xref: /dragonfly/sys/dev/drm/i915/i915_drv.h (revision 5ca0a96d)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64 
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73 
74 #include "i915_vma.h"
75 
76 #include "intel_gvt.h"
77 
78 /* General customization:
79  */
80 
81 #define DRIVER_NAME		"i915"
82 #define DRIVER_DESC		"Intel Graphics"
83 #define DRIVER_DATE		"20171023"
84 #define DRIVER_TIMESTAMP	1508748913
85 
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({			\
94 	int __ret_warn_on = !!(condition);				\
95 	if (unlikely(__ret_warn_on))					\
96 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
97 			DRM_ERROR(format);				\
98 	unlikely(__ret_warn_on);					\
99 })
100 
101 #define I915_STATE_WARN_ON(x)						\
102 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103 
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 	__i915_inject_load_failure(__func__, __LINE__)
107 
108 typedef struct {
109 	uint32_t val;
110 } uint_fixed_16_16_t;
111 
112 #define FP_16_16_MAX ({ \
113 	uint_fixed_16_16_t fp; \
114 	fp.val = UINT_MAX; \
115 	fp; \
116 })
117 
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 	if (val.val == 0)
121 		return true;
122 	return false;
123 }
124 
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 	uint_fixed_16_16_t fp;
128 
129 	WARN_ON(val > U16_MAX);
130 
131 	fp.val = val << 16;
132 	return fp;
133 }
134 
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 	return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139 
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 	return fp.val >> 16;
143 }
144 
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 						 uint_fixed_16_16_t min2)
147 {
148 	uint_fixed_16_16_t min;
149 
150 	min.val = min(min1.val, min2.val);
151 	return min;
152 }
153 
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 						 uint_fixed_16_16_t max2)
156 {
157 	uint_fixed_16_16_t max;
158 
159 	max.val = max(max1.val, max2.val);
160 	return max;
161 }
162 
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 	uint_fixed_16_16_t fp;
166 	WARN_ON(val > U32_MAX);
167 	fp.val = (uint32_t) val;
168 	return fp;
169 }
170 
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 					    uint_fixed_16_16_t d)
173 {
174 	return DIV_ROUND_UP(val.val, d.val);
175 }
176 
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 						uint_fixed_16_16_t mul)
179 {
180 	uint64_t intermediate_val;
181 
182 	intermediate_val = (uint64_t) val * mul.val;
183 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 	WARN_ON(intermediate_val > U32_MAX);
185 	return (uint32_t) intermediate_val;
186 }
187 
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 					     uint_fixed_16_16_t mul)
190 {
191 	uint64_t intermediate_val;
192 
193 	intermediate_val = (uint64_t) val.val * mul.val;
194 	intermediate_val = intermediate_val >> 16;
195 	return clamp_u64_to_fixed16(intermediate_val);
196 }
197 
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 	uint64_t interm_val;
201 
202 	interm_val = (uint64_t)val << 16;
203 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 	return clamp_u64_to_fixed16(interm_val);
205 }
206 
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 						uint_fixed_16_16_t d)
209 {
210 	uint64_t interm_val;
211 
212 	interm_val = (uint64_t)val << 16;
213 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 	WARN_ON(interm_val > U32_MAX);
215 	return (uint32_t) interm_val;
216 }
217 
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 						     uint_fixed_16_16_t mul)
220 {
221 	uint64_t intermediate_val;
222 
223 	intermediate_val = (uint64_t) val * mul.val;
224 	return clamp_u64_to_fixed16(intermediate_val);
225 }
226 
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 					     uint_fixed_16_16_t add2)
229 {
230 	uint64_t interm_sum;
231 
232 	interm_sum = (uint64_t) add1.val + add2.val;
233 	return clamp_u64_to_fixed16(interm_sum);
234 }
235 
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 						 uint32_t add2)
238 {
239 	uint64_t interm_sum;
240 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241 
242 	interm_sum = (uint64_t) add1.val + interm_add2.val;
243 	return clamp_u64_to_fixed16(interm_sum);
244 }
245 
246 static inline const char *yesno(bool v)
247 {
248 	return v ? "yes" : "no";
249 }
250 
251 static inline const char *onoff(bool v)
252 {
253 	return v ? "on" : "off";
254 }
255 
256 static inline const char *enableddisabled(bool v)
257 {
258 	return v ? "enabled" : "disabled";
259 }
260 
261 enum i915_pipe {
262 	INVALID_PIPE = -1,
263 	PIPE_A = 0,
264 	PIPE_B,
265 	PIPE_C,
266 	_PIPE_EDP,
267 	I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270 
271 enum transcoder {
272 	TRANSCODER_A = 0,
273 	TRANSCODER_B,
274 	TRANSCODER_C,
275 	TRANSCODER_EDP,
276 	TRANSCODER_DSI_A,
277 	TRANSCODER_DSI_C,
278 	I915_MAX_TRANSCODERS
279 };
280 
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 	switch (transcoder) {
284 	case TRANSCODER_A:
285 		return "A";
286 	case TRANSCODER_B:
287 		return "B";
288 	case TRANSCODER_C:
289 		return "C";
290 	case TRANSCODER_EDP:
291 		return "EDP";
292 	case TRANSCODER_DSI_A:
293 		return "DSI A";
294 	case TRANSCODER_DSI_C:
295 		return "DSI C";
296 	default:
297 		return "<invalid>";
298 	}
299 }
300 
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305 
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311 	PLANE_A,
312 	PLANE_B,
313 	PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316 
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318 
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330 	PLANE_PRIMARY,
331 	PLANE_SPRITE0,
332 	PLANE_SPRITE1,
333 	PLANE_SPRITE2,
334 	PLANE_CURSOR,
335 	I915_MAX_PLANES,
336 };
337 
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341 
342 enum port {
343 	PORT_NONE = -1,
344 	PORT_A = 0,
345 	PORT_B,
346 	PORT_C,
347 	PORT_D,
348 	PORT_E,
349 	I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352 
353 #define I915_NUM_PHYS_VLV 2
354 
355 enum dpio_channel {
356 	DPIO_CH0,
357 	DPIO_CH1
358 };
359 
360 enum dpio_phy {
361 	DPIO_PHY0,
362 	DPIO_PHY1,
363 	DPIO_PHY2,
364 };
365 
366 enum intel_display_power_domain {
367 	POWER_DOMAIN_PIPE_A,
368 	POWER_DOMAIN_PIPE_B,
369 	POWER_DOMAIN_PIPE_C,
370 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 	POWER_DOMAIN_TRANSCODER_A,
374 	POWER_DOMAIN_TRANSCODER_B,
375 	POWER_DOMAIN_TRANSCODER_C,
376 	POWER_DOMAIN_TRANSCODER_EDP,
377 	POWER_DOMAIN_TRANSCODER_DSI_A,
378 	POWER_DOMAIN_TRANSCODER_DSI_C,
379 	POWER_DOMAIN_PORT_DDI_A_LANES,
380 	POWER_DOMAIN_PORT_DDI_B_LANES,
381 	POWER_DOMAIN_PORT_DDI_C_LANES,
382 	POWER_DOMAIN_PORT_DDI_D_LANES,
383 	POWER_DOMAIN_PORT_DDI_E_LANES,
384 	POWER_DOMAIN_PORT_DDI_A_IO,
385 	POWER_DOMAIN_PORT_DDI_B_IO,
386 	POWER_DOMAIN_PORT_DDI_C_IO,
387 	POWER_DOMAIN_PORT_DDI_D_IO,
388 	POWER_DOMAIN_PORT_DDI_E_IO,
389 	POWER_DOMAIN_PORT_DSI,
390 	POWER_DOMAIN_PORT_CRT,
391 	POWER_DOMAIN_PORT_OTHER,
392 	POWER_DOMAIN_VGA,
393 	POWER_DOMAIN_AUDIO,
394 	POWER_DOMAIN_PLLS,
395 	POWER_DOMAIN_AUX_A,
396 	POWER_DOMAIN_AUX_B,
397 	POWER_DOMAIN_AUX_C,
398 	POWER_DOMAIN_AUX_D,
399 	POWER_DOMAIN_GMBUS,
400 	POWER_DOMAIN_MODESET,
401 	POWER_DOMAIN_INIT,
402 
403 	POWER_DOMAIN_NUM,
404 };
405 
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
412 
413 enum hpd_pin {
414 	HPD_NONE = 0,
415 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416 	HPD_CRT,
417 	HPD_SDVO_B,
418 	HPD_SDVO_C,
419 	HPD_PORT_A,
420 	HPD_PORT_B,
421 	HPD_PORT_C,
422 	HPD_PORT_D,
423 	HPD_PORT_E,
424 	HPD_NUM_PINS
425 };
426 
427 #define for_each_hpd_pin(__pin) \
428 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429 
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431 
432 struct i915_hotplug {
433 	struct work_struct hotplug_work;
434 
435 	struct {
436 		unsigned long last_jiffies;
437 		int count;
438 		enum {
439 			HPD_ENABLED = 0,
440 			HPD_DISABLED = 1,
441 			HPD_MARK_DISABLED = 2
442 		} state;
443 	} stats[HPD_NUM_PINS];
444 	u32 event_bits;
445 	struct delayed_work reenable_work;
446 
447 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 	u32 long_port_mask;
449 	u32 short_port_mask;
450 	struct work_struct dig_port_work;
451 
452 	struct work_struct poll_init_work;
453 	bool poll_enabled;
454 
455 	unsigned int hpd_storm_threshold;
456 
457 	/*
458 	 * if we get a HPD irq from DP and a HPD irq from non-DP
459 	 * the non-DP HPD could block the workqueue on a mode config
460 	 * mutex getting, that userspace may have taken. However
461 	 * userspace is waiting on the DP workqueue to run which is
462 	 * blocked behind the non-DP one.
463 	 */
464 	struct workqueue_struct *dp_wq;
465 };
466 
467 #define I915_GEM_GPU_DOMAINS \
468 	(I915_GEM_DOMAIN_RENDER | \
469 	 I915_GEM_DOMAIN_SAMPLER | \
470 	 I915_GEM_DOMAIN_COMMAND | \
471 	 I915_GEM_DOMAIN_INSTRUCTION | \
472 	 I915_GEM_DOMAIN_VERTEX)
473 
474 #define for_each_pipe(__dev_priv, __p) \
475 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 		for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
480 	for ((__p) = 0;							\
481 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
482 	     (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)				\
484 	for ((__s) = 0;							\
485 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
486 	     (__s)++)
487 
488 #define for_each_port_masked(__port, __ports_mask) \
489 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
490 		for_each_if ((__ports_mask) & (1 << (__port)))
491 
492 #define for_each_crtc(dev, crtc) \
493 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494 
495 #define for_each_intel_plane(dev, intel_plane) \
496 	list_for_each_entry(intel_plane,			\
497 			    &(dev)->mode_config.plane_list,	\
498 			    base.head)
499 
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
501 	list_for_each_entry(intel_plane,				\
502 			    &(dev)->mode_config.plane_list,		\
503 			    base.head)					\
504 		for_each_if ((plane_mask) &				\
505 			     (1 << drm_plane_index(&intel_plane->base)))
506 
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
508 	list_for_each_entry(intel_plane,				\
509 			    &(dev)->mode_config.plane_list,		\
510 			    base.head)					\
511 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512 
513 #define for_each_intel_crtc(dev, intel_crtc)				\
514 	list_for_each_entry(intel_crtc,					\
515 			    &(dev)->mode_config.crtc_list,		\
516 			    base.head)
517 
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
519 	list_for_each_entry(intel_crtc,					\
520 			    &(dev)->mode_config.crtc_list,		\
521 			    base.head)					\
522 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523 
524 #define for_each_intel_encoder(dev, intel_encoder)		\
525 	list_for_each_entry(intel_encoder,			\
526 			    &(dev)->mode_config.encoder_list,	\
527 			    base.head)
528 
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531 
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
535 
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 		for_each_if ((intel_connector)->base.encoder == (__encoder))
539 
540 #define for_each_power_domain(domain, mask)				\
541 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
542 		for_each_if (BIT_ULL(domain) & (mask))
543 
544 #define for_each_power_well(__dev_priv, __power_well)				\
545 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
546 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
547 		(__dev_priv)->power_domains.power_well_count;		\
548 	     (__power_well)++)
549 
550 #define for_each_power_well_rev(__dev_priv, __power_well)			\
551 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
552 			      (__dev_priv)->power_domains.power_well_count - 1;	\
553 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
554 	     (__power_well)--)
555 
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
557 	for_each_power_well(__dev_priv, __power_well)				\
558 		for_each_if ((__power_well)->domains & (__domain_mask))
559 
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 	for_each_power_well_rev(__dev_priv, __power_well)		        \
562 		for_each_if ((__power_well)->domains & (__domain_mask))
563 
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 	for ((__i) = 0; \
566 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 	     (__i)++) \
570 		for_each_if (plane_state)
571 
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 	for ((__i) = 0; \
574 	     (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 		     ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 		      (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 	     (__i)++) \
578 		for_each_if (crtc)
579 
580 
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 	for ((__i) = 0; \
583 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 		      (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 		      (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 	     (__i)++) \
588 		for_each_if (plane)
589 
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593 
594 struct drm_i915_file_private {
595 	struct drm_i915_private *dev_priv;
596 	struct drm_file *file;
597 
598 	struct {
599 		spinlock_t lock;
600 		struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602  * chosen to prevent the CPU getting more than a frame ahead of the GPU
603  * (when using lax throttling for the frontbuffer). We also use it to
604  * offer free GPU waitboosts for severely congested workloads.
605  */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 	} mm;
608 	struct idr context_idr;
609 
610 	struct intel_rps_client {
611 		atomic_t boosts;
612 	} rps_client;
613 
614 	unsigned int bsd_engine;
615 
616 /* Client can have a maximum of 3 contexts banned before
617  * it is denied of creating new contexts. As one context
618  * ban needs 4 consecutive hangs, and more if there is
619  * progress in between, this is a last resort stop gap measure
620  * to limit the badly behaving clients access to gpu.
621  */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 	atomic_t context_bans;
624 };
625 
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 	uint32_t	tu;
629 	uint32_t	gmch_m;
630 	uint32_t	gmch_n;
631 	uint32_t	link_m;
632 	uint32_t	link_n;
633 };
634 
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 			    int pixel_clock, int link_clock,
637 			    struct intel_link_m_n *m_n,
638 			    bool reduce_m_n);
639 
640 /* Interface history:
641  *
642  * 1.1: Original.
