xref: /dragonfly/sys/dev/drm/drm_edid.c (revision e97a1dae)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/hdmi.h>
32 #include <linux/i2c.h>
33 #include <linux/module.h>
34 #include <drm/drmP.h>
35 #include <drm/drm_edid.h>
36 
37 #include <bus/iicbus/iic.h>
38 #include <bus/iicbus/iiconf.h>
39 #include "iicbus_if.h"
40 
41 #define version_greater(edid, maj, min) \
42 	(((edid)->version > (maj)) || \
43 	 ((edid)->version == (maj) && (edid)->revision > (min)))
44 
45 #define EDID_EST_TIMINGS 16
46 #define EDID_STD_TIMINGS 8
47 #define EDID_DETAILED_TIMINGS 4
48 
49 /*
50  * EDID blocks out in the wild have a variety of bugs, try to collect
51  * them here (note that userspace may work around broken monitors first,
52  * but fixes should make their way here so that the kernel "just works"
53  * on as many displays as possible).
54  */
55 
56 /* First detailed mode wrong, use largest 60Hz mode */
57 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
58 /* Reported 135MHz pixel clock is too high, needs adjustment */
59 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
60 /* Prefer the largest mode at 75 Hz */
61 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
62 /* Detail timing is in cm not mm */
63 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
64 /* Detailed timing descriptors have bogus size values, so just take the
65  * maximum size and use that.
66  */
67 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
68 /* Monitor forgot to set the first detailed is preferred bit. */
69 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
70 /* use +hsync +vsync for detailed mode */
71 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
72 /* Force reduced-blanking timings for detailed modes */
73 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
74 
75 struct detailed_mode_closure {
76 	struct drm_connector *connector;
77 	struct edid *edid;
78 	bool preferred;
79 	u32 quirks;
80 	int modes;
81 };
82 
83 #define LEVEL_DMT	0
84 #define LEVEL_GTF	1
85 #define LEVEL_GTF2	2
86 #define LEVEL_CVT	3
87 
88 static struct edid_quirk {
89 	char vendor[4];
90 	int product_id;
91 	u32 quirks;
92 } edid_quirk_list[] = {
93 	/* Acer AL1706 */
94 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
95 	/* Acer F51 */
96 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
97 	/* Unknown Acer */
98 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
99 
100 	/* Belinea 10 15 55 */
101 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
102 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
103 
104 	/* Envision Peripherals, Inc. EN-7100e */
105 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
106 	/* Envision EN2028 */
107 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
108 
109 	/* Funai Electronics PM36B */
110 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
111 	  EDID_QUIRK_DETAILED_IN_CM },
112 
113 	/* LG Philips LCD LP154W01-A5 */
114 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
115 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
116 
117 	/* Philips 107p5 CRT */
118 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119 
120 	/* Proview AY765C */
121 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
122 
123 	/* Samsung SyncMaster 205BW.  Note: irony */
124 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
125 	/* Samsung SyncMaster 22[5-6]BW */
126 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
127 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
128 
129 	/* ViewSonic VA2026w */
130 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
131 };
132 
133 /*
134  * Autogenerated from the DMT spec.
135  * This table is copied from xfree86/modes/xf86EdidModes.c.
136  */
137 static const struct drm_display_mode drm_dmt_modes[] = {
138 	/* 640x350@85Hz */
139 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
140 		   736, 832, 0, 350, 382, 385, 445, 0,
141 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
142 	/* 640x400@85Hz */
143 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
144 		   736, 832, 0, 400, 401, 404, 445, 0,
145 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
146 	/* 720x400@85Hz */
147 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
148 		   828, 936, 0, 400, 401, 404, 446, 0,
149 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
150 	/* 640x480@60Hz */
151 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
152 		   752, 800, 0, 480, 489, 492, 525, 0,
153 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
154 	/* 640x480@72Hz */
155 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
156 		   704, 832, 0, 480, 489, 492, 520, 0,
157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
158 	/* 640x480@75Hz */
159 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
160 		   720, 840, 0, 480, 481, 484, 500, 0,
161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 	/* 640x480@85Hz */
163 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
164 		   752, 832, 0, 480, 481, 484, 509, 0,
165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166 	/* 800x600@56Hz */
167 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
168 		   896, 1024, 0, 600, 601, 603, 625, 0,
169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 	/* 800x600@60Hz */
171 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
172 		   968, 1056, 0, 600, 601, 605, 628, 0,
173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
174 	/* 800x600@72Hz */
175 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
176 		   976, 1040, 0, 600, 637, 643, 666, 0,
177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
178 	/* 800x600@75Hz */
179 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
180 		   896, 1056, 0, 600, 601, 604, 625, 0,
181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182 	/* 800x600@85Hz */
183 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
184 		   896, 1048, 0, 600, 601, 604, 631, 0,
185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186 	/* 800x600@120Hz RB */
187 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
188 		   880, 960, 0, 600, 603, 607, 636, 0,
189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
190 	/* 848x480@60Hz */
191 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
192 		   976, 1088, 0, 480, 486, 494, 517, 0,
193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 	/* 1024x768@43Hz, interlace */
195 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
196 		   1208, 1264, 0, 768, 768, 772, 817, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
198 			DRM_MODE_FLAG_INTERLACE) },
199 	/* 1024x768@60Hz */
200 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
201 		   1184, 1344, 0, 768, 771, 777, 806, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
203 	/* 1024x768@70Hz */
204 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
205 		   1184, 1328, 0, 768, 771, 777, 806, 0,
206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 	/* 1024x768@75Hz */
208 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
209 		   1136, 1312, 0, 768, 769, 772, 800, 0,
210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 	/* 1024x768@85Hz */
212 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
213 		   1168, 1376, 0, 768, 769, 772, 808, 0,
214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 	/* 1024x768@120Hz RB */
216 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
217 		   1104, 1184, 0, 768, 771, 775, 813, 0,
218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 	/* 1152x864@75Hz */
220 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
221 		   1344, 1600, 0, 864, 865, 868, 900, 0,
222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 	/* 1280x768@60Hz RB */
224 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
225 		   1360, 1440, 0, 768, 771, 778, 790, 0,
226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 	/* 1280x768@60Hz */
228 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
229 		   1472, 1664, 0, 768, 771, 778, 798, 0,
230 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 	/* 1280x768@75Hz */
232 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
233 		   1488, 1696, 0, 768, 771, 778, 805, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
235 	/* 1280x768@85Hz */
236 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
237 		   1496, 1712, 0, 768, 771, 778, 809, 0,
238 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
239 	/* 1280x768@120Hz RB */
240 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
241 		   1360, 1440, 0, 768, 771, 778, 813, 0,
242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
243 	/* 1280x800@60Hz RB */
244 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
245 		   1360, 1440, 0, 800, 803, 809, 823, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247 	/* 1280x800@60Hz */
248 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
249 		   1480, 1680, 0, 800, 803, 809, 831, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 1280x800@75Hz */
252 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
253 		   1488, 1696, 0, 800, 803, 809, 838, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 1280x800@85Hz */
256 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
257 		   1496, 1712, 0, 800, 803, 809, 843, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 1280x800@120Hz RB */
260 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
261 		   1360, 1440, 0, 800, 803, 809, 847, 0,
262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 1280x960@60Hz */
264 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
265 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 	/* 1280x960@85Hz */
268 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
269 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 	/* 1280x960@120Hz RB */
272 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
273 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 1280x1024@60Hz */
276 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
277 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 1280x1024@75Hz */
280 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
281 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 1280x1024@85Hz */
284 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
285 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 1280x1024@120Hz RB */
288 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
289 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
291 	/* 1360x768@60Hz */
292 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
293 		   1536, 1792, 0, 768, 771, 777, 795, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 1360x768@120Hz RB */
296 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
297 		   1440, 1520, 0, 768, 771, 776, 813, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 1400x1050@60Hz RB */
300 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
301 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 	/* 1400x1050@60Hz */
304 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
305 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
306 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 1400x1050@75Hz */
308 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
309 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 1400x1050@85Hz */
312 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
313 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 	/* 1400x1050@120Hz RB */
316 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
317 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319 	/* 1440x900@60Hz RB */
320 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
321 		   1520, 1600, 0, 900, 903, 909, 926, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 	/* 1440x900@60Hz */
324 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
325 		   1672, 1904, 0, 900, 903, 909, 934, 0,
326 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 1440x900@75Hz */
328 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
329 		   1688, 1936, 0, 900, 903, 909, 942, 0,
330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 	/* 1440x900@85Hz */
332 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
333 		   1696, 1952, 0, 900, 903, 909, 948, 0,
334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
335 	/* 1440x900@120Hz RB */
336 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
337 		   1520, 1600, 0, 900, 903, 909, 953, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
339 	/* 1600x1200@60Hz */
340 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
341 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 1600x1200@65Hz */
344 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
345 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 1600x1200@70Hz */
348 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
349 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
351 	/* 1600x1200@75Hz */
352 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
353 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 	/* 1600x1200@85Hz */
356 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
357 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 	/* 1600x1200@120Hz RB */
360 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
361 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
363 	/* 1680x1050@60Hz RB */
364 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
365 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
367 	/* 1680x1050@60Hz */
368 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
369 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
370 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
371 	/* 1680x1050@75Hz */
372 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
373 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 	/* 1680x1050@85Hz */
376 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
377 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 	/* 1680x1050@120Hz RB */
380 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
381 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
383 	/* 1792x1344@60Hz */
