xref: /dragonfly/sys/dev/drm/drm_edid.c (revision 6589c761)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/i2c.h>
32 #include <linux/module.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_edid.h>
35 
36 #include <bus/iicbus/iic.h>
37 #include <bus/iicbus/iiconf.h>
38 #include "iicbus_if.h"
39 
40 #define version_greater(edid, maj, min) \
41 	(((edid)->version > (maj)) || \
42 	 ((edid)->version == (maj) && (edid)->revision > (min)))
43 
44 #define EDID_EST_TIMINGS 16
45 #define EDID_STD_TIMINGS 8
46 #define EDID_DETAILED_TIMINGS 4
47 
48 /*
49  * EDID blocks out in the wild have a variety of bugs, try to collect
50  * them here (note that userspace may work around broken monitors first,
51  * but fixes should make their way here so that the kernel "just works"
52  * on as many displays as possible).
53  */
54 
55 /* First detailed mode wrong, use largest 60Hz mode */
56 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
57 /* Reported 135MHz pixel clock is too high, needs adjustment */
58 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
59 /* Prefer the largest mode at 75 Hz */
60 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
61 /* Detail timing is in cm not mm */
62 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
63 /* Detailed timing descriptors have bogus size values, so just take the
64  * maximum size and use that.
65  */
66 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
67 /* Monitor forgot to set the first detailed is preferred bit. */
68 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
69 /* use +hsync +vsync for detailed mode */
70 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
71 /* Force reduced-blanking timings for detailed modes */
72 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
73 
74 struct detailed_mode_closure {
75 	struct drm_connector *connector;
76 	struct edid *edid;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* Belinea 10 15 55 */
100 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
101 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
102 
103 	/* Envision Peripherals, Inc. EN-7100e */
104 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
105 	/* Envision EN2028 */
106 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
107 
108 	/* Funai Electronics PM36B */
109 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
110 	  EDID_QUIRK_DETAILED_IN_CM },
111 
112 	/* LG Philips LCD LP154W01-A5 */
113 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
114 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
115 
116 	/* Philips 107p5 CRT */
117 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
118 
119 	/* Proview AY765C */
120 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121 
122 	/* Samsung SyncMaster 205BW.  Note: irony */
123 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
124 	/* Samsung SyncMaster 22[5-6]BW */
125 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
126 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
127 
128 	/* ViewSonic VA2026w */
129 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
130 };
131 
132 /*
133  * Autogenerated from the DMT spec.
134  * This table is copied from xfree86/modes/xf86EdidModes.c.
135  */
136 static const struct drm_display_mode drm_dmt_modes[] = {
137 	/* 640x350@85Hz */
138 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
139 		   736, 832, 0, 350, 382, 385, 445, 0,
140 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
141 	/* 640x400@85Hz */
142 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
143 		   736, 832, 0, 400, 401, 404, 445, 0,
144 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
145 	/* 720x400@85Hz */
146 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
147 		   828, 936, 0, 400, 401, 404, 446, 0,
148 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
149 	/* 640x480@60Hz */
150 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
151 		   752, 800, 0, 480, 489, 492, 525, 0,
152 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
153 	/* 640x480@72Hz */
154 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
155 		   704, 832, 0, 480, 489, 492, 520, 0,
156 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
157 	/* 640x480@75Hz */
158 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
159 		   720, 840, 0, 480, 481, 484, 500, 0,
160 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
161 	/* 640x480@85Hz */
162 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
163 		   752, 832, 0, 480, 481, 484, 509, 0,
164 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
165 	/* 800x600@56Hz */
166 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
167 		   896, 1024, 0, 600, 601, 603, 625, 0,
168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
169 	/* 800x600@60Hz */
170 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
171 		   968, 1056, 0, 600, 601, 605, 628, 0,
172 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
173 	/* 800x600@72Hz */
174 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
175 		   976, 1040, 0, 600, 637, 643, 666, 0,
176 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
177 	/* 800x600@75Hz */
178 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
179 		   896, 1056, 0, 600, 601, 604, 625, 0,
180 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
181 	/* 800x600@85Hz */
182 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
183 		   896, 1048, 0, 600, 601, 604, 631, 0,
184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
185 	/* 800x600@120Hz RB */
186 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
187 		   880, 960, 0, 600, 603, 607, 636, 0,
188 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
189 	/* 848x480@60Hz */
190 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
191 		   976, 1088, 0, 480, 486, 494, 517, 0,
192 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
193 	/* 1024x768@43Hz, interlace */
194 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
195 		   1208, 1264, 0, 768, 768, 772, 817, 0,
196 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
197 			DRM_MODE_FLAG_INTERLACE) },
198 	/* 1024x768@60Hz */
199 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
200 		   1184, 1344, 0, 768, 771, 777, 806, 0,
201 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
202 	/* 1024x768@70Hz */
203 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
204 		   1184, 1328, 0, 768, 771, 777, 806, 0,
205 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
206 	/* 1024x768@75Hz */
207 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
208 		   1136, 1312, 0, 768, 769, 772, 800, 0,
209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
210 	/* 1024x768@85Hz */
211 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
212 		   1168, 1376, 0, 768, 769, 772, 808, 0,
213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
214 	/* 1024x768@120Hz RB */
215 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
216 		   1104, 1184, 0, 768, 771, 775, 813, 0,
217 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
218 	/* 1152x864@75Hz */
219 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
220 		   1344, 1600, 0, 864, 865, 868, 900, 0,
221 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
222 	/* 1280x768@60Hz RB */
223 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
224 		   1360, 1440, 0, 768, 771, 778, 790, 0,
225 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
226 	/* 1280x768@60Hz */
227 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
228 		   1472, 1664, 0, 768, 771, 778, 798, 0,
229 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
230 	/* 1280x768@75Hz */
231 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
232 		   1488, 1696, 0, 768, 771, 778, 805, 0,
233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
234 	/* 1280x768@85Hz */
235 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
236 		   1496, 1712, 0, 768, 771, 778, 809, 0,
237 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
238 	/* 1280x768@120Hz RB */
239 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
240 		   1360, 1440, 0, 768, 771, 778, 813, 0,
241 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
242 	/* 1280x800@60Hz RB */
243 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
244 		   1360, 1440, 0, 800, 803, 809, 823, 0,
245 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
246 	/* 1280x800@60Hz */
247 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
248 		   1480, 1680, 0, 800, 803, 809, 831, 0,
249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
250 	/* 1280x800@75Hz */
251 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
252 		   1488, 1696, 0, 800, 803, 809, 838, 0,
253 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
254 	/* 1280x800@85Hz */
255 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
256 		   1496, 1712, 0, 800, 803, 809, 843, 0,
257 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
258 	/* 1280x800@120Hz RB */
259 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
260 		   1360, 1440, 0, 800, 803, 809, 847, 0,
261 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
262 	/* 1280x960@60Hz */
263 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
264 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
265 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 	/* 1280x960@85Hz */
267 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
268 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
270 	/* 1280x960@120Hz RB */
271 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
272 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
273 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
274 	/* 1280x1024@60Hz */
275 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
276 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
277 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
278 	/* 1280x1024@75Hz */
279 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
280 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
281 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 	/* 1280x1024@85Hz */
283 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
284 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
285 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
286 	/* 1280x1024@120Hz RB */
287 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
288 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
289 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
290 	/* 1360x768@60Hz */
291 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
292 		   1536, 1792, 0, 768, 771, 777, 795, 0,
293 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 	/* 1360x768@120Hz RB */
295 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
296 		   1440, 1520, 0, 768, 771, 776, 813, 0,
297 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
298 	/* 1400x1050@60Hz RB */
299 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
300 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
301 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
302 	/* 1400x1050@60Hz */
303 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
304 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
305 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
306 	/* 1400x1050@75Hz */
307 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
308 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
309 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 	/* 1400x1050@85Hz */
311 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
312 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 	/* 1400x1050@120Hz RB */
315 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
316 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
318 	/* 1440x900@60Hz RB */
319 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
320 		   1520, 1600, 0, 900, 903, 909, 926, 0,
321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 	/* 1440x900@60Hz */
323 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
324 		   1672, 1904, 0, 900, 903, 909, 934, 0,
325 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 	/* 1440x900@75Hz */
327 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
328 		   1688, 1936, 0, 900, 903, 909, 942, 0,
329 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 	/* 1440x900@85Hz */
331 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
332 		   1696, 1952, 0, 900, 903, 909, 948, 0,
333 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
334 	/* 1440x900@120Hz RB */
335 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
336 		   1520, 1600, 0, 900, 903, 909, 953, 0,
337 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
338 	/* 1600x1200@60Hz */
339 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
340 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
341 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 	/* 1600x1200@65Hz */
343 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
344 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
345 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 	/* 1600x1200@70Hz */
347 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
348 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 	/* 1600x1200@75Hz */
351 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
352 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 	/* 1600x1200@85Hz */
355 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
356 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 	/* 1600x1200@120Hz RB */
359 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
360 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
361 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
362 	/* 1680x1050@60Hz RB */
363 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
364 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
365 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
366 	/* 1680x1050@60Hz */
367 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
368 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
369 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 	/* 1680x1050@75Hz */
371 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
372 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
373 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 	/* 1680x1050@85Hz */
375 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
376 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
377 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 	/* 1680x1050@120Hz RB */
