xref: /dragonfly/sys/dev/drm/i915/i915_drv.c (revision d4e390fc)
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/device.h>
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 #include <linux/console.h>
38 #include <linux/module.h>
39 #include <linux/vga_switcheroo.h>
40 #include <drm/drm_crtc_helper.h>
41 
42 static struct drm_driver driver;
43 
44 #define GEN_DEFAULT_PIPEOFFSETS \
45 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
46 			  PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
47 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
48 			   TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
49 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
50 
51 #define GEN_CHV_PIPEOFFSETS \
52 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
53 			  CHV_PIPE_C_OFFSET }, \
54 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
55 			   CHV_TRANSCODER_C_OFFSET, }, \
56 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
57 			     CHV_PALETTE_C_OFFSET }
58 
59 #define CURSOR_OFFSETS \
60 	.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
61 
62 #define IVB_CURSOR_OFFSETS \
63 	.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
64 
65 #define BDW_COLORS \
66 	.color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
67 #define CHV_COLORS \
68 	.color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
69 
70 static const struct intel_device_info intel_i830_info = {
71 	.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
72 	.has_overlay = 1, .overlay_needs_physical = 1,
73 	.ring_mask = RENDER_RING,
74 	GEN_DEFAULT_PIPEOFFSETS,
75 	CURSOR_OFFSETS,
76 };
77 
78 static const struct intel_device_info intel_845g_info = {
79 	.gen = 2, .num_pipes = 1,
80 	.has_overlay = 1, .overlay_needs_physical = 1,
81 	.ring_mask = RENDER_RING,
82 	GEN_DEFAULT_PIPEOFFSETS,
83 	CURSOR_OFFSETS,
84 };
85 
86 static const struct intel_device_info intel_i85x_info = {
87 	.gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
88 	.cursor_needs_physical = 1,
89 	.has_overlay = 1, .overlay_needs_physical = 1,
90 	.has_fbc = 1,
91 	.ring_mask = RENDER_RING,
92 	GEN_DEFAULT_PIPEOFFSETS,
93 	CURSOR_OFFSETS,
94 };
95 
96 static const struct intel_device_info intel_i865g_info = {
97 	.gen = 2, .num_pipes = 1,
98 	.has_overlay = 1, .overlay_needs_physical = 1,
99 	.ring_mask = RENDER_RING,
100 	GEN_DEFAULT_PIPEOFFSETS,
101 	CURSOR_OFFSETS,
102 };
103 
104 static const struct intel_device_info intel_i915g_info = {
105 	.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
106 	.has_overlay = 1, .overlay_needs_physical = 1,
107 	.ring_mask = RENDER_RING,
108 	GEN_DEFAULT_PIPEOFFSETS,
109 	CURSOR_OFFSETS,
110 };
111 static const struct intel_device_info intel_i915gm_info = {
112 	.gen = 3, .is_mobile = 1, .num_pipes = 2,
113 	.cursor_needs_physical = 1,
114 	.has_overlay = 1, .overlay_needs_physical = 1,
115 	.supports_tv = 1,
116 	.has_fbc = 1,
117 	.ring_mask = RENDER_RING,
118 	GEN_DEFAULT_PIPEOFFSETS,
119 	CURSOR_OFFSETS,
120 };
121 static const struct intel_device_info intel_i945g_info = {
122 	.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
123 	.has_overlay = 1, .overlay_needs_physical = 1,
124 	.ring_mask = RENDER_RING,
125 	GEN_DEFAULT_PIPEOFFSETS,
126 	CURSOR_OFFSETS,
127 };
128 static const struct intel_device_info intel_i945gm_info = {
129 	.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
130 	.has_hotplug = 1, .cursor_needs_physical = 1,
131 	.has_overlay = 1, .overlay_needs_physical = 1,
132 	.supports_tv = 1,
133 	.has_fbc = 1,
134 	.ring_mask = RENDER_RING,
135 	GEN_DEFAULT_PIPEOFFSETS,
136 	CURSOR_OFFSETS,
137 };
138 
139 static const struct intel_device_info intel_i965g_info = {
140 	.gen = 4, .is_broadwater = 1, .num_pipes = 2,
141 	.has_hotplug = 1,
142 	.has_overlay = 1,
143 	.ring_mask = RENDER_RING,
144 	GEN_DEFAULT_PIPEOFFSETS,
145 	CURSOR_OFFSETS,
146 };
147 
148 static const struct intel_device_info intel_i965gm_info = {
149 	.gen = 4, .is_crestline = 1, .num_pipes = 2,
150 	.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
151 	.has_overlay = 1,
152 	.supports_tv = 1,
153 	.ring_mask = RENDER_RING,
154 	GEN_DEFAULT_PIPEOFFSETS,
155 	CURSOR_OFFSETS,
156 };
157 
158 static const struct intel_device_info intel_g33_info = {
159 	.gen = 3, .is_g33 = 1, .num_pipes = 2,
160 	.need_gfx_hws = 1, .has_hotplug = 1,
161 	.has_overlay = 1,
162 	.ring_mask = RENDER_RING,
163 	GEN_DEFAULT_PIPEOFFSETS,
164 	CURSOR_OFFSETS,
165 };
166 
167 static const struct intel_device_info intel_g45_info = {
168 	.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
169 	.has_pipe_cxsr = 1, .has_hotplug = 1,
170 	.ring_mask = RENDER_RING | BSD_RING,
171 	GEN_DEFAULT_PIPEOFFSETS,
172 	CURSOR_OFFSETS,
173 };
174 
175 static const struct intel_device_info intel_gm45_info = {
176 	.gen = 4, .is_g4x = 1, .num_pipes = 2,
177 	.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
178 	.has_pipe_cxsr = 1, .has_hotplug = 1,
179 	.supports_tv = 1,
180 	.ring_mask = RENDER_RING | BSD_RING,
181 	GEN_DEFAULT_PIPEOFFSETS,
182 	CURSOR_OFFSETS,
183 };
184 
185 static const struct intel_device_info intel_pineview_info = {
186 	.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
187 	.need_gfx_hws = 1, .has_hotplug = 1,
188 	.has_overlay = 1,
189 	GEN_DEFAULT_PIPEOFFSETS,
190 	CURSOR_OFFSETS,
191 };
192 
193 static const struct intel_device_info intel_ironlake_d_info = {
194 	.gen = 5, .num_pipes = 2,
195 	.need_gfx_hws = 1, .has_hotplug = 1,
196 	.ring_mask = RENDER_RING | BSD_RING,
197 	GEN_DEFAULT_PIPEOFFSETS,
198 	CURSOR_OFFSETS,
199 };
200 
201 static const struct intel_device_info intel_ironlake_m_info = {
202 	.gen = 5, .is_mobile = 1, .num_pipes = 2,
203 	.need_gfx_hws = 1, .has_hotplug = 1,
204 	.has_fbc = 1,
205 	.ring_mask = RENDER_RING | BSD_RING,
206 	GEN_DEFAULT_PIPEOFFSETS,
207 	CURSOR_OFFSETS,
208 };
209 
210 static const struct intel_device_info intel_sandybridge_d_info = {
211 	.gen = 6, .num_pipes = 2,
212 	.need_gfx_hws = 1, .has_hotplug = 1,
213 	.has_fbc = 1,
214 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
215 	.has_llc = 1,
216 	GEN_DEFAULT_PIPEOFFSETS,
217 	CURSOR_OFFSETS,
218 };
219 
220 static const struct intel_device_info intel_sandybridge_m_info = {
221 	.gen = 6, .is_mobile = 1, .num_pipes = 2,
222 	.need_gfx_hws = 1, .has_hotplug = 1,
223 	.has_fbc = 1,
224 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
225 	.has_llc = 1,
226 	GEN_DEFAULT_PIPEOFFSETS,
227 	CURSOR_OFFSETS,
228 };
229 
230 #define GEN7_FEATURES  \
231 	.gen = 7, .num_pipes = 3, \
232 	.need_gfx_hws = 1, .has_hotplug = 1, \
233 	.has_fbc = 1, \
234 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