643  * 1.2: Add Power Management
644  * 1.3: Add vblank support
645  * 1.4: Fix cmdbuffer path, add heap destroy
646  * 1.5: Add vblank pipe configuration
647  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648  *      - Support vertical blank on secondary display pipe
649  */
650 #define DRIVER_MAJOR		1
651 #define DRIVER_MINOR		6
652 #define DRIVER_PATCHLEVEL	0
653 
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658 
659 struct intel_opregion {
660 	struct opregion_header *header;
661 	struct opregion_acpi *acpi;
662 	struct opregion_swsci *swsci;
663 	u32 swsci_gbda_sub_functions;
664 	u32 swsci_sbcb_sub_functions;
665 	struct opregion_asle *asle;
666 	void *rvda;
667 	void *vbt_firmware;
668 	const void *vbt;
669 	u32 vbt_size;
670 	u32 *lid_state;
671 	struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE            (8*1024)
674 
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677 
678 struct sdvo_device_mapping {
679 	u8 initialized;
680 	u8 dvo_port;
681 	u8 slave_addr;
682 	u8 dvo_wiring;
683 	u8 i2c_pin;
684 	u8 ddc_pin;
685 };
686 
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696 
697 struct drm_i915_display_funcs {
698 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 			  struct intel_cdclk_state *cdclk_state);
700 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 			  const struct intel_cdclk_state *cdclk_state);
702 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 	int (*compute_intermediate_wm)(struct drm_device *dev,
705 				       struct intel_crtc *intel_crtc,
706 				       struct intel_crtc_state *newstate);
707 	void (*initial_watermarks)(struct intel_atomic_state *state,
708 				   struct intel_crtc_state *cstate);
709 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 					 struct intel_crtc_state *cstate);
711 	void (*optimize_watermarks)(struct intel_atomic_state *state,
712 				    struct intel_crtc_state *cstate);
713 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 	void (*update_wm)(struct intel_crtc *crtc);
715 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 	/* Returns the active state of the crtc, and if the crtc is active,
717 	 * fills out the pipe-config with the hw state. */
718 	bool (*get_pipe_config)(struct intel_crtc *,
719 				struct intel_crtc_state *);
720 	void (*get_initial_plane_config)(struct intel_crtc *,
721 					 struct intel_initial_plane_config *);
722 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 				  struct intel_crtc_state *crtc_state);
724 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 			    struct drm_atomic_state *old_state);
726 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 			     struct drm_atomic_state *old_state);
728 	void (*update_crtcs)(struct drm_atomic_state *state);
729 	void (*audio_codec_enable)(struct drm_connector *connector,
730 				   struct intel_encoder *encoder,
731 				   const struct drm_display_mode *adjusted_mode);
732 	void (*audio_codec_disable)(struct intel_encoder *encoder);
733 	void (*fdi_link_train)(struct intel_crtc *crtc,
734 			       const struct intel_crtc_state *crtc_state);
735 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
736 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
737 	/* clock updates for mode set */
738 	/* cursor updates */
739 	/* render clock increase/decrease */
740 	/* display clock increase/decrease */
741 	/* pll clock increase/decrease */
742 
743 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
744 	void (*load_luts)(struct drm_crtc_state *crtc_state);
745 };
746 
747 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
748 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
749 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
750 
751 struct intel_csr {
752 	struct work_struct work;
753 	const char *fw_path;
754 	uint32_t *dmc_payload;
755 	uint32_t dmc_fw_size;
756 	uint32_t version;
757 	uint32_t mmio_count;
758 	i915_reg_t mmioaddr[8];
759 	uint32_t mmiodata[8];
760 	uint32_t dc_state;
761 	uint32_t allowed_dc_mask;
762 };
763 
764 #define DEV_INFO_FOR_EACH_FLAG(func) \
765 	func(is_mobile); \
766 	func(is_lp); \
767 	func(is_alpha_support); \
768 	/* Keep has_* in alphabetical order */ \
769 	func(has_64bit_reloc); \
770 	func(has_aliasing_ppgtt); \
771 	func(has_csr); \
772 	func(has_ddi); \
773 	func(has_dp_mst); \
774 	func(has_reset_engine); \
775 	func(has_fbc); \
776 	func(has_fpga_dbg); \
777 	func(has_full_ppgtt); \
778 	func(has_full_48bit_ppgtt); \
779 	func(has_gmch_display); \
780 	func(has_guc); \
781 	func(has_guc_ct); \
782 	func(has_hotplug); \
783 	func(has_l3_dpf); \
784 	func(has_llc); \
785 	func(has_logical_ring_contexts); \
786 	func(has_logical_ring_preemption); \
787 	func(has_overlay); \
788 	func(has_pooled_eu); \
789 	func(has_psr); \
790 	func(has_rc6); \
791 	func(has_rc6p); \
792 	func(has_resource_streamer); \
793 	func(has_runtime_pm); \
794 	func(has_snoop); \
795 	func(unfenced_needs_alignment); \
796 	func(cursor_needs_physical); \
797 	func(hws_needs_physical); \
798 	func(overlay_needs_physical); \
799 	func(supports_tv); \
800 	func(has_ipc);
801 
802 struct sseu_dev_info {
803 	u8 slice_mask;
804 	u8 subslice_mask;
805 	u8 eu_total;
806 	u8 eu_per_subslice;
807 	u8 min_eu_in_pool;
808 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
809 	u8 subslice_7eu[3];
810 	u8 has_slice_pg:1;
811 	u8 has_subslice_pg:1;
812 	u8 has_eu_pg:1;
813 };
814 
815 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
816 {
817 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
818 }
819 
820 /* Keep in gen based order, and chronological order within a gen */
821 enum intel_platform {
822 	INTEL_PLATFORM_UNINITIALIZED = 0,
823 	INTEL_I830,
824 	INTEL_I845G,
825 	INTEL_I85X,
826 	INTEL_I865G,
827 	INTEL_I915G,
828 	INTEL_I915GM,
829 	INTEL_I945G,
830 	INTEL_I945GM,
831 	INTEL_G33,
832 	INTEL_PINEVIEW,
833 	INTEL_I965G,
834 	INTEL_I965GM,
835 	INTEL_G45,
836 	INTEL_GM45,
837 	INTEL_IRONLAKE,
838 	INTEL_SANDYBRIDGE,
839 	INTEL_IVYBRIDGE,
840 	INTEL_VALLEYVIEW,
841 	INTEL_HASWELL,
842 	INTEL_BROADWELL,
843 	INTEL_CHERRYVIEW,
844 	INTEL_SKYLAKE,
845 	INTEL_BROXTON,
846 	INTEL_KABYLAKE,
847 	INTEL_GEMINILAKE,
848 	INTEL_COFFEELAKE,
849 	INTEL_CANNONLAKE,
850 	INTEL_MAX_PLATFORMS
851 };
852 
853 struct intel_device_info {
854 	u16 device_id;
855 	u16 gen_mask;
856 
857 	u8 gen;
858 	u8 gt; /* GT number, 0 if undefined */
859 	u8 num_rings;
860 	u8 ring_mask; /* Rings supported by the HW */
861 
862 	enum intel_platform platform;
863 	u32 platform_mask;
864 
865 	u32 display_mmio_offset;
866 
867 	u8 num_pipes;
868 	u8 num_sprites[I915_MAX_PIPES];
869 	u8 num_scalers[I915_MAX_PIPES];
870 
871 	unsigned int page_sizes; /* page sizes supported by the HW */
872 
873 #define DEFINE_FLAG(name) u8 name:1
874 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
875 #undef DEFINE_FLAG
876 	u16 ddb_size; /* in blocks */
877 
878 	/* Register offsets for the various display pipes and transcoders */
879 	int pipe_offsets[I915_MAX_TRANSCODERS];
880 	int trans_offsets[I915_MAX_TRANSCODERS];
881 	int palette_offsets[I915_MAX_PIPES];
882 	int cursor_offsets[I915_MAX_PIPES];
883 
884 	/* Slice/subslice/EU info */
885 	struct sseu_dev_info sseu;
886 
887 	struct color_luts {
888 		u16 degamma_lut_size;
889 		u16 gamma_lut_size;
890 	} color;
891 };
892 
893 struct intel_display_error_state;
894 
895 struct i915_gpu_state {
896 	struct kref ref;
897 	struct timeval time;
898 	struct timeval boottime;
899 	struct timeval uptime;
900 
901 	struct drm_i915_private *i915;
902 
903 	char error_msg[128];
904 	bool simulated;
905 	bool awake;
906 	bool wakelock;
907 	bool suspended;
908 	int iommu;
909 	u32 reset_count;
910 	u32 suspend_count;
911 	struct intel_device_info device_info;
912 	struct i915_params params;
913 
914 	/* Generic register state */
915 	u32 eir;
916 	u32 pgtbl_er;
917 	u32 ier;
918 	u32 gtier[4], ngtier;
919 	u32 ccid;
920 	u32 derrmr;
921 	u32 forcewake;
922 	u32 error; /* gen6+ */
923 	u32 err_int; /* gen7 */
924 	u32 fault_data0; /* gen8, gen9 */
925 	u32 fault_data1; /* gen8, gen9 */
926 	u32 done_reg;
927 	u32 gac_eco;
928 	u32 gam_ecochk;
929 	u32 gab_ctl;
930 	u32 gfx_mode;
931 
932 	u32 nfence;
933 	u64 fence[I915_MAX_NUM_FENCES];
934 	struct intel_overlay_error_state *overlay;
935 	struct intel_display_error_state *display;
936 	struct drm_i915_error_object *semaphore;
937 	struct drm_i915_error_object *guc_log;
938 
939 	struct drm_i915_error_engine {
940 		int engine_id;
941 		/* Software tracked state */
942 		bool waiting;
943 		int num_waiters;
944 		unsigned long hangcheck_timestamp;
945 		bool hangcheck_stalled;
946 		enum intel_engine_hangcheck_action hangcheck_action;
947 		struct i915_address_space *vm;
948 		int num_requests;
949 		u32 reset_count;
950 
951 		/* position of active request inside the ring */
952 		u32 rq_head, rq_post, rq_tail;
953 
954 		/* our own tracking of ring head and tail */
955 		u32 cpu_ring_head;
956 		u32 cpu_ring_tail;
957 
958 		u32 last_seqno;
959 
960 		/* Register state */
961 		u32 start;
962 		u32 tail;
963 		u32 head;
964 		u32 ctl;
965 		u32 mode;
966 		u32 hws;
967 		u32 ipeir;
968 		u32 ipehr;
969 		u32 bbstate;
970 		u32 instpm;
971 		u32 instps;
972 		u32 seqno;
973 		u64 bbaddr;
974 		u64 acthd;
975 		u32 fault_reg;
976 		u64 faddr;
977 		u32 rc_psmi; /* sleep state */
978 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
979 		struct intel_instdone instdone;
980 
981 		struct drm_i915_error_context {
982 			char comm[TASK_COMM_LEN];
983 			pid_t pid;
984 			u32 handle;
985 			u32 hw_id;
986 			int priority;
987 			int ban_score;
988 			int active;
989 			int guilty;
990 		} context;
991 
992 		struct drm_i915_error_object {
993 			u64 gtt_offset;
994 			u64 gtt_size;
995 			int page_count;
996 			int unused;
997 			u32 *pages[0];
998 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
999 
1000 		struct drm_i915_error_object **user_bo;
1001 		long user_bo_count;
1002 
1003 		struct drm_i915_error_object *wa_ctx;
1004 
1005 		struct drm_i915_error_request {
1006 			long jiffies;
1007 			pid_t pid;
1008 			u32 context;
1009 			int priority;
1010 			int ban_score;
1011 			u32 seqno;
1012 			u32 head;
1013 			u32 tail;
1014 		} *requests, execlist[EXECLIST_MAX_PORTS];
1015 		unsigned int num_ports;
1016 
1017 		struct drm_i915_error_waiter {
1018 			char comm[TASK_COMM_LEN];
1019 			pid_t pid;
1020 			u32 seqno;
1021 		} *waiters;
1022 
1023 		struct {
1024 			u32 gfx_mode;
1025 			union {
1026 				u64 pdp[4];
1027 				u32 pp_dir_base;
1028 			};
1029 		} vm_info;
1030 	} engine[I915_NUM_ENGINES];
1031 
1032 	struct drm_i915_error_buffer {
1033 		u32 size;
1034 		u32 name;
1035 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1036 		u64 gtt_offset;
1037 		u32 read_domains;
1038 		u32 write_domain;
1039 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1040 		u32 tiling:2;
1041 		u32 dirty:1;
1042 		u32 purgeable:1;
1043 		u32 userptr:1;
1044 		s32 engine:4;
1045 		u32 cache_level:3;
1046 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1047 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1048 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1049 };
1050 
1051 enum i915_cache_level {
1052 	I915_CACHE_NONE = 0,
1053 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1054 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1055 			      caches, eg sampler/render caches, and the
1056 			      large Last-Level-Cache. LLC is coherent with
1057 			      the CPU, but L3 is only visible to the GPU. */
1058 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1059 };
1060 
1061 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1062 
1063 enum fb_op_origin {
1064 	ORIGIN_GTT,
1065 	ORIGIN_CPU,
1066 	ORIGIN_CS,
1067 	ORIGIN_FLIP,
1068 	ORIGIN_DIRTYFB,
1069 };
1070 
1071 struct intel_fbc {
1072 	/* This is always the inner lock when overlapping with struct_mutex and
1073 	 * it's the outer lock when overlapping with stolen_lock. */
1074 	struct lock lock;
1075 	unsigned threshold;
1076 	unsigned int possible_framebuffer_bits;
1077 	unsigned int busy_bits;
1078 	unsigned int visible_pipes_mask;
1079 	struct intel_crtc *crtc;
1080 
1081 	struct drm_mm_node compressed_fb;
1082 	struct drm_mm_node *compressed_llb;
1083 
1084 	bool false_color;
1085 
1086 	bool enabled;
1087 	bool active;
1088 
1089 	bool underrun_detected;
1090 	struct work_struct underrun_work;
1091 
1092 	/*
1093 	 * Due to the atomic rules we can't access some structures without the
1094 	 * appropriate locking, so we cache information here in order to avoid
1095 	 * these problems.
1096 	 */
1097 	struct intel_fbc_state_cache {
1098 		struct i915_vma *vma;
1099 
1100 		struct {
1101 			unsigned int mode_flags;
1102 			uint32_t hsw_bdw_pixel_rate;
1103 		} crtc;
1104 
1105 		struct {
1106 			unsigned int rotation;
1107 			int src_w;
1108 			int src_h;
1109 			bool visible;
1110 			/*
1111 			 * Display surface base address adjustement for
1112 			 * pageflips. Note that on gen4+ this only adjusts up
1113 			 * to a tile, offsets within a tile are handled in
1114 			 * the hw itself (with the TILEOFF register).
1115 			 */
1116 			int adjusted_x;
1117 			int adjusted_y;
1118 
1119 			int y;
1120 		} plane;
1121 
1122 		struct {
1123 			const struct drm_format_info *format;
1124 			unsigned int stride;
1125 		} fb;
1126 	} state_cache;
1127 
1128 	/*
1129 	 * This structure contains everything that's relevant to program the
1130 	 * hardware registers. When we want to figure out if we need to disable
1131 	 * and re-enable FBC for a new configuration we just check if there's
1132 	 * something different in the struct. The genx_fbc_activate functions
1133 	 * are supposed to read from it in order to program the registers.
1134 	 */
1135 	struct intel_fbc_reg_params {
1136 		struct i915_vma *vma;
1137 
1138 		struct {
1139 			enum i915_pipe pipe;
1140 			enum plane plane;
1141 			unsigned int fence_y_offset;
1142 		} crtc;
1143 
1144 		struct {
1145 			const struct drm_format_info *format;
1146 			unsigned int stride;
1147 		} fb;
1148 
1149 		int cfb_size;
1150 		unsigned int gen9_wa_cfb_stride;
1151 	} params;
1152 
1153 	struct intel_fbc_work {
1154 		bool scheduled;
1155 		u32 scheduled_vblank;
1156 		struct work_struct work;
1157 	} work;
1158 
1159 	const char *no_fbc_reason;
1160 };
1161 
1162 /*
1163  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1164  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1165  * parsing for same resolution.
