xref: /dragonfly/sys/dev/drm/i915/i915_drv.c (revision 5ca0a96d)
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifdef __DragonFly__
31 #include "opt_drm.h"	/* for VGA_SWITCHEROO */
32 #endif
33 
34 #include <linux/acpi.h>
35 #include <linux/device.h>
36 #include <linux/oom.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/pm.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/pnp.h>
42 #include <linux/slab.h>
43 #include <linux/vgaarb.h>
44 #include <linux/vga_switcheroo.h>
45 #include <linux/vt.h>
46 #include <acpi/video.h>
47 
48 #include <drm/drmP.h>
49 #include <drm/drm_crtc_helper.h>
50 #include <drm/drm_atomic_helper.h>
51 #include <drm/i915_drm.h>
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 #include "intel_drv.h"
57 #include "intel_uc.h"
58 
59 static struct drm_driver driver;
60 
61 static unsigned int i915_load_fail_count;
62 
63 bool __i915_inject_load_failure(const char *func, int line)
64 {
65 	if (i915_load_fail_count >= i915_modparams.inject_load_failure)
66 		return false;
67 
68 	if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
69 		DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
70 			 i915_modparams.inject_load_failure, func, line);
71 		return true;
72 	}
73 
74 	return false;
75 }
76 
77 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
78 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
79 		    "providing the dmesg log by booting with drm.debug=0xf"
80 
81 void
82 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
83 	      const char *fmt, ...)
84 {
85 	static bool shown_bug_once;
86 	struct device *kdev = dev_priv->drm.dev;
87 	bool is_error = level[1] <= KERN_ERR[1];
88 	bool is_debug = level[1] == KERN_DEBUG[1];
89 	struct va_format vaf;
90 	va_list args;
91 
92 	if (is_debug && !(drm_debug & DRM_UT_DRIVER))
93 		return;
94 
95 	va_start(args, fmt);
96 
97 	vaf.fmt = fmt;
98 	vaf.va = &args;
99 
100 	dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
101 		   __builtin_return_address(0), &vaf);
102 
103 	if (is_error && !shown_bug_once) {
104 		dev_notice(kdev, "%s", FDO_BUG_MSG);
105 		shown_bug_once = true;
106 	}
107 
108 	va_end(args);
109 }
110 
111 static bool i915_error_injected(struct drm_i915_private *dev_priv)
112 {
113 	return i915_modparams.inject_load_failure &&
114 	       i915_load_fail_count == i915_modparams.inject_load_failure;
115 }
116 
117 #define i915_load_error(dev_priv, fmt, ...)				     \
118 	__i915_printk(dev_priv,						     \
119 		      i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
120 		      fmt, ##__VA_ARGS__)
121 
122 
123 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
124 {
125 	enum intel_pch ret = PCH_NOP;
126 
127 	/*
128 	 * In a virtualized passthrough environment we can be in a
129 	 * setup where the ISA bridge is not able to be passed through.
130 	 * In this case, a south bridge can be emulated and we have to
131 	 * make an educated guess as to which PCH is really there.
132 	 */
133 
134 	if (IS_GEN5(dev_priv)) {
135 		ret = PCH_IBX;
136 		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
137 	} else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
138 		ret = PCH_CPT;
139 		DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
140 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
141 		ret = PCH_LPT;
142 		if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
143 			dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
144 		else
145 			dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
146 		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
147 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
148 		ret = PCH_SPT;
149 		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
150 	} else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
151 		ret = PCH_CNP;
152 		DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
153 	}
154 
155 	return ret;
156 }
157 
158 static void intel_detect_pch(struct drm_i915_private *dev_priv)
159 {
160 	device_t pch = NULL;
161 	struct pci_devinfo *di = NULL;
162 
163 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
164 	 * (which really amounts to a PCH but no South Display).
165 	 */
166 	if (INTEL_INFO(dev_priv)->num_pipes == 0) {
167 		dev_priv->pch_type = PCH_NOP;
168 		return;
169 	}
170 
171 	/* XXX The ISA bridge probe causes some old Core2 machines to hang */
172 	if (INTEL_INFO(dev_priv)->gen < 5)
173 		return;
174 
175 	/*
176 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
177 	 * make graphics device passthrough work easy for VMM, that only
178 	 * need to expose ISA bridge to let driver know the real hardware
179 	 * underneath. This is a requirement from virtualization team.
180 	 *
181 	 * In some virtualized environments (e.g. XEN), there is irrelevant
182 	 * ISA bridge in the system. To work reliably, we should scan trhough
183 	 * all the ISA bridge devices and check for the first match, instead
184 	 * of only checking the first one.
185 	 */
186 	while ((pch = pci_iterate_class(&di, PCIC_BRIDGE, PCIS_BRIDGE_ISA))) {
187 		if (pci_get_vendor(pch) == PCI_VENDOR_ID_INTEL) {
188 			unsigned short id = pci_get_device(pch) & INTEL_PCH_DEVICE_ID_MASK;
189 
190 			dev_priv->pch_id = id;
191 
192 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
193 				dev_priv->pch_type = PCH_IBX;
194 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
195 				WARN_ON(!IS_GEN5(dev_priv));
196 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
197 				dev_priv->pch_type = PCH_CPT;
198 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
199 				WARN_ON(!IS_GEN6(dev_priv) &&
200 					!IS_IVYBRIDGE(dev_priv));
201 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
202 				/* PantherPoint is CPT compatible */
203 				dev_priv->pch_type = PCH_CPT;
204 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
205 				WARN_ON(!IS_GEN6(dev_priv) &&
206 					!IS_IVYBRIDGE(dev_priv));
207 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
208 				dev_priv->pch_type = PCH_LPT;
209 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
210 				WARN_ON(!IS_HASWELL(dev_priv) &&
211 					!IS_BROADWELL(dev_priv));
212 				WARN_ON(IS_HSW_ULT(dev_priv) ||
213 					IS_BDW_ULT(dev_priv));
214 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
215 				dev_priv->pch_type = PCH_LPT;
216 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
217 				WARN_ON(!IS_HASWELL(dev_priv) &&
218 					!IS_BROADWELL(dev_priv));
219 				WARN_ON(!IS_HSW_ULT(dev_priv) &&
220 					!IS_BDW_ULT(dev_priv));
221 			} else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
222 				/* WildcatPoint is LPT compatible */
223 				dev_priv->pch_type = PCH_LPT;
224 				DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
225 				WARN_ON(!IS_HASWELL(dev_priv) &&
226 					!IS_BROADWELL(dev_priv));
227 				WARN_ON(IS_HSW_ULT(dev_priv) ||
228 					IS_BDW_ULT(dev_priv));
229 			} else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
230 				/* WildcatPoint is LPT compatible */
231 				dev_priv->pch_type = PCH_LPT;
232 				DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
233 				WARN_ON(!IS_HASWELL(dev_priv) &&
234 					!IS_BROADWELL(dev_priv));
235 				WARN_ON(!IS_HSW_ULT(dev_priv) &&
236 					!IS_BDW_ULT(dev_priv));
237 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
238 				dev_priv->pch_type = PCH_SPT;
239 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
240 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
241 					!IS_KABYLAKE(dev_priv));
242 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
243 				dev_priv->pch_type = PCH_SPT;
244 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
245 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
246 					!IS_KABYLAKE(dev_priv));
247 			} else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
248 				dev_priv->pch_type = PCH_KBP;
249 				DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
250 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
251 					!IS_KABYLAKE(dev_priv) &&
252 					!IS_COFFEELAKE(dev_priv));
253 			} else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
254 				dev_priv->pch_type = PCH_CNP;
255 				DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
256 				WARN_ON(!IS_CANNONLAKE(dev_priv) &&
257 					!IS_COFFEELAKE(dev_priv));
258 			} else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
259 				dev_priv->pch_type = PCH_CNP;
260 				DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
261 				WARN_ON(!IS_CANNONLAKE(dev_priv) &&
262 					!IS_COFFEELAKE(dev_priv));
263 			} else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
264 				   id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
265 				   (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
266 				    1)) {
267 				dev_priv->pch_type =
268 					intel_virt_detect_pch(dev_priv);
269 			} else
270 				continue;
271 
272 			break;
273 		}
274 	}
275 	if (!pch)
276 		DRM_DEBUG_KMS("No PCH found.\n");
277 
278 #if 0
279 	pci_dev_put(pch);
280 #endif
281 }
282 
283 static int i915_getparam(struct drm_device *dev, void *data,
284 			 struct drm_file *file_priv)
285 {
286 	struct drm_i915_private *dev_priv = to_i915(dev);
287 	struct pci_dev *pdev = dev_priv->drm.pdev;
288 	drm_i915_getparam_t *param = data;
289 	int value;
290 
291 	switch (param->param) {
292 	case I915_PARAM_IRQ_ACTIVE:
293 	case I915_PARAM_ALLOW_BATCHBUFFER:
294 	case I915_PARAM_LAST_DISPATCH:
295 	case I915_PARAM_HAS_EXEC_CONSTANTS:
296 		/* Reject all old ums/dri params. */
297 		return -ENODEV;
298 	case I915_PARAM_CHIPSET_ID:
299 		value = pdev->device;
300 		break;
301 	case I915_PARAM_REVISION:
302 		value = pdev->revision;
303 		break;
304 	case I915_PARAM_NUM_FENCES_AVAIL:
305 		value = dev_priv->num_fence_regs;
306 		break;
307 	case I915_PARAM_HAS_OVERLAY:
308 		value = dev_priv->overlay ? 1 : 0;
309 		break;
310 	case I915_PARAM_HAS_BSD:
311 		value = !!dev_priv->engine[VCS];
312 		break;
313 	case I915_PARAM_HAS_BLT:
314 		value = !!dev_priv->engine[BCS];
315 		break;
316 	case I915_PARAM_HAS_VEBOX:
317 		value = !!dev_priv->engine[VECS];
318 		break;
319 	case I915_PARAM_HAS_BSD2:
320 		value = !!dev_priv->engine[VCS2];
321 		break;
322 	case I915_PARAM_HAS_LLC:
323 		value = HAS_LLC(dev_priv);
324 		break;
325 	case I915_PARAM_HAS_WT:
326 		value = HAS_WT(dev_priv);
327 		break;
328 	case I915_PARAM_HAS_ALIASING_PPGTT:
329 		value = USES_PPGTT(dev_priv);
330 		break;
331 	case I915_PARAM_HAS_SEMAPHORES:
332 		value = i915_modparams.semaphores;
333 		break;
334 #if 0
335 	case I915_PARAM_HAS_SECURE_BATCHES:
336 		value = capable(CAP_SYS_ADMIN);
337 		break;
338 #endif
339 	case I915_PARAM_CMD_PARSER_VERSION:
340 		value = i915_cmd_parser_get_version(dev_priv);
341 		break;
342 	case I915_PARAM_SUBSLICE_TOTAL:
343 		value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
344 		if (!value)
345 			return -ENODEV;
346 		break;
347 	case I915_PARAM_EU_TOTAL:
348 		value = INTEL_INFO(dev_priv)->sseu.eu_total;
349 		if (!value)
350 			return -ENODEV;
351 		break;
352 	case I915_PARAM_HAS_GPU_RESET:
353 		value = i915_modparams.enable_hangcheck &&
354 			intel_has_gpu_reset(dev_priv);
355 		if (value && intel_has_reset_engine(dev_priv))
356 			value = 2;
357 		break;
358 	case I915_PARAM_HAS_RESOURCE_STREAMER:
359 		value = HAS_RESOURCE_STREAMER(dev_priv);
360 		break;
361 	case I915_PARAM_HAS_POOLED_EU:
362 		value = HAS_POOLED_EU(dev_priv);
363 		break;
364 	case I915_PARAM_MIN_EU_IN_POOL:
365 		value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
366 		break;
367 	case I915_PARAM_HUC_STATUS:
368 		intel_runtime_pm_get(dev_priv);
369 		value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
370 		intel_runtime_pm_put(dev_priv);
371 		break;
372 	case I915_PARAM_MMAP_GTT_VERSION:
373 		/* Though we've started our numbering from 1, and so class all
374 		 * earlier versions as 0, in effect their value is undefined as
375 		 * the ioctl will report EINVAL for the unknown param!