235 	.has_llc = 1, \
236 	GEN_DEFAULT_PIPEOFFSETS, \
237 	IVB_CURSOR_OFFSETS
238 
239 static const struct intel_device_info intel_ivybridge_d_info = {
240 	GEN7_FEATURES,
241 	.is_ivybridge = 1,
242 };
243 
244 static const struct intel_device_info intel_ivybridge_m_info = {
245 	GEN7_FEATURES,
246 	.is_ivybridge = 1,
247 	.is_mobile = 1,
248 };
249 
250 static const struct intel_device_info intel_ivybridge_q_info = {
251 	GEN7_FEATURES,
252 	.is_ivybridge = 1,
253 	.num_pipes = 0, /* legal, last one wins */
254 };
255 
256 #define VLV_FEATURES  \
257 	.gen = 7, .num_pipes = 2, \
258 	.need_gfx_hws = 1, .has_hotplug = 1, \
259 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
260 	.display_mmio_offset = VLV_DISPLAY_BASE, \
261 	GEN_DEFAULT_PIPEOFFSETS, \
262 	CURSOR_OFFSETS
263 
264 static const struct intel_device_info intel_valleyview_m_info = {
265 	VLV_FEATURES,
266 	.is_valleyview = 1,
267 	.is_mobile = 1,
268 };
269 
270 static const struct intel_device_info intel_valleyview_d_info = {
271 	VLV_FEATURES,
272 	.is_valleyview = 1,
273 };
274 
275 #define HSW_FEATURES  \
276 	GEN7_FEATURES, \
277 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
278 	.has_ddi = 1, \
279 	.has_fpga_dbg = 1
280 
281 static const struct intel_device_info intel_haswell_d_info = {
282 	HSW_FEATURES,
283 	.is_haswell = 1,
284 };
285 
286 static const struct intel_device_info intel_haswell_m_info = {
287 	HSW_FEATURES,
288 	.is_haswell = 1,
289 	.is_mobile = 1,
290 };
291 
292 #define BDW_FEATURES \
293 	HSW_FEATURES, \
294 	BDW_COLORS
295 
296 static const struct intel_device_info intel_broadwell_d_info = {
297 	BDW_FEATURES,
298 	.gen = 8,
299 };
300 
301 static const struct intel_device_info intel_broadwell_m_info = {
302 	BDW_FEATURES,
303 	.gen = 8, .is_mobile = 1,
304 };
305 
306 static const struct intel_device_info intel_broadwell_gt3d_info = {
307 	BDW_FEATURES,
308 	.gen = 8,
309 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
310 };
311 
312 static const struct intel_device_info intel_broadwell_gt3m_info = {
313 	BDW_FEATURES,
314 	.gen = 8, .is_mobile = 1,
315 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
316 };
317 
318 static const struct intel_device_info intel_cherryview_info = {
319 	.gen = 8, .num_pipes = 3,
320 	.need_gfx_hws = 1, .has_hotplug = 1,
321 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
322 	.is_cherryview = 1,
323 	.display_mmio_offset = VLV_DISPLAY_BASE,
324 	GEN_CHV_PIPEOFFSETS,
325 	CURSOR_OFFSETS,
326 	CHV_COLORS,
327 };
328 
329 static const struct intel_device_info intel_skylake_info = {
330 	BDW_FEATURES,
331 	.is_skylake = 1,
332 	.gen = 9,
333 };
334 
335 static const struct intel_device_info intel_skylake_gt3_info = {
336 	BDW_FEATURES,
337 	.is_skylake = 1,
338 	.gen = 9,
339 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 };
341 
342 static const struct intel_device_info intel_broxton_info = {
343 	.is_preliminary = 1,
344 	.is_broxton = 1,
345 	.gen = 9,
346 	.need_gfx_hws = 1, .has_hotplug = 1,
347 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
348 	.num_pipes = 3,
349 	.has_ddi = 1,
350 	.has_fpga_dbg = 1,
351 	.has_fbc = 1,
352 	GEN_DEFAULT_PIPEOFFSETS,
353 	IVB_CURSOR_OFFSETS,
354 	BDW_COLORS,
355 };
356 
357 static const struct intel_device_info intel_kabylake_info = {
358 	BDW_FEATURES,
359 	.is_kabylake = 1,
360 	.gen = 9,
361 };
362 
363 static const struct intel_device_info intel_kabylake_gt3_info = {
364 	BDW_FEATURES,
365 	.is_kabylake = 1,
366 	.gen = 9,
367 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
368 };
369 
370 static const struct intel_device_info intel_coffeelake_info = {
371 	BDW_FEATURES, \
372 	.is_kabylake = 1,
373 	.gen = 9,
374 };
375 
376 static const struct intel_device_info intel_coffeelake_gt3_info = {
377 	BDW_FEATURES, \
378 	.is_kabylake = 1,
379 	.gen = 9,
380 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
381 };
382 
383 /*
384  * Make sure any device matches here are from most specific to most
385  * general.  For example, since the Quanta match is based on the subsystem
386  * and subvendor IDs, we need it to come before the more general IVB
387  * PCI ID matches, otherwise we'll use the wrong info struct above.
388  */
389 
390 static const struct pci_device_id pciidlist[] = {
391 	INTEL_I830_IDS(&intel_i830_info),
392 	INTEL_I845G_IDS(&intel_845g_info),
393 	INTEL_I85X_IDS(&intel_i85x_info),
394 	INTEL_I865G_IDS(&intel_i865g_info),
395 	INTEL_I915G_IDS(&intel_i915g_info),
396 	INTEL_I915GM_IDS(&intel_i915gm_info),
397 	INTEL_I945G_IDS(&intel_i945g_info),
398 	INTEL_I945GM_IDS(&intel_i945gm_info),
399 	INTEL_I965G_IDS(&intel_i965g_info),
400 	INTEL_G33_IDS(&intel_g33_info),
401 	INTEL_I965GM_IDS(&intel_i965gm_info),
402 	INTEL_GM45_IDS(&intel_gm45_info),
403 	INTEL_G45_IDS(&intel_g45_info),
404 	INTEL_PINEVIEW_IDS(&intel_pineview_info),
405 	INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
406 	INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
407 	INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
408 	INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
409 	INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
410 	INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
411 	INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
412 	INTEL_HSW_D_IDS(&intel_haswell_d_info),
413 	INTEL_HSW_M_IDS(&intel_haswell_m_info),
414 	INTEL_VLV_M_IDS(&intel_valleyview_m_info),
415 	INTEL_VLV_D_IDS(&intel_valleyview_d_info),
416 	INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
417 	INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
418 	INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
419 	INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
420 	INTEL_CHV_IDS(&intel_cherryview_info),
421 	INTEL_SKL_GT1_IDS(&intel_skylake_info),
422 	INTEL_SKL_GT2_IDS(&intel_skylake_info),
423 	INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
424 	INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
425 	INTEL_BXT_IDS(&intel_broxton_info),
426 	INTEL_KBL_GT1_IDS(&intel_kabylake_info),
427 	INTEL_KBL_GT2_IDS(&intel_kabylake_info),
428 	INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
429 	INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
430 	INTEL_CFL_S_IDS(&intel_coffeelake_info),
431 	INTEL_CFL_H_IDS(&intel_coffeelake_info),
432 	INTEL_CFL_U_IDS(&intel_coffeelake_gt3_info),
433 	{0, 0, 0}
434 };
435 
436 #define	PCI_VENDOR_INTEL	0x8086
437 
438 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
439 {
440 	enum intel_pch ret = PCH_NOP;
441 
442 	/*
443 	 * In a virtualized passthrough environment we can be in a
444 	 * setup where the ISA bridge is not able to be passed through.