384 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
385 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 	/* 1792x1344@75Hz */
388 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
389 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 	/* 1792x1344@120Hz RB */
392 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
393 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395 	/* 1856x1392@60Hz */
396 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
397 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
398 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 	/* 1856x1392@75Hz */
400 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
401 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
402 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 	/* 1856x1392@120Hz RB */
404 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
405 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 	/* 1920x1200@60Hz RB */
408 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
409 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
411 	/* 1920x1200@60Hz */
412 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
413 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
414 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 1920x1200@75Hz */
416 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
417 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
419 	/* 1920x1200@85Hz */
420 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
421 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
422 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 	/* 1920x1200@120Hz RB */
424 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
425 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
427 	/* 1920x1440@60Hz */
428 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
429 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
430 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 	/* 1920x1440@75Hz */
432 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
433 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 	/* 1920x1440@120Hz RB */
436 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
437 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 	/* 2560x1600@60Hz RB */
440 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
441 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 	/* 2560x1600@60Hz */
444 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
445 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 	/* 2560x1600@75HZ */
448 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
449 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451 	/* 2560x1600@85HZ */
452 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
453 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
454 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 	/* 2560x1600@120Hz RB */
456 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
457 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
458 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
459 };
460 
461 static const struct drm_display_mode edid_est_modes[] = {
462 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
463 		   968, 1056, 0, 600, 601, 605, 628, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
465 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
466 		   896, 1024, 0, 600, 601, 603,  625, 0,
467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
468 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
469 		   720, 840, 0, 480, 481, 484, 500, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
471 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
472 		   704,  832, 0, 480, 489, 491, 520, 0,
473 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
474 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
475 		   768,  864, 0, 480, 483, 486, 525, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
477 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
478 		   752, 800, 0, 480, 490, 492, 525, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
480 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
481 		   846, 900, 0, 400, 421, 423,  449, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
483 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
484 		   846,  900, 0, 400, 412, 414, 449, 0,
485 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
486 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
487 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
489 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
490 		   1136, 1312, 0,  768, 769, 772, 800, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
492 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
493 		   1184, 1328, 0,  768, 771, 777, 806, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
495 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
496 		   1184, 1344, 0,  768, 771, 777, 806, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
498 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
499 		   1208, 1264, 0, 768, 768, 776, 817, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
501 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
502 		   928, 1152, 0, 624, 625, 628, 667, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
504 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
505 		   896, 1056, 0, 600, 601, 604,  625, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
507 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
508 		   976, 1040, 0, 600, 637, 643, 666, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
510 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
511 		   1344, 1600, 0,  864, 865, 868, 900, 0,
512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
513 };
514 
515 struct minimode {
516 	short w;
517 	short h;
518 	short r;
519 	short rb;
520 };
521 
522 static const struct minimode est3_modes[] = {
523 	/* byte 6 */
524 	{ 640, 350, 85, 0 },
525 	{ 640, 400, 85, 0 },
526 	{ 720, 400, 85, 0 },
527 	{ 640, 480, 85, 0 },
528 	{ 848, 480, 60, 0 },
529 	{ 800, 600, 85, 0 },
530 	{ 1024, 768, 85, 0 },
531 	{ 1152, 864, 75, 0 },
532 	/* byte 7 */
533 	{ 1280, 768, 60, 1 },
534 	{ 1280, 768, 60, 0 },
535 	{ 1280, 768, 75, 0 },
536 	{ 1280, 768, 85, 0 },
537 	{ 1280, 960, 60, 0 },
538 	{ 1280, 960, 85, 0 },
539 	{ 1280, 1024, 60, 0 },
540 	{ 1280, 1024, 85, 0 },
541 	/* byte 8 */
542 	{ 1360, 768, 60, 0 },
543 	{ 1440, 900, 60, 1 },
544 	{ 1440, 900, 60, 0 },
545 	{ 1440, 900, 75, 0 },
546 	{ 1440, 900, 85, 0 },
547 	{ 1400, 1050, 60, 1 },
548 	{ 1400, 1050, 60, 0 },
549 	{ 1400, 1050, 75, 0 },
550 	/* byte 9 */
551 	{ 1400, 1050, 85, 0 },
552 	{ 1680, 1050, 60, 1 },
553 	{ 1680, 1050, 60, 0 },
554 	{ 1680, 1050, 75, 0 },
555 	{ 1680, 1050, 85, 0 },
556 	{ 1600, 1200, 60, 0 },
557 	{ 1600, 1200, 65, 0 },
558 	{ 1600, 1200, 70, 0 },
559 	/* byte 10 */
560 	{ 1600, 1200, 75, 0 },
561 	{ 1600, 1200, 85, 0 },
562 	{ 1792, 1344, 60, 0 },
563 	{ 1792, 1344, 85, 0 },
564 	{ 1856, 1392, 60, 0 },
565 	{ 1856, 1392, 75, 0 },
566 	{ 1920, 1200, 60, 1 },
567 	{ 1920, 1200, 60, 0 },
568 	/* byte 11 */
569 	{ 1920, 1200, 75, 0 },
570 	{ 1920, 1200, 85, 0 },
571 	{ 1920, 1440, 60, 0 },
572 	{ 1920, 1440, 75, 0 },
573 };
574 
575 static const struct minimode extra_modes[] = {
576 	{ 1024, 576,  60, 0 },
577 	{ 1366, 768,  60, 0 },
578 	{ 1600, 900,  60, 0 },
579 	{ 1680, 945,  60, 0 },
580 	{ 1920, 1080, 60, 0 },
581 	{ 2048, 1152, 60, 0 },
582 	{ 2048, 1536, 60, 0 },
583 };
584 
585 /*
586  * Probably taken from CEA-861 spec.
587  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
588  */
589 static const struct drm_display_mode edid_cea_modes[] = {
590 	/* 1 - 640x480@60Hz */
591 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
592 		   752, 800, 0, 480, 490, 492, 525, 0,
593 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
594 	/* 2 - 720x480@60Hz */
595 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
596 		   798, 858, 0, 480, 489, 495, 525, 0,
597 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
598 	/* 3 - 720x480@60Hz */
599 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
600 		   798, 858, 0, 480, 489, 495, 525, 0,
601 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
602 	/* 4 - 1280x720@60Hz */
603 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
604 		   1430, 1650, 0, 720, 725, 730, 750, 0,
605 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
606 	/* 5 - 1920x1080i@60Hz */
607 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
608 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
609 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
610 			DRM_MODE_FLAG_INTERLACE) },
611 	/* 6 - 1440x480i@60Hz */
612 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
613 		   1602, 1716, 0, 480, 488, 494, 525, 0,
614 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
615 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
616 	/* 7 - 1440x480i@60Hz */
617 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
618 		   1602, 1716, 0, 480, 488, 494, 525, 0,
619 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
620 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
621 	/* 8 - 1440x240@60Hz */
622 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
623 		   1602, 1716, 0, 240, 244, 247, 262, 0,
624 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
625 			DRM_MODE_FLAG_DBLCLK) },
626 	/* 9 - 1440x240@60Hz */
627 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
628 		   1602, 1716, 0, 240, 244, 247, 262, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
630 			DRM_MODE_FLAG_DBLCLK) },
631 	/* 10 - 2880x480i@60Hz */
632 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
633 		   3204, 3432, 0, 480, 488, 494, 525, 0,
634 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
635 			DRM_MODE_FLAG_INTERLACE) },
636 	/* 11 - 2880x480i@60Hz */
637 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
638 		   3204, 3432, 0, 480, 488, 494, 525, 0,
639 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
640 			DRM_MODE_FLAG_INTERLACE) },
641 	/* 12 - 2880x240@60Hz */
642 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
643 		   3204, 3432, 0, 240, 244, 247, 262, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
645 	/* 13 - 2880x240@60Hz */
646 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
647 		   3204, 3432, 0, 240, 244, 247, 262, 0,
648 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
649 	/* 14 - 1440x480@60Hz */
650 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
651 		   1596, 1716, 0, 480, 489, 495, 525, 0,
652 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
653 	/* 15 - 1440x480@60Hz */
654 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
655 		   1596, 1716, 0, 480, 489, 495, 525, 0,
656 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
657 	/* 16 - 1920x1080@60Hz */
658 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
659 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
660 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
661 	/* 17 - 720x576@50Hz */
662 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
663 		   796, 864, 0, 576, 581, 586, 625, 0,
664 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
665 	/* 18 - 720x576@50Hz */
666 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
667 		   796, 864, 0, 576, 581, 586, 625, 0,
668 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
669 	/* 19 - 1280x720@50Hz */
670 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
671 		   1760, 1980, 0, 720, 725, 730, 750, 0,
672 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
673 	/* 20 - 1920x1080i@50Hz */
674 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
675 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
676 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
677 			DRM_MODE_FLAG_INTERLACE) },
678 	/* 21 - 1440x576i@50Hz */
679 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
680 		   1590, 1728, 0, 576, 580, 586, 625, 0,
681 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
682 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
683 	/* 22 - 1440x576i@50Hz */
684 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
685 		   1590, 1728, 0, 576, 580, 586, 625, 0,
686 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
687 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
688 	/* 23 - 1440x288@50Hz */
689 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
690 		   1590, 1728, 0, 288, 290, 293, 312, 0,
691 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
692 			DRM_MODE_FLAG_DBLCLK) },
693 	/* 24 - 1440x288@50Hz */
694 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
695 		   1590, 1728, 0, 288, 290, 293, 312, 0,
696 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
697 			DRM_MODE_FLAG_DBLCLK) },
698 	/* 25 - 2880x576i@50Hz */
699 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
700 		   3180, 3456, 0, 576, 580, 586, 625, 0,
701 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
702 			DRM_MODE_FLAG_INTERLACE) },
703 	/* 26 - 2880x576i@50Hz */
704 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
705 		   3180, 3456, 0, 576, 580, 586, 625, 0,
706 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
707 			DRM_MODE_FLAG_INTERLACE) },
708 	/* 27 - 2880x288@50Hz */
709 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
710 		   3180, 3456, 0, 288, 290, 293, 312, 0,
711 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
712 	/* 28 - 2880x288@50Hz */
713 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
714 		   3180, 3456, 0, 288, 290, 293, 312, 0,
715 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
716 	/* 29 - 1440x576@50Hz */
717 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
718 		   1592, 1728, 0, 576, 581, 586, 625, 0,
719 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
720 	/* 30 - 1440x576@50Hz */
721 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
722 		   1592, 1728, 0, 576, 581, 586, 625, 0,
723 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
724 	/* 31 - 1920x1080@50Hz */
725 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
