xref: /dragonfly/sys/dev/drm/i915/i915_drv.c (revision 5b3debc4)
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/device.h>
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 #include <linux/console.h>
38 #include <linux/module.h>
39 #include <linux/vga_switcheroo.h>
40 #include <drm/drm_crtc_helper.h>
41 
42 static struct drm_driver driver;
43 
44 #define GEN_DEFAULT_PIPEOFFSETS \
45 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
46 			  PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
47 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
48 			   TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
49 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
50 
51 #define GEN_CHV_PIPEOFFSETS \
52 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
53 			  CHV_PIPE_C_OFFSET }, \
54 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
55 			   CHV_TRANSCODER_C_OFFSET, }, \
56 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
57 			     CHV_PALETTE_C_OFFSET }
58 
59 #define CURSOR_OFFSETS \
60 	.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
61 
62 #define IVB_CURSOR_OFFSETS \
63 	.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
64 
65 #define BDW_COLORS \
66 	.color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
67 #define CHV_COLORS \
68 	.color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
69 
70 static const struct intel_device_info intel_i830_info = {
71 	.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
72 	.has_overlay = 1, .overlay_needs_physical = 1,
73 	.ring_mask = RENDER_RING,
74 	GEN_DEFAULT_PIPEOFFSETS,
75 	CURSOR_OFFSETS,
76 };
77 
78 static const struct intel_device_info intel_845g_info = {
79 	.gen = 2, .num_pipes = 1,
80 	.has_overlay = 1, .overlay_needs_physical = 1,
81 	.ring_mask = RENDER_RING,
82 	GEN_DEFAULT_PIPEOFFSETS,
83 	CURSOR_OFFSETS,
84 };
85 
86 static const struct intel_device_info intel_i85x_info = {
87 	.gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
88 	.cursor_needs_physical = 1,
89 	.has_overlay = 1, .overlay_needs_physical = 1,
90 	.has_fbc = 1,
91 	.ring_mask = RENDER_RING,
92 	GEN_DEFAULT_PIPEOFFSETS,
93 	CURSOR_OFFSETS,
94 };
95 
96 static const struct intel_device_info intel_i865g_info = {
97 	.gen = 2, .num_pipes = 1,
98 	.has_overlay = 1, .overlay_needs_physical = 1,
99 	.ring_mask = RENDER_RING,
100 	GEN_DEFAULT_PIPEOFFSETS,
101 	CURSOR_OFFSETS,
102 };
103 
104 static const struct intel_device_info intel_i915g_info = {
105 	.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
106 	.has_overlay = 1, .overlay_needs_physical = 1,
107 	.ring_mask = RENDER_RING,
108 	GEN_DEFAULT_PIPEOFFSETS,
109 	CURSOR_OFFSETS,
110 };
111 static const struct intel_device_info intel_i915gm_info = {
112 	.gen = 3, .is_mobile = 1, .num_pipes = 2,
113 	.cursor_needs_physical = 1,
114 	.has_overlay = 1, .overlay_needs_physical = 1,
115 	.supports_tv = 1,
116 	.has_fbc = 1,
117 	.ring_mask = RENDER_RING,
118 	GEN_DEFAULT_PIPEOFFSETS,
119 	CURSOR_OFFSETS,
120 };
121 static const struct intel_device_info intel_i945g_info = {
122 	.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
123 	.has_overlay = 1, .overlay_needs_physical = 1,
124 	.ring_mask = RENDER_RING,
125 	GEN_DEFAULT_PIPEOFFSETS,
126 	CURSOR_OFFSETS,
127 };
128 static const struct intel_device_info intel_i945gm_info = {
129 	.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
130 	.has_hotplug = 1, .cursor_needs_physical = 1,
131 	.has_overlay = 1, .overlay_needs_physical = 1,
132 	.supports_tv = 1,
133 	.has_fbc = 1,
134 	.ring_mask = RENDER_RING,
135 	GEN_DEFAULT_PIPEOFFSETS,
136 	CURSOR_OFFSETS,
137 };
138 
139 static const struct intel_device_info intel_i965g_info = {
140 	.gen = 4, .is_broadwater = 1, .num_pipes = 2,
141 	.has_hotplug = 1,
142 	.has_overlay = 1,
143 	.ring_mask = RENDER_RING,
144 	GEN_DEFAULT_PIPEOFFSETS,
145 	CURSOR_OFFSETS,
146 };
147 
148 static const struct intel_device_info intel_i965gm_info = {
149 	.gen = 4, .is_crestline = 1, .num_pipes = 2,
150 	.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
151 	.has_overlay = 1,
152 	.supports_tv = 1,
153 	.ring_mask = RENDER_RING,
154 	GEN_DEFAULT_PIPEOFFSETS,
155 	CURSOR_OFFSETS,
156 };
157 
158 static const struct intel_device_info intel_g33_info = {
159 	.gen = 3, .is_g33 = 1, .num_pipes = 2,
160 	.need_gfx_hws = 1, .has_hotplug = 1,
161 	.has_overlay = 1,
162 	.ring_mask = RENDER_RING,
163 	GEN_DEFAULT_PIPEOFFSETS,
164 	CURSOR_OFFSETS,
165 };
166 
167 static const struct intel_device_info intel_g45_info = {
168 	.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
169 	.has_pipe_cxsr = 1, .has_hotplug = 1,
170 	.ring_mask = RENDER_RING | BSD_RING,
171 	GEN_DEFAULT_PIPEOFFSETS,
172 	CURSOR_OFFSETS,
173 };
174 
175 static const struct intel_device_info intel_gm45_info = {
176 	.gen = 4, .is_g4x = 1, .num_pipes = 2,
177 	.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
178 	.has_pipe_cxsr = 1, .has_hotplug = 1,
179 	.supports_tv = 1,
180 	.ring_mask = RENDER_RING | BSD_RING,
181 	GEN_DEFAULT_PIPEOFFSETS,
182 	CURSOR_OFFSETS,
183 };
184 
185 static const struct intel_device_info intel_pineview_info = {
186 	.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
187 	.need_gfx_hws = 1, .has_hotplug = 1,
188 	.has_overlay = 1,
189 	GEN_DEFAULT_PIPEOFFSETS,
190 	CURSOR_OFFSETS,
191 };
192 
193 static const struct intel_device_info intel_ironlake_d_info = {
194 	.gen = 5, .num_pipes = 2,
195 	.need_gfx_hws = 1, .has_hotplug = 1,
196 	.ring_mask = RENDER_RING | BSD_RING,
197 	GEN_DEFAULT_PIPEOFFSETS,
198 	CURSOR_OFFSETS,
199 };
200 
201 static const struct intel_device_info intel_ironlake_m_info = {
202 	.gen = 5, .is_mobile = 1, .num_pipes = 2,
203 	.need_gfx_hws = 1, .has_hotplug = 1,
204 	.has_fbc = 1,
205 	.ring_mask = RENDER_RING | BSD_RING,
206 	GEN_DEFAULT_PIPEOFFSETS,
207 	CURSOR_OFFSETS,
208 };
209 
210 static const struct intel_device_info intel_sandybridge_d_info = {
211 	.gen = 6, .num_pipes = 2,
212 	.need_gfx_hws = 1, .has_hotplug = 1,
213 	.has_fbc = 1,
214 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
215 	.has_llc = 1,
216 	GEN_DEFAULT_PIPEOFFSETS,
217 	CURSOR_OFFSETS,
218 };
219 
220 static const struct intel_device_info intel_sandybridge_m_info = {
221 	.gen = 6, .is_mobile = 1, .num_pipes = 2,
222 	.need_gfx_hws = 1, .has_hotplug = 1,
223 	.has_fbc = 1,
224 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
225 	.has_llc = 1,
226 	GEN_DEFAULT_PIPEOFFSETS,
227 	CURSOR_OFFSETS,
228 };
229 
230 #define GEN7_FEATURES  \
