POLARITY_SELECT);
1610 
1611 	set_reg_field_value(value,
1612 			    rising_edge,
1613 			    CRTC_TRIGB_CNTL,
1614 			    CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1615 
1616 	set_reg_field_value(value,
1617 			    falling_edge,
1618 			    CRTC_TRIGB_CNTL,
1619 			    CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1620 
1621 	set_reg_field_value(value,
1622 			    1, /* clear trigger status */
1623 			    CRTC_TRIGB_CNTL,
1624 			    CRTC_TRIGB_CLEAR);
1625 
1626 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1627 
1628 	/**************************************************************/
1629 
1630 	switch (crtc_tp->delay) {
1631 	case TRIGGER_DELAY_NEXT_LINE:
1632 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1633 
1634 		set_reg_field_value(value,
1635 				    0, /* force H count to H_TOTAL and V count to V_TOTAL */
1636 				    CRTC_FORCE_COUNT_NOW_CNTL,
1637 				    CRTC_FORCE_COUNT_NOW_MODE);
1638 
1639 		set_reg_field_value(value,
1640 				    0, /* TriggerB - we never use TriggerA */
1641 				    CRTC_FORCE_COUNT_NOW_CNTL,
1642 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1643 
1644 		set_reg_field_value(value,
1645 				    1, /* clear trigger status */
1646 				    CRTC_FORCE_COUNT_NOW_CNTL,
1647 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1648 
1649 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1650 
1651 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1652 
1653 		set_reg_field_value(value,
1654 				    1,
1655 				    CRTC_VERT_SYNC_CONTROL,
1656 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1657 
1658 		set_reg_field_value(value,
1659 				    2,
1660 				    CRTC_VERT_SYNC_CONTROL,
1661 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1662 
1663 		break;
1664 
1665 	case TRIGGER_DELAY_NEXT_PIXEL:
1666 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1667 
1668 		set_reg_field_value(value,
1669 				    1,
1670 				    CRTC_VERT_SYNC_CONTROL,
1671 				    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1672 
1673 		set_reg_field_value(value,
1674 				    0,
1675 				    CRTC_VERT_SYNC_CONTROL,
1676 				    CRTC_AUTO_FORCE_VSYNC_MODE);
1677 
1678 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1679 
1680 		value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1681 
1682 		set_reg_field_value(value,
1683 				    2, /* force H count to H_TOTAL and V count to V_TOTAL */
1684 				    CRTC_FORCE_COUNT_NOW_CNTL,
1685 				    CRTC_FORCE_COUNT_NOW_MODE);
1686 
1687 		set_reg_field_value(value,
1688 				    1, /* TriggerB - we never use TriggerA */
1689 				    CRTC_FORCE_COUNT_NOW_CNTL,
1690 				    CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1691 
1692 		set_reg_field_value(value,
1693 				    1, /* clear trigger status */
1694 				    CRTC_FORCE_COUNT_NOW_CNTL,
1695 				    CRTC_FORCE_COUNT_NOW_CLEAR);
1696 
1697 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1698 		break;
1699 	}
1700 
1701 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1702 
1703 	set_reg_field_value(value,
1704 			    2,
1705 			    CRTC_MASTER_UPDATE_MODE,
1706 			    MASTER_UPDATE_MODE);
1707 
1708 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1709 }
1710 void dce110_timing_generator_disable_reset_trigger(
1711 	struct timing_generator *tg)
1712 {
1713 	uint32_t value;
1714 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1715 
1716 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1717 
1718 	set_reg_field_value(value,
1719 			    0, /* force counter now mode is disabled */
1720 			    CRTC_FORCE_COUNT_NOW_CNTL,
1721 			    CRTC_FORCE_COUNT_NOW_MODE);
1722 
1723 	set_reg_field_value(value,
1724 			    1, /* clear trigger status */
1725 			    CRTC_FORCE_COUNT_NOW_CNTL,
1726 			    CRTC_FORCE_COUNT_NOW_CLEAR);
1727 
1728 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1729 
1730 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1731 
1732 	set_reg_field_value(value,
1733 			    1,
1734 			    CRTC_VERT_SYNC_CONTROL,
1735 			    CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1736 
1737 	set_reg_field_value(value,
1738 			    0,
1739 			    CRTC_VERT_SYNC_CONTROL,
1740 			    CRTC_AUTO_FORCE_VSYNC_MODE);
1741 
1742 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1743 