379 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
380 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
381 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 	/* 1792x1344@60Hz */
383 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
384 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
385 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 	/* 1792x1344@75Hz */
387 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
388 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
389 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 	/* 1792x1344@120Hz RB */
391 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
392 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
394 	/* 1856x1392@60Hz */
395 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
396 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
397 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 	/* 1856x1392@75Hz */
399 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
400 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
401 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 	/* 1856x1392@120Hz RB */
403 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
404 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 	/* 1920x1200@60Hz RB */
407 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
408 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410 	/* 1920x1200@60Hz */
411 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
412 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
413 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 	/* 1920x1200@75Hz */
415 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
416 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
417 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 	/* 1920x1200@85Hz */
419 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
420 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
421 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 	/* 1920x1200@120Hz RB */
423 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
424 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
426 	/* 1920x1440@60Hz */
427 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
428 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
429 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 	/* 1920x1440@75Hz */
431 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
432 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
433 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
434 	/* 1920x1440@120Hz RB */
435 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
436 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 	/* 2560x1600@60Hz RB */
439 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
440 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
441 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
442 	/* 2560x1600@60Hz */
443 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
444 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 	/* 2560x1600@75HZ */
447 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
448 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
449 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 	/* 2560x1600@85HZ */
451 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
452 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
453 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 	/* 2560x1600@120Hz RB */
455 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
456 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
458 };
459 
460 static const struct drm_display_mode edid_est_modes[] = {
461 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
462 		   968, 1056, 0, 600, 601, 605, 628, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
464 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
465 		   896, 1024, 0, 600, 601, 603,  625, 0,
466 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
467 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
468 		   720, 840, 0, 480, 481, 484, 500, 0,
469 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
470 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
471 		   704,  832, 0, 480, 489, 491, 520, 0,
472 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
473 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
474 		   768,  864, 0, 480, 483, 486, 525, 0,
475 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
476 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
477 		   752, 800, 0, 480, 490, 492, 525, 0,
478 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
479 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
480 		   846, 900, 0, 400, 421, 423,  449, 0,
481 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
482 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
483 		   846,  900, 0, 400, 412, 414, 449, 0,
484 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
485 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
486 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
488 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
489 		   1136, 1312, 0,  768, 769, 772, 800, 0,
490 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
491 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
492 		   1184, 1328, 0,  768, 771, 777, 806, 0,
493 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
494 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
495 		   1184, 1344, 0,  768, 771, 777, 806, 0,
496 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
497 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
498 		   1208, 1264, 0, 768, 768, 776, 817, 0,
499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
500 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
501 		   928, 1152, 0, 624, 625, 628, 667, 0,
502 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
503 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
504 		   896, 1056, 0, 600, 601, 604,  625, 0,
505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
506 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
507 		   976, 1040, 0, 600, 637, 643, 666, 0,
508 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
509 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
510 		   1344, 1600, 0,  864, 865, 868, 900, 0,
511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
512 };
513 
514 struct minimode {
515 	short w;
516 	short h;
517 	short r;
518 	short rb;
519 };
520 
521 static const struct minimode est3_modes[] = {
522 	/* byte 6 */
523 	{ 640, 350, 85, 0 },
524 	{ 640, 400, 85, 0 },
525 	{ 720, 400, 85, 0 },
526 	{ 640, 480, 85, 0 },
527 	{ 848, 480, 60, 0 },
528 	{ 800, 600, 85, 0 },
529 	{ 1024, 768, 85, 0 },
530 	{ 1152, 864, 75, 0 },
531 	/* byte 7 */
532 	{ 1280, 768, 60, 1 },
533 	{ 1280, 768, 60, 0 },
534 	{ 1280, 768, 75, 0 },
535 	{ 1280, 768, 85, 0 },
536 	{ 1280, 960, 60, 0 },
537 	{ 1280, 960, 85, 0 },
538 	{ 1280, 1024, 60, 0 },
539 	{ 1280, 1024, 85, 0 },
540 	/* byte 8 */
541 	{ 1360, 768, 60, 0 },
542 	{ 1440, 900, 60, 1 },
543 	{ 1440, 900, 60, 0 },
544 	{ 1440, 900, 75, 0 },
545 	{ 1440, 900, 85, 0 },
546 	{ 1400, 1050, 60, 1 },
547 	{ 1400, 1050, 60, 0 },
548 	{ 1400, 1050, 75, 0 },
549 	/* byte 9 */
550 	{ 1400, 1050, 85, 0 },
551 	{ 1680, 1050, 60, 1 },
552 	{ 1680, 1050, 60, 0 },
553 	{ 1680, 1050, 75, 0 },
554 	{ 1680, 1050, 85, 0 },
555 	{ 1600, 1200, 60, 0 },
556 	{ 1600, 1200, 65, 0 },
557 	{ 1600, 1200, 70, 0 },
558 	/* byte 10 */
559 	{ 1600, 1200, 75, 0 },
560 	{ 1600, 1200, 85, 0 },
561 	{ 1792, 1344, 60, 0 },
562 	{ 1792, 1344, 85, 0 },
563 	{ 1856, 1392, 60, 0 },
564 	{ 1856, 1392, 75, 0 },
565 	{ 1920, 1200, 60, 1 },
566 	{ 1920, 1200, 60, 0 },
567 	/* byte 11 */
568 	{ 1920, 1200, 75, 0 },
569 	{ 1920, 1200, 85, 0 },
570 	{ 1920, 1440, 60, 0 },
571 	{ 1920, 1440, 75, 0 },
572 };
573 
574 static const struct minimode extra_modes[] = {
575 	{ 1024, 576,  60, 0 },
576 	{ 1366, 768,  60, 0 },
577 	{ 1600, 900,  60, 0 },
578 	{ 1680, 945,  60, 0 },
579 	{ 1920, 1080, 60, 0 },
580 	{ 2048, 1152, 60, 0 },
581 	{ 2048, 1536, 60, 0 },
582 };
583 
584 /*
585  * Probably taken from CEA-861 spec.
586  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
587  */
588 static const struct drm_display_mode edid_cea_modes[] = {
589 	/* 1 - 640x480@60Hz */
590 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
591 		   752, 800, 0, 480, 490, 492, 525, 0,
592 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
593 	/* 2 - 720x480@60Hz */
594 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
595 		   798, 858, 0, 480, 489, 495, 525, 0,
596 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 	/* 3 - 720x480@60Hz */
598 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
599 		   798, 858, 0, 480, 489, 495, 525, 0,
600 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
601 	/* 4 - 1280x720@60Hz */
602 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
603 		   1430, 1650, 0, 720, 725, 730, 750, 0,
604 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
605 	/* 5 - 1920x1080i@60Hz */
606 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
607 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
608 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
609 			DRM_MODE_FLAG_INTERLACE) },
610 	/* 6 - 1440x480i@60Hz */
611 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
612 		   1602, 1716, 0, 480, 488, 494, 525, 0,
613 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
614 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
615 	/* 7 - 1440x480i@60Hz */
616 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
617 		   1602, 1716, 0, 480, 488, 494, 525, 0,
618 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
619 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
620 	/* 8 - 1440x240@60Hz */
621 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
622 		   1602, 1716, 0, 240, 244, 247, 262, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
624 			DRM_MODE_FLAG_DBLCLK) },
625 	/* 9 - 1440x240@60Hz */
626 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
627 		   1602, 1716, 0, 240, 244, 247, 262, 0,
628 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
629 			DRM_MODE_FLAG_DBLCLK) },
630 	/* 10 - 2880x480i@60Hz */
631 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
632 		   3204, 3432, 0, 480, 488, 494, 525, 0,
633 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
634 			DRM_MODE_FLAG_INTERLACE) },
635 	/* 11 - 2880x480i@60Hz */
636 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
637 		   3204, 3432, 0, 480, 488, 494, 525, 0,
638 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
639 			DRM_MODE_FLAG_INTERLACE) },
640 	/* 12 - 2880x240@60Hz */
641 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
642 		   3204, 3432, 0, 240, 244, 247, 262, 0,
643 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
644 	/* 13 - 2880x240@60Hz */
645 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
646 		   3204, 3432, 0, 240, 244, 247, 262, 0,
647 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
648 	/* 14 - 1440x480@60Hz */
649 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
650 		   1596, 1716, 0, 480, 489, 495, 525, 0,
651 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
652 	/* 15 - 1440x480@60Hz */
653 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
654 		   1596, 1716, 0, 480, 489, 495, 525, 0,
655 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
656 	/* 16 - 1920x1080@60Hz */
657 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
658 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
660 	/* 17 - 720x576@50Hz */
661 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
662 		   796, 864, 0, 576, 581, 586, 625, 0,
663 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
664 	/* 18 - 720x576@50Hz */
665 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
666 		   796, 864, 0, 576, 581, 586, 625, 0,
667 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
668 	/* 19 - 1280x720@50Hz */
669 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
670 		   1760, 1980, 0, 720, 725, 730, 750, 0,
671 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
672 	/* 20 - 1920x1080i@50Hz */
673 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
674 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
675 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
676 			DRM_MODE_FLAG_INTERLACE) },
677 	/* 21 - 1440x576i@50Hz */
678 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
679 		   1590, 1728, 0, 576, 580, 586, 625, 0,
680 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
681 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
682 	/* 22 - 1440x576i@50Hz */
683 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
684 		   1590, 1728, 0, 576, 580, 586, 625, 0,
685 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
686 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
687 	/* 23 - 1440x288@50Hz */
688 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
689 		   1590, 1728, 0, 288, 290, 293, 312, 0,
690 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
691 			DRM_MODE_FLAG_DBLCLK) },
692 	/* 24 - 1440x288@50Hz */
693 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
694 		   1590, 1728, 0, 288, 290, 293, 312, 0,
695 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
696 			DRM_MODE_FLAG_DBLCLK) },
697 	/* 25 - 2880x576i@50Hz */
698 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
699 		   3180, 3456, 0, 576, 580, 586, 625, 0,
700 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
701 			DRM_MODE_FLAG_INTERLACE) },
702 	/* 26 - 2880x576i@50Hz */
703 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
704 		   3180, 3456, 0, 576, 580, 586, 625, 0,
705 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
706 			DRM_MODE_FLAG_INTERLACE) },
707 	/* 27 - 2880x288@50Hz */
708 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
709 		   3180, 3456, 0, 288, 290, 293, 312, 0,
710 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
711 	/* 28 - 2880x288@50Hz */
712 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
713 		   3180, 3456, 0, 288, 290, 293, 312, 0,
714 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
715 	/* 29 - 1440x576@50Hz */
716 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
717 		   1592, 1728, 0, 576, 581, 586, 625, 0,
718 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
719 	/* 30 - 1440x576@50Hz */
720 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