376 		 */
377 		value = i915_gem_mmap_gtt_version();
378 		break;
379 	case I915_PARAM_HAS_SCHEDULER:
380 		value = 0;
381 		if (dev_priv->engine[RCS] && dev_priv->engine[RCS]->schedule) {
382  			value |= I915_SCHEDULER_CAP_ENABLED;
383 			value |= I915_SCHEDULER_CAP_PRIORITY;
384 
385 			if (INTEL_INFO(dev_priv)->has_logical_ring_preemption &&
386 			    i915_modparams.enable_execlists &&
387 			    !i915_modparams.enable_guc_submission)
388 				value |= I915_SCHEDULER_CAP_PREEMPTION;
389 		}
390 		break;
391 	case I915_PARAM_MMAP_VERSION:
392 		/* Remember to bump this if the version changes! */
393 	case I915_PARAM_HAS_GEM:
394 	case I915_PARAM_HAS_PAGEFLIPPING:
395 	case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
396 	case I915_PARAM_HAS_RELAXED_FENCING:
397 	case I915_PARAM_HAS_COHERENT_RINGS:
398 	case I915_PARAM_HAS_RELAXED_DELTA:
399 	case I915_PARAM_HAS_GEN7_SOL_RESET:
400 	case I915_PARAM_HAS_WAIT_TIMEOUT:
401 #if 0
402 	case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
403 #endif
404 	case I915_PARAM_HAS_PINNED_BATCHES:
405 	case I915_PARAM_HAS_EXEC_NO_RELOC:
406 	case I915_PARAM_HAS_EXEC_HANDLE_LUT:
407 	case I915_PARAM_HAS_COHERENT_PHYS_GTT:
408 	case I915_PARAM_HAS_EXEC_SOFTPIN:
409 	case I915_PARAM_HAS_EXEC_ASYNC:
410 	case I915_PARAM_HAS_EXEC_FENCE:
411 	case I915_PARAM_HAS_EXEC_CAPTURE:
412 	case I915_PARAM_HAS_EXEC_BATCH_FIRST:
413 	case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
414 		/* For the time being all of these are always true;
415 		 * if some supported hardware does not have one of these
416 		 * features this value needs to be provided from
417 		 * INTEL_INFO(), a feature macro, or similar.
418 		 */
419 		value = 1;
420 		break;
421 	case I915_PARAM_SLICE_MASK:
422 		value = INTEL_INFO(dev_priv)->sseu.slice_mask;
423 		if (!value)
424 			return -ENODEV;
425 		break;
426 	case I915_PARAM_SUBSLICE_MASK:
427 		value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
428 		if (!value)
429 			return -ENODEV;
430 		break;
431 	default:
432 		DRM_DEBUG("Unknown parameter %d\n", param->param);
433 		return -EINVAL;
434 	}
435 
436 	if (put_user(value, param->value))
437 		return -EFAULT;
438 
439 	return 0;
440 }
441 
442 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
443 {
444 	static struct pci_dev i915_bridge_dev;
445 
446 	i915_bridge_dev.dev.bsddev = pci_find_dbsf(0, 0, 0, 0);
447 	if (!i915_bridge_dev.dev.bsddev) {
448 		DRM_ERROR("bridge device not found\n");
449 		return -1;
450 	}
451 
452 	dev_priv->bridge_dev = &i915_bridge_dev;
453 	return 0;
454 }
455 
456 /* Allocate space for the MCH regs if needed, return nonzero on error */
457 static int
458 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
459 {
460 	int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
461 	u32 temp_lo, temp_hi = 0;
462 	u64 mchbar_addr;
463 	device_t bsddev, vga;
464 
465 	if (INTEL_GEN(dev_priv) >= 4)
466 		pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
467 	pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
468 	mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
469 
470 	/* If ACPI doesn't have it, assume we need to allocate it ourselves */
471 #ifdef CONFIG_PNP
472 	if (mchbar_addr &&
473 	    pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
474 		return 0;
475 #endif
476 
477 	/* Get some space for it */
478 	bsddev = dev_priv->bridge_dev->dev.bsddev;
479 	vga = device_get_parent(bsddev);
480 	dev_priv->mch_res_rid = 0x100;
481 	dev_priv->mch_res = BUS_ALLOC_RESOURCE(device_get_parent(vga),
482 	    bsddev, SYS_RES_MEMORY, &dev_priv->mch_res_rid, 0, ~0UL,
483 	    MCHBAR_SIZE, RF_ACTIVE | RF_SHAREABLE, -1);
484 	if (dev_priv->mch_res == NULL) {
485 		DRM_DEBUG_DRIVER("failed mchbar resource alloc\n");
486 		return (-ENOMEM);
487 	}
488 
489 	if (INTEL_GEN(dev_priv) >= 4)
490 		pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
491 				       upper_32_bits(rman_get_start(dev_priv->mch_res)));
492 
493 	pci_write_config_dword(dev_priv->bridge_dev, reg,
494 			       lower_32_bits(rman_get_start(dev_priv->mch_res)));
495 	return 0;
496 }
497 
498 /* Setup MCHBAR if possible, return true if we should disable it again */
499 static void
500 intel_setup_mchbar(struct drm_i915_private *dev_priv)
501 {
502 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
503 	u32 temp;
504 	bool enabled;
505 
506 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
507 		return;
508 
509 	dev_priv->mchbar_need_disable = false;
510 
511 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
512 		pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
513 		enabled = !!(temp & DEVEN_MCHBAR_EN);
514 	} else {
515 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
516 		enabled = temp & 1;
517 	}
518 
519 	/* If it's already enabled, don't have to do anything */
520 	if (enabled)
521 		return;
522 
523 	if (intel_alloc_mchbar_resource(dev_priv))
524 		return;
525 
526 	dev_priv->mchbar_need_disable = true;
527 
528 	/* Space is allocated or reserved, so enable it. */
529 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
530 		pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
531 				       temp | DEVEN_MCHBAR_EN);
532 	} else {
533 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
534 		pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
535 	}
536 }
537 
538 static void
539 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
540 {
541 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
542 	device_t bsddev, vga;
543 
544 	if (dev_priv->mchbar_need_disable) {
545 		if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
546 			u32 deven_val;
547 
548 			pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
549 					      &deven_val);
550 			deven_val &= ~DEVEN_MCHBAR_EN;
551 			pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
552 					       deven_val);
553 		} else {
554 			u32 mchbar_val;
555 
556 			pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
557 					      &mchbar_val);
558 			mchbar_val &= ~1;
559 			pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
560 					       mchbar_val);
561 		}
562 	}
563 
564 	bsddev = dev_priv->bridge_dev->dev.bsddev;
565 	if (dev_priv->mch_res != NULL) {
566 		vga = device_get_parent(bsddev);
567 		BUS_DEACTIVATE_RESOURCE(device_get_parent(vga), bsddev,
568 		    SYS_RES_MEMORY, dev_priv->mch_res_rid, dev_priv->mch_res);
569 		BUS_RELEASE_RESOURCE(device_get_parent(vga), bsddev,
570 		    SYS_RES_MEMORY, dev_priv->mch_res_rid, dev_priv->mch_res);
571 		dev_priv->mch_res = NULL;
572 	}
573 }
574 
575 #if 0
576 /* true = enable decode, false = disable decoder */
577 static unsigned int i915_vga_set_decode(void *cookie, bool state)
578 {
579 	struct drm_i915_private *dev_priv = cookie;
580 
581 	intel_modeset_vga_set_state(dev_priv, state);
582 	if (state)
583 		return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
584 		       VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
585 	else
586 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
587 }
588 
589 static int i915_resume_switcheroo(struct drm_device *dev);
590 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
591 
592 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
593 {
594 	struct drm_device *dev = pci_get_drvdata(pdev);
595 	pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
596 
597 	if (state == VGA_SWITCHEROO_ON) {
598 		pr_info("switched on\n");
599 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
600 		/* i915 resume handler doesn't set to D0 */
601 		pci_set_power_state(pdev, PCI_D0);
602 		i915_resume_switcheroo(dev);
603 		dev->switch_power_state = DRM_SWITCH_POWER_ON;
604 	} else {
605 		pr_info("switched off\n");
606 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
607 		i915_suspend_switcheroo(dev, pmm);
608 		dev->switch_power_state = DRM_SWITCH_POWER_OFF;
609 	}
610 }
611 
612 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
613 {
614 	struct drm_device *dev = pci_get_drvdata(pdev);
615 
616 	/*
617 	 * FIXME: open_count is protected by drm_global_mutex but that would lead to
618 	 * locking inversion with the driver load path. And the access here is
619 	 * completely racy anyway. So don't bother with locking for now.
620 	 */
621 	return dev->open_count == 0;
622 }
623 
624 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
625 	.set_gpu_state = i915_switcheroo_set_state,
626 	.reprobe = NULL,
627 	.can_switch = i915_switcheroo_can_switch,
628 };
629 #endif
630 
631 static void i915_gem_fini(struct drm_i915_private *dev_priv)
632 {
633 	/* Flush any outstanding unpin_work. */
634 	i915_gem_drain_workqueue(dev_priv);
635 
636 	mutex_lock(&dev_priv->drm.struct_mutex);
637 	intel_uc_fini_hw(dev_priv);
638 	i915_gem_cleanup_engines(dev_priv);
639 	i915_gem_contexts_fini(dev_priv);
640 	mutex_unlock(&dev_priv->drm.struct_mutex);
641 
642 	i915_gem_cleanup_userptr(dev_priv);
643 
644 	i915_gem_drain_freed_objects(dev_priv);
645 
646 	WARN_ON(!list_empty(&dev_priv->contexts.list));
647 }
648 
649 static int i915_load_modeset_init(struct drm_device *dev)
650 {
651 	struct drm_i915_private *dev_priv = to_i915(dev);
652 	int ret;
653 
654 	if (i915_inject_load_failure())
655 		return -ENODEV;
656 
657 	intel_bios_init(dev_priv);
658 
659 	/* If we have > 1 VGA cards, then we need to arbitrate access
660 	 * to the common VGA resources.
661 	 *
662 	 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
663 	 * then we do not take part in VGA arbitration and the
664 	 * vga_client_register() fails with -ENODEV.