231 	.gen = 7, .num_pipes = 3, \
232 	.need_gfx_hws = 1, .has_hotplug = 1, \
233 	.has_fbc = 1, \
234 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
235 	.has_llc = 1, \
236 	GEN_DEFAULT_PIPEOFFSETS, \
237 	IVB_CURSOR_OFFSETS
238 
239 static const struct intel_device_info intel_ivybridge_d_info = {
240 	GEN7_FEATURES,
241 	.is_ivybridge = 1,
242 };
243 
244 static const struct intel_device_info intel_ivybridge_m_info = {
245 	GEN7_FEATURES,
246 	.is_ivybridge = 1,
247 	.is_mobile = 1,
248 };
249 
250 static const struct intel_device_info intel_ivybridge_q_info = {
251 	GEN7_FEATURES,
252 	.is_ivybridge = 1,
253 	.num_pipes = 0, /* legal, last one wins */
254 };
255 
256 #define VLV_FEATURES  \
257 	.gen = 7, .num_pipes = 2, \
258 	.need_gfx_hws = 1, .has_hotplug = 1, \
259 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
260 	.display_mmio_offset = VLV_DISPLAY_BASE, \
261 	GEN_DEFAULT_PIPEOFFSETS, \
262 	CURSOR_OFFSETS
263 
264 static const struct intel_device_info intel_valleyview_m_info = {
265 	VLV_FEATURES,
266 	.is_valleyview = 1,
267 	.is_mobile = 1,
268 };
269 
270 static const struct intel_device_info intel_valleyview_d_info = {
271 	VLV_FEATURES,
272 	.is_valleyview = 1,
273 };
274 
275 #define HSW_FEATURES  \
276 	GEN7_FEATURES, \
277 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
278 	.has_ddi = 1, \
279 	.has_fpga_dbg = 1
280 
281 static const struct intel_device_info intel_haswell_d_info = {
282 	HSW_FEATURES,
283 	.is_haswell = 1,
284 };
285 
286 static const struct intel_device_info intel_haswell_m_info = {
287 	HSW_FEATURES,
288 	.is_haswell = 1,
289 	.is_mobile = 1,
290 };
291 
292 #define BDW_FEATURES \
293 	HSW_FEATURES, \
294 	BDW_COLORS
295 
296 static const struct intel_device_info intel_broadwell_d_info = {
297 	BDW_FEATURES,
298 	.gen = 8,
299 };
300 
301 static const struct intel_device_info intel_broadwell_m_info = {
302 	BDW_FEATURES,
303 	.gen = 8, .is_mobile = 1,
304 };
305 
306 static const struct intel_device_info intel_broadwell_gt3d_info = {
307 	BDW_FEATURES,
308 	.gen = 8,
309 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
310 };
311 
312 static const struct intel_device_info intel_broadwell_gt3m_info = {
313 	BDW_FEATURES,
314 	.gen = 8, .is_mobile = 1,
315 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
316 };
317 
318 static const struct intel_device_info intel_cherryview_info = {
319 	.gen = 8, .num_pipes = 3,
320 	.need_gfx_hws = 1, .has_hotplug = 1,
321 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
322 	.is_cherryview = 1,
323 	.display_mmio_offset = VLV_DISPLAY_BASE,
324 	GEN_CHV_PIPEOFFSETS,
325 	CURSOR_OFFSETS,
326 	CHV_COLORS,
327 };
328 
329 static const struct intel_device_info intel_skylake_info = {
330 	BDW_FEATURES,
331 	.is_skylake = 1,
332 	.gen = 9,
333 };
334 
335 static const struct intel_device_info intel_skylake_gt3_info = {
336 	BDW_FEATURES,
337 	.is_skylake = 1,
338 	.gen = 9,
339 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 };
341 
342 static const struct intel_device_info intel_broxton_info = {
343 	.is_preliminary = 1,
344 	.is_broxton = 1,
345 	.gen = 9,
346 	.need_gfx_hws = 1, .has_hotplug = 1,
347 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
348 	.num_pipes = 3,
349 	.has_ddi = 1,
350 	.has_fpga_dbg = 1,
351 	.has_fbc = 1,
352 	GEN_DEFAULT_PIPEOFFSETS,
353 	IVB_CURSOR_OFFSETS,
354 	BDW_COLORS,
355 };
356 
357 static const struct intel_device_info intel_kabylake_info = {
358 	BDW_FEATURES,
359 	.is_kabylake = 1,
360 	.gen = 9,
361 };
362 
363 static const struct intel_device_info intel_kabylake_gt3_info = {
364 	BDW_FEATURES,
365 	.is_kabylake = 1,
366 	.gen = 9,
367 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
368 };
369 
370 /*
371  * Make sure any device matches here are from most specific to most
372  * general.  For example, since the Quanta match is based on the subsystem
373  * and subvendor IDs, we need it to come before the more general IVB
374  * PCI ID matches, otherwise we'll use the wrong info struct above.
375  */
376 
377 static const struct pci_device_id pciidlist[] = {
378 	INTEL_I830_IDS(&intel_i830_info),
379 	INTEL_I845G_IDS(&intel_845g_info),
380 	INTEL_I85X_IDS(&intel_i85x_info),
381 	INTEL_I865G_IDS(&intel_i865g_info),
382 	INTEL_I915G_IDS(&intel_i915g_info),
383 	INTEL_I915GM_IDS(&intel_i915gm_info),
384 	INTEL_I945G_IDS(&intel_i945g_info),
385 	INTEL_I945GM_IDS(&intel_i945gm_info),
386 	INTEL_I965G_IDS(&intel_i965g_info),
387 	INTEL_G33_IDS(&intel_g33_info),
388 	INTEL_I965GM_IDS(&intel_i965gm_info),
389 	INTEL_GM45_IDS(&intel_gm45_info),
390 	INTEL_G45_IDS(&intel_g45_info),
391 	INTEL_PINEVIEW_IDS(&intel_pineview_info),
392 	INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
393 	INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
394 	INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
395 	INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
396 	INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
397 	INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
398 	INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
399 	INTEL_HSW_D_IDS(&intel_haswell_d_info),
400 	INTEL_HSW_M_IDS(&intel_haswell_m_info),
401 	INTEL_VLV_M_IDS(&intel_valleyview_m_info),
402 	INTEL_VLV_D_IDS(&intel_valleyview_d_info),
403 	INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
404 	INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
405 	INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
406 	INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
407 	INTEL_CHV_IDS(&intel_cherryview_info),
408 	INTEL_SKL_GT1_IDS(&intel_skylake_info),
409 	INTEL_SKL_GT2_IDS(&intel_skylake_info),
410 	INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
411 	INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
412 	INTEL_BXT_IDS(&intel_broxton_info),
413 	INTEL_KBL_GT1_IDS(&intel_kabylake_info),
414 	INTEL_KBL_GT2_IDS(&intel_kabylake_info),
415 	INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
416 	INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
417 	{0, 0, 0}
418 };
419 
420 #define	PCI_VENDOR_INTEL	0x8086
421 
422 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
423 {
424 	enum intel_pch ret = PCH_NOP;
425 
426 	/*
427 	 * In a virtualized passthrough environment we can be in a
428 	 * setup where the ISA bridge is not able to be passed through.
429 	 * In this case, a south bridge can be emulated and we have to
430 	 * make an educated guess as to which PCH is really there.