726 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
727 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
728 	/* 32 - 1920x1080@24Hz */
729 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
730 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
731 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
732 	/* 33 - 1920x1080@25Hz */
733 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
734 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
735 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
736 	/* 34 - 1920x1080@30Hz */
737 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
738 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
739 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
740 	/* 35 - 2880x480@60Hz */
741 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
742 		   3192, 3432, 0, 480, 489, 495, 525, 0,
743 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
744 	/* 36 - 2880x480@60Hz */
745 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
746 		   3192, 3432, 0, 480, 489, 495, 525, 0,
747 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
748 	/* 37 - 2880x576@50Hz */
749 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
750 		   3184, 3456, 0, 576, 581, 586, 625, 0,
751 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
752 	/* 38 - 2880x576@50Hz */
753 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
754 		   3184, 3456, 0, 576, 581, 586, 625, 0,
755 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
756 	/* 39 - 1920x1080i@50Hz */
757 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
758 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
760 			DRM_MODE_FLAG_INTERLACE) },
761 	/* 40 - 1920x1080i@100Hz */
762 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
763 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 			DRM_MODE_FLAG_INTERLACE) },
766 	/* 41 - 1280x720@100Hz */
767 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
768 		   1760, 1980, 0, 720, 725, 730, 750, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
770 	/* 42 - 720x576@100Hz */
771 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
772 		   796, 864, 0, 576, 581, 586, 625, 0,
773 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
774 	/* 43 - 720x576@100Hz */
775 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
776 		   796, 864, 0, 576, 581, 586, 625, 0,
777 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
778 	/* 44 - 1440x576i@100Hz */
779 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
780 		   1590, 1728, 0, 576, 580, 586, 625, 0,
781 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 			DRM_MODE_FLAG_DBLCLK) },
783 	/* 45 - 1440x576i@100Hz */
784 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
785 		   1590, 1728, 0, 576, 580, 586, 625, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
787 			DRM_MODE_FLAG_DBLCLK) },
788 	/* 46 - 1920x1080i@120Hz */
789 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
790 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
791 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
792 			DRM_MODE_FLAG_INTERLACE) },
793 	/* 47 - 1280x720@120Hz */
794 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
795 		   1430, 1650, 0, 720, 725, 730, 750, 0,
796 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
797 	/* 48 - 720x480@120Hz */
798 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
799 		   798, 858, 0, 480, 489, 495, 525, 0,
800 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
801 	/* 49 - 720x480@120Hz */
802 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
803 		   798, 858, 0, 480, 489, 495, 525, 0,
804 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
805 	/* 50 - 1440x480i@120Hz */
806 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
807 		   1602, 1716, 0, 480, 488, 494, 525, 0,
808 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
809 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
810 	/* 51 - 1440x480i@120Hz */
811 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
812 		   1602, 1716, 0, 480, 488, 494, 525, 0,
813 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
814 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
815 	/* 52 - 720x576@200Hz */
816 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
817 		   796, 864, 0, 576, 581, 586, 625, 0,
818 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
819 	/* 53 - 720x576@200Hz */
820 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
821 		   796, 864, 0, 576, 581, 586, 625, 0,
822 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
823 	/* 54 - 1440x576i@200Hz */
824 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
825 		   1590, 1728, 0, 576, 580, 586, 625, 0,
826 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
827 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
828 	/* 55 - 1440x576i@200Hz */
829 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
830 		   1590, 1728, 0, 576, 580, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
832 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
833 	/* 56 - 720x480@240Hz */
834 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
835 		   798, 858, 0, 480, 489, 495, 525, 0,
836 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
837 	/* 57 - 720x480@240Hz */
838 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
839 		   798, 858, 0, 480, 489, 495, 525, 0,
840 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
841 	/* 58 - 1440x480i@240 */
842 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
843 		   1602, 1716, 0, 480, 488, 494, 525, 0,
844 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
846 	/* 59 - 1440x480i@240 */
847 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
848 		   1602, 1716, 0, 480, 488, 494, 525, 0,
849 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
850 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
851 	/* 60 - 1280x720@24Hz */
852 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
853 		   3080, 3300, 0, 720, 725, 730, 750, 0,
854 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
855 	/* 61 - 1280x720@25Hz */
856 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
857 		   3740, 3960, 0, 720, 725, 730, 750, 0,
858 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
859 	/* 62 - 1280x720@30Hz */
860 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
861 		   3080, 3300, 0, 720, 725, 730, 750, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
863 	/* 63 - 1920x1080@120Hz */
864 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
865 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
866 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
867 	/* 64 - 1920x1080@100Hz */
868 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
869 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
870 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
871 };
872 
873 /*** DDC fetch and block validation ***/
874 
875 static const u8 edid_header[] = {
876 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
877 };
878 
879  /*
880  * Sanity check the header of the base EDID block.  Return 8 if the header
881  * is perfect, down to 0 if it's totally wrong.
882  */
883 int drm_edid_header_is_valid(const u8 *raw_edid)
884 {
885 	int i, score = 0;
886 
887 	for (i = 0; i < sizeof(edid_header); i++)
888 		if (raw_edid[i] == edid_header[i])
889 			score++;
890 
891 	return score;
892 }
893 EXPORT_SYMBOL(drm_edid_header_is_valid);
894 
895 static int edid_fixup __read_mostly = 6;
896 module_param_named(edid_fixup, edid_fixup, int, 0400);
897 MODULE_PARM_DESC(edid_fixup,
898 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
899 
900 /*
901  * Sanity check the EDID block (base or extension).  Return 0 if the block
902  * doesn't check out, or 1 if it's valid.
903  */
904 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
905 {
906 	int i;
907 	u8 csum = 0;
908 	struct edid *edid = (struct edid *)raw_edid;
909 
910 	if (edid_fixup > 8 || edid_fixup < 0)
911 		edid_fixup = 6;
912 
913 	if (block == 0) {
914 		int score = drm_edid_header_is_valid(raw_edid);
915 		if (score == 8) ;
916 		else if (score >= edid_fixup) {
917 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
918 			memcpy(raw_edid, edid_header, sizeof(edid_header));
919 		} else {
920 			goto bad;
921 		}
922 	}
923 
924 	for (i = 0; i < EDID_LENGTH; i++)
925 		csum += raw_edid[i];
926 	if (csum) {
927 		if (print_bad_edid) {
928 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
929 		}
930 
931 		/* allow CEA to slide through, switches mangle this */
932 		if (raw_edid[0] != 0x02)
933 			goto bad;
934 	}
935 
936 	/* per-block-type checks */
937 	switch (raw_edid[0]) {
938 	case 0: /* base */
939 		if (edid->version != 1) {
940 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
941 			goto bad;
942 		}
943 
944 		if (edid->revision > 4)
945 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
946 		break;
947 
948 	default:
949 		break;
950 	}
951 
952 	return 1;
953 
954 bad:
955 	if (raw_edid && print_bad_edid) {
956 		DRM_DEBUG_KMS("Raw EDID:\n");
957 		for (i = 0; i < EDID_LENGTH; ) {
958 			kprintf("%02x", raw_edid[i]);
959 			i++;
960 			if (i % 16 == 0 || i == EDID_LENGTH)
961 				kprintf("\n");
962 			else if (i % 8 == 0)
963 				kprintf("  ");
964 			else
965 				kprintf(" ");
966 		}
967 	}
968 	return 0;
969 }
970 EXPORT_SYMBOL(drm_edid_block_valid);
971 
972 /**
973  * drm_edid_is_valid - sanity check EDID data
974  * @edid: EDID data
975  *
976  * Sanity-check an entire EDID record (including extensions)
977  */
978 bool drm_edid_is_valid(struct edid *edid)
979 {
980 	int i;
981 	u8 *raw = (u8 *)edid;
982 
983 	if (!edid)
984 		return false;
985 
986 	for (i = 0; i <= edid->extensions; i++)
987 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
988 			return false;
989 
990 	return true;
991 }
992 EXPORT_SYMBOL(drm_edid_is_valid);
993 
994 #define DDC_SEGMENT_ADDR 0x30
995 /**
996  * Get EDID information via I2C.
997  *
998  * \param adapter : i2c device adaptor
999  * \param buf     : EDID data buffer to be filled
1000  * \param len     : EDID data buffer length
1001  * \return 0 on success or -1 on failure.
1002  *
1003  * Try to fetch EDID information by calling i2c driver function.
1004  */
1005 static int
1006 drm_do_probe_ddc_edid(struct device *adapter, unsigned char *buf,
1007 		      int block, int len)
1008 {
1009 	unsigned char start = block * EDID_LENGTH;
1010 	unsigned char segment = block >> 1;
1011 	unsigned char xfers = segment ? 3 : 2;
1012 	int ret, retries = 5;
1013 
1014 	/* The core i2c driver will automatically retry the transfer if the
1015 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1016 	 * are susceptible to errors under a heavily loaded machine and
1017 	 * generate spurious NAKs and timeouts. Retrying the transfer
1018 	 * of the individual block a few times seems to overcome this.
1019 	 */
1020 	do {
1021 		struct i2c_msg msgs[] = {
1022 			{
1023 				.slave	= DDC_SEGMENT_ADDR << 1,
1024 				.flags	= 0,
1025 				.len	= 1,
1026 				.buf	= &segment,
1027 			}, {
1028 				.slave	= DDC_ADDR << 1,
1029 				.flags	= 0,
1030 				.len	= 1,
1031 				.buf	= &start,
1032 			}, {
1033 				.slave	= DDC_ADDR << 1,
1034 				.flags	= I2C_M_RD,
1035 				.len	= len,
1036 				.buf	= buf,
1037 			}
1038 		};
1039 
1040 	/*
1041 	 * Avoid sending the segment addr to not upset non-compliant ddc
1042 	 * monitors.
1043 	 */
1044 		ret = iicbus_transfer(adapter, &msgs[3 - xfers], xfers);
1045 
1046 		if (ret != 0)
1047 			DRM_DEBUG_KMS("iicbus_transfer countdown %d error %d\n",
1048 			    retries, ret);
1049 	} while (ret != 0 && --retries);
1050 
1051 	return (ret == 0 ? 0 : -1);
1052 }
1053 
1054 static bool drm_edid_is_zero(u8 *in_edid, int length)
1055 {
1056 	int i;
1057 	u32 *raw_edid = (u32 *)in_edid;
1058 
1059 	for (i = 0; i < length / 4; i++)
1060 		if (*(raw_edid + i) != 0)
1061 			return false;
1062 
1063 	return true;
1064 }
1065 
1066 static u8 *
1067 drm_do_get_edid(struct drm_connector *connector, struct device *adapter)
1068 {
1069 	int i, j = 0, valid_extensions = 0;
1070 	u8 *block, *new;
1071 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1072 
1073 	block = kmalloc(EDID_LENGTH, M_DRM, M_WAITOK | M_ZERO);
1074 
1075 	/* base block fetch */
1076 	for (i = 0; i < 4; i++) {
1077 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1078 			goto out;
1079 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1080 			break;
1081 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1082 			connector->null_edid_counter++;
1083 			goto carp;
1084 		}
1085 	}
1086 	if (i == 4)
1087 		goto carp;
1088 
1089 	/* if there's no extensions, we're done */
1090 	if (block[0x7e] == 0)
1091 		return block;
1092 
1093 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, M_DRM, M_WAITOK);
1094 	if (!new)
1095 		goto out;
1096 	block = new;
1097 
1098 	for (j = 1; j <= block[0x7e]; j++) {
1099 		for (i = 0; i < 4; i++) {
1100 			if (drm_do_probe_ddc_edid(adapter,
1101 				  block + (valid_extensions + 1) * EDID_LENGTH,
1102 				  j, EDID_LENGTH))
1103 				goto out;
1104 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1105 				valid_extensions++;
1106 				break;
1107 			}
1108 		}
1109 
1110 		if (i == 4 && print_bad_edid) {
1111 			dev_warn(connector->dev->dev,
1112 			 "%s: Ignoring invalid EDID block %d.\n",
1113 			 drm_get_connector_name(connector), j);
1114 
1115 			connector->bad_edid_counter++;
1116 		}
1117 	}
1118 
1119 	if (valid_extensions != block[0x7e]) {
1120 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1121 		block[0x7e] = valid_extensions;
1122 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH,
1123 		    M_DRM, M_WAITOK);
1124 		if (!new)
1125 			goto out;
1126 		block = new;
1127 	}
1128 
1129 	return block;
1130 
1131 carp:
1132 	if (print_bad_edid) {
1133 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1134 			 drm_get_connector_name(connector), j);
1135 	}
1136 	connector->bad_edid_counter++;
1137 
1138 out:
1139 	kfree(block);
1140 	return NULL;
1141 }
1142 
1143 /**
1144  * Probe DDC presence.