721 		   1592, 1728, 0, 576, 581, 586, 625, 0,
722 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
723 	/* 31 - 1920x1080@50Hz */
724 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
725 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
726 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
727 	/* 32 - 1920x1080@24Hz */
728 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
729 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
730 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
731 	/* 33 - 1920x1080@25Hz */
732 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
733 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
734 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
735 	/* 34 - 1920x1080@30Hz */
736 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
737 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
738 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
739 	/* 35 - 2880x480@60Hz */
740 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
741 		   3192, 3432, 0, 480, 489, 495, 525, 0,
742 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
743 	/* 36 - 2880x480@60Hz */
744 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
745 		   3192, 3432, 0, 480, 489, 495, 525, 0,
746 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
747 	/* 37 - 2880x576@50Hz */
748 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
749 		   3184, 3456, 0, 576, 581, 586, 625, 0,
750 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
751 	/* 38 - 2880x576@50Hz */
752 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
753 		   3184, 3456, 0, 576, 581, 586, 625, 0,
754 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
755 	/* 39 - 1920x1080i@50Hz */
756 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
757 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
758 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
759 			DRM_MODE_FLAG_INTERLACE) },
760 	/* 40 - 1920x1080i@100Hz */
761 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
762 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
763 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
764 			DRM_MODE_FLAG_INTERLACE) },
765 	/* 41 - 1280x720@100Hz */
766 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
767 		   1760, 1980, 0, 720, 725, 730, 750, 0,
768 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
769 	/* 42 - 720x576@100Hz */
770 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
771 		   796, 864, 0, 576, 581, 586, 625, 0,
772 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
773 	/* 43 - 720x576@100Hz */
774 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
775 		   796, 864, 0, 576, 581, 586, 625, 0,
776 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
777 	/* 44 - 1440x576i@100Hz */
778 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
779 		   1590, 1728, 0, 576, 580, 586, 625, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 			DRM_MODE_FLAG_DBLCLK) },
782 	/* 45 - 1440x576i@100Hz */
783 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
784 		   1590, 1728, 0, 576, 580, 586, 625, 0,
785 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
786 			DRM_MODE_FLAG_DBLCLK) },
787 	/* 46 - 1920x1080i@120Hz */
788 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
789 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
790 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
791 			DRM_MODE_FLAG_INTERLACE) },
792 	/* 47 - 1280x720@120Hz */
793 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
794 		   1430, 1650, 0, 720, 725, 730, 750, 0,
795 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
796 	/* 48 - 720x480@120Hz */
797 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
798 		   798, 858, 0, 480, 489, 495, 525, 0,
799 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
800 	/* 49 - 720x480@120Hz */
801 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
802 		   798, 858, 0, 480, 489, 495, 525, 0,
803 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
804 	/* 50 - 1440x480i@120Hz */
805 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
806 		   1602, 1716, 0, 480, 488, 494, 525, 0,
807 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
808 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
809 	/* 51 - 1440x480i@120Hz */
810 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
811 		   1602, 1716, 0, 480, 488, 494, 525, 0,
812 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
813 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
814 	/* 52 - 720x576@200Hz */
815 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
816 		   796, 864, 0, 576, 581, 586, 625, 0,
817 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
818 	/* 53 - 720x576@200Hz */
819 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
820 		   796, 864, 0, 576, 581, 586, 625, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
822 	/* 54 - 1440x576i@200Hz */
823 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
824 		   1590, 1728, 0, 576, 580, 586, 625, 0,
825 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
826 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
827 	/* 55 - 1440x576i@200Hz */
828 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
829 		   1590, 1728, 0, 576, 580, 586, 625, 0,
830 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
831 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
832 	/* 56 - 720x480@240Hz */
833 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
834 		   798, 858, 0, 480, 489, 495, 525, 0,
835 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
836 	/* 57 - 720x480@240Hz */
837 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
838 		   798, 858, 0, 480, 489, 495, 525, 0,
839 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
840 	/* 58 - 1440x480i@240 */
841 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
842 		   1602, 1716, 0, 480, 488, 494, 525, 0,
843 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
844 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
845 	/* 59 - 1440x480i@240 */
846 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
847 		   1602, 1716, 0, 480, 488, 494, 525, 0,
848 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
849 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
850 	/* 60 - 1280x720@24Hz */
851 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
852 		   3080, 3300, 0, 720, 725, 730, 750, 0,
853 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
854 	/* 61 - 1280x720@25Hz */
855 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
856 		   3740, 3960, 0, 720, 725, 730, 750, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
858 	/* 62 - 1280x720@30Hz */
859 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
860 		   3080, 3300, 0, 720, 725, 730, 750, 0,
861 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
862 	/* 63 - 1920x1080@120Hz */
863 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
864 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
865 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
866 	/* 64 - 1920x1080@100Hz */
867 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
868 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
869 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
870 };
871 
872 /*** DDC fetch and block validation ***/
873 
874 static const u8 edid_header[] = {
875 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
876 };
877 
878  /*
879  * Sanity check the header of the base EDID block.  Return 8 if the header
880  * is perfect, down to 0 if it's totally wrong.
881  */
882 int drm_edid_header_is_valid(const u8 *raw_edid)
883 {
884 	int i, score = 0;
885 
886 	for (i = 0; i < sizeof(edid_header); i++)
887 		if (raw_edid[i] == edid_header[i])
888 			score++;
889 
890 	return score;
891 }
892 EXPORT_SYMBOL(drm_edid_header_is_valid);
893 
894 static int edid_fixup __read_mostly = 6;
895 module_param_named(edid_fixup, edid_fixup, int, 0400);
896 MODULE_PARM_DESC(edid_fixup,
897 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
898 
899 /*
900  * Sanity check the EDID block (base or extension).  Return 0 if the block
901  * doesn't check out, or 1 if it's valid.
902  */
903 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
904 {
905 	int i;
906 	u8 csum = 0;
907 	struct edid *edid = (struct edid *)raw_edid;
908 
909 	if (edid_fixup > 8 || edid_fixup < 0)
910 		edid_fixup = 6;
911 
912 	if (block == 0) {
913 		int score = drm_edid_header_is_valid(raw_edid);
914 		if (score == 8) ;
915 		else if (score >= edid_fixup) {
916 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
917 			memcpy(raw_edid, edid_header, sizeof(edid_header));
918 		} else {
919 			goto bad;
920 		}
921 	}
922 
923 	for (i = 0; i < EDID_LENGTH; i++)
924 		csum += raw_edid[i];
925 	if (csum) {
926 		if (print_bad_edid) {
927 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
928 		}
929 
930 		/* allow CEA to slide through, switches mangle this */
931 		if (raw_edid[0] != 0x02)
932 			goto bad;
933 	}
934 
935 	/* per-block-type checks */
936 	switch (raw_edid[0]) {
937 	case 0: /* base */
938 		if (edid->version != 1) {
939 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
940 			goto bad;
941 		}
942 
943 		if (edid->revision > 4)
944 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
945 		break;
946 
947 	default:
948 		break;
949 	}
950 
951 	return 1;
952 
953 bad:
954 	if (raw_edid && print_bad_edid) {
955 		DRM_DEBUG_KMS("Raw EDID:\n");
956 		for (i = 0; i < EDID_LENGTH; ) {
957 			kprintf("%02x", raw_edid[i]);
958 			i++;
959 			if (i % 16 == 0 || i == EDID_LENGTH)
960 				kprintf("\n");
961 			else if (i % 8 == 0)
962 				kprintf("  ");
963 			else
964 				kprintf(" ");
965 		}
966 	}
967 	return 0;
968 }
969 EXPORT_SYMBOL(drm_edid_block_valid);
970 
971 /**
972  * drm_edid_is_valid - sanity check EDID data
973  * @edid: EDID data
974  *
975  * Sanity-check an entire EDID record (including extensions)
976  */
977 bool drm_edid_is_valid(struct edid *edid)
978 {
979 	int i;
980 	u8 *raw = (u8 *)edid;
981 
982 	if (!edid)
983 		return false;
984 
985 	for (i = 0; i <= edid->extensions; i++)
986 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
987 			return false;
988 
989 	return true;
990 }
991 EXPORT_SYMBOL(drm_edid_is_valid);
992 
993 #define DDC_SEGMENT_ADDR 0x30
994 /**
995  * Get EDID information via I2C.
996  *
997  * \param adapter : i2c device adaptor
998  * \param buf     : EDID data buffer to be filled
999  * \param len     : EDID data buffer length
1000  * \return 0 on success or -1 on failure.
1001  *
1002  * Try to fetch EDID information by calling i2c driver function.
1003  */
1004 static int
1005 drm_do_probe_ddc_edid(struct device *adapter, unsigned char *buf,
1006 		      int block, int len)
1007 {
1008 	unsigned char start = block * EDID_LENGTH;
1009 	unsigned char segment = block >> 1;
1010 	unsigned char xfers = segment ? 3 : 2;
1011 	int ret, retries = 5;
1012 
1013 	/* The core i2c driver will automatically retry the transfer if the
1014 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1015 	 * are susceptible to errors under a heavily loaded machine and
1016 	 * generate spurious NAKs and timeouts. Retrying the transfer
1017 	 * of the individual block a few times seems to overcome this.
1018 	 */
1019 	do {
1020 		struct i2c_msg msgs[] = {
1021 			{
1022 				.slave	= DDC_SEGMENT_ADDR << 1,
1023 				.flags	= 0,
1024 				.len	= 1,
1025 				.buf	= &segment,
1026 			}, {
1027 				.slave	= DDC_ADDR << 1,
1028 				.flags	= 0,
1029 				.len	= 1,
1030 				.buf	= &start,
1031 			}, {
1032 				.slave	= DDC_ADDR << 1,
1033 				.flags	= I2C_M_RD,
1034 				.len	= len,
1035 				.buf	= buf,
1036 			}
1037 		};
1038 
1039 	/*
1040 	 * Avoid sending the segment addr to not upset non-compliant ddc
1041 	 * monitors.
1042 	 */
1043 		ret = iicbus_transfer(adapter, &msgs[3 - xfers], xfers);
1044 
1045 		if (ret != 0)
1046 			DRM_DEBUG_KMS("iicbus_transfer countdown %d error %d\n",
1047 			    retries, ret);
1048 	} while (ret != 0 && --retries);
1049 
1050 	return (ret == 0 ? 0 : -1);
1051 }
1052 
1053 static bool drm_edid_is_zero(u8 *in_edid, int length)
1054 {
1055 	int i;
1056 	u32 *raw_edid = (u32 *)in_edid;
1057 
1058 	for (i = 0; i < length / 4; i++)
1059 		if (*(raw_edid + i) != 0)
1060 			return false;
1061 
1062 	return true;
1063 }
1064 
1065 static u8 *
1066 drm_do_get_edid(struct drm_connector *connector, struct device *adapter)
1067 {
1068 	int i, j = 0, valid_extensions = 0;
1069 	u8 *block, *new;
1070 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1071 
1072 	block = kmalloc(EDID_LENGTH, M_DRM, M_WAITOK | M_ZERO);
1073 
1074 	/* base block fetch */
1075 	for (i = 0; i < 4; i++) {
1076 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1077 			goto out;
1078 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1079 			break;
1080 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1081 			connector->null_edid_counter++;
1082 			goto carp;
1083 		}
1084 	}
1085 	if (i == 4)
1086 		goto carp;
1087 
1088 	/* if there's no extensions, we're done */
1089 	if (block[0x7e] == 0)
1090 		return block;
1091 
1092 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, M_DRM, M_WAITOK);
1093 	if (!new)
1094 		goto out;
1095 	block = new;
1096 
1097 	for (j = 1; j <= block[0x7e]; j++) {
1098 		for (i = 0; i < 4; i++) {
1099 			if (drm_do_probe_ddc_edid(adapter,
1100 				  block + (valid_extensions + 1) * EDID_LENGTH,
1101 				  j, EDID_LENGTH))
1102 				goto out;
1103 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1104 				valid_extensions++;
1105 				break;
1106 			}
1107 		}
1108 
1109 		if (i == 4 && print_bad_edid) {
1110 			dev_warn(connector->dev->dev,
1111 			 "%s: Ignoring invalid EDID block %d.\n",
1112 			 drm_get_connector_name(connector), j);
1113 
1114 			connector->bad_edid_counter++;
1115 		}
1116 	}
1117 
1118 	if (valid_extensions != block[0x7e]) {
1119 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1120 		block[0x7e] = valid_extensions;
1121 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH,
1122 		    M_DRM, M_WAITOK);
1123 		if (!new)
1124 			goto out;
1125 		block = new;
1126 	}
1127 
1128 	return block;
1129 
1130 carp:
1131 	if (print_bad_edid) {
1132 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1133 			 drm_get_connector_name(connector), j);
1134 	}
1135 	connector->bad_edid_counter++;
1136 
1137 out:
1138 	kfree(block, M_DRM);
1139 	return NULL;
1140 }
1141 
1142 /**
1143  * Probe DDC presence.
