1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 
29 #include "smumgr.h"
30 #include "pp_debug.h"
31 #include "ci_smumgr.h"
32 #include "ppsmc.h"
33 #include "smu7_hwmgr.h"
34 #include "hardwaremanager.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "atombios.h"
38 #include "pppcielanes.h"
39 
40 #include "smu/smu_7_0_1_d.h"
41 #include "smu/smu_7_0_1_sh_mask.h"
42 
43 #include "dce/dce_8_0_d.h"
44 #include "dce/dce_8_0_sh_mask.h"
45 
46 #include "bif/bif_4_1_d.h"
47 #include "bif/bif_4_1_sh_mask.h"
48 
49 #include "gca/gfx_7_2_d.h"
50 #include "gca/gfx_7_2_sh_mask.h"
51 
52 #include "gmc/gmc_7_1_d.h"
53 #include "gmc/gmc_7_1_sh_mask.h"
54 
55 #include "processpptables.h"
56 
57 #define MC_CG_ARB_FREQ_F0           0x0a
58 #define MC_CG_ARB_FREQ_F1           0x0b
59 #define MC_CG_ARB_FREQ_F2           0x0c
60 #define MC_CG_ARB_FREQ_F3           0x0d
61 
62 #define SMC_RAM_END 0x40000
63 
64 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
65 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
66 
67 static const struct ci_pt_defaults defaults_hawaii_xt = {
68 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
69 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
70 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
71 };
72 
73 static const struct ci_pt_defaults defaults_hawaii_pro = {
74 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
75 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
76 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
77 };
78 
79 static const struct ci_pt_defaults defaults_bonaire_xt = {
80 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
81 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
82 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
83 };
84 
85 
86 static const struct ci_pt_defaults defaults_saturn_xt = {
87 	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
88 	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
89 	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
90 };
91 
92 
93 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
94 					uint32_t smc_addr, uint32_t limit)
95 {
96 	if ((0 != (3 & smc_addr))
97 		|| ((smc_addr + 3) >= limit)) {
98 		pr_err("smc_addr invalid \n");
99 		return -EINVAL;
100 	}
101 
102 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
103 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
104 	return 0;
105 }
106 
107 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
108 				const uint8_t *src, uint32_t byte_count, uint32_t limit)
109 {
110 	int result;
111 	uint32_t data = 0;
112 	uint32_t original_data;
113 	uint32_t addr = 0;
114 	uint32_t extra_shift;
115 
116 	if ((3 & smc_start_address)
117 		|| ((smc_start_address + byte_count) >= limit)) {
118 		pr_err("smc_start_address invalid \n");
119 		return -EINVAL;
120 	}
121 
122 	addr = smc_start_address;
123 
124 	while (byte_count >= 4) {
125 	/* Bytes are written into the SMC address space with the MSB first. */
126 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
127 
128 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
129 
130 		if (0 != result)
131 			return result;
132 
133 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
134 
135 		src += 4;
136 		byte_count -= 4;
137 		addr += 4;
138 	}
139 
140 	if (0 != byte_count) {
141 
142 		data = 0;
143 
144 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
145 
146 		if (0 != result)
147 			return result;
148 
149 
150 		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
151 
152 		extra_shift = 8 * (4 - byte_count);
153 
154 		while (byte_count > 0) {
155 			/* Bytes are written into the SMC addres space with the MSB first. */
156 			data = (0x100 * data) + *src++;
157 			byte_count--;
158 		}
159 
160 		data <<= extra_shift;
161 
162 		data |= (original_data & ~((~0UL) << extra_shift));
163 
164 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
165 
166 		if (0 != result)
167 			return result;
168 
169 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
170 	}
171 
172 	return 0;
173 }
174 
175 
176 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
177 {
178 	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
179 
180 	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
181 
182 	return 0;
183 }
184 
185 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr);
186 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
187 {
188 	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
189 			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
190 	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
191 			CGS_IND_REG__SMC, ixSMC_PC_C)));
192 }
193 
194 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
195 				uint32_t *value, uint32_t limit)
196 {
197 	int result;
198 
199 	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
200 
201 	if (result)
202 		return result;
203 
204 	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
205 	return 0;
206 }
207 
208 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
209 {
210 	int ret;
211 
212 	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
213 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
214 
215 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
216 
217 	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
218 
219 	if (ret != 1)
220 		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
221 
222 	return 0;
223 }
224 
225 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
226 					uint16_t msg, uint32_t parameter)
227 {
228 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
229 	return ci_send_msg_to_smc(hwmgr, msg);
230 }
231 
232 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
233 {
234 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
235 	struct amdgpu_device *adev = hwmgr->adev;
236 	uint32_t dev_id;
237 
238 	dev_id = adev->pdev->device;
239 
240 	switch (dev_id) {
241 	case 0x67BA:
242 	case 0x67B1:
243 		smu_data->power_tune_defaults = &defaults_hawaii_pro;
244 		break;
245 	case 0x67B8:
246 	case 0x66B0:
247 		smu_data->power_tune_defaults = &defaults_hawaii_xt;
248 		break;
249 	case 0x6640:
250 	case 0x6641:
251 	case 0x6646:
252 	case 0x6647:
253 		smu_data->power_tune_defaults = &defaults_saturn_xt;
254 		break;
255 	case 0x6649:
256 	case 0x6650:
257 	case 0x6651:
258 	case 0x6658:
259 	case 0x665C:
260 	case 0x665D:
261 	case 0x67A0:
262 	case 0x67A1:
263 	case 0x67A2:
264 	case 0x67A8:
265 	case 0x67A9:
266 	case 0x67AA:
267 	case 0x67B9:
268 	case 0x67BE:
269 	default:
270 		smu_data->power_tune_defaults = &defaults_bonaire_xt;
271 		break;
272 	}
273 }
274 
275 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
276 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
277 	uint32_t clock, uint32_t *vol)
278 {
279 	uint32_t i = 0;
280 
281 	if (allowed_clock_voltage_table->count == 0)
282 		return -EINVAL;
283 
284 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
285 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
286 			*vol = allowed_clock_voltage_table->entries[i].v;
287 			return 0;
288 		}
289 	}
290 
291 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
292 	return 0;
293 }
294 
295 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
296 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
297 {
298 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
299 	struct pp_atomctrl_clock_dividers_vi dividers;
300 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
301 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
302 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
303 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
304 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
305 	uint32_t ref_clock;
306 	uint32_t ref_divider;
307 	uint32_t fbdiv;
308 	int result;
309 
310 	/* get the engine clock dividers for this clock value */
311 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
312 
313 	PP_ASSERT_WITH_CODE(result == 0,
314 			"Error retrieving Engine Clock dividers from VBIOS.",
315 			return result);
316 
317 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
318 	ref_clock = atomctrl_get_reference_clock(hwmgr);
319 	ref_divider = 1 + dividers.uc_pll_ref_div;
320 
321 	/* low 14 bits is fraction and high 12 bits is divider */
322 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
323 
324 	/* SPLL_FUNC_CNTL setup */
325 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
326 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
327 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
328 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
329 
330 	/* SPLL_FUNC_CNTL_3 setup*/
331 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
332 			SPLL_FB_DIV, fbdiv);
333 
334 	/* set to use fractional accumulation*/
335 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
336 			SPLL_DITHEN, 1);
337 
338 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
339 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
340 		struct pp_atomctrl_internal_ss_info ss_info;
341 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
342 
343 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
344 				vco_freq, &ss_info)) {
345 			uint32_t clk_s = ref_clock * 5 /
346 					(ref_divider * ss_info.speed_spectrum_rate);
347 			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
348 					fbdiv / (clk_s * 10000);
349 
350 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
351 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
352 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
353 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
354 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
355 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
356 		}
357 	}
358 
359 	sclk->SclkFrequency        = clock;
360 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
361 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
362 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
363 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
364 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
365 
366 	return 0;
367 }
368 
369 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
370 				const struct phm_phase_shedding_limits_table *pl,
371 					uint32_t sclk, uint32_t *p_shed)
372 {
373 	unsigned int i;
374 
375 	/* use the minimum phase shedding */
376 	*p_shed = 1;
377 
378 	for (i = 0; i < pl->count; i++) {
379 		if (sclk < pl->entries[i].Sclk) {
380 			*p_shed = i;
381 			break;
382 		}
383 	}
384 }
385 
386 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
387 			uint32_t clock_insr)
388 {
389 	uint8_t i;
390 	uint32_t temp;
391 	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
392 
393 	if (clock < min) {
394 		pr_info("Engine clock can't satisfy stutter requirement!\n");
395 		return 0;
396 	}
397 	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
398 		temp = clock >> i;
399 
400 		if (temp >= min || i == 0)
401 			break;
402 	}
403 	return i;
404 }
405 
406 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
407 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
408 {
409 	int result;
410 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
411 
412 
413 	result = ci_calculate_sclk_params(hwmgr, clock, level);
414 
415 	/* populate graphics levels */
416 	result = ci_get_dependency_volt_by_clk(hwmgr,
417 			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
418 			(uint32_t *)(&level->MinVddc));
419 	if (result) {
420 		pr_err("vdd_dep_on_sclk table is NULL\n");
421 		return result;
422 	}
423 
424 	level->SclkFrequency = clock;
425 	level->MinVddcPhases = 1;
426 
427 	if (data->vddc_phase_shed_control)
428 		ci_populate_phase_value_based_on_sclk(hwmgr,
429 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
430 				clock,
431 				&level->MinVddcPhases);
432 
433 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
434 	level->CcPwrDynRm = 0;
435 	level->CcPwrDynRm1 = 0;
436 	level->EnabledForActivity = 0;
437 	/* this level can be used for throttling.*/
438 	level->EnabledForThrottle = 1;
439 	level->UpH = data->current_profile_setting.sclk_up_hyst;
440 	level->DownH = data->current_profile_setting.sclk_down_hyst;
441 	level->VoltageDownH = 0;
442 	level->PowerThrottle = 0;
443 
444 
445 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
446 			PHM_PlatformCaps_SclkDeepSleep))
447 		level->DeepSleepDivId =