1744 	/********************************************************************/
1745 	value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1746 
1747 	set_reg_field_value(value,
1748 			    TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1749 			    CRTC_TRIGB_CNTL,
1750 			    CRTC_TRIGB_SOURCE_SELECT);
1751 
1752 	set_reg_field_value(value,
1753 			    TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1754 			    CRTC_TRIGB_CNTL,
1755 			    CRTC_TRIGB_POLARITY_SELECT);
1756 
1757 	set_reg_field_value(value,
1758 			    1, /* clear trigger status */
1759 			    CRTC_TRIGB_CNTL,
1760 			    CRTC_TRIGB_CLEAR);
1761 
1762 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1763 }
1764 
1765 /**
1766  *****************************************************************************
1767  *  @brief
1768  *     Checks whether CRTC triggered reset occurred
1769  *
1770  *  @return
1771  *     true if triggered reset occurred, false otherwise
1772  *****************************************************************************
1773  */
1774 bool dce110_timing_generator_did_triggered_reset_occur(
1775 	struct timing_generator *tg)
1776 {
1777 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1778 	uint32_t value = dm_read_reg(tg->ctx,
1779 			CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1780 	uint32_t value1 = dm_read_reg(tg->ctx,
1781 			CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1782 	bool force = get_reg_field_value(value,
1783 					 CRTC_FORCE_COUNT_NOW_CNTL,
1784 					 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1785 	bool vert_sync = get_reg_field_value(value1,
1786 					     CRTC_VERT_SYNC_CONTROL,
1787 					     CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1788 
1789 	return (force || vert_sync);
1790 }
1791 
1792 /**
1793  * dce110_timing_generator_disable_vga
1794  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1795  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1796  */
1797 void dce110_timing_generator_disable_vga(
1798 	struct timing_generator *tg)
1799 {
1800 	uint32_t addr = 0;
1801 	uint32_t value = 0;
1802 
1803 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1804 
1805 	switch (tg110->controller_id) {
1806 	case CONTROLLER_ID_D0:
1807 		addr = mmD1VGA_CONTROL;
1808 		break;
1809 	case CONTROLLER_ID_D1:
1810 		addr = mmD2VGA_CONTROL;
1811 		break;
1812 	case CONTROLLER_ID_D2:
1813 		addr = mmD3VGA_CONTROL;
1814 		break;
1815 	case CONTROLLER_ID_D3:
1816 		addr = mmD4VGA_CONTROL;
1817 		break;
1818 	case CONTROLLER_ID_D4:
1819 		addr = mmD5VGA_CONTROL;
1820 		break;
1821 	case CONTROLLER_ID_D5:
1822 		addr = mmD6VGA_CONTROL;
1823 		break;
1824 	default:
1825 		break;
1826 	}
1827 	value = dm_read_reg(tg->ctx, addr);
1828 
1829 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1830 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1831 	set_reg_field_value(
1832 			value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1833 	set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1834 
1835 	dm_write_reg(tg->ctx, addr, value);
1836 }
1837 
1838 /**
1839 * set_overscan_color_black
1840 *
1841 * @param :black_color is one of the color space
1842 *    :this routine will set overscan black color according to the color space.
1843 * @return none
1844 */
1845 
1846 void dce110_timing_generator_set_overscan_color_black(
1847 	struct timing_generator *tg,
1848 	const struct tg_color *color)
1849 {
1850 	struct dc_context *ctx = tg->ctx;
1851 	uint32_t addr;
1852 	uint32_t value = 0;
1853 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1854 
1855 	set_reg_field_value(
1856 			value,
1857 			color->color_b_cb,
1858 			CRTC_OVERSCAN_COLOR,
1859 			CRTC_OVERSCAN_COLOR_BLUE);
1860 
1861 	set_reg_field_value(
1862 			value,
1863 			color->color_r_cr,
1864 			CRTC_OVERSCAN_COLOR,
1865 			CRTC_OVERSCAN_COLOR_RED);
1866 
1867 	set_reg_field_value(
1868 			value,
1869 			color->color_g_y,
1870 			CRTC_OVERSCAN_COLOR,
1871 			CRTC_OVERSCAN_COLOR_GREEN);
1872 
1873 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1874 	dm_write_reg(ctx, addr, value);
1875 	addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1876 	dm_write_reg(ctx, addr, value);
1877 	/* This is desirable to have a constant DAC output voltage during the