665 	 */
666 #if 0
667 	ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
668 	if (ret && ret != -ENODEV)
669 		goto out;
670 
671 	intel_register_dsm_handler();
672 
673 	ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
674 	if (ret)
675 		goto cleanup_vga_client;
676 #endif
677 
678 	/* must happen before intel_power_domains_init_hw() on VLV/CHV */
679 	intel_update_rawclk(dev_priv);
680 
681 	intel_power_domains_init_hw(dev_priv, false);
682 
683 	intel_csr_ucode_init(dev_priv);
684 
685 	ret = intel_irq_install(dev_priv);
686 	if (ret)
687 		goto cleanup_csr;
688 
689 	intel_setup_gmbus(dev_priv);
690 
691 	/* Important: The output setup functions called by modeset_init need
692 	 * working irqs for e.g. gmbus and dp aux transfers. */
693 	ret = intel_modeset_init(dev);
694 	if (ret)
695 		goto cleanup_irq;
696 
697 	intel_uc_init_fw(dev_priv);
698 
699 	ret = i915_gem_init(dev_priv);
700 	if (ret)
701 		goto cleanup_uc;
702 
703 	intel_modeset_gem_init(dev);
704 
705 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
706 		return 0;
707 
708 	ret = intel_fbdev_init(dev);
709 	if (ret)
710 		goto cleanup_gem;
711 
712 	/* Only enable hotplug handling once the fbdev is fully set up. */
713 	intel_hpd_init(dev_priv);
714 
715 	drm_kms_helper_poll_init(dev);
716 
717 #ifdef __DragonFly__
718 	/*
719 	 * If we are dealing with dual GPU machines the vga_switcheroo module
720 	 * has been loaded. Machines with dual GPUs have an integrated graphics
721 	 * device (IGD), which we assume is an Intel device. The other, the
722 	 * discrete device (DIS), is either an NVidia or a Radeon device. For
723 	 * now we will force switch the gmux so the intel driver outputs
724 	 * both to the laptop panel and the external monitor.
725 	 *
726 	 * DragonFly does not have an nvidia native driver yet. In the future,
727 	 * we will check for the radeon device: if present, we will leave
728 	 * the gmux switch as it is, so the user can choose between the IGD and
729 	 * the DIS using the /dev/vga_switcheroo device.
730 	 */
731 	if (vga_switcheroo_handler_flags() & VGA_SWITCHEROO_CAN_SWITCH_DDC) {
732 		ret = vga_switcheroo_force_migd();
733 		if (ret) {
734 			DRM_INFO("could not switch gmux to IGD\n");
735 		}
736 	}
737 #endif
738 
739 	return 0;
740 
741 cleanup_gem:
742 	if (i915_gem_suspend(dev_priv))
743 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
744 	i915_gem_fini(dev_priv);
745 cleanup_uc:
746 	intel_uc_fini_fw(dev_priv);
747 cleanup_irq:
748 	drm_irq_uninstall(dev);
749 	intel_teardown_gmbus(dev_priv);
750 cleanup_csr:
751 	intel_csr_ucode_fini(dev_priv);
752 	intel_power_domains_fini(dev_priv);
753 #if 0
754 	vga_switcheroo_unregister_client(pdev);
755 cleanup_vga_client:
756 	vga_client_register(pdev, NULL, NULL, NULL);
757 out:
758 #endif
759 	return ret;
760 }
761 
762 #ifdef __DragonFly__
763 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
764 {
765 	return 0;
766 }
767 #else
768 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
769 {
770 	struct apertures_struct *ap;
771 	struct pci_dev *pdev = dev_priv->drm.pdev;
772 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
773 	bool primary;
774 	int ret;
775 
776 	ap = alloc_apertures(1);
777 	if (!ap)
778 		return -ENOMEM;
779 
780 	ap->ranges[0].base = ggtt->mappable_base;
781 	ap->ranges[0].size = ggtt->mappable_end;
782 
783 	primary =
784 		pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
785 
786 	ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
787 
788 	kfree(ap);
789 
790 	return ret;
791 }
792 #endif
793 
794 #if !defined(CONFIG_VGA_CONSOLE)
795 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
796 {
797 	return 0;
798 }
799 #elif !defined(CONFIG_DUMMY_CONSOLE)
800 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
801 {
802 	return -ENODEV;
803 }
804 #else
805 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
806 {
807 	int ret = 0;
808 
809 	DRM_INFO("Replacing VGA console driver\n");
810 
811 	console_lock();
812 	if (con_is_bound(&vga_con))
813 		ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
814 	if (ret == 0) {
815 		ret = do_unregister_con_driver(&vga_con);
816 
817 		/* Ignore "already unregistered". */
818 		if (ret == -ENODEV)
819 			ret = 0;
820 	}
821 	console_unlock();
822 
823 	return ret;
824 }
825 #endif
826 
827 static void intel_init_dpio(struct drm_i915_private *dev_priv)
828 {
829 	/*
830 	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
831 	 * CHV x1 PHY (DP/HDMI D)
832 	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
833 	 */
834 	if (IS_CHERRYVIEW(dev_priv)) {
835 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
836 		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
837 	} else if (IS_VALLEYVIEW(dev_priv)) {
838 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
839 	}
840 }
841 
842 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
843 {
844 	/*
845 	 * The i915 workqueue is primarily used for batched retirement of
846 	 * requests (and thus managing bo) once the task has been completed
847 	 * by the GPU. i915_gem_retire_requests() is called directly when we
848 	 * need high-priority retirement, such as waiting for an explicit
849 	 * bo.
850 	 *
851 	 * It is also used for periodic low-priority events, such as
852 	 * idle-timers and recording error state.
853 	 *
854 	 * All tasks on the workqueue are expected to acquire the dev mutex
855 	 * so there is no point in running more than one instance of the
856 	 * workqueue at any time.  Use an ordered one.
857 	 */
858 	dev_priv->wq = alloc_ordered_workqueue("i915", 0);
859 	if (dev_priv->wq == NULL)
860 		goto out_err;
861 
862 	dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
863 	if (dev_priv->hotplug.dp_wq == NULL)
864 		goto out_free_wq;
865 
866 	return 0;
867 
868 out_free_wq:
869 	destroy_workqueue(dev_priv->wq);
870 out_err:
871 	DRM_ERROR("Failed to allocate workqueues.\n");
872 
873 	return -ENOMEM;
874 }
875 
876 static void i915_engines_cleanup(struct drm_i915_private *i915)
877 {
878 	struct intel_engine_cs *engine;
879 	enum intel_engine_id id;
880 
881 	for_each_engine(engine, i915, id)
882 		kfree(engine);
883 }
884 
885 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
886 {
887 	destroy_workqueue(dev_priv->hotplug.dp_wq);
888 	destroy_workqueue(dev_priv->wq);
889 }
890 
891 /*
892  * We don't keep the workarounds for pre-production hardware, so we expect our
893  * driver to fail on these machines in one way or another. A little warning on
894  * dmesg may help both the user and the bug triagers.
895  */
896 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
897 {
898 	bool pre = false;
899 
900 	pre |= IS_HSW_EARLY_SDV(dev_priv);
901 	pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
902 	pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
903 
904 	if (pre) {
905 		DRM_ERROR("This is a pre-production stepping. "
906 			  "It may not be fully functional.\n");
907 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
908 	}
909 }
910 
911 /**
912  * i915_driver_init_early - setup state not requiring device access
913  * @dev_priv: device private
914  *
915  * Initialize everything that is a "SW-only" state, that is state not
916  * requiring accessing the device or exposing the driver via kernel internal
917  * or userspace interfaces. Example steps belonging here: lock initialization,
918  * system memory allocation, setting up device specific attributes and
919  * function hooks not requiring accessing the device.
920  */
921 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
922 				  const struct pci_device_id *ent)
923 {
924 	const struct intel_device_info *match_info =
925 		(struct intel_device_info *)ent->driver_data;
926 	struct intel_device_info *device_info;
927 	int ret = 0;
928 
929 	if (i915_inject_load_failure())
930 		return -ENODEV;
931 
932 	/* Setup the write-once "constant" device info */
933 	device_info = mkwrite_device_info(dev_priv);
934 	memcpy(device_info, match_info, sizeof(*device_info));
935 	device_info->device_id = dev_priv->drm.pdev->device;
936 
937 	BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
938 		     sizeof(device_info->platform_mask) * BITS_PER_BYTE);
939 	device_info->platform_mask = BIT(device_info->platform);
940 
941 	BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
942 	device_info->gen_mask = BIT(device_info->gen - 1);
943 
944 	lockinit(&dev_priv->irq_lock, "userirq", 0, 0);
945 	lockinit(&dev_priv->gpu_error.lock, "915err", 0, 0);
946 	lockinit(&dev_priv->backlight_lock, "i915bl", 0, LK_CANRECURSE);
947 	lockinit(&dev_priv->uncore.lock, "915gt", 0, 0);
948 
949 	lockinit(&dev_priv->mm.object_stat_lock, "i915osl", 0, 0);
950 	lockinit(&dev_priv->sb_lock, "i915sbl", 0, LK_CANRECURSE);
951 	lockinit(&dev_priv->modeset_restore_lock, "i915mrl", 0, LK_CANRECURSE);
952 	lockinit(&dev_priv->av_mutex, "i915am", 0, LK_CANRECURSE);
953 	lockinit(&dev_priv->wm.wm_mutex, "i915wm", 0, LK_CANRECURSE);
954 	lockinit(&dev_priv->pps_mutex, "i915pm", 0, LK_CANRECURSE);
955 
956 	intel_uc_init_early(dev_priv);
957 	i915_memcpy_init_early(dev_priv);
958 
959 	ret = i915_workqueues_init(dev_priv);
960 	if (ret < 0)
961 		goto err_engines;
962 
963 	/* This must be called before any calls to HAS_PCH_* */
964 	intel_detect_pch(dev_priv);
965 
966 	intel_pm_setup(dev_priv);
967 	intel_init_dpio(dev_priv);
968 	intel_power_domains_init(dev_priv);
969 	intel_irq_init(dev_priv);
970 	intel_hangcheck_init(dev_priv);
971 	intel_init_display_hooks(dev_priv);
972 	intel_init_clock_gating_hooks(dev_priv);
973 	intel_init_audio_hooks(dev_priv);
974 	ret = i915_gem_load_init(dev_priv);
975 	if (ret < 0)
976 		goto err_irq;
977 
978 	intel_display_crc_init(dev_priv);
979 
980 	intel_device_info_dump(dev_priv);
981 
982 	intel_detect_preproduction_hw(dev_priv);
983 
984 	i915_perf_init(dev_priv);
985 
986 	return 0;
987 
988 err_irq:
989 	intel_irq_fini(dev_priv);
990 	i915_workqueues_cleanup(dev_priv);
991 err_engines:
992 	i915_engines_cleanup(dev_priv);
993 	return ret;
994 }
995 
996 /**
997  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
998  * @dev_priv: device private
999  */
1000 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
1001 {
1002 	i915_perf_fini(dev_priv);
1003 	i915_gem_load_cleanup(dev_priv);
1004 	intel_irq_fini(dev_priv);
1005 	i915_workqueues_cleanup(dev_priv);
1006 	i915_engines_cleanup(dev_priv);
1007 }
1008 
1009 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
1010 {
1011 	struct pci_dev *pdev = dev_priv->drm.pdev;
1012 	int mmio_bar;
1013 	int mmio_size;
1014 
1015 	mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
1016 	/*
1017 	 * Before gen4, the registers and the GTT are behind different BARs.
1018 	 * However, from gen4 onwards, the registers and the GTT are shared
1019 	 * in the same BAR, so we want to restrict this ioremap from
1020 	 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
1021 	 * the register BAR remains the same size for all the earlier
1022 	 * generations up to Ironlake.
1023 	 */
1024 	if (INTEL_GEN(dev_priv) < 5)
1025 		mmio_size = 512 * 1024;
1026 	else
1027 		mmio_size = 2 * 1024 * 1024;
1028 	dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
1029 	if (dev_priv->regs == NULL) {
1030 		DRM_ERROR("failed to map registers\n");
1031 
1032 		return -EIO;
1033 	}
1034 
1035 	/* Try to make sure MCHBAR is enabled before poking at it */
1036 	intel_setup_mchbar(dev_priv);
1037 
1038 	return 0;
1039 }
1040 
1041 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
1042 {
1043 #if 0
1044 	struct pci_dev *pdev = dev_priv->drm.pdev;
1045 #endif
1046 
1047 	intel_teardown_mchbar(dev_priv);
1048 #if 0
1049 	pci_iounmap(pdev, dev_priv->regs);
1050 #endif
1051 }
1052 
1053 /**
1054  * i915_driver_init_mmio - setup device MMIO
1055  * @dev_priv: device private
1056  *
1057  * Setup minimal device state necessary for MMIO accesses later in the
1058  * initialization sequence. The setup here should avoid any other device-wide
1059  * side effects or exposing the driver via kernel internal or user space
1060  * interfaces.