448 				ci_get_sleep_divider_id_from_clock(clock,
449 						CISLAND_MINIMUM_ENGINE_CLOCK);
450 
451 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
452 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
453 
454 	if (0 == result) {
455 		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
456 		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
457 		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
458 		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
459 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
460 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
461 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
462 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
463 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
464 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
465 	}
466 
467 	return result;
468 }
469 
470 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
471 {
472 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
473 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
474 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
475 	int result = 0;
476 	uint32_t array = smu_data->dpm_table_start +
477 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
478 	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
479 			SMU7_MAX_LEVELS_GRAPHICS;
480 	struct SMU7_Discrete_GraphicsLevel *levels =
481 			smu_data->smc_state_table.GraphicsLevel;
482 	uint32_t i;
483 
484 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
485 		result = ci_populate_single_graphic_level(hwmgr,
486 				dpm_table->sclk_table.dpm_levels[i].value,
487 				&levels[i]);
488 		if (result)
489 			return result;
490 		if (i > 1)
491 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
492 		if (i == (dpm_table->sclk_table.count - 1))
493 			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
494 				PPSMC_DISPLAY_WATERMARK_HIGH;
495 	}
496 
497 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
498 
499 	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
500 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
501 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
502 
503 	result = ci_copy_bytes_to_smc(hwmgr, array,
504 				   (u8 *)levels, array_size,
505 				   SMC_RAM_END);
506 
507 	return result;
508 
509 }
510 
511 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
512 {
513 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
514 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
515 
516 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
517 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
518 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
519 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
520 
521 	return 0;
522 }
523 
524 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
525 {
526 	uint16_t tdc_limit;
527 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
528 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
529 
530 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
531 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
532 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
533 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
534 			defaults->tdc_vddc_throttle_release_limit_perc;
535 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
536 
537 	return 0;
538 }
539 
540 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
541 {
542 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
543 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
544 	uint32_t temp;
545 
546 	if (ci_read_smc_sram_dword(hwmgr,
547 			fuse_table_offset +
548 			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
549 			(uint32_t *)&temp, SMC_RAM_END))
550 		PP_ASSERT_WITH_CODE(false,
551 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
552 				return -EINVAL);
553 	else
554 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
555 
556 	return 0;
557 }
558 
559 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
560 {
561 	uint16_t tmp;
562 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
563 
564 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
565 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
566 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
567 	else
568 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
569 
570 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
571 
572 	return 0;
573 }
574 
575 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
576 {
577 	int i;
578 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
579 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
580 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
581 	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
582 
583 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
584 			    "The CAC Leakage table does not exist!", return -EINVAL);
585 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
586 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
587 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
588 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
589 
590 	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
591 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
592 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
593 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
594 			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
595 		} else {
596 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
597 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
598 		}
599 	}
600 
601 	return 0;
602 }
603 
604 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
605 {
606 	int i;
607 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
608 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
609 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
610 
611 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
612 		"There should never be more than 8 entries for VddcVid!!!",
613 		return -EINVAL);
614 
615 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
616 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
617 
618 	return 0;
619 }
620 
621 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
622 {
623 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
624 	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
625 	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
626 	int i, min, max;
627 
628 	min = max = hi_vid[0];
629 	for (i = 0; i < 8; i++) {
630 		if (0 != hi_vid[i]) {
631 			if (min > hi_vid[i])
632 				min = hi_vid[i];
633 			if (max < hi_vid[i])
634 				max = hi_vid[i];
635 		}
636 
637 		if (0 != lo_vid[i]) {
638 			if (min > lo_vid[i])
639 				min = lo_vid[i];
640 			if (max < lo_vid[i])
641 				max = lo_vid[i];
642 		}
643 	}
644 
645 	if ((min == 0) || (max == 0))
646 		return -EINVAL;
647 	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
648 	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
649 
650 	return 0;
651 }
652 
653 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
654 {
655 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
656 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
657 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
658 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
659 
660 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
661 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
662 
663 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
664 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
665 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
666 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
667 
668 	return 0;
669 }
670 
671 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
672 {
673 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
674 	uint32_t pm_fuse_table_offset;
675 	int ret = 0;
676 
677 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
678 			PHM_PlatformCaps_PowerContainment)) {
679 		if (ci_read_smc_sram_dword(hwmgr,
680 				SMU7_FIRMWARE_HEADER_LOCATION +
681 				offsetof(SMU7_Firmware_Header, PmFuseTable),
682 				&pm_fuse_table_offset, SMC_RAM_END)) {
683 			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
684 			return -EINVAL;
685 		}
686 
687 		/* DW0 - DW3 */
688 		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
689 		/* DW4 - DW5 */
690 		ret |= ci_populate_vddc_vid(hwmgr);
691 		/* DW6 */
692 		ret |= ci_populate_svi_load_line(hwmgr);
693 		/* DW7 */
694 		ret |= ci_populate_tdc_limit(hwmgr);
695 		/* DW8 */
696 		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
697 
698 		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
699 
700 		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
701 
702 		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
703 		if (ret)
704 			return ret;
705 
706 		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
707 				(uint8_t *)&smu_data->power_tune_table,
708 				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
709 	}
710 	return ret;
711 }
712 
713 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
714 {
715 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
716 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
717 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
718 	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
719 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
720 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
721 	const uint16_t *def1, *def2;
722 	int i, j, k;
723 
724 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
725 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
726 
727 	dpm_table->DTETjOffset = 0;
728 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
729 	dpm_table->GpuTjHyst = 8;
730 
731 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
732 
733 	if (ppm) {
734 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
735 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
736 	} else {
737 		dpm_table->PPM_PkgPwrLimit = 0;
738 		dpm_table->PPM_TemperatureLimit = 0;
739 	}
740 
741 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
742 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
743 
744 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
745 	def1 = defaults->bapmti_r;
746 	def2 = defaults->bapmti_rc;
747 
748 	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
749 		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
750 			for (k = 0; k < SMU7_DTE_SINKS; k++) {
751 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
752 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
753 				def1++;
754 				def2++;
755 			}
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
763 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
764 		uint16_t *lo)
765 {
766 	uint16_t v_index;
767 	bool vol_found = false;
768 	*hi = tab->value * VOLTAGE_SCALE;
769 	*lo = tab->value * VOLTAGE_SCALE;
770 
771 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
772 			"The SCLK/VDDC Dependency Table does not exist.\n",
773 			return -EINVAL);
774 
775 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
776 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
777 		return 0;
778 	}
779 
780 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
781 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
782 			vol_found = true;
783 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
784 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
785 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
786 			} else {
787 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
788 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
789 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
790 			}
791 			break;
792 		}
793 	}
794 
795 	if (!vol_found) {
796 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
797 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
798 				vol_found = true;
799 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
800 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
801 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
802 				} else {
803 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
804 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
805 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
806 				}
807 				break;
808 			}
809 		}
810 
811 		if (!vol_found)
812 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
813 	}
814 
