xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48 #include <linux/swiotlb.h>
49 
50 #include <sys/mman.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_param.h>
53 
54 #undef USE_INSERT
55 
56 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
57 
58 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
59 {
60 	if (obj->cache_dirty)
61 		return false;
62 
63 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
64 		return true;
65 
66 	return obj->pin_global; /* currently in use by HW, keep flushed */
67 }
68 
69 static int
70 insert_mappable_node(struct i915_ggtt *ggtt,
71                      struct drm_mm_node *node, u32 size)
72 {
73 	memset(node, 0, sizeof(*node));
74 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
75 					   size, 0, I915_COLOR_UNEVICTABLE,
76 					   0, ggtt->mappable_end,
77 					   DRM_MM_INSERT_LOW);
78 }
79 
80 static void
81 remove_mappable_node(struct drm_mm_node *node)
82 {
83 	drm_mm_remove_node(node);
84 }
85 
86 /* some bookkeeping */
87 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 				  u64 size)
89 {
90 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
91 	dev_priv->mm.object_count++;
92 	dev_priv->mm.object_memory += size;
93 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
94 }
95 
96 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 				     u64 size)
98 {
99 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
100 	dev_priv->mm.object_count--;
101 	dev_priv->mm.object_memory -= size;
102 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
103 }
104 
105 static int
106 i915_gem_wait_for_error(struct i915_gpu_error *error)
107 {
108 	int ret;
109 
110 	might_sleep();
111 
112 	/*
113 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
114 	 * userspace. If it takes that long something really bad is going on and
115 	 * we should simply try to bail out and fail as gracefully as possible.
116 	 */
117 	ret = wait_event_interruptible_timeout(error->reset_queue,
118 					       !i915_reset_backoff(error),
119 					       I915_RESET_TIMEOUT);
120 	if (ret == 0) {
121 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
122 		return -EIO;
123 	} else if (ret < 0) {
124 		return ret;
125 	} else {
126 		return 0;
127 	}
128 }
129 
130 int i915_mutex_lock_interruptible(struct drm_device *dev)
131 {
132 	struct drm_i915_private *dev_priv = to_i915(dev);
133 	int ret;
134 
135 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 	if (ret)
137 		return ret;
138 
139 	ret = mutex_lock_interruptible(&dev->struct_mutex);
140 	if (ret)
141 		return ret;
142 
143 	return 0;
144 }
145 
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 			    struct drm_file *file)
149 {
150 	struct drm_i915_private *dev_priv = to_i915(dev);
151 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 	struct drm_i915_gem_get_aperture *args = data;
153 	struct i915_vma *vma;
154 	u64 pinned;
155 
156 	pinned = ggtt->base.reserved;
157 	mutex_lock(&dev->struct_mutex);
158 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 		if (i915_vma_is_pinned(vma))
160 			pinned += vma->node.size;
161 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 		if (i915_vma_is_pinned(vma))
163 			pinned += vma->node.size;
164 	mutex_unlock(&dev->struct_mutex);
165 
166 	args->aper_size = ggtt->base.total;
167 	args->aper_available_size = args->aper_size - pinned;
168 
169 	return 0;
170 }
171 
172 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
173 {
174 #if 0
175 	struct address_space *mapping = obj->base.filp->f_mapping;
176 #else
177 	vm_object_t vm_obj = obj->base.filp;
178 #endif
179 	drm_dma_handle_t *phys;
180 	struct sg_table *st;
181 	struct scatterlist *sg;
182 	char *vaddr;
183 	int i;
184 	int err;
185 
186 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
187 		return -EINVAL;
188 
189 	/* Always aligning to the object size, allows a single allocation
190 	 * to handle all possible callers, and given typical object sizes,
191 	 * the alignment of the buddy allocation will naturally match.