1145  *
1146  * \param adapter : i2c device adaptor
1147  * \return 1 on success
1148  */
1149 bool
1150 drm_probe_ddc(struct device *adapter)
1151 {
1152 	unsigned char out;
1153 
1154 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1155 }
1156 EXPORT_SYMBOL(drm_probe_ddc);
1157 
1158 /**
1159  * drm_get_edid - get EDID data, if available
1160  * @connector: connector we're probing
1161  * @adapter: i2c adapter to use for DDC
1162  *
1163  * Poke the given i2c channel to grab EDID data if possible.  If found,
1164  * attach it to the connector.
1165  *
1166  * Return edid data or NULL if we couldn't find any.
1167  */
1168 struct edid *drm_get_edid(struct drm_connector *connector,
1169 			  struct device *adapter)
1170 {
1171 	struct edid *edid = NULL;
1172 
1173 	if (drm_probe_ddc(adapter))
1174 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1175 
1176 	return edid;
1177 }
1178 EXPORT_SYMBOL(drm_get_edid);
1179 
1180 /*** EDID parsing ***/
1181 
1182 /**
1183  * edid_vendor - match a string against EDID's obfuscated vendor field
1184  * @edid: EDID to match
1185  * @vendor: vendor string
1186  *
1187  * Returns true if @vendor is in @edid, false otherwise
1188  */
1189 static bool edid_vendor(struct edid *edid, char *vendor)
1190 {
1191 	char edid_vendor[3];
1192 
1193 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1194 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1195 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1196 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1197 
1198 	return !strncmp(edid_vendor, vendor, 3);
1199 }
1200 
1201 /**
1202  * edid_get_quirks - return quirk flags for a given EDID
1203  * @edid: EDID to process
1204  *
1205  * This tells subsequent routines what fixes they need to apply.
1206  */
1207 static u32 edid_get_quirks(struct edid *edid)
1208 {
1209 	struct edid_quirk *quirk;
1210 	int i;
1211 
1212 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1213 		quirk = &edid_quirk_list[i];
1214 
1215 		if (edid_vendor(edid, quirk->vendor) &&
1216 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1217 			return quirk->quirks;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1224 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1225 
1226 /**
1227  * edid_fixup_preferred - set preferred modes based on quirk list
1228  * @connector: has mode list to fix up
1229  * @quirks: quirks list
1230  *
1231  * Walk the mode list for @connector, clearing the preferred status
1232  * on existing modes and setting it anew for the right mode ala @quirks.
1233  */
1234 static void edid_fixup_preferred(struct drm_connector *connector,
1235 				 u32 quirks)
1236 {
1237 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1238 	int target_refresh = 0;
1239 
1240 	if (list_empty(&connector->probed_modes))
1241 		return;
1242 
1243 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1244 		target_refresh = 60;
1245 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1246 		target_refresh = 75;
1247 
1248 	preferred_mode = list_first_entry(&connector->probed_modes,
1249 					  struct drm_display_mode, head);
1250 
1251 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1252 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1253 
1254 		if (cur_mode == preferred_mode)
1255 			continue;
1256 
1257 		/* Largest mode is preferred */
1258 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1259 			preferred_mode = cur_mode;
1260 
1261 		/* At a given size, try to get closest to target refresh */
1262 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1263 		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1264 		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1265 			preferred_mode = cur_mode;
1266 		}
1267 	}
1268 
1269 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1270 }
1271 
1272 static bool
1273 mode_is_rb(const struct drm_display_mode *mode)
1274 {
1275 	return (mode->htotal - mode->hdisplay == 160) &&
1276 	       (mode->hsync_end - mode->hdisplay == 80) &&
1277 	       (mode->hsync_end - mode->hsync_start == 32) &&
1278 	       (mode->vsync_start - mode->vdisplay == 3);
1279 }
1280 
1281 /*
1282  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1283  * @dev: Device to duplicate against
1284  * @hsize: Mode width
1285  * @vsize: Mode height
1286  * @fresh: Mode refresh rate
1287  * @rb: Mode reduced-blanking-ness
1288  *
1289  * Walk the DMT mode list looking for a match for the given parameters.
1290  * Return a newly allocated copy of the mode, or NULL if not found.
1291  */
1292 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1293 					   int hsize, int vsize, int fresh,
1294 					   bool rb)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1299 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1300 		if (hsize != ptr->hdisplay)
1301 			continue;
1302 		if (vsize != ptr->vdisplay)
1303 			continue;
1304 		if (fresh != drm_mode_vrefresh(ptr))
1305 			continue;
1306 		if (rb != mode_is_rb(ptr))
1307 			continue;
1308 
1309 		return drm_mode_duplicate(dev, ptr);
1310 	}
1311 
1312 	return NULL;
1313 }
1314 EXPORT_SYMBOL(drm_mode_find_dmt);
1315 
1316 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1317 
1318 static void
1319 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1320 {
1321 	int i, n = 0;
1322 	u8 d = ext[0x02];
1323 	u8 *det_base = ext + d;
1324 
1325 	n = (127 - d) / 18;
1326 	for (i = 0; i < n; i++)
1327 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1328 }
1329 
1330 static void
1331 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1332 {
1333 	unsigned int i, n = min((int)ext[0x02], 6);
1334 	u8 *det_base = ext + 5;
1335 
1336 	if (ext[0x01] != 1)
1337 		return; /* unknown version */
1338 
1339 	for (i = 0; i < n; i++)
1340 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1341 }
1342 
1343 static void
1344 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1345 {
1346 	int i;
1347 	struct edid *edid = (struct edid *)raw_edid;
1348 
1349 	if (edid == NULL)
1350 		return;
1351 
1352 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1353 		cb(&(edid->detailed_timings[i]), closure);
1354 
1355 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1356 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1357 		switch (*ext) {
1358 		case CEA_EXT:
1359 			cea_for_each_detailed_block(ext, cb, closure);
1360 			break;
1361 		case VTB_EXT:
1362 			vtb_for_each_detailed_block(ext, cb, closure);
1363 			break;
1364 		default:
1365 			break;
1366 		}
1367 	}
1368 }
1369 
1370 static void
1371 is_rb(struct detailed_timing *t, void *data)
1372 {
1373 	u8 *r = (u8 *)t;
1374 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1375 		if (r[15] & 0x10)
1376 			*(bool *)data = true;
1377 }
1378 
1379 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1380 static bool
1381 drm_monitor_supports_rb(struct edid *edid)
1382 {
1383 	if (edid->revision >= 4) {
1384 		bool ret = false;
1385 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1386 		return ret;
1387 	}
1388 
1389 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1390 }
1391 
1392 static void
1393 find_gtf2(struct detailed_timing *t, void *data)
1394 {
1395 	u8 *r = (u8 *)t;
1396 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1397 		*(u8 **)data = r;
1398 }
1399 
1400 /* Secondary GTF curve kicks in above some break frequency */
1401 static int
1402 drm_gtf2_hbreak(struct edid *edid)
1403 {
1404 	u8 *r = NULL;
1405 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1406 	return r ? (r[12] * 2) : 0;
1407 }
1408 
1409 static int
1410 drm_gtf2_2c(struct edid *edid)
1411 {
1412 	u8 *r = NULL;
1413 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1414 	return r ? r[13] : 0;
1415 }
1416 
1417 static int
1418 drm_gtf2_m(struct edid *edid)
1419 {
1420 	u8 *r = NULL;
1421 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1422 	return r ? (r[15] << 8) + r[14] : 0;
1423 }
1424 
1425 static int
1426 drm_gtf2_k(struct edid *edid)
1427 {
1428 	u8 *r = NULL;
1429 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1430 	return r ? r[16] : 0;
1431 }
1432 
1433 static int
1434 drm_gtf2_2j(struct edid *edid)
1435 {
1436 	u8 *r = NULL;
1437 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1438 	return r ? r[17] : 0;
1439 }
1440 
1441 /**
1442  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1443  * @edid: EDID block to scan
1444  */
1445 static int standard_timing_level(struct edid *edid)
1446 {
1447 	if (edid->revision >= 2) {
1448 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1449 			return LEVEL_CVT;
1450 		if (drm_gtf2_hbreak(edid))
1451 			return LEVEL_GTF2;
1452 		return LEVEL_GTF;
1453 	}
1454 	return LEVEL_DMT;
1455 }
1456 
1457 /*
1458  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1459  * monitors fill with ascii space (0x20) instead.
1460  */
1461 static int
1462 bad_std_timing(u8 a, u8 b)
1463 {
1464 	return (a == 0x00 && b == 0x00) ||
1465 	       (a == 0x01 && b == 0x01) ||
1466 	       (a == 0x20 && b == 0x20);
1467 }
1468 
1469 /**
1470  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1471  * @t: standard timing params
1472  * @timing_level: standard timing level
1473  *
1474  * Take the standard timing params (in this case width, aspect, and refresh)
1475  * and convert them into a real mode using CVT/GTF/DMT.
