xref: /dragonfly/sys/dev/drm/drm_edid.c (revision a4fe36f1)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/hdmi.h>
32 #include <linux/i2c.h>
33 #include <linux/module.h>
34 #include <drm/drmP.h>
35 #include <drm/drm_edid.h>
36 #include <linux/string.h>
37 
38 #include <bus/iicbus/iic.h>
39 #include <bus/iicbus/iiconf.h>
40 #include "iicbus_if.h"
41 
42 #define version_greater(edid, maj, min) \
43 	(((edid)->version > (maj)) || \
44 	 ((edid)->version == (maj) && (edid)->revision > (min)))
45 
46 #define EDID_EST_TIMINGS 16
47 #define EDID_STD_TIMINGS 8
48 #define EDID_DETAILED_TIMINGS 4
49 
50 /*
51  * EDID blocks out in the wild have a variety of bugs, try to collect
52  * them here (note that userspace may work around broken monitors first,
53  * but fixes should make their way here so that the kernel "just works"
54  * on as many displays as possible).
55  */
56 
57 /* First detailed mode wrong, use largest 60Hz mode */
58 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
59 /* Reported 135MHz pixel clock is too high, needs adjustment */
60 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
61 /* Prefer the largest mode at 75 Hz */
62 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
63 /* Detail timing is in cm not mm */
64 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
65 /* Detailed timing descriptors have bogus size values, so just take the
66  * maximum size and use that.
67  */
68 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
69 /* Monitor forgot to set the first detailed is preferred bit. */
70 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
71 /* use +hsync +vsync for detailed mode */
72 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
73 /* Force reduced-blanking timings for detailed modes */
74 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
75 /* Force 8bpc */
76 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
77 /* Force 12bpc */
78 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
79 
80 struct detailed_mode_closure {
81 	struct drm_connector *connector;
82 	struct edid *edid;
83 	bool preferred;
84 	u32 quirks;
85 	int modes;
86 };
87 
88 #define LEVEL_DMT	0
89 #define LEVEL_GTF	1
90 #define LEVEL_GTF2	2
91 #define LEVEL_CVT	3
92 
93 static struct edid_quirk {
94 	char vendor[4];
95 	int product_id;
96 	u32 quirks;
97 } edid_quirk_list[] = {
98 	/* Acer AL1706 */
99 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
100 	/* Acer F51 */
101 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
102 	/* Unknown Acer */
103 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
104 
105 	/* Belinea 10 15 55 */
106 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
107 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
108 
109 	/* Envision Peripherals, Inc. EN-7100e */
110 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
111 	/* Envision EN2028 */
112 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
113 
114 	/* Funai Electronics PM36B */
115 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
116 	  EDID_QUIRK_DETAILED_IN_CM },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 };
146 
147 /*
148  * Autogenerated from the DMT spec.
149  * This table is copied from xfree86/modes/xf86EdidModes.c.
150  */
151 static const struct drm_display_mode drm_dmt_modes[] = {
152 	/* 0x01 - 640x350@85Hz */
153 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
154 		   736, 832, 0, 350, 382, 385, 445, 0,
155 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
156 	/* 0x02 - 640x400@85Hz */
157 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
158 		   736, 832, 0, 400, 401, 404, 445, 0,
159 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
160 	/* 0x03 - 720x400@85Hz */
161 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
162 		   828, 936, 0, 400, 401, 404, 446, 0,
163 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
164 	/* 0x04 - 640x480@60Hz */
165 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
166 		   752, 800, 0, 480, 490, 492, 525, 0,
167 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
168 	/* 0x05 - 640x480@72Hz */
169 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
170 		   704, 832, 0, 480, 489, 492, 520, 0,
171 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
172 	/* 0x06 - 640x480@75Hz */
173 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
174 		   720, 840, 0, 480, 481, 484, 500, 0,
175 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
176 	/* 0x07 - 640x480@85Hz */
177 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
178 		   752, 832, 0, 480, 481, 484, 509, 0,
179 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
180 	/* 0x08 - 800x600@56Hz */
181 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
182 		   896, 1024, 0, 600, 601, 603, 625, 0,
183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
184 	/* 0x09 - 800x600@60Hz */
185 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
186 		   968, 1056, 0, 600, 601, 605, 628, 0,
187 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
188 	/* 0x0a - 800x600@72Hz */
189 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
190 		   976, 1040, 0, 600, 637, 643, 666, 0,
191 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
192 	/* 0x0b - 800x600@75Hz */
193 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
194 		   896, 1056, 0, 600, 601, 604, 625, 0,
195 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
196 	/* 0x0c - 800x600@85Hz */
197 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
198 		   896, 1048, 0, 600, 601, 604, 631, 0,
199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
200 	/* 0x0d - 800x600@120Hz RB */
201 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
202 		   880, 960, 0, 600, 603, 607, 636, 0,
203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
204 	/* 0x0e - 848x480@60Hz */
205 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
206 		   976, 1088, 0, 480, 486, 494, 517, 0,
207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
208 	/* 0x0f - 1024x768@43Hz, interlace */
209 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
210 		   1208, 1264, 0, 768, 768, 772, 817, 0,
211 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
212 		   DRM_MODE_FLAG_INTERLACE) },
213 	/* 0x10 - 1024x768@60Hz */
214 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
215 		   1184, 1344, 0, 768, 771, 777, 806, 0,
216 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
217 	/* 0x11 - 1024x768@70Hz */
218 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
219 		   1184, 1328, 0, 768, 771, 777, 806, 0,
220 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
221 	/* 0x12 - 1024x768@75Hz */
222 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
223 		   1136, 1312, 0, 768, 769, 772, 800, 0,
224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
225 	/* 0x13 - 1024x768@85Hz */
226 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
227 		   1168, 1376, 0, 768, 769, 772, 808, 0,
228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
229 	/* 0x14 - 1024x768@120Hz RB */
230 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
231 		   1104, 1184, 0, 768, 771, 775, 813, 0,
232 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
233 	/* 0x15 - 1152x864@75Hz */
234 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
235 		   1344, 1600, 0, 864, 865, 868, 900, 0,
236 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
237 	/* 0x55 - 1280x720@60Hz */
238 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
239 		   1430, 1650, 0, 720, 725, 730, 750, 0,
240 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
241 	/* 0x16 - 1280x768@60Hz RB */
242 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
243 		   1360, 1440, 0, 768, 771, 778, 790, 0,
244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 	/* 0x17 - 1280x768@60Hz */
246 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
247 		   1472, 1664, 0, 768, 771, 778, 798, 0,
248 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 	/* 0x18 - 1280x768@75Hz */
250 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
251 		   1488, 1696, 0, 768, 771, 778, 805, 0,
252 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 	/* 0x19 - 1280x768@85Hz */
254 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
255 		   1496, 1712, 0, 768, 771, 778, 809, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
257 	/* 0x1a - 1280x768@120Hz RB */
258 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
259 		   1360, 1440, 0, 768, 771, 778, 813, 0,
260 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 	/* 0x1b - 1280x800@60Hz RB */
262 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
263 		   1360, 1440, 0, 800, 803, 809, 823, 0,
264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 	/* 0x1c - 1280x800@60Hz */
266 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
267 		   1480, 1680, 0, 800, 803, 809, 831, 0,
268 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
269 	/* 0x1d - 1280x800@75Hz */
270 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
271 		   1488, 1696, 0, 800, 803, 809, 838, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 	/* 0x1e - 1280x800@85Hz */
274 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
275 		   1496, 1712, 0, 800, 803, 809, 843, 0,
276 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 	/* 0x1f - 1280x800@120Hz RB */
278 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
279 		   1360, 1440, 0, 800, 803, 809, 847, 0,
280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
281 	/* 0x20 - 1280x960@60Hz */
282 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
283 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 	/* 0x21 - 1280x960@85Hz */
286 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
287 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 	/* 0x22 - 1280x960@120Hz RB */
290 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
291 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 	/* 0x23 - 1280x1024@60Hz */
294 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
295 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
296 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 	/* 0x24 - 1280x1024@75Hz */
298 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
299 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
300 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
301 	/* 0x25 - 1280x1024@85Hz */
302 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
303 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
305 	/* 0x26 - 1280x1024@120Hz RB */
306 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
307 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
308 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
309 	/* 0x27 - 1360x768@60Hz */
310 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
311 		   1536, 1792, 0, 768, 771, 777, 795, 0,
312 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
313 	/* 0x28 - 1360x768@120Hz RB */
314 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
315 		   1440, 1520, 0, 768, 771, 776, 813, 0,
316 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
317 	/* 0x51 - 1366x768@60Hz */
318 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
319 		   1579, 1792, 0, 768, 771, 774, 798, 0,
320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
321 	/* 0x56 - 1366x768@60Hz */
322 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
323 		   1436, 1500, 0, 768, 769, 772, 800, 0,
324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
325 	/* 0x29 - 1400x1050@60Hz RB */
326 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
327 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
329 	/* 0x2a - 1400x1050@60Hz */
330 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
331 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
332 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
333 	/* 0x2b - 1400x1050@75Hz */
334 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
335 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
336 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
337 	/* 0x2c - 1400x1050@85Hz */
338 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
339 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
340 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 	/* 0x2d - 1400x1050@120Hz RB */
342 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
343 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
345 	/* 0x2e - 1440x900@60Hz RB */
346 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
347 		   1520, 1600, 0, 900, 903, 909, 926, 0,
348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
349 	/* 0x2f - 1440x900@60Hz */
350 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
351 		   1672, 1904, 0, 900, 903, 909, 934, 0,
352 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
353 	/* 0x30 - 1440x900@75Hz */
354 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
355 		   1688, 1936, 0, 900, 903, 909, 942, 0,
356 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 	/* 0x31 - 1440x900@85Hz */
358 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
359 		   1696, 1952, 0, 900, 903, 909, 948, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 	/* 0x32 - 1440x900@120Hz RB */
362 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
363 		   1520, 1600, 0, 900, 903, 909, 953, 0,
364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
365 	/* 0x53 - 1600x900@60Hz */
366 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
367 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
369 	/* 0x33 - 1600x1200@60Hz */
370 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
371 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 	/* 0x34 - 1600x1200@65Hz */
374 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
375 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
376 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 	/* 0x35 - 1600x1200@70Hz */
378 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
379 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
381 	/* 0x36 - 1600x1200@75Hz */
382 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
383 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
385 	/* 0x37 - 1600x1200@85Hz */
386 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
387 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 	/* 0x38 - 1600x1200@120Hz RB */
390 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
391 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
393 	/* 0x39 - 1680x1050@60Hz RB */
394 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
395 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
397 	/* 0x3a - 1680x1050@60Hz */
398 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
399 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
400 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
401 	/* 0x3b - 1680x1050@75Hz */
402 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
403 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
404 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 	/* 0x3c - 1680x1050@85Hz */
406 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
407 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
408 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 	/* 0x3d - 1680x1050@120Hz RB */
410 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
411 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
413 	/* 0x3e - 1792x1344@60Hz */
414 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
415 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
416 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
417 	/* 0x3f - 1792x1344@75Hz */
418 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
419 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
420 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
421 	/* 0x40 - 1792x1344@120Hz RB */
422 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
423 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
424 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
425 	/* 0x41 - 1856x1392@60Hz */
426 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
427 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 	/* 0x42 - 1856x1392@75Hz */
430 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
431 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
432 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
433 	/* 0x43 - 1856x1392@120Hz RB */
434 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
435 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
436 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 	/* 0x52 - 1920x1080@60Hz */
438 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
439 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
441 	/* 0x44 - 1920x1200@60Hz RB */
442 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
443 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
444 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
445 	/* 0x45 - 1920x1200@60Hz */
446 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
447 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 	/* 0x46 - 1920x1200@75Hz */
450 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
451 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
452 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
453 	/* 0x47 - 1920x1200@85Hz */
454 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
455 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
456 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
457 	/* 0x48 - 1920x1200@120Hz RB */
458 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
459 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
460 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
461 	/* 0x49 - 1920x1440@60Hz */
462 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
463 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
464 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 	/* 0x4a - 1920x1440@75Hz */
466 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
467 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
468 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 	/* 0x4b - 1920x1440@120Hz RB */
470 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
471 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
473 	/* 0x54 - 2048x1152@60Hz */
474 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
475 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 	/* 0x4c - 2560x1600@60Hz RB */
478 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
479 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
481 	/* 0x4d - 2560x1600@60Hz */
482 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
483 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
484 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
485 	/* 0x4e - 2560x1600@75Hz */
486 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
487 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
488 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 	/* 0x4f - 2560x1600@85Hz */
490 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
491 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
492 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 	/* 0x50 - 2560x1600@120Hz RB */
494 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
495 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
497 	/* 0x57 - 4096x2160@60Hz RB */
498 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
499 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
501 	/* 0x58 - 4096x2160@59.94Hz RB */
502 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
503 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
505 };
506 
507 /*
508  * These more or less come from the DMT spec.  The 720x400 modes are
509  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
510  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
511  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
512  * mode.
513  *
514  * The DMT modes have been fact-checked; the rest are mild guesses.