815 	return 0;
816 }
817 
818 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
819 		pp_atomctrl_voltage_table_entry *tab,
820 		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
821 {
822 	int result;
823 
824 	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
825 			&smc_voltage_tab->StdVoltageHiSidd,
826 			&smc_voltage_tab->StdVoltageLoSidd);
827 	if (result) {
828 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
829 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
830 	}
831 
832 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
833 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
834 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
835 
836 	return 0;
837 }
838 
839 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
840 			SMU7_Discrete_DpmTable *table)
841 {
842 	unsigned int count;
843 	int result;
844 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
845 
846 	table->VddcLevelCount = data->vddc_voltage_table.count;
847 	for (count = 0; count < table->VddcLevelCount; count++) {
848 		result = ci_populate_smc_voltage_table(hwmgr,
849 				&(data->vddc_voltage_table.entries[count]),
850 				&(table->VddcLevel[count]));
851 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
852 
853 		/* GPIO voltage control */
854 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
855 			table->VddcLevel[count].Smio = (uint8_t) count;
856 			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
857 			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
858 		} else {
859 			table->VddcLevel[count].Smio = 0;
860 		}
861 	}
862 
863 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
864 
865 	return 0;
866 }
867 
868 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
869 			SMU7_Discrete_DpmTable *table)
870 {
871 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
872 	uint32_t count;
873 	int result;
874 
875 	table->VddciLevelCount = data->vddci_voltage_table.count;
876 
877 	for (count = 0; count < table->VddciLevelCount; count++) {
878 		result = ci_populate_smc_voltage_table(hwmgr,
879 				&(data->vddci_voltage_table.entries[count]),
880 				&(table->VddciLevel[count]));
881 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
882 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
883 			table->VddciLevel[count].Smio = (uint8_t) count;
884 			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
885 			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
886 		} else {
887 			table->VddciLevel[count].Smio = 0;
888 		}
889 	}
890 
891 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
892 
893 	return 0;
894 }
895 
896 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
897 			SMU7_Discrete_DpmTable *table)
898 {
899 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
900 	uint32_t count;
901 	int result;
902 
903 	table->MvddLevelCount = data->mvdd_voltage_table.count;
904 
905 	for (count = 0; count < table->MvddLevelCount; count++) {
906 		result = ci_populate_smc_voltage_table(hwmgr,
907 				&(data->mvdd_voltage_table.entries[count]),
908 				&table->MvddLevel[count]);
909 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
910 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
911 			table->MvddLevel[count].Smio = (uint8_t) count;
912 			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
913 			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
914 		} else {
915 			table->MvddLevel[count].Smio = 0;
916 		}
917 	}
918 
919 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
920 
921 	return 0;
922 }
923 
924 
925 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
926 	SMU7_Discrete_DpmTable *table)
927 {
928 	int result;
929 
930 	result = ci_populate_smc_vddc_table(hwmgr, table);
931 	PP_ASSERT_WITH_CODE(0 == result,
932 			"can not populate VDDC voltage table to SMC", return -EINVAL);
933 
934 	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
935 	PP_ASSERT_WITH_CODE(0 == result,
936 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
937 
938 	result = ci_populate_smc_mvdd_table(hwmgr, table);
939 	PP_ASSERT_WITH_CODE(0 == result,
940 			"can not populate MVDD voltage table to SMC", return -EINVAL);
941 
942 	return 0;
943 }
944 
945 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
946 		struct SMU7_Discrete_Ulv *state)
947 {
948 	uint32_t voltage_response_time, ulv_voltage;
949 	int result;
950 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
951 
952 	state->CcPwrDynRm = 0;
953 	state->CcPwrDynRm1 = 0;
954 
955 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
956 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
957 
958 	if (ulv_voltage == 0) {
959 		data->ulv_supported = false;
960 		return 0;
961 	}
962 
963 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
964 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
965 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
966 			state->VddcOffset = 0;
967 		else
968 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
969 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
970 	} else {
971 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
972 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
973 			state->VddcOffsetVid = 0;
974 		else  /* used in SVI2 Mode */
975 			state->VddcOffsetVid = (uint8_t)(
976 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
977 						* VOLTAGE_VID_OFFSET_SCALE2
978 						/ VOLTAGE_VID_OFFSET_SCALE1);
979 	}
980 	state->VddcPhase = 1;
981 
982 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
983 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
984 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
985 
986 	return 0;
987 }
988 
989 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
990 		 SMU7_Discrete_Ulv *ulv_level)
991 {
992 	return ci_populate_ulv_level(hwmgr, ulv_level);
993 }
994 
995 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
996 {
997 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
998 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
999 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1000 	uint32_t i;
1001 
1002 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1003 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1004 		table->LinkLevel[i].PcieGenSpeed  =
1005 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1006 		table->LinkLevel[i].PcieLaneCount =
1007 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1008 		table->LinkLevel[i].EnabledForActivity = 1;
1009 		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1010 		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1011 	}
1012 
1013 	smu_data->smc_state_table.LinkLevelCount =
1014 		(uint8_t)dpm_table->pcie_speed_table.count;
1015 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1016 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1017 
1018 	return 0;
1019 }
1020 
1021 static int ci_calculate_mclk_params(
1022 		struct pp_hwmgr *hwmgr,
1023 		uint32_t memory_clock,
1024 		SMU7_Discrete_MemoryLevel *mclk,
1025 		bool strobe_mode,
1026 		bool dllStateOn
1027 		)
1028 {
1029 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1030 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1031 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1032 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1033 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1034 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1035 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1036 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1037 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1038 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1039 
1040 	pp_atomctrl_memory_clock_param mpll_param;
1041 	int result;
1042 
1043 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1044 				memory_clock, &mpll_param, strobe_mode);
1045 	PP_ASSERT_WITH_CODE(0 == result,
1046 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1047 
1048 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1049 
1050 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1051 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1052 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1053 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1054 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1055 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1056 
1057 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1058 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1059 
1060 	if (data->is_memory_gddr5) {
1061 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1062 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1063 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1064 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1065 	}
1066 
1067 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1068 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1069 		pp_atomctrl_internal_ss_info ss_info;
1070 		uint32_t freq_nom;
1071 		uint32_t tmp;
1072 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1073 
1074 		/* for GDDR5 for all modes and DDR3 */
1075 		if (1 == mpll_param.qdr)
1076 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1077 		else
1078 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1079 
1080 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1081 		tmp = (freq_nom / reference_clock);
1082 		tmp = tmp * tmp;
1083 
1084 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1085 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1086 			uint32_t clkv =
1087 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1088 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1089 
1090 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1091 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1092 		}
1093 	}
1094 
1095 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1096 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1097 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1098 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1099 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1100 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1101 
1102 
1103 	mclk->MclkFrequency   = memory_clock;
1104 	mclk->MpllFuncCntl    = mpll_func_cntl;
1105 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1106 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1107 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1108 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1109 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1110 	mclk->DllCntl         = dll_cntl;
1111 	mclk->MpllSs1         = mpll_ss1;
1112 	mclk->MpllSs2         = mpll_ss2;
1113 
1114 	return 0;
1115 }
1116 
1117 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1118 		bool strobe_mode)
1119 {
1120 	uint8_t mc_para_index;
1121 
1122 	if (strobe_mode) {
1123 		if (memory_clock < 12500)
1124 			mc_para_index = 0x00;
1125 		else if (memory_clock > 47500)
1126 			mc_para_index = 0x0f;
1127 		else
1128 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1129 	} else {
1130 		if (memory_clock < 65000)
1131 			mc_para_index = 0x00;
1132 		else if (memory_clock > 135000)
1133 			mc_para_index = 0x0f;
1134 		else
1135 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1136 	}
1137 
1138 	return mc_para_index;
1139 }
1140 
1141 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1142 {
1143 	uint8_t mc_para_index;
1144 
1145 	if (memory_clock < 10000)
1146 		mc_para_index = 0;
1147 	else if (memory_clock >= 80000)
1148 		mc_para_index = 0x0f;
1149 	else
1150 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1151 
1152 	return mc_para_index;
1153 }
1154 
1155 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1156 					uint32_t memory_clock, uint32_t *p_shed)
1157 {
1158 	unsigned int i;
1159 
1160 	*p_shed = 1;
1161 
1162 	for (i = 0; i < pl->count; i++) {
1163 		if (memory_clock < pl->entries[i].Mclk) {
1164 			*p_shed = i;
1165 			break;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int ci_populate_single_memory_level(
1173 		struct pp_hwmgr *hwmgr,
1174 		uint32_t memory_clock,
1175 		SMU7_Discrete_MemoryLevel *memory_level
1176 		)
1177 {
1178 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1179 	int result = 0;
1180 	bool dll_state_on;
1181 	uint32_t mclk_edc_wr_enable_threshold = 40000;
1182 	uint32_t mclk_edc_enable_threshold = 40000;