431 	 */
432 
433 	if (IS_GEN5(dev)) {
434 		ret = PCH_IBX;
435 		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
436 	} else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
437 		ret = PCH_CPT;
438 		DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
439 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
440 		ret = PCH_LPT;
441 		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
442 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
443 		ret = PCH_SPT;
444 		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
445 	}
446 
447 	return ret;
448 }
449 
450 void intel_detect_pch(struct drm_device *dev)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 	device_t pch = NULL;
454 	struct pci_devinfo *di;
455 
456 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
457 	 * (which really amounts to a PCH but no South Display).
458 	 */
459 	if (INTEL_INFO(dev)->num_pipes == 0) {
460 		dev_priv->pch_type = PCH_NOP;
461 		return;
462 	}
463 
464 	/* XXX The ISA bridge probe causes some old Core2 machines to hang */
465 	if (INTEL_INFO(dev)->gen < 5)
466 		return;
467 
468 	/*
469 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
470 	 * make graphics device passthrough work easy for VMM, that only
471 	 * need to expose ISA bridge to let driver know the real hardware
472 	 * underneath. This is a requirement from virtualization team.
473 	 *
474 	 * In some virtualized environments (e.g. XEN), there is irrelevant
475 	 * ISA bridge in the system. To work reliably, we should scan trhough
476 	 * all the ISA bridge devices and check for the first match, instead
477 	 * of only checking the first one.
478 	 */
479 	di = NULL;
480 
481 	while ((pch = pci_iterate_class(&di, PCIC_BRIDGE, PCIS_BRIDGE_ISA))) {
482 		if (pci_get_vendor(pch) == PCI_VENDOR_INTEL) {
483 			unsigned short id = pci_get_device(pch) & INTEL_PCH_DEVICE_ID_MASK;
484 			dev_priv->pch_id = id;
485 
486 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
487 				dev_priv->pch_type = PCH_IBX;
488 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
489 				WARN_ON(!IS_GEN5(dev));
490 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
491 				dev_priv->pch_type = PCH_CPT;
492 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
493 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
494 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
495 				/* PantherPoint is CPT compatible */
496 				dev_priv->pch_type = PCH_CPT;
497 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
498 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
499 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
500 				dev_priv->pch_type = PCH_LPT;
501 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
502 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
503 				WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
504 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
505 				dev_priv->pch_type = PCH_LPT;
506 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
507 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
508 				WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
509 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
510 				dev_priv->pch_type = PCH_SPT;
511 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
512 				WARN_ON(!IS_SKYLAKE(dev) &&
513 					!IS_KABYLAKE(dev));
514 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
515 				dev_priv->pch_type = PCH_SPT;
516 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
517 				WARN_ON(!IS_SKYLAKE(dev) &&
518 					!IS_KABYLAKE(dev));
519 			} else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
520 				dev_priv->pch_type = PCH_KBP;
521 				DRM_DEBUG_KMS("Found KabyPoint PCH\n");
522 				WARN_ON(!IS_KABYLAKE(dev));
523 			} else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
524 				   (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
525 				   ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
526 				    1)) {
527 				dev_priv->pch_type = intel_virt_detect_pch(dev);
528 			} else
529 				continue;
530 
531 			break;
532 		}
533 	}
534 	if (!pch)
535 		DRM_DEBUG_KMS("No PCH found.\n");
536 
537 #if 0
538 	pci_dev_put(pch);
539 #endif
540 }
541 
542 bool i915_semaphore_is_enabled(struct drm_device *dev)
543 {
544 	if (INTEL_INFO(dev)->gen < 6)
545 		return false;
546 
547 	if (i915.semaphores >= 0)
548 		return i915.semaphores;
549 
550 	/* TODO: make semaphores and Execlists play nicely together */
551 	if (i915.enable_execlists)
552 		return false;
553 
554 	/* Until we get further testing... */
555 	if (IS_GEN8(dev))
556 		return false;
557 
558 #ifdef CONFIG_INTEL_IOMMU
559 	/* Enable semaphores on SNB when IO remapping is off */
560 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
561 		return false;
562 #endif
563 
564 	return true;
565 }
566 
567 #ifdef __DragonFly__
568 #define IS_BUILTIN(blah)	0
569 #endif
570 
571 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
572 {
573 	struct drm_device *dev = dev_priv->dev;
574 	struct intel_encoder *encoder;
575 
576 	drm_modeset_lock_all(dev);
577 	for_each_intel_encoder(dev, encoder)
578 		if (encoder->suspend)
579 			encoder->suspend(encoder);
580 	drm_modeset_unlock_all(dev);
581 }
582 
583 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
584 			      bool rpm_resume);
585 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
586 
587 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
588 {
589 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
590 	if (acpi_target_system_state() < ACPI_STATE_S3)
591 		return true;
592 #endif
593 	return false;
594 }
595 
596 static int i915_drm_suspend(struct drm_device *dev)
597 {
598 	struct drm_i915_private *dev_priv = dev->dev_private;
599 	pci_power_t opregion_target_state;
600 	int error;
601 
602 	/* ignore lid events during suspend */
603 	mutex_lock(&dev_priv->modeset_restore_lock);
604 	dev_priv->modeset_restore = MODESET_SUSPENDED;
605 	mutex_unlock(&dev_priv->modeset_restore_lock);
606 
607 	disable_rpm_wakeref_asserts(dev_priv);
608 
609 	/* We do a lot of poking in a lot of registers, make sure they work
610 	 * properly. */
611 	intel_display_set_init_power(dev_priv, true);
612 
613 	drm_kms_helper_poll_disable(dev);
614 
615 #if 0
616 	pci_save_state(dev->pdev);
617 #endif
618 
619 	error = i915_gem_suspend(dev);
620 	if (error) {
621 		dev_err(dev->dev,
622 			"GEM idle failed, resume might fail\n");
623 		goto out;
624 	}
625 
626 	intel_guc_suspend(dev);
627 
628 	intel_suspend_gt_powersave(dev);
629 
630 	intel_display_suspend(dev);
631 
632 #if 0
633 	intel_dp_mst_suspend(dev);
634 #endif
635 
636 	intel_runtime_pm_disable_interrupts(dev_priv);
637 	intel_hpd_cancel_work(dev_priv);
638 
639 	intel_suspend_encoders(dev_priv);
640 
641 	intel_suspend_hw(dev);
642 
643 	i915_gem_suspend_gtt_mappings(dev);
644 
645 	i915_save_state(dev);
646 
647 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
648 	intel_opregion_notify_adapter(dev, opregion_target_state);
649 
650 	intel_uncore_forcewake_reset(dev, false);
651 	intel_opregion_fini(dev);
652 
653 #if 0
654 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
655 #endif
656 
657 	dev_priv->suspend_count++;
658 
659 	intel_display_set_init_power(dev_priv, false);
660 
661 	intel_csr_ucode_suspend(dev_priv);
662 
663 out:
664 	enable_rpm_wakeref_asserts(dev_priv);
665 
666 	return error;
667 }
668 
669 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
670 {
671 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
672 	bool fw_csr;
673 	int ret;
674 
675 	disable_rpm_wakeref_asserts(dev_priv);
676 
677 	fw_csr = !IS_BROXTON(dev_priv) &&
678 		suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
679 	/*
680 	 * In case of firmware assisted context save/restore don't manually
681 	 * deinit the power domains. This also means the CSR/DMC firmware will
682 	 * stay active, it will power down any HW resources as required and
683 	 * also enable deeper system power states that would be blocked if the
684 	 * firmware was inactive.