515  */
516 static const struct drm_display_mode edid_est_modes[] = {
517 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
518 		   968, 1056, 0, 600, 601, 605, 628, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
520 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
521 		   896, 1024, 0, 600, 601, 603,  625, 0,
522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
523 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
524 		   720, 840, 0, 480, 481, 484, 500, 0,
525 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
526 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
527 		   704,  832, 0, 480, 489, 491, 520, 0,
528 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
529 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
530 		   768,  864, 0, 480, 483, 486, 525, 0,
531 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
532 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
533 		   752, 800, 0, 480, 490, 492, 525, 0,
534 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
535 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
536 		   846, 900, 0, 400, 421, 423,  449, 0,
537 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
538 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
539 		   846,  900, 0, 400, 412, 414, 449, 0,
540 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
541 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
542 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
543 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
544 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
545 		   1136, 1312, 0,  768, 769, 772, 800, 0,
546 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
547 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
548 		   1184, 1328, 0,  768, 771, 777, 806, 0,
549 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
550 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
551 		   1184, 1344, 0,  768, 771, 777, 806, 0,
552 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
553 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
554 		   1208, 1264, 0, 768, 768, 776, 817, 0,
555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
556 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
557 		   928, 1152, 0, 624, 625, 628, 667, 0,
558 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
559 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
560 		   896, 1056, 0, 600, 601, 604,  625, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
562 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
563 		   976, 1040, 0, 600, 637, 643, 666, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
565 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
566 		   1344, 1600, 0,  864, 865, 868, 900, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
568 };
569 
570 struct minimode {
571 	short w;
572 	short h;
573 	short r;
574 	short rb;
575 };
576 
577 static const struct minimode est3_modes[] = {
578 	/* byte 6 */
579 	{ 640, 350, 85, 0 },
580 	{ 640, 400, 85, 0 },
581 	{ 720, 400, 85, 0 },
582 	{ 640, 480, 85, 0 },
583 	{ 848, 480, 60, 0 },
584 	{ 800, 600, 85, 0 },
585 	{ 1024, 768, 85, 0 },
586 	{ 1152, 864, 75, 0 },
587 	/* byte 7 */
588 	{ 1280, 768, 60, 1 },
589 	{ 1280, 768, 60, 0 },
590 	{ 1280, 768, 75, 0 },
591 	{ 1280, 768, 85, 0 },
592 	{ 1280, 960, 60, 0 },
593 	{ 1280, 960, 85, 0 },
594 	{ 1280, 1024, 60, 0 },
595 	{ 1280, 1024, 85, 0 },
596 	/* byte 8 */
597 	{ 1360, 768, 60, 0 },
598 	{ 1440, 900, 60, 1 },
599 	{ 1440, 900, 60, 0 },
600 	{ 1440, 900, 75, 0 },
601 	{ 1440, 900, 85, 0 },
602 	{ 1400, 1050, 60, 1 },
603 	{ 1400, 1050, 60, 0 },
604 	{ 1400, 1050, 75, 0 },
605 	/* byte 9 */
606 	{ 1400, 1050, 85, 0 },
607 	{ 1680, 1050, 60, 1 },
608 	{ 1680, 1050, 60, 0 },
609 	{ 1680, 1050, 75, 0 },
610 	{ 1680, 1050, 85, 0 },
611 	{ 1600, 1200, 60, 0 },
612 	{ 1600, 1200, 65, 0 },
613 	{ 1600, 1200, 70, 0 },
614 	/* byte 10 */
615 	{ 1600, 1200, 75, 0 },
616 	{ 1600, 1200, 85, 0 },
617 	{ 1792, 1344, 60, 0 },
618 	{ 1792, 1344, 75, 0 },
619 	{ 1856, 1392, 60, 0 },
620 	{ 1856, 1392, 75, 0 },
621 	{ 1920, 1200, 60, 1 },
622 	{ 1920, 1200, 60, 0 },
623 	/* byte 11 */
624 	{ 1920, 1200, 75, 0 },
625 	{ 1920, 1200, 85, 0 },
626 	{ 1920, 1440, 60, 0 },
627 	{ 1920, 1440, 75, 0 },
628 };
629 
630 static const struct minimode extra_modes[] = {
631 	{ 1024, 576,  60, 0 },
632 	{ 1366, 768,  60, 0 },
633 	{ 1600, 900,  60, 0 },
634 	{ 1680, 945,  60, 0 },
635 	{ 1920, 1080, 60, 0 },
636 	{ 2048, 1152, 60, 0 },
637 	{ 2048, 1536, 60, 0 },
638 };
639 
640 /*
641  * Probably taken from CEA-861 spec.
642  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
643  */
644 static const struct drm_display_mode edid_cea_modes[] = {
645 	/* 1 - 640x480@60Hz */
646 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
647 		   752, 800, 0, 480, 490, 492, 525, 0,
648 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
649 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
650 	/* 2 - 720x480@60Hz */
651 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
652 		   798, 858, 0, 480, 489, 495, 525, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
654 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
655 	/* 3 - 720x480@60Hz */
656 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
657 		   798, 858, 0, 480, 489, 495, 525, 0,
658 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
659 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
660 	/* 4 - 1280x720@60Hz */
661 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
662 		   1430, 1650, 0, 720, 725, 730, 750, 0,
663 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
664 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
665 	/* 5 - 1920x1080i@60Hz */
666 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
667 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
668 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
669 			DRM_MODE_FLAG_INTERLACE),
670 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
671 	/* 6 - 720(1440)x480i@60Hz */
672 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
673 		   801, 858, 0, 480, 488, 494, 525, 0,
674 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
675 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
676 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
677 	/* 7 - 720(1440)x480i@60Hz */
678 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
679 		   801, 858, 0, 480, 488, 494, 525, 0,
680 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
681 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
682 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
683 	/* 8 - 720(1440)x240@60Hz */
684 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
685 		   801, 858, 0, 240, 244, 247, 262, 0,
686 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
687 			DRM_MODE_FLAG_DBLCLK),
688 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
689 	/* 9 - 720(1440)x240@60Hz */
690 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
691 		   801, 858, 0, 240, 244, 247, 262, 0,
692 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
693 			DRM_MODE_FLAG_DBLCLK),
694 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
695 	/* 10 - 2880x480i@60Hz */
696 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
697 		   3204, 3432, 0, 480, 488, 494, 525, 0,
698 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
699 			DRM_MODE_FLAG_INTERLACE),
700 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
701 	/* 11 - 2880x480i@60Hz */
702 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
703 		   3204, 3432, 0, 480, 488, 494, 525, 0,
704 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
705 			DRM_MODE_FLAG_INTERLACE),
706 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
707 	/* 12 - 2880x240@60Hz */
708 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
709 		   3204, 3432, 0, 240, 244, 247, 262, 0,
710 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
711 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
712 	/* 13 - 2880x240@60Hz */
713 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
714 		   3204, 3432, 0, 240, 244, 247, 262, 0,
715 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
716 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
717 	/* 14 - 1440x480@60Hz */
718 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
719 		   1596, 1716, 0, 480, 489, 495, 525, 0,
720 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
721 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
722 	/* 15 - 1440x480@60Hz */
723 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
724 		   1596, 1716, 0, 480, 489, 495, 525, 0,
725 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
726 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
727 	/* 16 - 1920x1080@60Hz */
728 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
729 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
730 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
731 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
732 	/* 17 - 720x576@50Hz */
733 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
734 		   796, 864, 0, 576, 581, 586, 625, 0,
735 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
736 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
737 	/* 18 - 720x576@50Hz */
738 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
739 		   796, 864, 0, 576, 581, 586, 625, 0,
740 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
741 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
742 	/* 19 - 1280x720@50Hz */
743 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
744 		   1760, 1980, 0, 720, 725, 730, 750, 0,
745 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
746 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
747 	/* 20 - 1920x1080i@50Hz */
748 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
749 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
750 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
751 			DRM_MODE_FLAG_INTERLACE),
752 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
753 	/* 21 - 720(1440)x576i@50Hz */
754 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
755 		   795, 864, 0, 576, 580, 586, 625, 0,
756 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
757 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
758 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
759 	/* 22 - 720(1440)x576i@50Hz */
760 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
761 		   795, 864, 0, 576, 580, 586, 625, 0,
762 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
763 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
764 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
765 	/* 23 - 720(1440)x288@50Hz */
766 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
767 		   795, 864, 0, 288, 290, 293, 312, 0,
768 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
769 			DRM_MODE_FLAG_DBLCLK),
770 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
771 	/* 24 - 720(1440)x288@50Hz */
772 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
773 		   795, 864, 0, 288, 290, 293, 312, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
775 			DRM_MODE_FLAG_DBLCLK),
776 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 	/* 25 - 2880x576i@50Hz */
778 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
779 		   3180, 3456, 0, 576, 580, 586, 625, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 			DRM_MODE_FLAG_INTERLACE),
782 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
783 	/* 26 - 2880x576i@50Hz */
784 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
785 		   3180, 3456, 0, 576, 580, 586, 625, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
787 			DRM_MODE_FLAG_INTERLACE),
788 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
789 	/* 27 - 2880x288@50Hz */
790 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
791 		   3180, 3456, 0, 288, 290, 293, 312, 0,
792 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
793 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
794 	/* 28 - 2880x288@50Hz */
795 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
796 		   3180, 3456, 0, 288, 290, 293, 312, 0,
797 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
798 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 	/* 29 - 1440x576@50Hz */
800 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
801 		   1592, 1728, 0, 576, 581, 586, 625, 0,
802 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
803 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 	/* 30 - 1440x576@50Hz */
805 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
806 		   1592, 1728, 0, 576, 581, 586, 625, 0,
807 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
808 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
809 	/* 31 - 1920x1080@50Hz */
810 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
811 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
812 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
813 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 	/* 32 - 1920x1080@24Hz */
815 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
816 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
817 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
818 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
819 	/* 33 - 1920x1080@25Hz */
820 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
821 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
822 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
823 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
824 	/* 34 - 1920x1080@30Hz */
825 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
826 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
829 	/* 35 - 2880x480@60Hz */
830 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
831 		   3192, 3432, 0, 480, 489, 495, 525, 0,
832 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
833 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
834 	/* 36 - 2880x480@60Hz */
835 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
836 		   3192, 3432, 0, 480, 489, 495, 525, 0,
837 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
838 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 	/* 37 - 2880x576@50Hz */
840 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
841 		   3184, 3456, 0, 576, 581, 586, 625, 0,
842 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
843 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
844 	/* 38 - 2880x576@50Hz */
845 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
846 		   3184, 3456, 0, 576, 581, 586, 625, 0,
847 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 39 - 1920x1080i@50Hz */
850 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
851 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
852 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
853 			DRM_MODE_FLAG_INTERLACE),
854 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 	/* 40 - 1920x1080i@100Hz */
856 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
857 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
858 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
859 			DRM_MODE_FLAG_INTERLACE),
860 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 	/* 41 - 1280x720@100Hz */
862 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
863 		   1760, 1980, 0, 720, 725, 730, 750, 0,
864 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
865 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
866 	/* 42 - 720x576@100Hz */
867 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
868 		   796, 864, 0, 576, 581, 586, 625, 0,
869 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
870 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
871 	/* 43 - 720x576@100Hz */
872 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
873 		   796, 864, 0, 576, 581, 586, 625, 0,
874 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
875 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
876 	/* 44 - 720(1440)x576i@100Hz */
877 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
878 		   795, 864, 0, 576, 580, 586, 625, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
881 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
882 	/* 45 - 720(1440)x576i@100Hz */
883 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
884 		   795, 864, 0, 576, 580, 586, 625, 0,
885 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
886 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
887 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
888 	/* 46 - 1920x1080i@120Hz */
889 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
890 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
891 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
892 			DRM_MODE_FLAG_INTERLACE),
893 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
894 	/* 47 - 1280x720@120Hz */
895 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
896 		   1430, 1650, 0, 720, 725, 730, 750, 0,
897 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
898 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
899 	/* 48 - 720x480@120Hz */
900 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
901 		   798, 858, 0, 480, 489, 495, 525, 0,
902 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
903 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
904 	/* 49 - 720x480@120Hz */
905 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
906 		   798, 858, 0, 480, 489, 495, 525, 0,
907 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
908 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 	/* 50 - 720(1440)x480i@120Hz */
910 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
911 		   801, 858, 0, 480, 488, 494, 525, 0,
912 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
913 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
914 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
915 	/* 51 - 720(1440)x480i@120Hz */
916 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
917 		   801, 858, 0, 480, 488, 494, 525, 0,
918 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
919 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
920 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
921 	/* 52 - 720x576@200Hz */
922 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
923 		   796, 864, 0, 576, 581, 586, 625, 0,
924 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
925 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
926 	/* 53 - 720x576@200Hz */
927 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
928 		   796, 864, 0, 576, 581, 586, 625, 0,
929 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
930 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 	/* 54 - 720(1440)x576i@200Hz */
932 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
933 		   795, 864, 0, 576, 580, 586, 625, 0,
934 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
935 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
936 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
937 	/* 55 - 720(1440)x576i@200Hz */
938 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
939 		   795, 864, 0, 576, 580, 586, 625, 0,
940 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
941 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
942 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
943 	/* 56 - 720x480@240Hz */
944 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
945 		   798, 858, 0, 480, 489, 495, 525, 0,
946 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
947 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
948 	/* 57 - 720x480@240Hz */
949 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
950 		   798, 858, 0, 480, 489, 495, 525, 0,
951 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
952 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
953 	/* 58 - 720(1440)x480i@240 */
954 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
955 		   801, 858, 0, 480, 488, 494, 525, 0,
956 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
957 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
958 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
959 	/* 59 - 720(1440)x480i@240 */
960 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
961 		   801, 858, 0, 480, 488, 494, 525, 0,
962 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
963 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
964 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
965 	/* 60 - 1280x720@24Hz */
966 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
967 		   3080, 3300, 0, 720, 725, 730, 750, 0,
968 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
969 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
970 	/* 61 - 1280x720@25Hz */
971 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
972 		   3740, 3960, 0, 720, 725, 730, 750, 0,
973 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
974 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
975 	/* 62 - 1280x720@30Hz */
976 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
977 		   3080, 3300, 0, 720, 725, 730, 750, 0,
978 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
979 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
980 	/* 63 - 1920x1080@120Hz */
981 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
982 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 	/* 64 - 1920x1080@100Hz */
986 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
987 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
988 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
989 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 };
991 
992 /*
993  * HDMI 1.4 4k modes.
994  */
995 static const struct drm_display_mode edid_4k_modes[] = {
996 	/* 1 - 3840x2160@30Hz */
997 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
998 		   3840, 4016, 4104, 4400, 0,
999 		   2160, 2168, 2178, 2250, 0,
1000 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1001 	  .vrefresh = 30, },
1002 	/* 2 - 3840x2160@25Hz */
1003 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1004 		   3840, 4896, 4984, 5280, 0,
1005 		   2160, 2168, 2178, 2250, 0,
1006 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1007 	  .vrefresh = 25, },
1008 	/* 3 - 3840x2160@24Hz */
1009 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1010 		   3840, 5116, 5204, 5500, 0,
1011 		   2160, 2168, 2178, 2250, 0,
1012 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1013 	  .vrefresh = 24, },
1014 	/* 4 - 4096x2160@24Hz (SMPTE) */
1015 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1016 		   4096, 5116, 5204, 5500, 0,
1017 		   2160, 2168, 2178, 2250, 0,
1018 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1019 	  .vrefresh = 24, },
1020 };
1021 
1022 /*** DDC fetch and block validation ***/
1023 
1024 static const u8 edid_header[] = {
1025 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1026 };
1027 
1028 /**
1029  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1030  * @raw_edid: pointer to raw base EDID block
1031  *
1032  * Sanity check the header of the base EDID block.