1183 	uint32_t mclk_strobe_mode_threshold = 40000;
1184 
1185 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1186 		result = ci_get_dependency_volt_by_clk(hwmgr,
1187 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1188 		PP_ASSERT_WITH_CODE((0 == result),
1189 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1190 	}
1191 
1192 	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1193 		result = ci_get_dependency_volt_by_clk(hwmgr,
1194 				hwmgr->dyn_state.vddci_dependency_on_mclk,
1195 				memory_clock,
1196 				&memory_level->MinVddci);
1197 		PP_ASSERT_WITH_CODE((0 == result),
1198 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1199 	}
1200 
1201 	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1202 		result = ci_get_dependency_volt_by_clk(hwmgr,
1203 				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1204 				memory_clock,
1205 				&memory_level->MinMvdd);
1206 		PP_ASSERT_WITH_CODE((0 == result),
1207 			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1208 	}
1209 
1210 	memory_level->MinVddcPhases = 1;
1211 
1212 	if (data->vddc_phase_shed_control) {
1213 		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1214 				memory_clock, &memory_level->MinVddcPhases);
1215 	}
1216 
1217 	memory_level->EnabledForThrottle = 1;
1218 	memory_level->EnabledForActivity = 1;
1219 	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1220 	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1221 	memory_level->VoltageDownH = 0;
1222 
1223 	/* Indicates maximum activity level for this performance level.*/
1224 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1225 	memory_level->StutterEnable = 0;
1226 	memory_level->StrobeEnable = 0;
1227 	memory_level->EdcReadEnable = 0;
1228 	memory_level->EdcWriteEnable = 0;
1229 	memory_level->RttEnable = 0;
1230 
1231 	/* default set to low watermark. Highest level will be set to high later.*/
1232 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1233 
1234 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1235 
1236 	/* stutter mode not support on ci */
1237 
1238 	/* decide strobe mode*/
1239 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1240 		(memory_clock <= mclk_strobe_mode_threshold);
1241 
1242 	/* decide EDC mode and memory clock ratio*/
1243 	if (data->is_memory_gddr5) {
1244 		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1245 					memory_level->StrobeEnable);
1246 
1247 		if ((mclk_edc_enable_threshold != 0) &&
1248 				(memory_clock > mclk_edc_enable_threshold)) {
1249 			memory_level->EdcReadEnable = 1;
1250 		}
1251 
1252 		if ((mclk_edc_wr_enable_threshold != 0) &&
1253 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1254 			memory_level->EdcWriteEnable = 1;
1255 		}
1256 
1257 		if (memory_level->StrobeEnable) {
1258 			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1259 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1260 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1261 			else
1262 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1263 		} else
1264 			dll_state_on = data->dll_default_on;
1265 	} else {
1266 		memory_level->StrobeRatio =
1267 			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1268 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1269 	}
1270 
1271 	result = ci_calculate_mclk_params(hwmgr,
1272 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1273 
1274 	if (0 == result) {
1275 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1276 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1277 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1278 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1279 		/* MCLK frequency in units of 10KHz*/
1280 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1281 		/* Indicates maximum activity level for this performance level.*/
1282 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1283 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1284 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1285 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1286 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1287 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1288 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1289 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1290 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1291 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1292 	}
1293 
1294 	return result;
1295 }
1296 
1297 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1298 {
1299 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1300 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1301 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1302 	int result;
1303 	struct amdgpu_device *adev = hwmgr->adev;
1304 	uint32_t dev_id;
1305 
1306 	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1307 	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1308 	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1309 	uint32_t i;
1310 
1311 	memset(levels, 0x00, level_array_size);
1312 
1313 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1314 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1315 			"can not populate memory level as memory clock is zero", return -EINVAL);
1316 		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1317 			&(smu_data->smc_state_table.MemoryLevel[i]));
1318 		if (0 != result)
1319 			return result;
1320 	}
1321 
1322 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1323 
1324 	dev_id = adev->pdev->device;
1325 
1326 	if ((dpm_table->mclk_table.count >= 2)
1327 		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1328 		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1329 				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1330 		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1331 				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1332 	}
1333 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1334 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1335 
1336 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1337 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1338 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1339 
1340 	result = ci_copy_bytes_to_smc(hwmgr,
1341 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1342 		SMC_RAM_END);
1343 
1344 	return result;
1345 }
1346 
1347 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1348 					SMU7_Discrete_VoltageLevel *voltage)
1349 {
1350 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1351 
1352 	uint32_t i = 0;
1353 
1354 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1355 		/* find mvdd value which clock is more than request */
1356 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1357 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1358 				/* Always round to higher voltage. */
1359 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1360 				break;
1361 			}
1362 		}
1363 
1364 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1365 			"MVDD Voltage is outside the supported range.", return -EINVAL);
1366 
1367 	} else {
1368 		return -EINVAL;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1375 	SMU7_Discrete_DpmTable *table)
1376 {
1377 	int result = 0;
1378 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1379 	struct pp_atomctrl_clock_dividers_vi dividers;
1380 
1381 	SMU7_Discrete_VoltageLevel voltage_level;
1382 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1383 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1384 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1385 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1386 
1387 
1388 	/* The ACPI state should not do DPM on DC (or ever).*/
1389 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1390 
1391 	if (data->acpi_vddc)
1392 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1393 	else
1394 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1395 
1396 	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1397 	/* assign zero for now*/
1398 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1399 
1400 	/* get the engine clock dividers for this clock value*/
1401 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1402 		table->ACPILevel.SclkFrequency,  &dividers);
1403 
1404 	PP_ASSERT_WITH_CODE(result == 0,
1405 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1406 
1407 	/* divider ID for required SCLK*/
1408 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1409 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1410 	table->ACPILevel.DeepSleepDivId = 0;
1411 
1412 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1413 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1414 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1415 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1416 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1417 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1418 
1419 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1420 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1421 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1422 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1423 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1424 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1425 	table->ACPILevel.CcPwrDynRm = 0;
1426 	table->ACPILevel.CcPwrDynRm1 = 0;
1427 
1428 	/* For various features to be enabled/disabled while this level is active.*/
1429 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1430 	/* SCLK frequency in units of 10KHz*/
1431 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1432 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1433 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1434 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1435 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1436 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1437 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1438 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1439 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1440 
1441 
1442 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1443 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1444 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1445 
1446 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1447 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1448 	else {
1449 		if (data->acpi_vddci != 0)
1450 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1451 		else
1452 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1453 	}
1454 
1455 	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1456 		table->MemoryACPILevel.MinMvdd =
1457 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1458 	else
1459 		table->MemoryACPILevel.MinMvdd = 0;
1460 
1461 	/* Force reset on DLL*/
1462 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1463 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1464 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1465 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1466 
1467 	/* Disable DLL in ACPIState*/
1468 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1469 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1470 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1471 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1472 
1473 	/* Enable DLL bypass signal*/
1474 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1475 		DLL_CNTL, MRDCK0_BYPASS, 0);
1476 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1477 		DLL_CNTL, MRDCK1_BYPASS, 0);
1478 
1479 	table->MemoryACPILevel.DllCntl            =
1480 		PP_HOST_TO_SMC_UL(dll_cntl);
1481 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1482 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1483 	table->MemoryACPILevel.MpllAdFuncCntl     =
1484 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1485 	table->MemoryACPILevel.MpllDqFuncCntl     =
1486 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1487 	table->MemoryACPILevel.MpllFuncCntl       =
1488 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1489 	table->MemoryACPILevel.MpllFuncCntl_1     =
1490 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1491 	table->MemoryACPILevel.MpllFuncCntl_2     =
1492 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1493 	table->MemoryACPILevel.MpllSs1            =