685 	 */
686 	if (!fw_csr)
687 		intel_power_domains_suspend(dev_priv);
688 
689 	ret = 0;
690 	if (IS_BROXTON(dev_priv))
691 		bxt_enable_dc9(dev_priv);
692 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
693 		hsw_enable_pc8(dev_priv);
694 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
695 		ret = vlv_suspend_complete(dev_priv);
696 
697 	if (ret) {
698 		DRM_ERROR("Suspend complete failed: %d\n", ret);
699 		if (!fw_csr)
700 			intel_power_domains_init_hw(dev_priv, true);
701 
702 		goto out;
703 	}
704 
705 #if 0
706 	pci_disable_device(drm_dev->pdev);
707 	/*
708 	 * During hibernation on some platforms the BIOS may try to access
709 	 * the device even though it's already in D3 and hang the machine. So
710 	 * leave the device in D0 on those platforms and hope the BIOS will
711 	 * power down the device properly. The issue was seen on multiple old
712 	 * GENs with different BIOS vendors, so having an explicit blacklist
713 	 * is inpractical; apply the workaround on everything pre GEN6. The
714 	 * platforms where the issue was seen:
715 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
716 	 * Fujitsu FSC S7110
717 	 * Acer Aspire 1830T
718 	 */
719 	if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
720 		pci_set_power_state(drm_dev->pdev, PCI_D3hot);
721 #endif
722 
723 	dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
724 
725 out:
726 	enable_rpm_wakeref_asserts(dev_priv);
727 
728 	return ret;
729 }
730 
731 int i915_suspend_switcheroo(device_t kdev)
732 {
733 	struct drm_device *dev = device_get_softc(kdev);
734 	int error;
735 
736 	if (!dev || !dev->dev_private) {
737 		DRM_ERROR("dev: %p\n", dev);
738 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
739 		return -ENODEV;
740 	}
741 
742 #if 0
743 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
744 			 state.event != PM_EVENT_FREEZE))
745 		return -EINVAL;
746 #endif
747 
748 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
749 		return 0;
750 
751 	error = i915_drm_suspend(dev);
752 	if (error)
753 		return error;
754 
755 	return i915_drm_suspend_late(dev, false);
756 }
757 
758 static int i915_drm_resume(struct drm_device *dev)
759 {
760 	struct drm_i915_private *dev_priv = dev->dev_private;
761 	int ret;
762 
763 	disable_rpm_wakeref_asserts(dev_priv);
764 
765 	ret = i915_ggtt_enable_hw(dev);
766 	if (ret)
767 		DRM_ERROR("failed to re-enable GGTT\n");
768 
769 	intel_csr_ucode_resume(dev_priv);
770 
771 	mutex_lock(&dev->struct_mutex);
772 	i915_gem_restore_gtt_mappings(dev);
773 	mutex_unlock(&dev->struct_mutex);
774 
775 	i915_restore_state(dev);
776 	intel_opregion_setup(dev);
777 
778 	intel_init_pch_refclk(dev);
779 	drm_mode_config_reset(dev);
780 
781 	/*
782 	 * Interrupts have to be enabled before any batches are run. If not the
783 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
784 	 * update/restore the context.
785 	 *
786 	 * Modeset enabling in intel_modeset_init_hw() also needs working
787 	 * interrupts.
788 	 */
789 	intel_runtime_pm_enable_interrupts(dev_priv);
790 
791 	mutex_lock(&dev->struct_mutex);
792 	if (i915_gem_init_hw(dev)) {
793 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
794 			atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
795 	}
796 	mutex_unlock(&dev->struct_mutex);
797 
798 	intel_guc_resume(dev);
799 
800 	intel_modeset_init_hw(dev);
801 
802 	spin_lock_irq(&dev_priv->irq_lock);
803 	if (dev_priv->display.hpd_irq_setup)
804 		dev_priv->display.hpd_irq_setup(dev);
805 	spin_unlock_irq(&dev_priv->irq_lock);
806 
807 	intel_dp_mst_resume(dev);
808 
809 	intel_display_resume(dev);
810 
811 	/*
812 	 * ... but also need to make sure that hotplug processing
813 	 * doesn't cause havoc. Like in the driver load code we don't
814 	 * bother with the tiny race here where we might loose hotplug
815 	 * notifications.
816 	 * */
817 	intel_hpd_init(dev_priv);
818 	/* Config may have changed between suspend and resume */
819 	drm_helper_hpd_irq_event(dev);
820 
821 	intel_opregion_init(dev);
822 
823 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
824 
825 	mutex_lock(&dev_priv->modeset_restore_lock);
826 	dev_priv->modeset_restore = MODESET_DONE;
827 	mutex_unlock(&dev_priv->modeset_restore_lock);
828 
829 #if 0
830 	intel_opregion_notify_adapter(dev, PCI_D0);
831 #endif
832 
833 	drm_kms_helper_poll_enable(dev);
834 
835 	enable_rpm_wakeref_asserts(dev_priv);
836 
837 	return 0;
838 }
839 
840 static int i915_drm_resume_early(struct drm_device *dev)
841 {
842 	struct drm_i915_private *dev_priv = dev->dev_private;
843 	int ret = 0;
844 
845 	/*
846 	 * We have a resume ordering issue with the snd-hda driver also
847 	 * requiring our device to be power up. Due to the lack of a
848 	 * parent/child relationship we currently solve this with an early
849 	 * resume hook.
850 	 *
851 	 * FIXME: This should be solved with a special hdmi sink device or
852 	 * similar so that power domains can be employed.
853 	 */
854 
855 	/*
856 	 * Note that we need to set the power state explicitly, since we
857 	 * powered off the device during freeze and the PCI core won't power
858 	 * it back up for us during thaw. Powering off the device during
859 	 * freeze is not a hard requirement though, and during the
860 	 * suspend/resume phases the PCI core makes sure we get here with the
861 	 * device powered on. So in case we change our freeze logic and keep
862 	 * the device powered we can also remove the following set power state
863 	 * call.
864 	 */
865 #if 0
866 	ret = pci_set_power_state(dev->pdev, PCI_D0);
867 	if (ret) {
868 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
869 		goto out;
870 	}
871 
872 	/*
873 	 * Note that pci_enable_device() first enables any parent bridge
874 	 * device and only then sets the power state for this device. The
875 	 * bridge enabling is a nop though, since bridge devices are resumed
876 	 * first. The order of enabling power and enabling the device is
877 	 * imposed by the PCI core as described above, so here we preserve the
878 	 * same order for the freeze/thaw phases.
879 	 *
880 	 * TODO: eventually we should remove pci_disable_device() /
881 	 * pci_enable_enable_device() from suspend/resume. Due to how they
882 	 * depend on the device enable refcount we can't anyway depend on them
883 	 * disabling/enabling the device.