1476  */
1477 static struct drm_display_mode *
1478 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1479 	     struct std_timing *t, int revision)
1480 {
1481 	struct drm_device *dev = connector->dev;
1482 	struct drm_display_mode *m, *mode = NULL;
1483 	int hsize, vsize;
1484 	int vrefresh_rate;
1485 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1486 		>> EDID_TIMING_ASPECT_SHIFT;
1487 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1488 		>> EDID_TIMING_VFREQ_SHIFT;
1489 	int timing_level = standard_timing_level(edid);
1490 
1491 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1492 		return NULL;
1493 
1494 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1495 	hsize = t->hsize * 8 + 248;
1496 	/* vrefresh_rate = vfreq + 60 */
1497 	vrefresh_rate = vfreq + 60;
1498 	/* the vdisplay is calculated based on the aspect ratio */
1499 	if (aspect_ratio == 0) {
1500 		if (revision < 3)
1501 			vsize = hsize;
1502 		else
1503 			vsize = (hsize * 10) / 16;
1504 	} else if (aspect_ratio == 1)
1505 		vsize = (hsize * 3) / 4;
1506 	else if (aspect_ratio == 2)
1507 		vsize = (hsize * 4) / 5;
1508 	else
1509 		vsize = (hsize * 9) / 16;
1510 
1511 	/* HDTV hack, part 1 */
1512 	if (vrefresh_rate == 60 &&
1513 	    ((hsize == 1360 && vsize == 765) ||
1514 	     (hsize == 1368 && vsize == 769))) {
1515 		hsize = 1366;
1516 		vsize = 768;
1517 	}
1518 
1519 	/*
1520 	 * If this connector already has a mode for this size and refresh
1521 	 * rate (because it came from detailed or CVT info), use that
1522 	 * instead.  This way we don't have to guess at interlace or
1523 	 * reduced blanking.
1524 	 */
1525 	list_for_each_entry(m, &connector->probed_modes, head)
1526 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1527 		    drm_mode_vrefresh(m) == vrefresh_rate)
1528 			return NULL;
1529 
1530 	/* HDTV hack, part 2 */
1531 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1532 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1533 				    false);
1534 		mode->hdisplay = 1366;
1535 		mode->hsync_start = mode->hsync_start - 1;
1536 		mode->hsync_end = mode->hsync_end - 1;
1537 		return mode;
1538 	}
1539 
1540 	/* check whether it can be found in default mode table */
1541 	if (drm_monitor_supports_rb(edid)) {
1542 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1543 					 true);
1544 		if (mode)
1545 			return mode;
1546 	}
1547 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1548 	if (mode)
1549 		return mode;
1550 
1551 	/* okay, generate it */
1552 	switch (timing_level) {
1553 	case LEVEL_DMT:
1554 		break;
1555 	case LEVEL_GTF:
1556 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1557 		break;
1558 	case LEVEL_GTF2:
1559 		/*
1560 		 * This is potentially wrong if there's ever a monitor with
1561 		 * more than one ranges section, each claiming a different
1562 		 * secondary GTF curve.  Please don't do that.
1563 		 */
1564 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1565 		if (!mode)
1566 			return NULL;
1567 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1568 			drm_mode_destroy(dev, mode);
1569 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1570 						    vrefresh_rate, 0, 0,
1571 						    drm_gtf2_m(edid),
1572 						    drm_gtf2_2c(edid),
1573 						    drm_gtf2_k(edid),
1574 						    drm_gtf2_2j(edid));
1575 		}
1576 		break;
1577 	case LEVEL_CVT:
1578 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1579 				    false);
1580 		break;
1581 	}
1582 	return mode;
1583 }
1584 
1585 /*
1586  * EDID is delightfully ambiguous about how interlaced modes are to be
1587  * encoded.  Our internal representation is of frame height, but some
1588  * HDTV detailed timings are encoded as field height.
1589  *
1590  * The format list here is from CEA, in frame size.  Technically we
1591  * should be checking refresh rate too.  Whatever.
1592  */
1593 static void
1594 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1595 			    struct detailed_pixel_timing *pt)
1596 {
1597 	int i;
1598 	static const struct {
1599 		int w, h;
1600 	} cea_interlaced[] = {
1601 		{ 1920, 1080 },
1602 		{  720,  480 },
1603 		{ 1440,  480 },
1604 		{ 2880,  480 },
1605 		{  720,  576 },
1606 		{ 1440,  576 },
1607 		{ 2880,  576 },
1608 	};
1609 
1610 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1611 		return;
1612 
1613 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1614 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1615 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1616 			mode->vdisplay *= 2;
1617 			mode->vsync_start *= 2;
1618 			mode->vsync_end *= 2;
1619 			mode->vtotal *= 2;
1620 			mode->vtotal |= 1;
1621 		}
1622 	}
1623 
1624 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1625 }
1626 
1627 /**
1628  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1629  * @dev: DRM device (needed to create new mode)
1630  * @edid: EDID block
1631  * @timing: EDID detailed timing info
1632  * @quirks: quirks to apply
1633  *
1634  * An EDID detailed timing block contains enough info for us to create and
1635  * return a new struct drm_display_mode.
1636  */
1637 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1638 						  struct edid *edid,
1639 						  struct detailed_timing *timing,
1640 						  u32 quirks)
1641 {
1642 	struct drm_display_mode *mode;
1643 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1644 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1645 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1646 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1647 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1648 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1649 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1650 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1651 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1652 
1653 	/* ignore tiny modes */
1654 	if (hactive < 64 || vactive < 64)
1655 		return NULL;
1656 
1657 	if (pt->misc & DRM_EDID_PT_STEREO) {
1658 		kprintf("stereo mode not supported\n");
1659 		return NULL;
1660 	}
1661 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1662 		kprintf("composite sync not supported\n");
1663 	}
1664 
1665 	/* it is incorrect if hsync/vsync width is zero */
1666 	if (!hsync_pulse_width || !vsync_pulse_width) {
1667 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1668 				"Wrong Hsync/Vsync pulse width\n");
1669 		return NULL;
1670 	}
1671 
1672 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1673 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1674 		if (!mode)
1675 			return NULL;
1676 
1677 		goto set_size;
1678 	}
1679 
1680 	mode = drm_mode_create(dev);
1681 	if (!mode)
1682 		return NULL;
1683 
1684 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1685 		timing->pixel_clock = cpu_to_le16(1088);
1686 
1687 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1688 
1689 	mode->hdisplay = hactive;
1690 	mode->hsync_start = mode->hdisplay + hsync_offset;
1691 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1692 	mode->htotal = mode->hdisplay + hblank;
1693 
1694 	mode->vdisplay = vactive;
1695 	mode->vsync_start = mode->vdisplay + vsync_offset;
1696 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1697 	mode->vtotal = mode->vdisplay + vblank;
1698 
1699 	/* Some EDIDs have bogus h/vtotal values */
1700 	if (mode->hsync_end > mode->htotal)
1701 		mode->htotal = mode->hsync_end + 1;
1702 	if (mode->vsync_end > mode->vtotal)
1703 		mode->vtotal = mode->vsync_end + 1;
1704 
1705 	drm_mode_do_interlace_quirk(mode, pt);
1706 
1707 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1708 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1709 	}
1710 
1711 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1712 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1713 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1714 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1715 
1716 set_size:
1717 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1718 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1719 
1720 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1721 		mode->width_mm *= 10;
1722 		mode->height_mm *= 10;
1723 	}
1724 
1725 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1726 		mode->width_mm = edid->width_cm * 10;
1727 		mode->height_mm = edid->height_cm * 10;
1728 	}
1729 
1730 	mode->type = DRM_MODE_TYPE_DRIVER;
1731 	mode->vrefresh = drm_mode_vrefresh(mode);
1732 	drm_mode_set_name(mode);
1733 
1734 	return mode;
1735 }
1736 
1737 static bool
1738 mode_in_hsync_range(const struct drm_display_mode *mode,
1739 		    struct edid *edid, u8 *t)
1740 {
1741 	int hsync, hmin, hmax;
1742 
1743 	hmin = t[7];
1744 	if (edid->revision >= 4)
1745 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1746 	hmax = t[8];
1747 	if (edid->revision >= 4)
1748 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1749 	hsync = drm_mode_hsync(mode);
1750 
1751 	return (hsync <= hmax && hsync >= hmin);
1752 }
1753 
1754 static bool
1755 mode_in_vsync_range(const struct drm_display_mode *mode,
1756 		    struct edid *edid, u8 *t)
1757 {
1758 	int vsync, vmin, vmax;
1759 
1760 	vmin = t[5];
1761 	if (edid->revision >= 4)
1762 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1763 	vmax = t[6];
1764 	if (edid->revision >= 4)
1765 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1766 	vsync = drm_mode_vrefresh(mode);
1767 
1768 	return (vsync <= vmax && vsync >= vmin);
1769 }
1770 
1771 static u32
1772 range_pixel_clock(struct edid *edid, u8 *t)
1773 {
1774 	/* unspecified */
1775 	if (t[9] == 0 || t[9] == 255)
1776 		return 0;
1777 
1778 	/* 1.4 with CVT support gives us real precision, yay */
1779 	if (edid->revision >= 4 && t[10] == 0x04)
1780 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1781 
1782 	/* 1.3 is pathetic, so fuzz up a bit */
1783 	return t[9] * 10000 + 5001;
1784 }
1785 
1786 static bool
1787 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1788 	      struct detailed_timing *timing)
1789 {
1790 	u32 max_clock;
1791 	u8 *t = (u8 *)timing;
1792 
1793 	if (!mode_in_hsync_range(mode, edid, t))
1794 		return false;
1795 
1796 	if (!mode_in_vsync_range(mode, edid, t))
1797 		return false;
1798 
1799 	if ((max_clock = range_pixel_clock(edid, t)))
1800 		if (mode->clock > max_clock)
1801 			return false;
1802 
1803 	/* 1.4 max horizontal check */
1804 	if (edid->revision >= 4 && t[10] == 0x04)
1805 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1806 			return false;
1807 
1808 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1809 		return false;
1810 
1811 	return true;
1812 }
1813 
1814 static bool valid_inferred_mode(const struct drm_connector *connector,
1815 				const struct drm_display_mode *mode)
1816 {
1817 	struct drm_display_mode *m;
1818 	bool ok = false;
1819 
1820 	list_for_each_entry(m, &connector->probed_modes, head) {
1821 		if (mode->hdisplay == m->hdisplay &&
1822 		    mode->vdisplay == m->vdisplay &&
1823 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1824 			return false; /* duplicated */
1825 		if (mode->hdisplay <= m->hdisplay &&
1826 		    mode->vdisplay <= m->vdisplay)
1827 			ok = true;
1828 	}
1829 	return ok;
1830 }
1831 
1832 static int
1833 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1834 			struct detailed_timing *timing)
1835 {
1836 	int i, modes = 0;
1837 	struct drm_display_mode *newmode;
1838 	struct drm_device *dev = connector->dev;
1839 
1840 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1841 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1842 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1843 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1844 			if (newmode) {