192 	 */
193 	phys = drm_pci_alloc(obj->base.dev,
194 			     roundup_pow_of_two(obj->base.size),
195 			     roundup_pow_of_two(obj->base.size));
196 	if (!phys)
197 		return -ENOMEM;
198 
199 	vaddr = phys->vaddr;
200 	VM_OBJECT_LOCK(vm_obj);
201 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
202 		struct page *page;
203 		char *src;
204 
205 #if 0
206 		page = shmem_read_mapping_page(mapping, i);
207 #else
208 		page = shmem_read_mapping_page(vm_obj, i);
209 #endif
210 		if (IS_ERR(page)) {
211 			err = PTR_ERR(page);
212 			goto err_phys;
213 		}
214 
215 		src = kmap_atomic(page);
216 		memcpy(vaddr, src, PAGE_SIZE);
217 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
218 		kunmap_atomic(src);
219 
220 		put_page(page);
221 		vaddr += PAGE_SIZE;
222 	}
223 	VM_OBJECT_UNLOCK(vm_obj);
224 
225 	i915_gem_chipset_flush(to_i915(obj->base.dev));
226 
227 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
228 	if (!st) {
229 		err = -ENOMEM;
230 		goto err_phys;
231 	}
232 
233 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
234 		kfree(st);
235 		err = -ENOMEM;
236 		goto err_phys;
237 	}
238 
239 	sg = st->sgl;
240 	sg->offset = 0;
241 	sg->length = obj->base.size;
242 
243 	sg_dma_address(sg) = phys->busaddr;
244 	sg_dma_len(sg) = obj->base.size;
245 
246 	obj->phys_handle = phys;
247 
248 	__i915_gem_object_set_pages(obj, st, sg->length);
249 
250 	return 0;
251 
252 err_phys:
253 	drm_pci_free(obj->base.dev, phys);
254 
255 	return err;
256 }
257 
258 static void __start_cpu_write(struct drm_i915_gem_object *obj)
259 {
260 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 	if (cpu_write_needs_clflush(obj))
263 		obj->cache_dirty = true;
264 }
265 
266 static void
267 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
268 				struct sg_table *pages,
269 				bool needs_clflush)
270 {
271 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
272 
273 	if (obj->mm.madv == I915_MADV_DONTNEED)
274 		obj->mm.dirty = false;
275 
276 	if (needs_clflush &&
277 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
278 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
279 		drm_clflush_sg(pages);
280 
281 	__start_cpu_write(obj);
282 }
283 
284 static void
285 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
286 			       struct sg_table *pages)
287 {
288 	__i915_gem_object_release_shmem(obj, pages, false);
289 
290 	if (obj->mm.dirty) {
291 #if 0
292 		struct address_space *mapping = obj->base.filp->f_mapping;
293 #else
294 		vm_object_t vm_obj = obj->base.filp;
295 #endif
296 		char *vaddr = obj->phys_handle->vaddr;
297 		int i;
298 
299 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
300 			struct page *page;
301 			char *dst;
302 
303 			page = shmem_read_mapping_page(vm_obj, i);
304 			if (IS_ERR(page))
305 				continue;
306 
307 			dst = kmap_atomic(page);
308 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
309 			memcpy(dst, vaddr, PAGE_SIZE);
310 			kunmap_atomic(dst);
311 
312 			set_page_dirty(page);
313 			if (obj->mm.madv == I915_MADV_WILLNEED)
314 				mark_page_accessed(page);
315 			put_page(page);
316 			vaddr += PAGE_SIZE;
317 		}
318 		obj->mm.dirty = false;
319 	}
320 
321 	sg_free_table(pages);
322 	kfree(pages);
323 
324 	drm_pci_free(obj->base.dev, obj->phys_handle);
325 }
326 
327 static void
328 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
329 {
330 	i915_gem_object_unpin_pages(obj);
331 }
332 
333 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
334 	.get_pages = i915_gem_object_get_pages_phys,
335 	.put_pages = i915_gem_object_put_pages_phys,
336 	.release = i915_gem_object_release_phys,
337 };
338 
339 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
340 
341 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
342 {
343 	struct i915_vma *vma;
344 	LINUX_LIST_HEAD(still_in_list);
345 	int ret;
346 
347 	lockdep_assert_held(&obj->base.dev->struct_mutex);
348 
349 	/* Closed vma are removed from the obj->vma_list - but they may
350 	 * still have an active binding on the object. To remove those we
351 	 * must wait for all rendering to complete to the object (as unbinding
352 	 * must anyway), and retire the requests.
353 	 */
354 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
355 	if (ret)
356 		return ret;
357 
358 	while ((vma = list_first_entry_or_null(&obj->vma_list,
359 					       struct i915_vma,
360 					       obj_link))) {
361 		list_move_tail(&vma->obj_link, &still_in_list);
362 		ret = i915_vma_unbind(vma);
363 		if (ret)
364 			break;
365 	}
366 	list_splice(&still_in_list, &obj->vma_list);
367 
368 	return ret;
369 }
370 
371 static long
372 i915_gem_object_wait_fence(struct dma_fence *fence,
373 			   unsigned int flags,
374 			   long timeout,
375 			   struct intel_rps_client *rps_client)
376 {
377 	struct drm_i915_gem_request *rq;
378 
379 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
380 
381 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
382 		return timeout;
383 
384 	if (!dma_fence_is_i915(fence))
385 		return dma_fence_wait_timeout(fence,
386 					      flags & I915_WAIT_INTERRUPTIBLE,
387 					      timeout);
388 
389 	rq = to_request(fence);
390 	if (i915_gem_request_completed(rq))
391 		goto out;
392 
393 	/* This client is about to stall waiting for the GPU. In many cases
394 	 * this is undesirable and limits the throughput of the system, as
395 	 * many clients cannot continue processing user input/output whilst
396 	 * blocked. RPS autotuning may take tens of milliseconds to respond
397 	 * to the GPU load and thus incurs additional latency for the client.
398 	 * We can circumvent that by promoting the GPU frequency to maximum
399 	 * before we wait. This makes the GPU throttle up much more quickly
400 	 * (good for benchmarks and user experience, e.g. window animations),
401 	 * but at a cost of spending more power processing the workload
402 	 * (bad for battery). Not all clients even want their results
403 	 * immediately and for them we should just let the GPU select its own
404 	 * frequency to maximise efficiency. To prevent a single client from
405 	 * forcing the clocks too high for the whole system, we only allow
406 	 * each client to waitboost once in a busy period.