884 	 */
885 	if (pci_enable_device(dev->pdev)) {
886 		ret = -EIO;
887 		goto out;
888 	}
889 
890 	pci_set_master(dev->pdev);
891 #endif
892 
893 	disable_rpm_wakeref_asserts(dev_priv);
894 
895 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
896 		ret = vlv_resume_prepare(dev_priv, false);
897 	if (ret)
898 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
899 			  ret);
900 
901 	intel_uncore_early_sanitize(dev, true);
902 
903 	if (IS_BROXTON(dev)) {
904 		if (!dev_priv->suspended_to_idle)
905 			gen9_sanitize_dc_state(dev_priv);
906 		bxt_disable_dc9(dev_priv);
907 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
908 		hsw_disable_pc8(dev_priv);
909 	}
910 
911 	intel_uncore_sanitize(dev);
912 
913 	if (IS_BROXTON(dev_priv) ||
914 	    !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
915 		intel_power_domains_init_hw(dev_priv, true);
916 
917 	enable_rpm_wakeref_asserts(dev_priv);
918 
919 #if 0
920 out:
921 #endif
922 	dev_priv->suspended_to_idle = false;
923 
924 	return ret;
925 }
926 
927 int i915_resume_switcheroo(struct drm_device *dev)
928 {
929 	int ret;
930 
931 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
932 		return 0;
933 
934 	ret = i915_drm_resume_early(dev);
935 	if (ret)
936 		return ret;
937 
938 	return i915_drm_resume(dev);
939 }
940 
941 /* XXX Hack for the old *BSD drm code base
942  * The device id field is set at probe time */
943 static drm_pci_id_list_t i915_attach_list[] = {
944 	{0x8086, 0, 0, "Intel i915 GPU"},
945 	{0, 0, 0, NULL}
946 };
947 
948 struct intel_device_info *
949 i915_get_device_id(int device)
950 {
951 	const struct pci_device_id *did;
952 
953 	for (did = &pciidlist[0]; did->device != 0; did++) {
954 		if (did->device != device)
955 			continue;
956 		return (struct intel_device_info *)did->driver_data;
957 	}
958 	return (NULL);
959 }
960 
961 static int i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx,
962 			    struct sysctl_oid *top)
963 {
964 	return drm_add_busid_modesetting(dev, ctx, top);
965 }
966 
967 extern devclass_t drm_devclass;
968 
969 /**
970  * i915_reset - reset chip after a hang
971  * @dev: drm device to reset
972  *
973  * Reset the chip.  Useful if a hang is detected. Returns zero on successful
974  * reset or otherwise an error code.
975  *
976  * Procedure is fairly simple:
977  *   - reset the chip using the reset reg
978  *   - re-init context state
979  *   - re-init hardware status page
980  *   - re-init ring buffer
981  *   - re-init interrupt state
982  *   - re-init display
983  */
984 int i915_reset(struct drm_device *dev)
985 {
986 	struct drm_i915_private *dev_priv = dev->dev_private;
987 	struct i915_gpu_error *error = &dev_priv->gpu_error;
988 	unsigned reset_counter;
989 	int ret;
990 
991 	intel_reset_gt_powersave(dev);
992 
993 	mutex_lock(&dev->struct_mutex);
994 
995 	/* Clear any previous failed attempts at recovery. Time to try again. */
996 	atomic_andnot(I915_WEDGED, &error->reset_counter);
997 
998 	/* Clear the reset-in-progress flag and increment the reset epoch. */
999 	reset_counter = atomic_inc_return(&error->reset_counter);
1000 	if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
1001 		ret = -EIO;
1002 		goto error;
1003 	}
1004 
1005 	i915_gem_reset(dev);
1006 
1007 	ret = intel_gpu_reset(dev, ALL_ENGINES);
1008 
1009 	/* Also reset the gpu hangman. */
1010 	if (error->stop_rings != 0) {
1011 		DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
1012 		error->stop_rings = 0;
1013 		if (ret == -ENODEV) {
1014 			DRM_INFO("Reset not implemented, but ignoring "
1015 				 "error for simulated gpu hangs\n");
1016 			ret = 0;
1017 		}
1018 	}
1019 
1020 	if (i915_stop_ring_allow_warn(dev_priv))
1021 		pr_notice("drm/i915: Resetting chip after gpu hang\n");
1022 
1023 	if (ret) {
1024 		if (ret != -ENODEV)
1025 			DRM_ERROR("Failed to reset chip: %i\n", ret);
1026 		else
1027 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1028 		goto error;
1029 	}
1030 
1031 	intel_overlay_reset(dev_priv);
1032 
1033 	/* Ok, now get things going again... */
1034 
1035 	/*
1036 	 * Everything depends on having the GTT running, so we need to start
1037 	 * there.  Fortunately we don't need to do this unless we reset the
1038 	 * chip at a PCI level.
1039 	 *
1040 	 * Next we need to restore the context, but we don't use those
1041 	 * yet either...
1042 	 *
1043 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1044 	 * was running at the time of the reset (i.e. we weren't VT
1045 	 * switched away).
1046 	 */
1047 	ret = i915_gem_init_hw(dev);
1048 	if (ret) {
1049 		DRM_ERROR("Failed hw init on reset %d\n", ret);
1050 		goto error;
1051 	}
1052 
1053 	mutex_unlock(&dev->struct_mutex);
1054 
1055 	/*
1056 	 * rps/rc6 re-init is necessary to restore state lost after the
1057 	 * reset and the re-install of gt irqs. Skip for ironlake per
1058 	 * previous concerns that it doesn't respond well to some forms
1059 	 * of re-init after reset.
1060 	 */
1061 	if (INTEL_INFO(dev)->gen > 5)
1062 		intel_enable_gt_powersave(dev);
1063 
1064 	return 0;
1065 
1066 error:
1067 	atomic_or(I915_WEDGED, &error->reset_counter);
1068 	mutex_unlock(&dev->struct_mutex);
1069 	return ret;
1070 }
1071 
1072 static int i915_pci_probe(device_t kdev)
1073 {
1074 	int device, i = 0;
1075 
1076 	if (pci_get_class(kdev) != PCIC_DISPLAY)
1077 		return ENXIO;
1078 
1079 	if (pci_get_vendor(kdev) != PCI_VENDOR_INTEL)
1080 		return ENXIO;
1081 
1082 	device = pci_get_device(kdev);
1083 
1084 	for (i = 0; pciidlist[i].device != 0; i++) {
1085 		if (pciidlist[i].device == device) {
1086 			i915_attach_list[0].device = device;
1087 			return 0;
1088 		}
1089 	}
1090 
1091 	return ENXIO;
1092 }
1093 
1094 #if 0
1095 static void
1096 i915_pci_remove(struct pci_dev *pdev)
1097 {
1098 	struct drm_device *dev = pci_get_drvdata(pdev);
1099 
1100 	drm_put_dev(dev);
1101 }
1102 
1103 static int i915_pm_suspend(struct device *dev)
1104 {
1105 	struct pci_dev *pdev = to_pci_dev(dev);
1106 	struct drm_device *drm_dev = pci_get_drvdata(pdev);
1107 
1108 	if (!drm_dev || !drm_dev->dev_private) {
1109 		dev_err(dev, "DRM not initialized, aborting suspend.\n");
1110 		return -ENODEV;
1111 	}
1112 
1113 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1114 		return 0;
1115 
1116 	return i915_drm_suspend(drm_dev);
1117 }
1118 
1119 static int i915_pm_suspend_late(struct device *dev)
1120 {
1121 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1122 
1123 	/*
1124 	 * We have a suspend ordering issue with the snd-hda driver also
1125 	 * requiring our device to be power up. Due to the lack of a
1126 	 * parent/child relationship we currently solve this with an late
1127 	 * suspend hook.
1128 	 *
1129 	 * FIXME: This should be solved with a special hdmi sink device or
1130 	 * similar so that power domains can be employed.
1131 	 */
1132 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1133 		return 0;
1134 
1135 	return i915_drm_suspend_late(drm_dev, false);
1136 }
1137 
1138 static int i915_pm_poweroff_late(struct device *dev)
1139 {
1140 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1141 
1142 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1143 		return 0;
1144 
1145 	return i915_drm_suspend_late(drm_dev, true);
1146 }
1147 
1148 static int i915_pm_resume_early(struct device *dev)
1149 {
1150 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1151 
1152 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1153 		return 0;
1154 
1155 	return i915_drm_resume_early(drm_dev);
1156 }
1157 
1158 static int i915_pm_resume(struct device *dev)
1159 {
1160 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1161 
1162 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1163 		return 0;
1164 
1165 	return i915_drm_resume(drm_dev);
1166 }
1167 #endif
1168 
1169 /*
1170  * Save all Gunit registers that may be lost after a D3 and a subsequent
1171  * S0i[R123] transition. The list of registers needing a save/restore is
1172  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1173  * registers in the following way:
1174  * - Driver: saved/restored by the driver
1175  * - Punit : saved/restored by the Punit firmware
1176  * - No, w/o marking: no need to save/restore, since the register is R/O or
1177  *                    used internally by the HW in a way that doesn't depend
1178  *                    keeping the content across a suspend/resume.
