xref: /dragonfly/sys/dev/drm/drm_dp_helper.c (revision 335b9e93)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/i2c.h>
30 #include <linux/seq_file.h>
31 #include <drm/drm_dp_helper.h>
32 #include <drm/drmP.h>
33 
34 #include "drm_crtc_helper_internal.h"
35 
36 /**
37  * DOC: dp helpers
38  *
39  * These functions contain some common logic and helpers at various abstraction
40  * levels to deal with Display Port sink devices and related things like DP aux
41  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
42  * blocks, ...
43  */
44 
45 /* Helpers for DP link training */
46 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
47 {
48 	return link_status[r - DP_LANE0_1_STATUS];
49 }
50 
51 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
52 			     int lane)
53 {
54 	int i = DP_LANE0_1_STATUS + (lane >> 1);
55 	int s = (lane & 1) * 4;
56 	u8 l = dp_link_status(link_status, i);
57 	return (l >> s) & 0xf;
58 }
59 
60 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
61 			  int lane_count)
62 {
63 	u8 lane_align;
64 	u8 lane_status;
65 	int lane;
66 
67 	lane_align = dp_link_status(link_status,
68 				    DP_LANE_ALIGN_STATUS_UPDATED);
69 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
70 		return false;
71 	for (lane = 0; lane < lane_count; lane++) {
72 		lane_status = dp_get_lane_status(link_status, lane);
73 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
74 			return false;
75 	}
76 	return true;
77 }
78 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
79 
80 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
81 			      int lane_count)
82 {
83 	int lane;
84 	u8 lane_status;
85 
86 	for (lane = 0; lane < lane_count; lane++) {
87 		lane_status = dp_get_lane_status(link_status, lane);
88 		if ((lane_status & DP_LANE_CR_DONE) == 0)
89 			return false;
90 	}
91 	return true;
92 }
93 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
94 
95 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
96 				     int lane)
97 {
98 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
99 	int s = ((lane & 1) ?
100 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
101 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
102 	u8 l = dp_link_status(link_status, i);
103 
104 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
105 }
106 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
107 
108 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
109 					  int lane)
110 {
111 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
112 	int s = ((lane & 1) ?
113 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
114 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
115 	u8 l = dp_link_status(link_status, i);
116 
117 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
118 }
119 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
120 
121 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) {
122 	if (dpcd[DP_TRAINING_AUX_RD_INTERVAL] == 0)
123 		udelay(100);
124 	else
125 		mdelay(dpcd[DP_TRAINING_AUX_RD_INTERVAL] * 4);
126 }
127 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
128 
129 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) {
130 	if (dpcd[DP_TRAINING_AUX_RD_INTERVAL] == 0)
131 		udelay(400);
132 	else
133 		mdelay(dpcd[DP_TRAINING_AUX_RD_INTERVAL] * 4);
134 }
135 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
136 
137 u8 drm_dp_link_rate_to_bw_code(int link_rate)
138 {
139 	switch (link_rate) {
140 	case 162000:
141 	default:
142 		return DP_LINK_BW_1_62;
143 	case 270000:
144 		return DP_LINK_BW_2_7;
145 	case 540000:
146 		return DP_LINK_BW_5_4;
147 	}
148 }
149 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
150 
151 int drm_dp_bw_code_to_link_rate(u8 link_bw)
152 {
153 	switch (link_bw) {
154 	case DP_LINK_BW_1_62:
155 	default:
156 		return 162000;
157 	case DP_LINK_BW_2_7:
158 		return 270000;
159 	case DP_LINK_BW_5_4:
160 		return 540000;
161 	}
162 }
163 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
164 
165 #define AUX_RETRY_INTERVAL 500 /* us */
166 
167 /**
168  * DOC: dp helpers
169  *
170  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
171  * independent access to AUX functionality. Drivers can take advantage of
172  * this by filling in the fields of the drm_dp_aux structure.
173  *
174  * Transactions are described using a hardware-independent drm_dp_aux_msg
175  * structure, which is passed into a driver's .transfer() implementation.
176  * Both native and I2C-over-AUX transactions are supported.