407 	 */
408 	if (rps_client) {
409 		if (INTEL_GEN(rq->i915) >= 6)
410 			gen6_rps_boost(rq, rps_client);
411 		else
412 			rps_client = NULL;
413 	}
414 
415 	timeout = i915_wait_request(rq, flags, timeout);
416 
417 out:
418 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
419 		i915_gem_request_retire_upto(rq);
420 
421 	return timeout;
422 }
423 
424 static long
425 i915_gem_object_wait_reservation(struct reservation_object *resv,
426 				 unsigned int flags,
427 				 long timeout,
428 				 struct intel_rps_client *rps_client)
429 {
430 	unsigned int seq = __read_seqcount_begin(&resv->seq);
431 	struct dma_fence *excl;
432 	bool prune_fences = false;
433 
434 	if (flags & I915_WAIT_ALL) {
435 		struct dma_fence **shared;
436 		unsigned int count, i;
437 		int ret;
438 
439 		ret = reservation_object_get_fences_rcu(resv,
440 							&excl, &count, &shared);
441 		if (ret)
442 			return ret;
443 
444 		for (i = 0; i < count; i++) {
445 			timeout = i915_gem_object_wait_fence(shared[i],
446 							     flags, timeout,
447 							     rps_client);
448 			if (timeout < 0)
449 				break;
450 
451 			dma_fence_put(shared[i]);
452 		}
453 
454 		for (; i < count; i++)
455 			dma_fence_put(shared[i]);
456 		kfree(shared);
457 
458 		prune_fences = count && timeout >= 0;
459 	} else {
460 		excl = reservation_object_get_excl_rcu(resv);
461 	}
462 
463 	if (excl && timeout >= 0) {
464 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
465 						     rps_client);
466 		prune_fences = timeout >= 0;
467 	}
468 
469 	dma_fence_put(excl);
470 
471 	/* Oportunistically prune the fences iff we know they have *all* been
472 	 * signaled and that the reservation object has not been changed (i.e.
473 	 * no new fences have been added).
474 	 */
475 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
476 		if (reservation_object_trylock(resv)) {
477 			if (!__read_seqcount_retry(&resv->seq, seq))
478 				reservation_object_add_excl_fence(resv, NULL);
479 			reservation_object_unlock(resv);
480 		}
481 	}
482 
483 	return timeout;
484 }
485 
486 static void __fence_set_priority(struct dma_fence *fence, int prio)
487 {
488 	struct drm_i915_gem_request *rq;
489 	struct intel_engine_cs *engine;
490 
491 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
492 		return;
493 
494 	rq = to_request(fence);
495 	engine = rq->engine;
496 	if (!engine->schedule)
497 		return;
498 
499 	engine->schedule(rq, prio);
500 }
501 
502 static void fence_set_priority(struct dma_fence *fence, int prio)
503 {
504 	/* Recurse once into a fence-array */
505 	if (dma_fence_is_array(fence)) {
506 		struct dma_fence_array *array = to_dma_fence_array(fence);
507 		int i;
508 
509 		for (i = 0; i < array->num_fences; i++)
510 			__fence_set_priority(array->fences[i], prio);
511 	} else {
512 		__fence_set_priority(fence, prio);
513 	}
514 }
515 
516 int
517 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
518 			      unsigned int flags,
519 			      int prio)
520 {
521 	struct dma_fence *excl;
522 
523 	if (flags & I915_WAIT_ALL) {
524 		struct dma_fence **shared;
525 		unsigned int count, i;
526 		int ret;
527 
528 		ret = reservation_object_get_fences_rcu(obj->resv,
529 							&excl, &count, &shared);
530 		if (ret)
531 			return ret;
532 
533 		for (i = 0; i < count; i++) {
534 			fence_set_priority(shared[i], prio);
535 			dma_fence_put(shared[i]);
536 		}
537 
538 		kfree(shared);
539 	} else {
540 		excl = reservation_object_get_excl_rcu(obj->resv);
541 	}
542 
543 	if (excl) {
544 		fence_set_priority(excl, prio);
545 		dma_fence_put(excl);
546 	}
547 	return 0;
548 }
549 
550 /**
551  * Waits for rendering to the object to be completed
552  * @obj: i915 gem object
553  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
554  * @timeout: how long to wait
555  * @rps: client (user process) to charge for any waitboosting
556  */
557 int
558 i915_gem_object_wait(struct drm_i915_gem_object *obj,
559 		     unsigned int flags,
560 		     long timeout,
561 		     struct intel_rps_client *rps_client)
562 {
563 	might_sleep();
564 #if IS_ENABLED(CONFIG_LOCKDEP)
565 	GEM_BUG_ON(debug_locks &&
566 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
567 		   !!(flags & I915_WAIT_LOCKED));
568 #endif
569 	GEM_BUG_ON(timeout < 0);
570 
571 	timeout = i915_gem_object_wait_reservation(obj->resv,
572 						   flags, timeout,
573 						   rps_client);
574 	return timeout < 0 ? timeout : 0;
575 }
576 
577 static struct intel_rps_client *to_rps_client(struct drm_file *file)
578 {
579 	struct drm_i915_file_private *fpriv = file->driver_priv;
580 
581 	return &fpriv->rps_client;
582 }
583 
584 static int
585 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
586 		     struct drm_i915_gem_pwrite *args,
587 		     struct drm_file *file)
588 {
589 	void *vaddr = obj->phys_handle->vaddr + args->offset;
590 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
591 
592 	/* We manually control the domain here and pretend that it
593 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
594 	 */
595 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
596 	if (copy_from_user(vaddr, user_data, args->size))
597 		return -EFAULT;
598 
599 	drm_clflush_virt_range(vaddr, args->size);
600 	i915_gem_chipset_flush(to_i915(obj->base.dev));
601 
602 	intel_fb_obj_flush(obj, ORIGIN_CPU);
603 	return 0;
604 }
605 
606 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
607 {
608 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
609 }
610 
