1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fb.h>
28 #include "atom.h"
29 #include "ppatomctrl.h"
30 #include "atombios.h"
31 #include "cgs_common.h"
32 #include "ppevvmath.h"
33 
34 #define MEM_ID_MASK           0xff000000
35 #define MEM_ID_SHIFT          24
36 #define CLOCK_RANGE_MASK      0x00ffffff
37 #define CLOCK_RANGE_SHIFT     0
38 #define LOW_NIBBLE_MASK       0xf
39 #define DATA_EQU_PREV         0
40 #define DATA_FROM_TABLE       4
41 
42 union voltage_object_info {
43 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
44 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
45 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
46 };
47 
48 static int atomctrl_retrieve_ac_timing(
49 		uint8_t index,
50 		ATOM_INIT_REG_BLOCK *reg_block,
51 		pp_atomctrl_mc_reg_table *table)
52 {
53 	uint32_t i, j;
54 	uint8_t tmem_id;
55 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
56 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
57 
58 	uint8_t num_ranges = 0;
59 
60 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
61 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
62 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
63 
64 		if (index == tmem_id) {
65 			table->mc_reg_table_entry[num_ranges].mclk_max =
66 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
67 						CLOCK_RANGE_SHIFT);
68 
69 			for (i = 0, j = 1; i < table->last; i++) {
70 				if ((table->mc_reg_address[i].uc_pre_reg_data &
71 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
72 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
73 						(uint32_t)*((uint32_t *)reg_data + j);
74 					j++;
75 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
76 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
77 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
78 						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
79 				}
80 			}
81 			num_ranges++;
82 		}
83 
84 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
85 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
86 	}
87 
88 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
89 			"Invalid VramInfo table.", return -1);
90 	table->num_entries = num_ranges;
91 
92 	return 0;
93 }
94 
95 /**
96  * Get memory clock AC timing registers index from VBIOS table
97  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
98  * @param    reg_block the address ATOM_INIT_REG_BLOCK
99  * @param    table the address of MCRegTable
100  * @return   0
101  */
102 static int atomctrl_set_mc_reg_address_table(
103 		ATOM_INIT_REG_BLOCK *reg_block,
104 		pp_atomctrl_mc_reg_table *table)
105 {
106 	uint8_t i = 0;
107 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
108 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
109 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
110 
111 	num_entries--;        /* subtract 1 data end mark entry */
112 
113 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
114 			"Invalid VramInfo table.", return -1);
115 
116 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
117 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
118 			(i < num_entries)) {
119 		table->mc_reg_address[i].s1 =
120 			(uint16_t)(le16_to_cpu(format->usRegIndex));
121 		table->mc_reg_address[i].uc_pre_reg_data =
122 			format->ucPreRegDataLength;
123 
124 		i++;
125 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
126 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
127 	}
128 
129 	table->last = i;
130 	return 0;
131 }
132 
133 int atomctrl_initialize_mc_reg_table(
134 		struct pp_hwmgr *hwmgr,
135 		uint8_t module_index,
136 		pp_atomctrl_mc_reg_table *table)
137 {
138 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139 	ATOM_INIT_REG_BLOCK *reg_block;
140 	int result = 0;
141 	u8 frev, crev;
142 	u16 size;
143 
144 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145 		smu_atom_get_data_table(hwmgr->adev,
146 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147 
148 	if (module_index >= vram_info->ucNumOfVRAMModule) {
149 		pr_err("Invalid VramInfo table.");
150 		result = -1;
151 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152 		pr_err("Invalid VramInfo table.");
153 		result = -1;
154 	}
155 
156 	if (0 == result) {
157 		reg_block = (ATOM_INIT_REG_BLOCK *)
158 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
160 	}
161 
162 	if (0 == result) {
163 		result = atomctrl_retrieve_ac_timing(module_index,
164 					reg_block, table);
165 	}
166 
167 	return result;
168 }
169 
170 /**
171  * Set DRAM timings based on engine clock and memory clock.
172  */
173 int atomctrl_set_engine_dram_timings_rv770(
174 		struct pp_hwmgr *hwmgr,
175 		uint32_t engine_clock,
176 		uint32_t memory_clock)
177 {
178 	struct amdgpu_device *adev = hwmgr->adev;
179 
180 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
181 
182 	/* They are both in 10KHz Units. */
183 	engine_clock_parameters.ulTargetEngineClock =
184 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
185 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
186 
187 	/* in 10 khz units.*/
188 	engine_clock_parameters.sReserved.ulClock =
189 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
190 
191 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
192 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
193 			(uint32_t *)&engine_clock_parameters);
194 }
195 
196 /**
197  * Private Function to get the PowerPlay Table Address.