1494 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1495 	table->MemoryACPILevel.MpllSs2            =
1496 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1497 
1498 	table->MemoryACPILevel.EnabledForThrottle = 0;
1499 	table->MemoryACPILevel.EnabledForActivity = 0;
1500 	table->MemoryACPILevel.UpH = 0;
1501 	table->MemoryACPILevel.DownH = 100;
1502 	table->MemoryACPILevel.VoltageDownH = 0;
1503 	/* Indicates maximum activity level for this performance level.*/
1504 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1505 
1506 	table->MemoryACPILevel.StutterEnable = 0;
1507 	table->MemoryACPILevel.StrobeEnable = 0;
1508 	table->MemoryACPILevel.EdcReadEnable = 0;
1509 	table->MemoryACPILevel.EdcWriteEnable = 0;
1510 	table->MemoryACPILevel.RttEnable = 0;
1511 
1512 	return result;
1513 }
1514 
1515 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1516 					SMU7_Discrete_DpmTable *table)
1517 {
1518 	int result = 0;
1519 	uint8_t count;
1520 	struct pp_atomctrl_clock_dividers_vi dividers;
1521 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1522 		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1523 
1524 	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1525 
1526 	for (count = 0; count < table->UvdLevelCount; count++) {
1527 		table->UvdLevel[count].VclkFrequency =
1528 					uvd_table->entries[count].vclk;
1529 		table->UvdLevel[count].DclkFrequency =
1530 					uvd_table->entries[count].dclk;
1531 		table->UvdLevel[count].MinVddc =
1532 					uvd_table->entries[count].v * VOLTAGE_SCALE;
1533 		table->UvdLevel[count].MinVddcPhases = 1;
1534 
1535 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1536 				table->UvdLevel[count].VclkFrequency, &dividers);
1537 		PP_ASSERT_WITH_CODE((0 == result),
1538 				"can not find divide id for Vclk clock", return result);
1539 
1540 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1541 
1542 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1543 				table->UvdLevel[count].DclkFrequency, &dividers);
1544 		PP_ASSERT_WITH_CODE((0 == result),
1545 				"can not find divide id for Dclk clock", return result);
1546 
1547 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1548 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1549 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1550 		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1551 	}
1552 
1553 	return result;
1554 }
1555 
1556 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1557 		SMU7_Discrete_DpmTable *table)
1558 {
1559 	int result = -EINVAL;
1560 	uint8_t count;
1561 	struct pp_atomctrl_clock_dividers_vi dividers;
1562 	struct phm_vce_clock_voltage_dependency_table *vce_table =
1563 				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1564 
1565 	table->VceLevelCount = (uint8_t)(vce_table->count);
1566 	table->VceBootLevel = 0;
1567 
1568 	for (count = 0; count < table->VceLevelCount; count++) {
1569 		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1570 		table->VceLevel[count].MinVoltage =
1571 				vce_table->entries[count].v * VOLTAGE_SCALE;
1572 		table->VceLevel[count].MinPhases = 1;
1573 
1574 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1575 				table->VceLevel[count].Frequency, &dividers);
1576 		PP_ASSERT_WITH_CODE((0 == result),
1577 				"can not find divide id for VCE engine clock",
1578 				return result);
1579 
1580 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1581 
1582 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1583 		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1584 	}
1585 	return result;
1586 }
1587 
1588 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1589 					SMU7_Discrete_DpmTable *table)
1590 {
1591 	int result = -EINVAL;
1592 	uint8_t count;
1593 	struct pp_atomctrl_clock_dividers_vi dividers;
1594 	struct phm_acp_clock_voltage_dependency_table *acp_table =
1595 				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1596 
1597 	table->AcpLevelCount = (uint8_t)(acp_table->count);
1598 	table->AcpBootLevel = 0;
1599 
1600 	for (count = 0; count < table->AcpLevelCount; count++) {
1601 		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1602 		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1603 		table->AcpLevel[count].MinPhases = 1;
1604 
1605 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1606 				table->AcpLevel[count].Frequency, &dividers);
1607 		PP_ASSERT_WITH_CODE((0 == result),
1608 				"can not find divide id for engine clock", return result);
1609 
1610 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1611 
1612 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1613 		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1614 	}
1615 	return result;
1616 }
1617 
1618 static int ci_populate_memory_timing_parameters(
1619 		struct pp_hwmgr *hwmgr,
1620 		uint32_t engine_clock,
1621 		uint32_t memory_clock,
1622 		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1623 		)
1624 {
1625 	uint32_t dramTiming;
1626 	uint32_t dramTiming2;
1627 	uint32_t burstTime;
1628 	int result;
1629 
1630 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1631 				engine_clock, memory_clock);
1632 
1633 	PP_ASSERT_WITH_CODE(result == 0,
1634 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1635 
1636 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1637 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1638 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1639 
1640 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1641 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1642 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1643 
1644 	return 0;
1645 }
1646 
1647 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1648 {
1649 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1650 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1651 	int result = 0;
1652 	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1653 	uint32_t i, j;
1654 
1655 	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1656 
1657 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1658 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1659 			result = ci_populate_memory_timing_parameters
1660 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1661 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1662 				 &arb_regs.entries[i][j]);
1663 
1664 			if (0 != result)
1665 				break;
1666 		}
1667 	}
1668 
1669 	if (0 == result) {
1670 		result = ci_copy_bytes_to_smc(
1671 				hwmgr,
1672 				smu_data->arb_table_start,
1673 				(uint8_t *)&arb_regs,
1674 				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1675 				SMC_RAM_END
1676 				);
1677 	}
1678 
1679 	return result;
1680 }
1681 
1682 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1683 			SMU7_Discrete_DpmTable *table)
1684 {
1685 	int result = 0;
1686 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1687 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1688 
1689 	table->GraphicsBootLevel = 0;
1690 	table->MemoryBootLevel = 0;
1691 
1692 	/* find boot level from dpm table*/
1693 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1694 			data->vbios_boot_state.sclk_bootup_value,
1695 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1696 
1697 	if (0 != result) {
1698 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1699 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1700 		result = 0;
1701 	}
1702 
1703 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1704 		data->vbios_boot_state.mclk_bootup_value,
1705 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1706 
1707 	if (0 != result) {
1708 		smu_data->smc_state_table.MemoryBootLevel = 0;
1709 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1710 		result = 0;
1711 	}
1712 
1713 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1714 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1715 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1716 
1717 	return result;
1718 }
1719 
1720 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1721 				 SMU7_Discrete_MCRegisters *mc_reg_table)
1722 {
1723 	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1724 
1725 	uint32_t i, j;
1726 
1727 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1728 		if (smu_data->mc_reg_table.validflag & 1<<j) {
1729 			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1730 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1731 			mc_reg_table->address[i].s0 =
1732 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1733 			mc_reg_table->address[i].s1 =
1734 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1735 			i++;
1736 		}
1737 	}
1738 
1739 	mc_reg_table->last = (uint8_t)i;
1740 
1741 	return 0;
1742 }
1743 
1744 static void ci_convert_mc_registers(
1745 	const struct ci_mc_reg_entry *entry,
1746 	SMU7_Discrete_MCRegisterSet *data,
1747 	uint32_t num_entries, uint32_t valid_flag)
1748 {
1749 	uint32_t i, j;
1750 
1751 	for (i = 0, j = 0; j < num_entries; j++) {
1752 		if (valid_flag & 1<<j) {
1753 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1754 			i++;
1755 		}
1756 	}
1757 }
1758 
1759 static int ci_convert_mc_reg_table_entry_to_smc(
1760 		struct pp_hwmgr *hwmgr,
1761 		const uint32_t memory_clock,
1762 		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1763 		)
1764 {
1765 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1766 	uint32_t i = 0;
1767 
1768 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1769 		if (memory_clock <=
1770 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1771 			break;
1772 		}
1773 	}
1774 
1775 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1776 		--i;
1777 
1778 	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1779 				mc_reg_table_data, smu_data->mc_reg_table.last,
1780 				smu_data->mc_reg_table.validflag);
1781 
1782 	return 0;
1783 }
1784 
1785 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1786 		SMU7_Discrete_MCRegisters *mc_regs)
1787 {
1788 	int result = 0;
1789 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1790 	int res;
1791 	uint32_t i;
1792 
1793 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1794 		res = ci_convert_mc_reg_table_entry_to_smc(
1795 				hwmgr,
1796 				data->dpm_table.mclk_table.dpm_levels[i].value,
1797 				&mc_regs->data[i]
1798 				);
1799 
1800 		if (0 != res)
1801 			result = res;
1802 	}
1803 
1804 	return result;
1805 }
1806 
1807 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1808 {
1809 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1810 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1811 	uint32_t address;
1812 	int32_t result;
1813 
1814 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1815 		return 0;
1816 
1817 
1818 	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1819 
1820 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1821 
1822 	if (result != 0)
1823 		return result;
1824 
1825 	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1826 
1827 	return  ci_copy_bytes_to_smc(hwmgr, address,
1828 				 (uint8_t *)&smu_data->mc_regs.data[0],
1829 				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1830 				SMC_RAM_END);
1831 }
1832 
1833 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1834 {
1835 	int result;
1836 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1837 
1838 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1839 	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1840 	PP_ASSERT_WITH_CODE(0 == result,
1841 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1842 
1843 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1844 	PP_ASSERT_WITH_CODE(0 == result,
1845 		"Failed to initialize MCRegTable for driver state!", return result;);
1846 
1847 	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1848 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1849 }
1850 
1851 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1852 {
1853 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1854 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1855 	uint8_t count, level;
1856 
1857 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1858 
1859 	for (level = 0; level < count; level++) {
1860 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1861 			 >= data->vbios_boot_state.sclk_bootup_value) {
1862 			smu_data->smc_state_table.GraphicsBootLevel = level;
1863 			break;
1864 		}
1865 	}
1866 
1867 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1868 