611 void i915_gem_object_free(struct drm_i915_gem_object *obj)
612 {
613 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
614 	kmem_cache_free(dev_priv->objects, obj);
615 }
616 
617 static int
618 i915_gem_create(struct drm_file *file,
619 		struct drm_i915_private *dev_priv,
620 		uint64_t size,
621 		uint32_t *handle_p)
622 {
623 	struct drm_i915_gem_object *obj;
624 	int ret;
625 	u32 handle;
626 
627 	size = roundup(size, PAGE_SIZE);
628 	if (size == 0)
629 		return -EINVAL;
630 
631 	/* Allocate the new object */
632 	obj = i915_gem_object_create(dev_priv, size);
633 	if (IS_ERR(obj))
634 		return PTR_ERR(obj);
635 
636 	ret = drm_gem_handle_create(file, &obj->base, &handle);
637 	/* drop reference from allocate - handle holds it now */
638 	i915_gem_object_put(obj);
639 	if (ret)
640 		return ret;
641 
642 	*handle_p = handle;
643 	return 0;
644 }
645 
646 int
647 i915_gem_dumb_create(struct drm_file *file,
648 		     struct drm_device *dev,
649 		     struct drm_mode_create_dumb *args)
650 {
651 	/* have to work out size/pitch and return them */
652 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
653 	args->size = args->pitch * args->height;
654 	return i915_gem_create(file, to_i915(dev),
655 			       args->size, &args->handle);
656 }
657 
658 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
659 {
660 	return !(obj->cache_level == I915_CACHE_NONE ||
661 		 obj->cache_level == I915_CACHE_WT);
662 }
663 
664 /**
665  * Creates a new mm object and returns a handle to it.
666  * @dev: drm device pointer
667  * @data: ioctl data blob
668  * @file: drm file pointer
669  */
670 int
671 i915_gem_create_ioctl(struct drm_device *dev, void *data,
672 		      struct drm_file *file)
673 {
674 	struct drm_i915_private *dev_priv = to_i915(dev);
675 	struct drm_i915_gem_create *args = data;
676 
677 	i915_gem_flush_free_objects(dev_priv);
678 
679 	return i915_gem_create(file, dev_priv,
680 			       args->size, &args->handle);
681 }
682 
683 static inline enum fb_op_origin
684 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
685 {
686 	return (domain == I915_GEM_DOMAIN_GTT ?
687 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
688 }
689 
690 static void
691 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
692 {
693 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
694 
695 	if (!(obj->base.write_domain & flush_domains))
696 		return;
697 
698 	/* No actual flushing is required for the GTT write domain.  Writes
699 	 * to it "immediately" go to main memory as far as we know, so there's
700 	 * no chipset flush.  It also doesn't land in render cache.
701 	 *
702 	 * However, we do have to enforce the order so that all writes through
703 	 * the GTT land before any writes to the device, such as updates to
704 	 * the GATT itself.
705 	 *
706 	 * We also have to wait a bit for the writes to land from the GTT.
707 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
708 	 * timing. This issue has only been observed when switching quickly
709 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
710 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
711 	 * system agents we cannot reproduce this behaviour).
712 	 */
713 	wmb();
714 
715 	switch (obj->base.write_domain) {
716 	case I915_GEM_DOMAIN_GTT:
717 		if (!HAS_LLC(dev_priv)) {
718 			intel_runtime_pm_get(dev_priv);
719 			spin_lock_irq(&dev_priv->uncore.lock);
720 			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
721 			spin_unlock_irq(&dev_priv->uncore.lock);
722 			intel_runtime_pm_put(dev_priv);
723 		}
724 
725 		intel_fb_obj_flush(obj,
726 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
727 		break;
728 
729 	case I915_GEM_DOMAIN_CPU:
730 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
731 		break;
732 
733 	case I915_GEM_DOMAIN_RENDER:
734 		if (gpu_write_needs_clflush(obj))
735 			obj->cache_dirty = true;
736 		break;
737 	}
738 
739 	obj->base.write_domain = 0;
740 }
741 
742 static inline int
743 __copy_to_user_swizzled(char __user *cpu_vaddr,
744 			const char *gpu_vaddr, int gpu_offset,
745 			int length)
746 {
747 	int ret, cpu_offset = 0;
748 
749 	while (length > 0) {
750 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
751 		int this_length = min(cacheline_end - gpu_offset, length);
752 		int swizzled_gpu_offset = gpu_offset ^ 64;
753 
754 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
755 				     gpu_vaddr + swizzled_gpu_offset,
756 				     this_length);
757 		if (ret)
758 			return ret + length;
759 
760 		cpu_offset += this_length;
761 		gpu_offset += this_length;
762 		length -= this_length;
763 	}
764 
765 	return 0;
766 }
767 
768 static inline int
769 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
770 			  const char __user *cpu_vaddr,
771 			  int length)
772 {
773 	int ret, cpu_offset = 0;
774 
775 	while (length > 0) {
776 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
777 		int this_length = min(cacheline_end - gpu_offset, length);
778 		int swizzled_gpu_offset = gpu_offset ^ 64;
779 
780 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
781 				       cpu_vaddr + cpu_offset,
782 				       this_length);
783 		if (ret)
784 			return ret + length;
785 
786 		cpu_offset += this_length;
787 		gpu_offset += this_length;
788 		length -= this_length;
789 	}
790 
791 	return 0;
792 }
793 
794 /*
795  * Pins the specified object's pages and synchronizes the object with
796  * GPU accesses. Sets needs_clflush to non-zero if the caller should
797  * flush the object from the CPU cache.