1179  * - Debug : used for debugging
1180  *
1181  * We save/restore all registers marked with 'Driver', with the following
1182  * exceptions:
1183  * - Registers out of use, including also registers marked with 'Debug'.
1184  *   These have no effect on the driver's operation, so we don't save/restore
1185  *   them to reduce the overhead.
1186  * - Registers that are fully setup by an initialization function called from
1187  *   the resume path. For example many clock gating and RPS/RC6 registers.
1188  * - Registers that provide the right functionality with their reset defaults.
1189  *
1190  * TODO: Except for registers that based on the above 3 criteria can be safely
1191  * ignored, we save/restore all others, practically treating the HW context as
1192  * a black-box for the driver. Further investigation is needed to reduce the
1193  * saved/restored registers even further, by following the same 3 criteria.
1194  */
1195 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1196 {
1197 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1198 	int i;
1199 
1200 	/* GAM 0x4000-0x4770 */
1201 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
1202 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
1203 	s->arb_mode		= I915_READ(ARB_MODE);
1204 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
1205 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
1206 
1207 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1208 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1209 
1210 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1211 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1212 
1213 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
1214 	s->ecochk		= I915_READ(GAM_ECOCHK);
1215 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
1216 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
1217 
1218 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
1219 
1220 	/* MBC 0x9024-0x91D0, 0x8500 */
1221 	s->g3dctl		= I915_READ(VLV_G3DCTL);
1222 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
1223 	s->mbctl		= I915_READ(GEN6_MBCTL);
1224 
1225 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1226 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
1227 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
1228 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
1229 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
1230 	s->rstctl		= I915_READ(GEN6_RSTCTL);
1231 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
1232 
1233 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1234 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
1235 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
1236 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
1237 	s->ecobus		= I915_READ(ECOBUS);
1238 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
1239 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
1240 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
1241 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
1242 	s->rcedata		= I915_READ(VLV_RCEDATA);
1243 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
1244 
1245 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1246 	s->gt_imr		= I915_READ(GTIMR);
1247 	s->gt_ier		= I915_READ(GTIER);
1248 	s->pm_imr		= I915_READ(GEN6_PMIMR);
1249 	s->pm_ier		= I915_READ(GEN6_PMIER);
1250 
1251 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1252 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1253 
1254 	/* GT SA CZ domain, 0x100000-0x138124 */
1255 	s->tilectl		= I915_READ(TILECTL);
1256 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
1257 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
1258 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1259 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
1260 
1261 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1262 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
1263 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
1264 	s->pcbr			= I915_READ(VLV_PCBR);
1265 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
1266 
1267 	/*
1268 	 * Not saving any of:
1269 	 * DFT,		0x9800-0x9EC0
1270 	 * SARB,	0xB000-0xB1FC
1271 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
1272 	 * PCI CFG
1273 	 */
1274 }
1275 
1276 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1277 {
1278 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1279 	u32 val;
1280 	int i;
1281 
1282 	/* GAM 0x4000-0x4770 */
1283 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
1284 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
1285 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
1286 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
1287 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
1288 
1289 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1290 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1291 
1292 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1293 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1294 
1295 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
1296 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
1297 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
1298 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
1299 
1300 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
1301 
1302 	/* MBC 0x9024-0x91D0, 0x8500 */
1303 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
1304 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
1305 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
1306 
1307 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1308 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
1309 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
1310 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
1311 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
1312 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
1313 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
1314 
1315 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1316 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
1317 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
1318 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
1319 	I915_WRITE(ECOBUS,		s->ecobus);
1320 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
1321 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1322 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
1323 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
1324 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
1325 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
1326 
1327 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1328 	I915_WRITE(GTIMR,		s->gt_imr);
1329 	I915_WRITE(GTIER,		s->gt_ier);
1330 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
1331 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
1332 
1333 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1334 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1335 
1336 	/* GT SA CZ domain, 0x100000-0x138124 */
1337 	I915_WRITE(TILECTL,			s->tilectl);
1338 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
1339 	/*
1340 	 * Preserve the GT allow wake and GFX force clock bit, they are not
1341 	 * be restored, as they are used to control the s0ix suspend/resume
1342 	 * sequence by the caller.
1343 	 */
1344 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1345 	val &= VLV_GTLC_ALLOWWAKEREQ;
1346 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1347 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1348 
1349 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1350 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
1351 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1352 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1353 
1354 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
1355 
1356 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1357 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
1358 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
1359 	I915_WRITE(VLV_PCBR,			s->pcbr);
1360 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
1361 }
1362 
1363 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1364 {
1365 	u32 val;
1366 	int err;
1367 
1368 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1369 
1370 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1371 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1372 	if (force_on)
1373 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
1374 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1375 
1376 	if (!force_on)
1377 		return 0;
1378 
1379 	err = wait_for(COND, 20);
1380 	if (err)
1381 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1382 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1383 
1384 	return err;
1385 #undef COND
1386 }
1387 
1388 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1389 {
1390 	u32 val;
1391 	int err = 0;
1392 
1393 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1394 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
1395 	if (allow)
1396 		val |= VLV_GTLC_ALLOWWAKEREQ;
1397 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1398 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
1399 
1400 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1401 	      allow)
1402 	err = wait_for(COND, 1);
1403 	if (err)
1404 		DRM_ERROR("timeout disabling GT waking\n");
1405 	return err;
1406 #undef COND
1407 }
1408 
1409 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1410 				 bool wait_for_on)
1411 {
1412 	u32 mask;
1413 	u32 val;
1414 	int err;
1415 
1416 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1417 	val = wait_for_on ? mask : 0;
1418 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1419 	if (COND)
1420 		return 0;
1421 
1422 	DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1423 		      onoff(wait_for_on),
1424 		      I915_READ(VLV_GTLC_PW_STATUS));
1425 
1426 	/*
1427 	 * RC6 transitioning can be delayed up to 2 msec (see
1428 	 * valleyview_enable_rps), use 3 msec for safety.
1429 	 */
1430 	err = wait_for(COND, 3);
1431 	if (err)
1432 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
1433 			  onoff(wait_for_on));
1434 
1435 	return err;
1436 #undef COND
1437 }
1438 
1439 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1440 {
1441 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1442 		return;
1443 
1444 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1445 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1446 }
1447 
1448 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1449 {
1450 	u32 mask;
1451 	int err;
1452 
1453 	/*
1454 	 * Bspec defines the following GT well on flags as debug only, so
1455 	 * don't treat them as hard failures.
1456 	 */
1457 	(void)vlv_wait_for_gt_wells(dev_priv, false);
1458 
1459 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1460 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1461 
1462 	vlv_check_no_gt_access(dev_priv);
1463 
1464 	err = vlv_force_gfx_clock(dev_priv, true);
1465 	if (err)
1466 		goto err1;
1467 
1468 	err = vlv_allow_gt_wake(dev_priv, false);
1469 	if (err)
1470 		goto err2;
1471 
1472 	if (!IS_CHERRYVIEW(dev_priv))
1473 		vlv_save_gunit_s0ix_state(dev_priv);
1474 
1475 	err = vlv_force_gfx_clock(dev_priv, false);
1476 	if (err)
1477 		goto err2;
1478 
1479 	return 0;
1480 
1481 err2:
1482 	/* For safety always re-enable waking and disable gfx clock forcing */
1483 	vlv_allow_gt_wake(dev_priv, true);
1484 err1:
1485 	vlv_force_gfx_clock(dev_priv, false);
1486 
1487 	return err;
1488 }
1489 
1490 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1491 				bool rpm_resume)
1492 {
1493 	struct drm_device *dev = dev_priv->dev;
1494 	int err;
1495 	int ret;
1496 
1497 	/*
1498 	 * If any of the steps fail just try to continue, that's the best we
1499 	 * can do at this point. Return the first error code (which will also
1500 	 * leave RPM permanently disabled).