177  */
178 
179 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
180 			      unsigned int offset, void *buffer, size_t size)
181 {
182 	struct drm_dp_aux_msg msg;
183 	unsigned int retry, native_reply;
184 	int err = 0, ret = 0;
185 
186 	memset(&msg, 0, sizeof(msg));
187 	msg.address = offset;
188 	msg.request = request;
189 	msg.buffer = buffer;
190 	msg.size = size;
191 
192 	mutex_lock(&aux->hw_mutex);
193 
194 	/*
195 	 * The specification doesn't give any recommendation on how often to
196 	 * retry native transactions. We used to retry 7 times like for
197 	 * aux i2c transactions but real world devices this wasn't
198 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
199 	 */
200 	for (retry = 0; retry < 32; retry++) {
201 		if (ret != 0 && ret != -ETIMEDOUT) {
202 			usleep_range(AUX_RETRY_INTERVAL,
203 				     AUX_RETRY_INTERVAL + 100);
204 		}
205 
206 		ret = aux->transfer(aux, &msg);
207 
208 		if (ret >= 0) {
209 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
210 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
211 				if (ret == size)
212 					goto unlock;
213 
214 				ret = -EPROTO;
215 			} else
216 				ret = -EIO;
217 		}
218 
219 		/*
220 		 * We want the error we return to be the error we received on
221 		 * the first transaction, since we may get a different error the
222 		 * next time we retry
223 		 */
224 		if (!err)
225 			err = ret;
226 	}
227 
228 	DRM_DEBUG_KMS("Too many retries, giving up. First error: %d\n", err);
229 	ret = err;
230 
231 unlock:
232 	mutex_unlock(&aux->hw_mutex);
233 	return ret;
234 }
235 
236 /**
237  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
238  * @aux: DisplayPort AUX channel
239  * @offset: address of the (first) register to read
240  * @buffer: buffer to store the register values
241  * @size: number of bytes in @buffer
242  *
243  * Returns the number of bytes transferred on success, or a negative error
244  * code on failure. -EIO is returned if the request was NAKed by the sink or
245  * if the retry count was exceeded. If not all bytes were transferred, this
246  * function returns -EPROTO. Errors from the underlying AUX channel transfer
247  * function, with the exception of -EBUSY (which causes the transaction to
248  * be retried), are propagated to the caller.
249  */
250 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
251 			 void *buffer, size_t size)
252 {
253 	int ret;
254 
255 	/*
256 	 * HP ZR24w corrupts the first DPCD access after entering power save
257 	 * mode. Eg. on a read, the entire buffer will be filled with the same
258 	 * byte. Do a throw away read to avoid corrupting anything we care
259 	 * about. Afterwards things will work correctly until the monitor
260 	 * gets woken up and subsequently re-enters power save mode.
261 	 *
262 	 * The user pressing any button on the monitor is enough to wake it
263 	 * up, so there is no particularly good place to do the workaround.
264 	 * We just have to do it before any DPCD access and hope that the
265 	 * monitor doesn't power down exactly after the throw away read.
266 	 */
267 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV, buffer,
268 				 1);
269 	if (ret != 1)
270 		return ret;
271 
272 	return drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, buffer,
273 				  size);
274 }
275 EXPORT_SYMBOL(drm_dp_dpcd_read);
276 
277 /**
278  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
279  * @aux: DisplayPort AUX channel
280  * @offset: address of the (first) register to write
281  * @buffer: buffer containing the values to write
282  * @size: number of bytes in @buffer
283  *
284  * Returns the number of bytes transferred on success, or a negative error
285  * code on failure. -EIO is returned if the request was NAKed by the sink or
286  * if the retry count was exceeded. If not all bytes were transferred, this
287  * function returns -EPROTO. Errors from the underlying AUX channel transfer
288  * function, with the exception of -EBUSY (which causes the transaction to
289  * be retried), are propagated to the caller.