1166  */
1167 enum drrs_refresh_rate_type {
1168 	DRRS_HIGH_RR,
1169 	DRRS_LOW_RR,
1170 	DRRS_MAX_RR, /* RR count */
1171 };
1172 
1173 enum drrs_support_type {
1174 	DRRS_NOT_SUPPORTED = 0,
1175 	STATIC_DRRS_SUPPORT = 1,
1176 	SEAMLESS_DRRS_SUPPORT = 2
1177 };
1178 
1179 struct intel_dp;
1180 struct i915_drrs {
1181 	struct lock mutex;
1182 	struct delayed_work work;
1183 	struct intel_dp *dp;
1184 	unsigned busy_frontbuffer_bits;
1185 	enum drrs_refresh_rate_type refresh_rate_type;
1186 	enum drrs_support_type type;
1187 };
1188 
1189 struct i915_psr {
1190 	struct lock lock;
1191 	bool sink_support;
1192 	bool source_ok;
1193 	struct intel_dp *enabled;
1194 	bool active;
1195 	struct delayed_work work;
1196 	unsigned busy_frontbuffer_bits;
1197 	bool psr2_support;
1198 	bool aux_frame_sync;
1199 	bool link_standby;
1200 	bool y_cord_support;
1201 	bool colorimetry_support;
1202 	bool alpm;
1203 
1204 	void (*enable_source)(struct intel_dp *,
1205 			      const struct intel_crtc_state *);
1206 	void (*disable_source)(struct intel_dp *,
1207 			       const struct intel_crtc_state *);
1208 	void (*enable_sink)(struct intel_dp *);
1209 	void (*activate)(struct intel_dp *);
1210 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1211 };
1212 
1213 enum intel_pch {
1214 	PCH_NONE = 0,	/* No PCH present */
1215 	PCH_IBX,	/* Ibexpeak PCH */
1216 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
1217 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
1218 	PCH_SPT,        /* Sunrisepoint PCH */
1219 	PCH_KBP,        /* Kaby Lake PCH */
1220 	PCH_CNP,        /* Cannon Lake PCH */
1221 	PCH_NOP,
1222 };
1223 
1224 enum intel_sbi_destination {
1225 	SBI_ICLK,
1226 	SBI_MPHY,
1227 };
1228 
1229 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1230 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1231 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1232 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1233 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1234 
1235 struct intel_fbdev;
1236 struct intel_fbc_work;
1237 
1238 struct intel_gmbus {
1239 	struct i2c_adapter adapter;
1240 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1241 	u32 force_bit;
1242 	u32 reg0;
1243 	i915_reg_t gpio_reg;
1244 	struct i2c_algo_bit_data bit_algo;
1245 	struct drm_i915_private *dev_priv;
1246 };
1247 
1248 struct i915_suspend_saved_registers {
1249 	u32 saveDSPARB;
1250 	u32 saveFBC_CONTROL;
1251 	u32 saveCACHE_MODE_0;
1252 	u32 saveMI_ARB_STATE;
1253 	u32 saveSWF0[16];
1254 	u32 saveSWF1[16];
1255 	u32 saveSWF3[3];
1256 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1257 	u32 savePCH_PORT_HOTPLUG;
1258 	u16 saveGCDGMBUS;
1259 };
1260 
1261 struct vlv_s0ix_state {
1262 	/* GAM */
1263 	u32 wr_watermark;
1264 	u32 gfx_prio_ctrl;
1265 	u32 arb_mode;
1266 	u32 gfx_pend_tlb0;
1267 	u32 gfx_pend_tlb1;
1268 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1269 	u32 media_max_req_count;
1270 	u32 gfx_max_req_count;
1271 	u32 render_hwsp;
1272 	u32 ecochk;
1273 	u32 bsd_hwsp;
1274 	u32 blt_hwsp;
1275 	u32 tlb_rd_addr;
1276 
1277 	/* MBC */
1278 	u32 g3dctl;
1279 	u32 gsckgctl;
1280 	u32 mbctl;
1281 
1282 	/* GCP */
1283 	u32 ucgctl1;
1284 	u32 ucgctl3;
1285 	u32 rcgctl1;
1286 	u32 rcgctl2;
1287 	u32 rstctl;
1288 	u32 misccpctl;
1289 
1290 	/* GPM */
1291 	u32 gfxpause;
1292 	u32 rpdeuhwtc;
1293 	u32 rpdeuc;
1294 	u32 ecobus;
1295 	u32 pwrdwnupctl;
1296 	u32 rp_down_timeout;
1297 	u32 rp_deucsw;
1298 	u32 rcubmabdtmr;
1299 	u32 rcedata;
1300 	u32 spare2gh;
1301 
1302 	/* Display 1 CZ domain */
1303 	u32 gt_imr;
1304 	u32 gt_ier;
1305 	u32 pm_imr;
1306 	u32 pm_ier;
1307 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1308 
1309 	/* GT SA CZ domain */
1310 	u32 tilectl;
1311 	u32 gt_fifoctl;
1312 	u32 gtlc_wake_ctrl;
1313 	u32 gtlc_survive;
1314 	u32 pmwgicz;
1315 
1316 	/* Display 2 CZ domain */
1317 	u32 gu_ctl0;
1318 	u32 gu_ctl1;
1319 	u32 pcbr;
1320 	u32 clock_gate_dis2;
1321 };
1322 
1323 struct intel_rps_ei {
1324 	ktime_t ktime;
1325 	u32 render_c0;
1326 	u32 media_c0;
1327 };
1328 
1329 struct intel_rps {
1330 	/*
1331 	 * work, interrupts_enabled and pm_iir are protected by
1332 	 * dev_priv->irq_lock
1333 	 */
1334 	struct work_struct work;
1335 	bool interrupts_enabled;
1336 	u32 pm_iir;
1337 
1338 	/* PM interrupt bits that should never be masked */
1339 	u32 pm_intrmsk_mbz;
1340 
1341 	/* Frequencies are stored in potentially platform dependent multiples.
1342 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1343 	 * Soft limits are those which are used for the dynamic reclocking done
1344 	 * by the driver (raise frequencies under heavy loads, and lower for
1345 	 * lighter loads). Hard limits are those imposed by the hardware.
1346 	 *
1347 	 * A distinction is made for overclocking, which is never enabled by
1348 	 * default, and is considered to be above the hard limit if it's
1349 	 * possible at all.
1350 	 */
1351 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1352 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1353 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1354 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1355 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1356 	u8 boost_freq;		/* Frequency to request when wait boosting */
1357 	u8 idle_freq;		/* Frequency to request when we are idle */
1358 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1359 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1360 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1361 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1362 
1363 	u8 up_threshold; /* Current %busy required to uplock */
1364 	u8 down_threshold; /* Current %busy required to downclock */
1365 
1366 	int last_adj;
1367 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1368 
1369 	bool enabled;
1370 	atomic_t num_waiters;
1371 	atomic_t boosts;
1372 
1373 	/* manual wa residency calculations */
1374 	struct intel_rps_ei ei;
1375 };
1376 
1377 struct intel_rc6 {
1378 	bool enabled;
1379 };
1380 
1381 struct intel_llc_pstate {
1382 	bool enabled;
1383 };
1384 
1385 struct intel_gen6_power_mgmt {
1386 	struct intel_rps rps;
1387 	struct intel_rc6 rc6;
1388 	struct intel_llc_pstate llc_pstate;
1389 	struct delayed_work autoenable_work;
1390 };
1391 
1392 /* defined intel_pm.c */
1393 extern spinlock_t mchdev_lock;
1394 
1395 struct intel_ilk_power_mgmt {
1396 	u8 cur_delay;
1397 	u8 min_delay;
1398 	u8 max_delay;
1399 	u8 fmax;
1400 	u8 fstart;
1401 
1402 	u64 last_count1;
1403 	unsigned long last_time1;
1404 	unsigned long chipset_power;
1405 	u64 last_count2;
1406 	u64 last_time2;
1407 	unsigned long gfx_power;
1408 	u8 corr;
1409 
1410 	int c_m;
1411 	int r_t;
1412 };
1413 
1414 struct drm_i915_private;
1415 struct i915_power_well;
1416 
1417 struct i915_power_well_ops {
1418 	/*
1419 	 * Synchronize the well's hw state to match the current sw state, for
1420 	 * example enable/disable it based on the current refcount. Called
1421 	 * during driver init and resume time, possibly after first calling
1422 	 * the enable/disable handlers.
1423 	 */
1424 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1425 			struct i915_power_well *power_well);
1426 	/*
1427 	 * Enable the well and resources that depend on it (for example
1428 	 * interrupts located on the well). Called after the 0->1 refcount
1429 	 * transition.
1430 	 */
1431 	void (*enable)(struct drm_i915_private *dev_priv,
1432 		       struct i915_power_well *power_well);
1433 	/*
1434 	 * Disable the well and resources that depend on it. Called after
1435 	 * the 1->0 refcount transition.
1436 	 */
1437 	void (*disable)(struct drm_i915_private *dev_priv,
1438 			struct i915_power_well *power_well);
1439 	/* Returns the hw enabled state. */
1440 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1441 			   struct i915_power_well *power_well);
1442 };
1443 
1444 /* Power well structure for haswell */
1445 struct i915_power_well {
1446 	const char *name;
1447 	bool always_on;
1448 	/* power well enable/disable usage count */
1449 	int count;
1450 	/* cached hw enabled state */
1451 	bool hw_enabled;
1452 	u64 domains;
1453 	/* unique identifier for this power well */
1454 	enum i915_power_well_id id;
1455 	/*
1456 	 * Arbitraty data associated with this power well. Platform and power
1457 	 * well specific.
1458 	 */
1459 	union {
1460 		struct {
1461 			enum dpio_phy phy;
1462 		} bxt;
1463 		struct {
1464 			/* Mask of pipes whose IRQ logic is backed by the pw */
1465 			u8 irq_pipe_mask;
1466 			/* The pw is backing the VGA functionality */
1467 			bool has_vga:1;
1468 			bool has_fuses:1;
1469 		} hsw;
1470 	};
1471 	const struct i915_power_well_ops *ops;
1472 };
1473 
1474 struct i915_power_domains {
1475 	/*
1476 	 * Power wells needed for initialization at driver init and suspend
1477 	 * time are on. They are kept on until after the first modeset.
1478 	 */
1479 	bool init_power_on;
1480 	bool initializing;
1481 	int power_well_count;
1482 
1483 	struct lock lock;
1484 	int domain_use_count[POWER_DOMAIN_NUM];
1485 	struct i915_power_well *power_wells;
1486 };
1487 
1488 #define MAX_L3_SLICES 2
1489 struct intel_l3_parity {
1490 	u32 *remap_info[MAX_L3_SLICES];
1491 	struct work_struct error_work;
1492 	int which_slice;
1493 };
1494 
1495 struct i915_gem_mm {
1496 	/** Memory allocator for GTT stolen memory */
1497 	struct drm_mm stolen;
1498 	/** Protects the usage of the GTT stolen memory allocator. This is
1499 	 * always the inner lock when overlapping with struct_mutex. */
1500 	struct lock stolen_lock;
1501 
1502 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1503 	spinlock_t obj_lock;
1504 
1505 	/** List of all objects in gtt_space. Used to restore gtt
1506 	 * mappings on resume */
1507 	struct list_head bound_list;
1508 	/**
1509 	 * List of objects which are not bound to the GTT (thus
1510 	 * are idle and not used by the GPU). These objects may or may
1511 	 * not actually have any pages attached.
1512 	 */
1513 	struct list_head unbound_list;
1514 
1515 	/** List of all objects in gtt_space, currently mmaped by userspace.
1516 	 * All objects within this list must also be on bound_list.
1517 	 */
1518 	struct list_head userfault_list;
1519 
1520 	/**
1521 	 * List of objects which are pending destruction.
1522 	 */
1523 	struct llist_head free_list;
1524 	struct work_struct free_work;
1525 	spinlock_t free_lock;
1526 
1527 	/**
1528 	 * Small stash of WC pages
1529 	 */
1530 	struct pagevec wc_stash;
1531 
1532 	/** Usable portion of the GTT for GEM */
1533 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1534 
1535 	/**
1536 	 * tmpfs instance used for shmem backed objects
1537 	 */
1538 	struct vfsmount *gemfs;
1539 
1540 	/** PPGTT used for aliasing the PPGTT with the GTT */
1541 	struct i915_hw_ppgtt *aliasing_ppgtt;
1542 
1543 	struct notifier_block oom_notifier;
1544 	struct notifier_block vmap_notifier;
1545 	struct shrinker shrinker;
1546 
1547 	/** LRU list of objects with fence regs on them. */
1548 	struct list_head fence_list;
1549 
1550 	/**
1551 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1552 	 * when required but otherwise left to userspace to try again
1553 	 * on EAGAIN.
1554 	 */
1555 	struct workqueue_struct *userptr_wq;
1556 
1557 	u64 unordered_timeline;
1558 
1559 	/* the indicator for dispatch video commands on two BSD rings */
1560 	atomic_t bsd_engine_dispatch_index;
1561 
1562 	/** Bit 6 swizzling required for X tiling */
1563 	uint32_t bit_6_swizzle_x;
1564 	/** Bit 6 swizzling required for Y tiling */
1565 	uint32_t bit_6_swizzle_y;
1566 
1567 	/* accounting, useful for userland debugging */
1568 	spinlock_t object_stat_lock;
1569 	u64 object_memory;
1570 	u32 object_count;
1571 };
1572 
1573 struct drm_i915_error_state_buf {
1574 	struct drm_i915_private *i915;
1575 	unsigned bytes;
1576 	unsigned size;
1577 	int err;
1578 	u8 *buf;
1579 	loff_t start;
1580 	loff_t pos;
1581 };
1582 
1583 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1584 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1585 
1586 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1587 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1588 
1589 struct i915_gpu_error {
1590 	/* For hangcheck timer */
1591 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1592 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1593 
1594 	struct delayed_work hangcheck_work;
1595 
1596 	/* For reset and error_state handling. */
1597 	spinlock_t lock;
1598 	/* Protected by the above dev->gpu_error.lock. */
1599 	struct i915_gpu_state *first_error;
1600 
1601 	atomic_t pending_fb_pin;
1602 
1603 	unsigned long missed_irq_rings;
1604 
1605 	/**
1606 	 * State variable controlling the reset flow and count
1607 	 *
1608 	 * This is a counter which gets incremented when reset is triggered,
1609 	 *
1610 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1611 	 * meaning that any waiters holding onto the struct_mutex should
1612 	 * relinquish the lock immediately in order for the reset to start.
1613 	 *
1614 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1615 	 * set meaning that hardware is terminally sour and there is no
1616 	 * recovery. All waiters on the reset_queue will be woken when
1617 	 * that happens.
1618 	 *
1619 	 * This counter is used by the wait_seqno code to notice that reset
1620 	 * event happened and it needs to restart the entire ioctl (since most
1621 	 * likely the seqno it waited for won't ever signal anytime soon).
1622 	 *
1623 	 * This is important for lock-free wait paths, where no contended lock
1624 	 * naturally enforces the correct ordering between the bail-out of the
1625 	 * waiter and the gpu reset work code.
1626 	 */
1627 	unsigned long reset_count;
1628 
1629 	/**
1630 	 * flags: Control various stages of the GPU reset
1631 	 *
1632 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1633 	 * other users acquiring the struct_mutex. To do this we set the
1634 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1635 	 * and then check for that bit before acquiring the struct_mutex (in
1636 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1637 	 * secondary role in preventing two concurrent global reset attempts.
1638 	 *
1639 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1640 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1641 	 * but it may be held by some long running waiter (that we cannot
1642 	 * interrupt without causing trouble). Once we are ready to do the GPU
1643 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1644 	 * they already hold the struct_mutex and want to participate they can
1645 	 * inspect the bit and do the reset directly, otherwise the worker
1646 	 * waits for the struct_mutex.
1647 	 *
1648 	 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1649 	 * acquire the struct_mutex to reset an engine, we need an explicit
1650 	 * flag to prevent two concurrent reset attempts in the same engine.
1651 	 * As the number of engines continues to grow, allocate the flags from
1652 	 * the most significant bits.
1653 	 *
1654 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1655 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1656 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1657 	 * aborted (with -EIO reported to userspace) if set.
1658 	 */
1659 	unsigned long flags;
1660 #define I915_RESET_BACKOFF	0
1661 #define I915_RESET_HANDOFF	1
1662 #define I915_RESET_MODESET	2
1663 #define I915_WEDGED		(BITS_PER_LONG - 1)
1664 #define I915_RESET_ENGINE	(I915_WEDGED - I915_NUM_ENGINES)
1665 
1666 	/** Number of times an engine has been reset */
1667 	u32 reset_engine_count[I915_NUM_ENGINES];
1668 
1669 	/**
1670 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1671 	 * to release the struct_mutex for the reset to procede.
1672 	 */
1673 	wait_queue_head_t wait_queue;
1674 
1675 	/**
1676 	 * Waitqueue to signal when the reset has completed. Used by clients
1677 	 * that wait for dev_priv->mm.wedged to settle.
1678 	 */
1679 	wait_queue_head_t reset_queue;
1680 
1681 	/* For missed irq/seqno simulation. */
1682 	unsigned long test_irq_rings;
1683 };
1684 
1685 enum modeset_restore {
1686 	MODESET_ON_LID_OPEN,
1687 	MODESET_DONE,
1688 	MODESET_SUSPENDED,
1689 };
1690 
1691 #define DP_AUX_A 0x40
1692 #define DP_AUX_B 0x10
1693 #define DP_AUX_C 0x20
1694 #define DP_AUX_D 0x30
1695 
1696 #define DDC_PIN_B  0x05
1697 #define DDC_PIN_C  0x04
1698 #define DDC_PIN_D  0x06
1699 
1700 struct ddi_vbt_port_info {
1701 	/*
1702 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1703 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1704 	 * populate this field.