1033  *
1034  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1035  */
1036 int drm_edid_header_is_valid(const u8 *raw_edid)
1037 {
1038 	int i, score = 0;
1039 
1040 	for (i = 0; i < sizeof(edid_header); i++)
1041 		if (raw_edid[i] == edid_header[i])
1042 			score++;
1043 
1044 	return score;
1045 }
1046 EXPORT_SYMBOL(drm_edid_header_is_valid);
1047 
1048 static int edid_fixup __read_mostly = 6;
1049 module_param_named(edid_fixup, edid_fixup, int, 0400);
1050 MODULE_PARM_DESC(edid_fixup,
1051 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1052 
1053 static int drm_edid_block_checksum(const u8 *raw_edid)
1054 {
1055 	int i;
1056 	u8 csum = 0;
1057 	for (i = 0; i < EDID_LENGTH; i++)
1058 		csum += raw_edid[i];
1059 
1060 	return csum;
1061 }
1062 
1063 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1064 {
1065 	if (memchr_inv(in_edid, 0, length))
1066 		return false;
1067 
1068 	return true;
1069 }
1070 
1071 /**
1072  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1073  * @raw_edid: pointer to raw EDID block
1074  * @block: type of block to validate (0 for base, extension otherwise)
1075  * @print_bad_edid: if true, dump bad EDID blocks to the console
1076  * @edid_corrupt: if true, the header or checksum is invalid
1077  *
1078  * Validate a base or extension EDID block and optionally dump bad blocks to
1079  * the console.
1080  *
1081  * Return: True if the block is valid, false otherwise.
1082  */
1083 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1084 			  bool *edid_corrupt)
1085 {
1086 	int i;
1087 	u8 csum;
1088 	struct edid *edid = (struct edid *)raw_edid;
1089 
1090 	if (WARN_ON(!raw_edid))
1091 		return false;
1092 
1093 	if (edid_fixup > 8 || edid_fixup < 0)
1094 		edid_fixup = 6;
1095 
1096 	if (block == 0) {
1097 		int score = drm_edid_header_is_valid(raw_edid);
1098 		if (score == 8) {
1099 			if (edid_corrupt)
1100 				*edid_corrupt = false;
1101 		} else if (score >= edid_fixup) {
1102 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1103 			 * The corrupt flag needs to be set here otherwise, the
1104 			 * fix-up code here will correct the problem, the
1105 			 * checksum is correct and the test fails
1106 			 */
1107 			if (edid_corrupt)
1108 				*edid_corrupt = true;
1109 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1110 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1111 		} else {
1112 			if (edid_corrupt)
1113 				*edid_corrupt = true;
1114 			goto bad;
1115 		}
1116 	}
1117 
1118 	csum = drm_edid_block_checksum(raw_edid);
1119 	if (csum) {
1120 		if (print_bad_edid) {
1121 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1122 		}
1123 
1124 		if (edid_corrupt)
1125 			*edid_corrupt = true;
1126 
1127 		/* allow CEA to slide through, switches mangle this */
1128 		if (raw_edid[0] != 0x02)
1129 			goto bad;
1130 	}
1131 
1132 	/* per-block-type checks */
1133 	switch (raw_edid[0]) {
1134 	case 0: /* base */
1135 		if (edid->version != 1) {
1136 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1137 			goto bad;
1138 		}
1139 
1140 		if (edid->revision > 4)
1141 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1142 		break;
1143 
1144 	default:
1145 		break;
1146 	}
1147 
1148 	return true;
1149 
1150 bad:
1151 	if (print_bad_edid) {
1152 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1153 			printk(KERN_ERR "EDID block is all zeroes\n");
1154 		} else {
1155 			printk(KERN_ERR "Raw EDID:\n");
1156 			for (i = 0; i < EDID_LENGTH; ) {
1157 				kprintf("%02x", raw_edid[i]);
1158 				i++;
1159 				if (i % 16 == 0 || i == EDID_LENGTH)
1160 					kprintf("\n");
1161 				else if (i % 8 == 0)
1162 					kprintf("  ");
1163 				else
1164 					kprintf(" ");
1165 			}
1166 		}
1167 	}
1168 	return false;
1169 }
1170 EXPORT_SYMBOL(drm_edid_block_valid);
1171 
1172 /**
1173  * drm_edid_is_valid - sanity check EDID data
1174  * @edid: EDID data
1175  *
1176  * Sanity-check an entire EDID record (including extensions)
1177  *
1178  * Return: True if the EDID data is valid, false otherwise.
1179  */
1180 bool drm_edid_is_valid(struct edid *edid)
1181 {
1182 	int i;
1183 	u8 *raw = (u8 *)edid;
1184 
1185 	if (!edid)
1186 		return false;
1187 
1188 	for (i = 0; i <= edid->extensions; i++)
1189 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1190 			return false;
1191 
1192 	return true;
1193 }
1194 EXPORT_SYMBOL(drm_edid_is_valid);
1195 
1196 #define DDC_SEGMENT_ADDR 0x30
1197 /**
1198  * drm_do_probe_ddc_edid() - get EDID information via I2C
1199  * @data: I2C device adapter
1200  * @buf: EDID data buffer to be filled
1201  * @block: 128 byte EDID block to start fetching from
1202  * @len: EDID data buffer length to fetch
1203  *
1204  * Try to fetch EDID information by calling I2C driver functions.
1205  *
1206  * Return: 0 on success or -1 on failure.
1207  */
1208 static int
1209 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1210 {
1211 	struct i2c_adapter *adapter = data;
1212 	unsigned char start = block * EDID_LENGTH;
1213 	unsigned char segment = block >> 1;
1214 	unsigned char xfers = segment ? 3 : 2;
1215 	int ret, retries = 5;
1216 
1217 	/*
1218 	 * The core I2C driver will automatically retry the transfer if the
1219 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1220 	 * are susceptible to errors under a heavily loaded machine and
1221 	 * generate spurious NAKs and timeouts. Retrying the transfer
1222 	 * of the individual block a few times seems to overcome this.
1223 	 */
1224 	do {
1225 		struct i2c_msg msgs[] = {
1226 			{
1227 				.slave	= DDC_SEGMENT_ADDR << 1,
1228 				.flags	= 0,
1229 				.len	= 1,
1230 				.buf	= &segment,
1231 			}, {
1232 				.slave	= DDC_ADDR << 1,
1233 				.flags	= 0,
1234 				.len	= 1,
1235 				.buf	= &start,
1236 			}, {
1237 				.slave	= DDC_ADDR << 1,
1238 				.flags	= I2C_M_RD,
1239 				.len	= len,
1240 				.buf	= buf,
1241 			}
1242 		};
1243 
1244 		/*
1245 		 * Avoid sending the segment addr to not upset non-compliant
1246 		 * DDC monitors.
1247 		 */
1248 		ret = iicbus_transfer(adapter, &msgs[3 - xfers], xfers);
1249 
1250 		if (ret != 0)
1251 			DRM_DEBUG_KMS("iicbus_transfer countdown %d error %d\n",
1252 			    retries, ret);
1253 	} while (ret != 0 && --retries);
1254 
1255 	return (ret == 0 ? 0 : -1);
1256 }
1257 
1258 /**
1259  * drm_do_get_edid - get EDID data using a custom EDID block read function
1260  * @connector: connector we're probing
1261  * @get_edid_block: EDID block read function
1262  * @data: private data passed to the block read function
1263  *
1264  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1265  * exposes a different interface to read EDID blocks this function can be used
1266  * to get EDID data using a custom block read function.
1267  *
1268  * As in the general case the DDC bus is accessible by the kernel at the I2C
1269  * level, drivers must make all reasonable efforts to expose it as an I2C
1270  * adapter and use drm_get_edid() instead of abusing this function.
1271  *
1272  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1273  */
1274 struct edid *drm_do_get_edid(struct drm_connector *connector,
1275 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1276 			      size_t len),
1277 	void *data)
1278 {
1279 	int i, j = 0, valid_extensions = 0;
1280 	u8 *block, *new;
1281 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1282 
1283 	if ((block = kmalloc(EDID_LENGTH, M_DRM, M_WAITOK)) == NULL)
1284 		return NULL;
1285 
1286 	/* base block fetch */
1287 	for (i = 0; i < 4; i++) {
1288 		if (get_edid_block(data, block, 0, EDID_LENGTH))
1289 			goto out;
1290 		if (drm_edid_block_valid(block, 0, print_bad_edid,
1291 					 &connector->edid_corrupt))
1292 			break;
1293 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1294 			connector->null_edid_counter++;
1295 			goto carp;
1296 		}
1297 	}
1298 	if (i == 4)
1299 		goto carp;
1300 
1301 	/* if there's no extensions, we're done */
1302 	if (block[0x7e] == 0)
1303 		return (struct edid *)block;
1304 
1305 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, M_DRM, M_WAITOK);
1306 	if (!new)
1307 		goto out;
1308 	block = new;
1309 
1310 	for (j = 1; j <= block[0x7e]; j++) {
1311 		for (i = 0; i < 4; i++) {
1312 			if (get_edid_block(data,
1313 				  block + (valid_extensions + 1) * EDID_LENGTH,
1314 				  j, EDID_LENGTH))
1315 				goto out;
1316 			if (drm_edid_block_valid(block + (valid_extensions + 1)
1317 						 * EDID_LENGTH, j,
1318 						 print_bad_edid,
1319 						 NULL)) {
1320 				valid_extensions++;
1321 				break;
1322 			}
1323 		}
1324 
1325 		if (i == 4 && print_bad_edid) {
1326 			dev_warn(connector->dev->dev,
1327 			 "%s: Ignoring invalid EDID block %d.\n",
1328 			 connector->name, j);
1329 
1330 			connector->bad_edid_counter++;
1331 		}
1332 	}
1333 
1334 	if (valid_extensions != block[0x7e]) {
1335 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1336 		block[0x7e] = valid_extensions;
1337 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, M_DRM, M_WAITOK);
1338 		if (!new)
1339 			goto out;
1340 		block = new;
1341 	}
1342 
1343 	return (struct edid *)block;
1344 
1345 carp:
1346 	if (print_bad_edid) {
1347 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1348 			 connector->name, j);
1349 	}
1350 	connector->bad_edid_counter++;
1351 
1352 out:
1353 	kfree(block);
1354 	return NULL;
1355 }
1356 
1357 /**
1358  * drm_probe_ddc() - probe DDC presence
1359  * @adapter: I2C adapter to probe
1360  *
1361  * Return: True on success, false on failure.
1362  */
1363 bool
1364 drm_probe_ddc(struct device *adapter)
1365 {
1366 	unsigned char out;
1367 
1368 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1369 }
1370 EXPORT_SYMBOL(drm_probe_ddc);
1371 
1372 /**
1373  * drm_get_edid - get EDID data, if available
1374  * @connector: connector we're probing
1375  * @adapter: I2C adapter to use for DDC
1376  *
1377  * Poke the given I2C channel to grab EDID data if possible.  If found,
1378  * attach it to the connector.
1379  *
1380  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1381  */
1382 struct edid *drm_get_edid(struct drm_connector *connector,
1383 			  struct device *adapter)
1384 {
1385 	if (!drm_probe_ddc(adapter))
1386 		return NULL;
1387 
1388 	return drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1389 }
1390 EXPORT_SYMBOL(drm_get_edid);
1391 
1392 /**
1393  * drm_edid_duplicate - duplicate an EDID and the extensions
1394  * @edid: EDID to duplicate
1395  *
1396  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1397  */
1398 struct edid *drm_edid_duplicate(const struct edid *edid)
1399 {
1400 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1401 }
1402 EXPORT_SYMBOL(drm_edid_duplicate);
1403 
1404 /*** EDID parsing ***/
1405 
1406 /**
1407  * edid_vendor - match a string against EDID's obfuscated vendor field
1408  * @edid: EDID to match
1409  * @vendor: vendor string
1410  *
1411  * Returns true if @vendor is in @edid, false otherwise
1412  */
1413 static bool edid_vendor(struct edid *edid, char *vendor)
1414 {
1415 	char edid_vendor[3];
1416 
1417 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1418 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1419 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1420 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1421 
1422 	return !strncmp(edid_vendor, vendor, 3);
1423 }
1424 
1425 /**
1426  * edid_get_quirks - return quirk flags for a given EDID
1427  * @edid: EDID to process
1428  *
1429  * This tells subsequent routines what fixes they need to apply.
1430  */
1431 static u32 edid_get_quirks(struct edid *edid)
1432 {
1433 	struct edid_quirk *quirk;
1434 	int i;
1435 
1436 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1437 		quirk = &edid_quirk_list[i];
1438 
1439 		if (edid_vendor(edid, quirk->vendor) &&
1440 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1441 			return quirk->quirks;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1448 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1449 
1450 /**
1451  * edid_fixup_preferred - set preferred modes based on quirk list
1452  * @connector: has mode list to fix up
1453  * @quirks: quirks list
1454  *
1455  * Walk the mode list for @connector, clearing the preferred status
1456  * on existing modes and setting it anew for the right mode ala @quirks.
1457  */
1458 static void edid_fixup_preferred(struct drm_connector *connector,
1459 				 u32 quirks)
1460 {
1461 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1462 	int target_refresh = 0;
1463 	int cur_vrefresh, preferred_vrefresh;
1464 
1465 	if (list_empty(&connector->probed_modes))
1466 		return;
1467 
1468 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1469 		target_refresh = 60;
1470 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1471 		target_refresh = 75;
1472 
1473 	preferred_mode = list_first_entry(&connector->probed_modes,
1474 					  struct drm_display_mode, head);
1475 
1476 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1477 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1478 
1479 		if (cur_mode == preferred_mode)
1480 			continue;
1481 
1482 		/* Largest mode is preferred */
1483 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1484 			preferred_mode = cur_mode;
1485 
1486 		cur_vrefresh = cur_mode->vrefresh ?