1878 	 * blank time that is higher than the 0 volt reference level that the
1879 	 * DAC outputs when the NBLANK signal
1880 	 * is asserted low, such as for output to an analog TV. */
1881 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1882 	dm_write_reg(ctx, addr, value);
1883 
1884 	/* TO DO we have to program EXT registers and we need to know LB DATA
1885 	 * format because it is used when more 10 , i.e. 12 bits per color
1886 	 *
1887 	 * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1888 	 * m_mmDxCRTC_BLACK_COLOR_EXT
1889 	 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1890 	 */
1891 
1892 }
1893 
1894 void dce110_tg_program_blank_color(struct timing_generator *tg,
1895 		const struct tg_color *black_color)
1896 {
1897 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1898 	uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1899 	uint32_t value = dm_read_reg(tg->ctx, addr);
1900 
1901 	set_reg_field_value(
1902 		value,
1903 		black_color->color_b_cb,
1904 		CRTC_BLACK_COLOR,
1905 		CRTC_BLACK_COLOR_B_CB);
1906 	set_reg_field_value(
1907 		value,
1908 		black_color->color_g_y,
1909 		CRTC_BLACK_COLOR,
1910 		CRTC_BLACK_COLOR_G_Y);
1911 	set_reg_field_value(
1912 		value,
1913 		black_color->color_r_cr,
1914 		CRTC_BLACK_COLOR,
1915 		CRTC_BLACK_COLOR_R_CR);
1916 
1917 	dm_write_reg(tg->ctx, addr, value);
1918 
1919 	addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1920 	dm_write_reg(tg->ctx, addr, value);
1921 }
1922 
1923 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1924 	const struct tg_color *overscan_color)
1925 {
1926 	struct dc_context *ctx = tg->ctx;
1927 	uint32_t value = 0;
1928 	uint32_t addr;
1929 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1930 
1931 	set_reg_field_value(
1932 		value,
1933 		overscan_color->color_b_cb,
1934 		CRTC_OVERSCAN_COLOR,
1935 		CRTC_OVERSCAN_COLOR_BLUE);
1936 
1937 	set_reg_field_value(
1938 		value,
1939 		overscan_color->color_g_y,
1940 		CRTC_OVERSCAN_COLOR,
1941 		CRTC_OVERSCAN_COLOR_GREEN);
1942 
1943 	set_reg_field_value(
1944 		value,
1945 		overscan_color->color_r_cr,
1946 		CRTC_OVERSCAN_COLOR,
1947 		CRTC_OVERSCAN_COLOR_RED);
1948 
1949 	addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1950 	dm_write_reg(ctx, addr, value);
1951 }
1952 
1953 void dce110_tg_program_timing(struct timing_generator *tg,
1954 	const struct dc_crtc_timing *timing,
1955 	bool use_vbios)
1956 {
1957 	if (use_vbios)
1958 		dce110_timing_generator_program_timing_generator(tg, timing);
1959 	else
1960 		dce110_timing_generator_program_blanking(tg, timing);
1961 }
1962 
1963 bool dce110_tg_is_blanked(struct timing_generator *tg)
1964 {
1965 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1966 	uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1967 
1968 	if (get_reg_field_value(
1969 			value,
1970 			CRTC_BLANK_CONTROL,
1971 			CRTC_BLANK_DATA_EN) == 1 &&
1972 		get_reg_field_value(
1973 			value,
1974 			CRTC_BLANK_CONTROL,
1975 			CRTC_CURRENT_BLANK_STATE) == 1)
1976 		return true;
1977 	return false;
1978 }
1979 
1980 void dce110_tg_set_blank(struct timing_generator *tg,
1981 		bool enable_blanking)
1982 {
1983 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1984 	uint32_t value = 0;
1985 
1986 	set_reg_field_value(
1987 		value,
1988 		1,
1989 		CRTC_DOUBLE_BUFFER_CONTROL,
1990 		CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
1991 
1992 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
1993 	value = 0;
1994 
1995 	if (enable_blanking) {
1996 		set_reg_field_value(
1997 			value,
1998 			1,
1999 			CRTC_BLANK_CONTROL,
2000 			CRTC_BLANK_DATA_EN);
2001 
2002 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2003 
2004 	} else
2005 		dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2006 }
2007 
2008 bool dce110_tg_validate_timing(struct timing_generator *tg,
2009 	const struct dc_crtc_timing *timing)
2010 {
2011 	return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2012 }
2013 
2014 void dce110_tg_wait_for_state(struct timing_generator *tg,
2015 	enum crtc_state state)
2016 {
2017 	switch (state) {
2018 	case CRTC_STATE_VBLANK:
2019 		dce110_timing_generator_wait_for_vblank(tg);
2020 		break;
2021 
2022 	case CRTC_STATE_VACTIVE:
2023 		dce110_timing_generator_wait_for_vactive(tg);
2024 		break;