290  */
291 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
292 			  void *buffer, size_t size)
293 {
294 	return drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer,
295 				  size);
296 }
297 EXPORT_SYMBOL(drm_dp_dpcd_write);
298 
299 /**
300  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
301  * @aux: DisplayPort AUX channel
302  * @status: buffer to store the link status in (must be at least 6 bytes)
303  *
304  * Returns the number of bytes transferred on success or a negative error
305  * code on failure.
306  */
307 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
308 				 u8 status[DP_LINK_STATUS_SIZE])
309 {
310 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
311 				DP_LINK_STATUS_SIZE);
312 }
313 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
314 
315 /**
316  * drm_dp_link_probe() - probe a DisplayPort link for capabilities
317  * @aux: DisplayPort AUX channel
318  * @link: pointer to structure in which to return link capabilities
319  *
320  * The structure filled in by this function can usually be passed directly
321  * into drm_dp_link_power_up() and drm_dp_link_configure() to power up and
322  * configure the link based on the link's capabilities.
323  *
324  * Returns 0 on success or a negative error code on failure.
325  */
326 int drm_dp_link_probe(struct drm_dp_aux *aux, struct drm_dp_link *link)
327 {
328 	u8 values[3];
329 	int err;
330 
331 	memset(link, 0, sizeof(*link));
332 
333 	err = drm_dp_dpcd_read(aux, DP_DPCD_REV, values, sizeof(values));
334 	if (err < 0)
335 		return err;
336 
337 	link->revision = values[0];
338 	link->rate = drm_dp_bw_code_to_link_rate(values[1]);
339 	link->num_lanes = values[2] & DP_MAX_LANE_COUNT_MASK;
340 
341 	if (values[2] & DP_ENHANCED_FRAME_CAP)
342 		link->capabilities |= DP_LINK_CAP_ENHANCED_FRAMING;
343 
344 	return 0;
345 }
346 EXPORT_SYMBOL(drm_dp_link_probe);
347 
348 /**
349  * drm_dp_link_power_up() - power up a DisplayPort link
350  * @aux: DisplayPort AUX channel
351  * @link: pointer to a structure containing the link configuration
352  *
353  * Returns 0 on success or a negative error code on failure.
354  */
355 int drm_dp_link_power_up(struct drm_dp_aux *aux, struct drm_dp_link *link)
356 {
357 	u8 value;
358 	int err;
359 
360 	/* DP_SET_POWER register is only available on DPCD v1.1 and later */
361 	if (link->revision < 0x11)
362 		return 0;
363 
364 	err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
365 	if (err < 0)
366 		return err;
367 
368 	value &= ~DP_SET_POWER_MASK;
369 	value |= DP_SET_POWER_D0;
370 
371 	err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
372 	if (err < 0)
373 		return err;
374 
375 	/*
376 	 * According to the DP 1.1 specification, a "Sink Device must exit the
377 	 * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
378 	 * Control Field" (register 0x600).
379 	 */
380 	usleep_range(1000, 2000);
381 
382 	return 0;
383 }
384 EXPORT_SYMBOL(drm_dp_link_power_up);
385 
386 /**
387  * drm_dp_link_power_down() - power down a DisplayPort link
388  * @aux: DisplayPort AUX channel
389  * @link: pointer to a structure containing the link configuration
390  *
391  * Returns 0 on success or a negative error code on failure.
392  */
393 int drm_dp_link_power_down(struct drm_dp_aux *aux, struct drm_dp_link *link)
394 {
395 	u8 value;
396 	int err;
397 
398 	/* DP_SET_POWER register is only available on DPCD v1.1 and later */
399 	if (link->revision < 0x11)
400 		return 0;
401 
402 	err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
403 	if (err < 0)
404 		return err;
405 
406 	value &= ~DP_SET_POWER_MASK;
407 	value |= DP_SET_POWER_D3;
408 
409 	err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
410 	if (err < 0)
411 		return err;
412 
413 	return 0;
414 }
415 EXPORT_SYMBOL(drm_dp_link_power_down);
416 
417 /**
418  * drm_dp_link_configure() - configure a DisplayPort link
419  * @aux: DisplayPort AUX channel
420  * @link: pointer to a structure containing the link configuration
421  *
422  * Returns 0 on success or a negative error code on failure.