1487 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1488 		preferred_vrefresh = preferred_mode->vrefresh ?
1489 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1490 		/* At a given size, try to get closest to target refresh */
1491 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1492 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1493 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1494 			preferred_mode = cur_mode;
1495 		}
1496 	}
1497 
1498 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1499 }
1500 
1501 static bool
1502 mode_is_rb(const struct drm_display_mode *mode)
1503 {
1504 	return (mode->htotal - mode->hdisplay == 160) &&
1505 	       (mode->hsync_end - mode->hdisplay == 80) &&
1506 	       (mode->hsync_end - mode->hsync_start == 32) &&
1507 	       (mode->vsync_start - mode->vdisplay == 3);
1508 }
1509 
1510 /*
1511  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1512  * @dev: Device to duplicate against
1513  * @hsize: Mode width
1514  * @vsize: Mode height
1515  * @fresh: Mode refresh rate
1516  * @rb: Mode reduced-blanking-ness
1517  *
1518  * Walk the DMT mode list looking for a match for the given parameters.
1519  *
1520  * Return: A newly allocated copy of the mode, or NULL if not found.
1521  */
1522 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1523 					   int hsize, int vsize, int fresh,
1524 					   bool rb)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1529 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1530 		if (hsize != ptr->hdisplay)
1531 			continue;
1532 		if (vsize != ptr->vdisplay)
1533 			continue;
1534 		if (fresh != drm_mode_vrefresh(ptr))
1535 			continue;
1536 		if (rb != mode_is_rb(ptr))
1537 			continue;
1538 
1539 		return drm_mode_duplicate(dev, ptr);
1540 	}
1541 
1542 	return NULL;
1543 }
1544 EXPORT_SYMBOL(drm_mode_find_dmt);
1545 
1546 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1547 
1548 static void
1549 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1550 {
1551 	int i, n = 0;
1552 	u8 d = ext[0x02];
1553 	u8 *det_base = ext + d;
1554 
1555 	n = (127 - d) / 18;
1556 	for (i = 0; i < n; i++)
1557 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1558 }
1559 
1560 static void
1561 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1562 {
1563 	unsigned int i, n = min((int)ext[0x02], 6);
1564 	u8 *det_base = ext + 5;
1565 
1566 	if (ext[0x01] != 1)
1567 		return; /* unknown version */
1568 
1569 	for (i = 0; i < n; i++)
1570 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1571 }
1572 
1573 static void
1574 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1575 {
1576 	int i;
1577 	struct edid *edid = (struct edid *)raw_edid;
1578 
1579 	if (edid == NULL)
1580 		return;
1581 
1582 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1583 		cb(&(edid->detailed_timings[i]), closure);
1584 
1585 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1586 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1587 		switch (*ext) {
1588 		case CEA_EXT:
1589 			cea_for_each_detailed_block(ext, cb, closure);
1590 			break;
1591 		case VTB_EXT:
1592 			vtb_for_each_detailed_block(ext, cb, closure);
1593 			break;
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 }
1599 
1600 static void
1601 is_rb(struct detailed_timing *t, void *data)
1602 {
1603 	u8 *r = (u8 *)t;
1604 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1605 		if (r[15] & 0x10)
1606 			*(bool *)data = true;
1607 }
1608 
1609 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1610 static bool
1611 drm_monitor_supports_rb(struct edid *edid)
1612 {
1613 	if (edid->revision >= 4) {
1614 		bool ret = false;
1615 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1616 		return ret;
1617 	}
1618 
1619 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1620 }
1621 
1622 static void
1623 find_gtf2(struct detailed_timing *t, void *data)
1624 {
1625 	u8 *r = (u8 *)t;
1626 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1627 		*(u8 **)data = r;
1628 }
1629 
1630 /* Secondary GTF curve kicks in above some break frequency */
1631 static int
1632 drm_gtf2_hbreak(struct edid *edid)
1633 {
1634 	u8 *r = NULL;
1635 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1636 	return r ? (r[12] * 2) : 0;
1637 }
1638 
1639 static int
1640 drm_gtf2_2c(struct edid *edid)
1641 {
1642 	u8 *r = NULL;
1643 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1644 	return r ? r[13] : 0;
1645 }
1646 
1647 static int
1648 drm_gtf2_m(struct edid *edid)
1649 {
1650 	u8 *r = NULL;
1651 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1652 	return r ? (r[15] << 8) + r[14] : 0;
1653 }
1654 
1655 static int
1656 drm_gtf2_k(struct edid *edid)
1657 {
1658 	u8 *r = NULL;
1659 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1660 	return r ? r[16] : 0;
1661 }
1662 
1663 static int
1664 drm_gtf2_2j(struct edid *edid)
1665 {
1666 	u8 *r = NULL;
1667 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1668 	return r ? r[17] : 0;
1669 }
1670 
1671 /**
1672  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1673  * @edid: EDID block to scan
1674  */
1675 static int standard_timing_level(struct edid *edid)
1676 {
1677 	if (edid->revision >= 2) {
1678 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1679 			return LEVEL_CVT;
1680 		if (drm_gtf2_hbreak(edid))
1681 			return LEVEL_GTF2;
1682 		return LEVEL_GTF;
1683 	}
1684 	return LEVEL_DMT;
1685 }
1686 
1687 /*
1688  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1689  * monitors fill with ascii space (0x20) instead.
1690  */
1691 static int
1692 bad_std_timing(u8 a, u8 b)
1693 {
1694 	return (a == 0x00 && b == 0x00) ||
1695 	       (a == 0x01 && b == 0x01) ||
1696 	       (a == 0x20 && b == 0x20);
1697 }
1698 
1699 /**
1700  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1701  * @connector: connector of for the EDID block
1702  * @edid: EDID block to scan
1703  * @t: standard timing params
1704  *
1705  * Take the standard timing params (in this case width, aspect, and refresh)
1706  * and convert them into a real mode using CVT/GTF/DMT.
1707  */
1708 static struct drm_display_mode *
1709 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1710 	     struct std_timing *t)
1711 {
1712 	struct drm_device *dev = connector->dev;
1713 	struct drm_display_mode *m, *mode = NULL;
1714 	int hsize, vsize;
1715 	int vrefresh_rate;
1716 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1717 		>> EDID_TIMING_ASPECT_SHIFT;
1718 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1719 		>> EDID_TIMING_VFREQ_SHIFT;
1720 	int timing_level = standard_timing_level(edid);
1721 
1722 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1723 		return NULL;
1724 
1725 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1726 	hsize = t->hsize * 8 + 248;
1727 	/* vrefresh_rate = vfreq + 60 */
1728 	vrefresh_rate = vfreq + 60;
1729 	/* the vdisplay is calculated based on the aspect ratio */
1730 	if (aspect_ratio == 0) {
1731 		if (edid->revision < 3)
1732 			vsize = hsize;
1733 		else
1734 			vsize = (hsize * 10) / 16;
1735 	} else if (aspect_ratio == 1)
1736 		vsize = (hsize * 3) / 4;
1737 	else if (aspect_ratio == 2)
1738 		vsize = (hsize * 4) / 5;
1739 	else
1740 		vsize = (hsize * 9) / 16;
1741 
1742 	/* HDTV hack, part 1 */
1743 	if (vrefresh_rate == 60 &&
1744 	    ((hsize == 1360 && vsize == 765) ||
1745 	     (hsize == 1368 && vsize == 769))) {
1746 		hsize = 1366;
1747 		vsize = 768;
1748 	}
1749 
1750 	/*
1751 	 * If this connector already has a mode for this size and refresh
1752 	 * rate (because it came from detailed or CVT info), use that
1753 	 * instead.  This way we don't have to guess at interlace or
1754 	 * reduced blanking.
1755 	 */
1756 	list_for_each_entry(m, &connector->probed_modes, head)
1757 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1758 		    drm_mode_vrefresh(m) == vrefresh_rate)
1759 			return NULL;
1760 
1761 	/* HDTV hack, part 2 */
1762 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1763 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1764 				    false);
1765 		mode->hdisplay = 1366;
1766 		mode->hsync_start = mode->hsync_start - 1;
1767 		mode->hsync_end = mode->hsync_end - 1;
1768 		return mode;
1769 	}
1770 
1771 	/* check whether it can be found in default mode table */
1772 	if (drm_monitor_supports_rb(edid)) {
1773 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1774 					 true);
1775 		if (mode)
1776 			return mode;
1777 	}
1778 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1779 	if (mode)
1780 		return mode;
1781 
1782 	/* okay, generate it */
1783 	switch (timing_level) {
1784 	case LEVEL_DMT:
1785 		break;
1786 	case LEVEL_GTF:
1787 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1788 		break;
1789 	case LEVEL_GTF2:
1790 		/*
1791 		 * This is potentially wrong if there's ever a monitor with
1792 		 * more than one ranges section, each claiming a different
1793 		 * secondary GTF curve.  Please don't do that.
1794 		 */
1795 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1796 		if (!mode)
1797 			return NULL;
1798 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1799 			drm_mode_destroy(dev, mode);
1800 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1801 						    vrefresh_rate, 0, 0,
1802 						    drm_gtf2_m(edid),
1803 						    drm_gtf2_2c(edid),
1804 						    drm_gtf2_k(edid),
1805 						    drm_gtf2_2j(edid));
1806 		}
1807 		break;
1808 	case LEVEL_CVT:
1809 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1810 				    false);
1811 		break;
1812 	}
1813 	return mode;
1814 }
1815 
1816 /*
1817  * EDID is delightfully ambiguous about how interlaced modes are to be
1818  * encoded.  Our internal representation is of frame height, but some
1819  * HDTV detailed timings are encoded as field height.
1820  *
1821  * The format list here is from CEA, in frame size.  Technically we
1822  * should be checking refresh rate too.  Whatever.
1823  */
1824 static void
1825 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1826 			    struct detailed_pixel_timing *pt)
1827 {
1828 	int i;
1829 	static const struct {
1830 		int w, h;
1831 	} cea_interlaced[] = {
1832 		{ 1920, 1080 },
1833 		{  720,  480 },
1834 		{ 1440,  480 },
1835 		{ 2880,  480 },
1836 		{  720,  576 },
1837 		{ 1440,  576 },
1838 		{ 2880,  576 },
1839 	};
1840 
1841 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1842 		return;
1843 
1844 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1845 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1846 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1847 			mode->vdisplay *= 2;
1848 			mode->vsync_start *= 2;
1849 			mode->vsync_end *= 2;
1850 			mode->vtotal *= 2;
1851 			mode->vtotal |= 1;
1852 		}
1853 	}
1854 
1855 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1856 }
1857 
1858 /**
1859  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1860  * @dev: DRM device (needed to create new mode)
1861  * @edid: EDID block
1862  * @timing: EDID detailed timing info
1863  * @quirks: quirks to apply
1864  *
1865  * An EDID detailed timing block contains enough info for us to create and
1866  * return a new struct drm_display_mode.