2025 
2026 	default:
2027 		break;
2028 	}
2029 }
2030 
2031 void dce110_tg_set_colors(struct timing_generator *tg,
2032 	const struct tg_color *blank_color,
2033 	const struct tg_color *overscan_color)
2034 {
2035 	if (blank_color != NULL)
2036 		dce110_tg_program_blank_color(tg, blank_color);
2037 	if (overscan_color != NULL)
2038 		dce110_tg_set_overscan_color(tg, overscan_color);
2039 }
2040 
2041 /* Gets first line of blank region of the display timing for CRTC
2042  * and programms is as a trigger to fire vertical interrupt
2043  */
2044 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2045 {
2046 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2047 	uint32_t v_blank_start = 0;
2048 	uint32_t v_blank_end = 0;
2049 	uint32_t val = 0;
2050 	uint32_t h_position, v_position;
2051 
2052 	tg->funcs->get_scanoutpos(
2053 			tg,
2054 			&v_blank_start,
2055 			&v_blank_end,
2056 			&h_position,
2057 			&v_position);
2058 
2059 	if (v_blank_start == 0 || v_blank_end == 0)
2060 		return false;
2061 
2062 	set_reg_field_value(
2063 		val,
2064 		v_blank_start,
2065 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2066 		CRTC_VERTICAL_INTERRUPT0_LINE_START);
2067 
2068 	/* Set interval width for interrupt to fire to 1 scanline */
2069 	set_reg_field_value(
2070 		val,
2071 		v_blank_start + width,
2072 		CRTC_VERTICAL_INTERRUPT0_POSITION,
2073 		CRTC_VERTICAL_INTERRUPT0_LINE_END);
2074 
2075 	dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2076 
2077 	return true;
2078 }
2079 
2080 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2081 {
2082 	uint32_t addr = 0;
2083 	uint32_t value = 0;
2084 	uint32_t field = 0;
2085 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2086 
2087 	addr = CRTC_REG(mmCRTC_CONTROL);
2088 	value = dm_read_reg(tg->ctx, addr);
2089 	field = get_reg_field_value(value, CRTC_CONTROL,
2090 				    CRTC_CURRENT_MASTER_EN_STATE);
2091 	return field == 1;
2092 }
2093 
2094 bool dce110_configure_crc(struct timing_generator *tg,
2095 			  const struct crc_params *params)
2096 {
2097 	uint32_t cntl_addr = 0;
2098 	uint32_t addr = 0;
2099 	uint32_t value;
2100 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2101 
2102 	/* Cannot configure crc on a CRTC that is disabled */
2103 	if (!dce110_is_tg_enabled(tg))
2104 		return false;
2105 
2106 	cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2107 
2108 	/* First, disable CRC before we configure it. */
2109 	dm_write_reg(tg->ctx, cntl_addr, 0);
2110 
2111 	if (!params->enable)
2112 		return true;
2113 
2114 	/* Program frame boundaries */
2115 	/* Window A x axis start and end. */
2116 	value = 0;
2117 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2118 	set_reg_field_value(value, params->windowa_x_start,
2119 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2120 			    CRTC_CRC0_WINDOWA_X_START);
2121 	set_reg_field_value(value, params->windowa_x_end,
2122 			    CRTC_CRC0_WINDOWA_X_CONTROL,
2123 			    CRTC_CRC0_WINDOWA_X_END);
2124 	dm_write_reg(tg->ctx, addr, value);
2125 
2126 	/* Window A y axis start and end. */
2127 	value = 0;
2128 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2129 	set_reg_field_value(value, params->windowa_y_start,
2130 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2131 			    CRTC_CRC0_WINDOWA_Y_START);
2132 	set_reg_field_value(value, params->windowa_y_end,
2133 			    CRTC_CRC0_WINDOWA_Y_CONTROL,
2134 			    CRTC_CRC0_WINDOWA_Y_END);
2135 	dm_write_reg(tg->ctx, addr, value);
2136 
2137 	/* Window B x axis start and end. */
2138 	value = 0;
2139 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2140 	set_reg_field_value(value, params->windowb_x_start,
2141 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2142 			    CRTC_CRC0_WINDOWB_X_START);
2143 	set_reg_field_value(value, params->windowb_x_end,
2144 			    CRTC_CRC0_WINDOWB_X_CONTROL,
2145 			    CRTC_CRC0_WINDOWB_X_END);
2146 	dm_write_reg(tg->ctx, addr, value);
2147 
2148 	/* Window B y axis start and end. */
2149 	value = 0;
2150 	addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2151 	set_reg_field_value(value, params->windowb_y_start,
2152 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2153 			    CRTC_CRC0_WINDOWB_Y_START);
2154 	set_reg_field_value(value, params->windowb_y_end,