1845 				drm_mode_probed_add(connector, newmode);
1846 				modes++;
1847 			}
1848 		}
1849 	}
1850 
1851 	return modes;
1852 }
1853 
1854 /* fix up 1366x768 mode from 1368x768;
1855  * GFT/CVT can't express 1366 width which isn't dividable by 8
1856  */
1857 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1858 {
1859 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1860 		mode->hdisplay = 1366;
1861 		mode->hsync_start--;
1862 		mode->hsync_end--;
1863 		drm_mode_set_name(mode);
1864 	}
1865 }
1866 
1867 static int
1868 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1869 			struct detailed_timing *timing)
1870 {
1871 	int i, modes = 0;
1872 	struct drm_display_mode *newmode;
1873 	struct drm_device *dev = connector->dev;
1874 
1875 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1876 		const struct minimode *m = &extra_modes[i];
1877 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1878 		if (!newmode)
1879 			return modes;
1880 
1881 		fixup_mode_1366x768(newmode);
1882 		if (!mode_in_range(newmode, edid, timing) ||
1883 		    !valid_inferred_mode(connector, newmode)) {
1884 			drm_mode_destroy(dev, newmode);
1885 			continue;
1886 		}
1887 
1888 		drm_mode_probed_add(connector, newmode);
1889 		modes++;
1890 	}
1891 
1892 	return modes;
1893 }
1894 
1895 static int
1896 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1897 			struct detailed_timing *timing)
1898 {
1899 	int i, modes = 0;
1900 	struct drm_display_mode *newmode;
1901 	struct drm_device *dev = connector->dev;
1902 	bool rb = drm_monitor_supports_rb(edid);
1903 
1904 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1905 		const struct minimode *m = &extra_modes[i];
1906 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1907 		if (!newmode)
1908 			return modes;
1909 
1910 		fixup_mode_1366x768(newmode);
1911 		if (!mode_in_range(newmode, edid, timing) ||
1912 		    !valid_inferred_mode(connector, newmode)) {
1913 			drm_mode_destroy(dev, newmode);
1914 			continue;
1915 		}
1916 
1917 		drm_mode_probed_add(connector, newmode);
1918 		modes++;
1919 	}
1920 
1921 	return modes;
1922 }
1923 
1924 static void
1925 do_inferred_modes(struct detailed_timing *timing, void *c)
1926 {
1927 	struct detailed_mode_closure *closure = c;
1928 	struct detailed_non_pixel *data = &timing->data.other_data;
1929 	struct detailed_data_monitor_range *range = &data->data.range;
1930 
1931 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
1932 		return;
1933 
1934 	closure->modes += drm_dmt_modes_for_range(closure->connector,
1935 						  closure->edid,
1936 						  timing);
1937 
1938 	if (!version_greater(closure->edid, 1, 1))
1939 		return; /* GTF not defined yet */
1940 
1941 	switch (range->flags) {
1942 	case 0x02: /* secondary gtf, XXX could do more */
1943 	case 0x00: /* default gtf */
1944 		closure->modes += drm_gtf_modes_for_range(closure->connector,
1945 							  closure->edid,
1946 							  timing);
1947 		break;
1948 	case 0x04: /* cvt, only in 1.4+ */
1949 		if (!version_greater(closure->edid, 1, 3))
1950 			break;
1951 
1952 		closure->modes += drm_cvt_modes_for_range(closure->connector,
1953 							  closure->edid,
1954 							  timing);
1955 		break;
1956 	case 0x01: /* just the ranges, no formula */
1957 	default:
1958 		break;
1959 	}
1960 }
1961 
1962 static int
1963 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1964 {
1965 	struct detailed_mode_closure closure = {
1966 		connector, edid, 0, 0, 0
1967 	};
1968 
1969 	if (version_greater(edid, 1, 0))
1970 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1971 					    &closure);
1972 
1973 	return closure.modes;
1974 }
1975 
1976 static int
1977 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1978 {
1979 	int i, j, m, modes = 0;
1980 	struct drm_display_mode *mode;
1981 	u8 *est = ((u8 *)timing) + 5;
1982 
1983 	for (i = 0; i < 6; i++) {
1984 		for (j = 7; j > 0; j--) {
1985 			m = (i * 8) + (7 - j);
1986 			if (m >= ARRAY_SIZE(est3_modes))
1987 				break;
1988 			if (est[i] & (1 << j)) {
1989 				mode = drm_mode_find_dmt(connector->dev,
1990 							 est3_modes[m].w,
1991 							 est3_modes[m].h,
1992 							 est3_modes[m].r,
1993 							 est3_modes[m].rb);
1994 				if (mode) {
1995 					drm_mode_probed_add(connector, mode);
1996 					modes++;
1997 				}
1998 			}
1999 		}
2000 	}
2001 
2002 	return modes;
2003 }
2004 
2005 static void
2006 do_established_modes(struct detailed_timing *timing, void *c)
2007 {
2008 	struct detailed_mode_closure *closure = c;
2009 	struct detailed_non_pixel *data = &timing->data.other_data;
2010 
2011 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2012 		closure->modes += drm_est3_modes(closure->connector, timing);
2013 }
2014 
2015 /**
2016  * add_established_modes - get est. modes from EDID and add them
2017  * @edid: EDID block to scan
2018  *
2019  * Each EDID block contains a bitmap of the supported "established modes" list
2020  * (defined above).  Tease them out and add them to the global modes list.
2021  */
2022 static int
2023 add_established_modes(struct drm_connector *connector, struct edid *edid)
2024 {
2025 	struct drm_device *dev = connector->dev;
2026 	unsigned long est_bits = edid->established_timings.t1 |
2027 		(edid->established_timings.t2 << 8) |
2028 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2029 	int i, modes = 0;
2030 	struct detailed_mode_closure closure = {
2031 		connector, edid, 0, 0, 0
2032 	};
2033 
2034 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2035 		if (est_bits & (1<<i)) {
2036 			struct drm_display_mode *newmode;
2037 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2038 			if (newmode) {
2039 				drm_mode_probed_add(connector, newmode);
2040 				modes++;
2041 			}
2042 		}
2043 	}
2044 
2045 	if (version_greater(edid, 1, 0))
2046 		    drm_for_each_detailed_block((u8 *)edid,
2047 						do_established_modes, &closure);
2048 
2049 	return modes + closure.modes;
2050 }
2051 
2052 static void
2053 do_standard_modes(struct detailed_timing *timing, void *c)
2054 {
2055 	struct detailed_mode_closure *closure = c;
2056 	struct detailed_non_pixel *data = &timing->data.other_data;
2057 	struct drm_connector *connector = closure->connector;
2058 	struct edid *edid = closure->edid;
2059 
2060 	if (data->type == EDID_DETAIL_STD_MODES) {
2061 		int i;
2062 		for (i = 0; i < 6; i++) {
2063 			struct std_timing *std;
2064 			struct drm_display_mode *newmode;
2065 
2066 			std = &data->data.timings[i];
2067 			newmode = drm_mode_std(connector, edid, std,
2068 					       edid->revision);
2069 			if (newmode) {
2070 				drm_mode_probed_add(connector, newmode);
2071 				closure->modes++;
2072 			}
2073 		}
2074 	}
2075 }
2076 
2077 /**
2078  * add_standard_modes - get std. modes from EDID and add them
2079  * @edid: EDID block to scan
2080  *
2081  * Standard modes can be calculated using the appropriate standard (DMT,
2082  * GTF or CVT. Grab them from @edid and add them to the list.
2083  */
2084 static int
2085 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2086 {
2087 	int i, modes = 0;
2088 	struct detailed_mode_closure closure = {
2089 		connector, edid, 0, 0, 0
2090 	};
2091 
2092 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2093 		struct drm_display_mode *newmode;
2094 
2095 		newmode = drm_mode_std(connector, edid,
2096 				       &edid->standard_timings[i],
2097 				       edid->revision);
2098 		if (newmode) {
2099 			drm_mode_probed_add(connector, newmode);
2100 			modes++;
2101 		}
2102 	}
2103 
2104 	if (version_greater(edid, 1, 0))
2105 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2106 					    &closure);
2107 
2108 	/* XXX should also look for standard codes in VTB blocks */
2109 
2110 	return modes + closure.modes;
2111 }
2112 
2113 static int drm_cvt_modes(struct drm_connector *connector,
2114 			 struct detailed_timing *timing)
2115 {
2116 	int i, j, modes = 0;
2117 	struct drm_display_mode *newmode;
2118 	struct drm_device *dev = connector->dev;
2119 	struct cvt_timing *cvt;
2120 	const int rates[] = { 60, 85, 75, 60, 50 };
2121 	const u8 empty[3] = { 0, 0, 0 };
2122 
2123 	for (i = 0; i < 4; i++) {
2124 		int width = 0, height;
2125 		cvt = &(timing->data.other_data.data.cvt[i]);
2126 
2127 		if (!memcmp(cvt->code, empty, 3))
2128 			continue;
2129 
2130 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2131 		switch (cvt->code[1] & 0x0c) {
2132 		case 0x00:
2133 			width = height * 4 / 3;
2134 			break;
2135 		case 0x04:
2136 			width = height * 16 / 9;
2137 			break;
2138 		case 0x08:
2139 			width = height * 16 / 10;
2140 			break;
2141 		case 0x0c:
2142 			width = height * 15 / 9;
2143 			break;
2144 		}
2145 
2146 		for (j = 1; j < 5; j++) {
2147 			if (cvt->code[2] & (1 << j)) {
2148 				newmode = drm_cvt_mode(dev, width, height,
2149 						       rates[j], j == 0,
2150 						       false, false);
2151 				if (newmode) {
2152 					drm_mode_probed_add(connector, newmode);
2153 					modes++;
2154 				}
2155 			}
2156 		}
2157 	}
2158 
2159 	return modes;
2160 }
2161 
2162 static void
2163 do_cvt_mode(struct detailed_timing *timing, void *c)
2164 {
2165 	struct detailed_mode_closure *closure = c;
2166 	struct detailed_non_pixel *data = &timing->data.other_data;
2167 
2168 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2169 		closure->modes += drm_cvt_modes(closure->connector, timing);
2170 }
2171 
2172 static int
2173 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2174 {
2175 	struct detailed_mode_closure closure = {
2176 		connector, edid, 0, 0, 0
2177 	};
2178 
2179 	if (version_greater(edid, 1, 2))
2180 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2181 
2182 	/* XXX should also look for CVT codes in VTB blocks */
2183 
2184 	return closure.modes;
2185 }
2186 
2187 static void
2188 do_detailed_mode(struct detailed_timing *timing, void *c)
2189 {
2190 	struct detailed_mode_closure *closure = c;
2191 	struct drm_display_mode *newmode;
2192 
2193 	if (timing->pixel_clock) {
2194 		newmode = drm_mode_detailed(closure->connector->dev,
2195 					    closure->edid, timing,
2196 					    closure->quirks);
2197 		if (!newmode)
2198 			return;
2199 
2200 		if (closure->preferred)
2201 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2202 
2203 		drm_mode_probed_add(closure->connector, newmode);
2204 		closure->modes++;
2205 		closure->preferred = 0;
2206 	}
2207 }
2208 
2209 /*
2210  * add_detailed_modes - Add modes from detailed timings
2211  * @connector: attached connector
2212  * @edid: EDID block to scan
2213  * @quirks: quirks to apply
2214  */
2215 static int
2216 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2217 		   u32 quirks)
2218 {
2219 	struct detailed_mode_closure closure = {
2220 		connector,
2221 		edid,
2222 		1,
2223 		quirks,
2224 		0
2225 	};
2226 
2227 	if (closure.preferred && !version_greater(edid, 1, 3))
2228 		closure.preferred =
2229 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2230 
2231 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2232 
2233 	return closure.modes;
2234 }
2235 
2236 #define HDMI_IDENTIFIER 0x000C03
2237 #define AUDIO_BLOCK	0x01
2238 #define VIDEO_BLOCK     0x02
2239 #define VENDOR_BLOCK    0x03
2240 #define SPEAKER_BLOCK	0x04
2241 #define VIDEO_CAPABILITY_BLOCK	0x07
2242 #define EDID_BASIC_AUDIO	(1 << 6)
2243 #define EDID_CEA_YCRCB444	(1 << 5)
2244 #define EDID_CEA_YCRCB422	(1 << 4)
2245 #define EDID_CEA_VCDB_QS	(1 << 6)
2246 
2247 /**
2248  * Search EDID for CEA extension block.