445 	 * In this case, a south bridge can be emulated and we have to
446 	 * make an educated guess as to which PCH is really there.
447 	 */
448 
449 	if (IS_GEN5(dev)) {
450 		ret = PCH_IBX;
451 		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
452 	} else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
453 		ret = PCH_CPT;
454 		DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
455 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
456 		ret = PCH_LPT;
457 		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
458 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
459 		ret = PCH_SPT;
460 		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
461 	}
462 
463 	return ret;
464 }
465 
466 void intel_detect_pch(struct drm_device *dev)
467 {
468 	struct drm_i915_private *dev_priv = dev->dev_private;
469 	device_t pch = NULL;
470 	struct pci_devinfo *di;
471 
472 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
473 	 * (which really amounts to a PCH but no South Display).
474 	 */
475 	if (INTEL_INFO(dev)->num_pipes == 0) {
476 		dev_priv->pch_type = PCH_NOP;
477 		return;
478 	}
479 
480 	/* XXX The ISA bridge probe causes some old Core2 machines to hang */
481 	if (INTEL_INFO(dev)->gen < 5)
482 		return;
483 
484 	/*
485 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
486 	 * make graphics device passthrough work easy for VMM, that only
487 	 * need to expose ISA bridge to let driver know the real hardware
488 	 * underneath. This is a requirement from virtualization team.
489 	 *
490 	 * In some virtualized environments (e.g. XEN), there is irrelevant
491 	 * ISA bridge in the system. To work reliably, we should scan trhough
492 	 * all the ISA bridge devices and check for the first match, instead
493 	 * of only checking the first one.
494 	 */
495 	di = NULL;
496 
497 	while ((pch = pci_iterate_class(&di, PCIC_BRIDGE, PCIS_BRIDGE_ISA))) {
498 		if (pci_get_vendor(pch) == PCI_VENDOR_INTEL) {
499 			unsigned short id = pci_get_device(pch) & INTEL_PCH_DEVICE_ID_MASK;
500 			dev_priv->pch_id = id;
501 
502 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
503 				dev_priv->pch_type = PCH_IBX;
504 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
505 				WARN_ON(!IS_GEN5(dev));
506 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
507 				dev_priv->pch_type = PCH_CPT;
508 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
509 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
510 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
511 				/* PantherPoint is CPT compatible */
512 				dev_priv->pch_type = PCH_CPT;
513 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
514 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
515 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
516 				dev_priv->pch_type = PCH_LPT;
517 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
518 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
519 				WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
520 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
521 				dev_priv->pch_type = PCH_LPT;
522 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
523 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
524 				WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
525 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
526 				dev_priv->pch_type = PCH_SPT;
527 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
528 				WARN_ON(!IS_SKYLAKE(dev) &&
529 					!IS_KABYLAKE(dev));
530 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
531 				dev_priv->pch_type = PCH_SPT;
532 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
533 				WARN_ON(!IS_SKYLAKE(dev) &&
534 					!IS_KABYLAKE(dev));
535 			} else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
536 				dev_priv->pch_type = PCH_KBP;
537 				DRM_DEBUG_KMS("Found KabyPoint PCH\n");
538 				WARN_ON(!IS_KABYLAKE(dev));
539 			} else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
540 				   (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
541 				   ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
542 				    1)) {
543 				dev_priv->pch_type = intel_virt_detect_pch(dev);
544 			} else
545 				continue;
546 
547 			break;
548 		}
549 	}
550 	if (!pch)
551 		DRM_DEBUG_KMS("No PCH found.\n");
552 
553 #if 0
554 	pci_dev_put(pch);
555 #endif
556 }
557 
558 bool i915_semaphore_is_enabled(struct drm_device *dev)
559 {
560 	if (INTEL_INFO(dev)->gen < 6)
561 		return false;
562 
563 	if (i915.semaphores >= 0)
564 		return i915.semaphores;
565 
566 	/* TODO: make semaphores and Execlists play nicely together */
567 	if (i915.enable_execlists)
568 		return false;
569 
570 	/* Until we get further testing... */
571 	if (IS_GEN8(dev))
572 		return false;
573 
574 #ifdef CONFIG_INTEL_IOMMU
575 	/* Enable semaphores on SNB when IO remapping is off */
576 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
577 		return false;
578 #endif
579 
580 	return true;
581 }
582 
583 #ifdef __DragonFly__
584 #define IS_BUILTIN(blah)	0
585 #endif
586 
587 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
588 {
589 	struct drm_device *dev = dev_priv->dev;
590 	struct intel_encoder *encoder;
591 
592 	drm_modeset_lock_all(dev);
593 	for_each_intel_encoder(dev, encoder)
594 		if (encoder->suspend)
595 			encoder->suspend(encoder);
596 	drm_modeset_unlock_all(dev);
597 }
598 
599 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
600 			      bool rpm_resume);
601 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
602 
603 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
604 {
605 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
606 	if (acpi_target_system_state() < ACPI_STATE_S3)
607 		return true;
608 #endif
609 	return false;
610 }
611 
612 static int i915_drm_suspend(struct drm_device *dev)
613 {
614 	struct drm_i915_private *dev_priv = dev->dev_private;
615 	pci_power_t opregion_target_state;
616 	int error;
617 
618 	/* ignore lid events during suspend */
619 	mutex_lock(&dev_priv->modeset_restore_lock);
620 	dev_priv->modeset_restore = MODESET_SUSPENDED;
621 	mutex_unlock(&dev_priv->modeset_restore_lock);
622 
623 	disable_rpm_wakeref_asserts(dev_priv);
624 
625 	/* We do a lot of poking in a lot of registers, make sure they work
626 	 * properly. */
627 	intel_display_set_init_power(dev_priv, true);
628 
629 	drm_kms_helper_poll_disable(dev);
630 
631 #if 0
632 	pci_save_state(dev->pdev);
633 #endif
634 
635 	error = i915_gem_suspend(dev);
636 	if (error) {
637 		dev_err(dev->dev,
638 			"GEM idle failed, resume might fail\n");
639 		goto out;
640 	}
641 
642 	intel_guc_suspend(dev);
643 
644 	intel_suspend_gt_powersave(dev);
645 
646 	intel_display_suspend(dev);
647 
648 #if 0
649 	intel_dp_mst_suspend(dev);
650 #endif
651 
652 	intel_runtime_pm_disable_interrupts(dev_priv);
653 	intel_hpd_cancel_work(dev_priv);
654 
655 	intel_suspend_encoders(dev_priv);
656 
657 	intel_suspend_hw(dev);
658 
659 	i915_gem_suspend_gtt_mappings(dev);
660 
661 	i915_save_state(dev);
662 
663 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
664 	intel_opregion_notify_adapter(dev, opregion_target_state);
665 
666 	intel_uncore_forcewake_reset(dev, false);
667 	intel_opregion_fini(dev);
668 
669 #if 0
670 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
671 #endif
672 
673 	dev_priv->suspend_count++;
674 
675 	intel_display_set_init_power(dev_priv, false);
676 
677 	intel_csr_ucode_suspend(dev_priv);
678 
679 out:
680 	enable_rpm_wakeref_asserts(dev_priv);
681 
682 	return error;
683 }
684 
685 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
686 {
687 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
688 	bool fw_csr;
689 	int ret;
690 
691 	disable_rpm_wakeref_asserts(dev_priv);
692 
693 	fw_csr = !IS_BROXTON(dev_priv) &&
694 		suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
695 	/*
696 	 * In case of firmware assisted context save/restore don't manually
697 	 * deinit the power domains. This also means the CSR/DMC firmware will
698 	 * stay active, it will power down any HW resources as required and
699 	 * also enable deeper system power states that would be blocked if the
700 	 * firmware was inactive.