1061  */
1062 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1063 {
1064 	int ret;
1065 
1066 	if (i915_inject_load_failure())
1067 		return -ENODEV;
1068 
1069 	if (i915_get_bridge_dev(dev_priv))
1070 		return -EIO;
1071 
1072 	ret = i915_mmio_setup(dev_priv);
1073 	if (ret < 0)
1074 		goto err_bridge;
1075 
1076 	intel_uncore_init(dev_priv);
1077 
1078 	intel_uc_init_mmio(dev_priv);
1079 
1080 	ret = intel_engines_init_mmio(dev_priv);
1081 	if (ret)
1082 		goto err_uncore;
1083 
1084 	i915_gem_init_mmio(dev_priv);
1085 
1086 	return 0;
1087 
1088 err_uncore:
1089 	intel_uncore_fini(dev_priv);
1090 err_bridge:
1091 	pci_dev_put(dev_priv->bridge_dev);
1092 
1093 	return ret;
1094 }
1095 
1096 /**
1097  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1098  * @dev_priv: device private
1099  */
1100 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1101 {
1102 	intel_uncore_fini(dev_priv);
1103 	i915_mmio_cleanup(dev_priv);
1104 	pci_dev_put(dev_priv->bridge_dev);
1105 }
1106 
1107 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1108 {
1109 	i915_modparams.enable_execlists =
1110 		intel_sanitize_enable_execlists(dev_priv,
1111 						i915_modparams.enable_execlists);
1112 
1113 	/*
1114 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1115 	 * user's requested state against the hardware/driver capabilities.  We
1116 	 * do this now so that we can print out any log messages once rather
1117 	 * than every time we check intel_enable_ppgtt().
1118 	 */
1119 	i915_modparams.enable_ppgtt =
1120 		intel_sanitize_enable_ppgtt(dev_priv,
1121 					    i915_modparams.enable_ppgtt);
1122 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1123 
1124 	i915_modparams.semaphores =
1125 		intel_sanitize_semaphores(dev_priv, i915_modparams.semaphores);
1126 	DRM_DEBUG_DRIVER("use GPU semaphores? %s\n",
1127 			 yesno(i915_modparams.semaphores));
1128 
1129 	intel_uc_sanitize_options(dev_priv);
1130 
1131 	intel_gvt_sanitize_options(dev_priv);
1132 }
1133 
1134 /**
1135  * i915_driver_init_hw - setup state requiring device access
1136  * @dev_priv: device private
1137  *
1138  * Setup state that requires accessing the device, but doesn't require
1139  * exposing the driver via kernel internal or userspace interfaces.
1140  */
1141 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1142 {
1143 	struct pci_dev *pdev = dev_priv->drm.pdev;
1144 	int ret;
1145 
1146 	if (i915_inject_load_failure())
1147 		return -ENODEV;
1148 
1149 	intel_device_info_runtime_init(dev_priv);
1150 
1151 	intel_sanitize_options(dev_priv);
1152 
1153 	ret = i915_ggtt_probe_hw(dev_priv);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* WARNING: Apparently we must kick fbdev drivers before vgacon,
1158 	 * otherwise the vga fbdev driver falls over. */
1159 	ret = i915_kick_out_firmware_fb(dev_priv);
1160 	if (ret) {
1161 		DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1162 		goto out_ggtt;
1163 	}
1164 
1165 	ret = i915_kick_out_vgacon(dev_priv);
1166 	if (ret) {
1167 		DRM_ERROR("failed to remove conflicting VGA console\n");
1168 		goto out_ggtt;
1169 	}
1170 
1171 	ret = i915_ggtt_init_hw(dev_priv);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = i915_ggtt_enable_hw(dev_priv);
1176 	if (ret) {
1177 		DRM_ERROR("failed to enable GGTT\n");
1178 		goto out_ggtt;
1179 	}
1180 
1181 	pci_set_master(pdev);
1182 
1183 #if 0
1184 	/* overlay on gen2 is broken and can't address above 1G */
1185 	if (IS_GEN2(dev_priv)) {
1186 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1187 		if (ret) {
1188 			DRM_ERROR("failed to set DMA mask\n");
1189 
1190 			goto out_ggtt;
1191 		}
1192 	}
1193 
1194 	/* 965GM sometimes incorrectly writes to hardware status page (HWS)
1195 	 * using 32bit addressing, overwriting memory if HWS is located
1196 	 * above 4GB.
1197 	 *
1198 	 * The documentation also mentions an issue with undefined
1199 	 * behaviour if any general state is accessed within a page above 4GB,
1200 	 * which also needs to be handled carefully.
1201 	 */
1202 	if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1203 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1204 
1205 		if (ret) {
1206 			DRM_ERROR("failed to set DMA mask\n");
1207 
1208 			goto out_ggtt;
1209 		}
1210 	}
1211 #endif
1212 
1213 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1214 			   PM_QOS_DEFAULT_VALUE);
1215 
1216 	intel_uncore_sanitize(dev_priv);
1217 
1218 	intel_opregion_setup(dev_priv);
1219 
1220 	i915_gem_load_init_fences(dev_priv);
1221 
1222 	/* On the 945G/GM, the chipset reports the MSI capability on the
1223 	 * integrated graphics even though the support isn't actually there
1224 	 * according to the published specs.  It doesn't appear to function
1225 	 * correctly in testing on 945G.
1226 	 * This may be a side effect of MSI having been made available for PEG
1227 	 * and the registers being closely associated.
1228 	 *
1229 	 * According to chipset errata, on the 965GM, MSI interrupts may
1230 	 * be lost or delayed, and was defeatured. MSI interrupts seem to
1231 	 * get lost on g4x as well, and interrupt delivery seems to stay
1232 	 * properly dead afterwards. So we'll just disable them for all
1233 	 * pre-gen5 chipsets.
1234 	 */
1235 #if 0
1236 	if (INTEL_GEN(dev_priv) >= 5) {
1237 		if (pci_enable_msi(pdev) < 0)
1238 			DRM_DEBUG_DRIVER("can't enable MSI");
1239 	}
1240 #endif
1241 
1242 	ret = intel_gvt_init(dev_priv);
1243 	if (ret)
1244 		goto out_ggtt;
1245 
1246 	return 0;
1247 
1248 out_ggtt:
1249 	i915_ggtt_cleanup_hw(dev_priv);
1250 
1251 	return ret;
1252 }
1253 
1254 /**
1255  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1256  * @dev_priv: device private
1257  */
1258 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1259 {
1260 #if 0
1261 	struct pci_dev *pdev = dev_priv->drm.pdev;
1262 
1263 	if (pdev->msi_enabled)
1264 		pci_disable_msi(pdev);
1265 #endif
1266 
1267 	pm_qos_remove_request(&dev_priv->pm_qos);
1268 	i915_ggtt_cleanup_hw(dev_priv);
1269 }
1270 
1271 /**
1272  * i915_driver_register - register the driver with the rest of the system
1273  * @dev_priv: device private
1274  *
1275  * Perform any steps necessary to make the driver available via kernel
1276  * internal or userspace interfaces.
1277  */
1278 static void i915_driver_register(struct drm_i915_private *dev_priv)
1279 {
1280 	struct drm_device *dev = &dev_priv->drm;
1281 
1282 	i915_gem_shrinker_init(dev_priv);
1283 
1284 	/*
1285 	 * Notify a valid surface after modesetting,
1286 	 * when running inside a VM.
1287 	 */
1288 	if (intel_vgpu_active(dev_priv))
1289 		I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1290 
1291 	/* Reveal our presence to userspace */
1292 	if (drm_dev_register(dev, 0) == 0) {
1293 		i915_debugfs_register(dev_priv);
1294 		i915_guc_log_register(dev_priv);
1295 		i915_setup_sysfs(dev_priv);
1296 
1297 		/* Depends on sysfs having been initialized */
1298 		i915_perf_register(dev_priv);
1299 	} else
1300 		DRM_ERROR("Failed to register driver for userspace access!\n");
1301 
1302 	if (INTEL_INFO(dev_priv)->num_pipes) {
1303 		/* Must be done after probing outputs */
1304 		intel_opregion_register(dev_priv);
1305 		acpi_video_register();
1306 	}
1307 
1308 	if (IS_GEN5(dev_priv))
1309 		intel_gpu_ips_init(dev_priv);
1310 
1311 	intel_audio_init(dev_priv);
1312 
1313 	/*
1314 	 * Some ports require correctly set-up hpd registers for detection to
1315 	 * work properly (leading to ghost connected connector status), e.g. VGA
1316 	 * on gm45.  Hence we can only set up the initial fbdev config after hpd
1317 	 * irqs are fully enabled. We do it last so that the async config
1318 	 * cannot run before the connectors are registered.
1319 	 */
1320 	intel_fbdev_initial_config_async(dev);
1321 }
1322 
1323 /**
1324  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1325  * @dev_priv: device private
1326  */
1327 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1328 {
1329 	intel_fbdev_unregister(dev_priv);
1330 	intel_audio_deinit(dev_priv);
1331 
1332 	intel_gpu_ips_teardown();
1333 	acpi_video_unregister();
1334 	intel_opregion_unregister(dev_priv);
1335 
1336 	i915_perf_unregister(dev_priv);
1337 
1338 	i915_teardown_sysfs(dev_priv);
1339 	i915_guc_log_unregister(dev_priv);
1340 	drm_dev_unregister(&dev_priv->drm);
1341 
1342 	i915_gem_shrinker_cleanup(dev_priv);
1343 }
1344 
1345 /**
1346  * i915_driver_load - setup chip and create an initial config
1347  * @pdev: PCI device
1348  * @ent: matching PCI ID entry
1349  *
1350  * The driver load routine has to do several things:
1351  *   - drive output discovery via intel_modeset_init()
1352  *   - initialize the memory manager
1353  *   - allocate initial config memory
1354  *   - setup the DRM framebuffer with the allocated memory
1355  */
1356 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1357 {
1358 	const struct intel_device_info *match_info =
1359 		(struct intel_device_info *)ent->driver_data;
1360 	struct drm_i915_private *dev_priv;
1361 	int ret;
1362 
1363 	/* Enable nuclear pageflip on ILK+ */
1364 	if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1365 		driver.driver_features &= ~DRIVER_ATOMIC;
1366 
1367 	ret = -ENOMEM;
1368 	dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1369 	if (dev_priv)
1370 		ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1371 	if (ret) {
1372 		DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1373 		goto out_free;
1374 	}
1375 
1376 	dev_priv->drm.pdev = pdev;
1377 	dev_priv->drm.dev_private = dev_priv;
1378 
1379 #if 0
1380 	ret = pci_enable_device(pdev);
1381 	if (ret)
1382 		goto out_fini;
1383 #endif
1384 
1385 	pci_set_drvdata(pdev, &dev_priv->drm);
1386 	/*
1387 	 * Disable the system suspend direct complete optimization, which can
1388 	 * leave the device suspended skipping the driver's suspend handlers
1389 	 * if the device was already runtime suspended. This is needed due to
1390 	 * the difference in our runtime and system suspend sequence and
1391 	 * becaue the HDA driver may require us to enable the audio power
1392 	 * domain during system suspend.