2249  */
2250 u8 *drm_find_cea_extension(struct edid *edid)
2251 {
2252 	u8 *edid_ext = NULL;
2253 	int i;
2254 
2255 	/* No EDID or EDID extensions */
2256 	if (edid == NULL || edid->extensions == 0)
2257 		return NULL;
2258 
2259 	/* Find CEA extension */
2260 	for (i = 0; i < edid->extensions; i++) {
2261 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2262 		if (edid_ext[0] == CEA_EXT)
2263 			break;
2264 	}
2265 
2266 	if (i == edid->extensions)
2267 		return NULL;
2268 
2269 	return edid_ext;
2270 }
2271 EXPORT_SYMBOL(drm_find_cea_extension);
2272 
2273 /**
2274  * drm_match_cea_mode - look for a CEA mode matching given mode
2275  * @to_match: display mode
2276  *
2277  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2278  * mode.
2279  */
2280 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2281 {
2282 	const struct drm_display_mode *cea_mode;
2283 	u8 mode;
2284 
2285 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2286 		cea_mode = &edid_cea_modes[mode];
2287 
2288 		if (drm_mode_equal(to_match, cea_mode))
2289 			return mode + 1;
2290 	}
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL(drm_match_cea_mode);
2294 
2295 
2296 static int
2297 do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
2298 {
2299 	struct drm_device *dev = connector->dev;
2300 	u8 * mode, cea_mode;
2301 	int modes = 0;
2302 
2303 	for (mode = db; mode < db + len; mode++) {
2304 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2305 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2306 			struct drm_display_mode *newmode;
2307 			newmode = drm_mode_duplicate(dev,
2308 						     &edid_cea_modes[cea_mode]);
2309 			if (newmode) {
2310 				drm_mode_probed_add(connector, newmode);
2311 				modes++;
2312 			}
2313 		}
2314 	}
2315 
2316 	return modes;
2317 }
2318 
2319 static int
2320 cea_db_payload_len(const u8 *db)
2321 {
2322 	return db[0] & 0x1f;
2323 }
2324 
2325 static int
2326 cea_db_tag(const u8 *db)
2327 {
2328 	return db[0] >> 5;
2329 }
2330 
2331 static int
2332 cea_revision(const u8 *cea)
2333 {
2334 	return cea[1];
2335 }
2336 
2337 static int
2338 cea_db_offsets(const u8 *cea, int *start, int *end)
2339 {
2340 	/* Data block offset in CEA extension block */
2341 	*start = 4;
2342 	*end = cea[2];
2343 	if (*end == 0)
2344 		*end = 127;
2345 	if (*end < 4 || *end > 127)
2346 		return -ERANGE;
2347 	return 0;
2348 }
2349 
2350 #define for_each_cea_db(cea, i, start, end) \
2351 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2352 
2353 static int
2354 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2355 {
2356 	u8 * cea = drm_find_cea_extension(edid);
2357 	u8 * db, dbl;
2358 	int modes = 0;
2359 
2360 	if (cea && cea_revision(cea) >= 3) {
2361 		int i, start, end;
2362 
2363 		if (cea_db_offsets(cea, &start, &end))
2364 			return 0;
2365 
2366 		for_each_cea_db(cea, i, start, end) {
2367 			db = &cea[i];
2368 			dbl = cea_db_payload_len(db);
2369 
2370 			if (cea_db_tag(db) == VIDEO_BLOCK)
2371 				modes += do_cea_modes (connector, db+1, dbl);
2372 		}
2373 	}
2374 
2375 	return modes;
2376 }
2377 
2378 static void
2379 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2380 {
2381 	u8 len = cea_db_payload_len(db);
2382 
2383 	if (len >= 6) {
2384 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2385 		connector->dvi_dual = db[6] & 1;
2386 	}
2387 	if (len >= 7)
2388 		connector->max_tmds_clock = db[7] * 5;
2389 	if (len >= 8) {
2390 		connector->latency_present[0] = db[8] >> 7;
2391 		connector->latency_present[1] = (db[8] >> 6) & 1;
2392 	}
2393 	if (len >= 9)
2394 		connector->video_latency[0] = db[9];
2395 	if (len >= 10)
2396 		connector->audio_latency[0] = db[10];
2397 	if (len >= 11)
2398 		connector->video_latency[1] = db[11];
2399 	if (len >= 12)
2400 		connector->audio_latency[1] = db[12];
2401 
2402 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2403 		    "max TMDS clock %d, "
2404 		    "latency present %d %d, "
2405 		    "video latency %d %d, "
2406 		    "audio latency %d %d\n",
2407 		    connector->dvi_dual,
2408 		    connector->max_tmds_clock,
2409 	      (int) connector->latency_present[0],
2410 	      (int) connector->latency_present[1],
2411 		    connector->video_latency[0],
2412 		    connector->video_latency[1],
2413 		    connector->audio_latency[0],
2414 		    connector->audio_latency[1]);
2415 }
2416 
2417 static void
2418 monitor_name(struct detailed_timing *t, void *data)
2419 {
2420 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2421 		*(u8 **)data = t->data.other_data.data.str.str;
2422 }
2423 
2424 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2425 {
2426 	int hdmi_id;
2427 
2428 	if (cea_db_tag(db) != VENDOR_BLOCK)
2429 		return false;
2430 
2431 	if (cea_db_payload_len(db) < 5)
2432 		return false;
2433 
2434 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2435 
2436 	return hdmi_id == HDMI_IDENTIFIER;
2437 }
2438 
2439 /**
2440  * drm_edid_to_eld - build ELD from EDID
2441  * @connector: connector corresponding to the HDMI/DP sink
2442  * @edid: EDID to parse
2443  *
2444  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2445  * Some ELD fields are left to the graphics driver caller:
2446  * - Conn_Type
2447  * - HDCP
2448  * - Port_ID
2449  */
2450 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2451 {
2452 	uint8_t *eld = connector->eld;
2453 	u8 *cea;
2454 	u8 *name;
2455 	u8 *db;
2456 	int sad_count = 0;
2457 	int mnl;
2458 	int dbl;
2459 
2460 	memset(eld, 0, sizeof(connector->eld));
2461 
2462 	cea = drm_find_cea_extension(edid);
2463 	if (!cea) {
2464 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2465 		return;
2466 	}
2467 
2468 	name = NULL;
2469 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2470 	for (mnl = 0; name && mnl < 13; mnl++) {
2471 		if (name[mnl] == 0x0a)
2472 			break;
2473 		eld[20 + mnl] = name[mnl];
2474 	}
2475 	eld[4] = (cea[1] << 5) | mnl;
2476 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2477 
2478 	eld[0] = 2 << 3;		/* ELD version: 2 */
2479 
2480 	eld[16] = edid->mfg_id[0];
2481 	eld[17] = edid->mfg_id[1];
2482 	eld[18] = edid->prod_code[0];
2483 	eld[19] = edid->prod_code[1];
2484 
2485 	if (cea_revision(cea) >= 3) {
2486 		int i, start, end;
2487 
2488 		if (cea_db_offsets(cea, &start, &end)) {
2489 			start = 0;
2490 			end = 0;
2491 		}
2492 
2493 		for_each_cea_db(cea, i, start, end) {
2494 			db = &cea[i];
2495 			dbl = cea_db_payload_len(db);
2496 
2497 			switch (cea_db_tag(db)) {
2498 			case AUDIO_BLOCK:
2499 				/* Audio Data Block, contains SADs */
2500 				sad_count = dbl / 3;
2501 				if (dbl >= 1)
2502 					memcpy(eld + 20 + mnl, &db[1], dbl);
2503 				break;
2504 			case SPEAKER_BLOCK:
2505 				/* Speaker Allocation Data Block */
2506 				if (dbl >= 1)
2507 					eld[7] = db[1];
2508 				break;
2509 			case VENDOR_BLOCK:
2510 				/* HDMI Vendor-Specific Data Block */
2511 				if (cea_db_is_hdmi_vsdb(db))
2512 					parse_hdmi_vsdb(connector, db);
2513 				break;
2514 			default:
2515 				break;
2516 			}
2517 		}
2518 	}
2519 	eld[5] |= sad_count << 4;
2520 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2521 
2522 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2523 }
2524 EXPORT_SYMBOL(drm_edid_to_eld);
2525 
2526 /**
2527  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2528  * @connector: connector associated with the HDMI/DP sink
2529  * @mode: the display mode
2530  */
2531 int drm_av_sync_delay(struct drm_connector *connector,
2532 		      struct drm_display_mode *mode)
2533 {
2534 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2535 	int a, v;
2536 
2537 	if (!connector->latency_present[0])
2538 		return 0;
2539 	if (!connector->latency_present[1])
2540 		i = 0;
2541 
2542 	a = connector->audio_latency[i];
2543 	v = connector->video_latency[i];
2544 
2545 	/*
2546 	 * HDMI/DP sink doesn't support audio or video?
2547 	 */
2548 	if (a == 255 || v == 255)
2549 		return 0;
2550 
2551 	/*
2552 	 * Convert raw EDID values to millisecond.