701 	 */
702 	if (!fw_csr)
703 		intel_power_domains_suspend(dev_priv);
704 
705 	ret = 0;
706 	if (IS_BROXTON(dev_priv))
707 		bxt_enable_dc9(dev_priv);
708 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
709 		hsw_enable_pc8(dev_priv);
710 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
711 		ret = vlv_suspend_complete(dev_priv);
712 
713 	if (ret) {
714 		DRM_ERROR("Suspend complete failed: %d\n", ret);
715 		if (!fw_csr)
716 			intel_power_domains_init_hw(dev_priv, true);
717 
718 		goto out;
719 	}
720 
721 #if 0
722 	pci_disable_device(drm_dev->pdev);
723 	/*
724 	 * During hibernation on some platforms the BIOS may try to access
725 	 * the device even though it's already in D3 and hang the machine. So
726 	 * leave the device in D0 on those platforms and hope the BIOS will
727 	 * power down the device properly. The issue was seen on multiple old
728 	 * GENs with different BIOS vendors, so having an explicit blacklist
729 	 * is inpractical; apply the workaround on everything pre GEN6. The
730 	 * platforms where the issue was seen:
731 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
732 	 * Fujitsu FSC S7110
733 	 * Acer Aspire 1830T
734 	 */
735 	if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
736 		pci_set_power_state(drm_dev->pdev, PCI_D3hot);
737 #endif
738 
739 	dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
740 
741 out:
742 	enable_rpm_wakeref_asserts(dev_priv);
743 
744 	return ret;
745 }
746 
747 int i915_suspend_switcheroo(device_t kdev)
748 {
749 	struct drm_device *dev = device_get_softc(kdev);
750 	int error;
751 
752 	if (!dev || !dev->dev_private) {
753 		DRM_ERROR("dev: %p\n", dev);
754 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
755 		return -ENODEV;
756 	}
757 
758 #if 0
759 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
760 			 state.event != PM_EVENT_FREEZE))
761 		return -EINVAL;
762 #endif
763 
764 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
765 		return 0;
766 
767 	error = i915_drm_suspend(dev);
768 	if (error)
769 		return error;
770 
771 	return i915_drm_suspend_late(dev, false);
772 }
773 
774 static int i915_drm_resume(struct drm_device *dev)
775 {
776 	struct drm_i915_private *dev_priv = dev->dev_private;
777 	int ret;
778 
779 	disable_rpm_wakeref_asserts(dev_priv);
780 
781 	ret = i915_ggtt_enable_hw(dev);
782 	if (ret)
783 		DRM_ERROR("failed to re-enable GGTT\n");
784 
785 	intel_csr_ucode_resume(dev_priv);
786 
787 	mutex_lock(&dev->struct_mutex);
788 	i915_gem_restore_gtt_mappings(dev);
789 	mutex_unlock(&dev->struct_mutex);
790 
791 	i915_restore_state(dev);
792 	intel_opregion_setup(dev);
793 
794 	intel_init_pch_refclk(dev);
795 	drm_mode_config_reset(dev);
796 
797 	/*
798 	 * Interrupts have to be enabled before any batches are run. If not the
799 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
800 	 * update/restore the context.
801 	 *
802 	 * Modeset enabling in intel_modeset_init_hw() also needs working
803 	 * interrupts.
804 	 */
805 	intel_runtime_pm_enable_interrupts(dev_priv);
806 
807 	mutex_lock(&dev->struct_mutex);
808 	if (i915_gem_init_hw(dev)) {
809 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
810 			atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
811 	}
812 	mutex_unlock(&dev->struct_mutex);
813 
814 	intel_guc_resume(dev);
815 
816 	intel_modeset_init_hw(dev);
817 
818 	spin_lock_irq(&dev_priv->irq_lock);
819 	if (dev_priv->display.hpd_irq_setup)
820 		dev_priv->display.hpd_irq_setup(dev);
821 	spin_unlock_irq(&dev_priv->irq_lock);
822 
823 	intel_dp_mst_resume(dev);
824 
825 	intel_display_resume(dev);
826 
827 	/*
828 	 * ... but also need to make sure that hotplug processing
829 	 * doesn't cause havoc. Like in the driver load code we don't
830 	 * bother with the tiny race here where we might loose hotplug
831 	 * notifications.
832 	 * */
833 	intel_hpd_init(dev_priv);
834 	/* Config may have changed between suspend and resume */
835 	drm_helper_hpd_irq_event(dev);
836 
837 	intel_opregion_init(dev);
838 
839 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
840 
841 	mutex_lock(&dev_priv->modeset_restore_lock);
842 	dev_priv->modeset_restore = MODESET_DONE;
843 	mutex_unlock(&dev_priv->modeset_restore_lock);
844 
845 #if 0
846 	intel_opregion_notify_adapter(dev, PCI_D0);
847 #endif
848 
849 	drm_kms_helper_poll_enable(dev);
850 
851 	enable_rpm_wakeref_asserts(dev_priv);
852 
853 	return 0;
854 }
855 
856 static int i915_drm_resume_early(struct drm_device *dev)
857 {
858 	struct drm_i915_private *dev_priv = dev->dev_private;
859 	int ret = 0;
860 
861 	/*
862 	 * We have a resume ordering issue with the snd-hda driver also
863 	 * requiring our device to be power up. Due to the lack of a
864 	 * parent/child relationship we currently solve this with an early
865 	 * resume hook.
866 	 *
867 	 * FIXME: This should be solved with a special hdmi sink device or
868 	 * similar so that power domains can be employed.
869 	 */
870 
871 	/*
872 	 * Note that we need to set the power state explicitly, since we
873 	 * powered off the device during freeze and the PCI core won't power
874 	 * it back up for us during thaw. Powering off the device during
875 	 * freeze is not a hard requirement though, and during the
876 	 * suspend/resume phases the PCI core makes sure we get here with the
877 	 * device powered on. So in case we change our freeze logic and keep
878 	 * the device powered we can also remove the following set power state
879 	 * call.
880 	 */
881 #if 0
882 	ret = pci_set_power_state(dev->pdev, PCI_D0);
883 	if (ret) {
884 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
885 		goto out;
886 	}
887 
888 	/*
889 	 * Note that pci_enable_device() first enables any parent bridge
890 	 * device and only then sets the power state for this device. The
891 	 * bridge enabling is a nop though, since bridge devices are resumed
892 	 * first. The order of enabling power and enabling the device is
893 	 * imposed by the PCI core as described above, so here we preserve the
894 	 * same order for the freeze/thaw phases.
895 	 *
896 	 * TODO: eventually we should remove pci_disable_device() /
897 	 * pci_enable_enable_device() from suspend/resume. Due to how they
898 	 * depend on the device enable refcount we can't anyway depend on them
899 	 * disabling/enabling the device.