1144  *
1145  * \param adapter : i2c device adaptor
1146  * \return 1 on success
1147  */
1148 bool
1149 drm_probe_ddc(struct device *adapter)
1150 {
1151 	unsigned char out;
1152 
1153 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1154 }
1155 EXPORT_SYMBOL(drm_probe_ddc);
1156 
1157 /**
1158  * drm_get_edid - get EDID data, if available
1159  * @connector: connector we're probing
1160  * @adapter: i2c adapter to use for DDC
1161  *
1162  * Poke the given i2c channel to grab EDID data if possible.  If found,
1163  * attach it to the connector.
1164  *
1165  * Return edid data or NULL if we couldn't find any.
1166  */
1167 struct edid *drm_get_edid(struct drm_connector *connector,
1168 			  struct device *adapter)
1169 {
1170 	struct edid *edid = NULL;
1171 
1172 	if (drm_probe_ddc(adapter))
1173 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1174 
1175 	return edid;
1176 }
1177 EXPORT_SYMBOL(drm_get_edid);
1178 
1179 /*** EDID parsing ***/
1180 
1181 /**
1182  * edid_vendor - match a string against EDID's obfuscated vendor field
1183  * @edid: EDID to match
1184  * @vendor: vendor string
1185  *
1186  * Returns true if @vendor is in @edid, false otherwise
1187  */
1188 static bool edid_vendor(struct edid *edid, char *vendor)
1189 {
1190 	char edid_vendor[3];
1191 
1192 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1193 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1194 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1195 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1196 
1197 	return !strncmp(edid_vendor, vendor, 3);
1198 }
1199 
1200 /**
1201  * edid_get_quirks - return quirk flags for a given EDID
1202  * @edid: EDID to process
1203  *
1204  * This tells subsequent routines what fixes they need to apply.
1205  */
1206 static u32 edid_get_quirks(struct edid *edid)
1207 {
1208 	struct edid_quirk *quirk;
1209 	int i;
1210 
1211 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1212 		quirk = &edid_quirk_list[i];
1213 
1214 		if (edid_vendor(edid, quirk->vendor) &&
1215 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1216 			return quirk->quirks;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1223 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1224 
1225 /**
1226  * edid_fixup_preferred - set preferred modes based on quirk list
1227  * @connector: has mode list to fix up
1228  * @quirks: quirks list
1229  *
1230  * Walk the mode list for @connector, clearing the preferred status
1231  * on existing modes and setting it anew for the right mode ala @quirks.
1232  */
1233 static void edid_fixup_preferred(struct drm_connector *connector,
1234 				 u32 quirks)
1235 {
1236 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1237 	int target_refresh = 0;
1238 
1239 	if (list_empty(&connector->probed_modes))
1240 		return;
1241 
1242 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1243 		target_refresh = 60;
1244 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1245 		target_refresh = 75;
1246 
1247 	preferred_mode = list_first_entry(&connector->probed_modes,
1248 					  struct drm_display_mode, head);
1249 
1250 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1251 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1252 
1253 		if (cur_mode == preferred_mode)
1254 			continue;
1255 
1256 		/* Largest mode is preferred */
1257 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1258 			preferred_mode = cur_mode;
1259 
1260 		/* At a given size, try to get closest to target refresh */
1261 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1262 		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1263 		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1264 			preferred_mode = cur_mode;
1265 		}
1266 	}
1267 
1268 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1269 }
1270 
1271 static bool
1272 mode_is_rb(const struct drm_display_mode *mode)
1273 {
1274 	return (mode->htotal - mode->hdisplay == 160) &&
1275 	       (mode->hsync_end - mode->hdisplay == 80) &&
1276 	       (mode->hsync_end - mode->hsync_start == 32) &&
1277 	       (mode->vsync_start - mode->vdisplay == 3);
1278 }
1279 
1280 /*
1281  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1282  * @dev: Device to duplicate against
1283  * @hsize: Mode width
1284  * @vsize: Mode height
1285  * @fresh: Mode refresh rate
1286  * @rb: Mode reduced-blanking-ness
1287  *
1288  * Walk the DMT mode list looking for a match for the given parameters.
1289  * Return a newly allocated copy of the mode, or NULL if not found.
1290  */
1291 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1292 					   int hsize, int vsize, int fresh,
1293 					   bool rb)
1294 {
1295 	int i;
1296 
1297 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1298 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1299 		if (hsize != ptr->hdisplay)
1300 			continue;
1301 		if (vsize != ptr->vdisplay)
1302 			continue;
1303 		if (fresh != drm_mode_vrefresh(ptr))
1304 			continue;
1305 		if (rb != mode_is_rb(ptr))
1306 			continue;
1307 
1308 		return drm_mode_duplicate(dev, ptr);
1309 	}
1310 
1311 	return NULL;
1312 }
1313 EXPORT_SYMBOL(drm_mode_find_dmt);
1314 
1315 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1316 
1317 static void
1318 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1319 {
1320 	int i, n = 0;
1321 	u8 d = ext[0x02];
1322 	u8 *det_base = ext + d;
1323 
1324 	n = (127 - d) / 18;
1325 	for (i = 0; i < n; i++)
1326 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1327 }
1328 
1329 static void
1330 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1331 {
1332 	unsigned int i, n = min((int)ext[0x02], 6);
1333 	u8 *det_base = ext + 5;
1334 
1335 	if (ext[0x01] != 1)
1336 		return; /* unknown version */
1337 
1338 	for (i = 0; i < n; i++)
1339 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1340 }
1341 
1342 static void
1343 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1344 {
1345 	int i;
1346 	struct edid *edid = (struct edid *)raw_edid;
1347 
1348 	if (edid == NULL)
1349 		return;
1350 
1351 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1352 		cb(&(edid->detailed_timings[i]), closure);
1353 
1354 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1355 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1356 		switch (*ext) {
1357 		case CEA_EXT:
1358 			cea_for_each_detailed_block(ext, cb, closure);
1359 			break;
1360 		case VTB_EXT:
1361 			vtb_for_each_detailed_block(ext, cb, closure);
1362 			break;
1363 		default:
1364 			break;
1365 		}
1366 	}
1367 }
1368 
1369 static void
1370 is_rb(struct detailed_timing *t, void *data)
1371 {
1372 	u8 *r = (u8 *)t;
1373 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1374 		if (r[15] & 0x10)
1375 			*(bool *)data = true;
1376 }
1377 
1378 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1379 static bool
1380 drm_monitor_supports_rb(struct edid *edid)
1381 {
1382 	if (edid->revision >= 4) {
1383 		bool ret = false;
1384 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1385 		return ret;
1386 	}
1387 
1388 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1389 }
1390 
1391 static void
1392 find_gtf2(struct detailed_timing *t, void *data)
1393 {
1394 	u8 *r = (u8 *)t;
1395 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1396 		*(u8 **)data = r;
1397 }
1398 
1399 /* Secondary GTF curve kicks in above some break frequency */
1400 static int
1401 drm_gtf2_hbreak(struct edid *edid)
1402 {
1403 	u8 *r = NULL;
1404 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1405 	return r ? (r[12] * 2) : 0;
1406 }
1407 
1408 static int
1409 drm_gtf2_2c(struct edid *edid)
1410 {
1411 	u8 *r = NULL;
1412 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1413 	return r ? r[13] : 0;
1414 }
1415 
1416 static int
1417 drm_gtf2_m(struct edid *edid)
1418 {
1419 	u8 *r = NULL;
1420 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1421 	return r ? (r[15] << 8) + r[14] : 0;
1422 }
1423 
1424 static int
1425 drm_gtf2_k(struct edid *edid)
1426 {
1427 	u8 *r = NULL;
1428 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1429 	return r ? r[16] : 0;
1430 }
1431 
1432 static int
1433 drm_gtf2_2j(struct edid *edid)
1434 {
1435 	u8 *r = NULL;
1436 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1437 	return r ? r[17] : 0;
1438 }
1439 
1440 /**
1441  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1442  * @edid: EDID block to scan
1443  */
1444 static int standard_timing_level(struct edid *edid)
1445 {
1446 	if (edid->revision >= 2) {
1447 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1448 			return LEVEL_CVT;
1449 		if (drm_gtf2_hbreak(edid))
1450 			return LEVEL_GTF2;
1451 		return LEVEL_GTF;
1452 	}
1453 	return LEVEL_DMT;
1454 }
1455 
1456 /*
1457  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1458  * monitors fill with ascii space (0x20) instead.
1459  */
1460 static int
1461 bad_std_timing(u8 a, u8 b)
1462 {
1463 	return (a == 0x00 && b == 0x00) ||
1464 	       (a == 0x01 && b == 0x01) ||
1465 	       (a == 0x20 && b == 0x20);
1466 }
1467 
1468 /**
1469  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1470  * @t: standard timing params
1471  * @timing_level: standard timing level
1472  *
1473  * Take the standard timing params (in this case width, aspect, and refresh)
1474  * and convert them into a real mode using CVT/GTF/DMT.