198  * WARNING: The tabled returned by this function is in
199  * dynamically allocated memory.
200  * The caller has to release if by calling kfree.
201  */
202 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
203 {
204 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
205 	u8 frev, crev;
206 	u16 size;
207 	union voltage_object_info *voltage_info;
208 
209 	voltage_info = (union voltage_object_info *)
210 		smu_atom_get_data_table(device, index,
211 			&size, &frev, &crev);
212 
213 	if (voltage_info != NULL)
214 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
215 	else
216 		return NULL;
217 }
218 
219 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
220 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
221 		uint8_t voltage_type, uint8_t voltage_mode)
222 {
223 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
224 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
225 	uint8_t *start = (uint8_t *)voltage_object_info_table;
226 
227 	while (offset < size) {
228 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
229 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
230 
231 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
232 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
233 			return voltage_object;
234 
235 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
236 	}
237 
238 	return NULL;
239 }
240 
241 /** atomctrl_get_memory_pll_dividers_si().
242  *
243  * @param hwmgr                 input parameter: pointer to HwMgr
244  * @param clock_value             input parameter: memory clock
245  * @param dividers                 output parameter: memory PLL dividers
246  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
247  */
248 int atomctrl_get_memory_pll_dividers_si(
249 		struct pp_hwmgr *hwmgr,
250 		uint32_t clock_value,
251 		pp_atomctrl_memory_clock_param *mpll_param,
252 		bool strobe_mode)
253 {
254 	struct amdgpu_device *adev = hwmgr->adev;
255 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
256 	int result;
257 
258 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
259 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
260 
261 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
262 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
263 		(uint32_t *)&mpll_parameters);
264 
265 	if (0 == result) {
266 		mpll_param->mpll_fb_divider.clk_frac =
267 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
268 		mpll_param->mpll_fb_divider.cl_kf =
269 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
270 		mpll_param->mpll_post_divider =
271 			(uint32_t)mpll_parameters.ucPostDiv;
272 		mpll_param->vco_mode =
273 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
274 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
275 		mpll_param->yclk_sel =
276 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
277 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
278 		mpll_param->qdr =
279 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
280 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
281 		mpll_param->half_rate =
282 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
283 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
284 		mpll_param->dll_speed =
285 			(uint32_t)(mpll_parameters.ucDllSpeed);
286 		mpll_param->bw_ctrl =
287 			(uint32_t)(mpll_parameters.ucBWCntl);
288 	}
289 
290 	return result;
291 }
292 
293 /** atomctrl_get_memory_pll_dividers_vi().
294  *
295  * @param hwmgr                 input parameter: pointer to HwMgr
296  * @param clock_value             input parameter: memory clock
297  * @param dividers               output parameter: memory PLL dividers
298  */
299 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
300 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
301 {
302 	struct amdgpu_device *adev = hwmgr->adev;
303 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
304 	int result;
305 
306 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
307 
308 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
309 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
310 			(uint32_t *)&mpll_parameters);
311 
312 	if (!result)
313 		mpll_param->mpll_post_divider =
314 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
315 
316 	return result;
317 }
318 
319 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
320 					uint32_t clock_value,
321 					pp_atomctrl_memory_clock_param_ai *mpll_param)
322 {
323 	struct amdgpu_device *adev = hwmgr->adev;
324 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
325 	int result;
326 
327 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
328 
329 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
330 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
331 			(uint32_t *)&mpll_parameters);
332 
333 	/* VEGAM's mpll takes sometime to finish computing */
334 	udelay(10);
335 
336 	if (!result) {
337 		mpll_param->ulMclk_fcw_int =
338 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
339 		mpll_param->ulMclk_fcw_frac =
340 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
341 		mpll_param->ulClock =
342 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
343 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
344 	}
345 
346 	return result;
347 }
348 
349 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
350 					  uint32_t clock_value,
351 					  pp_atomctrl_clock_dividers_kong *dividers)
352 {
353 	struct amdgpu_device *adev = hwmgr->adev;
354 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
355 	int result;
356 
357 	pll_parameters.ulClock = cpu_to_le32(clock_value);
358 
359 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
360 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
361 		(uint32_t *)&pll_parameters);
362 
363 	if (0 == result) {
364 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
365 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
366 	}
367 
368 	return result;
369 }
370 
371 int atomctrl_get_engine_pll_dividers_vi(
372 		struct pp_hwmgr *hwmgr,
373 		uint32_t clock_value,
374 		pp_atomctrl_clock_dividers_vi *dividers)
375 {
376 	struct amdgpu_device *adev = hwmgr->adev;
377 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
378 	int result;
379 
380 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
381 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
382 
383 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
384 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
385 		(uint32_t *)&pll_patameters);
386 
387 	if (0 == result) {
388 		dividers->pll_post_divider =
389 			pll_patameters.ulClock.ucPostDiv;
390 		dividers->real_clock =
391 			le32_to_cpu(pll_patameters.ulClock.ulClock);
392 