900 	 */
901 	if (pci_enable_device(dev->pdev)) {
902 		ret = -EIO;
903 		goto out;
904 	}
905 
906 	pci_set_master(dev->pdev);
907 #endif
908 
909 	disable_rpm_wakeref_asserts(dev_priv);
910 
911 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
912 		ret = vlv_resume_prepare(dev_priv, false);
913 	if (ret)
914 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
915 			  ret);
916 
917 	intel_uncore_early_sanitize(dev, true);
918 
919 	if (IS_BROXTON(dev)) {
920 		if (!dev_priv->suspended_to_idle)
921 			gen9_sanitize_dc_state(dev_priv);
922 		bxt_disable_dc9(dev_priv);
923 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
924 		hsw_disable_pc8(dev_priv);
925 	}
926 
927 	intel_uncore_sanitize(dev);
928 
929 	if (IS_BROXTON(dev_priv) ||
930 	    !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
931 		intel_power_domains_init_hw(dev_priv, true);
932 
933 	enable_rpm_wakeref_asserts(dev_priv);
934 
935 #if 0
936 out:
937 #endif
938 	dev_priv->suspended_to_idle = false;
939 
940 	return ret;
941 }
942 
943 int i915_resume_switcheroo(struct drm_device *dev)
944 {
945 	int ret;
946 
947 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
948 		return 0;
949 
950 	ret = i915_drm_resume_early(dev);
951 	if (ret)
952 		return ret;
953 
954 	return i915_drm_resume(dev);
955 }
956 
957 /* XXX Hack for the old *BSD drm code base
958  * The device id field is set at probe time */
959 static drm_pci_id_list_t i915_attach_list[] = {
960 	{0x8086, 0, 0, "Intel i915 GPU"},
961 	{0, 0, 0, NULL}
962 };
963 
964 struct intel_device_info *
965 i915_get_device_id(int device)
966 {
967 	const struct pci_device_id *did;
968 
969 	for (did = &pciidlist[0]; did->device != 0; did++) {
970 		if (did->device != device)
971 			continue;
972 		return (struct intel_device_info *)did->driver_data;
973 	}
974 	return (NULL);
975 }
976 
977 static int i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx,
978 			    struct sysctl_oid *top)
979 {
980 	return drm_add_busid_modesetting(dev, ctx, top);
981 }
982 
983 extern devclass_t drm_devclass;
984 
985 /**
986  * i915_reset - reset chip after a hang
987  * @dev: drm device to reset
988  *
989  * Reset the chip.  Useful if a hang is detected. Returns zero on successful
990  * reset or otherwise an error code.
991  *
992  * Procedure is fairly simple:
993  *   - reset the chip using the reset reg
994  *   - re-init context state
995  *   - re-init hardware status page
996  *   - re-init ring buffer
997  *   - re-init interrupt state
998  *   - re-init display
999  */
1000 int i915_reset(struct drm_device *dev)
1001 {
1002 	struct drm_i915_private *dev_priv = dev->dev_private;
1003 	struct i915_gpu_error *error = &dev_priv->gpu_error;
1004 	unsigned reset_counter;
1005 	int ret;
1006 
1007 	intel_reset_gt_powersave(dev);
1008 
1009 	mutex_lock(&dev->struct_mutex);
1010 
1011 	/* Clear any previous failed attempts at recovery. Time to try again. */
1012 	atomic_andnot(I915_WEDGED, &error->reset_counter);
1013 
1014 	/* Clear the reset-in-progress flag and increment the reset epoch. */
1015 	reset_counter = atomic_inc_return(&error->reset_counter);
1016 	if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
1017 		ret = -EIO;
1018 		goto error;
1019 	}
1020 
1021 	i915_gem_reset(dev);
1022 
1023 	ret = intel_gpu_reset(dev, ALL_ENGINES);
1024 
1025 	/* Also reset the gpu hangman. */
1026 	if (error->stop_rings != 0) {
1027 		DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
1028 		error->stop_rings = 0;
1029 		if (ret == -ENODEV) {
1030 			DRM_INFO("Reset not implemented, but ignoring "
1031 				 "error for simulated gpu hangs\n");
1032 			ret = 0;
1033 		}
1034 	}
1035 
1036 	if (i915_stop_ring_allow_warn(dev_priv))
1037 		pr_notice("drm/i915: Resetting chip after gpu hang\n");
1038 
1039 	if (ret) {
1040 		if (ret != -ENODEV)
1041 			DRM_ERROR("Failed to reset chip: %i\n", ret);
1042 		else
1043 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1044 		goto error;
1045 	}
1046 
1047 	intel_overlay_reset(dev_priv);
1048 
1049 	/* Ok, now get things going again... */
1050 
1051 	/*
1052 	 * Everything depends on having the GTT running, so we need to start
1053 	 * there.  Fortunately we don't need to do this unless we reset the
1054 	 * chip at a PCI level.
1055 	 *
1056 	 * Next we need to restore the context, but we don't use those
1057 	 * yet either...
1058 	 *
1059 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1060 	 * was running at the time of the reset (i.e. we weren't VT
1061 	 * switched away).
1062 	 */
1063 	ret = i915_gem_init_hw(dev);
1064 	if (ret) {
1065 		DRM_ERROR("Failed hw init on reset %d\n", ret);
1066 		goto error;
1067 	}
1068 
1069 	mutex_unlock(&dev->struct_mutex);
1070 
1071 	/*
1072 	 * rps/rc6 re-init is necessary to restore state lost after the
1073 	 * reset and the re-install of gt irqs. Skip for ironlake per
1074 	 * previous concerns that it doesn't respond well to some forms
1075 	 * of re-init after reset.
1076 	 */
1077 	if (INTEL_INFO(dev)->gen > 5)
1078 		intel_enable_gt_powersave(dev);
1079 
1080 	return 0;
1081 
1082 error:
1083 	atomic_or(I915_WEDGED, &error->reset_counter);
1084 	mutex_unlock(&dev->struct_mutex);
1085 	return ret;
1086 }
1087 
1088 static int i915_pci_probe(device_t kdev)
1089 {
1090 	int device, i = 0;
1091 
1092 	if (pci_get_class(kdev) != PCIC_DISPLAY)
1093 		return ENXIO;
1094 
1095 	if (pci_get_vendor(kdev) != PCI_VENDOR_INTEL)
1096 		return ENXIO;
1097 
1098 	device = pci_get_device(kdev);
1099 
1100 	for (i = 0; pciidlist[i].device != 0; i++) {
1101 		if (pciidlist[i].device == device) {
1102 			i915_attach_list[0].device = device;
1103 			return 0;
1104 		}
1105 	}
1106 
1107 	return ENXIO;
1108 }
1109 
1110 #if 0
1111 static void
1112 i915_pci_remove(struct pci_dev *pdev)
1113 {
1114 	struct drm_device *dev = pci_get_drvdata(pdev);
1115 
1116 	drm_put_dev(dev);
1117 }
1118 
1119 static int i915_pm_suspend(struct device *dev)
1120 {
1121 	struct pci_dev *pdev = to_pci_dev(dev);
1122 	struct drm_device *drm_dev = pci_get_drvdata(pdev);
1123 
1124 	if (!drm_dev || !drm_dev->dev_private) {
1125 		dev_err(dev, "DRM not initialized, aborting suspend.\n");
1126 		return -ENODEV;
1127 	}
1128 
1129 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1130 		return 0;
1131 
1132 	return i915_drm_suspend(drm_dev);
1133 }
1134 
1135 static int i915_pm_suspend_late(struct device *dev)
1136 {
1137 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1138 
1139 	/*
1140 	 * We have a suspend ordering issue with the snd-hda driver also
1141 	 * requiring our device to be power up. Due to the lack of a
1142 	 * parent/child relationship we currently solve this with an late
1143 	 * suspend hook.
1144 	 *
1145 	 * FIXME: This should be solved with a special hdmi sink device or
1146 	 * similar so that power domains can be employed.