423  */
424 int drm_dp_link_configure(struct drm_dp_aux *aux, struct drm_dp_link *link)
425 {
426 	u8 values[2];
427 	int err;
428 
429 	values[0] = drm_dp_link_rate_to_bw_code(link->rate);
430 	values[1] = link->num_lanes;
431 
432 	if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
433 		values[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
434 
435 	err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, values, sizeof(values));
436 	if (err < 0)
437 		return err;
438 
439 	return 0;
440 }
441 EXPORT_SYMBOL(drm_dp_link_configure);
442 
443 /**
444  * drm_dp_downstream_max_clock() - extract branch device max
445  *                                 pixel rate for legacy VGA
446  *                                 converter or max TMDS clock
447  *                                 rate for others
448  * @dpcd: DisplayPort configuration data
449  * @port_cap: port capabilities
450  *
451  * Returns max clock in kHz on success or 0 if max clock not defined
452  */
453 int drm_dp_downstream_max_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
454 				const u8 port_cap[4])
455 {
456 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
457 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
458 		DP_DETAILED_CAP_INFO_AVAILABLE;
459 
460 	if (!detailed_cap_info)
461 		return 0;
462 
463 	switch (type) {
464 	case DP_DS_PORT_TYPE_VGA:
465 		return port_cap[1] * 8 * 1000;
466 	case DP_DS_PORT_TYPE_DVI:
467 	case DP_DS_PORT_TYPE_HDMI:
468 	case DP_DS_PORT_TYPE_DP_DUALMODE:
469 		return port_cap[1] * 2500;
470 	default:
471 		return 0;
472 	}
473 }
474 EXPORT_SYMBOL(drm_dp_downstream_max_clock);
475 
476 /**
477  * drm_dp_downstream_max_bpc() - extract branch device max
478  *                               bits per component
479  * @dpcd: DisplayPort configuration data
480  * @port_cap: port capabilities
481  *
482  * Returns max bpc on success or 0 if max bpc not defined
483  */
484 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
485 			      const u8 port_cap[4])
486 {
487 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
488 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
489 		DP_DETAILED_CAP_INFO_AVAILABLE;
490 	int bpc;
491 
492 	if (!detailed_cap_info)
493 		return 0;
494 
495 	switch (type) {
496 	case DP_DS_PORT_TYPE_VGA:
497 	case DP_DS_PORT_TYPE_DVI:
498 	case DP_DS_PORT_TYPE_HDMI:
499 	case DP_DS_PORT_TYPE_DP_DUALMODE:
500 		bpc = port_cap[2] & DP_DS_MAX_BPC_MASK;
501 
502 		switch (bpc) {
503 		case DP_DS_8BPC:
504 			return 8;
505 		case DP_DS_10BPC:
506 			return 10;
507 		case DP_DS_12BPC:
508 			return 12;
509 		case DP_DS_16BPC:
510 			return 16;
511 		}
512 	default:
513 		return 0;
514 	}
515 }
516 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
517 
518 /**
519  * drm_dp_downstream_id() - identify branch device
520  * @aux: DisplayPort AUX channel
521  * @id: DisplayPort branch device id
522  *
523  * Returns branch device id on success or NULL on failure
524  */
525 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
526 {
527 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
528 }
529 EXPORT_SYMBOL(drm_dp_downstream_id);
530 
531 /**
532  * drm_dp_downstream_debug() - debug DP branch devices
533  * @m: pointer for debugfs file
534  * @dpcd: DisplayPort configuration data
535  * @port_cap: port capabilities
536  * @aux: DisplayPort AUX channel
537  *
538  */
539 void drm_dp_downstream_debug(struct seq_file *m,
540 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
541 			     const u8 port_cap[4], struct drm_dp_aux *aux)
542 {
543 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
544 				 DP_DETAILED_CAP_INFO_AVAILABLE;
545 	int clk;
546 	int bpc;
547 	char id[6];
548 	int len;
549 	uint8_t rev[2];
550 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
551 	bool branch_device = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
552 			     DP_DWN_STRM_PORT_PRESENT;
553 
554 	seq_printf(m, "\tDP branch device present: %s\n",
555 		   branch_device ? "yes" : "no");
556 
557 	if (!branch_device)
558 		return;
559 
560 	switch (type) {