393 		dividers->ul_fb_div.ul_fb_div_frac =
394 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
395 		dividers->ul_fb_div.ul_fb_div =
396 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
397 
398 		dividers->uc_pll_ref_div =
399 			pll_patameters.ucPllRefDiv;
400 		dividers->uc_pll_post_div =
401 			pll_patameters.ucPllPostDiv;
402 		dividers->uc_pll_cntl_flag =
403 			pll_patameters.ucPllCntlFlag;
404 	}
405 
406 	return result;
407 }
408 
409 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
410 		uint32_t clock_value,
411 		pp_atomctrl_clock_dividers_ai *dividers)
412 {
413 	struct amdgpu_device *adev = hwmgr->adev;
414 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
415 	int result;
416 
417 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
418 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
419 
420 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
421 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
422 		(uint32_t *)&pll_patameters);
423 
424 	if (0 == result) {
425 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
426 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
427 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
428 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
429 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
430 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
431 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
432 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
433 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
434 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
435 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
436 	}
437 	return result;
438 }
439 
440 int atomctrl_get_dfs_pll_dividers_vi(
441 		struct pp_hwmgr *hwmgr,
442 		uint32_t clock_value,
443 		pp_atomctrl_clock_dividers_vi *dividers)
444 {
445 	struct amdgpu_device *adev = hwmgr->adev;
446 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
447 	int result;
448 
449 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
450 	pll_patameters.ulClock.ucPostDiv =
451 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
452 
453 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
454 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
455 		(uint32_t *)&pll_patameters);
456 
457 	if (0 == result) {
458 		dividers->pll_post_divider =
459 			pll_patameters.ulClock.ucPostDiv;
460 		dividers->real_clock =
461 			le32_to_cpu(pll_patameters.ulClock.ulClock);
462 
463 		dividers->ul_fb_div.ul_fb_div_frac =
464 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
465 		dividers->ul_fb_div.ul_fb_div =
466 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
467 
468 		dividers->uc_pll_ref_div =
469 			pll_patameters.ucPllRefDiv;
470 		dividers->uc_pll_post_div =
471 			pll_patameters.ucPllPostDiv;
472 		dividers->uc_pll_cntl_flag =
473 			pll_patameters.ucPllCntlFlag;
474 	}
475 
476 	return result;
477 }
478 
479 /**
480  * Get the reference clock in 10KHz
481  */
482 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
483 {
484 	ATOM_FIRMWARE_INFO *fw_info;
485 	u8 frev, crev;
486 	u16 size;
487 	uint32_t clock;
488 
489 	fw_info = (ATOM_FIRMWARE_INFO *)
490 		smu_atom_get_data_table(hwmgr->adev,
491 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
492 			&size, &frev, &crev);
493 
494 	if (fw_info == NULL)
495 		clock = 2700;
496 	else
497 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
498 
499 	return clock;
500 }
501 
502 /**
503  * Returns true if the given voltage type is controlled by GPIO pins.
504  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
505  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
506  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
507  */
508 bool atomctrl_is_voltage_controlled_by_gpio_v3(
509 		struct pp_hwmgr *hwmgr,
510 		uint8_t voltage_type,
511 		uint8_t voltage_mode)
512 {
513 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
514 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
515 	bool ret;
516 
517 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
518 			"Could not find Voltage Table in BIOS.", return false;);
519 
520 	ret = (NULL != atomctrl_lookup_voltage_type_v3
521 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
522 
523 	return ret;
524 }
525 
526 int atomctrl_get_voltage_table_v3(
527 		struct pp_hwmgr *hwmgr,
528 		uint8_t voltage_type,
529 		uint8_t voltage_mode,
530 		pp_atomctrl_voltage_table *voltage_table)
531 {
532 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
533 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
534 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
535 	unsigned int i;
536 
537 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
538 			"Could not find Voltage Table in BIOS.", return -1;);
539 
540 	voltage_object = atomctrl_lookup_voltage_type_v3
541 		(voltage_info, voltage_type, voltage_mode);
542 
543 	if (voltage_object == NULL)
544 		return -1;
545 
546 	PP_ASSERT_WITH_CODE(
547 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
548 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
549 			"Too many voltage entries!",
550 			return -1;
551 			);
552 
553 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
554 		voltage_table->entries[i].value =
555 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
556 		voltage_table->entries[i].smio_low =
557 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
558 	}
559 
560 	voltage_table->mask_low    =
561 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
562 	voltage_table->count      =
563 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
564 	voltage_table->phase_delay =
565 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
566 
567 	return 0;
568 }
569 
570 static bool atomctrl_lookup_gpio_pin(
571 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
572 		const uint32_t pinId,
573 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
574 {
575 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
576 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
577 	uint8_t *start = (uint8_t *)gpio_lookup_table;
578 
579 	while (offset < size) {
580 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
581 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
582 
583 		if (pinId == pin_assignment->ucGPIO_ID) {
584 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
585 				pin_assignment->ucGpioPinBitShift;
586 			gpio_pin_assignment->us_gpio_pin_aindex =
587 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
588 			return true;
589 		}
590 
591 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
592 	}
593 
594 	return false;
595 }
596 
597 /**
598  * Private Function to get the PowerPlay Table Address.