1475  */
1476 static struct drm_display_mode *
1477 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1478 	     struct std_timing *t, int revision)
1479 {
1480 	struct drm_device *dev = connector->dev;
1481 	struct drm_display_mode *m, *mode = NULL;
1482 	int hsize, vsize;
1483 	int vrefresh_rate;
1484 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1485 		>> EDID_TIMING_ASPECT_SHIFT;
1486 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1487 		>> EDID_TIMING_VFREQ_SHIFT;
1488 	int timing_level = standard_timing_level(edid);
1489 
1490 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1491 		return NULL;
1492 
1493 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1494 	hsize = t->hsize * 8 + 248;
1495 	/* vrefresh_rate = vfreq + 60 */
1496 	vrefresh_rate = vfreq + 60;
1497 	/* the vdisplay is calculated based on the aspect ratio */
1498 	if (aspect_ratio == 0) {
1499 		if (revision < 3)
1500 			vsize = hsize;
1501 		else
1502 			vsize = (hsize * 10) / 16;
1503 	} else if (aspect_ratio == 1)
1504 		vsize = (hsize * 3) / 4;
1505 	else if (aspect_ratio == 2)
1506 		vsize = (hsize * 4) / 5;
1507 	else
1508 		vsize = (hsize * 9) / 16;
1509 
1510 	/* HDTV hack, part 1 */
1511 	if (vrefresh_rate == 60 &&
1512 	    ((hsize == 1360 && vsize == 765) ||
1513 	     (hsize == 1368 && vsize == 769))) {
1514 		hsize = 1366;
1515 		vsize = 768;
1516 	}
1517 
1518 	/*
1519 	 * If this connector already has a mode for this size and refresh
1520 	 * rate (because it came from detailed or CVT info), use that
1521 	 * instead.  This way we don't have to guess at interlace or
1522 	 * reduced blanking.
1523 	 */
1524 	list_for_each_entry(m, &connector->probed_modes, head)
1525 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1526 		    drm_mode_vrefresh(m) == vrefresh_rate)
1527 			return NULL;
1528 
1529 	/* HDTV hack, part 2 */
1530 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1531 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1532 				    false);
1533 		mode->hdisplay = 1366;
1534 		mode->hsync_start = mode->hsync_start - 1;
1535 		mode->hsync_end = mode->hsync_end - 1;
1536 		return mode;
1537 	}
1538 
1539 	/* check whether it can be found in default mode table */
1540 	if (drm_monitor_supports_rb(edid)) {
1541 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1542 					 true);
1543 		if (mode)
1544 			return mode;
1545 	}
1546 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1547 	if (mode)
1548 		return mode;
1549 
1550 	/* okay, generate it */
1551 	switch (timing_level) {
1552 	case LEVEL_DMT:
1553 		break;
1554 	case LEVEL_GTF:
1555 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1556 		break;
1557 	case LEVEL_GTF2:
1558 		/*
1559 		 * This is potentially wrong if there's ever a monitor with
1560 		 * more than one ranges section, each claiming a different
1561 		 * secondary GTF curve.  Please don't do that.
1562 		 */
1563 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1564 		if (!mode)
1565 			return NULL;
1566 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1567 			drm_mode_destroy(dev, mode);
1568 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1569 						    vrefresh_rate, 0, 0,
1570 						    drm_gtf2_m(edid),
1571 						    drm_gtf2_2c(edid),
1572 						    drm_gtf2_k(edid),
1573 						    drm_gtf2_2j(edid));
1574 		}
1575 		break;
1576 	case LEVEL_CVT:
1577 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1578 				    false);
1579 		break;
1580 	}
1581 	return mode;
1582 }
1583 
1584 /*
1585  * EDID is delightfully ambiguous about how interlaced modes are to be
1586  * encoded.  Our internal representation is of frame height, but some
1587  * HDTV detailed timings are encoded as field height.
1588  *
1589  * The format list here is from CEA, in frame size.  Technically we
1590  * should be checking refresh rate too.  Whatever.
1591  */
1592 static void
1593 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1594 			    struct detailed_pixel_timing *pt)
1595 {
1596 	int i;
1597 	static const struct {
1598 		int w, h;
1599 	} cea_interlaced[] = {
1600 		{ 1920, 1080 },
1601 		{  720,  480 },
1602 		{ 1440,  480 },
1603 		{ 2880,  480 },
1604 		{  720,  576 },
1605 		{ 1440,  576 },
1606 		{ 2880,  576 },
1607 	};
1608 
1609 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1610 		return;
1611 
1612 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1613 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1614 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1615 			mode->vdisplay *= 2;
1616 			mode->vsync_start *= 2;
1617 			mode->vsync_end *= 2;
1618 			mode->vtotal *= 2;
1619 			mode->vtotal |= 1;
1620 		}
1621 	}
1622 
1623 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1624 }
1625 
1626 /**
1627  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1628  * @dev: DRM device (needed to create new mode)
1629  * @edid: EDID block
1630  * @timing: EDID detailed timing info
1631  * @quirks: quirks to apply
1632  *
1633  * An EDID detailed timing block contains enough info for us to create and
1634  * return a new struct drm_display_mode.
1635  */
1636 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1637 						  struct edid *edid,
1638 						  struct detailed_timing *timing,
1639 						  u32 quirks)
1640 {
1641 	struct drm_display_mode *mode;
1642 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1643 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1644 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1645 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1646 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1647 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1648 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1649 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1650 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1651 
1652 	/* ignore tiny modes */
1653 	if (hactive < 64 || vactive < 64)
1654 		return NULL;
1655 
1656 	if (pt->misc & DRM_EDID_PT_STEREO) {
1657 		kprintf("stereo mode not supported\n");
1658 		return NULL;
1659 	}
1660 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1661 		kprintf("composite sync not supported\n");
1662 	}
1663 
1664 	/* it is incorrect if hsync/vsync width is zero */
1665 	if (!hsync_pulse_width || !vsync_pulse_width) {
1666 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1667 				"Wrong Hsync/Vsync pulse width\n");
1668 		return NULL;
1669 	}
1670 
1671 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1672 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1673 		if (!mode)
1674 			return NULL;
1675 
1676 		goto set_size;
1677 	}
1678 
1679 	mode = drm_mode_create(dev);
1680 	if (!mode)
1681 		return NULL;
1682 
1683 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1684 		timing->pixel_clock = cpu_to_le16(1088);
1685 
1686 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1687 
1688 	mode->hdisplay = hactive;
1689 	mode->hsync_start = mode->hdisplay + hsync_offset;
1690 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1691 	mode->htotal = mode->hdisplay + hblank;
1692 
1693 	mode->vdisplay = vactive;
1694 	mode->vsync_start = mode->vdisplay + vsync_offset;
1695 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1696 	mode->vtotal = mode->vdisplay + vblank;
1697 
1698 	/* Some EDIDs have bogus h/vtotal values */
1699 	if (mode->hsync_end > mode->htotal)
1700 		mode->htotal = mode->hsync_end + 1;
1701 	if (mode->vsync_end > mode->vtotal)
1702 		mode->vtotal = mode->vsync_end + 1;
1703 
1704 	drm_mode_do_interlace_quirk(mode, pt);
1705 
1706 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1707 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1708 	}
1709 
1710 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1711 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1712 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1713 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1714 
1715 set_size:
1716 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1717 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1718 
1719 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1720 		mode->width_mm *= 10;
1721 		mode->height_mm *= 10;
1722 	}
1723 
1724 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1725 		mode->width_mm = edid->width_cm * 10;
1726 		mode->height_mm = edid->height_cm * 10;
1727 	}
1728 
1729 	mode->type = DRM_MODE_TYPE_DRIVER;
1730 	mode->vrefresh = drm_mode_vrefresh(mode);
1731 	drm_mode_set_name(mode);
1732 
1733 	return mode;
1734 }
1735 
1736 static bool
1737 mode_in_hsync_range(const struct drm_display_mode *mode,
1738 		    struct edid *edid, u8 *t)
1739 {
1740 	int hsync, hmin, hmax;
1741 
1742 	hmin = t[7];
1743 	if (edid->revision >= 4)
1744 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1745 	hmax = t[8];
1746 	if (edid->revision >= 4)
1747 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1748 	hsync = drm_mode_hsync(mode);
1749 
1750 	return (hsync <= hmax && hsync >= hmin);
1751 }
1752 
1753 static bool
1754 mode_in_vsync_range(const struct drm_display_mode *mode,
1755 		    struct edid *edid, u8 *t)
1756 {
1757 	int vsync, vmin, vmax;
1758 
1759 	vmin = t[5];
1760 	if (edid->revision >= 4)
1761 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1762 	vmax = t[6];
1763 	if (edid->revision >= 4)
1764 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1765 	vsync = drm_mode_vrefresh(mode);
1766 
1767 	return (vsync <= vmax && vsync >= vmin);
1768 }
1769 
1770 static u32
1771 range_pixel_clock(struct edid *edid, u8 *t)
1772 {
1773 	/* unspecified */
1774 	if (t[9] == 0 || t[9] == 255)
1775 		return 0;
1776 
1777 	/* 1.4 with CVT support gives us real precision, yay */
1778 	if (edid->revision >= 4 && t[10] == 0x04)
1779 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1780 
1781 	/* 1.3 is pathetic, so fuzz up a bit */
1782 	return t[9] * 10000 + 5001;
1783 }
1784 
1785 static bool
1786 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1787 	      struct detailed_timing *timing)
1788 {
1789 	u32 max_clock;
1790 	u8 *t = (u8 *)timing;
1791 
1792 	if (!mode_in_hsync_range(mode, edid, t))
1793 		return false;
1794 
1795 	if (!mode_in_vsync_range(mode, edid, t))
1796 		return false;
1797 
1798 	if ((max_clock = range_pixel_clock(edid, t)))
1799 		if (mode->clock > max_clock)
1800 			return false;
1801 
1802 	/* 1.4 max horizontal check */
1803 	if (edid->revision >= 4 && t[10] == 0x04)
1804 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1805 			return false;
1806 
1807 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1808 		return false;
1809 
1810 	return true;
1811 }
1812 
1813 static bool valid_inferred_mode(const struct drm_connector *connector,
1814 				const struct drm_display_mode *mode)
1815 {
1816 	struct drm_display_mode *m;
1817 	bool ok = false;
1818 
1819 	list_for_each_entry(m, &connector->probed_modes, head) {
1820 		if (mode->hdisplay == m->hdisplay &&
1821 		    mode->vdisplay == m->vdisplay &&
1822 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1823 			return false; /* duplicated */
1824 		if (mode->hdisplay <= m->hdisplay &&
1825 		    mode->vdisplay <= m->vdisplay)
1826 			ok = true;
1827 	}
1828 	return ok;
1829 }
1830 
1831 static int
1832 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1833 			struct detailed_timing *timing)
1834 {
1835 	int i, modes = 0;
1836 	struct drm_display_mode *newmode;
1837 	struct drm_device *dev = connector->dev;
1838 
1839 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1840 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1841 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1842 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1843 			if (newmode) {