1705 	 */
1706 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1707 	uint8_t hdmi_level_shift;
1708 
1709 	uint8_t supports_dvi:1;
1710 	uint8_t supports_hdmi:1;
1711 	uint8_t supports_dp:1;
1712 	uint8_t supports_edp:1;
1713 
1714 	uint8_t alternate_aux_channel;
1715 	uint8_t alternate_ddc_pin;
1716 
1717 	uint8_t dp_boost_level;
1718 	uint8_t hdmi_boost_level;
1719 };
1720 
1721 enum psr_lines_to_wait {
1722 	PSR_0_LINES_TO_WAIT = 0,
1723 	PSR_1_LINE_TO_WAIT,
1724 	PSR_4_LINES_TO_WAIT,
1725 	PSR_8_LINES_TO_WAIT
1726 };
1727 
1728 struct intel_vbt_data {
1729 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1730 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1731 
1732 	/* Feature bits */
1733 	unsigned int int_tv_support:1;
1734 	unsigned int lvds_dither:1;
1735 	unsigned int lvds_vbt:1;
1736 	unsigned int int_crt_support:1;
1737 	unsigned int lvds_use_ssc:1;
1738 	unsigned int display_clock_mode:1;
1739 	unsigned int fdi_rx_polarity_inverted:1;
1740 	unsigned int panel_type:4;
1741 	int lvds_ssc_freq;
1742 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1743 
1744 	enum drrs_support_type drrs_type;
1745 
1746 	struct {
1747 		int rate;
1748 		int lanes;
1749 		int preemphasis;
1750 		int vswing;
1751 		bool low_vswing;
1752 		bool initialized;
1753 		bool support;
1754 		int bpp;
1755 		struct edp_power_seq pps;
1756 	} edp;
1757 
1758 	struct {
1759 		bool full_link;
1760 		bool require_aux_wakeup;
1761 		int idle_frames;
1762 		enum psr_lines_to_wait lines_to_wait;
1763 		int tp1_wakeup_time;
1764 		int tp2_tp3_wakeup_time;
1765 	} psr;
1766 
1767 	struct {
1768 		u16 pwm_freq_hz;
1769 		bool present;
1770 		bool active_low_pwm;
1771 		u8 min_brightness;	/* min_brightness/255 of max */
1772 		u8 controller;		/* brightness controller number */
1773 		enum intel_backlight_type type;
1774 	} backlight;
1775 
1776 	/* MIPI DSI */
1777 	struct {
1778 		u16 panel_id;
1779 		struct mipi_config *config;
1780 		struct mipi_pps_data *pps;
1781 		u16 bl_ports;
1782 		u16 cabc_ports;
1783 		u8 seq_version;
1784 		u32 size;
1785 		u8 *data;
1786 		const u8 *sequence[MIPI_SEQ_MAX];
1787 	} dsi;
1788 
1789 	int crt_ddc_pin;
1790 
1791 	int child_dev_num;
1792 	struct child_device_config *child_dev;
1793 
1794 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1795 	struct sdvo_device_mapping sdvo_mappings[2];
1796 };
1797 
1798 enum intel_ddb_partitioning {
1799 	INTEL_DDB_PART_1_2,
1800 	INTEL_DDB_PART_5_6, /* IVB+ */
1801 };
1802 
1803 struct intel_wm_level {
1804 	bool enable;
1805 	uint32_t pri_val;
1806 	uint32_t spr_val;
1807 	uint32_t cur_val;
1808 	uint32_t fbc_val;
1809 };
1810 
1811 struct ilk_wm_values {
1812 	uint32_t wm_pipe[3];
1813 	uint32_t wm_lp[3];
1814 	uint32_t wm_lp_spr[3];
1815 	uint32_t wm_linetime[3];
1816 	bool enable_fbc_wm;
1817 	enum intel_ddb_partitioning partitioning;
1818 };
1819 
1820 struct g4x_pipe_wm {
1821 	uint16_t plane[I915_MAX_PLANES];
1822 	uint16_t fbc;
1823 };
1824 
1825 struct g4x_sr_wm {
1826 	uint16_t plane;
1827 	uint16_t cursor;
1828 	uint16_t fbc;
1829 };
1830 
1831 struct vlv_wm_ddl_values {
1832 	uint8_t plane[I915_MAX_PLANES];
1833 };
1834 
1835 struct vlv_wm_values {
1836 	struct g4x_pipe_wm pipe[3];
1837 	struct g4x_sr_wm sr;
1838 	struct vlv_wm_ddl_values ddl[3];
1839 	uint8_t level;
1840 	bool cxsr;
1841 };
1842 
1843 struct g4x_wm_values {
1844 	struct g4x_pipe_wm pipe[2];
1845 	struct g4x_sr_wm sr;
1846 	struct g4x_sr_wm hpll;
1847 	bool cxsr;
1848 	bool hpll_en;
1849 	bool fbc_en;
1850 };
1851 
1852 struct skl_ddb_entry {
1853 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1854 };
1855 
1856 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1857 {
1858 	return entry->end - entry->start;
1859 }
1860 
1861 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1862 				       const struct skl_ddb_entry *e2)
1863 {
1864 	if (e1->start == e2->start && e1->end == e2->end)
1865 		return true;
1866 
1867 	return false;
1868 }
1869 
1870 struct skl_ddb_allocation {
1871 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1872 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1873 };
1874 
1875 struct skl_wm_values {
1876 	unsigned dirty_pipes;
1877 	struct skl_ddb_allocation ddb;
1878 };
1879 
1880 struct skl_wm_level {
1881 	bool plane_en;
1882 	uint16_t plane_res_b;
1883 	uint8_t plane_res_l;
1884 };
1885 
1886 /* Stores plane specific WM parameters */
1887 struct skl_wm_params {
1888 	bool x_tiled, y_tiled;
1889 	bool rc_surface;
1890 	uint32_t width;
1891 	uint8_t cpp;
1892 	uint32_t plane_pixel_rate;
1893 	uint32_t y_min_scanlines;
1894 	uint32_t plane_bytes_per_line;
1895 	uint_fixed_16_16_t plane_blocks_per_line;
1896 	uint_fixed_16_16_t y_tile_minimum;
1897 	uint32_t linetime_us;
1898 };
1899 
1900 /*
1901  * This struct helps tracking the state needed for runtime PM, which puts the
1902  * device in PCI D3 state. Notice that when this happens, nothing on the
1903  * graphics device works, even register access, so we don't get interrupts nor
1904  * anything else.
1905  *
1906  * Every piece of our code that needs to actually touch the hardware needs to
1907  * either call intel_runtime_pm_get or call intel_display_power_get with the
1908  * appropriate power domain.
1909  *
1910  * Our driver uses the autosuspend delay feature, which means we'll only really
1911  * suspend if we stay with zero refcount for a certain amount of time. The
1912  * default value is currently very conservative (see intel_runtime_pm_enable), but
1913  * it can be changed with the standard runtime PM files from sysfs.
1914  *
1915  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1916  * goes back to false exactly before we reenable the IRQs. We use this variable
1917  * to check if someone is trying to enable/disable IRQs while they're supposed
1918  * to be disabled. This shouldn't happen and we'll print some error messages in
1919  * case it happens.
1920  *
1921  * For more, read the Documentation/power/runtime_pm.txt.
1922  */
1923 struct i915_runtime_pm {
1924 	atomic_t wakeref_count;
1925 	bool suspended;
1926 	bool irqs_enabled;
1927 };
1928 
1929 enum intel_pipe_crc_source {
1930 	INTEL_PIPE_CRC_SOURCE_NONE,
1931 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1932 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1933 	INTEL_PIPE_CRC_SOURCE_PF,
1934 	INTEL_PIPE_CRC_SOURCE_PIPE,
1935 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1936 	INTEL_PIPE_CRC_SOURCE_TV,
1937 	INTEL_PIPE_CRC_SOURCE_DP_B,
1938 	INTEL_PIPE_CRC_SOURCE_DP_C,
1939 	INTEL_PIPE_CRC_SOURCE_DP_D,
1940 	INTEL_PIPE_CRC_SOURCE_AUTO,
1941 	INTEL_PIPE_CRC_SOURCE_MAX,
1942 };
1943 
1944 struct intel_pipe_crc_entry {
1945 	uint32_t frame;
1946 	uint32_t crc[5];
1947 };
1948 
1949 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1950 struct intel_pipe_crc {
1951 	spinlock_t lock;
1952 	bool opened;		/* exclusive access to the result file */
1953 	struct intel_pipe_crc_entry *entries;
1954 	enum intel_pipe_crc_source source;
1955 	int head, tail;
1956 	wait_queue_head_t wq;
1957 	int skipped;
1958 };
1959 
1960 struct i915_frontbuffer_tracking {
1961 	spinlock_t lock;
1962 
1963 	/*
1964 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1965 	 * scheduled flips.
1966 	 */
1967 	unsigned busy_bits;
1968 	unsigned flip_bits;
1969 };
1970 
1971 struct i915_wa_reg {
1972 	i915_reg_t addr;
1973 	u32 value;
1974 	/* bitmask representing WA bits */
1975 	u32 mask;
1976 };
1977 
1978 #define I915_MAX_WA_REGS 16
1979 
1980 struct i915_workarounds {
1981 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1982 	u32 count;
1983 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1984 };
1985 
1986 struct i915_virtual_gpu {
1987 	bool active;
1988 	u32 caps;
1989 };
1990 
1991 /* used in computing the new watermarks state */
1992 struct intel_wm_config {
1993 	unsigned int num_pipes_active;
1994 	bool sprites_enabled;
1995 	bool sprites_scaled;
1996 };
1997 
1998 struct i915_oa_format {
1999 	u32 format;
2000 	int size;
2001 };
2002 
2003 struct i915_oa_reg {
2004 	i915_reg_t addr;
2005 	u32 value;
2006 };
2007 
2008 struct i915_oa_config {
2009 	char uuid[UUID_STRING_LEN + 1];
2010 	int id;
2011 
2012 	const struct i915_oa_reg *mux_regs;
2013 	u32 mux_regs_len;
2014 	const struct i915_oa_reg *b_counter_regs;
2015 	u32 b_counter_regs_len;
2016 	const struct i915_oa_reg *flex_regs;
2017 	u32 flex_regs_len;
2018 
2019 	struct attribute_group sysfs_metric;
2020 	struct attribute *attrs[2];
2021 	struct device_attribute sysfs_metric_id;
2022 
2023 	atomic_t ref_count;
2024 };
2025 
2026 struct i915_perf_stream;
2027 
2028 /**
2029  * struct i915_perf_stream_ops - the OPs to support a specific stream type
2030  */
2031 struct i915_perf_stream_ops {
2032 	/**
2033 	 * @enable: Enables the collection of HW samples, either in response to
2034 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2035 	 * without `I915_PERF_FLAG_DISABLED`.
2036 	 */
2037 	void (*enable)(struct i915_perf_stream *stream);
2038 
2039 	/**
2040 	 * @disable: Disables the collection of HW samples, either in response
2041 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2042 	 * the stream.
2043 	 */
2044 	void (*disable)(struct i915_perf_stream *stream);
2045 
2046 	/**
2047 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2048 	 * once there is something ready to read() for the stream
2049 	 */
2050 	void (*poll_wait)(struct i915_perf_stream *stream,
2051 			  struct file *file,
2052 			  poll_table *wait);
2053 
2054 	/**
2055 	 * @wait_unlocked: For handling a blocking read, wait until there is
2056 	 * something to ready to read() for the stream. E.g. wait on the same
2057 	 * wait queue that would be passed to poll_wait().
2058 	 */
2059 	int (*wait_unlocked)(struct i915_perf_stream *stream);
2060 
2061 	/**
2062 	 * @read: Copy buffered metrics as records to userspace
2063 	 * **buf**: the userspace, destination buffer
2064 	 * **count**: the number of bytes to copy, requested by userspace
2065 	 * **offset**: zero at the start of the read, updated as the read
2066 	 * proceeds, it represents how many bytes have been copied so far and
2067 	 * the buffer offset for copying the next record.
2068 	 *
2069 	 * Copy as many buffered i915 perf samples and records for this stream
2070 	 * to userspace as will fit in the given buffer.
2071 	 *
2072 	 * Only write complete records; returning -%ENOSPC if there isn't room
2073 	 * for a complete record.
2074 	 *
2075 	 * Return any error condition that results in a short read such as
2076 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2077 	 * returning to userspace.
2078 	 */
2079 	int (*read)(struct i915_perf_stream *stream,
2080 		    char __user *buf,
2081 		    size_t count,
2082 		    size_t *offset);
2083 
2084 	/**
2085 	 * @destroy: Cleanup any stream specific resources.
2086 	 *
2087 	 * The stream will always be disabled before this is called.
2088 	 */
2089 	void (*destroy)(struct i915_perf_stream *stream);
2090 };
2091 
2092 /**
2093  * struct i915_perf_stream - state for a single open stream FD
2094  */
2095 struct i915_perf_stream {
2096 	/**
2097 	 * @dev_priv: i915 drm device
2098 	 */
2099 	struct drm_i915_private *dev_priv;
2100 
2101 	/**
2102 	 * @link: Links the stream into ``&drm_i915_private->streams``
2103 	 */
2104 	struct list_head link;
2105 
2106 	/**
2107 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2108 	 * properties given when opening a stream, representing the contents
2109 	 * of a single sample as read() by userspace.
2110 	 */
2111 	u32 sample_flags;
2112 
2113 	/**
2114 	 * @sample_size: Considering the configured contents of a sample
2115 	 * combined with the required header size, this is the total size
2116 	 * of a single sample record.
2117 	 */
2118 	int sample_size;
2119 
2120 	/**
2121 	 * @ctx: %NULL if measuring system-wide across all contexts or a
2122 	 * specific context that is being monitored.
2123 	 */
2124 	struct i915_gem_context *ctx;
2125 
2126 	/**
2127 	 * @enabled: Whether the stream is currently enabled, considering
2128 	 * whether the stream was opened in a disabled state and based
2129 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2130 	 */
2131 	bool enabled;
2132 
2133 	/**
2134 	 * @ops: The callbacks providing the implementation of this specific
2135 	 * type of configured stream.
2136 	 */
2137 	const struct i915_perf_stream_ops *ops;
2138 
2139 	/**
2140 	 * @oa_config: The OA configuration used by the stream.
2141 	 */
2142 	struct i915_oa_config *oa_config;
2143 };
2144 
2145 /**
2146  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2147  */
2148 struct i915_oa_ops {
2149 	/**
2150 	 * @is_valid_b_counter_reg: Validates register's address for
2151 	 * programming boolean counters for a particular platform.
2152 	 */
2153 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2154 				       u32 addr);
2155 
2156 	/**
2157 	 * @is_valid_mux_reg: Validates register's address for programming mux
2158 	 * for a particular platform.
2159 	 */
2160 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2161 
2162 	/**
2163 	 * @is_valid_flex_reg: Validates register's address for programming
2164 	 * flex EU filtering for a particular platform.
2165 	 */
2166 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2167 
2168 	/**
2169 	 * @init_oa_buffer: Resets the head and tail pointers of the
2170 	 * circular buffer for periodic OA reports.
2171 	 *
2172 	 * Called when first opening a stream for OA metrics, but also may be
2173 	 * called in response to an OA buffer overflow or other error
2174 	 * condition.
2175 	 *
2176 	 * Note it may be necessary to clear the full OA buffer here as part of
2177 	 * maintaining the invariable that new reports must be written to
2178 	 * zeroed memory for us to be able to reliable detect if an expected
2179 	 * report has not yet landed in memory.  (At least on Haswell the OA
2180 	 * buffer tail pointer is not synchronized with reports being visible
2181 	 * to the CPU)
2182 	 */
2183 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2184 
2185 	/**
2186 	 * @enable_metric_set: Selects and applies any MUX configuration to set
2187 	 * up the Boolean and Custom (B/C) counters that are part of the
2188 	 * counter reports being sampled. May apply system constraints such as
2189 	 * disabling EU clock gating as required.