599  * WARNING: The tabled returned by this function is in
600  * dynamically allocated memory.
601  * The caller has to release if by calling kfree.
602  */
603 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
604 {
605 	u8 frev, crev;
606 	u16 size;
607 	void *table_address;
608 
609 	table_address = (ATOM_GPIO_PIN_LUT *)
610 		smu_atom_get_data_table(device,
611 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
612 				&size, &frev, &crev);
613 
614 	PP_ASSERT_WITH_CODE((NULL != table_address),
615 			"Error retrieving BIOS Table Address!", return NULL;);
616 
617 	return (ATOM_GPIO_PIN_LUT *)table_address;
618 }
619 
620 /**
621  * Returns 1 if the given pin id find in lookup table.
622  */
623 bool atomctrl_get_pp_assign_pin(
624 		struct pp_hwmgr *hwmgr,
625 		const uint32_t pinId,
626 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
627 {
628 	bool bRet = false;
629 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
630 		get_gpio_lookup_table(hwmgr->adev);
631 
632 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
633 			"Could not find GPIO lookup Table in BIOS.", return false);
634 
635 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
636 		gpio_pin_assignment);
637 
638 	return bRet;
639 }
640 
641 int atomctrl_calculate_voltage_evv_on_sclk(
642 		struct pp_hwmgr *hwmgr,
643 		uint8_t voltage_type,
644 		uint32_t sclk,
645 		uint16_t virtual_voltage_Id,
646 		uint16_t *voltage,
647 		uint16_t dpm_level,
648 		bool debug)
649 {
650 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
651 	struct amdgpu_device *adev = hwmgr->adev;
652 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
653 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
654 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
655 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
656 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
657 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
658 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
659 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
660 
661 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
662 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
663 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
664 	fInt fLkg_FT, repeat;
665 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
666 	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
667 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
668 	fInt fSclk_margin, fSclk, fEVV_V;
669 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
670 	uint32_t ul_FT_Lkg_V0NORM;
671 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
672 	fInt fRoots[2];
673 	fInt fStepSize = GetScaledFraction(625, 100000);
674 
675 	int result;
676 
677 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
678 			smu_atom_get_data_table(hwmgr->adev,
679 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
680 					NULL, NULL, NULL);
681 
682 	if (!getASICProfilingInfo)
683 		return -1;
684 
685 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
686 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
687 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
688 		return -1;
689 
690 	/*-----------------------------------------------------------
691 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
692 	 *-----------------------------------------------------------
693 	 */
694 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
695 
696 	switch (dpm_level) {
697 	case 1:
698 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
699 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
700 		break;
701 	case 2:
702 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
703 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
704 		break;
705 	case 3:
706 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
707 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
708 		break;
709 	case 4:
710 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
711 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
712 		break;
713 	case 5:
714 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
715 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
716 		break;
717 	case 6:
718 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
719 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
720 		break;
721 	case 7:
722 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
723 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
724 		break;
725 	default:
726 		pr_err("DPM Level not supported\n");
727 		fPowerDPMx = Convert_ULONG_ToFraction(1);
728 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
729 	}
730 
731 	/*-------------------------
732 	 * DECODING FUSE VALUES
733 	 * ------------------------
734 	 */
735 	/*Decode RO_Fused*/
736 	sRO_fuse = getASICProfilingInfo->sRoFuse;
737 
738 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
739 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
740 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
741 
742 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
743 
744 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
745 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
746 			(uint32_t *)&sOutput_FuseValues);
747 
748 	if (result)
749 		return result;
750 
751 	/* Finally, the actual fuse value */
752 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
753 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
754 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
755 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
756 
757 	sCACm_fuse = getASICProfilingInfo->sCACm;
758 
759 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
760 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
761 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
762 
763 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
764 
765 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
766 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
767 			(uint32_t *)&sOutput_FuseValues);
768 
769 	if (result)
770 		return result;
771 
772 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
773 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
774 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
775 
776 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
777 
778 	sCACb_fuse = getASICProfilingInfo->sCACb;
779 
780 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
781 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
782 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
783 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
784 
785 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
786 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
787 			(uint32_t *)&sOutput_FuseValues);
788 
789 	if (result)
790 		return result;