1501 	 */
1502 	ret = vlv_force_gfx_clock(dev_priv, true);
1503 
1504 	if (!IS_CHERRYVIEW(dev_priv))
1505 		vlv_restore_gunit_s0ix_state(dev_priv);
1506 
1507 	err = vlv_allow_gt_wake(dev_priv, true);
1508 	if (!ret)
1509 		ret = err;
1510 
1511 	err = vlv_force_gfx_clock(dev_priv, false);
1512 	if (!ret)
1513 		ret = err;
1514 
1515 	vlv_check_no_gt_access(dev_priv);
1516 
1517 	if (rpm_resume) {
1518 		intel_init_clock_gating(dev);
1519 		i915_gem_restore_fences(dev);
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 #if 0
1526 static int intel_runtime_suspend(struct device *device)
1527 {
1528 	struct pci_dev *pdev = to_pci_dev(device);
1529 	struct drm_device *dev = pci_get_drvdata(pdev);
1530 	struct drm_i915_private *dev_priv = dev->dev_private;
1531 	int ret;
1532 
1533 	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1534 		return -ENODEV;
1535 
1536 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1537 		return -ENODEV;
1538 
1539 	DRM_DEBUG_KMS("Suspending device\n");
1540 
1541 	/*
1542 	 * We could deadlock here in case another thread holding struct_mutex
1543 	 * calls RPM suspend concurrently, since the RPM suspend will wait
1544 	 * first for this RPM suspend to finish. In this case the concurrent
1545 	 * RPM resume will be followed by its RPM suspend counterpart. Still
1546 	 * for consistency return -EAGAIN, which will reschedule this suspend.
1547 	 */
1548 	if (!mutex_trylock(&dev->struct_mutex)) {
1549 		DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1550 		/*
1551 		 * Bump the expiration timestamp, otherwise the suspend won't
1552 		 * be rescheduled.
1553 		 */
1554 		pm_runtime_mark_last_busy(device);
1555 
1556 		return -EAGAIN;
1557 	}
1558 
1559 	disable_rpm_wakeref_asserts(dev_priv);
1560 
1561 	/*
1562 	 * We are safe here against re-faults, since the fault handler takes
1563 	 * an RPM reference.
1564 	 */
1565 	i915_gem_release_all_mmaps(dev_priv);
1566 	mutex_unlock(&dev->struct_mutex);
1567 
1568 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1569 
1570 	intel_guc_suspend(dev);
1571 
1572 	intel_suspend_gt_powersave(dev);
1573 	intel_runtime_pm_disable_interrupts(dev_priv);
1574 
1575 	ret = 0;
1576 	if (IS_BROXTON(dev_priv)) {
1577 		bxt_display_core_uninit(dev_priv);
1578 		bxt_enable_dc9(dev_priv);
1579 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1580 		hsw_enable_pc8(dev_priv);
1581 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1582 		ret = vlv_suspend_complete(dev_priv);
1583 	}
1584 
1585 	if (ret) {
1586 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1587 		intel_runtime_pm_enable_interrupts(dev_priv);
1588 
1589 		enable_rpm_wakeref_asserts(dev_priv);
1590 
1591 		return ret;
1592 	}
1593 
1594 	intel_uncore_forcewake_reset(dev, false);
1595 
1596 	enable_rpm_wakeref_asserts(dev_priv);
1597 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1598 
1599 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1600 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
1601 
1602 	dev_priv->pm.suspended = true;
1603 
1604 	/*
1605 	 * FIXME: We really should find a document that references the arguments
1606 	 * used below!
1607 	 */
1608 	if (IS_BROADWELL(dev)) {
1609 		/*
1610 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1611 		 * being detected, and the call we do at intel_runtime_resume()
1612 		 * won't be able to restore them. Since PCI_D3hot matches the
1613 		 * actual specification and appears to be working, use it.
1614 		 */
1615 		intel_opregion_notify_adapter(dev, PCI_D3hot);
1616 	} else {
1617 		/*
1618 		 * current versions of firmware which depend on this opregion
1619 		 * notification have repurposed the D1 definition to mean
1620 		 * "runtime suspended" vs. what you would normally expect (D3)
1621 		 * to distinguish it from notifications that might be sent via
1622 		 * the suspend path.
1623 		 */
1624 		intel_opregion_notify_adapter(dev, PCI_D1);
1625 	}
1626 
1627 	assert_forcewakes_inactive(dev_priv);
1628 
1629 	if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
1630 		intel_hpd_poll_init(dev_priv);
1631 
1632 	DRM_DEBUG_KMS("Device suspended\n");
1633 	return 0;
1634 }
1635 
1636 static int intel_runtime_resume(struct device *device)
1637 {
1638 	struct pci_dev *pdev = to_pci_dev(device);
1639 	struct drm_device *dev = pci_get_drvdata(pdev);
1640 	struct drm_i915_private *dev_priv = dev->dev_private;
1641 	int ret = 0;
1642 
1643 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1644 		return -ENODEV;
1645 
1646 	DRM_DEBUG_KMS("Resuming device\n");
1647 
1648 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1649 	disable_rpm_wakeref_asserts(dev_priv);
1650 
1651 	intel_opregion_notify_adapter(dev, PCI_D0);
1652 	dev_priv->pm.suspended = false;
1653 	if (intel_uncore_unclaimed_mmio(dev_priv))
1654 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1655 
1656 	intel_guc_resume(dev);
1657 
1658 	if (IS_GEN6(dev_priv))
1659 		intel_init_pch_refclk(dev);
1660 
1661 	if (IS_BROXTON(dev)) {
1662 		bxt_disable_dc9(dev_priv);
1663 		bxt_display_core_init(dev_priv, true);
1664 		if (dev_priv->csr.dmc_payload &&
1665 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1666 			gen9_enable_dc5(dev_priv);
1667 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1668 		hsw_disable_pc8(dev_priv);
1669 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1670 		ret = vlv_resume_prepare(dev_priv, true);
1671 	}
1672 
1673 	/*
1674 	 * No point of rolling back things in case of an error, as the best
1675 	 * we can do is to hope that things will still work (and disable RPM).
1676 	 */
1677 	i915_gem_init_swizzling(dev);
1678 	gen6_update_ring_freq(dev);
1679 
1680 	intel_runtime_pm_enable_interrupts(dev_priv);
1681 
1682 	/*
1683 	 * On VLV/CHV display interrupts are part of the display
1684 	 * power well, so hpd is reinitialized from there. For
1685 	 * everyone else do it here.