1869 	for (level = 0; level < count; level++) {
1870 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1871 			>= data->vbios_boot_state.mclk_bootup_value) {
1872 			smu_data->smc_state_table.MemoryBootLevel = level;
1873 			break;
1874 		}
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1881 					    SMU7_Discrete_DpmTable *table)
1882 {
1883 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1884 
1885 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1886 		table->SVI2Enable = 1;
1887 	else
1888 		table->SVI2Enable = 0;
1889 	return 0;
1890 }
1891 
1892 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1893 {
1894 	/* set smc instruct start point at 0x0 */
1895 	ci_program_jump_on_start(hwmgr);
1896 
1897 	/* enable smc clock */
1898 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1899 
1900 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1901 
1902 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1903 				 INTERRUPTS_ENABLED, 1);
1904 
1905 	return 0;
1906 }
1907 
1908 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1909 {
1910 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1911 	uint16_t config;
1912 
1913 	config = VR_SVI2_PLANE_1;
1914 	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1915 
1916 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1917 		config = VR_SVI2_PLANE_2;
1918 		table->VRConfig |= config;
1919 	} else {
1920 		pr_info("VDDCshould be on SVI2 controller!");
1921 	}
1922 
1923 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1924 		config = VR_SVI2_PLANE_2;
1925 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1926 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1927 		config = VR_SMIO_PATTERN_1;
1928 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1929 	}
1930 
1931 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1932 		config = VR_SMIO_PATTERN_2;
1933 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1940 {
1941 	int result;
1942 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1943 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1944 	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1945 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1946 	u32 i;
1947 
1948 	ci_initialize_power_tune_defaults(hwmgr);
1949 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1950 
1951 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1952 		ci_populate_smc_voltage_tables(hwmgr, table);
1953 
1954 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1955 			PHM_PlatformCaps_AutomaticDCTransition))
1956 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1957 
1958 
1959 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1960 			PHM_PlatformCaps_StepVddc))
1961 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1962 
1963 	if (data->is_memory_gddr5)
1964 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1965 
1966 	if (data->ulv_supported) {
1967 		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1968 		PP_ASSERT_WITH_CODE(0 == result,
1969 			"Failed to initialize ULV state!", return result);
1970 
1971 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1972 			ixCG_ULV_PARAMETER, 0x40035);
1973 	}
1974 
1975 	result = ci_populate_all_graphic_levels(hwmgr);
1976 	PP_ASSERT_WITH_CODE(0 == result,
1977 		"Failed to initialize Graphics Level!", return result);
1978 
1979 	result = ci_populate_all_memory_levels(hwmgr);
1980 	PP_ASSERT_WITH_CODE(0 == result,
1981 		"Failed to initialize Memory Level!", return result);
1982 
1983 	result = ci_populate_smc_link_level(hwmgr, table);
1984 	PP_ASSERT_WITH_CODE(0 == result,
1985 		"Failed to initialize Link Level!", return result);
1986 
1987 	result = ci_populate_smc_acpi_level(hwmgr, table);
1988 	PP_ASSERT_WITH_CODE(0 == result,
1989 		"Failed to initialize ACPI Level!", return result);
1990 
1991 	result = ci_populate_smc_vce_level(hwmgr, table);
1992 	PP_ASSERT_WITH_CODE(0 == result,
1993 		"Failed to initialize VCE Level!", return result);
1994 
1995 	result = ci_populate_smc_acp_level(hwmgr, table);
1996 	PP_ASSERT_WITH_CODE(0 == result,
1997 		"Failed to initialize ACP Level!", return result);
1998 
1999 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2000 	/* need to populate the  ARB settings for the initial state. */
2001 	result = ci_program_memory_timing_parameters(hwmgr);
2002 	PP_ASSERT_WITH_CODE(0 == result,
2003 		"Failed to Write ARB settings for the initial state.", return result);
2004 
2005 	result = ci_populate_smc_uvd_level(hwmgr, table);
2006 	PP_ASSERT_WITH_CODE(0 == result,
2007 		"Failed to initialize UVD Level!", return result);
2008 
2009 	table->UvdBootLevel  = 0;
2010 	table->VceBootLevel  = 0;
2011 	table->AcpBootLevel  = 0;
2012 	table->SamuBootLevel  = 0;
2013 
2014 	table->GraphicsBootLevel = 0;
2015 	table->MemoryBootLevel = 0;
2016 
2017 	result = ci_populate_smc_boot_level(hwmgr, table);
2018 	PP_ASSERT_WITH_CODE(0 == result,
2019 		"Failed to initialize Boot Level!", return result);
2020 
2021 	result = ci_populate_smc_initial_state(hwmgr);
2022 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2023 
2024 	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2025 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2026 
2027 	table->UVDInterval = 1;
2028 	table->VCEInterval = 1;
2029 	table->ACPInterval = 1;
2030 	table->SAMUInterval = 1;
2031 	table->GraphicsVoltageChangeEnable  = 1;
2032 	table->GraphicsThermThrottleEnable  = 1;
2033 	table->GraphicsInterval = 1;
2034 	table->VoltageInterval  = 1;
2035 	table->ThermalInterval  = 1;
2036 
2037 	table->TemperatureLimitHigh =
2038 		(data->thermal_temp_setting.temperature_high *
2039 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2040 	table->TemperatureLimitLow =
2041 		(data->thermal_temp_setting.temperature_low *
2042 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2043 
2044 	table->MemoryVoltageChangeEnable  = 1;
2045 	table->MemoryInterval  = 1;
2046 	table->VoltageResponseTime  = 0;
2047 	table->VddcVddciDelta = 4000;
2048 	table->PhaseResponseTime  = 0;
2049 	table->MemoryThermThrottleEnable  = 1;
2050 
2051 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2052 			"There must be 1 or more PCIE levels defined in PPTable.",
2053 			return -EINVAL);
2054 
2055 	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2056 	table->PCIeGenInterval = 1;
2057 
2058 	result = ci_populate_vr_config(hwmgr, table);
2059 	PP_ASSERT_WITH_CODE(0 == result,
2060 			"Failed to populate VRConfig setting!", return result);
2061 	data->vr_config = table->VRConfig;
2062 
2063 	ci_populate_smc_svi2_config(hwmgr, table);
2064 
2065 	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2066 		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2067 
2068 	table->ThermGpio  = 17;
2069 	table->SclkStepSize = 0x4000;
2070 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2071 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2072 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2073 				PHM_PlatformCaps_RegulatorHot);
2074 	} else {
2075 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2076 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2077 				PHM_PlatformCaps_RegulatorHot);
2078 	}
2079 
2080 	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2081 
2082 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2083 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2084 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2085 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2086 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2087 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2088 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2089 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2090 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2091 	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2092 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2093 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2094 
2095 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2096 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2097 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2098 
2099 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2100 	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2101 					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2102 					(uint8_t *)&(table->SystemFlags),
2103 					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2104 					SMC_RAM_END);
2105 
2106 	PP_ASSERT_WITH_CODE(0 == result,
2107 		"Failed to upload dpm data to SMC memory!", return result;);
2108 
2109 	result = ci_populate_initial_mc_reg_table(hwmgr);
2110 	PP_ASSERT_WITH_CODE((0 == result),
2111 		"Failed to populate initialize MC Reg table!", return result);
2112 
2113 	result = ci_populate_pm_fuses(hwmgr);
2114 	PP_ASSERT_WITH_CODE(0 == result,
2115 			"Failed to  populate PM fuses to SMC memory!", return result);
2116 
2117 	ci_start_smc(hwmgr);
2118 
2119 	return 0;
2120 }
2121 
2122 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2123 {
2124 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2125 	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2126 	uint32_t duty100;
2127 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2128 	uint16_t fdo_min, slope1, slope2;
2129 	uint32_t reference_clock;
2130 	int res;
2131 	uint64_t tmp64;
2132 
2133 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2134 		return 0;
2135 
2136 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2137 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2138 			PHM_PlatformCaps_MicrocodeFanControl);
2139 		return 0;
2140 	}
2141 
2142 	if (0 == ci_data->fan_table_start) {
2143 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2144 		return 0;
2145 	}
2146 
2147 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2148 
2149 	if (0 == duty100) {
2150 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2151 		return 0;
2152 	}
2153 
2154 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2155 	do_div(tmp64, 10000);
2156 	fdo_min = (uint16_t)tmp64;
2157 
2158 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2159 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2160 
2161 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2162 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2163 
2164 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2165 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2166 
2167 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2168 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2169 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2170 
2171 	fan_table.Slope1 = cpu_to_be16(slope1);
2172 	fan_table.Slope2 = cpu_to_be16(slope2);
2173 
2174 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2175 
2176 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2177 
2178 	fan_table.HystUp = cpu_to_be16(1);
2179 
2180 	fan_table.HystSlope = cpu_to_be16(1);
2181 
2182 	fan_table.TempRespLim = cpu_to_be16(5);
2183 
2184 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2185 
2186 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2187 
2188 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2189 
2190 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2191 
2192 	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2193 
2194 	return 0;
2195 }
2196 
2197 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2198 {
2199 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2200 
2201 	if (data->need_update_smu7_dpm_table &
2202 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2203 		return ci_program_memory_timing_parameters(hwmgr);
2204 
2205 	return 0;
2206 }
2207 
2208 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2209 {
2210 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2211 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2212 
2213 	int result = 0;
2214 	uint32_t low_sclk_interrupt_threshold = 0;
2215 
2216 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2217 			PHM_PlatformCaps_SclkThrottleLowNotification)
2218 		&& (data->low_sclk_interrupt_threshold != 0)) {
2219 		low_sclk_interrupt_threshold =
2220 				data->low_sclk_interrupt_threshold;
2221 
2222 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2223 
2224 		result = ci_copy_bytes_to_smc(
2225 				hwmgr,
2226 				smu_data->dpm_table_start +