1844 				drm_mode_probed_add(connector, newmode);
1845 				modes++;
1846 			}
1847 		}
1848 	}
1849 
1850 	return modes;
1851 }
1852 
1853 /* fix up 1366x768 mode from 1368x768;
1854  * GFT/CVT can't express 1366 width which isn't dividable by 8
1855  */
1856 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1857 {
1858 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1859 		mode->hdisplay = 1366;
1860 		mode->hsync_start--;
1861 		mode->hsync_end--;
1862 		drm_mode_set_name(mode);
1863 	}
1864 }
1865 
1866 static int
1867 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1868 			struct detailed_timing *timing)
1869 {
1870 	int i, modes = 0;
1871 	struct drm_display_mode *newmode;
1872 	struct drm_device *dev = connector->dev;
1873 
1874 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1875 		const struct minimode *m = &extra_modes[i];
1876 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1877 		if (!newmode)
1878 			return modes;
1879 
1880 		fixup_mode_1366x768(newmode);
1881 		if (!mode_in_range(newmode, edid, timing) ||
1882 		    !valid_inferred_mode(connector, newmode)) {
1883 			drm_mode_destroy(dev, newmode);
1884 			continue;
1885 		}
1886 
1887 		drm_mode_probed_add(connector, newmode);
1888 		modes++;
1889 	}
1890 
1891 	return modes;
1892 }
1893 
1894 static int
1895 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1896 			struct detailed_timing *timing)
1897 {
1898 	int i, modes = 0;
1899 	struct drm_display_mode *newmode;
1900 	struct drm_device *dev = connector->dev;
1901 	bool rb = drm_monitor_supports_rb(edid);
1902 
1903 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1904 		const struct minimode *m = &extra_modes[i];
1905 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1906 		if (!newmode)
1907 			return modes;
1908 
1909 		fixup_mode_1366x768(newmode);
1910 		if (!mode_in_range(newmode, edid, timing) ||
1911 		    !valid_inferred_mode(connector, newmode)) {
1912 			drm_mode_destroy(dev, newmode);
1913 			continue;
1914 		}
1915 
1916 		drm_mode_probed_add(connector, newmode);
1917 		modes++;
1918 	}
1919 
1920 	return modes;
1921 }
1922 
1923 static void
1924 do_inferred_modes(struct detailed_timing *timing, void *c)
1925 {
1926 	struct detailed_mode_closure *closure = c;
1927 	struct detailed_non_pixel *data = &timing->data.other_data;
1928 	struct detailed_data_monitor_range *range = &data->data.range;
1929 
1930 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
1931 		return;
1932 
1933 	closure->modes += drm_dmt_modes_for_range(closure->connector,
1934 						  closure->edid,
1935 						  timing);
1936 
1937 	if (!version_greater(closure->edid, 1, 1))
1938 		return; /* GTF not defined yet */
1939 
1940 	switch (range->flags) {
1941 	case 0x02: /* secondary gtf, XXX could do more */
1942 	case 0x00: /* default gtf */
1943 		closure->modes += drm_gtf_modes_for_range(closure->connector,
1944 							  closure->edid,
1945 							  timing);
1946 		break;
1947 	case 0x04: /* cvt, only in 1.4+ */
1948 		if (!version_greater(closure->edid, 1, 3))
1949 			break;
1950 
1951 		closure->modes += drm_cvt_modes_for_range(closure->connector,
1952 							  closure->edid,
1953 							  timing);
1954 		break;
1955 	case 0x01: /* just the ranges, no formula */
1956 	default:
1957 		break;
1958 	}
1959 }
1960 
1961 static int
1962 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1963 {
1964 	struct detailed_mode_closure closure = {
1965 		connector, edid, 0, 0, 0
1966 	};
1967 
1968 	if (version_greater(edid, 1, 0))
1969 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1970 					    &closure);
1971 
1972 	return closure.modes;
1973 }
1974 
1975 static int
1976 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1977 {
1978 	int i, j, m, modes = 0;
1979 	struct drm_display_mode *mode;
1980 	u8 *est = ((u8 *)timing) + 5;
1981 
1982 	for (i = 0; i < 6; i++) {
1983 		for (j = 7; j > 0; j--) {
1984 			m = (i * 8) + (7 - j);
1985 			if (m >= ARRAY_SIZE(est3_modes))
1986 				break;
1987 			if (est[i] & (1 << j)) {
1988 				mode = drm_mode_find_dmt(connector->dev,
1989 							 est3_modes[m].w,
1990 							 est3_modes[m].h,
1991 							 est3_modes[m].r,
1992 							 est3_modes[m].rb);
1993 				if (mode) {
1994 					drm_mode_probed_add(connector, mode);
1995 					modes++;
1996 				}
1997 			}
1998 		}
1999 	}
2000 
2001 	return modes;
2002 }
2003 
2004 static void
2005 do_established_modes(struct detailed_timing *timing, void *c)
2006 {
2007 	struct detailed_mode_closure *closure = c;
2008 	struct detailed_non_pixel *data = &timing->data.other_data;
2009 
2010 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2011 		closure->modes += drm_est3_modes(closure->connector, timing);
2012 }
2013 
2014 /**
2015  * add_established_modes - get est. modes from EDID and add them
2016  * @edid: EDID block to scan
2017  *
2018  * Each EDID block contains a bitmap of the supported "established modes" list
2019  * (defined above).  Tease them out and add them to the global modes list.
2020  */
2021 static int
2022 add_established_modes(struct drm_connector *connector, struct edid *edid)
2023 {
2024 	struct drm_device *dev = connector->dev;
2025 	unsigned long est_bits = edid->established_timings.t1 |
2026 		(edid->established_timings.t2 << 8) |
2027 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2028 	int i, modes = 0;
2029 	struct detailed_mode_closure closure = {
2030 		connector, edid, 0, 0, 0
2031 	};
2032 
2033 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2034 		if (est_bits & (1<<i)) {
2035 			struct drm_display_mode *newmode;
2036 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2037 			if (newmode) {
2038 				drm_mode_probed_add(connector, newmode);
2039 				modes++;
2040 			}
2041 		}
2042 	}
2043 
2044 	if (version_greater(edid, 1, 0))
2045 		    drm_for_each_detailed_block((u8 *)edid,
2046 						do_established_modes, &closure);
2047 
2048 	return modes + closure.modes;
2049 }
2050 
2051 static void
2052 do_standard_modes(struct detailed_timing *timing, void *c)
2053 {
2054 	struct detailed_mode_closure *closure = c;
2055 	struct detailed_non_pixel *data = &timing->data.other_data;
2056 	struct drm_connector *connector = closure->connector;
2057 	struct edid *edid = closure->edid;
2058 
2059 	if (data->type == EDID_DETAIL_STD_MODES) {
2060 		int i;
2061 		for (i = 0; i < 6; i++) {
2062 			struct std_timing *std;
2063 			struct drm_display_mode *newmode;
2064 
2065 			std = &data->data.timings[i];
2066 			newmode = drm_mode_std(connector, edid, std,
2067 					       edid->revision);
2068 			if (newmode) {
2069 				drm_mode_probed_add(connector, newmode);
2070 				closure->modes++;
2071 			}
2072 		}
2073 	}
2074 }
2075 
2076 /**
2077  * add_standard_modes - get std. modes from EDID and add them
2078  * @edid: EDID block to scan
2079  *
2080  * Standard modes can be calculated using the appropriate standard (DMT,
2081  * GTF or CVT. Grab them from @edid and add them to the list.
2082  */
2083 static int
2084 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2085 {
2086 	int i, modes = 0;
2087 	struct detailed_mode_closure closure = {
2088 		connector, edid, 0, 0, 0
2089 	};
2090 
2091 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2092 		struct drm_display_mode *newmode;
2093 
2094 		newmode = drm_mode_std(connector, edid,
2095 				       &edid->standard_timings[i],
2096 				       edid->revision);
2097 		if (newmode) {
2098 			drm_mode_probed_add(connector, newmode);
2099 			modes++;
2100 		}
2101 	}
2102 
2103 	if (version_greater(edid, 1, 0))
2104 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2105 					    &closure);
2106 
2107 	/* XXX should also look for standard codes in VTB blocks */
2108 
2109 	return modes + closure.modes;
2110 }
2111 
2112 static int drm_cvt_modes(struct drm_connector *connector,
2113 			 struct detailed_timing *timing)
2114 {
2115 	int i, j, modes = 0;
2116 	struct drm_display_mode *newmode;
2117 	struct drm_device *dev = connector->dev;
2118 	struct cvt_timing *cvt;
2119 	const int rates[] = { 60, 85, 75, 60, 50 };
2120 	const u8 empty[3] = { 0, 0, 0 };
2121 
2122 	for (i = 0; i < 4; i++) {
2123 		int width = 0, height;
2124 		cvt = &(timing->data.other_data.data.cvt[i]);
2125 
2126 		if (!memcmp(cvt->code, empty, 3))
2127 			continue;
2128 
2129 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2130 		switch (cvt->code[1] & 0x0c) {
2131 		case 0x00:
2132 			width = height * 4 / 3;
2133 			break;
2134 		case 0x04:
2135 			width = height * 16 / 9;
2136 			break;
2137 		case 0x08:
2138 			width = height * 16 / 10;
2139 			break;
2140 		case 0x0c:
2141 			width = height * 15 / 9;
2142 			break;
2143 		}
2144 
2145 		for (j = 1; j < 5; j++) {
2146 			if (cvt->code[2] & (1 << j)) {
2147 				newmode = drm_cvt_mode(dev, width, height,
2148 						       rates[j], j == 0,
2149 						       false, false);
2150 				if (newmode) {
2151 					drm_mode_probed_add(connector, newmode);
2152 					modes++;
2153 				}
2154 			}
2155 		}
2156 	}
2157 
2158 	return modes;
2159 }
2160 
2161 static void
2162 do_cvt_mode(struct detailed_timing *timing, void *c)
2163 {
2164 	struct detailed_mode_closure *closure = c;
2165 	struct detailed_non_pixel *data = &timing->data.other_data;
2166 
2167 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2168 		closure->modes += drm_cvt_modes(closure->connector, timing);
2169 }
2170 
2171 static int
2172 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2173 {
2174 	struct detailed_mode_closure closure = {
2175 		connector, edid, 0, 0, 0
2176 	};
2177 
2178 	if (version_greater(edid, 1, 2))
2179 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2180 
2181 	/* XXX should also look for CVT codes in VTB blocks */
2182 
2183 	return closure.modes;
2184 }
2185 
2186 static void
2187 do_detailed_mode(struct detailed_timing *timing, void *c)
2188 {
2189 	struct detailed_mode_closure *closure = c;
2190 	struct drm_display_mode *newmode;
2191 
2192 	if (timing->pixel_clock) {
2193 		newmode = drm_mode_detailed(closure->connector->dev,
2194 					    closure->edid, timing,
2195 					    closure->quirks);
2196 		if (!newmode)
2197 			return;
2198 
2199 		if (closure->preferred)
2200 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2201 
2202 		drm_mode_probed_add(closure->connector, newmode);
2203 		closure->modes++;
2204 		closure->preferred = 0;
2205 	}
2206 }
2207 
2208 /*
2209  * add_detailed_modes - Add modes from detailed timings
2210  * @connector: attached connector
2211  * @edid: EDID block to scan
2212  * @quirks: quirks to apply
2213  */
2214 static int
2215 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2216 		   u32 quirks)
2217 {
2218 	struct detailed_mode_closure closure = {
2219 		connector,
2220 		edid,
2221 		1,
2222 		quirks,
2223 		0
2224 	};
2225 
2226 	if (closure.preferred && !version_greater(edid, 1, 3))
2227 		closure.preferred =
2228 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2229 
2230 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2231 
2232 	return closure.modes;
2233 }
2234 
2235 #define HDMI_IDENTIFIER 0x000C03
2236 #define AUDIO_BLOCK	0x01
2237 #define VIDEO_BLOCK     0x02
2238 #define VENDOR_BLOCK    0x03
2239 #define SPEAKER_BLOCK	0x04
2240 #define VIDEO_CAPABILITY_BLOCK	0x07
2241 #define EDID_BASIC_AUDIO	(1 << 6)
2242 #define EDID_CEA_YCRCB444	(1 << 5)
2243 #define EDID_CEA_YCRCB422	(1 << 4)
2244 #define EDID_CEA_VCDB_QS	(1 << 6)
2245 
2246 /**
2247  * Search EDID for CEA extension block.