1147 	 */
1148 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1149 		return 0;
1150 
1151 	return i915_drm_suspend_late(drm_dev, false);
1152 }
1153 
1154 static int i915_pm_poweroff_late(struct device *dev)
1155 {
1156 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1157 
1158 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1159 		return 0;
1160 
1161 	return i915_drm_suspend_late(drm_dev, true);
1162 }
1163 
1164 static int i915_pm_resume_early(struct device *dev)
1165 {
1166 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1167 
1168 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1169 		return 0;
1170 
1171 	return i915_drm_resume_early(drm_dev);
1172 }
1173 
1174 static int i915_pm_resume(struct device *dev)
1175 {
1176 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1177 
1178 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1179 		return 0;
1180 
1181 	return i915_drm_resume(drm_dev);
1182 }
1183 #endif
1184 
1185 /*
1186  * Save all Gunit registers that may be lost after a D3 and a subsequent
1187  * S0i[R123] transition. The list of registers needing a save/restore is
1188  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1189  * registers in the following way:
1190  * - Driver: saved/restored by the driver
1191  * - Punit : saved/restored by the Punit firmware
1192  * - No, w/o marking: no need to save/restore, since the register is R/O or
1193  *                    used internally by the HW in a way that doesn't depend
1194  *                    keeping the content across a suspend/resume.
1195  * - Debug : used for debugging
1196  *
1197  * We save/restore all registers marked with 'Driver', with the following
1198  * exceptions:
1199  * - Registers out of use, including also registers marked with 'Debug'.
1200  *   These have no effect on the driver's operation, so we don't save/restore
1201  *   them to reduce the overhead.
1202  * - Registers that are fully setup by an initialization function called from
1203  *   the resume path. For example many clock gating and RPS/RC6 registers.
1204  * - Registers that provide the right functionality with their reset defaults.
1205  *
1206  * TODO: Except for registers that based on the above 3 criteria can be safely
1207  * ignored, we save/restore all others, practically treating the HW context as
1208  * a black-box for the driver. Further investigation is needed to reduce the
1209  * saved/restored registers even further, by following the same 3 criteria.
1210  */
1211 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1212 {
1213 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1214 	int i;
1215 
1216 	/* GAM 0x4000-0x4770 */
1217 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
1218 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
1219 	s->arb_mode		= I915_READ(ARB_MODE);
1220 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
1221 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
1222 
1223 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1224 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1225 
1226 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1227 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1228 
1229 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
1230 	s->ecochk		= I915_READ(GAM_ECOCHK);
1231 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
1232 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
1233 
1234 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
1235 
1236 	/* MBC 0x9024-0x91D0, 0x8500 */
1237 	s->g3dctl		= I915_READ(VLV_G3DCTL);
1238 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
1239 	s->mbctl		= I915_READ(GEN6_MBCTL);
1240 
1241 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1242 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
1243 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
1244 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
1245 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
1246 	s->rstctl		= I915_READ(GEN6_RSTCTL);
1247 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
1248 
1249 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1250 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
1251 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
1252 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
1253 	s->ecobus		= I915_READ(ECOBUS);
1254 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
1255 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
1256 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
1257 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
1258 	s->rcedata		= I915_READ(VLV_RCEDATA);
1259 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
1260 
1261 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1262 	s->gt_imr		= I915_READ(GTIMR);
1263 	s->gt_ier		= I915_READ(GTIER);
1264 	s->pm_imr		= I915_READ(GEN6_PMIMR);
1265 	s->pm_ier		= I915_READ(GEN6_PMIER);
1266 
1267 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1268 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1269 
1270 	/* GT SA CZ domain, 0x100000-0x138124 */
1271 	s->tilectl		= I915_READ(TILECTL);
1272 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
1273 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
1274 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1275 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
1276 
1277 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1278 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
1279 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
1280 	s->pcbr			= I915_READ(VLV_PCBR);
1281 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
1282 
1283 	/*
1284 	 * Not saving any of:
1285 	 * DFT,		0x9800-0x9EC0
1286 	 * SARB,	0xB000-0xB1FC
1287 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
1288 	 * PCI CFG
1289 	 */
1290 }
1291 
1292 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1293 {
1294 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1295 	u32 val;
1296 	int i;
1297 
1298 	/* GAM 0x4000-0x4770 */
1299 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
1300 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
1301 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
1302 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
1303 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
1304 
1305 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1306 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1307 
1308 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1309 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1310 
1311 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
1312 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
1313 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
1314 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
1315 
1316 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
1317 
1318 	/* MBC 0x9024-0x91D0, 0x8500 */
1319 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
1320 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
1321 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
1322 
1323 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1324 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
1325 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
1326 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
1327 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
1328 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
1329 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
1330 
1331 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1332 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
1333 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
1334 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
1335 	I915_WRITE(ECOBUS,		s->ecobus);
1336 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
1337 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1338 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
1339 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
1340 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
1341 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
1342 
1343 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1344 	I915_WRITE(GTIMR,		s->gt_imr);
1345 	I915_WRITE(GTIER,		s->gt_ier);
1346 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
1347 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
1348 
1349 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1350 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1351 
1352 	/* GT SA CZ domain, 0x100000-0x138124 */
1353 	I915_WRITE(TILECTL,			s->tilectl);
1354 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
1355 	/*
1356 	 * Preserve the GT allow wake and GFX force clock bit, they are not
1357 	 * be restored, as they are used to control the s0ix suspend/resume
1358 	 * sequence by the caller.
1359 	 */
1360 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1361 	val &= VLV_GTLC_ALLOWWAKEREQ;
1362 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1363 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1364 
1365 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1366 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
1367 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1368 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1369 
1370 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
1371 
1372 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1373 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
1374 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
1375 	I915_WRITE(VLV_PCBR,			s->pcbr);
1376 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
1377 }
1378 
1379 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1380 {
1381 	u32 val;
1382 	int err;
1383 
1384 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1385 
1386 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1387 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1388 	if (force_on)
1389 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
1390 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1391 
1392 	if (!force_on)
1393 		return 0;
1394 
1395 	err = wait_for(COND, 20);
1396 	if (err)
1397 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1398 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1399 
1400 	return err;
1401 #undef COND
1402 }
1403 
1404 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1405 {
1406 	u32 val;
1407 	int err = 0;
1408 
1409 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1410 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
1411 	if (allow)
1412 		val |= VLV_GTLC_ALLOWWAKEREQ;
1413 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1414 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
1415 
1416 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1417 	      allow)
1418 	err = wait_for(COND, 1);
1419 	if (err)
1420 		DRM_ERROR("timeout disabling GT waking\n");
1421 	return err;
1422 #undef COND
1423 }
1424 
1425 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1426 				 bool wait_for_on)
1427 {
1428 	u32 mask;
1429 	u32 val;
1430 	int err;
1431 
1432 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1433 	val = wait_for_on ? mask : 0;
1434 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1435 	if (COND)
1436 		return 0;
1437 
1438 	DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1439 		      onoff(wait_for_on),
1440 		      I915_READ(VLV_GTLC_PW_STATUS));
1441 
1442 	/*
1443 	 * RC6 transitioning can be delayed up to 2 msec (see
1444 	 * valleyview_enable_rps), use 3 msec for safety.
1445 	 */
1446 	err = wait_for(COND, 3);
1447 	if (err)
1448 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
1449 			  onoff(wait_for_on));
1450 
1451 	return err;
1452 #undef COND
1453 }
1454 
1455 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1456 {
1457 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1458 		return;
1459 
1460 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1461 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1462 }
1463 
1464 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1465 {
1466 	u32 mask;
1467 	int err;
1468 
1469 	/*
1470 	 * Bspec defines the following GT well on flags as debug only, so
1471 	 * don't treat them as hard failures.