2227 				offsetof(SMU7_Discrete_DpmTable,
2228 					LowSclkInterruptT),
2229 				(uint8_t *)&low_sclk_interrupt_threshold,
2230 				sizeof(uint32_t),
2231 				SMC_RAM_END);
2232 	}
2233 
2234 	result = ci_update_and_upload_mc_reg_table(hwmgr);
2235 
2236 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2237 
2238 	result = ci_program_mem_timing_parameters(hwmgr);
2239 	PP_ASSERT_WITH_CODE((result == 0),
2240 			"Failed to program memory timing parameters!",
2241 			);
2242 
2243 	return result;
2244 }
2245 
2246 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2247 {
2248 	switch (type) {
2249 	case SMU_SoftRegisters:
2250 		switch (member) {
2251 		case HandshakeDisables:
2252 			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2253 		case VoltageChangeTimeout:
2254 			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2255 		case AverageGraphicsActivity:
2256 			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2257 		case PreVBlankGap:
2258 			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2259 		case VBlankTimeout:
2260 			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2261 		case DRAM_LOG_ADDR_H:
2262 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2263 		case DRAM_LOG_ADDR_L:
2264 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2265 		case DRAM_LOG_PHY_ADDR_H:
2266 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2267 		case DRAM_LOG_PHY_ADDR_L:
2268 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2269 		case DRAM_LOG_BUFF_SIZE:
2270 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2271 		}
2272 		break;
2273 	case SMU_Discrete_DpmTable:
2274 		switch (member) {
2275 		case LowSclkInterruptThreshold:
2276 			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2277 		}
2278 		break;
2279 	}
2280 	pr_debug("can't get the offset of type %x member %x\n", type, member);
2281 	return 0;
2282 }
2283 
2284 static uint32_t ci_get_mac_definition(uint32_t value)
2285 {
2286 	switch (value) {
2287 	case SMU_MAX_LEVELS_GRAPHICS:
2288 		return SMU7_MAX_LEVELS_GRAPHICS;
2289 	case SMU_MAX_LEVELS_MEMORY:
2290 		return SMU7_MAX_LEVELS_MEMORY;
2291 	case SMU_MAX_LEVELS_LINK:
2292 		return SMU7_MAX_LEVELS_LINK;
2293 	case SMU_MAX_ENTRIES_SMIO:
2294 		return SMU7_MAX_ENTRIES_SMIO;
2295 	case SMU_MAX_LEVELS_VDDC:
2296 		return SMU7_MAX_LEVELS_VDDC;
2297 	case SMU_MAX_LEVELS_VDDCI:
2298 		return SMU7_MAX_LEVELS_VDDCI;
2299 	case SMU_MAX_LEVELS_MVDD:
2300 		return SMU7_MAX_LEVELS_MVDD;
2301 	}
2302 
2303 	pr_debug("can't get the mac of %x\n", value);
2304 	return 0;
2305 }
2306 
2307 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2308 {
2309 	uint32_t byte_count, start_addr;
2310 	uint8_t *src;
2311 	uint32_t data;
2312 
2313 	struct cgs_firmware_info info = {0};
2314 
2315 	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2316 
2317 	hwmgr->is_kicker = info.is_kicker;
2318 	hwmgr->smu_version = info.version;
2319 	byte_count = info.image_size;
2320 	src = (uint8_t *)info.kptr;
2321 	start_addr = info.ucode_start_address;
2322 
2323 	if  (byte_count > SMC_RAM_END) {
2324 		pr_err("SMC address is beyond the SMC RAM area.\n");
2325 		return -EINVAL;
2326 	}
2327 
2328 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2329 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2330 
2331 	for (; byte_count >= 4; byte_count -= 4) {
2332 		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2333 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2334 		src += 4;
2335 	}
2336 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2337 
2338 	if (0 != byte_count) {
2339 		pr_err("SMC size must be divisible by 4\n");
2340 		return -EINVAL;
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2347 {
2348 	if (ci_is_smc_ram_running(hwmgr)) {
2349 		pr_info("smc is running, no need to load smc firmware\n");
2350 		return 0;
2351 	}
2352 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2353 			boot_seq_done, 1);
2354 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2355 			pre_fetcher_en, 1);
2356 
2357 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2358 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2359 	return ci_load_smc_ucode(hwmgr);
2360 }
2361 
2362 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2363 {
2364 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2365 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2366 
2367 	uint32_t tmp = 0;
2368 	int result;
2369 	bool error = false;
2370 
2371 	if (ci_upload_firmware(hwmgr))
2372 		return -EINVAL;
2373 
2374 	result = ci_read_smc_sram_dword(hwmgr,
2375 				SMU7_FIRMWARE_HEADER_LOCATION +
2376 				offsetof(SMU7_Firmware_Header, DpmTable),
2377 				&tmp, SMC_RAM_END);
2378 
2379 	if (0 == result)
2380 		ci_data->dpm_table_start = tmp;
2381 
2382 	error |= (0 != result);
2383 
2384 	result = ci_read_smc_sram_dword(hwmgr,
2385 				SMU7_FIRMWARE_HEADER_LOCATION +
2386 				offsetof(SMU7_Firmware_Header, SoftRegisters),
2387 				&tmp, SMC_RAM_END);
2388 
2389 	if (0 == result) {
2390 		data->soft_regs_start = tmp;
2391 		ci_data->soft_regs_start = tmp;
2392 	}
2393 
2394 	error |= (0 != result);
2395 
2396 	result = ci_read_smc_sram_dword(hwmgr,
2397 				SMU7_FIRMWARE_HEADER_LOCATION +
2398 				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2399 				&tmp, SMC_RAM_END);
2400 
2401 	if (0 == result)
2402 		ci_data->mc_reg_table_start = tmp;
2403 
2404 	result = ci_read_smc_sram_dword(hwmgr,
2405 				SMU7_FIRMWARE_HEADER_LOCATION +
2406 				offsetof(SMU7_Firmware_Header, FanTable),
2407 				&tmp, SMC_RAM_END);
2408 
2409 	if (0 == result)
2410 		ci_data->fan_table_start = tmp;
2411 
2412 	error |= (0 != result);
2413 
2414 	result = ci_read_smc_sram_dword(hwmgr,
2415 				SMU7_FIRMWARE_HEADER_LOCATION +
2416 				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2417 				&tmp, SMC_RAM_END);
2418 
2419 	if (0 == result)
2420 		ci_data->arb_table_start = tmp;
2421 
2422 	error |= (0 != result);
2423 
2424 	result = ci_read_smc_sram_dword(hwmgr,
2425 				SMU7_FIRMWARE_HEADER_LOCATION +
2426 				offsetof(SMU7_Firmware_Header, Version),
2427 				&tmp, SMC_RAM_END);
2428 
2429 	if (0 == result)
2430 		hwmgr->microcode_version_info.SMC = tmp;
2431 
2432 	error |= (0 != result);
2433 
2434 	return error ? 1 : 0;
2435 }
2436 
2437 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2438 {
2439 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2440 }
2441 
2442 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2443 {
2444 	bool result = true;
2445 
2446 	switch (in_reg) {
2447 	case  mmMC_SEQ_RAS_TIMING:
2448 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2449 		break;
2450 
2451 	case  mmMC_SEQ_DLL_STBY:
2452 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2453 		break;
2454 
2455 	case  mmMC_SEQ_G5PDX_CMD0:
2456 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2457 		break;
2458 
2459 	case  mmMC_SEQ_G5PDX_CMD1:
2460 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2461 		break;
2462 
2463 	case  mmMC_SEQ_G5PDX_CTRL:
2464 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2465 		break;
2466 
2467 	case mmMC_SEQ_CAS_TIMING:
2468 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2469 		break;
2470 
2471 	case mmMC_SEQ_MISC_TIMING:
2472 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2473 		break;
2474 
2475 	case mmMC_SEQ_MISC_TIMING2:
2476 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2477 		break;
2478 
2479 	case mmMC_SEQ_PMG_DVS_CMD:
2480 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2481 		break;
2482 
2483 	case mmMC_SEQ_PMG_DVS_CTL:
2484 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2485 		break;
2486 
2487 	case mmMC_SEQ_RD_CTL_D0:
2488 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2489 		break;
2490 
2491 	case mmMC_SEQ_RD_CTL_D1:
2492 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2493 		break;
2494 
2495 	case mmMC_SEQ_WR_CTL_D0:
2496 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2497 		break;
2498 
2499 	case mmMC_SEQ_WR_CTL_D1:
2500 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2501 		break;
2502 
2503 	case mmMC_PMG_CMD_EMRS:
2504 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2505 		break;
2506 
2507 	case mmMC_PMG_CMD_MRS:
2508 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2509 		break;
2510 
2511 	case mmMC_PMG_CMD_MRS1:
2512 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2513 		break;
2514 
2515 	case mmMC_SEQ_PMG_TIMING:
2516 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2517 		break;
2518 
2519 	case mmMC_PMG_CMD_MRS2:
2520 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2521 		break;
2522 
2523 	case mmMC_SEQ_WR_CTL_2:
2524 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2525 		break;
2526 
2527 	default:
2528 		result = false;
2529 		break;
2530 	}
2531 
2532 	return result;
2533 }
2534 
2535 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2536 {
2537 	uint32_t i;
2538 	uint16_t address;
2539 
2540 	for (i = 0; i < table->last; i++) {
2541 		table->mc_reg_address[i].s0 =
2542 			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2543 			? address : table->mc_reg_address[i].s1;
2544 	}
2545 	return 0;
2546 }
2547 
2548 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2549 					struct ci_mc_reg_table *ni_table)
2550 {
2551 	uint8_t i, j;
2552 
2553 	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2554 		"Invalid VramInfo table.", return -EINVAL);
2555 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2556 		"Invalid VramInfo table.", return -EINVAL);
2557 
2558 	for (i = 0; i < table->last; i++)
2559 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2560 
2561 	ni_table->last = table->last;
2562 
2563 	for (i = 0; i < table->num_entries; i++) {
2564 		ni_table->mc_reg_table_entry[i].mclk_max =
2565 			table->mc_reg_table_entry[i].mclk_max;
2566 		for (j = 0; j < table->last; j++) {
2567 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2568 				table->mc_reg_table_entry[i].mc_data[j];
2569 		}
2570 	}
2571 
2572 	ni_table->num_entries = table->num_entries;
2573 
2574 	return 0;
2575 }
2576 
2577 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2578 					struct ci_mc_reg_table *table)
2579 {
2580 	uint8_t i, j, k;
2581 	uint32_t temp_reg;
2582 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2583 
2584 	for (i = 0, j = table->last; i < table->last; i++) {
2585 		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2586 			"Invalid VramInfo table.", return -EINVAL);
2587 
2588 		switch (table->mc_reg_address[i].s1) {
2589 
2590 		case mmMC_SEQ_MISC1:
2591 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2592 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2593 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2594 			for (k = 0; k < table->num_entries; k++) {
2595 				table->mc_reg_table_entry[k].mc_data[j] =
2596 					((temp_reg & 0xffff0000)) |
2597 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2598 			}
2599 			j++;
2600 
2601 			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2602 				"Invalid VramInfo table.", return -EINVAL);
2603 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2604 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2605 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2606 			for (k = 0; k < table->num_entries; k++) {
2607 				table->mc_reg_table_entry[k].mc_data[j] =
2608 					(temp_reg & 0xffff0000) |
2609 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2610 
2611 				if (!data->is_memory_gddr5)
2612 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2613 			}
2614 			j++;
2615 
2616 			if (!data->is_memory_gddr5) {
2617 				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2618 					"Invalid VramInfo table.", return -EINVAL);
2619 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2620 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2621 				for (k = 0; k < table->num_entries; k++) {
2622 					table->mc_reg_table_entry[k].mc_data[j] =
2623 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2624 				}
2625 				j++;
2626 			}
2627 
2628 			break;
2629 
2630 		case mmMC_SEQ_RESERVE_M:
2631 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2632 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2633 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2634 			for (k = 0; k < table->num_entries; k++) {
2635 				table->mc_reg_table_entry[k].mc_data[j] =