2155 			    CRTC_CRC0_WINDOWB_Y_CONTROL,
2156 			    CRTC_CRC0_WINDOWB_Y_END);
2157 	dm_write_reg(tg->ctx, addr, value);
2158 
2159 	/* Set crc mode and selection, and enable. Only using CRC0*/
2160 	value = 0;
2161 	set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2162 			    CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2163 	set_reg_field_value(value, params->selection,
2164 			    CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2165 	set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2166 	dm_write_reg(tg->ctx, cntl_addr, value);
2167 
2168 	return true;
2169 }
2170 
2171 bool dce110_get_crc(struct timing_generator *tg,
2172 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2173 {
2174 	uint32_t addr = 0;
2175 	uint32_t value = 0;
2176 	uint32_t field = 0;
2177 	struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2178 
2179 	addr = CRTC_REG(mmCRTC_CRC_CNTL);
2180 	value = dm_read_reg(tg->ctx, addr);
2181 	field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2182 
2183 	/* Early return if CRC is not enabled for this CRTC */
2184 	if (!field)
2185 		return false;
2186 
2187 	addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2188 	value = dm_read_reg(tg->ctx, addr);
2189 	*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2190 	*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2191 
2192 	addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2193 	value = dm_read_reg(tg->ctx, addr);
2194 	*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2195 
2196 	return true;
2197 }
2198 
2199 static const struct timing_generator_funcs dce110_tg_funcs = {
2200 		.validate_timing = dce110_tg_validate_timing,
2201 		.program_timing = dce110_tg_program_timing,
2202 		.enable_crtc = dce110_timing_generator_enable_crtc,
2203 		.disable_crtc = dce110_timing_generator_disable_crtc,
2204 		.is_counter_moving = dce110_timing_generator_is_counter_moving,
2205 		.get_position = dce110_timing_generator_get_position,
2206 		.get_frame_count = dce110_timing_generator_get_vblank_counter,
2207 		.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2208 		.set_early_control = dce110_timing_generator_set_early_control,
2209 		.wait_for_state = dce110_tg_wait_for_state,
2210 		.set_blank = dce110_tg_set_blank,
2211 		.is_blanked = dce110_tg_is_blanked,
2212 		.set_colors = dce110_tg_set_colors,
2213 		.set_overscan_blank_color =
2214 				dce110_timing_generator_set_overscan_color_black,
2215 		.set_blank_color = dce110_timing_generator_program_blank_color,
2216 		.disable_vga = dce110_timing_generator_disable_vga,
2217 		.did_triggered_reset_occur =
2218 				dce110_timing_generator_did_triggered_reset_occur,
2219 		.setup_global_swap_lock =
2220 				dce110_timing_generator_setup_global_swap_lock,
2221 		.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2222 		.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2223 		.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2224 		.tear_down_global_swap_lock =
2225 				dce110_timing_generator_tear_down_global_swap_lock,
2226 		.enable_advanced_request =
2227 				dce110_timing_generator_enable_advanced_request,
2228 		.set_drr =
2229 				dce110_timing_generator_set_drr,
2230 		.set_static_screen_control =
2231 			dce110_timing_generator_set_static_screen_control,
2232 		.set_test_pattern = dce110_timing_generator_set_test_pattern,
2233 		.arm_vert_intr = dce110_arm_vert_intr,
2234 		.is_tg_enabled = dce110_is_tg_enabled,
2235 		.configure_crc = dce110_configure_crc,
2236 		.get_crc = dce110_get_crc,
2237 };
2238 
2239 void dce110_timing_generator_construct(
2240 	struct dce110_timing_generator *tg110,
2241 	struct dc_context *ctx,
2242 	uint32_t instance,
2243 	const struct dce110_timing_generator_offsets *offsets)
2244 {
2245 	tg110->controller_id = CONTROLLER_ID_D0 + instance;
2246 	tg110->base.inst = instance;
2247 
2248 	tg110->offsets = *offsets;
2249 
2250 	tg110->base.funcs = &dce110_tg_funcs;
2251 
2252 	tg110->base.ctx = ctx;
2253 	tg110->base.bp = ctx->dc_bios;
2254 
2255 	tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2256 	tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2257 
2258 	tg110->min_h_blank = 56;
2259 	tg110->min_h_front_porch = 4;
2260 	tg110->min_h_back_porch = 4;
2261 }
2262