1472 	 */
1473 	(void)vlv_wait_for_gt_wells(dev_priv, false);
1474 
1475 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1476 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1477 
1478 	vlv_check_no_gt_access(dev_priv);
1479 
1480 	err = vlv_force_gfx_clock(dev_priv, true);
1481 	if (err)
1482 		goto err1;
1483 
1484 	err = vlv_allow_gt_wake(dev_priv, false);
1485 	if (err)
1486 		goto err2;
1487 
1488 	if (!IS_CHERRYVIEW(dev_priv))
1489 		vlv_save_gunit_s0ix_state(dev_priv);
1490 
1491 	err = vlv_force_gfx_clock(dev_priv, false);
1492 	if (err)
1493 		goto err2;
1494 
1495 	return 0;
1496 
1497 err2:
1498 	/* For safety always re-enable waking and disable gfx clock forcing */
1499 	vlv_allow_gt_wake(dev_priv, true);
1500 err1:
1501 	vlv_force_gfx_clock(dev_priv, false);
1502 
1503 	return err;
1504 }
1505 
1506 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1507 				bool rpm_resume)
1508 {
1509 	struct drm_device *dev = dev_priv->dev;
1510 	int err;
1511 	int ret;
1512 
1513 	/*
1514 	 * If any of the steps fail just try to continue, that's the best we
1515 	 * can do at this point. Return the first error code (which will also
1516 	 * leave RPM permanently disabled).
1517 	 */
1518 	ret = vlv_force_gfx_clock(dev_priv, true);
1519 
1520 	if (!IS_CHERRYVIEW(dev_priv))
1521 		vlv_restore_gunit_s0ix_state(dev_priv);
1522 
1523 	err = vlv_allow_gt_wake(dev_priv, true);
1524 	if (!ret)
1525 		ret = err;
1526 
1527 	err = vlv_force_gfx_clock(dev_priv, false);
1528 	if (!ret)
1529 		ret = err;
1530 
1531 	vlv_check_no_gt_access(dev_priv);
1532 
1533 	if (rpm_resume) {
1534 		intel_init_clock_gating(dev);
1535 		i915_gem_restore_fences(dev);
1536 	}
1537 
1538 	return ret;
1539 }
1540 
1541 #if 0
1542 static int intel_runtime_suspend(struct device *device)
1543 {
1544 	struct pci_dev *pdev = to_pci_dev(device);
1545 	struct drm_device *dev = pci_get_drvdata(pdev);
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 	int ret;
1548 
1549 	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1550 		return -ENODEV;
1551 
1552 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1553 		return -ENODEV;
1554 
1555 	DRM_DEBUG_KMS("Suspending device\n");
1556 
1557 	/*
1558 	 * We could deadlock here in case another thread holding struct_mutex
1559 	 * calls RPM suspend concurrently, since the RPM suspend will wait
1560 	 * first for this RPM suspend to finish. In this case the concurrent
1561 	 * RPM resume will be followed by its RPM suspend counterpart. Still
1562 	 * for consistency return -EAGAIN, which will reschedule this suspend.
1563 	 */
1564 	if (!mutex_trylock(&dev->struct_mutex)) {
1565 		DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1566 		/*
1567 		 * Bump the expiration timestamp, otherwise the suspend won't
1568 		 * be rescheduled.
1569 		 */
1570 		pm_runtime_mark_last_busy(device);
1571 
1572 		return -EAGAIN;
1573 	}
1574 
1575 	disable_rpm_wakeref_asserts(dev_priv);
1576 
1577 	/*
1578 	 * We are safe here against re-faults, since the fault handler takes
1579 	 * an RPM reference.
1580 	 */
1581 	i915_gem_release_all_mmaps(dev_priv);
1582 	mutex_unlock(&dev->struct_mutex);
1583 
1584 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1585 
1586 	intel_guc_suspend(dev);
1587 
1588 	intel_suspend_gt_powersave(dev);
1589 	intel_runtime_pm_disable_interrupts(dev_priv);
1590 
1591 	ret = 0;
1592 	if (IS_BROXTON(dev_priv)) {
1593 		bxt_display_core_uninit(dev_priv);
1594 		bxt_enable_dc9(dev_priv);
1595 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1596 		hsw_enable_pc8(dev_priv);
1597 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1598 		ret = vlv_suspend_complete(dev_priv);
1599 	}
1600 
1601 	if (ret) {
1602 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1603 		intel_runtime_pm_enable_interrupts(dev_priv);
1604 
1605 		enable_rpm_wakeref_asserts(dev_priv);
1606 
1607 		return ret;
1608 	}
1609 
1610 	intel_uncore_forcewake_reset(dev, false);
1611 
1612 	enable_rpm_wakeref_asserts(dev_priv);
1613 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1614 
1615 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1616 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
1617 
1618 	dev_priv->pm.suspended = true;
1619 
1620 	/*
1621 	 * FIXME: We really should find a document that references the arguments
1622 	 * used below!
1623 	 */
1624 	if (IS_BROADWELL(dev)) {
1625 		/*
1626 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1627 		 * being detected, and the call we do at intel_runtime_resume()
1628 		 * won't be able to restore them. Since PCI_D3hot matches the
1629 		 * actual specification and appears to be working, use it.
1630 		 */
1631 		intel_opregion_notify_adapter(dev, PCI_D3hot);
1632 	} else {
1633 		/*
1634 		 * current versions of firmware which depend on this opregion
1635 		 * notification have repurposed the D1 definition to mean
1636 		 * "runtime suspended" vs. what you would normally expect (D3)
1637 		 * to distinguish it from notifications that might be sent via
1638 		 * the suspend path.
1639 		 */
1640 		intel_opregion_notify_adapter(dev, PCI_D1);
1641 	}
1642 
1643 	assert_forcewakes_inactive(dev_priv);
1644 
1645 	if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
1646 		intel_hpd_poll_init(dev_priv);
1647 
1648 	DRM_DEBUG_KMS("Device suspended\n");
1649 	return 0;
1650 }
1651 
1652 static int intel_runtime_resume(struct device *device)
1653 {
1654 	struct pci_dev *pdev = to_pci_dev(device);
1655 	struct drm_device *dev = pci_get_drvdata(pdev);
1656 	struct drm_i915_private *dev_priv = dev->dev_private;
1657 	int ret = 0;
1658 
1659 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1660 		return -ENODEV;
1661 
1662 	DRM_DEBUG_KMS("Resuming device\n");
1663 
1664 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1665 	disable_rpm_wakeref_asserts(dev_priv);
1666 
1667 	intel_opregion_notify_adapter(dev, PCI_D0);
1668 	dev_priv->pm.suspended = false;
1669 	if (intel_uncore_unclaimed_mmio(dev_priv))
1670 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1671 
1672 	intel_guc_resume(dev);
1673 
1674 	if (IS_GEN6(dev_priv))
1675 		intel_init_pch_refclk(dev);
1676 
1677 	if (IS_BROXTON(dev)) {
1678 		bxt_disable_dc9(dev_priv);
1679 		bxt_display_core_init(dev_priv, true);
1680 		if (dev_priv->csr.dmc_payload &&
1681 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1682 			gen9_enable_dc5(dev_priv);
1683 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1684 		hsw_disable_pc8(dev_priv);
1685 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1686 		ret = vlv_resume_prepare(dev_priv, true);
1687 	}
1688 
1689 	/*
1690 	 * No point of rolling back things in case of an error, as the best
1691 	 * we can do is to hope that things will still work (and disable RPM).
1692 	 */
1693 	i915_gem_init_swizzling(dev);
1694 	gen6_update_ring_freq(dev);
1695 
1696 	intel_runtime_pm_enable_interrupts(dev_priv);
1697 
1698 	/*
1699 	 * On VLV/CHV display interrupts are part of the display
1700 	 * power well, so hpd is reinitialized from there. For
1701 	 * everyone else do it here.