561 	case DP_DS_PORT_TYPE_DP:
562 		seq_puts(m, "\t\tType: DisplayPort\n");
563 		break;
564 	case DP_DS_PORT_TYPE_VGA:
565 		seq_puts(m, "\t\tType: VGA\n");
566 		break;
567 	case DP_DS_PORT_TYPE_DVI:
568 		seq_puts(m, "\t\tType: DVI\n");
569 		break;
570 	case DP_DS_PORT_TYPE_HDMI:
571 		seq_puts(m, "\t\tType: HDMI\n");
572 		break;
573 	case DP_DS_PORT_TYPE_NON_EDID:
574 		seq_puts(m, "\t\tType: others without EDID support\n");
575 		break;
576 	case DP_DS_PORT_TYPE_DP_DUALMODE:
577 		seq_puts(m, "\t\tType: DP++\n");
578 		break;
579 	case DP_DS_PORT_TYPE_WIRELESS:
580 		seq_puts(m, "\t\tType: Wireless\n");
581 		break;
582 	default:
583 		seq_puts(m, "\t\tType: N/A\n");
584 	}
585 
586 	drm_dp_downstream_id(aux, id);
587 	seq_printf(m, "\t\tID: %s\n", id);
588 
589 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
590 	if (len > 0)
591 		seq_printf(m, "\t\tHW: %d.%d\n",
592 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
593 
594 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, &rev, 2);
595 	if (len > 0)
596 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
597 
598 	if (detailed_cap_info) {
599 		clk = drm_dp_downstream_max_clock(dpcd, port_cap);
600 
601 		if (clk > 0) {
602 			if (type == DP_DS_PORT_TYPE_VGA)
603 				seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
604 			else
605 				seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
606 		}
607 
608 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap);
609 
610 		if (bpc > 0)
611 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
612 	}
613 }
614 EXPORT_SYMBOL(drm_dp_downstream_debug);
615 
616 /*
617  * I2C-over-AUX implementation
618  */
619 
620 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
621 {
622 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
623 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
624 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
625 	       I2C_FUNC_10BIT_ADDR;
626 }
627 
628 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
629 {
630 	/*
631 	 * In case of i2c defer or short i2c ack reply to a write,
632 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
633 	 * rest of the message
634 	 */
635 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
636 		msg->request &= DP_AUX_I2C_MOT;
637 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
638 	}
639 }
640 
641 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
642 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
643 #define AUX_STOP_LEN 4
644 #define AUX_CMD_LEN 4
645 #define AUX_ADDRESS_LEN 20
646 #define AUX_REPLY_PAD_LEN 4
647 #define AUX_LENGTH_LEN 8
648 
649 /*
650  * Calculate the duration of the AUX request/reply in usec. Gives the
651  * "best" case estimate, ie. successful while as short as possible.
652  */
653 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
654 {
655 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
656 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
657 
658 	if ((msg->request & DP_AUX_I2C_READ) == 0)
659 		len += msg->size * 8;
660 
661 	return len;
662 }
663 
664 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
665 {
666 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
667 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
668 
669 	/*
670 	 * For read we expect what was asked. For writes there will
671 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
672 	 */
673 	if (msg->request & DP_AUX_I2C_READ)
674 		len += msg->size * 8;
675 
676 	return len;
677 }
678 
679 #define I2C_START_LEN 1
680 #define I2C_STOP_LEN 1
681 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
682 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
683 
684 /*
685  * Calculate the length of the i2c transfer in usec, assuming
686  * the i2c bus speed is as specified. Gives the the "worst"
687  * case estimate, ie. successful while as long as possible.
688  * Doesn't account the the "MOT" bit, and instead assumes each
689  * message includes a START, ADDRESS and STOP. Neither does it
690  * account for additional random variables such as clock stretching.