2248  */
2249 u8 *drm_find_cea_extension(struct edid *edid)
2250 {
2251 	u8 *edid_ext = NULL;
2252 	int i;
2253 
2254 	/* No EDID or EDID extensions */
2255 	if (edid == NULL || edid->extensions == 0)
2256 		return NULL;
2257 
2258 	/* Find CEA extension */
2259 	for (i = 0; i < edid->extensions; i++) {
2260 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2261 		if (edid_ext[0] == CEA_EXT)
2262 			break;
2263 	}
2264 
2265 	if (i == edid->extensions)
2266 		return NULL;
2267 
2268 	return edid_ext;
2269 }
2270 EXPORT_SYMBOL(drm_find_cea_extension);
2271 
2272 /**
2273  * drm_match_cea_mode - look for a CEA mode matching given mode
2274  * @to_match: display mode
2275  *
2276  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2277  * mode.
2278  */
2279 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2280 {
2281 	const struct drm_display_mode *cea_mode;
2282 	u8 mode;
2283 
2284 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2285 		cea_mode = &edid_cea_modes[mode];
2286 
2287 		if (drm_mode_equal(to_match, cea_mode))
2288 			return mode + 1;
2289 	}
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(drm_match_cea_mode);
2293 
2294 
2295 static int
2296 do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
2297 {
2298 	struct drm_device *dev = connector->dev;
2299 	u8 * mode, cea_mode;
2300 	int modes = 0;
2301 
2302 	for (mode = db; mode < db + len; mode++) {
2303 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2304 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2305 			struct drm_display_mode *newmode;
2306 			newmode = drm_mode_duplicate(dev,
2307 						     &edid_cea_modes[cea_mode]);
2308 			if (newmode) {
2309 				drm_mode_probed_add(connector, newmode);
2310 				modes++;
2311 			}
2312 		}
2313 	}
2314 
2315 	return modes;
2316 }
2317 
2318 static int
2319 cea_db_payload_len(const u8 *db)
2320 {
2321 	return db[0] & 0x1f;
2322 }
2323 
2324 static int
2325 cea_db_tag(const u8 *db)
2326 {
2327 	return db[0] >> 5;
2328 }
2329 
2330 static int
2331 cea_revision(const u8 *cea)
2332 {
2333 	return cea[1];
2334 }
2335 
2336 static int
2337 cea_db_offsets(const u8 *cea, int *start, int *end)
2338 {
2339 	/* Data block offset in CEA extension block */
2340 	*start = 4;
2341 	*end = cea[2];
2342 	if (*end == 0)
2343 		*end = 127;
2344 	if (*end < 4 || *end > 127)
2345 		return -ERANGE;
2346 	return 0;
2347 }
2348 
2349 #define for_each_cea_db(cea, i, start, end) \
2350 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2351 
2352 static int
2353 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2354 {
2355 	u8 * cea = drm_find_cea_extension(edid);
2356 	u8 * db, dbl;
2357 	int modes = 0;
2358 
2359 	if (cea && cea_revision(cea) >= 3) {
2360 		int i, start, end;
2361 
2362 		if (cea_db_offsets(cea, &start, &end))
2363 			return 0;
2364 
2365 		for_each_cea_db(cea, i, start, end) {
2366 			db = &cea[i];
2367 			dbl = cea_db_payload_len(db);
2368 
2369 			if (cea_db_tag(db) == VIDEO_BLOCK)
2370 				modes += do_cea_modes (connector, db+1, dbl);
2371 		}
2372 	}
2373 
2374 	return modes;
2375 }
2376 
2377 static void
2378 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2379 {
2380 	u8 len = cea_db_payload_len(db);
2381 
2382 	if (len >= 6) {
2383 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2384 		connector->dvi_dual = db[6] & 1;
2385 	}
2386 	if (len >= 7)
2387 		connector->max_tmds_clock = db[7] * 5;
2388 	if (len >= 8) {
2389 		connector->latency_present[0] = db[8] >> 7;
2390 		connector->latency_present[1] = (db[8] >> 6) & 1;
2391 	}
2392 	if (len >= 9)
2393 		connector->video_latency[0] = db[9];
2394 	if (len >= 10)
2395 		connector->audio_latency[0] = db[10];
2396 	if (len >= 11)
2397 		connector->video_latency[1] = db[11];
2398 	if (len >= 12)
2399 		connector->audio_latency[1] = db[12];
2400 
2401 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2402 		    "max TMDS clock %d, "
2403 		    "latency present %d %d, "
2404 		    "video latency %d %d, "
2405 		    "audio latency %d %d\n",
2406 		    connector->dvi_dual,
2407 		    connector->max_tmds_clock,
2408 	      (int) connector->latency_present[0],
2409 	      (int) connector->latency_present[1],
2410 		    connector->video_latency[0],
2411 		    connector->video_latency[1],
2412 		    connector->audio_latency[0],
2413 		    connector->audio_latency[1]);
2414 }
2415 
2416 static void
2417 monitor_name(struct detailed_timing *t, void *data)
2418 {
2419 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2420 		*(u8 **)data = t->data.other_data.data.str.str;
2421 }
2422 
2423 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2424 {
2425 	int hdmi_id;
2426 
2427 	if (cea_db_tag(db) != VENDOR_BLOCK)
2428 		return false;
2429 
2430 	if (cea_db_payload_len(db) < 5)
2431 		return false;
2432 
2433 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2434 
2435 	return hdmi_id == HDMI_IDENTIFIER;
2436 }
2437 
2438 /**
2439  * drm_edid_to_eld - build ELD from EDID
2440  * @connector: connector corresponding to the HDMI/DP sink
2441  * @edid: EDID to parse
2442  *
2443  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2444  * Some ELD fields are left to the graphics driver caller:
2445  * - Conn_Type
2446  * - HDCP
2447  * - Port_ID
2448  */
2449 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2450 {
2451 	uint8_t *eld = connector->eld;
2452 	u8 *cea;
2453 	u8 *name;
2454 	u8 *db;
2455 	int sad_count = 0;
2456 	int mnl;
2457 	int dbl;
2458 
2459 	memset(eld, 0, sizeof(connector->eld));
2460 
2461 	cea = drm_find_cea_extension(edid);
2462 	if (!cea) {
2463 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2464 		return;
2465 	}
2466 
2467 	name = NULL;
2468 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2469 	for (mnl = 0; name && mnl < 13; mnl++) {
2470 		if (name[mnl] == 0x0a)
2471 			break;
2472 		eld[20 + mnl] = name[mnl];
2473 	}
2474 	eld[4] = (cea[1] << 5) | mnl;
2475 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2476 
2477 	eld[0] = 2 << 3;		/* ELD version: 2 */
2478 
2479 	eld[16] = edid->mfg_id[0];
2480 	eld[17] = edid->mfg_id[1];
2481 	eld[18] = edid->prod_code[0];
2482 	eld[19] = edid->prod_code[1];
2483 
2484 	if (cea_revision(cea) >= 3) {
2485 		int i, start, end;
2486 
2487 		if (cea_db_offsets(cea, &start, &end)) {
2488 			start = 0;
2489 			end = 0;
2490 		}
2491 
2492 		for_each_cea_db(cea, i, start, end) {
2493 			db = &cea[i];
2494 			dbl = cea_db_payload_len(db);
2495 
2496 			switch (cea_db_tag(db)) {
2497 			case AUDIO_BLOCK:
2498 				/* Audio Data Block, contains SADs */
2499 				sad_count = dbl / 3;
2500 				if (dbl >= 1)
2501 					memcpy(eld + 20 + mnl, &db[1], dbl);
2502 				break;
2503 			case SPEAKER_BLOCK:
2504 				/* Speaker Allocation Data Block */
2505 				if (dbl >= 1)
2506 					eld[7] = db[1];
2507 				break;
2508 			case VENDOR_BLOCK:
2509 				/* HDMI Vendor-Specific Data Block */
2510 				if (cea_db_is_hdmi_vsdb(db))
2511 					parse_hdmi_vsdb(connector, db);
2512 				break;
2513 			default:
2514 				break;
2515 			}
2516 		}
2517 	}
2518 	eld[5] |= sad_count << 4;
2519 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2520 
2521 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2522 }
2523 EXPORT_SYMBOL(drm_edid_to_eld);
2524 
2525 /**
2526  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2527  * @connector: connector associated with the HDMI/DP sink
2528  * @mode: the display mode
2529  */
2530 int drm_av_sync_delay(struct drm_connector *connector,
2531 		      struct drm_display_mode *mode)
2532 {
2533 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2534 	int a, v;
2535 
2536 	if (!connector->latency_present[0])
2537 		return 0;
2538 	if (!connector->latency_present[1])
2539 		i = 0;
2540 
2541 	a = connector->audio_latency[i];
2542 	v = connector->video_latency[i];
2543 
2544 	/*
2545 	 * HDMI/DP sink doesn't support audio or video?