2190 	 */
2191 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2192 				 const struct i915_oa_config *oa_config);
2193 
2194 	/**
2195 	 * @disable_metric_set: Remove system constraints associated with using
2196 	 * the OA unit.
2197 	 */
2198 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2199 
2200 	/**
2201 	 * @oa_enable: Enable periodic sampling
2202 	 */
2203 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2204 
2205 	/**
2206 	 * @oa_disable: Disable periodic sampling
2207 	 */
2208 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2209 
2210 	/**
2211 	 * @read: Copy data from the circular OA buffer into a given userspace
2212 	 * buffer.
2213 	 */
2214 	int (*read)(struct i915_perf_stream *stream,
2215 		    char __user *buf,
2216 		    size_t count,
2217 		    size_t *offset);
2218 
2219 	/**
2220 	 * @oa_hw_tail_read: read the OA tail pointer register
2221 	 *
2222 	 * In particular this enables us to share all the fiddly code for
2223 	 * handling the OA unit tail pointer race that affects multiple
2224 	 * generations.
2225 	 */
2226 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2227 };
2228 
2229 struct intel_cdclk_state {
2230 	unsigned int cdclk, vco, ref;
2231 };
2232 
2233 struct drm_i915_private {
2234 	struct drm_device drm;
2235 
2236 	struct kmem_cache *objects;
2237 	struct kmem_cache *vmas;
2238 	struct kmem_cache *luts;
2239 	struct kmem_cache *requests;
2240 	struct kmem_cache *dependencies;
2241 	struct kmem_cache *priorities;
2242 
2243 	const struct intel_device_info info;
2244 
2245 	void __iomem *regs;
2246 
2247 	struct intel_uncore uncore;
2248 
2249 	struct i915_virtual_gpu vgpu;
2250 
2251 	struct intel_gvt *gvt;
2252 
2253 	struct intel_huc huc;
2254 	struct intel_guc guc;
2255 
2256 	struct intel_csr csr;
2257 
2258 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2259 
2260 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2261 	 * controller on different i2c buses. */
2262 	struct lock gmbus_mutex;
2263 
2264 	/**
2265 	 * Base address of the gmbus and gpio block.
2266 	 */
2267 	uint32_t gpio_mmio_base;
2268 
2269 	/* MMIO base address for MIPI regs */
2270 	uint32_t mipi_mmio_base;
2271 
2272 	uint32_t psr_mmio_base;
2273 
2274 	uint32_t pps_mmio_base;
2275 
2276 	wait_queue_head_t gmbus_wait_queue;
2277 
2278 	struct pci_dev *bridge_dev;
2279 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2280 	/* Context used internally to idle the GPU and setup initial state */
2281 	struct i915_gem_context *kernel_context;
2282 	/* Context only to be used for injecting preemption commands */
2283 	struct i915_gem_context *preempt_context;
2284 	struct i915_vma *semaphore;
2285 
2286 	struct drm_dma_handle *status_page_dmah;
2287 	struct resource *mch_res;
2288 	int mch_res_rid;
2289 
2290 	/* protects the irq masks */
2291 	spinlock_t irq_lock;
2292 
2293 	bool display_irqs_enabled;
2294 
2295 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2296 	struct pm_qos_request pm_qos;
2297 
2298 	/* Sideband mailbox protection */
2299 	struct lock sb_lock;
2300 
2301 	/** Cached value of IMR to avoid reads in updating the bitfield */
2302 	union {
2303 		u32 irq_mask;
2304 		u32 de_irq_mask[I915_MAX_PIPES];
2305 	};
2306 	u32 gt_irq_mask;
2307 	u32 pm_imr;
2308 	u32 pm_ier;
2309 	u32 pm_rps_events;
2310 	u32 pm_guc_events;
2311 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2312 
2313 	struct i915_hotplug hotplug;
2314 	struct intel_fbc fbc;
2315 	struct i915_drrs drrs;
2316 	struct intel_opregion opregion;
2317 	struct intel_vbt_data vbt;
2318 
2319 	bool preserve_bios_swizzle;
2320 
2321 	/* overlay */
2322 	struct intel_overlay *overlay;
2323 
2324 	/* backlight registers and fields in struct intel_panel */
2325 	struct lock backlight_lock;
2326 
2327 	/* LVDS info */
2328 	bool no_aux_handshake;
2329 
2330 	/* protects panel power sequencer state */
2331 	struct lock pps_mutex;
2332 
2333 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2334 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2335 
2336 	unsigned int fsb_freq, mem_freq, is_ddr3;
2337 	unsigned int skl_preferred_vco_freq;
2338 	unsigned int max_cdclk_freq;
2339 
2340 	unsigned int max_dotclk_freq;
2341 	unsigned int rawclk_freq;
2342 	unsigned int hpll_freq;
2343 	unsigned int czclk_freq;
2344 
2345 	struct {
2346 		/*
2347 		 * The current logical cdclk state.
2348 		 * See intel_atomic_state.cdclk.logical
2349 		 *
2350 		 * For reading holding any crtc lock is sufficient,
2351 		 * for writing must hold all of them.
2352 		 */
2353 		struct intel_cdclk_state logical;
2354 		/*
2355 		 * The current actual cdclk state.
2356 		 * See intel_atomic_state.cdclk.actual
2357 		 */
2358 		struct intel_cdclk_state actual;
2359 		/* The current hardware cdclk state */
2360 		struct intel_cdclk_state hw;
2361 	} cdclk;
2362 
2363 	/**
2364 	 * wq - Driver workqueue for GEM.
2365 	 *
2366 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2367 	 * locks, for otherwise the flushing done in the pageflip code will
2368 	 * result in deadlocks.
2369 	 */
2370 	struct workqueue_struct *wq;
2371 
2372 	/* ordered wq for modesets */
2373 	struct workqueue_struct *modeset_wq;
2374 
2375 	/* Display functions */
2376 	struct drm_i915_display_funcs display;
2377 
2378 	/* PCH chipset type */
2379 	enum intel_pch pch_type;
2380 	unsigned short pch_id;
2381 
2382 	unsigned long quirks;
2383 
2384 	enum modeset_restore modeset_restore;
2385 	struct lock modeset_restore_lock;
2386 	struct drm_atomic_state *modeset_restore_state;
2387 	struct drm_modeset_acquire_ctx reset_ctx;
2388 
2389 	struct list_head vm_list; /* Global list of all address spaces */
2390 	struct i915_ggtt ggtt; /* VM representing the global address space */
2391 
2392 	struct i915_gem_mm mm;
2393 	DECLARE_HASHTABLE(mm_structs, 7);
2394 	struct lock mm_lock;
2395 
2396 	struct intel_ppat ppat;
2397 
2398 	/* Kernel Modesetting */
2399 
2400 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2401 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2402 
2403 #ifdef CONFIG_DEBUG_FS
2404 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2405 #endif
2406 
2407 	/* dpll and cdclk state is protected by connection_mutex */
2408 	int num_shared_dpll;
2409 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2410 	const struct intel_dpll_mgr *dpll_mgr;
2411 
2412 	/*
2413 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2414 	 * Must be global rather than per dpll, because on some platforms
2415 	 * plls share registers.
2416 	 */
2417 	struct lock dpll_lock;
2418 
2419 	unsigned int active_crtcs;
2420 	/* minimum acceptable cdclk for each pipe */
2421 	int min_cdclk[I915_MAX_PIPES];
2422 
2423 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2424 
2425 	struct i915_workarounds workarounds;
2426 
2427 	struct i915_frontbuffer_tracking fb_tracking;
2428 
2429 	struct intel_atomic_helper {
2430 		struct llist_head free_list;
2431 		struct work_struct free_work;
2432 	} atomic_helper;
2433 
2434 	u16 orig_clock;
2435 
2436 	bool mchbar_need_disable;
2437 
2438 	struct intel_l3_parity l3_parity;
2439 
2440 	/* Cannot be determined by PCIID. You must always read a register. */
2441 	u32 edram_cap;
2442 
2443 	/*
2444 	 * Protects RPS/RC6 register access and PCU communication.
2445 	 * Must be taken after struct_mutex if nested. Note that
2446 	 * this lock may be held for long periods of time when
2447 	 * talking to hw - so only take it when talking to hw!
2448 	 */
2449 	struct lock pcu_lock;
2450 
2451 	/* gen6+ GT PM state */
2452 	struct intel_gen6_power_mgmt gt_pm;
2453 
2454 	/* ilk-only ips/rps state. Everything in here is protected by the global
2455 	 * mchdev_lock in intel_pm.c */
2456 	struct intel_ilk_power_mgmt ips;
2457 
2458 	struct i915_power_domains power_domains;
2459 
2460 	struct i915_psr psr;
2461 
2462 	struct i915_gpu_error gpu_error;
2463 
2464 	struct drm_i915_gem_object *vlv_pctx;
2465 
2466 	/* list of fbdev register on this device */
2467 	struct intel_fbdev *fbdev;
2468 	struct work_struct fbdev_suspend_work;
2469 
2470 	struct drm_property *broadcast_rgb_property;
2471 	struct drm_property *force_audio_property;
2472 
2473 	/* hda/i915 audio component */
2474 	struct i915_audio_component *audio_component;
2475 	bool audio_component_registered;
2476 	/**
2477 	 * av_mutex - mutex for audio/video sync
2478 	 *
2479 	 */
2480 	struct lock av_mutex;
2481 
2482 	struct {
2483 		struct list_head list;
2484 		struct llist_head free_list;
2485 		struct work_struct free_work;
2486 
2487 		/* The hw wants to have a stable context identifier for the
2488 		 * lifetime of the context (for OA, PASID, faults, etc).
2489 		 * This is limited in execlists to 21 bits.
2490 		 */
2491 		struct ida hw_ida;
2492 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2493 	} contexts;
2494 
2495 	u32 fdi_rx_config;
2496 
2497 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2498 	u32 chv_phy_control;
2499 	/*
2500 	 * Shadows for CHV DPLL_MD regs to keep the state
2501 	 * checker somewhat working in the presence hardware
2502 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2503 	 */
2504 	u32 chv_dpll_md[I915_MAX_PIPES];
2505 	u32 bxt_phy_grc;
2506 
2507 	u32 suspend_count;
2508 	bool suspended_to_idle;
2509 	struct i915_suspend_saved_registers regfile;
2510 	struct vlv_s0ix_state vlv_s0ix_state;
2511 
2512 	enum {
2513 		I915_SAGV_UNKNOWN = 0,
2514 		I915_SAGV_DISABLED,
2515 		I915_SAGV_ENABLED,
2516 		I915_SAGV_NOT_CONTROLLED
2517 	} sagv_status;
2518 
2519 	struct {
2520 		/*
2521 		 * Raw watermark latency values:
2522 		 * in 0.1us units for WM0,
2523 		 * in 0.5us units for WM1+.
2524 		 */
2525 		/* primary */
2526 		uint16_t pri_latency[5];
2527 		/* sprite */
2528 		uint16_t spr_latency[5];
2529 		/* cursor */
2530 		uint16_t cur_latency[5];
2531 		/*
2532 		 * Raw watermark memory latency values
2533 		 * for SKL for all 8 levels
2534 		 * in 1us units.
2535 		 */
2536 		uint16_t skl_latency[8];
2537 
2538 		/* current hardware state */
2539 		union {
2540 			struct ilk_wm_values hw;
2541 			struct skl_wm_values skl_hw;
2542 			struct vlv_wm_values vlv;
2543 			struct g4x_wm_values g4x;
2544 		};
2545 
2546 		uint8_t max_level;
2547 
2548 		/*
2549 		 * Should be held around atomic WM register writing; also
2550 		 * protects * intel_crtc->wm.active and
2551 		 * cstate->wm.need_postvbl_update.
2552 		 */
2553 		struct lock wm_mutex;
2554 
2555 		/*
2556 		 * Set during HW readout of watermarks/DDB.  Some platforms
2557 		 * need to know when we're still using BIOS-provided values
2558 		 * (which we don't fully trust).
2559 		 */
2560 		bool distrust_bios_wm;
2561 	} wm;
2562 
2563 	struct i915_runtime_pm runtime_pm;
2564 
2565 	struct {
2566 		bool initialized;
2567 
2568 		struct kobject *metrics_kobj;
2569 		struct ctl_table_header *sysctl_header;
2570 
2571 		/*
2572 		 * Lock associated with adding/modifying/removing OA configs
2573 		 * in dev_priv->perf.metrics_idr.
2574 		 */
2575 		struct lock metrics_lock;
2576 
2577 		/*
2578 		 * List of dynamic configurations, you need to hold
2579 		 * dev_priv->perf.metrics_lock to access it.
2580 		 */
2581 		struct idr metrics_idr;
2582 
2583 		/*
2584 		 * Lock associated with anything below within this structure
2585 		 * except exclusive_stream.
2586 		 */
2587 		struct lock lock;
2588 		struct list_head streams;
2589 
2590 		struct {
2591 			/*
2592 			 * The stream currently using the OA unit. If accessed
2593 			 * outside a syscall associated to its file
2594 			 * descriptor, you need to hold
2595 			 * dev_priv->drm.struct_mutex.
2596 			 */
2597 			struct i915_perf_stream *exclusive_stream;
2598 
2599 			u32 specific_ctx_id;
2600 
2601 			struct hrtimer poll_check_timer;
2602 			wait_queue_head_t poll_wq;
2603 			bool pollin;
2604 
2605 			/**
2606 			 * For rate limiting any notifications of spurious
2607 			 * invalid OA reports
2608 			 */
2609 			struct ratelimit_state spurious_report_rs;
2610 
2611 			bool periodic;
2612 			int period_exponent;
2613 			int timestamp_frequency;
2614 
2615 			struct i915_oa_config test_config;
2616 
2617 			struct {
2618 				struct i915_vma *vma;
2619 				u8 *vaddr;
2620 				u32 last_ctx_id;
2621 				int format;
2622 				int format_size;
2623 
2624 				/**
2625 				 * Locks reads and writes to all head/tail state
2626 				 *
2627 				 * Consider: the head and tail pointer state
2628 				 * needs to be read consistently from a hrtimer
2629 				 * callback (atomic context) and read() fop
2630 				 * (user context) with tail pointer updates
2631 				 * happening in atomic context and head updates
2632 				 * in user context and the (unlikely)
2633 				 * possibility of read() errors needing to
2634 				 * reset all head/tail state.
2635 				 *
2636 				 * Note: Contention or performance aren't
2637 				 * currently a significant concern here
2638 				 * considering the relatively low frequency of
2639 				 * hrtimer callbacks (5ms period) and that
2640 				 * reads typically only happen in response to a
2641 				 * hrtimer event and likely complete before the
2642 				 * next callback.
2643 				 *
2644 				 * Note: This lock is not held *while* reading
2645 				 * and copying data to userspace so the value
2646 				 * of head observed in htrimer callbacks won't
2647 				 * represent any partial consumption of data.
2648 				 */
2649 				spinlock_t ptr_lock;
2650 
2651 				/**
2652 				 * One 'aging' tail pointer and one 'aged'
2653 				 * tail pointer ready to used for reading.
2654 				 *
2655 				 * Initial values of 0xffffffff are invalid
2656 				 * and imply that an update is required
2657 				 * (and should be ignored by an attempted
2658 				 * read)
2659 				 */
2660 				struct {
2661 					u32 offset;
2662 				} tails[2];
2663 
2664 				/**
2665 				 * Index for the aged tail ready to read()
2666 				 * data up to.
2667 				 */
2668 				unsigned int aged_tail_idx;
2669 
2670 				/**
2671 				 * A monotonic timestamp for when the current
2672 				 * aging tail pointer was read; used to
2673 				 * determine when it is old enough to trust.