2553 	 * Treat unknown latency as 0ms.
2554 	 */
2555 	if (a)
2556 		a = min(2 * (a - 1), 500);
2557 	if (v)
2558 		v = min(2 * (v - 1), 500);
2559 
2560 	return max(v - a, 0);
2561 }
2562 EXPORT_SYMBOL(drm_av_sync_delay);
2563 
2564 /**
2565  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2566  * @encoder: the encoder just changed display mode
2567  * @mode: the adjusted display mode
2568  *
2569  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2570  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2571  */
2572 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2573 				     struct drm_display_mode *mode)
2574 {
2575 	struct drm_connector *connector;
2576 	struct drm_device *dev = encoder->dev;
2577 
2578 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2579 		if (connector->encoder == encoder && connector->eld[0])
2580 			return connector;
2581 
2582 	return NULL;
2583 }
2584 EXPORT_SYMBOL(drm_select_eld);
2585 
2586 /**
2587  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
2588  * @edid: monitor EDID information
2589  *
2590  * Parse the CEA extension according to CEA-861-B.
2591  * Return true if HDMI, false if not or unknown.
2592  */
2593 bool drm_detect_hdmi_monitor(struct edid *edid)
2594 {
2595 	u8 *edid_ext;
2596 	int i;
2597 	int start_offset, end_offset;
2598 
2599 	edid_ext = drm_find_cea_extension(edid);
2600 	if (!edid_ext)
2601 		return false;
2602 
2603 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2604 		return false;
2605 
2606 	/*
2607 	 * Because HDMI identifier is in Vendor Specific Block,
2608 	 * search it from all data blocks of CEA extension.
2609 	 */
2610 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2611 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2612 			return true;
2613 	}
2614 
2615 	return false;
2616 }
2617 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
2618 
2619 /**
2620  * drm_detect_monitor_audio - check monitor audio capability
2621  *
2622  * Monitor should have CEA extension block.
2623  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2624  * audio' only. If there is any audio extension block and supported
2625  * audio format, assume at least 'basic audio' support, even if 'basic
2626  * audio' is not defined in EDID.
2627  *
2628  */
2629 bool drm_detect_monitor_audio(struct edid *edid)
2630 {
2631 	u8 *edid_ext;
2632 	int i, j;
2633 	bool has_audio = false;
2634 	int start_offset, end_offset;
2635 
2636 	edid_ext = drm_find_cea_extension(edid);
2637 	if (!edid_ext)
2638 		goto end;
2639 
2640 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2641 
2642 	if (has_audio) {
2643 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
2644 		goto end;
2645 	}
2646 
2647 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2648 		goto end;
2649 
2650 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2651 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
2652 			has_audio = true;
2653 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
2654 				DRM_DEBUG_KMS("CEA audio format %d\n",
2655 					      (edid_ext[i + j] >> 3) & 0xf);
2656 			goto end;
2657 		}
2658 	}
2659 end:
2660 	return has_audio;
2661 }
2662 EXPORT_SYMBOL(drm_detect_monitor_audio);
2663 
2664 /**
2665  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
2666  *
2667  * Check whether the monitor reports the RGB quantization range selection
2668  * as supported. The AVI infoframe can then be used to inform the monitor
2669  * which quantization range (full or limited) is used.
2670  */
2671 bool drm_rgb_quant_range_selectable(struct edid *edid)
2672 {
2673 	u8 *edid_ext;
2674 	int i, start, end;
2675 
2676 	edid_ext = drm_find_cea_extension(edid);
2677 	if (!edid_ext)
2678 		return false;
2679 
2680 	if (cea_db_offsets(edid_ext, &start, &end))
2681 		return false;
2682 
2683 	for_each_cea_db(edid_ext, i, start, end) {
2684 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
2685 		    cea_db_payload_len(&edid_ext[i]) == 2) {
2686 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
2687 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
2688 		}
2689 	}
2690 
2691 	return false;
2692 }
2693 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
2694 
2695 /**
2696  * drm_add_display_info - pull display info out if present
2697  * @edid: EDID data
2698  * @info: display info (attached to connector)
2699  *
2700  * Grab any available display info and stuff it into the drm_display_info
2701  * structure that's part of the connector.  Useful for tracking bpp and
2702  * color spaces.
2703  */
2704 static void drm_add_display_info(struct edid *edid,
2705 				 struct drm_display_info *info)
2706 {
2707 	u8 *edid_ext;
2708 
2709 	info->width_mm = edid->width_cm * 10;
2710 	info->height_mm = edid->height_cm * 10;
2711 
2712 	/* driver figures it out in this case */
2713 	info->bpc = 0;
2714 	info->color_formats = 0;
2715 
2716 	if (edid->revision < 3)
2717 		return;
2718 
2719 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2720 		return;
2721 
2722 	/* Get data from CEA blocks if present */
2723 	edid_ext = drm_find_cea_extension(edid);
2724 	if (edid_ext) {
2725 		info->cea_rev = edid_ext[1];
2726 
2727 		/* The existence of a CEA block should imply RGB support */
2728 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
2729 		if (edid_ext[3] & EDID_CEA_YCRCB444)
2730 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2731 		if (edid_ext[3] & EDID_CEA_YCRCB422)
2732 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2733 	}
2734 
2735 	/* Only defined for 1.4 with digital displays */
2736 	if (edid->revision < 4)
2737 		return;
2738 
2739 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
2740 	case DRM_EDID_DIGITAL_DEPTH_6:
2741 		info->bpc = 6;
2742 		break;
2743 	case DRM_EDID_DIGITAL_DEPTH_8:
2744 		info->bpc = 8;
2745 		break;
2746 	case DRM_EDID_DIGITAL_DEPTH_10:
2747 		info->bpc = 10;
2748 		break;
2749 	case DRM_EDID_DIGITAL_DEPTH_12:
2750 		info->bpc = 12;
2751 		break;
2752 	case DRM_EDID_DIGITAL_DEPTH_14:
2753 		info->bpc = 14;
2754 		break;
2755 	case DRM_EDID_DIGITAL_DEPTH_16:
2756 		info->bpc = 16;
2757 		break;
2758 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
2759 	default:
2760 		info->bpc = 0;
2761 		break;
2762 	}
2763 
2764 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
2765 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
2766 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2767 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
2768 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2769 }
2770 
2771 /**
2772  * drm_add_edid_modes - add modes from EDID data, if available
2773  * @connector: connector we're probing
2774  * @edid: edid data
2775  *
2776  * Add the specified modes to the connector's mode list.
2777  *
2778  * Return number of modes added or 0 if we couldn't find any.
2779  */
2780 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
2781 {
2782 	int num_modes = 0;
2783 	u32 quirks;
2784 
2785 	if (edid == NULL) {
2786 		return 0;
2787 	}
2788 	if (!drm_edid_is_valid(edid)) {
2789 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
2790 			 drm_get_connector_name(connector));
2791 		return 0;
2792 	}
2793 
2794 	quirks = edid_get_quirks(edid);
2795 
2796 	/*
2797 	 * EDID spec says modes should be preferred in this order:
2798 	 * - preferred detailed mode
2799 	 * - other detailed modes from base block
2800 	 * - detailed modes from extension blocks
2801 	 * - CVT 3-byte code modes
2802 	 * - standard timing codes
2803 	 * - established timing codes
2804 	 * - modes inferred from GTF or CVT range information
2805 	 *
2806 	 * We get this pretty much right.
2807 	 *
2808 	 * XXX order for additional mode types in extension blocks?
2809 	 */
2810 	num_modes += add_detailed_modes(connector, edid, quirks);
2811 	num_modes += add_cvt_modes(connector, edid);
2812 	num_modes += add_standard_modes(connector, edid);
2813 	num_modes += add_established_modes(connector, edid);
2814 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2815 		num_modes += add_inferred_modes(connector, edid);
2816 	num_modes += add_cea_modes(connector, edid);
2817 
2818 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
2819 		edid_fixup_preferred(connector, quirks);
2820 
2821 	drm_add_display_info(edid, &connector->display_info);
2822 
2823 	return num_modes;
2824 }
2825 EXPORT_SYMBOL(drm_add_edid_modes);
2826 
2827 /**
2828  * drm_add_modes_noedid - add modes for the connectors without EDID
2829  * @connector: connector we're probing
2830  * @hdisplay: the horizontal display limit
2831  * @vdisplay: the vertical display limit
2832  *
2833  * Add the specified modes to the connector's mode list. Only when the
2834  * hdisplay/vdisplay is not beyond the given limit, it will be added.
2835  *
2836  * Return number of modes added or 0 if we couldn't find any.
2837  */
2838 int drm_add_modes_noedid(struct drm_connector *connector,
2839 			int hdisplay, int vdisplay)
2840 {
2841 	int i, count, num_modes = 0;
2842 	struct drm_display_mode *mode;
2843 	struct drm_device *dev = connector->dev;
2844 
2845 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
2846 	if (hdisplay < 0)
2847 		hdisplay = 0;
2848 	if (vdisplay < 0)
2849 		vdisplay = 0;
2850 
2851 	for (i = 0; i < count; i++) {
2852 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2853 		if (hdisplay && vdisplay) {
2854 			/*
2855 			 * Only when two are valid, they will be used to check
2856 			 * whether the mode should be added to the mode list of
2857 			 * the connector.
2858 			 */
2859 			if (ptr->hdisplay > hdisplay ||
2860 					ptr->vdisplay > vdisplay)
2861 				continue;
2862 		}
2863 		if (drm_mode_vrefresh(ptr) > 61)
2864 			continue;
2865 		mode = drm_mode_duplicate(dev, ptr);
2866 		if (mode) {
2867 			drm_mode_probed_add(connector, mode);
2868 			num_modes++;
2869 		}
2870 	}
2871 	return num_modes;
2872 }
2873 EXPORT_SYMBOL(drm_add_modes_noedid);
2874 
2875 /**
2876  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
2877  *                                              data from a DRM display mode
2878  * @frame: HDMI AVI infoframe
2879  * @mode: DRM display mode
2880  *
2881  * Returns 0 on success or a negative error code on failure.
2882  */
2883 int
2884 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
2885 					 const struct drm_display_mode *mode)
2886 {
2887 	int err;
2888 
2889 	if (!frame || !mode)
2890 		return -EINVAL;
2891 
2892 	err = hdmi_avi_infoframe_init(frame);
2893 	if (err < 0)
2894 		return err;
2895 
2896 	frame->video_code = drm_match_cea_mode(mode);
2897 	if (!frame->video_code)
2898 		return 0;
2899 
2900 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
2901 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
2906