2636 					(temp_reg & 0xffff0000) |
2637 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2638 			}
2639 			j++;
2640 			break;
2641 
2642 		default:
2643 			break;
2644 		}
2645 
2646 	}
2647 
2648 	table->last = j;
2649 
2650 	return 0;
2651 }
2652 
2653 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2654 {
2655 	uint8_t i, j;
2656 
2657 	for (i = 0; i < table->last; i++) {
2658 		for (j = 1; j < table->num_entries; j++) {
2659 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2660 				table->mc_reg_table_entry[j].mc_data[i]) {
2661 				table->validflag |= (1 << i);
2662 				break;
2663 			}
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2671 {
2672 	int result;
2673 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2674 	pp_atomctrl_mc_reg_table *table;
2675 	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2676 	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2677 
2678 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2679 
2680 	if (NULL == table)
2681 		return -ENOMEM;
2682 
2683 	/* Program additional LP registers that are no longer programmed by VBIOS */
2684 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2685 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2686 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2687 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2688 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2689 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2690 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2691 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2692 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2693 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2694 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2695 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2696 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2697 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2698 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2699 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2700 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2701 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2702 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2703 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2704 
2705 	memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
2706 
2707 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2708 
2709 	if (0 == result)
2710 		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2711 
2712 	if (0 == result) {
2713 		ci_set_s0_mc_reg_index(ni_table);
2714 		result = ci_set_mc_special_registers(hwmgr, ni_table);
2715 	}
2716 
2717 	if (0 == result)
2718 		ci_set_valid_flag(ni_table);
2719 
2720 	kfree(table);
2721 
2722 	return result;
2723 }
2724 
2725 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2726 {
2727 	return ci_is_smc_ram_running(hwmgr);
2728 }
2729 
2730 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2731 {
2732 	struct ci_smumgr *ci_priv = NULL;
2733 
2734 	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2735 
2736 	if (ci_priv == NULL)
2737 		return -ENOMEM;
2738 
2739 	hwmgr->smu_backend = ci_priv;
2740 
2741 	return 0;
2742 }
2743 
2744 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2745 {
2746 	kfree(hwmgr->smu_backend);
2747 	hwmgr->smu_backend = NULL;
2748 	return 0;
2749 }
2750 
2751 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2752 {
2753 	return 0;
2754 }
2755 
2756 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2757 				void *profile_setting)
2758 {
2759 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2760 	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2761 			(hwmgr->smu_backend);
2762 	struct profile_mode_setting *setting;
2763 	struct SMU7_Discrete_GraphicsLevel *levels =
2764 			smu_data->smc_state_table.GraphicsLevel;
2765 	uint32_t array = smu_data->dpm_table_start +
2766 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2767 
2768 	uint32_t mclk_array = smu_data->dpm_table_start +
2769 			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2770 	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2771 			smu_data->smc_state_table.MemoryLevel;
2772 	uint32_t i;
2773 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2774 
2775 	if (profile_setting == NULL)
2776 		return -EINVAL;
2777 
2778 	setting = (struct profile_mode_setting *)profile_setting;
2779 
2780 	if (setting->bupdate_sclk) {
2781 		if (!data->sclk_dpm_key_disabled)
2782 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2783 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2784 			if (levels[i].ActivityLevel !=
2785 				cpu_to_be16(setting->sclk_activity)) {
2786 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2787 
2788 				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2789 						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2790 				offset = clk_activity_offset & ~0x3;
2791 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2792 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2793 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2794 
2795 			}
2796 			if (levels[i].UpH != setting->sclk_up_hyst ||
2797 				levels[i].DownH != setting->sclk_down_hyst) {
2798 				levels[i].UpH = setting->sclk_up_hyst;
2799 				levels[i].DownH = setting->sclk_down_hyst;
2800 				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2801 						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2802 				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2803 						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2804 				offset = up_hyst_offset & ~0x3;
2805 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2806 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2807 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2808 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2809 			}
2810 		}
2811 		if (!data->sclk_dpm_key_disabled)
2812 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2813 	}
2814 
2815 	if (setting->bupdate_mclk) {
2816 		if (!data->mclk_dpm_key_disabled)
2817 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2818 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2819 			if (mclk_levels[i].ActivityLevel !=
2820 				cpu_to_be16(setting->mclk_activity)) {
2821 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2822 
2823 				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2824 						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2825 				offset = clk_activity_offset & ~0x3;
2826 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2827 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2828 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2829 
2830 			}
2831 			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2832 				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2833 				mclk_levels[i].UpH = setting->mclk_up_hyst;
2834 				mclk_levels[i].DownH = setting->mclk_down_hyst;
2835 				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2836 						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2837 				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2838 						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2839 				offset = up_hyst_offset & ~0x3;
2840 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2841 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2842 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2843 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2844 			}
2845 		}
2846 		if (!data->mclk_dpm_key_disabled)
2847 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2848 	}
2849 	return 0;
2850 }
2851 
2852 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2853 {
2854 	struct amdgpu_device *adev = hwmgr->adev;
2855 	struct smu7_hwmgr *data = hwmgr->backend;
2856 	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2857 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2858 			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2859 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2860 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2861 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2862 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2863 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2864 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2865 	int32_t i;
2866 
2867 	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2868 		smu_data->smc_state_table.UvdBootLevel = 0;
2869 	else
2870 		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2871 
2872 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2873 				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2874 
2875 	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2876 
2877 	for (i = uvd_table->count - 1; i >= 0; i--) {
2878 		if (uvd_table->entries[i].v <= max_vddc)
2879 			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2880 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2881 			break;
2882 	}
2883 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2884 				data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2885 
2886 	return 0;
2887 }
2888 
2889 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2890 {
2891 	struct amdgpu_device *adev = hwmgr->adev;
2892 	struct smu7_hwmgr *data = hwmgr->backend;
2893 	struct phm_vce_clock_voltage_dependency_table *vce_table =
2894 			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2895 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2896 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2897 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2898 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2899 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2900 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2901 	int32_t i;
2902 
2903 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2904 				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2905 
2906 	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2907 
2908 	for (i = vce_table->count - 1; i >= 0; i--) {
2909 		if (vce_table->entries[i].v <= max_vddc)
2910 			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2911 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2912 			break;
2913 	}
2914 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2915 				data->dpm_level_enable_mask.vce_dpm_enable_mask);
2916 
2917 	return 0;
2918 }
2919 
2920 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2921 {
2922 	switch (type) {
2923 	case SMU_UVD_TABLE:
2924 		ci_update_uvd_smc_table(hwmgr);
2925 		break;
2926 	case SMU_VCE_TABLE:
2927 		ci_update_vce_smc_table(hwmgr);
2928 		break;
2929 	default:
2930 		break;
2931 	}
2932 	return 0;
2933 }
2934 
2935 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2936 {
2937 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2938 				  SMC_SYSCON_RESET_CNTL,
2939 				  rst_reg, 1);
2940 }
2941 
2942 
2943 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2944 {
2945 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2946 				  SMC_SYSCON_CLOCK_CNTL_0,
2947 				  ck_disable, 1);
2948 }
2949 
2950 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2951 {
2952 	ci_reset_smc(hwmgr);
2953 	ci_stop_smc_clock(hwmgr);
2954 
2955 	return 0;
2956 }
2957 
2958 const struct pp_smumgr_func ci_smu_funcs = {
2959 	.smu_init = ci_smu_init,
2960 	.smu_fini = ci_smu_fini,
2961 	.start_smu = ci_start_smu,
2962 	.check_fw_load_finish = NULL,
2963 	.request_smu_load_fw = NULL,
2964 	.request_smu_load_specific_fw = NULL,
2965 	.send_msg_to_smc = ci_send_msg_to_smc,
2966 	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2967 	.download_pptable_settings = NULL,
2968 	.upload_pptable_settings = NULL,
2969 	.get_offsetof = ci_get_offsetof,
2970 	.process_firmware_header = ci_process_firmware_header,
2971 	.init_smc_table = ci_init_smc_table,
2972 	.update_sclk_threshold = ci_update_sclk_threshold,
2973 	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2974 	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2975 	.populate_all_memory_levels = ci_populate_all_memory_levels,
2976 	.get_mac_definition = ci_get_mac_definition,
2977 	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2978 	.is_dpm_running = ci_is_dpm_running,
2979 	.update_dpm_settings = ci_update_dpm_settings,
2980 	.update_smc_table = ci_update_smc_table,
2981 	.stop_smc = ci_stop_smc,
2982 };
2983