798  */
799 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
800 				    unsigned int *needs_clflush)
801 {
802 	int ret;
803 
804 	lockdep_assert_held(&obj->base.dev->struct_mutex);
805 
806 	*needs_clflush = 0;
807 	if (!i915_gem_object_has_struct_page(obj))
808 		return -ENODEV;
809 
810 	ret = i915_gem_object_wait(obj,
811 				   I915_WAIT_INTERRUPTIBLE |
812 				   I915_WAIT_LOCKED,
813 				   MAX_SCHEDULE_TIMEOUT,
814 				   NULL);
815 	if (ret)
816 		return ret;
817 
818 	ret = i915_gem_object_pin_pages(obj);
819 	if (ret)
820 		return ret;
821 
822 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
823 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
824 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
825 		if (ret)
826 			goto err_unpin;
827 		else
828 			goto out;
829 	}
830 
831 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
832 
833 	/* If we're not in the cpu read domain, set ourself into the gtt
834 	 * read domain and manually flush cachelines (if required). This
835 	 * optimizes for the case when the gpu will dirty the data
836 	 * anyway again before the next pread happens.
837 	 */
838 	if (!obj->cache_dirty &&
839 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
840 		*needs_clflush = CLFLUSH_BEFORE;
841 
842 out:
843 	/* return with the pages pinned */
844 	return 0;
845 
846 err_unpin:
847 	i915_gem_object_unpin_pages(obj);
848 	return ret;
849 }
850 
851 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
852 				     unsigned int *needs_clflush)
853 {
854 	int ret;
855 
856 	lockdep_assert_held(&obj->base.dev->struct_mutex);
857 
858 	*needs_clflush = 0;
859 	if (!i915_gem_object_has_struct_page(obj))
860 		return -ENODEV;
861 
862 	ret = i915_gem_object_wait(obj,
863 				   I915_WAIT_INTERRUPTIBLE |
864 				   I915_WAIT_LOCKED |
865 				   I915_WAIT_ALL,
866 				   MAX_SCHEDULE_TIMEOUT,
867 				   NULL);
868 	if (ret)
869 		return ret;
870 
871 	ret = i915_gem_object_pin_pages(obj);
872 	if (ret)
873 		return ret;
874 
875 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
876 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
877 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
878 		if (ret)
879 			goto err_unpin;
880 		else
881 			goto out;
882 	}
883 
884 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
885 
886 	/* If we're not in the cpu write domain, set ourself into the
887 	 * gtt write domain and manually flush cachelines (as required).
888 	 * This optimizes for the case when the gpu will use the data
889 	 * right away and we therefore have to clflush anyway.
890 	 */
891 	if (!obj->cache_dirty) {
892 		*needs_clflush |= CLFLUSH_AFTER;
893 
894 		/*
895 		 * Same trick applies to invalidate partially written
896 		 * cachelines read before writing.
897 		 */
898 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
899 			*needs_clflush |= CLFLUSH_BEFORE;
900 	}
901 
902 out:
903 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
904 	obj->mm.dirty = true;
905 	/* return with the pages pinned */
906 	return 0;
907 
908 err_unpin:
909 	i915_gem_object_unpin_pages(obj);
910 	return ret;
911 }
912 
913 static void
914 shmem_clflush_swizzled_range(char *addr, unsigned long length,
915 			     bool swizzled)
916 {
917 	if (unlikely(swizzled)) {
918 		unsigned long start = (unsigned long) addr;
919 		unsigned long end = (unsigned long) addr + length;
920 
921 		/* For swizzling simply ensure that we always flush both
922 		 * channels. Lame, but simple and it works. Swizzled
923 		 * pwrite/pread is far from a hotpath - current userspace
924 		 * doesn't use it at all. */
925 		start = round_down(start, 128);
926 		end = round_up(end, 128);
927 
928 		drm_clflush_virt_range((void *)start, end - start);
929 	} else {
930 		drm_clflush_virt_range(addr, length);
931 	}
932 
933 }
934 
935 /* Only difference to the fast-path function is that this can handle bit17
936  * and uses non-atomic copy and kmap functions. */
937 static int
938 shmem_pread_slow(struct page *page, int offset, int length,
939 		 char __user *user_data,
940 		 bool page_do_bit17_swizzling, bool needs_clflush)
941 {
942 	char *vaddr;
943 	int ret;
944 
945 	vaddr = kmap(page);
946 	if (needs_clflush)
947 		shmem_clflush_swizzled_range(vaddr + offset, length,
948 					     page_do_bit17_swizzling);
949 
950 	if (page_do_bit17_swizzling)
951 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
952 	else
953 		ret = __copy_to_user(user_data, vaddr + offset, length);
954 	kunmap(page);
955 
956 	return ret ? - EFAULT : 0;
957 }
958 
959 static int
960 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
961 	    bool page_do_bit17_swizzling, bool needs_clflush)
962 {
963 	int ret;
964 
965 	ret = -ENODEV;
966 	if (!page_do_bit17_swizzling) {
967 		char *vaddr = kmap_atomic(page);
968 
969 		if (needs_clflush)
970 			drm_clflush_virt_range(vaddr + offset, length);
971 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
972 		kunmap_atomic(vaddr);
973 	}
974 	if (ret == 0)
975 		return 0;
976 