791 
792 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
793 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
794 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
795 
796 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
797 
798 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
799 
800 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
801 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
802 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
803 
804 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
805 
806 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
807 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
808 			(uint32_t *)&sOutput_FuseValues);
809 
810 	if (result)
811 		return result;
812 
813 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
814 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
815 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
816 
817 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
818 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
819 
820 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
821 
822 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
823 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
824 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
825 
826 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
827 
828 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
829 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
830 			(uint32_t *)&sOutput_FuseValues);
831 	if (result)
832 		return result;
833 
834 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
835 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
836 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
837 	fRange = fMultiply(fRange, ConvertToFraction(-1));
838 
839 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
840 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
841 
842 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
843 
844 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
845 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
846 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
847 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
848 
849 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
850 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
851 			(uint32_t *)&sOutput_FuseValues);
852 
853 	if (result)
854 		return result;
855 
856 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
857 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
858 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
859 
860 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
861 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
862 
863 	/* Decoding the Leakage - No special struct container */
864 	/*
865 	 * usLkgEuseIndex=56
866 	 * ucLkgEfuseBitLSB=6
867 	 * ucLkgEfuseLength=10
868 	 * ulLkgEncodeLn_MaxDivMin=69077
869 	 * ulLkgEncodeMax=1000000
870 	 * ulLkgEncodeMin=1000
871 	 * ulEfuseLogisticAlpha=13
872 	 */
873 
874 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
875 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
876 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
877 
878 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
879 
880 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
881 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
882 			(uint32_t *)&sOutput_FuseValues);
883 
884 	if (result)
885 		return result;
886 
887 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
888 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
889 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
890 
891 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
892 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
893 	fLkg_FT = fFT_Lkg_V0NORM;
894 
895 	/*-------------------------------------------
896 	 * PART 2 - Grabbing all required values
897 	 *-------------------------------------------
898 	 */
899 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
900 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
901 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
902 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
903 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
904 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
905 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
906 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
907 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
908 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
909 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
910 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
911 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
912 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
913 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
914 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
915 
916 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
917 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
918 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
919 
920 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
921 
922 	fMargin_FMAX_mean = GetScaledFraction(
923 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
924 	fMargin_Plat_mean = GetScaledFraction(
925 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
926 	fMargin_FMAX_sigma = GetScaledFraction(
927 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
928 	fMargin_Plat_sigma = GetScaledFraction(
929 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
930 
931 	fMargin_DC_sigma = GetScaledFraction(
932 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
933 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
934 
935 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
936 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
937 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
938 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
939 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
940 
941 	fSclk = GetScaledFraction(sclk, 100);
942 
943 	fV_max = fDivide(GetScaledFraction(
944 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
945 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
946 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
947 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
948 	fV_FT = fDivide(GetScaledFraction(
949 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
950 	fV_min = fDivide(GetScaledFraction(
951 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
952 
953 	/*-----------------------
954 	 * PART 3
955 	 *-----------------------
956 	 */
957 
958 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
959 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