2674 				 */
2675 				u64 aging_timestamp;
2676 
2677 				/**
2678 				 * Although we can always read back the head
2679 				 * pointer register, we prefer to avoid
2680 				 * trusting the HW state, just to avoid any
2681 				 * risk that some hardware condition could
2682 				 * somehow bump the head pointer unpredictably
2683 				 * and cause us to forward the wrong OA buffer
2684 				 * data to userspace.
2685 				 */
2686 				u32 head;
2687 			} oa_buffer;
2688 
2689 			u32 gen7_latched_oastatus1;
2690 			u32 ctx_oactxctrl_offset;
2691 			u32 ctx_flexeu0_offset;
2692 
2693 			/**
2694 			 * The RPT_ID/reason field for Gen8+ includes a bit
2695 			 * to determine if the CTX ID in the report is valid
2696 			 * but the specific bit differs between Gen 8 and 9
2697 			 */
2698 			u32 gen8_valid_ctx_bit;
2699 
2700 			struct i915_oa_ops ops;
2701 			const struct i915_oa_format *oa_formats;
2702 		} oa;
2703 	} perf;
2704 
2705 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2706 	struct {
2707 		void (*resume)(struct drm_i915_private *);
2708 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2709 
2710 		struct list_head timelines;
2711 		struct i915_gem_timeline global_timeline;
2712 		u32 active_requests;
2713 
2714 		/**
2715 		 * Is the GPU currently considered idle, or busy executing
2716 		 * userspace requests? Whilst idle, we allow runtime power
2717 		 * management to power down the hardware and display clocks.
2718 		 * In order to reduce the effect on performance, there
2719 		 * is a slight delay before we do so.
2720 		 */
2721 		bool awake;
2722 
2723 		/**
2724 		 * We leave the user IRQ off as much as possible,
2725 		 * but this means that requests will finish and never
2726 		 * be retired once the system goes idle. Set a timer to
2727 		 * fire periodically while the ring is running. When it
2728 		 * fires, go retire requests.
2729 		 */
2730 		struct delayed_work retire_work;
2731 
2732 		/**
2733 		 * When we detect an idle GPU, we want to turn on
2734 		 * powersaving features. So once we see that there
2735 		 * are no more requests outstanding and no more
2736 		 * arrive within a small period of time, we fire
2737 		 * off the idle_work.
2738 		 */
2739 		struct delayed_work idle_work;
2740 
2741 		ktime_t last_init_time;
2742 	} gt;
2743 
2744 	/* perform PHY state sanity checks? */
2745 	bool chv_phy_assert[2];
2746 
2747 	bool ipc_enabled;
2748 
2749 	/* Used to save the pipe-to-encoder mapping for audio */
2750 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2751 
2752 	/* necessary resource sharing with HDMI LPE audio driver. */
2753 	struct {
2754 		struct platform_device *platdev;
2755 		int	irq;
2756 	} lpe_audio;
2757 
2758 	/*
2759 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2760 	 * will be rejected. Instead look for a better place.
2761 	 */
2762 };
2763 
2764 static inline struct drm_i915_private *to_i915(struct drm_device *dev)
2765 {
2766 	return container_of(dev, struct drm_i915_private, drm);
2767 }
2768 
2769 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2770 {
2771 	return to_i915(dev_get_drvdata(kdev));
2772 }
2773 
2774 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2775 {
2776 	return container_of(guc, struct drm_i915_private, guc);
2777 }
2778 
2779 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2780 {
2781 	return container_of(huc, struct drm_i915_private, huc);
2782 }
2783 
2784 /* Simple iterator over all initialised engines */
2785 #define for_each_engine(engine__, dev_priv__, id__) \
2786 	for ((id__) = 0; \
2787 	     (id__) < I915_NUM_ENGINES; \
2788 	     (id__)++) \
2789 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2790 
2791 /* Iterator over subset of engines selected by mask */
2792 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2793 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2794 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2795 
2796 enum hdmi_force_audio {
2797 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2798 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2799 	HDMI_AUDIO_AUTO,		/* trust EDID */
2800 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2801 };
2802 
2803 #define I915_GTT_OFFSET_NONE ((u32)-1)
2804 
2805 /*
2806  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2807  * considered to be the frontbuffer for the given plane interface-wise. This
2808  * doesn't mean that the hw necessarily already scans it out, but that any
2809  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2810  *
2811  * We have one bit per pipe and per scanout plane type.
2812  */
2813 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2814 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2815 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2816 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2817 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2818 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2819 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2820 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2821 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2822 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2823 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2824 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2825 
2826 /*
2827  * Optimised SGL iterator for GEM objects
2828  */
2829 static __always_inline struct sgt_iter {
2830 	struct scatterlist *sgp;
2831 	union {
2832 		unsigned long pfn;
2833 		dma_addr_t dma;
2834 	};
2835 	unsigned int curr;
2836 	unsigned int max;
2837 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2838 	struct sgt_iter s = { .sgp = sgl };
2839 
2840 	if (s.sgp) {
2841 		s.max = s.curr = s.sgp->offset;
2842 		s.max += s.sgp->length;
2843 		if (dma)
2844 			s.dma = sg_dma_address(s.sgp);
2845 		else
2846 			s.pfn = page_to_pfn(sg_page(s.sgp));
2847 	}
2848 
2849 	return s;
2850 }
2851 
2852 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2853 {
2854 	++sg;
2855 	if (unlikely(sg_is_chain(sg)))
2856 		sg = sg_chain_ptr(sg);
2857 	return sg;
2858 }
2859 
2860 /**
2861  * __sg_next - return the next scatterlist entry in a list
2862  * @sg:		The current sg entry
2863  *
2864  * Description:
2865  *   If the entry is the last, return NULL; otherwise, step to the next
2866  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2867  *   otherwise just return the pointer to the current element.
2868  **/
2869 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2870 {
2871 #ifdef CONFIG_DEBUG_SG
2872 	BUG_ON(sg->sg_magic != SG_MAGIC);
2873 #endif
2874 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2875 }
2876 
2877 /**
2878  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2879  * @__dmap:	DMA address (output)
2880  * @__iter:	'struct sgt_iter' (iterator state, internal)
2881  * @__sgt:	sg_table to iterate over (input)
2882  */
2883 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2884 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2885 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2886 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2887 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2888 
2889 /**
2890  * for_each_sgt_page - iterate over the pages of the given sg_table
2891  * @__pp:	page pointer (output)
2892  * @__iter:	'struct sgt_iter' (iterator state, internal)
2893  * @__sgt:	sg_table to iterate over (input)
2894  */
2895 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2896 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2897 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2898 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2899 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2900 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2901 
2902 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2903 {
2904 	unsigned int page_sizes;
2905 
2906 	page_sizes = 0;
2907 	while (sg) {
2908 		GEM_BUG_ON(sg->offset);
2909 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2910 		page_sizes |= sg->length;
2911 		sg = __sg_next(sg);
2912 	}
2913 
2914 	return page_sizes;
2915 }
2916 
2917 static inline unsigned int i915_sg_segment_size(void)
2918 {
2919 	unsigned int size = swiotlb_max_segment();
2920 
2921 	if (size == 0)
2922 		return SCATTERLIST_MAX_SEGMENT;
2923 
2924 	size = rounddown(size, PAGE_SIZE);
2925 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2926 	if (size < PAGE_SIZE)
2927 		size = PAGE_SIZE;
2928 
2929 	return size;
2930 }
2931 
2932 static inline const struct intel_device_info *
2933 intel_info(const struct drm_i915_private *dev_priv)
2934 {
2935 	return &dev_priv->info;
2936 }
2937 
2938 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2939 
2940 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2941 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2942 
2943 #define REVID_FOREVER		0xff
2944 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2945 
2946 #define GEN_FOREVER (0)
2947 
2948 #define INTEL_GEN_MASK(s, e) ( \
2949 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2950 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2951 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2952 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2953 )
2954 
2955 /*
2956  * Returns true if Gen is in inclusive range [Start, End].
2957  *
2958  * Use GEN_FOREVER for unbound start and or end.
2959  */
2960 #define IS_GEN(dev_priv, s, e) \
2961 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2962 
2963 /*
2964  * Return true if revision is in range [since,until] inclusive.
2965  *
2966  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2967  */
2968 #define IS_REVID(p, since, until) \
2969 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2970 
2971 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2972 
2973 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2974 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2975 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2976 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2977 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2978 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2979 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2980 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2981 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2982 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2983 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2984 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2985 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2986 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2987 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2988 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2989 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2990 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2991 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2992 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2993 				 (dev_priv)->info.gt == 1)
2994 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2995 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2996 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2997 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2998 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2999 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
3000 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
3001 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
3002 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
3003 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
3004 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
3005 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
3006 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
3007 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
3008 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
3009 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
3010 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
3011 /* ULX machines are also considered ULT. */
3012 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
3013 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
3014 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
3015 				 (dev_priv)->info.gt == 3)
3016 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
3017 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
3018 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
3019 				 (dev_priv)->info.gt == 3)
3020 /* ULX machines are also considered ULT. */
3021 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
3022 				 INTEL_DEVID(dev_priv) == 0x0A1E)
3023 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
3024 				 INTEL_DEVID(dev_priv) == 0x1913 || \
3025 				 INTEL_DEVID(dev_priv) == 0x1916 || \
3026 				 INTEL_DEVID(dev_priv) == 0x1921 || \
3027 				 INTEL_DEVID(dev_priv) == 0x1926)
3028 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
3029 				 INTEL_DEVID(dev_priv) == 0x1915 || \
3030 				 INTEL_DEVID(dev_priv) == 0x191E)
3031 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
3032 				 INTEL_DEVID(dev_priv) == 0x5913 || \
3033 				 INTEL_DEVID(dev_priv) == 0x5916 || \
3034 				 INTEL_DEVID(dev_priv) == 0x5921 || \
3035 				 INTEL_DEVID(dev_priv) == 0x5926)
3036 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
3037 				 INTEL_DEVID(dev_priv) == 0x5915 || \
3038 				 INTEL_DEVID(dev_priv) == 0x591E)
3039 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3040 				 (dev_priv)->info.gt == 2)
3041 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3042 				 (dev_priv)->info.gt == 3)
3043 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
3044 				 (dev_priv)->info.gt == 4)
3045 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
3046 				 (dev_priv)->info.gt == 2)
3047 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
3048 				 (dev_priv)->info.gt == 3)
3049 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
3050 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3051 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
3052 				 (dev_priv)->info.gt == 2)
3053 
3054 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3055 
3056 #define SKL_REVID_A0		0x0
3057 #define SKL_REVID_B0		0x1
3058 #define SKL_REVID_C0		0x2
3059 #define SKL_REVID_D0		0x3
3060 #define SKL_REVID_E0		0x4
3061 #define SKL_REVID_F0		0x5
3062 #define SKL_REVID_G0		0x6
3063 #define SKL_REVID_H0		0x7
3064 
3065 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3066 
3067 #define BXT_REVID_A0		0x0
3068 #define BXT_REVID_A1		0x1
3069 #define BXT_REVID_B0		0x3
3070 #define BXT_REVID_B_LAST	0x8
3071 #define BXT_REVID_C0		0x9
3072 
3073 #define IS_BXT_REVID(dev_priv, since, until) \
3074 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3075 
3076 #define KBL_REVID_A0		0x0
3077 #define KBL_REVID_B0		0x1
3078 #define KBL_REVID_C0		0x2
3079 #define KBL_REVID_D0		0x3
3080 #define KBL_REVID_E0		0x4
3081 
3082 #define IS_KBL_REVID(dev_priv, since, until) \
3083 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3084 
3085 #define GLK_REVID_A0		0x0
3086 #define GLK_REVID_A1		0x1
3087 
3088 #define IS_GLK_REVID(dev_priv, since, until) \
3089 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3090 
3091 #define CNL_REVID_A0		0x0
3092 #define CNL_REVID_B0		0x1
3093 #define CNL_REVID_C0		0x2
3094 
3095 #define IS_CNL_REVID(p, since, until) \
3096 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3097 
3098 /*
3099  * The genX designation typically refers to the render engine, so render
3100  * capability related checks should use IS_GEN, while display and other checks
3101  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3102  * chips, etc.).
3103  */
3104 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
3105 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
3106 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
3107 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
3108 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
3109 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
3110 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
3111 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
3112 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
3113 
3114 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
3115 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
3116 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3117 
3118 #define ENGINE_MASK(id)	BIT(id)
3119 #define RENDER_RING	ENGINE_MASK(RCS)
3120 #define BSD_RING	ENGINE_MASK(VCS)
3121 #define BLT_RING	ENGINE_MASK(BCS)
3122 #define VEBOX_RING	ENGINE_MASK(VECS)
3123 #define BSD2_RING	ENGINE_MASK(VCS2)
3124 #define ALL_ENGINES	(~0)
3125 
3126 #define HAS_ENGINE(dev_priv, id) \
3127 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3128 
3129 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
3130 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
3131 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
3132 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
3133 
3134 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
3135 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
3136 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3137 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
3138 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3139 
3140 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
3141 
3142 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3143 		((dev_priv)->info.has_logical_ring_contexts)
3144 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
3145 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
3146 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
3147 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
3148 	GEM_BUG_ON((sizes) == 0); \
3149 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
3150 })
3151 
3152 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
3153 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3154 		((dev_priv)->info.overlay_needs_physical)
3155 
3156 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3157 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
3158 
3159 /* WaRsDisableCoarsePowerGating:skl,bxt */
3160 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3161 	(IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3162 
3163 /*
3164  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3165  * even when in MSI mode. This results in spurious interrupt warnings if the
3166  * legacy irq no. is shared with another device. The kernel then disables that
3167  * interrupt source and so prevents the other device from working properly.
3168  *
3169  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3170  * interrupts.
3171  */
3172 #define HAS_AUX_IRQ(dev_priv)   true
3173 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3174 
3175 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3176  * rows, which changed the alignment requirements and fence programming.
3177  */
3178 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3179 					 !(IS_I915G(dev_priv) || \
3180 					 IS_I915GM(dev_priv)))
3181 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
3182 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
3183 
3184 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
3185 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
3186 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3187 
3188 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3189 
3190 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
3191 
3192 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
3193 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3194 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
3195 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
3196 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
3197 
3198 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
3199 
3200 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3201 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3202 
3203 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
3204 
3205 /*
3206  * For now, anything with a GuC requires uCode loading, and then supports
3207  * command submission once loaded. But these are logically independent
3208  * properties, so we have separate macros to test them.
3209  */
3210 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
3211 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
3212 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3213 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
3214 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3215 
3216 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3217 
3218 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
3219 
3220 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
3221 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
3222 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
3223 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
3224 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
3225 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
3226 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
3227 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
3228 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
3229 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
3230 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
3231 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
3232 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
3233 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
3234 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
3235 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
3236 
3237 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3238 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3239 #define HAS_PCH_CNP_LP(dev_priv) \
3240 	((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3241 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3242 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3243 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3244 #define HAS_PCH_LPT_LP(dev_priv) \
3245 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3246 	 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3247 #define HAS_PCH_LPT_H(dev_priv) \
3248 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3249 	 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3250 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3251 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3252 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3253 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3254 
3255 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3256 
3257 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3258 
3259 /* DPF == dynamic parity feature */
3260 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3261 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3262 				 2 : HAS_L3_DPF(dev_priv))
3263 
3264 #define GT_FREQUENCY_MULTIPLIER 50
3265 #define GEN9_FREQ_SCALER 3
3266 
3267 #include "i915_trace.h"
3268 
3269 static inline bool intel_vtd_active(void)
3270 {
3271 #ifdef CONFIG_INTEL_IOMMU
3272 	if (intel_iommu_gfx_mapped)
3273 		return true;
3274 #endif
3275 	return false;
3276 }
3277 
3278 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3279 {
3280 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3281 }
3282 
3283 static inline bool
3284 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3285 {
3286 	return IS_BROXTON(dev_priv) && intel_vtd_active();
3287 }
3288 
3289 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3290 				int enable_ppgtt);
3291 
3292 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3293 
3294 /* i915_drv.c */
3295 void __printf(3, 4)
3296 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3297 	      const char *fmt, ...);
3298 
3299 #define i915_report_error(dev_priv, fmt, ...)				   \
3300 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3301 
3302 #ifdef CONFIG_COMPAT
3303 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3304 			      unsigned long arg);
3305 #else
3306 #define i915_compat_ioctl NULL
3307 #endif
3308 extern const struct dev_pm_ops i915_pm_ops;
3309 
3310 extern int i915_driver_load(struct pci_dev *pdev,
3311 			    const struct pci_device_id *ent);
3312 extern void i915_driver_unload(struct drm_device *dev);
3313 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3314 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3315 
3316 #define I915_RESET_QUIET BIT(0)
3317 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3318 extern int i915_reset_engine(struct intel_engine_cs *engine,
3319 			     unsigned int flags);
3320 
3321 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3322 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3323 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3324 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3325 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3326 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3327 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3328 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3329 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3330 
3331 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3332 int intel_engines_init(struct drm_i915_private *dev_priv);
3333 
3334 /* intel_hotplug.c */
3335 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3336 			   u32 pin_mask, u32 long_mask);
3337 void intel_hpd_init(struct drm_i915_private *dev_priv);
3338 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3339 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3340 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3341 enum hpd_pin intel_hpd_pin(enum port port);
3342 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3343 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3344 
3345 /* i915_irq.c */
3346 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3347 {
3348 	unsigned long delay;
3349 
3350 	if (unlikely(!i915_modparams.enable_hangcheck))
3351 		return;
3352 
3353 	/* Don't continually defer the hangcheck so that it is always run at
3354 	 * least once after work has been scheduled on any ring. Otherwise,
3355 	 * we will ignore a hung ring if a second ring is kept busy.