1393 	 */
1394 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1395 
1396 	ret = i915_driver_init_early(dev_priv, ent);
1397 	if (ret < 0)
1398 		goto out_pci_disable;
1399 
1400 	intel_runtime_pm_get(dev_priv);
1401 
1402 	ret = i915_driver_init_mmio(dev_priv);
1403 	if (ret < 0)
1404 		goto out_runtime_pm_put;
1405 
1406 	ret = i915_driver_init_hw(dev_priv);
1407 	if (ret < 0)
1408 		goto out_cleanup_mmio;
1409 
1410 	/*
1411 	 * TODO: move the vblank init and parts of modeset init steps into one
1412 	 * of the i915_driver_init_/i915_driver_register functions according
1413 	 * to the role/effect of the given init step.
1414 	 */
1415 	if (INTEL_INFO(dev_priv)->num_pipes) {
1416 		ret = drm_vblank_init(&dev_priv->drm,
1417 				      INTEL_INFO(dev_priv)->num_pipes);
1418 		if (ret)
1419 			goto out_cleanup_hw;
1420 	}
1421 
1422 	ret = i915_load_modeset_init(&dev_priv->drm);
1423 	if (ret < 0)
1424 		goto out_cleanup_hw;
1425 
1426 	i915_driver_register(dev_priv);
1427 
1428 	intel_runtime_pm_enable(dev_priv);
1429 
1430 	intel_init_ipc(dev_priv);
1431 
1432 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1433 		DRM_INFO("DRM_I915_DEBUG enabled\n");
1434 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1435 		DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1436 
1437 	intel_runtime_pm_put(dev_priv);
1438 
1439 	return 0;
1440 
1441 out_cleanup_hw:
1442 	i915_driver_cleanup_hw(dev_priv);
1443 out_cleanup_mmio:
1444 	i915_driver_cleanup_mmio(dev_priv);
1445 out_runtime_pm_put:
1446 	intel_runtime_pm_put(dev_priv);
1447 	i915_driver_cleanup_early(dev_priv);
1448 out_pci_disable:
1449 #if 0
1450 	pci_disable_device(pdev);
1451 out_fini:
1452 #endif
1453 	i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1454 	drm_dev_fini(&dev_priv->drm);
1455 out_free:
1456 	kfree(dev_priv);
1457 	return ret;
1458 }
1459 
1460 void i915_driver_unload(struct drm_device *dev)
1461 {
1462 	struct drm_i915_private *dev_priv = to_i915(dev);
1463 
1464 	i915_driver_unregister(dev_priv);
1465 
1466 	if (i915_gem_suspend(dev_priv))
1467 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1468 
1469 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1470 
1471 	drm_atomic_helper_shutdown(dev);
1472 
1473 	intel_gvt_cleanup(dev_priv);
1474 
1475 	intel_modeset_cleanup(dev);
1476 
1477 	/*
1478 	 * free the memory space allocated for the child device
1479 	 * config parsed from VBT
1480 	 */
1481 	if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1482 		kfree(dev_priv->vbt.child_dev);
1483 		dev_priv->vbt.child_dev = NULL;
1484 		dev_priv->vbt.child_dev_num = 0;
1485 	}
1486 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1487 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1488 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1489 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1490 
1491 #if 0
1492 	vga_switcheroo_unregister_client(pdev);
1493 	vga_client_register(pdev, NULL, NULL, NULL);
1494 #endif
1495 
1496 	intel_csr_ucode_fini(dev_priv);
1497 
1498 	/* Free error state after interrupts are fully disabled. */
1499 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1500 	i915_reset_error_state(dev_priv);
1501 
1502 	i915_gem_fini(dev_priv);
1503 	intel_uc_fini_fw(dev_priv);
1504 	intel_fbc_cleanup_cfb(dev_priv);
1505 
1506 	intel_power_domains_fini(dev_priv);
1507 
1508 	i915_driver_cleanup_hw(dev_priv);
1509 	i915_driver_cleanup_mmio(dev_priv);
1510 
1511 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1512 }
1513 
1514 static void i915_driver_release(struct drm_device *dev)
1515 {
1516 	struct drm_i915_private *dev_priv = to_i915(dev);
1517 
1518 	i915_driver_cleanup_early(dev_priv);
1519 	drm_dev_fini(&dev_priv->drm);
1520 
1521 	kfree(dev_priv);
1522 }
1523 
1524 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1525 {
1526 	struct drm_i915_private *i915 = to_i915(dev);
1527 	int ret;
1528 
1529 	ret = i915_gem_open(i915, file);
1530 	if (ret)
1531 		return ret;
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * i915_driver_lastclose - clean up after all DRM clients have exited
1538  * @dev: DRM device
1539  *
1540  * Take care of cleaning up after all DRM clients have exited.  In the
1541  * mode setting case, we want to restore the kernel's initial mode (just
1542  * in case the last client left us in a bad state).
1543  *
1544  * Additionally, in the non-mode setting case, we'll tear down the GTT
1545  * and DMA structures, since the kernel won't be using them, and clea
1546  * up any GEM state.
1547  */
1548 static void i915_driver_lastclose(struct drm_device *dev)
1549 {
1550 	intel_fbdev_restore_mode(dev);
1551 #if 0
1552 	vga_switcheroo_process_delayed_switch();
1553 #endif
1554 }
1555 
1556 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1557 {
1558 	struct drm_i915_file_private *file_priv = file->driver_priv;
1559 
1560 	mutex_lock(&dev->struct_mutex);
1561 	i915_gem_context_close(file);
1562 	i915_gem_release(dev, file);
1563 	mutex_unlock(&dev->struct_mutex);
1564 
1565 	kfree(file_priv);
1566 }
1567 
1568 #if 0
1569 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1570 {
1571 	struct drm_device *dev = &dev_priv->drm;
1572 	struct intel_encoder *encoder;
1573 
1574 	drm_modeset_lock_all(dev);
1575 	for_each_intel_encoder(dev, encoder)
1576 		if (encoder->suspend)
1577 			encoder->suspend(encoder);
1578 	drm_modeset_unlock_all(dev);
1579 }
1580 
1581 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1582 			      bool rpm_resume);
1583 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1584 
1585 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1586 {
1587 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1588 	if (acpi_target_system_state() < ACPI_STATE_S3)
1589 		return true;
1590 #endif
1591 	return false;
1592 }
1593 
1594 static int i915_drm_suspend(struct drm_device *dev)
1595 {
1596 	struct drm_i915_private *dev_priv = to_i915(dev);
1597 	struct pci_dev *pdev = dev_priv->drm.pdev;
1598 	pci_power_t opregion_target_state;
1599 	int error;
1600 
1601 	/* ignore lid events during suspend */
1602 	mutex_lock(&dev_priv->modeset_restore_lock);
1603 	dev_priv->modeset_restore = MODESET_SUSPENDED;
1604 	mutex_unlock(&dev_priv->modeset_restore_lock);
1605 
1606 	disable_rpm_wakeref_asserts(dev_priv);
1607 
1608 	/* We do a lot of poking in a lot of registers, make sure they work
1609 	 * properly. */
1610 	intel_display_set_init_power(dev_priv, true);
1611 
1612 	drm_kms_helper_poll_disable(dev);
1613 
1614 	pci_save_state(pdev);
1615 
1616 	error = i915_gem_suspend(dev_priv);
1617 	if (error) {
1618 		dev_err(&pdev->dev,
1619 			"GEM idle failed, resume might fail\n");
1620 		goto out;
1621 	}
1622 
1623 	intel_display_suspend(dev);
1624 
1625 	intel_dp_mst_suspend(dev);
1626 
1627 	intel_runtime_pm_disable_interrupts(dev_priv);
1628 	intel_hpd_cancel_work(dev_priv);
1629 
1630 	intel_suspend_encoders(dev_priv);
1631 
1632 	intel_suspend_hw(dev_priv);
1633 
1634 	i915_gem_suspend_gtt_mappings(dev_priv);
1635 
1636 	i915_save_state(dev_priv);
1637 
1638 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1639 	intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1640 
1641 	intel_uncore_suspend(dev_priv);
1642 	intel_opregion_unregister(dev_priv);
1643 
1644 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1645 
1646 	dev_priv->suspend_count++;
1647 
1648 	intel_csr_ucode_suspend(dev_priv);
1649 
1650 out:
1651 	enable_rpm_wakeref_asserts(dev_priv);
1652 
1653 	return error;
1654 }
1655 
1656 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1657 {
1658 	struct drm_i915_private *dev_priv = to_i915(dev);
1659 	struct pci_dev *pdev = dev_priv->drm.pdev;
1660 	bool fw_csr;
1661 	int ret;
1662 
1663 	disable_rpm_wakeref_asserts(dev_priv);
1664 
1665 	intel_display_set_init_power(dev_priv, false);
1666 
1667 	fw_csr = !IS_GEN9_LP(dev_priv) && !hibernation &&
1668 		suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1669 	/*
1670 	 * In case of firmware assisted context save/restore don't manually
1671 	 * deinit the power domains. This also means the CSR/DMC firmware will
1672 	 * stay active, it will power down any HW resources as required and
1673 	 * also enable deeper system power states that would be blocked if the
1674 	 * firmware was inactive.
1675 	 */
1676 	if (!fw_csr)
1677 		intel_power_domains_suspend(dev_priv);
1678 
1679 	ret = 0;
1680 	if (IS_GEN9_LP(dev_priv))
1681 		bxt_enable_dc9(dev_priv);
1682 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1683 		hsw_enable_pc8(dev_priv);
1684 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1685 		ret = vlv_suspend_complete(dev_priv);
1686 
1687 	if (ret) {
1688 		DRM_ERROR("Suspend complete failed: %d\n", ret);
1689 		if (!fw_csr)
1690 			intel_power_domains_init_hw(dev_priv, true);
1691 
1692 		goto out;
1693 	}
1694 
1695 	pci_disable_device(pdev);
1696 	/*
1697 	 * During hibernation on some platforms the BIOS may try to access
1698 	 * the device even though it's already in D3 and hang the machine. So
1699 	 * leave the device in D0 on those platforms and hope the BIOS will
1700 	 * power down the device properly. The issue was seen on multiple old
1701 	 * GENs with different BIOS vendors, so having an explicit blacklist
1702 	 * is inpractical; apply the workaround on everything pre GEN6. The
1703 	 * platforms where the issue was seen:
1704 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1705 	 * Fujitsu FSC S7110
1706 	 * Acer Aspire 1830T
1707 	 */
1708 	if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1709 		pci_set_power_state(pdev, PCI_D3hot);
1710 
1711 	dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1712 
1713 out:
1714 	enable_rpm_wakeref_asserts(dev_priv);
1715 
1716 	return ret;
1717 }
1718 
1719 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1720 {
1721 	int error;
1722 
1723 	if (!dev) {
1724 		DRM_ERROR("dev: %p\n", dev);
1725 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
1726 		return -ENODEV;
1727 	}
1728 
1729 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1730 			 state.event != PM_EVENT_FREEZE))
1731 		return -EINVAL;
1732 
1733 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1734 		return 0;
1735 
1736 	error = i915_drm_suspend(dev);
1737 	if (error)
1738 		return error;
1739 
1740 	return i915_drm_suspend_late(dev, false);
1741 }
1742 
1743 static int i915_drm_resume(struct drm_device *dev)
1744 {
1745 	struct drm_i915_private *dev_priv = to_i915(dev);
1746 	int ret;
1747 
1748 	disable_rpm_wakeref_asserts(dev_priv);
1749 	intel_sanitize_gt_powersave(dev_priv);
1750 
1751 	ret = i915_ggtt_enable_hw(dev_priv);
1752 	if (ret)
1753 		DRM_ERROR("failed to re-enable GGTT\n");
1754 
1755 	intel_csr_ucode_resume(dev_priv);
1756 
1757 	i915_gem_resume(dev_priv);
1758 
1759 	i915_restore_state(dev_priv);
1760 	intel_pps_unlock_regs_wa(dev_priv);
1761 	intel_opregion_setup(dev_priv);
1762 
1763 	intel_init_pch_refclk(dev_priv);
1764 
1765 	/*
1766 	 * Interrupts have to be enabled before any batches are run. If not the
1767 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
1768 	 * update/restore the context.