960 	fC_Term = fAdd(fMargin_RO_c,
961 			fAdd(fMultiply(fSM_A0, fLkg_FT),
962 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
963 			fAdd(fMultiply(fSM_A3, fSclk),
964 			fSubtract(fSM_A7, fRO_fused)))));
965 
966 	fVDDC_base = fSubtract(fRO_fused,
967 			fSubtract(fMargin_RO_c,
968 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
969 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
970 
971 	repeat = fSubtract(fVDDC_base,
972 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
973 
974 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
975 			fGetSquare(repeat)),
976 			fAdd(fMultiply(fMargin_RO_b, repeat),
977 			fMargin_RO_c));
978 
979 	fDC_SCLK = fSubtract(fRO_fused,
980 			fSubtract(fRO_DC_margin,
981 			fSubtract(fSM_A3,
982 			fMultiply(fSM_A2, repeat))));
983 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
984 
985 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
986 
987 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
988 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
989 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
990 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
991 
992 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
993 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
994 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
995 
996 	fSclk_margin = fAdd(fMicro_FMAX,
997 			fAdd(fMicro_CR,
998 			fAdd(fMargin_fixed,
999 			fSqrt(fAdd(fSquared_Sigma_FMAX,
1000 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1001 	/*
1002 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1003 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1004 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1005 	 */
1006 
1007 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1008 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1009 	fC_Term = fAdd(fRO_DC_margin,
1010 			fAdd(fMultiply(fSM_A0, fLkg_FT),
1011 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1012 			fAdd(fSclk, fSclk_margin)),
1013 			fAdd(fMultiply(fSM_A3,
1014 			fAdd(fSclk, fSclk_margin)),
1015 			fSubtract(fSM_A7, fRO_fused)))));
1016 
1017 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1018 
1019 	if (GreaterThan(fRoots[0], fRoots[1]))
1020 		fEVV_V = fRoots[1];
1021 	else
1022 		fEVV_V = fRoots[0];
1023 
1024 	if (GreaterThan(fV_min, fEVV_V))
1025 		fEVV_V = fV_min;
1026 	else if (GreaterThan(fEVV_V, fV_max))
1027 		fEVV_V = fSubtract(fV_max, fStepSize);
1028 
1029 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1030 
1031 	/*-----------------
1032 	 * PART 4
1033 	 *-----------------
1034 	 */
1035 
1036 	fV_x = fV_min;
1037 
1038 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1039 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1040 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1041 				fGetSquare(fV_x)), fDerateTDP);
1042 
1043 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1044 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1045 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1046 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1047 				fKt_Beta_fused, fT_prod)));
1048 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1049 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1050 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1051 				fKt_Beta_fused, fT_FT)));
1052 
1053 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1054 
1055 		fTDP_Current = fDivide(fTDP_Power, fV_x);
1056 
1057 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1058 				ConvertToFraction(10)));
1059 
1060 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1061 
1062 		if (GreaterThan(fV_max, fV_NL) &&
1063 			(GreaterThan(fV_NL, fEVV_V) ||
1064 			Equal(fV_NL, fEVV_V))) {
1065 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1066 
1067 			*voltage = (uint16_t)fV_NL.partial.real;
1068 			break;
1069 		} else
1070 			fV_x = fAdd(fV_x, fStepSize);
1071 	}
1072 
1073 	return result;
1074 }
1075 
1076 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1077  * @param hwmgr	input: pointer to hwManager
1078  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1079  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1080  *		which is define in PPTable SCLK/VDDC dependence
1081  *				table associated with this virtual_voltage_Id
1082  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1083  * @param voltage		       output: real voltage level in unit of mv
1084  */
1085 int atomctrl_get_voltage_evv_on_sclk(
1086 		struct pp_hwmgr *hwmgr,
1087 		uint8_t voltage_type,
1088 		uint32_t sclk, uint16_t virtual_voltage_Id,
1089 		uint16_t *voltage)
1090 {
1091 	struct amdgpu_device *adev = hwmgr->adev;
1092 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1093 	int result;
1094 
1095 	get_voltage_info_param_space.ucVoltageType   =
1096 		voltage_type;
1097 	get_voltage_info_param_space.ucVoltageMode   =
1098 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1099 	get_voltage_info_param_space.usVoltageLevel  =
1100 		cpu_to_le16(virtual_voltage_Id);
1101 	get_voltage_info_param_space.ulSCLKFreq      =
1102 		cpu_to_le32(sclk);
1103 
1104 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1105 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1106 			(uint32_t *)&get_voltage_info_param_space);
1107 
1108 	*voltage = result ? 0 :
1109 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1110 				(&get_voltage_info_param_space))->usVoltageLevel);
1111 
1112 	return result;
1113 }
1114 
1115 /**
1116  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1117  * @param hwmgr	input: pointer to hwManager
1118  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1119  * @param voltage		       output: real voltage level in unit of mv
1120  */
1121 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1122 			     uint16_t virtual_voltage_id,
1123 			     uint16_t *voltage)
1124 {
1125 	struct amdgpu_device *adev = hwmgr->adev;
1126 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1127 	int result;
1128 	int entry_id;
1129 
1130 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1131 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1132 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1133 			/* found */
1134 			break;
1135 		}
1136 	}
1137 
1138 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1139 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1140 	        return -EINVAL;
1141 	}
1142 
1143 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1144 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1145 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1146 	get_voltage_info_param_space.ulSCLKFreq =
1147 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1148 