1686 	 */
1687 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1688 		intel_hpd_init(dev_priv);
1689 
1690 	intel_enable_gt_powersave(dev);
1691 
1692 	enable_rpm_wakeref_asserts(dev_priv);
1693 
1694 	if (ret)
1695 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1696 	else
1697 		DRM_DEBUG_KMS("Device resumed\n");
1698 
1699 	return ret;
1700 }
1701 
1702 static const struct dev_pm_ops i915_pm_ops = {
1703 	/*
1704 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1705 	 * PMSG_RESUME]
1706 	 */
1707 	.suspend = i915_pm_suspend,
1708 	.suspend_late = i915_pm_suspend_late,
1709 	.resume_early = i915_pm_resume_early,
1710 	.resume = i915_pm_resume,
1711 
1712 	/*
1713 	 * S4 event handlers
1714 	 * @freeze, @freeze_late    : called (1) before creating the
1715 	 *                            hibernation image [PMSG_FREEZE] and
1716 	 *                            (2) after rebooting, before restoring
1717 	 *                            the image [PMSG_QUIESCE]
1718 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
1719 	 *                            image, before writing it [PMSG_THAW]
1720 	 *                            and (2) after failing to create or
1721 	 *                            restore the image [PMSG_RECOVER]
1722 	 * @poweroff, @poweroff_late: called after writing the hibernation
1723 	 *                            image, before rebooting [PMSG_HIBERNATE]
1724 	 * @restore, @restore_early : called after rebooting and restoring the
1725 	 *                            hibernation image [PMSG_RESTORE]
1726 	 */
1727 	.freeze = i915_pm_suspend,
1728 	.freeze_late = i915_pm_suspend_late,
1729 	.thaw_early = i915_pm_resume_early,
1730 	.thaw = i915_pm_resume,
1731 	.poweroff = i915_pm_suspend,
1732 	.poweroff_late = i915_pm_poweroff_late,
1733 	.restore_early = i915_pm_resume_early,
1734 	.restore = i915_pm_resume,
1735 
1736 	/* S0ix (via runtime suspend) event handlers */
1737 	.runtime_suspend = intel_runtime_suspend,
1738 	.runtime_resume = intel_runtime_resume,
1739 };
1740 
1741 static const struct vm_operations_struct i915_gem_vm_ops = {
1742 	.fault = i915_gem_fault,
1743 	.open = drm_gem_vm_open,
1744 	.close = drm_gem_vm_close,
1745 };
1746 
1747 static const struct file_operations i915_driver_fops = {
1748 	.owner = THIS_MODULE,
1749 	.open = drm_open,
1750 	.release = drm_release,
1751 	.unlocked_ioctl = drm_ioctl,
1752 	.mmap = drm_gem_mmap,
1753 	.poll = drm_poll,
1754 	.read = drm_read,
1755 #ifdef CONFIG_COMPAT
1756 	.compat_ioctl = i915_compat_ioctl,
1757 #endif
1758 	.llseek = noop_llseek,
1759 };
1760 #endif
1761 
1762 static struct cdev_pager_ops i915_gem_vm_ops = {
1763 	.cdev_pg_fault	= i915_gem_fault,
1764 	.cdev_pg_ctor	= i915_gem_pager_ctor,
1765 	.cdev_pg_dtor	= i915_gem_pager_dtor
1766 };
1767 
1768 static struct drm_driver driver = {
1769 	/* Don't use MTRRs here; the Xserver or userspace app should
1770 	 * deal with them for Intel hardware.
1771 	 */
1772 	.driver_features =
1773 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM |
1774 	    DRIVER_RENDER | DRIVER_MODESET,
1775 	.load = i915_driver_load,
1776 	.unload = i915_driver_unload,
1777 	.open = i915_driver_open,
1778 	.lastclose = i915_driver_lastclose,
1779 	.preclose = i915_driver_preclose,
1780 	.postclose = i915_driver_postclose,
1781 
1782 #if defined(CONFIG_DEBUG_FS)
1783 	.debugfs_init = i915_debugfs_init,
1784 	.debugfs_cleanup = i915_debugfs_cleanup,
1785 #endif
1786 	.gem_free_object = i915_gem_free_object,
1787 	.gem_pager_ops = &i915_gem_vm_ops,
1788 
1789 	.dumb_create = i915_gem_dumb_create,
1790 	.dumb_map_offset = i915_gem_mmap_gtt,
1791 	.dumb_destroy = drm_gem_dumb_destroy,
1792 	.ioctls = i915_ioctls,
1793 	.sysctl_init = i915_sysctl_init,
1794 	.name = DRIVER_NAME,
1795 	.desc = DRIVER_DESC,
1796 	.date = DRIVER_DATE,
1797 	.major = DRIVER_MAJOR,
1798 	.minor = DRIVER_MINOR,
1799 	.patchlevel = DRIVER_PATCHLEVEL,
1800 };
1801 
1802 static int __init i915_init(void);
1803 
1804 static int
1805 i915_attach(device_t kdev)
1806 {
1807 	struct drm_device *dev = device_get_softc(kdev);
1808 	int error;
1809 	int dummy;
1810 
1811 	i915_init();
1812 
1813 	dev->driver = &driver;
1814 	error = drm_attach(kdev, i915_attach_list);
1815 
1816 	/*
1817 	 * XXX hack - give the kvm_console time to come up before X starts
1818 	 * messing with everything, avoiding at least one deadlock.
1819 	 */
1820 	tsleep(&dummy, 0, "i915_attach", hz*2);
1821 
1822 	return error;
1823 }
1824 
1825 static device_method_t i915_methods[] = {
1826 	/* Device interface */
1827 	DEVMETHOD(device_probe,		i915_pci_probe),
1828 	DEVMETHOD(device_attach,	i915_attach),
1829 	DEVMETHOD(device_suspend,	i915_suspend_switcheroo),
1830 	DEVMETHOD(device_resume,	i915_resume_switcheroo),
1831 	DEVMETHOD(device_detach,	drm_release),
1832 	DEVMETHOD_END
1833 };
1834 
1835 static driver_t i915_driver = {
1836 	"drm",
1837 	i915_methods,
1838 	sizeof(struct drm_device)
1839 };
1840 
1841 static int __init i915_init(void)
1842 {
1843 	driver.num_ioctls = i915_max_ioctl;
1844 
1845 	/*
1846 	 * Enable KMS by default, unless explicitly overriden by
1847 	 * either the i915.modeset prarameter or by the
1848 	 * vga_text_mode_force boot option.
1849 	 */
1850 
1851 	if (i915.modeset == 0)
1852 		driver.driver_features &= ~DRIVER_MODESET;
1853 
1854 	if (vgacon_text_force() && i915.modeset == -1)
1855 		driver.driver_features &= ~DRIVER_MODESET;
1856 
1857 	if (!(driver.driver_features & DRIVER_MODESET)) {
1858 		/* Silently fail loading to not upset userspace. */
1859 		DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1860 		return 0;
1861 	}
1862 
1863 	if (i915.nuclear_pageflip)
1864 		driver.driver_features |= DRIVER_ATOMIC;
1865 
1866 #if 0
1867 	return drm_pci_init(&driver, &i915_pci_driver);
1868 #else
1869 	return 1;
1870 #endif
1871 }
1872 
1873 #if 0
1874 static void __exit i915_exit(void)
1875 {
1876 	if (!(driver.driver_features & DRIVER_MODESET))
1877 		return; /* Never loaded a driver. */
1878 
1879 	drm_pci_exit(&driver, &i915_pci_driver);
1880 }
1881 #endif
1882 
1883 DRIVER_MODULE_ORDERED(i915, vgapci, i915_driver, drm_devclass, NULL, NULL, SI_ORDER_ANY);
1884 MODULE_DEPEND(i915, drm, 1, 1, 1);
1885 MODULE_DEPEND(i915, iicbus, 1, 1, 1);
1886 MODULE_DEPEND(i915, iic, 1, 1, 1);
1887 MODULE_DEPEND(i915, iicbb, 1, 1, 1);
1888 #ifdef CONFIG_ACPI
1889 MODULE_DEPEND(i915, acpi, 1, 1, 1);
1890 #endif
1891