1867  */
1868 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1869 						  struct edid *edid,
1870 						  struct detailed_timing *timing,
1871 						  u32 quirks)
1872 {
1873 	struct drm_display_mode *mode;
1874 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1875 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1876 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1877 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1878 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1879 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1880 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1881 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1882 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1883 
1884 	/* ignore tiny modes */
1885 	if (hactive < 64 || vactive < 64)
1886 		return NULL;
1887 
1888 	if (pt->misc & DRM_EDID_PT_STEREO) {
1889 		DRM_DEBUG_KMS("stereo mode not supported\n");
1890 		return NULL;
1891 	}
1892 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1893 		DRM_DEBUG_KMS("composite sync not supported\n");
1894 	}
1895 
1896 	/* it is incorrect if hsync/vsync width is zero */
1897 	if (!hsync_pulse_width || !vsync_pulse_width) {
1898 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1899 				"Wrong Hsync/Vsync pulse width\n");
1900 		return NULL;
1901 	}
1902 
1903 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1904 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1905 		if (!mode)
1906 			return NULL;
1907 
1908 		goto set_size;
1909 	}
1910 
1911 	mode = drm_mode_create(dev);
1912 	if (!mode)
1913 		return NULL;
1914 
1915 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1916 		timing->pixel_clock = cpu_to_le16(1088);
1917 
1918 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1919 
1920 	mode->hdisplay = hactive;
1921 	mode->hsync_start = mode->hdisplay + hsync_offset;
1922 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1923 	mode->htotal = mode->hdisplay + hblank;
1924 
1925 	mode->vdisplay = vactive;
1926 	mode->vsync_start = mode->vdisplay + vsync_offset;
1927 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1928 	mode->vtotal = mode->vdisplay + vblank;
1929 
1930 	/* Some EDIDs have bogus h/vtotal values */
1931 	if (mode->hsync_end > mode->htotal)
1932 		mode->htotal = mode->hsync_end + 1;
1933 	if (mode->vsync_end > mode->vtotal)
1934 		mode->vtotal = mode->vsync_end + 1;
1935 
1936 	drm_mode_do_interlace_quirk(mode, pt);
1937 
1938 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1939 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1940 	}
1941 
1942 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1943 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1944 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1945 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1946 
1947 set_size:
1948 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1949 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1950 
1951 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1952 		mode->width_mm *= 10;
1953 		mode->height_mm *= 10;
1954 	}
1955 
1956 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1957 		mode->width_mm = edid->width_cm * 10;
1958 		mode->height_mm = edid->height_cm * 10;
1959 	}
1960 
1961 	mode->type = DRM_MODE_TYPE_DRIVER;
1962 	mode->vrefresh = drm_mode_vrefresh(mode);
1963 	drm_mode_set_name(mode);
1964 
1965 	return mode;
1966 }
1967 
1968 static bool
1969 mode_in_hsync_range(const struct drm_display_mode *mode,
1970 		    struct edid *edid, u8 *t)
1971 {
1972 	int hsync, hmin, hmax;
1973 
1974 	hmin = t[7];
1975 	if (edid->revision >= 4)
1976 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1977 	hmax = t[8];
1978 	if (edid->revision >= 4)
1979 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1980 	hsync = drm_mode_hsync(mode);
1981 
1982 	return (hsync <= hmax && hsync >= hmin);
1983 }
1984 
1985 static bool
1986 mode_in_vsync_range(const struct drm_display_mode *mode,
1987 		    struct edid *edid, u8 *t)
1988 {
1989 	int vsync, vmin, vmax;
1990 
1991 	vmin = t[5];
1992 	if (edid->revision >= 4)
1993 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1994 	vmax = t[6];
1995 	if (edid->revision >= 4)
1996 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1997 	vsync = drm_mode_vrefresh(mode);
1998 
1999 	return (vsync <= vmax && vsync >= vmin);
2000 }
2001 
2002 static u32
2003 range_pixel_clock(struct edid *edid, u8 *t)
2004 {
2005 	/* unspecified */
2006 	if (t[9] == 0 || t[9] == 255)
2007 		return 0;
2008 
2009 	/* 1.4 with CVT support gives us real precision, yay */
2010 	if (edid->revision >= 4 && t[10] == 0x04)
2011 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2012 
2013 	/* 1.3 is pathetic, so fuzz up a bit */
2014 	return t[9] * 10000 + 5001;
2015 }
2016 
2017 static bool
2018 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2019 	      struct detailed_timing *timing)
2020 {
2021 	u32 max_clock;
2022 	u8 *t = (u8 *)timing;
2023 
2024 	if (!mode_in_hsync_range(mode, edid, t))
2025 		return false;
2026 
2027 	if (!mode_in_vsync_range(mode, edid, t))
2028 		return false;
2029 
2030 	if ((max_clock = range_pixel_clock(edid, t)))
2031 		if (mode->clock > max_clock)
2032 			return false;
2033 
2034 	/* 1.4 max horizontal check */
2035 	if (edid->revision >= 4 && t[10] == 0x04)
2036 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2037 			return false;
2038 
2039 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2040 		return false;
2041 
2042 	return true;
2043 }
2044 
2045 static bool valid_inferred_mode(const struct drm_connector *connector,
2046 				const struct drm_display_mode *mode)
2047 {
2048 	struct drm_display_mode *m;
2049 	bool ok = false;
2050 
2051 	list_for_each_entry(m, &connector->probed_modes, head) {
2052 		if (mode->hdisplay == m->hdisplay &&
2053 		    mode->vdisplay == m->vdisplay &&
2054 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2055 			return false; /* duplicated */
2056 		if (mode->hdisplay <= m->hdisplay &&
2057 		    mode->vdisplay <= m->vdisplay)
2058 			ok = true;
2059 	}
2060 	return ok;
2061 }
2062 
2063 static int
2064 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2065 			struct detailed_timing *timing)
2066 {
2067 	int i, modes = 0;
2068 	struct drm_display_mode *newmode;
2069 	struct drm_device *dev = connector->dev;
2070 
2071 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2072 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2073 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2074 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2075 			if (newmode) {
2076 				drm_mode_probed_add(connector, newmode);
2077 				modes++;
2078 			}
2079 		}
2080 	}
2081 
2082 	return modes;
2083 }
2084 
2085 /* fix up 1366x768 mode from 1368x768;
2086  * GFT/CVT can't express 1366 width which isn't dividable by 8
2087  */
2088 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2089 {
2090 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2091 		mode->hdisplay = 1366;
2092 		mode->hsync_start--;
2093 		mode->hsync_end--;
2094 		drm_mode_set_name(mode);
2095 	}
2096 }
2097 
2098 static int
2099 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2100 			struct detailed_timing *timing)
2101 {
2102 	int i, modes = 0;
2103 	struct drm_display_mode *newmode;
2104 	struct drm_device *dev = connector->dev;
2105 
2106 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2107 		const struct minimode *m = &extra_modes[i];
2108 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2109 		if (!newmode)
2110 			return modes;
2111 
2112 		fixup_mode_1366x768(newmode);
2113 		if (!mode_in_range(newmode, edid, timing) ||
2114 		    !valid_inferred_mode(connector, newmode)) {
2115 			drm_mode_destroy(dev, newmode);
2116 			continue;
2117 		}
2118 
2119 		drm_mode_probed_add(connector, newmode);
2120 		modes++;
2121 	}
2122 
2123 	return modes;
2124 }
2125 
2126 static int
2127 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2128 			struct detailed_timing *timing)
2129 {
2130 	int i, modes = 0;
2131 	struct drm_display_mode *newmode;
2132 	struct drm_device *dev = connector->dev;
2133 	bool rb = drm_monitor_supports_rb(edid);
2134 
2135 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2136 		const struct minimode *m = &extra_modes[i];
2137 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2138 		if (!newmode)
2139 			return modes;
2140 
2141 		fixup_mode_1366x768(newmode);
2142 		if (!mode_in_range(newmode, edid, timing) ||
2143 		    !valid_inferred_mode(connector, newmode)) {
2144 			drm_mode_destroy(dev, newmode);
2145 			continue;
2146 		}
2147 
2148 		drm_mode_probed_add(connector, newmode);
2149 		modes++;
2150 	}
2151 
2152 	return modes;
2153 }
2154 
2155 static void
2156 do_inferred_modes(struct detailed_timing *timing, void *c)
2157 {
2158 	struct detailed_mode_closure *closure = c;
2159 	struct detailed_non_pixel *data = &timing->data.other_data;
2160 	struct detailed_data_monitor_range *range = &data->data.range;
2161 
2162 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2163 		return;
2164 
2165 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2166 						  closure->edid,
2167 						  timing);
2168 
2169 	if (!version_greater(closure->edid, 1, 1))
2170 		return; /* GTF not defined yet */
2171 
2172 	switch (range->flags) {
2173 	case 0x02: /* secondary gtf, XXX could do more */
2174 	case 0x00: /* default gtf */
2175 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2176 							  closure->edid,
2177 							  timing);
2178 		break;
2179 	case 0x04: /* cvt, only in 1.4+ */
2180 		if (!version_greater(closure->edid, 1, 3))
2181 			break;
2182 
2183 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2184 							  closure->edid,
2185 							  timing);
2186 		break;
2187 	case 0x01: /* just the ranges, no formula */
2188 	default:
2189 		break;
2190 	}
2191 }
2192 
2193 static int
2194 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2195 {
2196 	struct detailed_mode_closure closure = {
2197 		.connector = connector,
2198 		.edid = edid,
2199 	};
2200 
2201 	if (version_greater(edid, 1, 0))
2202 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2203 					    &closure);
2204 
2205 	return closure.modes;
2206 }
2207 
2208 static int
2209 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2210 {
2211 	int i, j, m, modes = 0;
2212 	struct drm_display_mode *mode;
2213 	u8 *est = ((u8 *)timing) + 5;
2214 
2215 	for (i = 0; i < 6; i++) {
2216 		for (j = 7; j >= 0; j--) {
2217 			m = (i * 8) + (7 - j);
2218 			if (m >= ARRAY_SIZE(est3_modes))
2219 				break;
2220 			if (est[i] & (1 << j)) {
2221 				mode = drm_mode_find_dmt(connector->dev,
2222 							 est3_modes[m].w,
2223 							 est3_modes[m].h,
2224 							 est3_modes[m].r,
2225 							 est3_modes[m].rb);
2226 				if (mode) {
2227 					drm_mode_probed_add(connector, mode);
2228 					modes++;
2229 				}
2230 			}
2231 		}
2232 	}
2233 
2234 	return modes;
2235 }
2236 
2237 static void
2238 do_established_modes(struct detailed_timing *timing, void *c)
2239 {
2240 	struct detailed_mode_closure *closure = c;
2241 	struct detailed_non_pixel *data = &timing->data.other_data;
2242 
2243 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2244 		closure->modes += drm_est3_modes(closure->connector, timing);
2245 }
2246 
2247 /**
2248  * add_established_modes - get est. modes from EDID and add them
2249  * @connector: connector to add mode(s) to
2250  * @edid: EDID block to scan
2251  *
2252  * Each EDID block contains a bitmap of the supported "established modes" list
2253  * (defined above).  Tease them out and add them to the global modes list.
2254  */
2255 static int
2256 add_established_modes(struct drm_connector *connector, struct edid *edid)
2257 {
2258 	struct drm_device *dev = connector->dev;
2259 	unsigned long est_bits = edid->established_timings.t1 |
2260 		(edid->established_timings.t2 << 8) |
2261 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2262 	int i, modes = 0;
2263 	struct detailed_mode_closure closure = {
2264 		.connector = connector,
2265 		.edid = edid,
2266 	};
2267 
2268 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2269 		if (est_bits & (1<<i)) {
2270 			struct drm_display_mode *newmode;
2271 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2272 			if (newmode) {
2273 				drm_mode_probed_add(connector, newmode);
2274 				modes++;
2275 			}
2276 		}
2277 	}
2278 
2279 	if (version_greater(edid, 1, 0))
2280 		    drm_for_each_detailed_block((u8 *)edid,
2281 						do_established_modes, &closure);
2282 
2283 	return modes + closure.modes;
2284 }
2285 
2286 static void
2287 do_standard_modes(struct detailed_timing *timing, void *c)
2288 {
2289 	struct detailed_mode_closure *closure = c;
2290 	struct detailed_non_pixel *data = &timing->data.other_data;
2291 	struct drm_connector *connector = closure->connector;
2292 	struct edid *edid = closure->edid;
2293 
2294 	if (data->type == EDID_DETAIL_STD_MODES) {
2295 		int i;
2296 		for (i = 0; i < 6; i++) {
2297 			struct std_timing *std;
2298 			struct drm_display_mode *newmode;
2299 
2300 			std = &data->data.timings[i];
2301 			newmode = drm_mode_std(connector, edid, std);
2302 			if (newmode) {
2303 				drm_mode_probed_add(connector, newmode);
2304 				closure->modes++;
2305 			}
2306 		}
2307 	}
2308 }
2309 
2310 /**
2311  * add_standard_modes - get std. modes from EDID and add them
2312  * @connector: connector to add mode(s) to
2313  * @edid: EDID block to scan
2314  *
2315  * Standard modes can be calculated using the appropriate standard (DMT,
2316  * GTF or CVT. Grab them from @edid and add them to the list.
2317  */
2318 static int
2319 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2320 {
2321 	int i, modes = 0;
2322 	struct detailed_mode_closure closure = {
2323 		.connector = connector,
2324 		.edid = edid,
2325 	};
2326 
2327 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2328 		struct drm_display_mode *newmode;
2329 
2330 		newmode = drm_mode_std(connector, edid,
2331 				       &edid->standard_timings[i]);
2332 		if (newmode) {
2333 			drm_mode_probed_add(connector, newmode);
2334 			modes++;
2335 		}
2336 	}
2337 
2338 	if (version_greater(edid, 1, 0))
2339 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2340 					    &closure);
2341 
2342 	/* XXX should also look for standard codes in VTB blocks */
2343 
2344 	return modes + closure.modes;
2345 }
2346 
2347 static int drm_cvt_modes(struct drm_connector *connector,
2348 			 struct detailed_timing *timing)
2349 {
2350 	int i, j, modes = 0;
2351 	struct drm_display_mode *newmode;
2352 	struct drm_device *dev = connector->dev;
2353 	struct cvt_timing *cvt;
2354 	const int rates[] = { 60, 85, 75, 60, 50 };
2355 	const u8 empty[3] = { 0, 0, 0 };
2356 
2357 	for (i = 0; i < 4; i++) {
2358 		int width = 0, height;
2359 		cvt = &(timing->data.other_data.data.cvt[i]);
2360 
2361 		if (!memcmp(cvt->code, empty, 3))
2362 			continue;
2363 
2364 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2365 		switch (cvt->code[1] & 0x0c) {
2366 		case 0x00:
2367 			width = height * 4 / 3;
2368 			break;
2369 		case 0x04:
2370 			width = height * 16 / 9;
2371 			break;
2372 		case 0x08:
2373 			width = height * 16 / 10;
2374 			break;
2375 		case 0x0c:
2376 			width = height * 15 / 9;
2377 			break;
2378 		}
2379 
2380 		for (j = 1; j < 5; j++) {
2381 			if (cvt->code[2] & (1 << j)) {
2382 				newmode = drm_cvt_mode(dev, width, height,
2383 						       rates[j], j == 0,
2384 						       false, false);
2385 				if (newmode) {
2386 					drm_mode_probed_add(connector, newmode);
2387 					modes++;
2388 				}
2389 			}
2390 		}
2391 	}
2392 
2393 	return modes;
2394 }
2395 
2396 static void
2397 do_cvt_mode(struct detailed_timing *timing, void *c)
2398 {
2399 	struct detailed_mode_closure *closure = c;
2400 	struct detailed_non_pixel *data = &timing->data.other_data;
2401 
2402 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2403 		closure->modes += drm_cvt_modes(closure->connector, timing);
2404 }
2405 
2406 static int
2407 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2408 {
2409 	struct detailed_mode_closure closure = {
2410 		.connector = connector,
2411 		.edid = edid,
2412 	};
2413 
2414 	if (version_greater(edid, 1, 2))
2415 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2416 
2417 	/* XXX should also look for CVT codes in VTB blocks */
2418 
2419 	return closure.modes;
2420 }
2421 
2422 static void
2423 do_detailed_mode(struct detailed_timing *timing, void *c)
2424 {
2425 	struct detailed_mode_closure *closure = c;
2426 	struct drm_display_mode *newmode;
2427 
2428 	if (timing->pixel_clock) {
2429 		newmode = drm_mode_detailed(closure->connector->dev,
2430 					    closure->edid, timing,
2431 					    closure->quirks);
2432 		if (!newmode)
2433 			return;
2434 
2435 		if (closure->preferred)
2436 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2437 
2438 		drm_mode_probed_add(closure->connector, newmode);
2439 		closure->modes++;
2440 		closure->preferred = 0;
2441 	}
2442 }
2443 
2444 /*
2445  * add_detailed_modes - Add modes from detailed timings
2446  * @connector: attached connector
2447  * @edid: EDID block to scan
2448  * @quirks: quirks to apply
2449  */
2450 static int
2451 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2452 		   u32 quirks)
2453 {
2454 	struct detailed_mode_closure closure = {
2455 		.connector = connector,
2456 		.edid = edid,
2457 		.preferred = 1,
2458 		.quirks = quirks,
2459 	};
2460 
2461 	if (closure.preferred && !version_greater(edid, 1, 3))
2462 		closure.preferred =
2463 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2464 
2465 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2466 
2467 	return closure.modes;
2468 }
2469 
2470 #define AUDIO_BLOCK	0x01
2471 #define VIDEO_BLOCK     0x02
2472 #define VENDOR_BLOCK    0x03
2473 #define SPEAKER_BLOCK	0x04
2474 #define VIDEO_CAPABILITY_BLOCK	0x07
2475 #define EDID_BASIC_AUDIO	(1 << 6)
2476 #define EDID_CEA_YCRCB444	(1 << 5)
2477 #define EDID_CEA_YCRCB422	(1 << 4)
2478 #define EDID_CEA_VCDB_QS	(1 << 6)
2479 
2480 /*
2481  * Search EDID for CEA extension block.