691  */
692 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
693 				   int i2c_speed_khz)
694 {
695 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
696 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
697 			     msg->size * I2C_DATA_LEN +
698 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
699 }
700 
701 /*
702  * Deterine how many retries should be attempted to successfully transfer
703  * the specified message, based on the estimated durations of the
704  * i2c and AUX transfers.
705  */
706 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
707 			      int i2c_speed_khz)
708 {
709 	int aux_time_us = drm_dp_aux_req_duration(msg) +
710 		drm_dp_aux_reply_duration(msg);
711 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
712 
713 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
714 }
715 
716 /*
717  * FIXME currently assumes 10 kHz as some real world devices seem
718  * to require it. We should query/set the speed via DPCD if supported.
719  */
720 static int dp_aux_i2c_speed_khz __read_mostly = 10;
721 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
722 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
723 
724 /*
725  * Transfer a single I2C-over-AUX message and handle various error conditions,
726  * retrying the transaction as appropriate.  It is assumed that the
727  * aux->transfer function does not modify anything in the msg other than the
728  * reply field.
729  *
730  * Returns bytes transferred on success, or a negative error code on failure.
731  */
732 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
733 {
734 	unsigned int retry, defer_i2c;
735 	int ret;
736 	/*
737 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
738 	 * is required to retry at least seven times upon receiving AUX_DEFER
739 	 * before giving up the AUX transaction.
740 	 *
741 	 * We also try to account for the i2c bus speed.
742 	 */
743 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
744 
745 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
746 		ret = aux->transfer(aux, msg);
747 		if (ret < 0) {
748 			if (ret == -EBUSY)
749 				continue;
750 
751 			/*
752 			 * While timeouts can be errors, they're usually normal
753 			 * behavior (for instance, when a driver tries to
754 			 * communicate with a non-existant DisplayPort device).
755 			 * Avoid spamming the kernel log with timeout errors.
756 			 */
757 			if (ret == -ETIMEDOUT)
758 				DRM_DEBUG_KMS_RATELIMITED("transaction timed out\n");
759 			else
760 				DRM_DEBUG_KMS("transaction failed: %d\n", ret);
761 
762 			return ret;
763 		}
764 
765 
766 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
767 		case DP_AUX_NATIVE_REPLY_ACK:
768 			/*
769 			 * For I2C-over-AUX transactions this isn't enough, we
770 			 * need to check for the I2C ACK reply.
771 			 */
772 			break;
773 
774 		case DP_AUX_NATIVE_REPLY_NACK:
775 			DRM_DEBUG_KMS("native nack (result=%d, size=%zu)\n", ret, msg->size);
776 			return -EREMOTEIO;
777 
778 		case DP_AUX_NATIVE_REPLY_DEFER:
779 			DRM_DEBUG_KMS("native defer\n");
780 			/*
781 			 * We could check for I2C bit rate capabilities and if
782 			 * available adjust this interval. We could also be
783 			 * more careful with DP-to-legacy adapters where a
784 			 * long legacy cable may force very low I2C bit rates.
785 			 *
786 			 * For now just defer for long enough to hopefully be
787 			 * safe for all use-cases.
788 			 */
789 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
790 			continue;
791 
792 		default:
793 			DRM_ERROR("invalid native reply %#04x\n", msg->reply);
794 			return -EREMOTEIO;
795 		}
796 
797 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
798 		case DP_AUX_I2C_REPLY_ACK:
799 			/*
800 			 * Both native ACK and I2C ACK replies received. We
801 			 * can assume the transfer was successful.