977 	return shmem_pread_slow(page, offset, length, user_data,
978 				page_do_bit17_swizzling, needs_clflush);
979 }
980 
981 static int
982 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
983 		     struct drm_i915_gem_pread *args)
984 {
985 	char __user *user_data;
986 	u64 remain;
987 	unsigned int obj_do_bit17_swizzling;
988 	unsigned int needs_clflush;
989 	unsigned int idx, offset;
990 	int ret;
991 
992 	obj_do_bit17_swizzling = 0;
993 	if (i915_gem_object_needs_bit17_swizzle(obj))
994 		obj_do_bit17_swizzling = BIT(17);
995 
996 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
997 	if (ret)
998 		return ret;
999 
1000 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1001 	mutex_unlock(&obj->base.dev->struct_mutex);
1002 	if (ret)
1003 		return ret;
1004 
1005 	remain = args->size;
1006 	user_data = u64_to_user_ptr(args->data_ptr);
1007 	offset = offset_in_page(args->offset);
1008 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1009 		struct page *page = i915_gem_object_get_page(obj, idx);
1010 		int length;
1011 
1012 		length = remain;
1013 		if (offset + length > PAGE_SIZE)
1014 			length = PAGE_SIZE - offset;
1015 
1016 		ret = shmem_pread(page, offset, length, user_data,
1017 				  page_to_phys(page) & obj_do_bit17_swizzling,
1018 				  needs_clflush);
1019 		if (ret)
1020 			break;
1021 
1022 		remain -= length;
1023 		user_data += length;
1024 		offset = 0;
1025 	}
1026 
1027 	i915_gem_obj_finish_shmem_access(obj);
1028 	return ret;
1029 }
1030 
1031 static inline bool
1032 gtt_user_read(struct io_mapping *mapping,
1033 	      loff_t base, int offset,
1034 	      char __user *user_data, int length)
1035 {
1036 	void __iomem *vaddr;
1037 	unsigned long unwritten;
1038 
1039 	/* We can use the cpu mem copy function because this is X86. */
1040 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1041 	unwritten = __copy_to_user_inatomic(user_data,
1042 					    (void __force *)vaddr + offset,
1043 					    length);
1044 	io_mapping_unmap_atomic(vaddr);
1045 	if (unwritten) {
1046 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1047 		unwritten = copy_to_user(user_data,
1048 					 (void __force *)vaddr + offset,
1049 					 length);
1050 		io_mapping_unmap(vaddr);
1051 	}
1052 	return unwritten;
1053 }
1054 
1055 static int
1056 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1057 		   const struct drm_i915_gem_pread *args)
1058 {
1059 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1060 	struct i915_ggtt *ggtt = &i915->ggtt;
1061 	struct drm_mm_node node;
1062 	struct i915_vma *vma;
1063 	void __user *user_data;
1064 	u64 remain, offset;
1065 	int ret;
1066 
1067 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1068 	if (ret)
1069 		return ret;
1070 
1071 	intel_runtime_pm_get(i915);
1072 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1073 				       PIN_MAPPABLE |
1074 				       PIN_NONFAULT |
1075 				       PIN_NONBLOCK);
1076 	if (!IS_ERR(vma)) {
1077 		node.start = i915_ggtt_offset(vma);
1078 		node.allocated = false;
1079 		ret = i915_vma_put_fence(vma);
1080 		if (ret) {
1081 			i915_vma_unpin(vma);
1082 			vma = ERR_PTR(ret);
1083 		}
1084 	}
1085 	if (IS_ERR(vma)) {
1086 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1087 		if (ret)
1088 			goto out_unlock;
1089 		GEM_BUG_ON(!node.allocated);
1090 	}
1091 
1092 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1093 	if (ret)
1094 		goto out_unpin;
1095 
1096 	mutex_unlock(&i915->drm.struct_mutex);
1097 
1098 	user_data = u64_to_user_ptr(args->data_ptr);
1099 	remain = args->size;
1100 	offset = args->offset;
1101 
1102 	while (remain > 0) {
1103 		/* Operation in this page
1104 		 *
1105 		 * page_base = page offset within aperture
1106 		 * page_offset = offset within page
1107 		 * page_length = bytes to copy for this page
1108 		 */
1109 		u32 page_base = node.start;
1110 		unsigned page_offset = offset_in_page(offset);
1111 		unsigned page_length = PAGE_SIZE - page_offset;
1112 		page_length = remain < page_length ? remain : page_length;
1113 		if (node.allocated) {
1114 			wmb();
1115 			ggtt->base.insert_page(&ggtt->base,
1116 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1117 					       node.start, I915_CACHE_NONE, 0);
1118 			wmb();
1119 		} else {
1120 			page_base += offset & LINUX_PAGE_MASK;
1121 		}
1122 
1123 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1124 				  user_data, page_length)) {
1125 			ret = -EFAULT;
1126 			break;
1127 		}
1128 
1129 		remain -= page_length;
1130 		user_data += page_length;
1131 		offset += page_length;
1132 	}
1133 
1134 	mutex_lock(&i915->drm.struct_mutex);
1135 out_unpin:
1136 	if (node.allocated) {
1137 		wmb();
1138 		ggtt->base.clear_range(&ggtt->base,
1139 				       node.start, node.size);
1140 		remove_mappable_node(&node);
1141 	} else {
1142 		i915_vma_unpin(vma);
1143 	}
1144 out_unlock:
1145 	intel_runtime_pm_put(i915);
1146 	mutex_unlock(&i915->drm.struct_mutex);
1147 
1148 	return ret;
1149 }
1150 
1151 /**
1152  * Reads data from the object referenced by handle.