1149 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1150 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1151 			(uint32_t *)&get_voltage_info_param_space);
1152 
1153 	if (0 != result)
1154 		return result;
1155 
1156 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1157 				(&get_voltage_info_param_space))->usVoltageLevel);
1158 
1159 	return result;
1160 }
1161 
1162 /**
1163  * Get the mpll reference clock in 10KHz
1164  */
1165 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1166 {
1167 	ATOM_COMMON_TABLE_HEADER *fw_info;
1168 	uint32_t clock;
1169 	u8 frev, crev;
1170 	u16 size;
1171 
1172 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1173 		smu_atom_get_data_table(hwmgr->adev,
1174 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1175 				&size, &frev, &crev);
1176 
1177 	if (fw_info == NULL)
1178 		clock = 2700;
1179 	else {
1180 		if ((fw_info->ucTableFormatRevision == 2) &&
1181 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1182 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1183 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1184 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1185 		} else {
1186 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1187 				(ATOM_FIRMWARE_INFO *)fw_info;
1188 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1189 		}
1190 	}
1191 
1192 	return clock;
1193 }
1194 
1195 /**
1196  * Get the asic internal spread spectrum table
1197  */
1198 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1199 {
1200 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1201 	u8 frev, crev;
1202 	u16 size;
1203 
1204 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1205 		smu_atom_get_data_table(device,
1206 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1207 			&size, &frev, &crev);
1208 
1209 	return table;
1210 }
1211 
1212 /**
1213  * Get the asic internal spread spectrum assignment
1214  */
1215 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1216 		const uint8_t clockSource,
1217 		const uint32_t clockSpeed,
1218 		pp_atomctrl_internal_ss_info *ssEntry)
1219 {
1220 	ATOM_ASIC_INTERNAL_SS_INFO *table;
1221 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1222 	int entry_found = 0;
1223 
1224 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1225 
1226 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1227 
1228 	if (NULL == table)
1229 		return -1;
1230 
1231 	ssInfo = &table->asSpreadSpectrum[0];
1232 
1233 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1234 		le16_to_cpu(table->sHeader.usStructureSize)) {
1235 		if ((clockSource == ssInfo->ucClockIndication) &&
1236 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1237 			entry_found = 1;
1238 			break;
1239 		}
1240 
1241 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1242 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1243 	}
1244 
1245 	if (entry_found) {
1246 		ssEntry->speed_spectrum_percentage =
1247 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1248 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1249 
1250 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1251 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1252 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1253 			ssEntry->speed_spectrum_rate /= 100;
1254 		}
1255 
1256 		switch (ssInfo->ucSpreadSpectrumMode) {
1257 		case 0:
1258 			ssEntry->speed_spectrum_mode =
1259 				pp_atomctrl_spread_spectrum_mode_down;
1260 			break;
1261 		case 1:
1262 			ssEntry->speed_spectrum_mode =
1263 				pp_atomctrl_spread_spectrum_mode_center;
1264 			break;
1265 		default:
1266 			ssEntry->speed_spectrum_mode =
1267 				pp_atomctrl_spread_spectrum_mode_down;
1268 			break;
1269 		}
1270 	}
1271 
1272 	return entry_found ? 0 : 1;
1273 }
1274 
1275 /**
1276  * Get the memory clock spread spectrum info
1277  */
1278 int atomctrl_get_memory_clock_spread_spectrum(
1279 		struct pp_hwmgr *hwmgr,
1280 		const uint32_t memory_clock,
1281 		pp_atomctrl_internal_ss_info *ssInfo)
1282 {
1283 	return asic_internal_ss_get_ss_asignment(hwmgr,
1284 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1285 }
1286 /**
1287  * Get the engine clock spread spectrum info
1288  */
1289 int atomctrl_get_engine_clock_spread_spectrum(
1290 		struct pp_hwmgr *hwmgr,
1291 		const uint32_t engine_clock,
1292 		pp_atomctrl_internal_ss_info *ssInfo)
1293 {
1294 	return asic_internal_ss_get_ss_asignment(hwmgr,
1295 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1296 }
1297 
1298 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1299 		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1300 {
1301 	struct amdgpu_device *adev = hwmgr->adev;
1302 	int result;
1303 	READ_EFUSE_VALUE_PARAMETER efuse_param;
1304 
1305 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1306 	efuse_param.sEfuse.ucBitShift = (uint8_t)
1307 			(start_index - ((start_index / 32) * 32));
1308 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1309 			((end_index - start_index) + 1);
1310 
1311 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1312 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1313 			(uint32_t *)&efuse_param);
1314 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1315 
1316 	return result;
1317 }
1318 
1319 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1320 			      uint8_t level)
1321 {
1322 	struct amdgpu_device *adev = hwmgr->adev;
1323 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1324 	int result;
1325 
1326 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1327 		memory_clock & SET_CLOCK_FREQ_MASK;
1328 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1329 		ADJUST_MC_SETTING_PARAM;
1330 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1331 
1332 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1333 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1334 		(uint32_t *)&memory_clock_parameters);
1335 
1336 	return result;
1337 }
1338 
1339 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1340 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1341 {
1342 	struct amdgpu_device *adev = hwmgr->adev;
1343 	int result;
1344 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1345 
1346 	get_voltage_info_param_space.ucVoltageType = voltage_type;
1347 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1348 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1349 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1350 
1351 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1352 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1353 			(uint32_t *)&get_voltage_info_param_space);
1354 
1355 	*voltage = result ? 0 :
1356 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1357 
1358 	return result;
1359 }
1360 
1361 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1362 {
1363 
1364 	int i;