2482  */
2483 static u8 *drm_find_cea_extension(struct edid *edid)
2484 {
2485 	u8 *edid_ext = NULL;
2486 	int i;
2487 
2488 	/* No EDID or EDID extensions */
2489 	if (edid == NULL || edid->extensions == 0)
2490 		return NULL;
2491 
2492 	/* Find CEA extension */
2493 	for (i = 0; i < edid->extensions; i++) {
2494 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2495 		if (edid_ext[0] == CEA_EXT)
2496 			break;
2497 	}
2498 
2499 	if (i == edid->extensions)
2500 		return NULL;
2501 
2502 	return edid_ext;
2503 }
2504 
2505 /*
2506  * Calculate the alternate clock for the CEA mode
2507  * (60Hz vs. 59.94Hz etc.)
2508  */
2509 static unsigned int
2510 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2511 {
2512 	unsigned int clock = cea_mode->clock;
2513 
2514 	if (cea_mode->vrefresh % 6 != 0)
2515 		return clock;
2516 
2517 	/*
2518 	 * edid_cea_modes contains the 59.94Hz
2519 	 * variant for 240 and 480 line modes,
2520 	 * and the 60Hz variant otherwise.
2521 	 */
2522 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2523 		clock = clock * 1001 / 1000;
2524 	else
2525 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2526 
2527 	return clock;
2528 }
2529 
2530 /**
2531  * drm_match_cea_mode - look for a CEA mode matching given mode
2532  * @to_match: display mode
2533  *
2534  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2535  * mode.
2536  */
2537 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2538 {
2539 	u8 mode;
2540 
2541 	if (!to_match->clock)
2542 		return 0;
2543 
2544 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2545 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2546 		unsigned int clock1, clock2;
2547 
2548 		/* Check both 60Hz and 59.94Hz */
2549 		clock1 = cea_mode->clock;
2550 		clock2 = cea_mode_alternate_clock(cea_mode);
2551 
2552 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2553 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2554 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2555 			return mode + 1;
2556 	}
2557 	return 0;
2558 }
2559 EXPORT_SYMBOL(drm_match_cea_mode);
2560 
2561 /**
2562  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2563  * the input VIC from the CEA mode list
2564  * @video_code: ID given to each of the CEA modes
2565  *
2566  * Returns picture aspect ratio
2567  */
2568 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2569 {
2570 	/* return picture aspect ratio for video_code - 1 to access the
2571 	 * right array element
2572 	*/
2573 	return edid_cea_modes[video_code-1].picture_aspect_ratio;
2574 }
2575 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2576 
2577 /*
2578  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2579  * specific block).
2580  *
2581  * It's almost like cea_mode_alternate_clock(), we just need to add an
2582  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2583  * one.
2584  */
2585 static unsigned int
2586 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2587 {
2588 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2589 		return hdmi_mode->clock;
2590 
2591 	return cea_mode_alternate_clock(hdmi_mode);
2592 }
2593 
2594 /*
2595  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2596  * @to_match: display mode
2597  *
2598  * An HDMI mode is one defined in the HDMI vendor specific block.
2599  *
2600  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2601  */
2602 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2603 {
2604 	u8 mode;
2605 
2606 	if (!to_match->clock)
2607 		return 0;
2608 
2609 	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2610 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2611 		unsigned int clock1, clock2;
2612 
2613 		/* Make sure to also match alternate clocks */
2614 		clock1 = hdmi_mode->clock;
2615 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2616 
2617 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2618 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2619 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2620 			return mode + 1;
2621 	}
2622 	return 0;
2623 }
2624 
2625 static int
2626 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2627 {
2628 	struct drm_device *dev = connector->dev;
2629 	struct drm_display_mode *mode, *tmp;
2630 	LINUX_LIST_HEAD(list);
2631 	int modes = 0;
2632 
2633 	/* Don't add CEA modes if the CEA extension block is missing */
2634 	if (!drm_find_cea_extension(edid))
2635 		return 0;
2636 
2637 	/*
2638 	 * Go through all probed modes and create a new mode
2639 	 * with the alternate clock for certain CEA modes.
2640 	 */
2641 	list_for_each_entry(mode, &connector->probed_modes, head) {
2642 		const struct drm_display_mode *cea_mode = NULL;
2643 		struct drm_display_mode *newmode;
2644 		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2645 		unsigned int clock1, clock2;
2646 
2647 		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2648 			cea_mode = &edid_cea_modes[mode_idx];
2649 			clock2 = cea_mode_alternate_clock(cea_mode);
2650 		} else {
2651 			mode_idx = drm_match_hdmi_mode(mode) - 1;
2652 			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2653 				cea_mode = &edid_4k_modes[mode_idx];
2654 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2655 			}
2656 		}
2657 
2658 		if (!cea_mode)
2659 			continue;
2660 
2661 		clock1 = cea_mode->clock;
2662 
2663 		if (clock1 == clock2)
2664 			continue;
2665 
2666 		if (mode->clock != clock1 && mode->clock != clock2)
2667 			continue;
2668 
2669 		newmode = drm_mode_duplicate(dev, cea_mode);
2670 		if (!newmode)
2671 			continue;
2672 
2673 		/* Carry over the stereo flags */
2674 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2675 
2676 		/*
2677 		 * The current mode could be either variant. Make
2678 		 * sure to pick the "other" clock for the new mode.
2679 		 */
2680 		if (mode->clock != clock1)
2681 			newmode->clock = clock1;
2682 		else
2683 			newmode->clock = clock2;
2684 
2685 		list_add_tail(&newmode->head, &list);
2686 	}
2687 
2688 	list_for_each_entry_safe(mode, tmp, &list, head) {
2689 		list_del(&mode->head);
2690 		drm_mode_probed_add(connector, mode);
2691 		modes++;
2692 	}
2693 
2694 	return modes;
2695 }
2696 
2697 static struct drm_display_mode *
2698 drm_display_mode_from_vic_index(struct drm_connector *connector,
2699 				const u8 *video_db, u8 video_len,
2700 				u8 video_index)
2701 {
2702 	struct drm_device *dev = connector->dev;
2703 	struct drm_display_mode *newmode;
2704 	u8 cea_mode;
2705 
2706 	if (video_db == NULL || video_index >= video_len)
2707 		return NULL;
2708 
2709 	/* CEA modes are numbered 1..127 */
2710 	cea_mode = (video_db[video_index] & 127) - 1;
2711 	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2712 		return NULL;
2713 
2714 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2715 	if (!newmode)
2716 		return NULL;
2717 
2718 	newmode->vrefresh = 0;
2719 
2720 	return newmode;
2721 }
2722 
2723 static int
2724 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2725 {
2726 	int i, modes = 0;
2727 
2728 	for (i = 0; i < len; i++) {
2729 		struct drm_display_mode *mode;
2730 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2731 		if (mode) {
2732 			drm_mode_probed_add(connector, mode);
2733 			modes++;
2734 		}
2735 	}
2736 
2737 	return modes;
2738 }
2739 
2740 struct stereo_mandatory_mode {
2741 	int width, height, vrefresh;
2742 	unsigned int flags;
2743 };
2744 
2745 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2746 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2747 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2748 	{ 1920, 1080, 50,
2749 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2750 	{ 1920, 1080, 60,
2751 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2752 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2753 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2754 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2755 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2756 };
2757 
2758 static bool
2759 stereo_match_mandatory(const struct drm_display_mode *mode,
2760 		       const struct stereo_mandatory_mode *stereo_mode)
2761 {
2762 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2763 
2764 	return mode->hdisplay == stereo_mode->width &&
2765 	       mode->vdisplay == stereo_mode->height &&
2766 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2767 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2768 }
2769 
2770 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2771 {
2772 	struct drm_device *dev = connector->dev;
2773 	struct drm_display_mode *mode;
2774 	struct list_head stereo_modes;
2775 	int modes = 0, i;
2776 
2777 	INIT_LIST_HEAD(&stereo_modes);
2778 
2779 	list_for_each_entry(mode, &connector->probed_modes, head) {
2780 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2781 			const struct stereo_mandatory_mode *mandatory;
2782 			struct drm_display_mode *new_mode;
2783 
2784 			if (!stereo_match_mandatory(mode,
2785 						    &stereo_mandatory_modes[i]))
2786 				continue;
2787 
2788 			mandatory = &stereo_mandatory_modes[i];
2789 			new_mode = drm_mode_duplicate(dev, mode);
2790 			if (!new_mode)
2791 				continue;
2792 
2793 			new_mode->flags |= mandatory->flags;
2794 			list_add_tail(&new_mode->head, &stereo_modes);
2795 			modes++;
2796 		}
2797 	}
2798 
2799 	list_splice_tail(&stereo_modes, &connector->probed_modes);
2800 
2801 	return modes;
2802 }
2803 
2804 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2805 {
2806 	struct drm_device *dev = connector->dev;
2807 	struct drm_display_mode *newmode;
2808 
2809 	vic--; /* VICs start at 1 */
2810 	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2811 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2812 		return 0;
2813 	}
2814 
2815 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2816 	if (!newmode)
2817 		return 0;
2818 
2819 	drm_mode_probed_add(connector, newmode);
2820 
2821 	return 1;
2822 }
2823 
2824 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2825 			       const u8 *video_db, u8 video_len, u8 video_index)
2826 {
2827 	struct drm_display_mode *newmode;
2828 	int modes = 0;
2829 
2830 	if (structure & (1 << 0)) {
2831 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2832 							  video_len,
2833 							  video_index);
2834 		if (newmode) {
2835 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2836 			drm_mode_probed_add(connector, newmode);
2837 			modes++;
2838 		}
2839 	}
2840 	if (structure & (1 << 6)) {
2841 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2842 							  video_len,
2843 							  video_index);
2844 		if (newmode) {
2845 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2846 			drm_mode_probed_add(connector, newmode);
2847 			modes++;
2848 		}
2849 	}
2850 	if (structure & (1 << 8)) {
2851 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2852 							  video_len,
2853 							  video_index);
2854 		if (newmode) {
2855 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2856 			drm_mode_probed_add(connector, newmode);
2857 			modes++;
2858 		}
2859 	}
2860 
2861 	return modes;
2862 }
2863 
2864 /*
2865  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2866  * @connector: connector corresponding to the HDMI sink
2867  * @db: start of the CEA vendor specific block
2868  * @len: length of the CEA block payload, ie. one can access up to db[len]
2869  *
2870  * Parses the HDMI VSDB looking for modes to add to @connector. This function
2871  * also adds the stereo 3d modes when applicable.
2872  */
2873 static int
2874 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2875 		   const u8 *video_db, u8 video_len)
2876 {
2877 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2878 	u8 vic_len, hdmi_3d_len = 0;
2879 	u16 mask;
2880 	u16 structure_all;
2881 
2882 	if (len < 8)
2883 		goto out;
2884 
2885 	/* no HDMI_Video_Present */
2886 	if (!(db[8] & (1 << 5)))
2887 		goto out;
2888 
2889 	/* Latency_Fields_Present */
2890 	if (db[8] & (1 << 7))
2891 		offset += 2;
2892 
2893 	/* I_Latency_Fields_Present */
2894 	if (db[8] & (1 << 6))
2895 		offset += 2;
2896 
2897 	/* the declared length is not long enough for the 2 first bytes
2898 	 * of additional video format capabilities */
2899 	if (len < (8 + offset + 2))
2900 		goto out;
2901 
2902 	/* 3D_Present */
2903 	offset++;
2904 	if (db[8 + offset] & (1 << 7)) {
2905 		modes += add_hdmi_mandatory_stereo_modes(connector);
2906 
2907 		/* 3D_Multi_present */
2908 		multi_present = (db[8 + offset] & 0x60) >> 5;
2909 	}
2910 
2911 	offset++;
2912 	vic_len = db[8 + offset] >> 5;
2913 	hdmi_3d_len = db[8 + offset] & 0x1f;
2914 
2915 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2916 		u8 vic;
2917 
2918 		vic = db[9 + offset + i];
2919 		modes += add_hdmi_mode(connector, vic);
2920 	}
2921 	offset += 1 + vic_len;
2922 
2923 	if (multi_present == 1)
2924 		multi_len = 2;
2925 	else if (multi_present == 2)
2926 		multi_len = 4;
2927 	else
2928 		multi_len = 0;
2929 
2930 	if (len < (8 + offset + hdmi_3d_len - 1))
2931 		goto out;
2932 
2933 	if (hdmi_3d_len < multi_len)
2934 		goto out;
2935 
2936 	if (multi_present == 1 || multi_present == 2) {
2937 		/* 3D_Structure_ALL */
2938 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2939 
2940 		/* check if 3D_MASK is present */
2941 		if (multi_present == 2)
2942 			mask = (db[10 + offset] << 8) | db[11 + offset];
2943 		else
2944 			mask = 0xffff;
2945 
2946 		for (i = 0; i < 16; i++) {
2947 			if (mask & (1 << i))
2948 				modes += add_3d_struct_modes(connector,
2949 						structure_all,
2950 						video_db,
2951 						video_len, i);
2952 		}
2953 	}
2954 
2955 	offset += multi_len;
2956 
2957 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2958 		int vic_index;
2959 		struct drm_display_mode *newmode = NULL;
2960 		unsigned int newflag = 0;
2961 		bool detail_present;
2962 
2963 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2964 
2965 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2966 			break;
2967 
2968 		/* 2D_VIC_order_X */
2969 		vic_index = db[8 + offset + i] >> 4;
2970 
2971 		/* 3D_Structure_X */
2972 		switch (db[8 + offset + i] & 0x0f) {
2973 		case 0:
2974 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2975 			break;
2976 		case 6:
2977 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2978 			break;
2979 		case 8:
2980 			/* 3D_Detail_X */
2981 			if ((db[9 + offset + i] >> 4) == 1)
2982 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2983 			break;
2984 		}
2985 
2986 		if (newflag != 0) {
2987 			newmode = drm_display_mode_from_vic_index(connector,
2988 								  video_db,
2989 								  video_len,
2990 								  vic_index);
2991 
2992 			if (newmode) {
2993 				newmode->flags |= newflag;
2994 				drm_mode_probed_add(connector, newmode);
2995 				modes++;
2996 			}
2997 		}
2998 
2999 		if (detail_present)
3000 			i++;
3001 	}
3002 
3003 out:
3004 	return modes;
3005 }
3006 
3007 static int
3008 cea_db_payload_len(const u8 *db)
3009 {
3010 	return db[0] & 0x1f;
3011 }
3012 
3013 static int
3014 cea_db_tag(const u8 *db)
3015 {
3016 	return db[0] >> 5;
3017 }
3018 
3019 static int
3020 cea_revision(const u8 *cea)
3021 {
3022 	return cea[1];
3023 }
3024 
3025 static int
3026 cea_db_offsets(const u8 *cea, int *start, int *end)
3027 {
3028 	/* Data block offset in CEA extension block */
3029 	*start = 4;
3030 	*end = cea[2];
3031 	if (*end == 0)
3032 		*end = 127;
3033 	if (*end < 4 || *end > 127)
3034 		return -ERANGE;
3035 	return 0;
3036 }
3037 
3038 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3039 {
3040 	int hdmi_id;
3041 
3042 	if (cea_db_tag(db) != VENDOR_BLOCK)
3043 		return false;
3044 
3045 	if (cea_db_payload_len(db) < 5)
3046 		return false;
3047 
3048 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3049 
3050 	return hdmi_id == HDMI_IEEE_OUI;
3051 }
3052 
3053 #define for_each_cea_db(cea, i, start, end) \
3054 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3055 
3056 static int
3057 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3058 {
3059 	const u8 *cea = drm_find_cea_extension(edid);
3060 	const u8 *db, *hdmi = NULL, *video = NULL;
3061 	u8 dbl, hdmi_len, video_len = 0;
3062 	int modes = 0;
3063 
3064 	if (cea && cea_revision(cea) >= 3) {
3065 		int i, start, end;
3066 
3067 		if (cea_db_offsets(cea, &start, &end))
3068 			return 0;
3069 
3070 		for_each_cea_db(cea, i, start, end) {
3071 			db = &cea[i];
3072 			dbl = cea_db_payload_len(db);
3073 
3074 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3075 				video = db + 1;
3076 				video_len = dbl;
3077 				modes += do_cea_modes(connector, video, dbl);
3078 			}
3079 			else if (cea_db_is_hdmi_vsdb(db)) {
3080 				hdmi = db;
3081 				hdmi_len = dbl;
3082 			}
3083 		}
3084 	}
3085 
3086 	/*
3087 	 * We parse the HDMI VSDB after having added the cea modes as we will
3088 	 * be patching their flags when the sink supports stereo 3D.