1769 	 *
1770 	 * drm_mode_config_reset() needs AUX interrupts.
1771 	 *
1772 	 * Modeset enabling in intel_modeset_init_hw() also needs working
1773 	 * interrupts.
1774 	 */
1775 	intel_runtime_pm_enable_interrupts(dev_priv);
1776 
1777 	drm_mode_config_reset(dev);
1778 
1779 	mutex_lock(&dev->struct_mutex);
1780 	if (i915_gem_init_hw(dev_priv)) {
1781 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1782 		i915_gem_set_wedged(dev_priv);
1783 	}
1784 	mutex_unlock(&dev->struct_mutex);
1785 
1786 	intel_guc_resume(dev_priv);
1787 
1788 	intel_modeset_init_hw(dev);
1789 	intel_init_clock_gating(dev_priv);
1790 
1791 	spin_lock_irq(&dev_priv->irq_lock);
1792 	if (dev_priv->display.hpd_irq_setup)
1793 		dev_priv->display.hpd_irq_setup(dev_priv);
1794 	spin_unlock_irq(&dev_priv->irq_lock);
1795 
1796 	intel_dp_mst_resume(dev);
1797 
1798 	intel_display_resume(dev);
1799 
1800 	drm_kms_helper_poll_enable(dev);
1801 
1802 	/*
1803 	 * ... but also need to make sure that hotplug processing
1804 	 * doesn't cause havoc. Like in the driver load code we don't
1805 	 * bother with the tiny race here where we might loose hotplug
1806 	 * notifications.
1807 	 * */
1808 	intel_hpd_init(dev_priv);
1809 
1810 	intel_opregion_register(dev_priv);
1811 
1812 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1813 
1814 	mutex_lock(&dev_priv->modeset_restore_lock);
1815 	dev_priv->modeset_restore = MODESET_DONE;
1816 	mutex_unlock(&dev_priv->modeset_restore_lock);
1817 
1818 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
1819 
1820 	intel_autoenable_gt_powersave(dev_priv);
1821 
1822 	enable_rpm_wakeref_asserts(dev_priv);
1823 
1824 	return 0;
1825 }
1826 
1827 static int i915_drm_resume_early(struct drm_device *dev)
1828 {
1829 	struct drm_i915_private *dev_priv = to_i915(dev);
1830 	struct pci_dev *pdev = dev_priv->drm.pdev;
1831 	int ret;
1832 
1833 	/*
1834 	 * We have a resume ordering issue with the snd-hda driver also
1835 	 * requiring our device to be power up. Due to the lack of a
1836 	 * parent/child relationship we currently solve this with an early
1837 	 * resume hook.
1838 	 *
1839 	 * FIXME: This should be solved with a special hdmi sink device or
1840 	 * similar so that power domains can be employed.
1841 	 */
1842 
1843 	/*
1844 	 * Note that we need to set the power state explicitly, since we
1845 	 * powered off the device during freeze and the PCI core won't power
1846 	 * it back up for us during thaw. Powering off the device during
1847 	 * freeze is not a hard requirement though, and during the
1848 	 * suspend/resume phases the PCI core makes sure we get here with the
1849 	 * device powered on. So in case we change our freeze logic and keep
1850 	 * the device powered we can also remove the following set power state
1851 	 * call.
1852 	 */
1853 	ret = pci_set_power_state(pdev, PCI_D0);
1854 	if (ret) {
1855 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1856 		goto out;
1857 	}
1858 
1859 	/*
1860 	 * Note that pci_enable_device() first enables any parent bridge
1861 	 * device and only then sets the power state for this device. The
1862 	 * bridge enabling is a nop though, since bridge devices are resumed
1863 	 * first. The order of enabling power and enabling the device is
1864 	 * imposed by the PCI core as described above, so here we preserve the
1865 	 * same order for the freeze/thaw phases.
1866 	 *
1867 	 * TODO: eventually we should remove pci_disable_device() /
1868 	 * pci_enable_enable_device() from suspend/resume. Due to how they
1869 	 * depend on the device enable refcount we can't anyway depend on them
1870 	 * disabling/enabling the device.
1871 	 */
1872 	if (pci_enable_device(pdev)) {
1873 		ret = -EIO;
1874 		goto out;
1875 	}
1876 
1877 	pci_set_master(pdev);
1878 
1879 	disable_rpm_wakeref_asserts(dev_priv);
1880 
1881 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1882 		ret = vlv_resume_prepare(dev_priv, false);
1883 	if (ret)
1884 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1885 			  ret);
1886 
1887 	intel_uncore_resume_early(dev_priv);
1888 
1889 	if (IS_GEN9_LP(dev_priv)) {
1890 		if (!dev_priv->suspended_to_idle)
1891 			gen9_sanitize_dc_state(dev_priv);
1892 		bxt_disable_dc9(dev_priv);
1893 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1894 		hsw_disable_pc8(dev_priv);
1895 	}
1896 
1897 	intel_uncore_sanitize(dev_priv);
1898 
1899 	if (IS_GEN9_LP(dev_priv) ||
1900 	    !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1901 		intel_power_domains_init_hw(dev_priv, true);
1902 	else
1903 		intel_display_set_init_power(dev_priv, true);
1904 
1905 	i915_gem_sanitize(dev_priv);
1906 
1907 	enable_rpm_wakeref_asserts(dev_priv);
1908 
1909 out:
1910 	dev_priv->suspended_to_idle = false;
1911 
1912 	return ret;
1913 }
1914 
1915 static int i915_resume_switcheroo(struct drm_device *dev)
1916 {
1917 	int ret;
1918 
1919 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1920 		return 0;
1921 
1922 	ret = i915_drm_resume_early(dev);
1923 	if (ret)
1924 		return ret;
1925 
1926 	return i915_drm_resume(dev);
1927 }
1928 #endif
1929 
1930 /**
1931  * i915_reset - reset chip after a hang
1932  * @i915: #drm_i915_private to reset
1933  * @flags: Instructions
1934  *
1935  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1936  * on failure.
1937  *
1938  * Caller must hold the struct_mutex.
1939  *
1940  * Procedure is fairly simple:
1941  *   - reset the chip using the reset reg
1942  *   - re-init context state
1943  *   - re-init hardware status page
1944  *   - re-init ring buffer
1945  *   - re-init interrupt state
1946  *   - re-init display
1947  */
1948 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1949 {
1950 	struct i915_gpu_error *error = &i915->gpu_error;
1951 	int ret;
1952 
1953 	lockdep_assert_held(&i915->drm.struct_mutex);
1954 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1955 
1956 	if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1957 		return;
1958 
1959 	/* Clear any previous failed attempts at recovery. Time to try again. */
1960 	if (!i915_gem_unset_wedged(i915))
1961 		goto wakeup;
1962 
1963 	if (!(flags & I915_RESET_QUIET))
1964 		dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1965 	error->reset_count++;
1966 
1967 	disable_irq(i915->drm.irq);
1968 	ret = i915_gem_reset_prepare(i915);
1969 	if (ret) {
1970 		DRM_ERROR("GPU recovery failed\n");
1971 		intel_gpu_reset(i915, ALL_ENGINES);
1972 		goto error;
1973 	}
1974 
1975 	ret = intel_gpu_reset(i915, ALL_ENGINES);
1976 	if (ret) {
1977 		if (ret != -ENODEV)
1978 			DRM_ERROR("Failed to reset chip: %i\n", ret);
1979 		else
1980 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1981 		goto error;
1982 	}
1983 
1984 	i915_gem_reset(i915);
1985 	intel_overlay_reset(i915);
1986 
1987 	/* Ok, now get things going again... */
1988 
1989 	/*
1990 	 * Everything depends on having the GTT running, so we need to start
1991 	 * there.
1992 	 */
1993 	ret = i915_ggtt_enable_hw(i915);
1994 	if (ret) {
1995 		DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1996 		goto error;
1997 	}
1998 
1999 	/*
2000 	 * Next we need to restore the context, but we don't use those
2001 	 * yet either...
2002 	 *
2003 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
2004 	 * was running at the time of the reset (i.e. we weren't VT
2005 	 * switched away).
2006 	 */
2007 	ret = i915_gem_init_hw(i915);
2008 	if (ret) {
2009 		DRM_ERROR("Failed hw init on reset %d\n", ret);
2010 		goto error;
2011 	}
2012 
2013 	i915_queue_hangcheck(i915);
2014 
2015 finish:
2016 	i915_gem_reset_finish(i915);
2017 	enable_irq(i915->drm.irq);
2018 
2019 wakeup:
2020 	clear_bit(I915_RESET_HANDOFF, &error->flags);
2021 	wake_up_bit(&error->flags, I915_RESET_HANDOFF);
2022 	return;
2023 
2024 error:
2025 	i915_gem_set_wedged(i915);
2026 	i915_gem_retire_requests(i915);
2027 	goto finish;
2028 }
2029 
2030 /**
2031  * i915_reset_engine - reset GPU engine to recover from a hang
2032  * @engine: engine to reset
2033  * @flags: options
2034  *
2035  * Reset a specific GPU engine. Useful if a hang is detected.
2036  * Returns zero on successful reset or otherwise an error code.
2037  *
2038  * Procedure is:
2039  *  - identifies the request that caused the hang and it is dropped
2040  *  - reset engine (which will force the engine to idle)
2041  *  - re-init/configure engine
2042  */
2043 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
2044 {
2045 	struct i915_gpu_error *error = &engine->i915->gpu_error;
2046 	struct drm_i915_gem_request *active_request;
2047 	int ret;
2048 
2049 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2050 
2051 	if (!(flags & I915_RESET_QUIET)) {
2052 		dev_notice(engine->i915->drm.dev,
2053 			   "Resetting %s after gpu hang\n", engine->name);
2054 	}
2055 	error->reset_engine_count[engine->id]++;
2056 
2057 	active_request = i915_gem_reset_prepare_engine(engine);
2058 	if (IS_ERR(active_request)) {
2059 		DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
2060 		ret = PTR_ERR(active_request);
2061 		goto out;
2062 	}
2063 
2064 	ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
2065 	if (ret) {
2066 		/* If we fail here, we expect to fallback to a global reset */
2067 		DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
2068 				 engine->name, ret);
2069 		goto out;
2070 	}
2071 
2072 	/*
2073 	 * The request that caused the hang is stuck on elsp, we know the
2074 	 * active request and can drop it, adjust head to skip the offending
2075 	 * request to resume executing remaining requests in the queue.
2076 	 */
2077 	i915_gem_reset_engine(engine, active_request);
2078 
2079 	/*
2080 	 * The engine and its registers (and workarounds in case of render)
2081 	 * have been reset to their default values. Follow the init_ring
2082 	 * process to program RING_MODE, HWSP and re-enable submission.