1702 	 */
1703 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1704 		intel_hpd_init(dev_priv);
1705 
1706 	intel_enable_gt_powersave(dev);
1707 
1708 	enable_rpm_wakeref_asserts(dev_priv);
1709 
1710 	if (ret)
1711 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1712 	else
1713 		DRM_DEBUG_KMS("Device resumed\n");
1714 
1715 	return ret;
1716 }
1717 
1718 static const struct dev_pm_ops i915_pm_ops = {
1719 	/*
1720 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1721 	 * PMSG_RESUME]
1722 	 */
1723 	.suspend = i915_pm_suspend,
1724 	.suspend_late = i915_pm_suspend_late,
1725 	.resume_early = i915_pm_resume_early,
1726 	.resume = i915_pm_resume,
1727 
1728 	/*
1729 	 * S4 event handlers
1730 	 * @freeze, @freeze_late    : called (1) before creating the
1731 	 *                            hibernation image [PMSG_FREEZE] and
1732 	 *                            (2) after rebooting, before restoring
1733 	 *                            the image [PMSG_QUIESCE]
1734 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
1735 	 *                            image, before writing it [PMSG_THAW]
1736 	 *                            and (2) after failing to create or
1737 	 *                            restore the image [PMSG_RECOVER]
1738 	 * @poweroff, @poweroff_late: called after writing the hibernation
1739 	 *                            image, before rebooting [PMSG_HIBERNATE]
1740 	 * @restore, @restore_early : called after rebooting and restoring the
1741 	 *                            hibernation image [PMSG_RESTORE]
1742 	 */
1743 	.freeze = i915_pm_suspend,
1744 	.freeze_late = i915_pm_suspend_late,
1745 	.thaw_early = i915_pm_resume_early,
1746 	.thaw = i915_pm_resume,
1747 	.poweroff = i915_pm_suspend,
1748 	.poweroff_late = i915_pm_poweroff_late,
1749 	.restore_early = i915_pm_resume_early,
1750 	.restore = i915_pm_resume,
1751 
1752 	/* S0ix (via runtime suspend) event handlers */
1753 	.runtime_suspend = intel_runtime_suspend,
1754 	.runtime_resume = intel_runtime_resume,
1755 };
1756 
1757 static const struct vm_operations_struct i915_gem_vm_ops = {
1758 	.fault = i915_gem_fault,
1759 	.open = drm_gem_vm_open,
1760 	.close = drm_gem_vm_close,
1761 };
1762 
1763 static const struct file_operations i915_driver_fops = {
1764 	.owner = THIS_MODULE,
1765 	.open = drm_open,
1766 	.release = drm_release,
1767 	.unlocked_ioctl = drm_ioctl,
1768 	.mmap = drm_gem_mmap,
1769 	.poll = drm_poll,
1770 	.read = drm_read,
1771 #ifdef CONFIG_COMPAT
1772 	.compat_ioctl = i915_compat_ioctl,
1773 #endif
1774 	.llseek = noop_llseek,
1775 };
1776 #endif
1777 
1778 static struct cdev_pager_ops i915_gem_vm_ops = {
1779 	.cdev_pg_fault	= i915_gem_fault,
1780 	.cdev_pg_ctor	= i915_gem_pager_ctor,
1781 	.cdev_pg_dtor	= i915_gem_pager_dtor
1782 };
1783 
1784 static struct drm_driver driver = {
1785 	/* Don't use MTRRs here; the Xserver or userspace app should
1786 	 * deal with them for Intel hardware.
1787 	 */
1788 	.driver_features =
1789 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM |
1790 	    DRIVER_RENDER | DRIVER_MODESET,
1791 	.load = i915_driver_load,
1792 	.unload = i915_driver_unload,
1793 	.open = i915_driver_open,
1794 	.lastclose = i915_driver_lastclose,
1795 	.preclose = i915_driver_preclose,
1796 	.postclose = i915_driver_postclose,
1797 
1798 #if defined(CONFIG_DEBUG_FS)
1799 	.debugfs_init = i915_debugfs_init,
1800 	.debugfs_cleanup = i915_debugfs_cleanup,
1801 #endif
1802 	.gem_free_object = i915_gem_free_object,
1803 	.gem_pager_ops = &i915_gem_vm_ops,
1804 
1805 	.dumb_create = i915_gem_dumb_create,
1806 	.dumb_map_offset = i915_gem_mmap_gtt,
1807 	.dumb_destroy = drm_gem_dumb_destroy,
1808 	.ioctls = i915_ioctls,
1809 	.sysctl_init = i915_sysctl_init,
1810 	.name = DRIVER_NAME,
1811 	.desc = DRIVER_DESC,
1812 	.date = DRIVER_DATE,
1813 	.major = DRIVER_MAJOR,
1814 	.minor = DRIVER_MINOR,
1815 	.patchlevel = DRIVER_PATCHLEVEL,
1816 };
1817 
1818 static int __init i915_init(void);
1819 
1820 static int
1821 i915_attach(device_t kdev)
1822 {
1823 	struct drm_device *dev = device_get_softc(kdev);
1824 	int error;
1825 	int dummy;
1826 
1827 	i915_init();
1828 
1829 	dev->driver = &driver;
1830 	error = drm_attach(kdev, i915_attach_list);
1831 
1832 	/*
1833 	 * XXX hack - give the kvm_console time to come up before X starts
1834 	 * messing with everything, avoiding at least one deadlock.
1835 	 */
1836 	tsleep(&dummy, 0, "i915_attach", hz*2);
1837 
1838 	return error;
1839 }
1840 
1841 static device_method_t i915_methods[] = {
1842 	/* Device interface */
1843 	DEVMETHOD(device_probe,		i915_pci_probe),
1844 	DEVMETHOD(device_attach,	i915_attach),
1845 	DEVMETHOD(device_suspend,	i915_suspend_switcheroo),
1846 	DEVMETHOD(device_resume,	i915_resume_switcheroo),
1847 	DEVMETHOD(device_detach,	drm_release),
1848 	DEVMETHOD_END
1849 };
1850 
1851 static driver_t i915_driver = {
1852 	"drm",
1853 	i915_methods,
1854 	sizeof(struct drm_device)
1855 };
1856 
1857 static int __init i915_init(void)
1858 {
1859 	driver.num_ioctls = i915_max_ioctl;
1860 
1861 	/*
1862 	 * Enable KMS by default, unless explicitly overriden by
1863 	 * either the i915.modeset prarameter or by the
1864 	 * vga_text_mode_force boot option.
1865 	 */
1866 
1867 	if (i915.modeset == 0)
1868 		driver.driver_features &= ~DRIVER_MODESET;
1869 
1870 	if (vgacon_text_force() && i915.modeset == -1)
1871 		driver.driver_features &= ~DRIVER_MODESET;
1872 
1873 	if (!(driver.driver_features & DRIVER_MODESET)) {
1874 		/* Silently fail loading to not upset userspace. */
1875 		DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1876 		return 0;
1877 	}
1878 
1879 	if (i915.nuclear_pageflip)
1880 		driver.driver_features |= DRIVER_ATOMIC;
1881 
1882 #if 0
1883 	return drm_pci_init(&driver, &i915_pci_driver);
1884 #else
1885 	return 1;
1886 #endif
1887 }
1888 
1889 #if 0
1890 static void __exit i915_exit(void)
1891 {
1892 	if (!(driver.driver_features & DRIVER_MODESET))
1893 		return; /* Never loaded a driver. */
1894 
1895 	drm_pci_exit(&driver, &i915_pci_driver);
1896 }
1897 #endif
1898 
1899 DRIVER_MODULE_ORDERED(i915, vgapci, i915_driver, drm_devclass, NULL, NULL, SI_ORDER_ANY);
1900 MODULE_DEPEND(i915, drm, 1, 1, 1);
1901 MODULE_DEPEND(i915, iicbus, 1, 1, 1);
1902 MODULE_DEPEND(i915, iic, 1, 1, 1);
1903 MODULE_DEPEND(i915, iicbb, 1, 1, 1);
1904 #ifdef CONFIG_ACPI
1905 MODULE_DEPEND(i915, acpi, 1, 1, 1);
1906 #endif
1907