3356 	 */
3357 
3358 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3359 	queue_delayed_work(system_long_wq,
3360 			   &dev_priv->gpu_error.hangcheck_work, delay);
3361 }
3362 
3363 __printf(3, 4)
3364 void i915_handle_error(struct drm_i915_private *dev_priv,
3365 		       u32 engine_mask,
3366 		       const char *fmt, ...);
3367 
3368 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3369 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3370 int intel_irq_install(struct drm_i915_private *dev_priv);
3371 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3372 
3373 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3374 {
3375 	return dev_priv->gvt;
3376 }
3377 
3378 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3379 {
3380 	return dev_priv->vgpu.active;
3381 }
3382 
3383 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3384 			      enum i915_pipe pipe);
3385 void
3386 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
3387 		     u32 status_mask);
3388 
3389 void
3390 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum i915_pipe pipe,
3391 		      u32 status_mask);
3392 
3393 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3394 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3395 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3396 				   uint32_t mask,
3397 				   uint32_t bits);
3398 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3399 			    uint32_t interrupt_mask,
3400 			    uint32_t enabled_irq_mask);
3401 static inline void
3402 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3403 {
3404 	ilk_update_display_irq(dev_priv, bits, bits);
3405 }
3406 static inline void
3407 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3408 {
3409 	ilk_update_display_irq(dev_priv, bits, 0);
3410 }
3411 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3412 			 enum i915_pipe pipe,
3413 			 uint32_t interrupt_mask,
3414 			 uint32_t enabled_irq_mask);
3415 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3416 				       enum i915_pipe pipe, uint32_t bits)
3417 {
3418 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3419 }
3420 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3421 					enum i915_pipe pipe, uint32_t bits)
3422 {
3423 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3424 }
3425 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3426 				  uint32_t interrupt_mask,
3427 				  uint32_t enabled_irq_mask);
3428 static inline void
3429 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3430 {
3431 	ibx_display_interrupt_update(dev_priv, bits, bits);
3432 }
3433 static inline void
3434 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3435 {
3436 	ibx_display_interrupt_update(dev_priv, bits, 0);
3437 }
3438 
3439 /* i915_gem.c */
3440 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3441 			  struct drm_file *file_priv);
3442 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3443 			 struct drm_file *file_priv);
3444 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3445 			  struct drm_file *file_priv);
3446 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3447 			struct drm_file *file_priv);
3448 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3449 			struct drm_file *file_priv);
3450 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3451 			      struct drm_file *file_priv);
3452 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3453 			     struct drm_file *file_priv);
3454 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3455 			struct drm_file *file_priv);
3456 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3457 			 struct drm_file *file_priv);
3458 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3459 			struct drm_file *file_priv);
3460 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3461 			       struct drm_file *file);
3462 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3463 			       struct drm_file *file);
3464 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3465 			    struct drm_file *file_priv);
3466 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3467 			   struct drm_file *file_priv);
3468 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3469 			      struct drm_file *file_priv);
3470 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3471 			      struct drm_file *file_priv);
3472 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3473 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3474 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3475 			   struct drm_file *file);
3476 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3477 				struct drm_file *file_priv);
3478 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3479 			struct drm_file *file_priv);
3480 void i915_gem_sanitize(struct drm_i915_private *i915);
3481 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3482 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3483 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3484 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3485 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3486 
3487 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3488 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3489 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3490 			 const struct drm_i915_gem_object_ops *ops);
3491 struct drm_i915_gem_object *
3492 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3493 struct drm_i915_gem_object *
3494 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3495 				 const void *data, size_t size);
3496 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3497 void i915_gem_free_object(struct drm_gem_object *obj);
3498 
3499 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3500 {
3501 	/* A single pass should suffice to release all the freed objects (along
3502 	 * most call paths) , but be a little more paranoid in that freeing
3503 	 * the objects does take a little amount of time, during which the rcu
3504 	 * callbacks could have added new objects into the freed list, and
3505 	 * armed the work again.
3506 	 */
3507 	do {
3508 		rcu_barrier();
3509 	} while (flush_work(&i915->mm.free_work));
3510 }
3511 
3512 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3513 {
3514 	/*
3515 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
3516 	 * general we have workers that are armed by RCU and then rearm
3517 	 * themselves in their callbacks. To be paranoid, we need to
3518 	 * drain the workqueue a second time after waiting for the RCU
3519 	 * grace period so that we catch work queued via RCU from the first
3520 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
3521 	 * a result, we make an assumption that we only don't require more
3522 	 * than 2 passes to catch all recursive RCU delayed work.
3523 	 *
3524 	 */
3525 	int pass = 2;
3526 	do {
3527 		rcu_barrier();
3528 		drain_workqueue(i915->wq);
3529 	} while (--pass);
3530 }
3531 
3532 struct i915_vma * __must_check
3533 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3534 			 const struct i915_ggtt_view *view,
3535 			 u64 size,
3536 			 u64 alignment,
3537 			 u64 flags);
3538 
3539 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3540 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3541 
3542 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3543 
3544 static inline int __sg_page_count(const struct scatterlist *sg)
3545 {
3546 	return sg->length >> PAGE_SHIFT;
3547 }
3548 
3549 struct scatterlist *
3550 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3551 		       unsigned int n, unsigned int *offset);
3552 
3553 struct page *
3554 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3555 			 unsigned int n);
3556 
3557 struct page *
3558 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3559 			       unsigned int n);
3560 
3561 dma_addr_t
3562 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3563 				unsigned long n);
3564 
3565 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3566 				 struct sg_table *pages,
3567 				 unsigned int sg_page_sizes);
3568 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3569 
3570 static inline int __must_check
3571 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3572 {
3573 	might_lock(&obj->mm.lock);
3574 
3575 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3576 		return 0;
3577 
3578 	return __i915_gem_object_get_pages(obj);
3579 }
3580 
3581 static inline bool
3582 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3583 {
3584 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3585 }
3586 
3587 static inline void
3588 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3589 {
3590 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3591 
3592 	atomic_inc(&obj->mm.pages_pin_count);
3593 }
3594 
3595 static inline bool
3596 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3597 {
3598 	return atomic_read(&obj->mm.pages_pin_count);
3599 }
3600 
3601 static inline void
3602 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3603 {
3604 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3605 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3606 
3607 	atomic_dec(&obj->mm.pages_pin_count);
3608 }
3609 
3610 static inline void
3611 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3612 {
3613 	__i915_gem_object_unpin_pages(obj);
3614 }
3615 
3616 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3617 	I915_MM_NORMAL = 0,
3618 	I915_MM_SHRINKER
3619 };
3620 
3621 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3622 				 enum i915_mm_subclass subclass);
3623 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3624 
3625 enum i915_map_type {
3626 	I915_MAP_WB = 0,
3627 	I915_MAP_WC,
3628 #define I915_MAP_OVERRIDE BIT(31)
3629 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3630 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3631 };
3632 
3633 /**
3634  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3635  * @obj: the object to map into kernel address space
3636  * @type: the type of mapping, used to select pgprot_t
3637  *
3638  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3639  * pages and then returns a contiguous mapping of the backing storage into
3640  * the kernel address space. Based on the @type of mapping, the PTE will be
3641  * set to either WriteBack or WriteCombine (via pgprot_t).
3642  *
3643  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3644  * mapping is no longer required.
3645  *
3646  * Returns the pointer through which to access the mapped object, or an
3647  * ERR_PTR() on error.
3648  */
3649 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3650 					   enum i915_map_type type);
3651 
3652 /**
3653  * i915_gem_object_unpin_map - releases an earlier mapping
3654  * @obj: the object to unmap
3655  *
3656  * After pinning the object and mapping its pages, once you are finished
3657  * with your access, call i915_gem_object_unpin_map() to release the pin
3658  * upon the mapping. Once the pin count reaches zero, that mapping may be
3659  * removed.
3660  */
3661 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3662 {
3663 	i915_gem_object_unpin_pages(obj);
3664 }
3665 
3666 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3667 				    unsigned int *needs_clflush);
3668 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3669 				     unsigned int *needs_clflush);
3670 #define CLFLUSH_BEFORE	BIT(0)
3671 #define CLFLUSH_AFTER	BIT(1)
3672 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3673 
3674 static inline void
3675 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3676 {
3677 	i915_gem_object_unpin_pages(obj);
3678 }
3679 
3680 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3681 void i915_vma_move_to_active(struct i915_vma *vma,
3682 			     struct drm_i915_gem_request *req,
3683 			     unsigned int flags);
3684 int i915_gem_dumb_create(struct drm_file *file_priv,
3685 			 struct drm_device *dev,
3686 			 struct drm_mode_create_dumb *args);
3687 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3688 		      uint32_t handle, uint64_t *offset);
3689 int i915_gem_mmap_gtt_version(void);
3690 
3691 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3692 		       struct drm_i915_gem_object *new,
3693 		       unsigned frontbuffer_bits);
3694 
3695 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3696 
3697 struct drm_i915_gem_request *
3698 i915_gem_find_active_request(struct intel_engine_cs *engine);
3699 
3700 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3701 
3702 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3703 {
3704 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3705 }
3706 
3707 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3708 {
3709 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3710 }
3711 
3712 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3713 {
3714 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3715 }
3716 
3717 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3718 {
3719 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3720 }
3721 
3722 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3723 {
3724 	return READ_ONCE(error->reset_count);
3725 }
3726 
3727 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3728 					  struct intel_engine_cs *engine)
3729 {
3730 	return READ_ONCE(error->reset_engine_count[engine->id]);
3731 }
3732 
3733 struct drm_i915_gem_request *
3734 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3735 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3736 void i915_gem_reset(struct drm_i915_private *dev_priv);
3737 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3738 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3739 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3740 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3741 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3742 			   struct drm_i915_gem_request *request);
3743 
3744 void i915_gem_init_mmio(struct drm_i915_private *i915);
3745 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3746 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3747 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3748 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3749 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3750 			   unsigned int flags);
3751 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3752 void i915_gem_resume(struct drm_i915_private *dev_priv);
3753 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres);
3754 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3755 			 unsigned int flags,
3756 			 long timeout,
3757 			 struct intel_rps_client *rps);
3758 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3759 				  unsigned int flags,
3760 				  int priority);
3761 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3762 
3763 int __must_check
3764 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3765 int __must_check
3766 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3767 int __must_check
3768 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3769 struct i915_vma * __must_check
3770 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3771 				     u32 alignment,
3772 				     const struct i915_ggtt_view *view);
3773 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3774 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3775 				int align);
3776 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3777 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3778 
3779 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3780 				    enum i915_cache_level cache_level);
3781 
3782 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3783 				struct dma_buf *dma_buf);
3784 
3785 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3786 				struct drm_gem_object *gem_obj, int flags);
3787 
3788 static inline struct i915_hw_ppgtt *
3789 i915_vm_to_ppgtt(struct i915_address_space *vm)
3790 {
3791 	return container_of(vm, struct i915_hw_ppgtt, base);
3792 }
3793 
3794 /* i915_gem_fence_reg.c */
3795 struct drm_i915_fence_reg *
3796 i915_reserve_fence(struct drm_i915_private *dev_priv);
3797 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3798 
3799 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3800 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3801 
3802 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3803 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3804 				       struct sg_table *pages);
3805 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3806 					 struct sg_table *pages);
3807 
3808 static inline struct i915_gem_context *
3809 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3810 {
3811 	return idr_find(&file_priv->context_idr, id);
3812 }
3813 
3814 static inline struct i915_gem_context *
3815 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3816 {
3817 	struct i915_gem_context *ctx;
3818 
3819 	rcu_read_lock();
3820 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3821 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3822 		ctx = NULL;
3823 	rcu_read_unlock();
3824 
3825 	return ctx;
3826 }
3827 
3828 static inline struct intel_timeline *
3829 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3830 				 struct intel_engine_cs *engine)
3831 {
3832 	struct i915_address_space *vm;
3833 
3834 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3835 	return &vm->timeline.engine[engine->id];
3836 }
3837 
3838 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3839 			 struct drm_file *file);
3840 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3841 			       struct drm_file *file);
3842 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3843 				  struct drm_file *file);
3844 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3845 			    struct i915_gem_context *ctx,
3846 			    uint32_t *reg_state);
3847 
3848 /* i915_gem_evict.c */
3849 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3850 					  u64 min_size, u64 alignment,
3851 					  unsigned cache_level,
3852 					  u64 start, u64 end,
3853 					  unsigned flags);
3854 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3855 					 struct drm_mm_node *node,
3856 					 unsigned int flags);
3857 int i915_gem_evict_vm(struct i915_address_space *vm);
3858 
3859 /* belongs in i915_gem_gtt.h */
3860 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3861 {
3862 	wmb();
3863 	if (INTEL_GEN(dev_priv) < 6)
3864 		intel_gtt_chipset_flush();
3865 }
3866 
3867 /* i915_gem_stolen.c */
3868 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3869 				struct drm_mm_node *node, u64 size,
3870 				unsigned alignment);
3871 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3872 					 struct drm_mm_node *node, u64 size,
3873 					 unsigned alignment, u64 start,
3874 					 u64 end);
3875 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3876 				 struct drm_mm_node *node);
3877 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3878 void i915_gem_cleanup_stolen(struct drm_device *dev);
3879 struct drm_i915_gem_object *
3880 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3881 struct drm_i915_gem_object *
3882 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3883 					       u32 stolen_offset,
3884 					       u32 gtt_offset,
3885 					       u32 size);
3886 
3887 /* i915_gem_internal.c */
3888 struct drm_i915_gem_object *
3889 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3890 				phys_addr_t size);
3891 
3892 /* i915_gem_shrinker.c */
3893 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3894 			      unsigned long target,
3895 			      unsigned long *nr_scanned,
3896 			      unsigned flags);
3897 #define I915_SHRINK_PURGEABLE 0x1
3898 #define I915_SHRINK_UNBOUND 0x2
3899 #define I915_SHRINK_BOUND 0x4
3900 #define I915_SHRINK_ACTIVE 0x8
3901 #define I915_SHRINK_VMAPS 0x10
3902 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3903 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3904 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3905 
3906 
3907 /* i915_gem_tiling.c */
3908 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3909 {
3910 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3911 
3912 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3913 		i915_gem_object_is_tiled(obj);
3914 }
3915 
3916 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3917 			unsigned int tiling, unsigned int stride);
3918 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3919 			     unsigned int tiling, unsigned int stride);
3920 
3921 /* i915_debugfs.c */
3922 #ifdef CONFIG_DEBUG_FS
3923 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3924 int i915_debugfs_connector_add(struct drm_connector *connector);
3925 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3926 #else
3927 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3928 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3929 { return 0; }
3930 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3931 #endif
3932 
3933 /* i915_gpu_error.c */
3934 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3935 
3936 __printf(2, 3)
3937 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3938 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3939 			    const struct i915_gpu_state *gpu);
3940 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3941 			      struct drm_i915_private *i915,
3942 			      size_t count, loff_t pos);
3943 static inline void i915_error_state_buf_release(