2083 	 */
2084 	ret = engine->init_hw(engine);
2085 	if (ret)
2086 		goto out;
2087 
2088 out:
2089 	i915_gem_reset_finish_engine(engine);
2090 	return ret;
2091 }
2092 
2093 #if 0
2094 static int i915_pm_suspend(struct device *kdev)
2095 {
2096 	struct pci_dev *pdev = to_pci_dev(kdev);
2097 	struct drm_device *dev = pci_get_drvdata(pdev);
2098 
2099 	if (!dev) {
2100 		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2101 		return -ENODEV;
2102 	}
2103 
2104 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2105 		return 0;
2106 
2107 	return i915_drm_suspend(dev);
2108 }
2109 
2110 static int i915_pm_suspend_late(struct device *kdev)
2111 {
2112 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2113 
2114 	/*
2115 	 * We have a suspend ordering issue with the snd-hda driver also
2116 	 * requiring our device to be power up. Due to the lack of a
2117 	 * parent/child relationship we currently solve this with an late
2118 	 * suspend hook.
2119 	 *
2120 	 * FIXME: This should be solved with a special hdmi sink device or
2121 	 * similar so that power domains can be employed.
2122 	 */
2123 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2124 		return 0;
2125 
2126 	return i915_drm_suspend_late(dev, false);
2127 }
2128 
2129 static int i915_pm_poweroff_late(struct device *kdev)
2130 {
2131 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2132 
2133 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2134 		return 0;
2135 
2136 	return i915_drm_suspend_late(dev, true);
2137 }
2138 
2139 static int i915_pm_resume_early(struct device *kdev)
2140 {
2141 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2142 
2143 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2144 		return 0;
2145 
2146 	return i915_drm_resume_early(dev);
2147 }
2148 
2149 static int i915_pm_resume(struct device *kdev)
2150 {
2151 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2152 
2153 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2154 		return 0;
2155 
2156 	return i915_drm_resume(dev);
2157 }
2158 
2159 /* freeze: before creating the hibernation_image */
2160 static int i915_pm_freeze(struct device *kdev)
2161 {
2162 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2163 	int ret;
2164 
2165 	if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2166 		ret = i915_drm_suspend(dev);
2167 		if (ret)
2168 			return ret;
2169 	}
2170 
2171 	ret = i915_gem_freeze(kdev_to_i915(kdev));
2172 	if (ret)
2173 		return ret;
2174 
2175 	return 0;
2176 }
2177 
2178 static int i915_pm_freeze_late(struct device *kdev)
2179 {
2180 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2181 	int ret;
2182 
2183 	if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2184 		ret = i915_drm_suspend_late(dev, true);
2185 		if (ret)
2186 			return ret;
2187 	}
2188 
2189 	ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2190 	if (ret)
2191 		return ret;
2192 
2193 	return 0;
2194 }
2195 
2196 /* thaw: called after creating the hibernation image, but before turning off. */
2197 static int i915_pm_thaw_early(struct device *kdev)
2198 {
2199 	return i915_pm_resume_early(kdev);
2200 }
2201 
2202 static int i915_pm_thaw(struct device *kdev)
2203 {
2204 	return i915_pm_resume(kdev);
2205 }
2206 
2207 /* restore: called after loading the hibernation image. */
2208 static int i915_pm_restore_early(struct device *kdev)
2209 {
2210 	return i915_pm_resume_early(kdev);
2211 }
2212 
2213 static int i915_pm_restore(struct device *kdev)
2214 {
2215 	return i915_pm_resume(kdev);
2216 }
2217 
2218 /*
2219  * Save all Gunit registers that may be lost after a D3 and a subsequent
2220  * S0i[R123] transition. The list of registers needing a save/restore is
2221  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2222  * registers in the following way:
2223  * - Driver: saved/restored by the driver
2224  * - Punit : saved/restored by the Punit firmware
2225  * - No, w/o marking: no need to save/restore, since the register is R/O or
2226  *                    used internally by the HW in a way that doesn't depend
2227  *                    keeping the content across a suspend/resume.
2228  * - Debug : used for debugging
2229  *
2230  * We save/restore all registers marked with 'Driver', with the following
2231  * exceptions:
2232  * - Registers out of use, including also registers marked with 'Debug'.
2233  *   These have no effect on the driver's operation, so we don't save/restore
2234  *   them to reduce the overhead.
2235  * - Registers that are fully setup by an initialization function called from
2236  *   the resume path. For example many clock gating and RPS/RC6 registers.
2237  * - Registers that provide the right functionality with their reset defaults.
2238  *
2239  * TODO: Except for registers that based on the above 3 criteria can be safely
2240  * ignored, we save/restore all others, practically treating the HW context as
2241  * a black-box for the driver. Further investigation is needed to reduce the
2242  * saved/restored registers even further, by following the same 3 criteria.
2243  */
2244 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2245 {
2246 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2247 	int i;
2248 
2249 	/* GAM 0x4000-0x4770 */
2250 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
2251 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
2252 	s->arb_mode		= I915_READ(ARB_MODE);
2253 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
2254 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
2255 
2256 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2257 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2258 
2259 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2260 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2261 
2262 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
2263 	s->ecochk		= I915_READ(GAM_ECOCHK);
2264 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
2265 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
2266 
2267 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
2268 
2269 	/* MBC 0x9024-0x91D0, 0x8500 */
2270 	s->g3dctl		= I915_READ(VLV_G3DCTL);
2271 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
2272 	s->mbctl		= I915_READ(GEN6_MBCTL);
2273 
2274 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2275 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
2276 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
2277 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
2278 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
2279 	s->rstctl		= I915_READ(GEN6_RSTCTL);
2280 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
2281 
2282 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2283 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
2284 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
2285 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
2286 	s->ecobus		= I915_READ(ECOBUS);
2287 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
2288 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
2289 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
2290 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
2291 	s->rcedata		= I915_READ(VLV_RCEDATA);
2292 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
2293 
2294 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2295 	s->gt_imr		= I915_READ(GTIMR);
2296 	s->gt_ier		= I915_READ(GTIER);
2297 	s->pm_imr		= I915_READ(GEN6_PMIMR);
2298 	s->pm_ier		= I915_READ(GEN6_PMIER);
2299 
2300 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2301 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2302 
2303 	/* GT SA CZ domain, 0x100000-0x138124 */
2304 	s->tilectl		= I915_READ(TILECTL);
2305 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
2306 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
2307 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2308 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
2309 
2310 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2311 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
2312 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
2313 	s->pcbr			= I915_READ(VLV_PCBR);
2314 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
2315 
2316 	/*
2317 	 * Not saving any of:
2318 	 * DFT,		0x9800-0x9EC0
2319 	 * SARB,	0xB000-0xB1FC
2320 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
2321 	 * PCI CFG
2322 	 */
2323 }
2324 
2325 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2326 {
2327 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2328 	u32 val;
2329 	int i;
2330 
2331 	/* GAM 0x4000-0x4770 */
2332 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
2333 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
2334 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
2335 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
2336 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
2337 
2338 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2339 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2340 
2341 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2342 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2343 
2344 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
2345 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
2346 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
2347 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
2348 
2349 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
2350 
2351 	/* MBC 0x9024-0x91D0, 0x8500 */
2352 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
2353 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
2354 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
2355 
2356 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2357 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
2358 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
2359 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
2360 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
2361 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
2362 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
2363 
2364 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2365 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
2366 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
2367 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
2368 	I915_WRITE(ECOBUS,		s->ecobus);
2369 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
2370 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2371 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
2372 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
2373 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
2374 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
2375 
2376 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2377 	I915_WRITE(GTIMR,		s->gt_imr);
2378 	I915_WRITE(GTIER,		s->gt_ier);
2379 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
2380 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
2381 
2382 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2383 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2384 
2385 	/* GT SA CZ domain, 0x100000-0x138124 */
2386 	I915_WRITE(TILECTL,			s->tilectl);
2387 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
2388 	/*
2389 	 * Preserve the GT allow wake and GFX force clock bit, they are not
2390 	 * be restored, as they are used to control the s0ix suspend/resume
2391 	 * sequence by the caller.
2392 	 */
2393 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2394 	val &= VLV_GTLC_ALLOWWAKEREQ;
2395 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2396 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2397 
2398 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2399 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
2400 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2401 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2402 
2403 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
2404 
2405 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2406 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
2407 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
2408 	I915_WRITE(VLV_PCBR,			s->pcbr);
2409 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
2410 }
2411 
2412 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2413 				  u32 mask, u32 val)
2414 {
2415 	/* The HW does not like us polling for PW_STATUS frequently, so
2416 	 * use the sleeping loop rather than risk the busy spin within
2417 	 * intel_wait_for_register().
2418 	 *
2419 	 * Transitioning between RC6 states should be at most 2ms (see
2420 	 * valleyview_enable_rps) so use a 3ms timeout.
2421 	 */
2422 	return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2423 			3);
2424 }
2425 #endif
2426 
2427 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2428 {
2429 	u32 val;
2430 	int err;
2431 
2432 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2433 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2434 	if (force_on)
2435 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
2436 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2437 
2438 	if (!force_on)
2439 		return 0;
2440 
2441 	err = intel_wait_for_register(dev_priv,
2442 				      VLV_GTLC_SURVIVABILITY_REG,
2443 				      VLV_GFX_CLK_STATUS_BIT,
2444 				      VLV_GFX_CLK_STATUS_BIT,
2445 				      20);
2446 	if (err)
2447 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2448 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2449 
2450 	return err;
2451 }
2452 
2453 #if 0
2454 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2455 {
2456 	u32 mask;
2457 	u32 val;
2458 	int err;
2459 
2460 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2461 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
2462 	if (allow)
2463 		val |= VLV_GTLC_ALLOWWAKEREQ;
2464 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2465 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
2466 
2467 	mask = VLV_GTLC_ALLOWWAKEACK;
2468 	val = allow ? mask : 0;
2469 
2470 	err = vlv_wait_for_pw_status(dev_priv, mask, val);
2471 	if (err)
2472 		DRM_ERROR("timeout disabling GT waking\n");
2473 
2474 	return err;
2475 }
2476 
2477 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2478 				  bool wait_for_on)
2479 {
2480 	u32 mask;
2481 	u32 val;
2482 
2483 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2484 	val = wait_for_on ? mask : 0;
2485 
2486 	/*
2487 	 * RC6 transitioning can be delayed up to 2 msec (see
2488 	 * valleyview_enable_rps), use 3 msec for safety.
2489 	 */
2490 	if (vlv_wait_for_pw_status(dev_priv, mask, val))
2491 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
2492 			  onoff(wait_for_on));
2493 }
2494 
2495 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2496 {
2497 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2498 		return;
2499 
2500 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2501 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2502 }
2503 
2504 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2505 {
2506 	u32 mask;
2507 	int err;
2508 
2509 	/*
2510 	 * Bspec defines the following GT well on flags as debug only, so
2511 	 * don't treat them as hard failures.
2512 	 */
2513 	vlv_wait_for_gt_wells(dev_priv, false);
2514 
2515 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2516 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2517 
2518 	vlv_check_no_gt_access(dev_priv);
2519 
2520 	err = vlv_force_gfx_clock(dev_priv, true);
2521 	if (err)
2522 		goto err1;
2523 
2524 	err = vlv_allow_gt_wake(dev_priv, false);
2525 	if (err)
2526 		goto err2;
2527 
2528 	if (!IS_CHERRYVIEW(dev_priv))
2529 		vlv_save_gunit_s0ix_state(dev_priv);
2530 
2531 	err = vlv_force_gfx_clock(dev_priv, false);
2532 	if (err)
2533 		goto err2;
2534 
2535 	return 0;
2536 
2537 err2:
2538 	/* For safety always re-enable waking and disable gfx clock forcing */
2539 	vlv_allow_gt_wake(dev_priv, true);
2540 err1:
2541 	vlv_force_gfx_clock(dev_priv, false);
2542 
2543 	return err;
2544 }
2545 
2546 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2547 				bool rpm_resume)
2548 {
2549 	int err;
2550 	int ret;
2551 
2552 	/*
2553 	 * If any of the steps fail just try to continue, that's the best we
2554 	 * can do at this point. Return the first error code (which will also
2555 	 * leave RPM permanently disabled).