2546 	 */
2547 	if (a == 255 || v == 255)
2548 		return 0;
2549 
2550 	/*
2551 	 * Convert raw EDID values to millisecond.
2552 	 * Treat unknown latency as 0ms.
2553 	 */
2554 	if (a)
2555 		a = min(2 * (a - 1), 500);
2556 	if (v)
2557 		v = min(2 * (v - 1), 500);
2558 
2559 	return max(v - a, 0);
2560 }
2561 EXPORT_SYMBOL(drm_av_sync_delay);
2562 
2563 /**
2564  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2565  * @encoder: the encoder just changed display mode
2566  * @mode: the adjusted display mode
2567  *
2568  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2569  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2570  */
2571 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2572 				     struct drm_display_mode *mode)
2573 {
2574 	struct drm_connector *connector;
2575 	struct drm_device *dev = encoder->dev;
2576 
2577 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2578 		if (connector->encoder == encoder && connector->eld[0])
2579 			return connector;
2580 
2581 	return NULL;
2582 }
2583 EXPORT_SYMBOL(drm_select_eld);
2584 
2585 /**
2586  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
2587  * @edid: monitor EDID information
2588  *
2589  * Parse the CEA extension according to CEA-861-B.
2590  * Return true if HDMI, false if not or unknown.
2591  */
2592 bool drm_detect_hdmi_monitor(struct edid *edid)
2593 {
2594 	u8 *edid_ext;
2595 	int i;
2596 	int start_offset, end_offset;
2597 
2598 	edid_ext = drm_find_cea_extension(edid);
2599 	if (!edid_ext)
2600 		return false;
2601 
2602 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2603 		return false;
2604 
2605 	/*
2606 	 * Because HDMI identifier is in Vendor Specific Block,
2607 	 * search it from all data blocks of CEA extension.
2608 	 */
2609 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2610 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2611 			return true;
2612 	}
2613 
2614 	return false;
2615 }
2616 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
2617 
2618 /**
2619  * drm_detect_monitor_audio - check monitor audio capability
2620  *
2621  * Monitor should have CEA extension block.
2622  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2623  * audio' only. If there is any audio extension block and supported
2624  * audio format, assume at least 'basic audio' support, even if 'basic
2625  * audio' is not defined in EDID.
2626  *
2627  */
2628 bool drm_detect_monitor_audio(struct edid *edid)
2629 {
2630 	u8 *edid_ext;
2631 	int i, j;
2632 	bool has_audio = false;
2633 	int start_offset, end_offset;
2634 
2635 	edid_ext = drm_find_cea_extension(edid);
2636 	if (!edid_ext)
2637 		goto end;
2638 
2639 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2640 
2641 	if (has_audio) {
2642 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
2643 		goto end;
2644 	}
2645 
2646 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2647 		goto end;
2648 
2649 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2650 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
2651 			has_audio = true;
2652 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
2653 				DRM_DEBUG_KMS("CEA audio format %d\n",
2654 					      (edid_ext[i + j] >> 3) & 0xf);
2655 			goto end;
2656 		}
2657 	}
2658 end:
2659 	return has_audio;
2660 }
2661 EXPORT_SYMBOL(drm_detect_monitor_audio);
2662 
2663 /**
2664  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
2665  *
2666  * Check whether the monitor reports the RGB quantization range selection
2667  * as supported. The AVI infoframe can then be used to inform the monitor
2668  * which quantization range (full or limited) is used.
2669  */
2670 bool drm_rgb_quant_range_selectable(struct edid *edid)
2671 {
2672 	u8 *edid_ext;
2673 	int i, start, end;
2674 
2675 	edid_ext = drm_find_cea_extension(edid);
2676 	if (!edid_ext)
2677 		return false;
2678 
2679 	if (cea_db_offsets(edid_ext, &start, &end))
2680 		return false;
2681 
2682 	for_each_cea_db(edid_ext, i, start, end) {
2683 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
2684 		    cea_db_payload_len(&edid_ext[i]) == 2) {
2685 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
2686 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
2687 		}
2688 	}
2689 
2690 	return false;
2691 }
2692 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
2693 
2694 /**
2695  * drm_add_display_info - pull display info out if present
2696  * @edid: EDID data
2697  * @info: display info (attached to connector)
2698  *
2699  * Grab any available display info and stuff it into the drm_display_info
2700  * structure that's part of the connector.  Useful for tracking bpp and
2701  * color spaces.
2702  */
2703 static void drm_add_display_info(struct edid *edid,
2704 				 struct drm_display_info *info)
2705 {
2706 	u8 *edid_ext;
2707 
2708 	info->width_mm = edid->width_cm * 10;
2709 	info->height_mm = edid->height_cm * 10;
2710 
2711 	/* driver figures it out in this case */
2712 	info->bpc = 0;
2713 	info->color_formats = 0;
2714 
2715 	if (edid->revision < 3)
2716 		return;
2717 
2718 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2719 		return;
2720 
2721 	/* Get data from CEA blocks if present */
2722 	edid_ext = drm_find_cea_extension(edid);
2723 	if (edid_ext) {
2724 		info->cea_rev = edid_ext[1];
2725 
2726 		/* The existence of a CEA block should imply RGB support */
2727 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
2728 		if (edid_ext[3] & EDID_CEA_YCRCB444)
2729 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2730 		if (edid_ext[3] & EDID_CEA_YCRCB422)
2731 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2732 	}
2733 
2734 	/* Only defined for 1.4 with digital displays */
2735 	if (edid->revision < 4)
2736 		return;
2737 
2738 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
2739 	case DRM_EDID_DIGITAL_DEPTH_6:
2740 		info->bpc = 6;
2741 		break;
2742 	case DRM_EDID_DIGITAL_DEPTH_8:
2743 		info->bpc = 8;
2744 		break;
2745 	case DRM_EDID_DIGITAL_DEPTH_10:
2746 		info->bpc = 10;
2747 		break;
2748 	case DRM_EDID_DIGITAL_DEPTH_12:
2749 		info->bpc = 12;
2750 		break;
2751 	case DRM_EDID_DIGITAL_DEPTH_14:
2752 		info->bpc = 14;
2753 		break;
2754 	case DRM_EDID_DIGITAL_DEPTH_16:
2755 		info->bpc = 16;
2756 		break;
2757 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
2758 	default:
2759 		info->bpc = 0;
2760 		break;
2761 	}
2762 
2763 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
2764 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
2765 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2766 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
2767 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2768 }
2769 
2770 /**
2771  * drm_add_edid_modes - add modes from EDID data, if available
2772  * @connector: connector we're probing
2773  * @edid: edid data
2774  *
2775  * Add the specified modes to the connector's mode list.
2776  *
2777  * Return number of modes added or 0 if we couldn't find any.
2778  */
2779 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
2780 {
2781 	int num_modes = 0;
2782 	u32 quirks;
2783 
2784 	if (edid == NULL) {
2785 		return 0;
2786 	}
2787 	if (!drm_edid_is_valid(edid)) {
2788 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
2789 			 drm_get_connector_name(connector));
2790 		return 0;
2791 	}
2792 
2793 	quirks = edid_get_quirks(edid);
2794 
2795 	/*
2796 	 * EDID spec says modes should be preferred in this order:
2797 	 * - preferred detailed mode
2798 	 * - other detailed modes from base block
2799 	 * - detailed modes from extension blocks
2800 	 * - CVT 3-byte code modes
2801 	 * - standard timing codes
2802 	 * - established timing codes
2803 	 * - modes inferred from GTF or CVT range information
2804 	 *
2805 	 * We get this pretty much right.
2806 	 *
2807 	 * XXX order for additional mode types in extension blocks?
2808 	 */
2809 	num_modes += add_detailed_modes(connector, edid, quirks);
2810 	num_modes += add_cvt_modes(connector, edid);
2811 	num_modes += add_standard_modes(connector, edid);
2812 	num_modes += add_established_modes(connector, edid);
2813 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2814 		num_modes += add_inferred_modes(connector, edid);
2815 	num_modes += add_cea_modes(connector, edid);
2816 
2817 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
2818 		edid_fixup_preferred(connector, quirks);
2819 
2820 	drm_add_display_info(edid, &connector->display_info);
2821 
2822 	return num_modes;
2823 }
2824 EXPORT_SYMBOL(drm_add_edid_modes);
2825 
2826 /**
2827  * drm_add_modes_noedid - add modes for the connectors without EDID
2828  * @connector: connector we're probing
2829  * @hdisplay: the horizontal display limit
2830  * @vdisplay: the vertical display limit
2831  *
2832  * Add the specified modes to the connector's mode list. Only when the
2833  * hdisplay/vdisplay is not beyond the given limit, it will be added.
2834  *
2835  * Return number of modes added or 0 if we couldn't find any.
2836  */
2837 int drm_add_modes_noedid(struct drm_connector *connector,
2838 			int hdisplay, int vdisplay)
2839 {
2840 	int i, count, num_modes = 0;
2841 	struct drm_display_mode *mode;
2842 	struct drm_device *dev = connector->dev;
2843 
2844 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
2845 	if (hdisplay < 0)
2846 		hdisplay = 0;
2847 	if (vdisplay < 0)
2848 		vdisplay = 0;
2849 
2850 	for (i = 0; i < count; i++) {
2851 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2852 		if (hdisplay && vdisplay) {
2853 			/*
2854 			 * Only when two are valid, they will be used to check
2855 			 * whether the mode should be added to the mode list of
2856 			 * the connector.
2857 			 */
2858 			if (ptr->hdisplay > hdisplay ||
2859 					ptr->vdisplay > vdisplay)
2860 				continue;
2861 		}
2862 		if (drm_mode_vrefresh(ptr) > 61)
2863 			continue;
2864 		mode = drm_mode_duplicate(dev, ptr);
2865 		if (mode) {
2866 			drm_mode_probed_add(connector, mode);
2867 			num_modes++;
2868 		}
2869 	}
2870 	return num_modes;
2871 }
2872 EXPORT_SYMBOL(drm_add_modes_noedid);
2873