3089 	 */
3090 	if (hdmi)
3091 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3092 					    video_len);
3093 
3094 	return modes;
3095 }
3096 
3097 static void
3098 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3099 {
3100 	u8 len = cea_db_payload_len(db);
3101 
3102 	if (len >= 6) {
3103 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
3104 		connector->dvi_dual = db[6] & 1;
3105 	}
3106 	if (len >= 7)
3107 		connector->max_tmds_clock = db[7] * 5;
3108 	if (len >= 8) {
3109 		connector->latency_present[0] = db[8] >> 7;
3110 		connector->latency_present[1] = (db[8] >> 6) & 1;
3111 	}
3112 	if (len >= 9)
3113 		connector->video_latency[0] = db[9];
3114 	if (len >= 10)
3115 		connector->audio_latency[0] = db[10];
3116 	if (len >= 11)
3117 		connector->video_latency[1] = db[11];
3118 	if (len >= 12)
3119 		connector->audio_latency[1] = db[12];
3120 
3121 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3122 		    "max TMDS clock %d, "
3123 		    "latency present %d %d, "
3124 		    "video latency %d %d, "
3125 		    "audio latency %d %d\n",
3126 		    connector->dvi_dual,
3127 		    connector->max_tmds_clock,
3128 	      (int) connector->latency_present[0],
3129 	      (int) connector->latency_present[1],
3130 		    connector->video_latency[0],
3131 		    connector->video_latency[1],
3132 		    connector->audio_latency[0],
3133 		    connector->audio_latency[1]);
3134 }
3135 
3136 static void
3137 monitor_name(struct detailed_timing *t, void *data)
3138 {
3139 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3140 		*(u8 **)data = t->data.other_data.data.str.str;
3141 }
3142 
3143 /**
3144  * drm_edid_to_eld - build ELD from EDID
3145  * @connector: connector corresponding to the HDMI/DP sink
3146  * @edid: EDID to parse
3147  *
3148  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3149  * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3150  * fill in.
3151  */
3152 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3153 {
3154 	uint8_t *eld = connector->eld;
3155 	u8 *cea;
3156 	u8 *name;
3157 	u8 *db;
3158 	int sad_count = 0;
3159 	int mnl;
3160 	int dbl;
3161 
3162 	memset(eld, 0, sizeof(connector->eld));
3163 
3164 	cea = drm_find_cea_extension(edid);
3165 	if (!cea) {
3166 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3167 		return;
3168 	}
3169 
3170 	name = NULL;
3171 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3172 	for (mnl = 0; name && mnl < 13; mnl++) {
3173 		if (name[mnl] == 0x0a)
3174 			break;
3175 		eld[20 + mnl] = name[mnl];
3176 	}
3177 	eld[4] = (cea[1] << 5) | mnl;
3178 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3179 
3180 	eld[0] = 2 << 3;		/* ELD version: 2 */
3181 
3182 	eld[16] = edid->mfg_id[0];
3183 	eld[17] = edid->mfg_id[1];
3184 	eld[18] = edid->prod_code[0];
3185 	eld[19] = edid->prod_code[1];
3186 
3187 	if (cea_revision(cea) >= 3) {
3188 		int i, start, end;
3189 
3190 		if (cea_db_offsets(cea, &start, &end)) {
3191 			start = 0;
3192 			end = 0;
3193 		}
3194 
3195 		for_each_cea_db(cea, i, start, end) {
3196 			db = &cea[i];
3197 			dbl = cea_db_payload_len(db);
3198 
3199 			switch (cea_db_tag(db)) {
3200 			case AUDIO_BLOCK:
3201 				/* Audio Data Block, contains SADs */
3202 				sad_count = dbl / 3;
3203 				if (dbl >= 1)
3204 					memcpy(eld + 20 + mnl, &db[1], dbl);
3205 				break;
3206 			case SPEAKER_BLOCK:
3207 				/* Speaker Allocation Data Block */
3208 				if (dbl >= 1)
3209 					eld[7] = db[1];
3210 				break;
3211 			case VENDOR_BLOCK:
3212 				/* HDMI Vendor-Specific Data Block */
3213 				if (cea_db_is_hdmi_vsdb(db))
3214 					parse_hdmi_vsdb(connector, db);
3215 				break;
3216 			default:
3217 				break;
3218 			}
3219 		}
3220 	}
3221 	eld[5] |= sad_count << 4;
3222 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3223 
3224 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3225 }
3226 EXPORT_SYMBOL(drm_edid_to_eld);
3227 
3228 /**
3229  * drm_edid_to_sad - extracts SADs from EDID
3230  * @edid: EDID to parse
3231  * @sads: pointer that will be set to the extracted SADs
3232  *
3233  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3234  *
3235  * Note: The returned pointer needs to be freed using kfree().
3236  *
3237  * Return: The number of found SADs or negative number on error.
3238  */
3239 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3240 {
3241 	int count = 0;
3242 	int i, start, end, dbl;
3243 	u8 *cea;
3244 
3245 	cea = drm_find_cea_extension(edid);
3246 	if (!cea) {
3247 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3248 		return -ENOENT;
3249 	}
3250 
3251 	if (cea_revision(cea) < 3) {
3252 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3253 		return -EOPNOTSUPP;
3254 	}
3255 
3256 	if (cea_db_offsets(cea, &start, &end)) {
3257 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3258 		return -EPROTO;
3259 	}
3260 
3261 	for_each_cea_db(cea, i, start, end) {
3262 		u8 *db = &cea[i];
3263 
3264 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3265 			int j;
3266 			dbl = cea_db_payload_len(db);
3267 
3268 			count = dbl / 3; /* SAD is 3B */
3269 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3270 			if (!*sads)
3271 				return -ENOMEM;
3272 			for (j = 0; j < count; j++) {
3273 				u8 *sad = &db[1 + j * 3];
3274 
3275 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3276 				(*sads)[j].channels = sad[0] & 0x7;
3277 				(*sads)[j].freq = sad[1] & 0x7F;
3278 				(*sads)[j].byte2 = sad[2];
3279 			}
3280 			break;
3281 		}
3282 	}
3283 
3284 	return count;
3285 }
3286 EXPORT_SYMBOL(drm_edid_to_sad);
3287 
3288 /**
3289  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3290  * @edid: EDID to parse
3291  * @sadb: pointer to the speaker block
3292  *
3293  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3294  *
3295  * Note: The returned pointer needs to be freed using kfree().
3296  *
3297  * Return: The number of found Speaker Allocation Blocks or negative number on
3298  * error.
3299  */
3300 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3301 {
3302 	int count = 0;
3303 	int i, start, end, dbl;
3304 	const u8 *cea;
3305 
3306 	cea = drm_find_cea_extension(edid);
3307 	if (!cea) {
3308 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3309 		return -ENOENT;
3310 	}
3311 
3312 	if (cea_revision(cea) < 3) {
3313 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3314 		return -ENOTSUPP;
3315 	}
3316 
3317 	if (cea_db_offsets(cea, &start, &end)) {
3318 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3319 		return -EPROTO;
3320 	}
3321 
3322 	for_each_cea_db(cea, i, start, end) {
3323 		const u8 *db = &cea[i];
3324 
3325 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3326 			dbl = cea_db_payload_len(db);
3327 
3328 			/* Speaker Allocation Data Block */
3329 			if (dbl == 3) {
3330 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3331 				if (!*sadb)
3332 					return -ENOMEM;
3333 				count = dbl;
3334 				break;
3335 			}
3336 		}
3337 	}
3338 
3339 	return count;
3340 }
3341 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3342 
3343 /**
3344  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3345  * @connector: connector associated with the HDMI/DP sink
3346  * @mode: the display mode
3347  *
3348  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3349  * the sink doesn't support audio or video.
3350  */
3351 int drm_av_sync_delay(struct drm_connector *connector,
3352 		      struct drm_display_mode *mode)
3353 {
3354 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3355 	int a, v;
3356 
3357 	if (!connector->latency_present[0])
3358 		return 0;
3359 	if (!connector->latency_present[1])
3360 		i = 0;
3361 
3362 	a = connector->audio_latency[i];
3363 	v = connector->video_latency[i];
3364 
3365 	/*
3366 	 * HDMI/DP sink doesn't support audio or video?
3367 	 */
3368 	if (a == 255 || v == 255)
3369 		return 0;
3370 
3371 	/*
3372 	 * Convert raw EDID values to millisecond.
3373 	 * Treat unknown latency as 0ms.
3374 	 */
3375 	if (a)
3376 		a = min(2 * (a - 1), 500);
3377 	if (v)
3378 		v = min(2 * (v - 1), 500);
3379 
3380 	return max(v - a, 0);
3381 }
3382 EXPORT_SYMBOL(drm_av_sync_delay);
3383 
3384 /**
3385  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3386  * @encoder: the encoder just changed display mode
3387  * @mode: the adjusted display mode
3388  *
3389  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3390  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3391  *
3392  * Return: The connector associated with the first HDMI/DP sink that has ELD
3393  * attached to it.
3394  */
3395 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3396 				     struct drm_display_mode *mode)
3397 {
3398 	struct drm_connector *connector;
3399 	struct drm_device *dev = encoder->dev;
3400 
3401 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3402 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3403 
3404 	drm_for_each_connector(connector, dev)
3405 		if (connector->encoder == encoder && connector->eld[0])
3406 			return connector;
3407 
3408 	return NULL;
3409 }
3410 EXPORT_SYMBOL(drm_select_eld);
3411 
3412 /**
3413  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3414  * @edid: monitor EDID information
3415  *
3416  * Parse the CEA extension according to CEA-861-B.
3417  *
3418  * Return: True if the monitor is HDMI, false if not or unknown.
3419  */
3420 bool drm_detect_hdmi_monitor(struct edid *edid)
3421 {
3422 	u8 *edid_ext;
3423 	int i;
3424 	int start_offset, end_offset;
3425 
3426 	edid_ext = drm_find_cea_extension(edid);
3427 	if (!edid_ext)
3428 		return false;
3429 
3430 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3431 		return false;
3432 
3433 	/*
3434 	 * Because HDMI identifier is in Vendor Specific Block,
3435 	 * search it from all data blocks of CEA extension.
3436 	 */
3437 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3438 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3439 			return true;
3440 	}
3441 
3442 	return false;
3443 }
3444 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3445 
3446 /**
3447  * drm_detect_monitor_audio - check monitor audio capability
3448  * @edid: EDID block to scan
3449  *
3450  * Monitor should have CEA extension block.
3451  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3452  * audio' only. If there is any audio extension block and supported
3453  * audio format, assume at least 'basic audio' support, even if 'basic
3454  * audio' is not defined in EDID.
3455  *
3456  * Return: True if the monitor supports audio, false otherwise.
3457  */
3458 bool drm_detect_monitor_audio(struct edid *edid)
3459 {
3460 	u8 *edid_ext;
3461 	int i, j;
3462 	bool has_audio = false;
3463 	int start_offset, end_offset;
3464 
3465 	edid_ext = drm_find_cea_extension(edid);
3466 	if (!edid_ext)
3467 		goto end;
3468 
3469 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3470 
3471 	if (has_audio) {
3472 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3473 		goto end;
3474 	}
3475 
3476 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3477 		goto end;
3478 
3479 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3480 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3481 			has_audio = true;
3482 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3483 				DRM_DEBUG_KMS("CEA audio format %d\n",
3484 					      (edid_ext[i + j] >> 3) & 0xf);
3485 			goto end;
3486 		}
3487 	}
3488 end:
3489 	return has_audio;
3490 }
3491 EXPORT_SYMBOL(drm_detect_monitor_audio);
3492 
3493 /**
3494  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3495  * @edid: EDID block to scan
3496  *
3497  * Check whether the monitor reports the RGB quantization range selection
3498  * as supported. The AVI infoframe can then be used to inform the monitor
3499  * which quantization range (full or limited) is used.