1153  * @dev: drm device pointer
1154  * @data: ioctl data blob
1155  * @file: drm file pointer
1156  *
1157  * On error, the contents of *data are undefined.
1158  */
1159 int
1160 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1161 		     struct drm_file *file)
1162 {
1163 	struct drm_i915_gem_pread *args = data;
1164 	struct drm_i915_gem_object *obj;
1165 	int ret;
1166 
1167 	if (args->size == 0)
1168 		return 0;
1169 
1170 #if 0
1171 	if (!access_ok(VERIFY_WRITE,
1172 		       u64_to_user_ptr(args->data_ptr),
1173 		       args->size))
1174 		return -EFAULT;
1175 #endif
1176 
1177 	obj = i915_gem_object_lookup(file, args->handle);
1178 	if (!obj)
1179 		return -ENOENT;
1180 
1181 	/* Bounds check source.  */
1182 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1183 		ret = -EINVAL;
1184 		goto out;
1185 	}
1186 
1187 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1188 
1189 	ret = i915_gem_object_wait(obj,
1190 				   I915_WAIT_INTERRUPTIBLE,
1191 				   MAX_SCHEDULE_TIMEOUT,
1192 				   to_rps_client(file));
1193 	if (ret)
1194 		goto out;
1195 
1196 	ret = i915_gem_object_pin_pages(obj);
1197 	if (ret)
1198 		goto out;
1199 
1200 	ret = i915_gem_shmem_pread(obj, args);
1201 	if (ret == -EFAULT || ret == -ENODEV)
1202 		ret = i915_gem_gtt_pread(obj, args);
1203 
1204 	i915_gem_object_unpin_pages(obj);
1205 out:
1206 	i915_gem_object_put(obj);
1207 	return ret;
1208 }
1209 
1210 /* This is the fast write path which cannot handle
1211  * page faults in the source data
1212  */
1213 
1214 static inline bool
1215 ggtt_write(struct io_mapping *mapping,
1216 	   loff_t base, int offset,
1217 	   char __user *user_data, int length)
1218 {
1219 	void __iomem *vaddr;
1220 	unsigned long unwritten;
1221 
1222 	/* We can use the cpu mem copy function because this is X86. */
1223 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1224 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1225 						      user_data, length);
1226 	io_mapping_unmap_atomic(vaddr);
1227 	if (unwritten) {
1228 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1229 		unwritten = copy_from_user((void __force *)vaddr + offset,
1230 					   user_data, length);
1231 		io_mapping_unmap(vaddr);
1232 	}
1233 
1234 	return unwritten;
1235 }
1236 
1237 /**
1238  * This is the fast pwrite path, where we copy the data directly from the
1239  * user into the GTT, uncached.
1240  * @obj: i915 GEM object
1241  * @args: pwrite arguments structure
1242  */
1243 static int
1244 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1245 			 const struct drm_i915_gem_pwrite *args)
1246 {
1247 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1248 	struct i915_ggtt *ggtt = &i915->ggtt;
1249 	struct drm_mm_node node;
1250 	struct i915_vma *vma;
1251 	u64 remain, offset;
1252 	void __user *user_data;
1253 	int ret;
1254 
1255 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1256 	if (ret)
1257 		return ret;
1258 
1259 	if (i915_gem_object_has_struct_page(obj)) {
1260 		/*
1261 		 * Avoid waking the device up if we can fallback, as
1262 		 * waking/resuming is very slow (worst-case 10-100 ms
1263 		 * depending on PCI sleeps and our own resume time).
1264 		 * This easily dwarfs any performance advantage from
1265 		 * using the cache bypass of indirect GGTT access.