1365 	u8 frev, crev;
1366 	u16 size;
1367 
1368 	ATOM_SMU_INFO_V2_1 *psmu_info =
1369 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1370 			GetIndexIntoMasterTable(DATA, SMU_Info),
1371 			&size, &frev, &crev);
1372 
1373 
1374 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1375 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1376 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1377 		table->entry[i].usFcw_pcc =
1378 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1379 		table->entry[i].usFcw_trans_upper =
1380 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1381 		table->entry[i].usRcw_trans_lower =
1382 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1389 				  struct pp_atom_ctrl__avfs_parameters *param)
1390 {
1391 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1392 
1393 	if (param == NULL)
1394 		return -EINVAL;
1395 
1396 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1397 			smu_atom_get_data_table(hwmgr->adev,
1398 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1399 					NULL, NULL, NULL);
1400 	if (!profile)
1401 		return -1;
1402 
1403 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1404 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1405 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1406 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1407 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1408 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1409 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1410 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1411 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1412 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1413 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1414 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1415 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1416 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1417 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1418 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1419 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1420 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1421 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1422 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1423 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1424 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1425 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1426 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1427 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1428 
1429 	return 0;
1430 }
1431 
1432 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1433 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1434 				uint16_t *load_line)
1435 {
1436 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1437 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1438 
1439 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1440 
1441 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1442 			"Could not find Voltage Table in BIOS.", return -EINVAL);
1443 
1444 	voltage_object = atomctrl_lookup_voltage_type_v3
1445 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1446 
1447 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1448 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1449 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1450 
1451 	return 0;
1452 }
1453 
1454 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1455 {
1456 	struct amdgpu_device *adev = hwmgr->adev;
1457 	SET_VOLTAGE_PS_ALLOCATION allocation;
1458 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1459 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1460 	int result;
1461 
1462 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1463 
1464 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1465 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1466 			(uint32_t *)voltage_parameters);
1467 
1468 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1469 
1470 	return result;
1471 }
1472 
1473 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1474 					uint16_t *vddc, uint16_t *vddci,
1475 					uint16_t virtual_voltage_id,
1476 					uint16_t efuse_voltage_id)
1477 {
1478 	int i, j;
1479 	int ix;
1480 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1481 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1482 
1483 	*vddc = 0;
1484 	*vddci = 0;
1485 
1486 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1487 
1488 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1489 			smu_atom_get_data_table(hwmgr->adev,
1490 					ix,
1491 					NULL, NULL, NULL);
1492 	if (!profile)
1493 		return -EINVAL;
1494 
1495 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1496 		(profile->asHeader.ucTableContentRevision >= 1) &&
1497 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1498 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1499 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1500 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1501 		if (profile->ucElbVDDC_Num > 0) {
1502 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1503 				if (vddc_id_buf[i] == virtual_voltage_id) {
1504 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1505 						if (efuse_voltage_id <= leakage_bin[j]) {
1506 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1507 							break;
1508 						}
1509 					}
1510 					break;
1511 				}
1512 			}
1513 		}
1514 
1515 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1516 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1517 		if (profile->ucElbVDDCI_Num > 0) {
1518 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1519 				if (vddci_id_buf[i] == virtual_voltage_id) {
1520 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1521 						if (efuse_voltage_id <= leakage_bin[j]) {
1522 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1523 							break;
1524 						}
1525 					}
1526 					break;
1527 				}
1528 			}
1529 		}
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1536 							uint32_t *min_vddc)
1537 {
1538 	void *profile;
1539 
1540 	profile = smu_atom_get_data_table(hwmgr->adev,
1541 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1542 					NULL, NULL, NULL);
1543 
1544 	if (profile) {
1545 		switch (hwmgr->chip_id) {
1546 		case CHIP_TONGA:
1547 		case CHIP_FIJI:
1548 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1549 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1550 			return;
1551 		case CHIP_POLARIS11:
1552 		case CHIP_POLARIS10:
1553 		case CHIP_POLARIS12:
1554 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1555 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1556 			return;
1557 		default:
1558 			break;
1559 		}
1560 	}
1561 	*max_vddc = 0;
1562 	*min_vddc = 0;
1563 }
1564