3500  *
3501  * Return: True if the RGB quantization range is selectable, false otherwise.
3502  */
3503 bool drm_rgb_quant_range_selectable(struct edid *edid)
3504 {
3505 	u8 *edid_ext;
3506 	int i, start, end;
3507 
3508 	edid_ext = drm_find_cea_extension(edid);
3509 	if (!edid_ext)
3510 		return false;
3511 
3512 	if (cea_db_offsets(edid_ext, &start, &end))
3513 		return false;
3514 
3515 	for_each_cea_db(edid_ext, i, start, end) {
3516 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3517 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3518 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3519 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3520 		}
3521 	}
3522 
3523 	return false;
3524 }
3525 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3526 
3527 /**
3528  * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3529  * hdmi deep color modes and update drm_display_info if so.
3530  * @edid: monitor EDID information
3531  * @info: Updated with maximum supported deep color bpc and color format
3532  *        if deep color supported.
3533  * @connector: DRM connector, used only for debug output
3534  *
3535  * Parse the CEA extension according to CEA-861-B.
3536  * Return true if HDMI deep color supported, false if not or unknown.
3537  */
3538 static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3539                                             struct drm_display_info *info,
3540                                             struct drm_connector *connector)
3541 {
3542 	u8 *edid_ext, *hdmi;
3543 	int i;
3544 	int start_offset, end_offset;
3545 	unsigned int dc_bpc = 0;
3546 
3547 	edid_ext = drm_find_cea_extension(edid);
3548 	if (!edid_ext)
3549 		return false;
3550 
3551 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3552 		return false;
3553 
3554 	/*
3555 	 * Because HDMI identifier is in Vendor Specific Block,
3556 	 * search it from all data blocks of CEA extension.
3557 	 */
3558 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3559 		if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3560 			/* HDMI supports at least 8 bpc */
3561 			info->bpc = 8;
3562 
3563 			hdmi = &edid_ext[i];
3564 			if (cea_db_payload_len(hdmi) < 6)
3565 				return false;
3566 
3567 			if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3568 				dc_bpc = 10;
3569 				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3570 				DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3571 						  connector->name);
3572 			}
3573 
3574 			if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3575 				dc_bpc = 12;
3576 				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3577 				DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3578 						  connector->name);
3579 			}
3580 
3581 			if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3582 				dc_bpc = 16;
3583 				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3584 				DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3585 						  connector->name);
3586 			}
3587 
3588 			if (dc_bpc > 0) {
3589 				DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3590 						  connector->name, dc_bpc);
3591 				info->bpc = dc_bpc;
3592 
3593 				/*
3594 				 * Deep color support mandates RGB444 support for all video
3595 				 * modes and forbids YCRCB422 support for all video modes per
3596 				 * HDMI 1.3 spec.
3597 				 */
3598 				info->color_formats = DRM_COLOR_FORMAT_RGB444;
3599 
3600 				/* YCRCB444 is optional according to spec. */
3601 				if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3602 					info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3603 					DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3604 							  connector->name);
3605 				}
3606 
3607 				/*
3608 				 * Spec says that if any deep color mode is supported at all,
3609 				 * then deep color 36 bit must be supported.
3610 				 */
3611 				if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3612 					DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3613 							  connector->name);
3614 				}
3615 
3616 				return true;
3617 			}
3618 			else {
3619 				DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3620 						  connector->name);
3621 			}
3622 		}
3623 	}
3624 
3625 	return false;
3626 }
3627 
3628 /**
3629  * drm_add_display_info - pull display info out if present
3630  * @edid: EDID data
3631  * @info: display info (attached to connector)
3632  * @connector: connector whose edid is used to build display info
3633  *
3634  * Grab any available display info and stuff it into the drm_display_info
3635  * structure that's part of the connector.  Useful for tracking bpp and
3636  * color spaces.
3637  */
3638 static void drm_add_display_info(struct edid *edid,
3639                                  struct drm_display_info *info,
3640                                  struct drm_connector *connector)
3641 {
3642 	u8 *edid_ext;
3643 
3644 	info->width_mm = edid->width_cm * 10;
3645 	info->height_mm = edid->height_cm * 10;
3646 
3647 	/* driver figures it out in this case */
3648 	info->bpc = 0;
3649 	info->color_formats = 0;
3650 
3651 	if (edid->revision < 3)
3652 		return;
3653 
3654 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3655 		return;
3656 
3657 	/* Get data from CEA blocks if present */
3658 	edid_ext = drm_find_cea_extension(edid);
3659 	if (edid_ext) {
3660 		info->cea_rev = edid_ext[1];
3661 
3662 		/* The existence of a CEA block should imply RGB support */
3663 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3664 		if (edid_ext[3] & EDID_CEA_YCRCB444)
3665 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3666 		if (edid_ext[3] & EDID_CEA_YCRCB422)
3667 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3668 	}
3669 
3670 	/* HDMI deep color modes supported? Assign to info, if so */
3671 	drm_assign_hdmi_deep_color_info(edid, info, connector);
3672 
3673 	/* Only defined for 1.4 with digital displays */
3674 	if (edid->revision < 4)
3675 		return;
3676 
3677 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3678 	case DRM_EDID_DIGITAL_DEPTH_6:
3679 		info->bpc = 6;
3680 		break;
3681 	case DRM_EDID_DIGITAL_DEPTH_8:
3682 		info->bpc = 8;
3683 		break;
3684 	case DRM_EDID_DIGITAL_DEPTH_10:
3685 		info->bpc = 10;
3686 		break;
3687 	case DRM_EDID_DIGITAL_DEPTH_12:
3688 		info->bpc = 12;
3689 		break;
3690 	case DRM_EDID_DIGITAL_DEPTH_14:
3691 		info->bpc = 14;
3692 		break;
3693 	case DRM_EDID_DIGITAL_DEPTH_16:
3694 		info->bpc = 16;
3695 		break;
3696 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3697 	default:
3698 		info->bpc = 0;
3699 		break;
3700 	}
3701 
3702 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3703 			  connector->name, info->bpc);
3704 
3705 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3706 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3707 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3708 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3709 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3710 }
3711 
3712 /**
3713  * drm_add_edid_modes - add modes from EDID data, if available
3714  * @connector: connector we're probing
3715  * @edid: EDID data
3716  *
3717  * Add the specified modes to the connector's mode list.
3718  *
3719  * Return: The number of modes added or 0 if we couldn't find any.
3720  */
3721 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3722 {
3723 	int num_modes = 0;
3724 	u32 quirks;
3725 
3726 	if (edid == NULL) {
3727 		return 0;
3728 	}
3729 	if (!drm_edid_is_valid(edid)) {
3730 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3731 			 connector->name);
3732 		return 0;
3733 	}
3734 
3735 	quirks = edid_get_quirks(edid);
3736 
3737 	/*
3738 	 * EDID spec says modes should be preferred in this order:
3739 	 * - preferred detailed mode
3740 	 * - other detailed modes from base block
3741 	 * - detailed modes from extension blocks
3742 	 * - CVT 3-byte code modes
3743 	 * - standard timing codes
3744 	 * - established timing codes
3745 	 * - modes inferred from GTF or CVT range information
3746 	 *
3747 	 * We get this pretty much right.
3748 	 *
3749 	 * XXX order for additional mode types in extension blocks?
3750 	 */
3751 	num_modes += add_detailed_modes(connector, edid, quirks);
3752 	num_modes += add_cvt_modes(connector, edid);
3753 	num_modes += add_standard_modes(connector, edid);
3754 	num_modes += add_established_modes(connector, edid);
3755 	num_modes += add_cea_modes(connector, edid);
3756 	num_modes += add_alternate_cea_modes(connector, edid);
3757 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3758 		num_modes += add_inferred_modes(connector, edid);
3759 
3760 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3761 		edid_fixup_preferred(connector, quirks);
3762 
3763 	drm_add_display_info(edid, &connector->display_info, connector);
3764 
3765 	if (quirks & EDID_QUIRK_FORCE_8BPC)
3766 		connector->display_info.bpc = 8;
3767 
3768 	if (quirks & EDID_QUIRK_FORCE_12BPC)
3769 		connector->display_info.bpc = 12;
3770 
3771 	return num_modes;
3772 }
3773 EXPORT_SYMBOL(drm_add_edid_modes);
3774 
3775 /**
3776  * drm_add_modes_noedid - add modes for the connectors without EDID
3777  * @connector: connector we're probing
3778  * @hdisplay: the horizontal display limit
3779  * @vdisplay: the vertical display limit
3780  *
3781  * Add the specified modes to the connector's mode list. Only when the
3782  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3783  *
3784  * Return: The number of modes added or 0 if we couldn't find any.
3785  */
3786 int drm_add_modes_noedid(struct drm_connector *connector,
3787 			int hdisplay, int vdisplay)
3788 {
3789 	int i, count, num_modes = 0;
3790 	struct drm_display_mode *mode;
3791 	struct drm_device *dev = connector->dev;
3792 
3793 	count = ARRAY_SIZE(drm_dmt_modes);
3794 	if (hdisplay < 0)
3795 		hdisplay = 0;
3796 	if (vdisplay < 0)
3797 		vdisplay = 0;
3798 
3799 	for (i = 0; i < count; i++) {
3800 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3801 		if (hdisplay && vdisplay) {
3802 			/*
3803 			 * Only when two are valid, they will be used to check
3804 			 * whether the mode should be added to the mode list of
3805 			 * the connector.
3806 			 */
3807 			if (ptr->hdisplay > hdisplay ||
3808 					ptr->vdisplay > vdisplay)
3809 				continue;
3810 		}
3811 		if (drm_mode_vrefresh(ptr) > 61)
3812 			continue;
3813 		mode = drm_mode_duplicate(dev, ptr);
3814 		if (mode) {
3815 			drm_mode_probed_add(connector, mode);
3816 			num_modes++;
3817 		}
3818 	}
3819 	return num_modes;
3820 }
3821 EXPORT_SYMBOL(drm_add_modes_noedid);
3822 
3823 /**
3824  * drm_set_preferred_mode - Sets the preferred mode of a connector
3825  * @connector: connector whose mode list should be processed
3826  * @hpref: horizontal resolution of preferred mode
3827  * @vpref: vertical resolution of preferred mode
3828  *
3829  * Marks a mode as preferred if it matches the resolution specified by @hpref
3830  * and @vpref.
3831  */
3832 void drm_set_preferred_mode(struct drm_connector *connector,
3833 			   int hpref, int vpref)
3834 {
3835 	struct drm_display_mode *mode;
3836 
3837 	list_for_each_entry(mode, &connector->probed_modes, head) {
3838 		if (mode->hdisplay == hpref &&
3839 		    mode->vdisplay == vpref)
3840 			mode->type |= DRM_MODE_TYPE_PREFERRED;
3841 	}
3842 }
3843 EXPORT_SYMBOL(drm_set_preferred_mode);
3844 
3845 /**
3846  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3847  *                                              data from a DRM display mode
3848  * @frame: HDMI AVI infoframe
3849  * @mode: DRM display mode
3850  *
3851  * Return: 0 on success or a negative error code on failure.
3852  */
3853 int
3854 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3855 					 const struct drm_display_mode *mode)
3856 {
3857 	int err;
3858 
3859 	if (!frame || !mode)
3860 		return -EINVAL;
3861 
3862 	err = hdmi_avi_infoframe_init(frame);
3863 	if (err < 0)
3864 		return err;
3865 
3866 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3867 		frame->pixel_repeat = 1;
3868 
3869 	frame->video_code = drm_match_cea_mode(mode);
3870 
3871 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3872 
3873 	/*
3874 	 * Populate picture aspect ratio from either
3875 	 * user input (if specified) or from the CEA mode list.
3876 	 */
3877 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
3878 		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
3879 		frame->picture_aspect = mode->picture_aspect_ratio;
3880 	else if (frame->video_code > 0)
3881 		frame->picture_aspect = drm_get_cea_aspect_ratio(
3882 						frame->video_code);
3883 
3884 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3885 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3886 
3887 	return 0;
3888 }
3889 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3890 
3891 static enum hdmi_3d_structure
3892 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3893 {
3894 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3895 
3896 	switch (layout) {
3897 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3898 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3899 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3900 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3901 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3902 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3903 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3904 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3905 	case DRM_MODE_FLAG_3D_L_DEPTH:
3906 		return HDMI_3D_STRUCTURE_L_DEPTH;
3907 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3908 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3909 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3910 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3911 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3912 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3913 	default:
3914 		return HDMI_3D_STRUCTURE_INVALID;
3915 	}
3916 }
3917 
3918 /**
3919  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3920  * data from a DRM display mode
3921  * @frame: HDMI vendor infoframe
3922  * @mode: DRM display mode
3923  *
3924  * Note that there's is a need to send HDMI vendor infoframes only when using a
3925  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3926  * function will return -EINVAL, error that can be safely ignored.
3927  *
3928  * Return: 0 on success or a negative error code on failure.
3929  */
3930 int
3931 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3932 					    const struct drm_display_mode *mode)
3933 {
3934 	int err;
3935 	u32 s3d_flags;
3936 	u8 vic;
3937 
3938 	if (!frame || !mode)
3939 		return -EINVAL;
3940 
3941 	vic = drm_match_hdmi_mode(mode);
3942 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3943 
3944 	if (!vic && !s3d_flags)
3945 		return -EINVAL;
3946 
3947 	if (vic && s3d_flags)
3948 		return -EINVAL;
3949 
3950 	err = hdmi_vendor_infoframe_init(frame);
3951 	if (err < 0)
3952 		return err;
3953 
3954 	if (vic)
3955 		frame->vic = vic;
3956 	else
3957 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
3958 
3959 	return 0;
3960 }
3961 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3962