2556 	 */
2557 	ret = vlv_force_gfx_clock(dev_priv, true);
2558 
2559 	if (!IS_CHERRYVIEW(dev_priv))
2560 		vlv_restore_gunit_s0ix_state(dev_priv);
2561 
2562 	err = vlv_allow_gt_wake(dev_priv, true);
2563 	if (!ret)
2564 		ret = err;
2565 
2566 	err = vlv_force_gfx_clock(dev_priv, false);
2567 	if (!ret)
2568 		ret = err;
2569 
2570 	vlv_check_no_gt_access(dev_priv);
2571 
2572 	if (rpm_resume)
2573 		intel_init_clock_gating(dev_priv);
2574 
2575 	return ret;
2576 }
2577 
2578 static int intel_runtime_suspend(struct device *kdev)
2579 {
2580 	struct pci_dev *pdev = to_pci_dev(kdev);
2581 	struct drm_device *dev = pci_get_drvdata(pdev);
2582 	struct drm_i915_private *dev_priv = to_i915(dev);
2583 	int ret;
2584 
2585 	if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && intel_rc6_enabled())))
2586 		return -ENODEV;
2587 
2588 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2589 		return -ENODEV;
2590 
2591 	DRM_DEBUG_KMS("Suspending device\n");
2592 
2593 	disable_rpm_wakeref_asserts(dev_priv);
2594 
2595 	/*
2596 	 * We are safe here against re-faults, since the fault handler takes
2597 	 * an RPM reference.
2598 	 */
2599 	i915_gem_runtime_suspend(dev_priv);
2600 
2601 	intel_guc_suspend(dev_priv);
2602 
2603 	intel_runtime_pm_disable_interrupts(dev_priv);
2604 
2605 	ret = 0;
2606 	if (IS_GEN9_LP(dev_priv)) {
2607 		bxt_display_core_uninit(dev_priv);
2608 		bxt_enable_dc9(dev_priv);
2609 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2610 		hsw_enable_pc8(dev_priv);
2611 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2612 		ret = vlv_suspend_complete(dev_priv);
2613 	}
2614 
2615 	if (ret) {
2616 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2617 		intel_runtime_pm_enable_interrupts(dev_priv);
2618 
2619 		enable_rpm_wakeref_asserts(dev_priv);
2620 
2621 		return ret;
2622 	}
2623 
2624 	intel_uncore_suspend(dev_priv);
2625 
2626 	enable_rpm_wakeref_asserts(dev_priv);
2627 	WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2628 
2629 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2630 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
2631 
2632 	dev_priv->runtime_pm.suspended = true;
2633 
2634 	/*
2635 	 * FIXME: We really should find a document that references the arguments
2636 	 * used below!
2637 	 */
2638 	if (IS_BROADWELL(dev_priv)) {
2639 		/*
2640 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2641 		 * being detected, and the call we do at intel_runtime_resume()
2642 		 * won't be able to restore them. Since PCI_D3hot matches the
2643 		 * actual specification and appears to be working, use it.
2644 		 */
2645 		intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2646 	} else {
2647 		/*
2648 		 * current versions of firmware which depend on this opregion
2649 		 * notification have repurposed the D1 definition to mean
2650 		 * "runtime suspended" vs. what you would normally expect (D3)
2651 		 * to distinguish it from notifications that might be sent via
2652 		 * the suspend path.
2653 		 */
2654 		intel_opregion_notify_adapter(dev_priv, PCI_D1);
2655 	}
2656 
2657 	assert_forcewakes_inactive(dev_priv);
2658 
2659 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2660 		intel_hpd_poll_init(dev_priv);
2661 
2662 	DRM_DEBUG_KMS("Device suspended\n");
2663 	return 0;
2664 }
2665 
2666 static int intel_runtime_resume(struct device *kdev)
2667 {
2668 	struct pci_dev *pdev = to_pci_dev(kdev);
2669 	struct drm_device *dev = pci_get_drvdata(pdev);
2670 	struct drm_i915_private *dev_priv = to_i915(dev);
2671 	int ret = 0;
2672 
2673 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2674 		return -ENODEV;
2675 
2676 	DRM_DEBUG_KMS("Resuming device\n");
2677 
2678 	WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2679 	disable_rpm_wakeref_asserts(dev_priv);
2680 
2681 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
2682 	dev_priv->runtime_pm.suspended = false;
2683 	if (intel_uncore_unclaimed_mmio(dev_priv))
2684 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2685 
2686 	intel_guc_resume(dev_priv);
2687 
2688 	if (IS_GEN9_LP(dev_priv)) {
2689 		bxt_disable_dc9(dev_priv);
2690 		bxt_display_core_init(dev_priv, true);
2691 		if (dev_priv->csr.dmc_payload &&
2692 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2693 			gen9_enable_dc5(dev_priv);
2694 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2695 		hsw_disable_pc8(dev_priv);
2696 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2697 		ret = vlv_resume_prepare(dev_priv, true);
2698 	}
2699 
2700 	intel_uncore_runtime_resume(dev_priv);
2701 
2702 	/*
2703 	 * No point of rolling back things in case of an error, as the best
2704 	 * we can do is to hope that things will still work (and disable RPM).
2705 	 */
2706 	i915_gem_init_swizzling(dev_priv);
2707 	i915_gem_restore_fences(dev_priv);
2708 
2709 	intel_runtime_pm_enable_interrupts(dev_priv);
2710 
2711 	/*
2712 	 * On VLV/CHV display interrupts are part of the display
2713 	 * power well, so hpd is reinitialized from there. For
2714 	 * everyone else do it here.
2715 	 */
2716 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2717 		intel_hpd_init(dev_priv);
2718 
2719 	intel_enable_ipc(dev_priv);
2720 
2721 	enable_rpm_wakeref_asserts(dev_priv);
2722 
2723 	if (ret)
2724 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2725 	else
2726 		DRM_DEBUG_KMS("Device resumed\n");
2727 
2728 	return ret;
2729 }
2730 
2731 const struct dev_pm_ops i915_pm_ops = {
2732 	/*
2733 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2734 	 * PMSG_RESUME]
2735 	 */
2736 	.suspend = i915_pm_suspend,
2737 	.suspend_late = i915_pm_suspend_late,
2738 	.resume_early = i915_pm_resume_early,
2739 	.resume = i915_pm_resume,
2740 
2741 	/*
2742 	 * S4 event handlers
2743 	 * @freeze, @freeze_late    : called (1) before creating the
2744 	 *                            hibernation image [PMSG_FREEZE] and
2745 	 *                            (2) after rebooting, before restoring
2746 	 *                            the image [PMSG_QUIESCE]
2747 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
2748 	 *                            image, before writing it [PMSG_THAW]
2749 	 *                            and (2) after failing to create or
2750 	 *                            restore the image [PMSG_RECOVER]
2751 	 * @poweroff, @poweroff_late: called after writing the hibernation
2752 	 *                            image, before rebooting [PMSG_HIBERNATE]
2753 	 * @restore, @restore_early : called after rebooting and restoring the
2754 	 *                            hibernation image [PMSG_RESTORE]
2755 	 */
2756 	.freeze = i915_pm_freeze,
2757 	.freeze_late = i915_pm_freeze_late,
2758 	.thaw_early = i915_pm_thaw_early,
2759 	.thaw = i915_pm_thaw,
2760 	.poweroff = i915_pm_suspend,
2761 	.poweroff_late = i915_pm_poweroff_late,
2762 	.restore_early = i915_pm_restore_early,
2763 	.restore = i915_pm_restore,
2764 
2765 	/* S0ix (via runtime suspend) event handlers */
2766 	.runtime_suspend = intel_runtime_suspend,
2767 	.runtime_resume = intel_runtime_resume,
2768 };
2769 
2770 static const struct vm_operations_struct i915_gem_vm_ops = {
2771 	.fault = i915_gem_fault,
2772 	.open = drm_gem_vm_open,
2773 	.close = drm_gem_vm_close,
2774 };
2775 #endif
2776 
2777 static struct cdev_pager_ops i915_gem_vm_ops = {
2778 	.cdev_pg_fault	= i915_gem_fault,
2779 	.cdev_pg_ctor	= i915_gem_pager_ctor,
2780 	.cdev_pg_dtor	= i915_gem_pager_dtor
2781 };
2782 
2783 static const struct file_operations i915_driver_fops = {
2784 	.owner = THIS_MODULE,
2785 #if 0
2786 	.open = drm_open,
2787 	.release = drm_release,
2788 	.unlocked_ioctl = drm_ioctl,
2789 	.mmap = drm_gem_mmap,
2790 	.poll = drm_poll,
2791 	.read = drm_read,
2792 	.compat_ioctl = i915_compat_ioctl,
2793 	.llseek = noop_llseek,
2794 #endif
2795 };
2796 
2797 static int
2798 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2799 			  struct drm_file *file)
2800 {
2801 	return -ENODEV;
2802 }
2803 
2804 static const struct drm_ioctl_desc i915_ioctls[] = {
2805 	DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2806 	DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2807 	DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2808 	DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2809 	DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2810 	DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2811 	DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2812 	DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2813 	DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2814 	DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2815 	DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2816 	DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2817 	DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2818 	DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2819 	DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2820 	DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2821 	DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2822 	DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2823 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2824 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2825 	DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2826 	DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2827 	DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2828 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2829 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2830 	DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2831 	DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2832 	DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2833 	DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2834 	DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2835 	DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2836 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2837 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2838 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2839 	DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2840 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2841 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2842 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2843 	DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2844 	DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2845 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2846 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2847 	DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2848 	DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2849 	DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2850 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2851 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2852 	DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2853 	DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2854 #if 0
2855 	DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2856 #endif
2857 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2858 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2859 	DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2860 #if 0
2861 	DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2862 	DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2863 #endif
2864 };
2865 
2866 static int i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx,
2867 			    struct sysctl_oid *top)
2868 {
2869        return drm_add_busid_modesetting(dev, ctx, top);
2870 }
2871 
2872 static struct drm_driver driver = {
2873 	/* Don't use MTRRs here; the Xserver or userspace app should
2874 	 * deal with them for Intel hardware.
2875 	 */
2876 	.driver_features =
2877 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2878 	    DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2879 	.release = i915_driver_release,
2880 	.open = i915_driver_open,
2881 	.lastclose = i915_driver_lastclose,
2882 	.postclose = i915_driver_postclose,
2883 
2884 	.gem_close_object = i915_gem_close_object,
2885 	.gem_free_object_unlocked = i915_gem_free_object,
2886 	.gem_vm_ops = &i915_gem_vm_ops,
2887 
2888 	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2889 	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2890 	.gem_prime_export = i915_gem_prime_export,
2891 	.gem_prime_import = i915_gem_prime_import,
2892 
2893 	.dumb_create = i915_gem_dumb_create,
2894 	.dumb_map_offset = i915_gem_mmap_gtt,
2895 	.ioctls = i915_ioctls,
2896 	.num_ioctls = ARRAY_SIZE(i915_ioctls),
2897 	.fops = &i915_driver_fops,
2898 	.name = DRIVER_NAME,
2899 	.desc = DRIVER_DESC,
2900 	.date = DRIVER_DATE,
2901 	.major = DRIVER_MAJOR,
2902 	.minor = DRIVER_MINOR,
2903 	.patchlevel = DRIVER_PATCHLEVEL,
2904 #ifdef __DragonFly__
2905 	.sysctl_init = i915_sysctl_init,
2906 #endif
2907 };
2908 
2909 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2910 #include "selftests/mock_drm.c"
2911 #endif
2912