802 			 */
803 			if (ret != msg->size)
804 				drm_dp_i2c_msg_write_status_update(msg);
805 			return ret;
806 
807 		case DP_AUX_I2C_REPLY_NACK:
808 			DRM_DEBUG_KMS("I2C nack (result=%d, size=%zu\n", ret, msg->size);
809 			aux->i2c_nack_count++;
810 			return -EREMOTEIO;
811 
812 		case DP_AUX_I2C_REPLY_DEFER:
813 			DRM_DEBUG_KMS("I2C defer\n");
814 			/* DP Compliance Test 4.2.2.5 Requirement:
815 			 * Must have at least 7 retries for I2C defers on the
816 			 * transaction to pass this test
817 			 */
818 			aux->i2c_defer_count++;
819 			if (defer_i2c < 7)
820 				defer_i2c++;
821 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
822 			drm_dp_i2c_msg_write_status_update(msg);
823 
824 			continue;
825 
826 		default:
827 			DRM_ERROR("invalid I2C reply %#04x\n", msg->reply);
828 			return -EREMOTEIO;
829 		}
830 	}
831 
832 	DRM_DEBUG_KMS("too many retries, giving up\n");
833 	return -EREMOTEIO;
834 }
835 
836 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
837 				       const struct i2c_msg *i2c_msg)
838 {
839 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
840 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
841 	msg->request |= DP_AUX_I2C_MOT;
842 }
843 
844 /*
845  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
846  *
847  * Returns an error code on failure, or a recommended transfer size on success.
848  */
849 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
850 {
851 	int err, ret = orig_msg->size;
852 	struct drm_dp_aux_msg msg = *orig_msg;
853 
854 	while (msg.size > 0) {
855 		err = drm_dp_i2c_do_msg(aux, &msg);
856 		if (err <= 0)
857 			return err == 0 ? -EPROTO : err;
858 
859 		if (err < msg.size && err < ret) {
860 			DRM_DEBUG_KMS("Partial I2C reply: requested %zu bytes got %d bytes\n",
861 				      msg.size, err);
862 			ret = err;
863 		}
864 
865 		msg.size -= err;
866 		msg.buffer += err;
867 	}
868 
869 	return ret;
870 }
871 
872 /*
873  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
874  * packets to be as large as possible. If not, the I2C transactions never
875  * succeed. Hence the default is maximum.
876  */
877 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
878 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
879 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
880 
881 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
882 			   int num)
883 {
884 	struct drm_dp_aux *aux = adapter->algo_data;
885 	unsigned int i, j;
886 	unsigned transfer_size;
887 	struct drm_dp_aux_msg msg;
888 	int err = 0;
889 
890 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
891 
892 	memset(&msg, 0, sizeof(msg));
893 
894 	for (i = 0; i < num; i++) {
895 		msg.address = msgs[i].addr;
896 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
897 		/* Send a bare address packet to start the transaction.
898 		 * Zero sized messages specify an address only (bare
899 		 * address) transaction.
900 		 */
901 		msg.buffer = NULL;
902 		msg.size = 0;
903 		err = drm_dp_i2c_do_msg(aux, &msg);
904 
905 		/*
906 		 * Reset msg.request in case in case it got
907 		 * changed into a WRITE_STATUS_UPDATE.
908 		 */
909 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
910 
911 		if (err < 0)
912 			break;
913 		/* We want each transaction to be as large as possible, but
914 		 * we'll go to smaller sizes if the hardware gives us a
915 		 * short reply.
916 		 */
917 		transfer_size = dp_aux_i2c_transfer_size;
918 		for (j = 0; j < msgs[i].len; j += msg.size) {
919 			msg.buffer = msgs[i].buf + j;
920 			msg.size = min(transfer_size, msgs[i].len - j);
921 
922 			err = drm_dp_i2c_drain_msg(aux, &msg);
923 
924 			/*
925 			 * Reset msg.request in case in case it got
926 			 * changed into a WRITE_STATUS_UPDATE.
927 			 */
928 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
929 
930 			if (err < 0)
931 				break;
932 			transfer_size = err;
933 		}
934 		if (err < 0)
935 			break;
936 	}
937 	if (err >= 0)
938 		err = num;
939 	/* Send a bare address packet to close out the transaction.
940 	 * Zero sized messages specify an address only (bare
941 	 * address) transaction.