3944 	struct drm_i915_error_state_buf *eb)
3945 {
3946 	kfree(eb->buf);
3947 }
3948 
3949 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3950 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3951 			      u32 engine_mask,
3952 			      const char *error_msg);
3953 
3954 static inline struct i915_gpu_state *
3955 i915_gpu_state_get(struct i915_gpu_state *gpu)
3956 {
3957 	kref_get(&gpu->ref);
3958 	return gpu;
3959 }
3960 
3961 void __i915_gpu_state_free(struct kref *kref);
3962 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3963 {
3964 	if (gpu)
3965 		kref_put(&gpu->ref, __i915_gpu_state_free);
3966 }
3967 
3968 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3969 void i915_reset_error_state(struct drm_i915_private *i915);
3970 
3971 #else
3972 
3973 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3974 					    u32 engine_mask,
3975 					    const char *error_msg)
3976 {
3977 }
3978 
3979 static inline struct i915_gpu_state *
3980 i915_first_error_state(struct drm_i915_private *i915)
3981 {
3982 	return NULL;
3983 }
3984 
3985 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3986 {
3987 }
3988 
3989 #endif
3990 
3991 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3992 
3993 /* i915_cmd_parser.c */
3994 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3995 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3996 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3997 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3998 			    struct drm_i915_gem_object *batch_obj,
3999 			    struct drm_i915_gem_object *shadow_batch_obj,
4000 			    u32 batch_start_offset,
4001 			    u32 batch_len,
4002 			    bool is_master);
4003 
4004 /* i915_perf.c */
4005 extern void i915_perf_init(struct drm_i915_private *dev_priv);
4006 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
4007 extern void i915_perf_register(struct drm_i915_private *dev_priv);
4008 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
4009 
4010 /* i915_suspend.c */
4011 extern int i915_save_state(struct drm_i915_private *dev_priv);
4012 extern int i915_restore_state(struct drm_i915_private *dev_priv);
4013 
4014 /* i915_sysfs.c */
4015 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
4016 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
4017 
4018 /* intel_lpe_audio.c */
4019 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
4020 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
4021 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
4022 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
4023 			    enum i915_pipe pipe, enum port port,
4024 			    const void *eld, int ls_clock, bool dp_output);
4025 
4026 /* intel_i2c.c */
4027 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
4028 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
4029 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
4030 				     unsigned int pin);
4031 
4032 extern struct i2c_adapter *
4033 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
4034 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
4035 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
4036 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
4037 {
4038 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
4039 }
4040 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
4041 
4042 /* intel_bios.c */
4043 void intel_bios_init(struct drm_i915_private *dev_priv);
4044 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
4045 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
4046 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
4047 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
4048 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
4049 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
4050 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
4051 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
4052 				     enum port port);
4053 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
4054 				enum port port);
4055 
4056 
4057 /* intel_opregion.c */
4058 #ifdef CONFIG_ACPI
4059 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4060 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4061 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4062 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4063 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4064 					 bool enable);
4065 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4066 					 pci_power_t state);
4067 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4068 #else
4069 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4070 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4071 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4072 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4073 {
4074 }
4075 static inline int
4076 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4077 {
4078 	return 0;
4079 }
4080 static inline int
4081 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4082 {
4083 	return 0;
4084 }
4085 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4086 {
4087 	return -ENODEV;
4088 }
4089 #endif
4090 
4091 /* intel_acpi.c */
4092 #ifdef CONFIG_ACPI
4093 extern void intel_register_dsm_handler(void);
4094 extern void intel_unregister_dsm_handler(void);
4095 #else
4096 static inline void intel_register_dsm_handler(void) { return; }
4097 static inline void intel_unregister_dsm_handler(void) { return; }
4098 #endif /* CONFIG_ACPI */
4099 
4100 /* intel_device_info.c */
4101 static inline struct intel_device_info *
4102 mkwrite_device_info(struct drm_i915_private *dev_priv)
4103 {
4104 	return (struct intel_device_info *)&dev_priv->info;
4105 }
4106 
4107 const char *intel_platform_name(enum intel_platform platform);
4108 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4109 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4110 
4111 /* modesetting */
4112 extern void intel_modeset_init_hw(struct drm_device *dev);
4113 extern int intel_modeset_init(struct drm_device *dev);
4114 extern void intel_modeset_gem_init(struct drm_device *dev);
4115 extern void intel_modeset_cleanup(struct drm_device *dev);
4116 extern int intel_connector_register(struct drm_connector *);
4117 extern void intel_connector_unregister(struct drm_connector *);
4118 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4119 				       bool state);
4120 extern void intel_display_resume(struct drm_device *dev);
4121 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4122 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4123 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4124 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4125 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4126 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4127 				  bool enable);
4128 
4129 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4130 			struct drm_file *file);
4131 
4132 /* overlay */
4133 extern struct intel_overlay_error_state *
4134 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4135 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4136 					    struct intel_overlay_error_state *error);
4137 
4138 extern struct intel_display_error_state *
4139 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4140 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4141 					    struct intel_display_error_state *error);
4142 
4143 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4144 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4145 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4146 		      u32 reply_mask, u32 reply, int timeout_base_ms);
4147 
4148 /* intel_sideband.c */
4149 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4150 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4151 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4152 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4153 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4154 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4155 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4156 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4157 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4158 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4159 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4160 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg);
4161 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int reg, u32 val);
4162 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4163 		   enum intel_sbi_destination destination);
4164 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4165 		     enum intel_sbi_destination destination);
4166 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4167 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4168 
4169 /* intel_dpio_phy.c */
4170 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4171 			     enum dpio_phy *phy, enum dpio_channel *ch);
4172 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4173 				  enum port port, u32 margin, u32 scale,
4174 				  u32 enable, u32 deemphasis);
4175 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4176 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4177 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4178 			    enum dpio_phy phy);
4179 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4180 			      enum dpio_phy phy);
4181 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4182 					     uint8_t lane_count);
4183 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4184 				     uint8_t lane_lat_optim_mask);
4185 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4186 
4187 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4188 			      u32 deemph_reg_value, u32 margin_reg_value,
4189 			      bool uniq_trans_scale);
4190 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4191 			      bool reset);
4192 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4193 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4194 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4195 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4196 
4197 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4198 			      u32 demph_reg_value, u32 preemph_reg_value,
4199 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
4200 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4201 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4202 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4203 
4204 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4205 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4206 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4207 			   const i915_reg_t reg);
4208 
4209 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4210 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4211 
4212 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4213 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4214 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4215 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4216 
4217 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4218 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4219 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4220 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4221 
4222 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4223  * will be implemented using 2 32-bit writes in an arbitrary order with
4224  * an arbitrary delay between them. This can cause the hardware to
4225  * act upon the intermediate value, possibly leading to corruption and
4226  * machine death. For this reason we do not support I915_WRITE64, or
4227  * dev_priv->uncore.funcs.mmio_writeq.
4228  *
4229  * When reading a 64-bit value as two 32-bit values, the delay may cause
4230  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4231  * occasionally a 64-bit register does not actualy support a full readq
4232  * and must be read using two 32-bit reads.
4233  *
4234  * You have been warned.
4235  */
4236 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4237 
4238 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
4239 	u32 upper, lower, old_upper, loop = 0;				\
4240 	upper = I915_READ(upper_reg);					\
4241 	do {								\
4242 		old_upper = upper;					\
4243 		lower = I915_READ(lower_reg);				\
4244 		upper = I915_READ(upper_reg);				\
4245 	} while (upper != old_upper && loop++ < 2);			\
4246 	(u64)upper << 32 | lower; })
4247 
4248 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
4249 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
4250 
4251 #define __raw_read(x, s) \
4252 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4253 					     i915_reg_t reg) \
4254 { \
4255 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4256 }
4257 
4258 #define __raw_write(x, s) \
4259 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4260 				       i915_reg_t reg, uint##x##_t val) \
4261 { \
4262 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4263 }
4264 __raw_read(8, b)
4265 __raw_read(16, w)
4266 __raw_read(32, l)
4267 __raw_read(64, q)
4268 
4269 __raw_write(8, b)
4270 __raw_write(16, w)
4271 __raw_write(32, l)
4272 __raw_write(64, q)
4273 
4274 #undef __raw_read
4275 #undef __raw_write
4276 
4277 /* These are untraced mmio-accessors that are only valid to be used inside
4278  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4279  * controlled.
4280  *
4281  * Think twice, and think again, before using these.
4282  *
4283  * As an example, these accessors can possibly be used between:
4284  *
4285  * spin_lock_irq(&dev_priv->uncore.lock);
4286  * intel_uncore_forcewake_get__locked();
4287  *
4288  * and
4289  *
4290  * intel_uncore_forcewake_put__locked();
4291  * spin_unlock_irq(&dev_priv->uncore.lock);
4292  *
4293  *
4294  * Note: some registers may not need forcewake held, so
4295  * intel_uncore_forcewake_{get,put} can be omitted, see
4296  * intel_uncore_forcewake_for_reg().
4297  *
4298  * Certain architectures will die if the same cacheline is concurrently accessed
4299  * by different clients (e.g. on Ivybridge). Access to registers should
4300  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4301  * a more localised lock guarding all access to that bank of registers.
4302  */
4303 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4304 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4305 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4306 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4307 
4308 /* "Broadcast RGB" property */
4309 #define INTEL_BROADCAST_RGB_AUTO 0
4310 #define INTEL_BROADCAST_RGB_FULL 1
4311 #define INTEL_BROADCAST_RGB_LIMITED 2
4312 
4313 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4314 {
4315 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4316 		return VLV_VGACNTRL;
4317 	else if (INTEL_GEN(dev_priv) >= 5)
4318 		return CPU_VGACNTRL;
4319 	else
4320 		return VGACNTRL;
4321 }
4322 
4323 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4324 {
4325 	unsigned long j = msecs_to_jiffies(m);
4326 
4327 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4328 }
4329 
4330 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4331 {
4332 	/* nsecs_to_jiffies64() does not guard against overflow */
4333 	if (NSEC_PER_SEC % HZ &&
4334 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4335 		return MAX_JIFFY_OFFSET;
4336 
4337         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4338 }
4339 
4340 static inline unsigned long
4341 timespec_to_jiffies_timeout(const struct timespec *value)
4342 {
4343 	unsigned long j = timespec_to_jiffies(value);
4344 
4345 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4346 }
4347 
4348 /*
4349  * If you need to wait X milliseconds between events A and B, but event B
4350  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4351  * when event A happened, then just before event B you call this function and
4352  * pass the timestamp as the first argument, and X as the second argument.
4353  */
4354 static inline void
4355 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4356 {
4357 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4358 
4359 	/*
4360 	 * Don't re-read the value of "jiffies" every time since it may change
4361 	 * behind our back and break the math.
4362 	 */
4363 	tmp_jiffies = jiffies;
4364 	target_jiffies = timestamp_jiffies +
4365 			 msecs_to_jiffies_timeout(to_wait_ms);
4366 
4367 	if (time_after(target_jiffies, tmp_jiffies)) {
4368 		remaining_jiffies = target_jiffies - tmp_jiffies;
4369 		while (remaining_jiffies)
4370 			remaining_jiffies =
4371 			    schedule_timeout_uninterruptible(remaining_jiffies);
4372 	}
4373 }
4374 
4375 static inline bool
4376 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4377 {
4378 	struct intel_engine_cs *engine = req->engine;
4379 	u32 seqno;
4380 
4381 	/* Note that the engine may have wrapped around the seqno, and
4382 	 * so our request->global_seqno will be ahead of the hardware,
4383 	 * even though it completed the request before wrapping. We catch
4384 	 * this by kicking all the waiters before resetting the seqno
4385 	 * in hardware, and also signal the fence.
4386 	 */
4387 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4388 		return true;
4389 
4390 	/* The request was dequeued before we were awoken. We check after
4391 	 * inspecting the hw to confirm that this was the same request
4392 	 * that generated the HWS update. The memory barriers within
4393 	 * the request execution are sufficient to ensure that a check
4394 	 * after reading the value from hw matches this request.
4395 	 */
4396 	seqno = i915_gem_request_global_seqno(req);
4397 	if (!seqno)
4398 		return false;
4399 
4400 	/* Before we do the heavier coherent read of the seqno,
4401 	 * check the value (hopefully) in the CPU cacheline.
4402 	 */
4403 	if (__i915_gem_request_completed(req, seqno))
4404 		return true;
4405 
4406 	/* Ensure our read of the seqno is coherent so that we
4407 	 * do not "miss an interrupt" (i.e. if this is the last
4408 	 * request and the seqno write from the GPU is not visible
4409 	 * by the time the interrupt fires, we will see that the
4410 	 * request is incomplete and go back to sleep awaiting
4411 	 * another interrupt that will never come.)
4412 	 *
4413 	 * Strictly, we only need to do this once after an interrupt,
4414 	 * but it is easier and safer to do it every time the waiter
4415 	 * is woken.
4416 	 */
4417 	if (engine->irq_seqno_barrier &&
4418 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4419 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4420 
4421 		/* The ordering of irq_posted versus applying the barrier
4422 		 * is crucial. The clearing of the current irq_posted must
4423 		 * be visible before we perform the barrier operation,
4424 		 * such that if a subsequent interrupt arrives, irq_posted
4425 		 * is reasserted and our task rewoken (which causes us to
4426 		 * do another __i915_request_irq_complete() immediately
4427 		 * and reapply the barrier). Conversely, if the clear
4428 		 * occurs after the barrier, then an interrupt that arrived
4429 		 * whilst we waited on the barrier would not trigger a
4430 		 * barrier on the next pass, and the read may not see the
4431 		 * seqno update.
4432 		 */
4433 		engine->irq_seqno_barrier(engine);
4434 
4435 		/* If we consume the irq, but we are no longer the bottom-half,
4436 		 * the real bottom-half may not have serialised their own
4437 		 * seqno check with the irq-barrier (i.e. may have inspected
4438 		 * the seqno before we believe it coherent since they see
4439 		 * irq_posted == false but we are still running).
4440 		 */
4441 		spin_lock_irq(&b->irq_lock);
4442 		if (b->irq_wait && b->irq_wait->tsk != current)
4443 			/* Note that if the bottom-half is changed as we
4444 			 * are sending the wake-up, the new bottom-half will
4445 			 * be woken by whomever made the change. We only have
4446 			 * to worry about when we steal the irq-posted for
4447 			 * ourself.
4448 			 */
4449 			wake_up_process(b->irq_wait->tsk);
4450 		spin_unlock_irq(&b->irq_lock);
4451 
4452 		if (__i915_gem_request_completed(req, seqno))
4453 			return true;
4454 	}
4455 
4456 	return false;
4457 }
4458 
4459 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4460 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4461 
4462 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4463  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4464  * perform the operation. To check beforehand, pass in the parameters to
4465  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4466  * you only need to pass in the minor offsets, page-aligned pointers are
4467  * always valid.
4468  *
4469  * For just checking for SSE4.1, in the foreknowledge that the future use
4470  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4471  */
4472 #define i915_can_memcpy_from_wc(dst, src, len) \
4473 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4474 
4475 #define i915_has_memcpy_from_wc() \
4476 	i915_memcpy_from_wc(NULL, NULL, 0)
4477 
4478 /* i915_mm.c */
4479 int remap_io_mapping(struct vm_area_struct *vma,
4480 		     unsigned long addr, unsigned long pfn, unsigned long size,
4481 		     struct io_mapping *iomap);
4482 
4483 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4484 {
4485 	if (INTEL_GEN(i915) >= 10)
4486 		return CNL_HWS_CSB_WRITE_INDEX;
4487 	else
4488 		return I915_HWS_CSB_WRITE_INDEX;
4489 }
4490 
4491 #endif
4492