942 	 */
943 	msg.request &= ~DP_AUX_I2C_MOT;
944 	msg.buffer = NULL;
945 	msg.size = 0;
946 	(void)drm_dp_i2c_do_msg(aux, &msg);
947 
948 	return err;
949 }
950 
951 static const struct i2c_algorithm drm_dp_i2c_algo = {
952 	.functionality = drm_dp_i2c_functionality,
953 	.master_xfer = drm_dp_i2c_xfer,
954 };
955 
956 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
957 {
958 	return container_of(i2c, struct drm_dp_aux, ddc);
959 }
960 
961 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
962 {
963 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
964 }
965 
966 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
967 {
968 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
969 }
970 
971 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
972 {
973 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
974 }
975 
976 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
977 	.lock_bus = lock_bus,
978 	.trylock_bus = trylock_bus,
979 	.unlock_bus = unlock_bus,
980 };
981 
982 /**
983  * drm_dp_aux_init() - minimally initialise an aux channel
984  * @aux: DisplayPort AUX channel
985  *
986  * If you need to use the drm_dp_aux's i2c adapter prior to registering it
987  * with the outside world, call drm_dp_aux_init() first. You must still
988  * call drm_dp_aux_register() once the connector has been registered to
989  * allow userspace access to the auxiliary DP channel.
990  */
991 void drm_dp_aux_init(struct drm_dp_aux *aux)
992 {
993 	lockinit(&aux->hw_mutex, "ahwm", 0, LK_CANRECURSE);
994 
995 	aux->ddc.algo = &drm_dp_i2c_algo;
996 	aux->ddc.algo_data = aux;
997 	aux->ddc.retries = 3;
998 
999 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
1000 }
1001 EXPORT_SYMBOL(drm_dp_aux_init);
1002 
1003 /**
1004  * drm_dp_aux_register() - initialise and register aux channel
1005  * @aux: DisplayPort AUX channel
1006  *
1007  * Automatically calls drm_dp_aux_init() if this hasn't been done yet.
1008  *
1009  * Returns 0 on success or a negative error code on failure.
1010  */
1011 int drm_dp_aux_register(struct drm_dp_aux *aux)
1012 {
1013 	int ret;
1014 
1015 	if (!aux->ddc.algo)
1016 		drm_dp_aux_init(aux);
1017 
1018 #if 0
1019 	aux->ddc.class = I2C_CLASS_DDC;
1020 	aux->ddc.owner = THIS_MODULE;
1021 #endif
1022 	aux->ddc.dev.parent = aux->dev;
1023 #if 0
1024 	aux->ddc.dev.of_node = aux->dev->of_node;
1025 #endif
1026 
1027 	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
1028 		sizeof(aux->ddc.name));
1029 
1030 	ret = drm_dp_aux_register_devnode(aux);
1031 	if (ret)
1032 		return ret;
1033 
1034 	ret = i2c_add_adapter(&aux->ddc);
1035 	if (ret) {
1036 		drm_dp_aux_unregister_devnode(aux);
1037 		return ret;
1038 	}
1039 
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL(drm_dp_aux_register);
1043 
1044 /**
1045  * drm_dp_aux_unregister() - unregister an AUX adapter
1046  * @aux: DisplayPort AUX channel
1047  */
1048 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
1049 {
1050 	drm_dp_aux_unregister_devnode(aux);
1051 	i2c_del_adapter(&aux->ddc);
1052 }
1053 EXPORT_SYMBOL(drm_dp_aux_unregister);
1054 
1055 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
1056 
1057 /**
1058  * drm_dp_psr_setup_time() - PSR setup in time usec
1059  * @psr_cap: PSR capabilities from DPCD
1060  *
1061  * Returns:
1062  * PSR setup time for the panel in microseconds,  negative
1063  * error code on failure.
1064  */
1065 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
1066 {
1067 	static const u16 psr_setup_time_us[] = {
1068 		PSR_SETUP_TIME(330),
1069 		PSR_SETUP_TIME(275),
1070 		PSR_SETUP_TIME(165),
1071 		PSR_SETUP_TIME(110),
1072 		PSR_SETUP_TIME(55),
1073 		PSR_SETUP_TIME(0),
1074 	};
1075 	int i;
1076 
1077 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
1078 	if (i >= ARRAY_SIZE(psr_setup_time_us))
1079 		return -EINVAL;
1080 
1081 	return psr_setup_time_us[i];
1082 }
1083 EXPORT_SYMBOL(drm_dp_psr_setup_time);
1084 
1085 #undef PSR_SETUP_TIME
1086