1266 		 */
1267 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1268 			ret = -EFAULT;
1269 			goto out_unlock;
1270 		}
1271 	} else {
1272 		/* No backing pages, no fallback, we must force GGTT access */
1273 		intel_runtime_pm_get(i915);
1274 	}
1275 
1276 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1277 				       PIN_MAPPABLE |
1278 				       PIN_NONFAULT |
1279 				       PIN_NONBLOCK);
1280 	if (!IS_ERR(vma)) {
1281 		node.start = i915_ggtt_offset(vma);
1282 		node.allocated = false;
1283 		ret = i915_vma_put_fence(vma);
1284 		if (ret) {
1285 			i915_vma_unpin(vma);
1286 			vma = ERR_PTR(ret);
1287 		}
1288 	}
1289 	if (IS_ERR(vma)) {
1290 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1291 		if (ret)
1292 			goto out_rpm;
1293 		GEM_BUG_ON(!node.allocated);
1294 	}
1295 
1296 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1297 	if (ret)
1298 		goto out_unpin;
1299 
1300 	mutex_unlock(&i915->drm.struct_mutex);
1301 
1302 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1303 
1304 	user_data = u64_to_user_ptr(args->data_ptr);
1305 	offset = args->offset;
1306 	remain = args->size;
1307 	while (remain) {
1308 		/* Operation in this page
1309 		 *
1310 		 * page_base = page offset within aperture
1311 		 * page_offset = offset within page
1312 		 * page_length = bytes to copy for this page
1313 		 */
1314 		u32 page_base = node.start;
1315 		unsigned int page_offset = offset_in_page(offset);
1316 		unsigned int page_length = PAGE_SIZE - page_offset;
1317 		page_length = remain < page_length ? remain : page_length;
1318 		if (node.allocated) {
1319 			wmb(); /* flush the write before we modify the GGTT */
1320 			ggtt->base.insert_page(&ggtt->base,
1321 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1322 					       node.start, I915_CACHE_NONE, 0);
1323 			wmb(); /* flush modifications to the GGTT (insert_page) */
1324 		} else {
1325 			page_base += offset & LINUX_PAGE_MASK;
1326 		}
1327 		/* If we get a fault while copying data, then (presumably) our
1328 		 * source page isn't available.  Return the error and we'll
1329 		 * retry in the slow path.
1330 		 * If the object is non-shmem backed, we retry again with the
1331 		 * path that handles page fault.
1332 		 */
1333 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1334 			       user_data, page_length)) {
1335 			ret = -EFAULT;
1336 			break;
1337 		}
1338 
1339 		remain -= page_length;
1340 		user_data += page_length;
1341 		offset += page_length;
1342 	}
1343 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1344 
1345 	mutex_lock(&i915->drm.struct_mutex);
1346 out_unpin:
1347 	if (node.allocated) {
1348 		wmb();
1349 		ggtt->base.clear_range(&ggtt->base,
1350 				       node.start, node.size);
1351 		remove_mappable_node(&node);
1352 	} else {
1353 		i915_vma_unpin(vma);
1354 	}
1355 out_rpm:
1356 	intel_runtime_pm_put(i915);
1357 out_unlock:
1358 	mutex_unlock(&i915->drm.struct_mutex);
1359 	return ret;
1360 }
1361 
1362 static int
1363 shmem_pwrite_slow(struct page *page, int offset, int length,
1364 		  char __user *user_data,
1365 		  bool page_do_bit17_swizzling,
1366 		  bool needs_clflush_before,
1367 		  bool needs_clflush_after)
1368 {
1369 	char *vaddr;
1370 	int ret;
1371 
1372 	vaddr = kmap(page);
1373 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1374 		shmem_clflush_swizzled_range(vaddr + offset, length,
1375 					     page_do_bit17_swizzling);
1376 	if (page_do_bit17_swizzling)
1377 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1378 						length);
1379 	else
1380 		ret = __copy_from_user(vaddr + offset, user_data, length);
1381 	if (needs_clflush_after)
1382 		shmem_clflush_swizzled_range(vaddr + offset, length,
1383 					     page_do_bit17_swizzling);
1384 	kunmap(page);
1385 
1386 	return ret ? -EFAULT : 0;
1387 }
1388 
1389 /* Per-page copy function for the shmem pwrite fastpath.
1390  * Flushes invalid cachelines before writing to the target if
1391  * needs_clflush_before is set and flushes out any written cachelines after
1392  * writing if needs_clflush is set.
1393  */
1394 static int
1395 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1396 	     bool page_do_bit17_swizzling,
1397 	     bool needs_clflush_before,
1398 	     bool needs_clflush_after)
1399 {
1400 	int ret;
1401 
1402 	ret = -ENODEV;
1403 	if (!page_do_bit17_swizzling) {
1404 		char *vaddr = kmap_atomic(page);
1405 
1406 		if (needs_clflush_before)
1407 			drm_clflush_virt_range(vaddr + offset, len);
1408 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1409 		if (needs_clflush_after)
1410 			drm_clflush_virt_range(vaddr + offset, len);
1411 
1412 		kunmap_atomic(vaddr);
1413 	}
1414 	if (ret == 0)
1415 		return ret;
1416 
1417 	return shmem_pwrite_slow(page, offset, len, user_data,
1418 				 page_do_bit17_swizzling,
1419 				 needs_clflush_before,
1420 				 needs_clflush_after);
1421 }
1422 
1423 static int
1424 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1425 		      const struct drm_i915_gem_pwrite *args)
1426 {
1427 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1428 	void __user *user_data;
1429 	u64 remain;
1430 	unsigned int obj_do_bit17_swizzling;
1431 	unsigned int partial_cacheline_write;
1432 	unsigned int needs_clflush;
1433 	unsigned int offset, idx;
1434 	int ret;
1435 #ifdef __DragonFly__
1436 	vm_object_t vm_obj;
1437 #endif
1438 
1439 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1444 	mutex_unlock(&i915->drm.struct_mutex);
1445 	if (ret)
1446 		return ret;
1447 
1448 	obj_do_bit17_swizzling = 0;
1449 	if (i915_gem_object_needs_bit17_swizzle(obj))
1450 		obj_do_bit17_swizzling = BIT(17);
1451 
1452 	/* If we don't overwrite a cacheline completely we need to be
1453 	 * careful to have up-to-date data by first clflushing. Don't
1454 	 * overcomplicate things and flush the entire patch.
1455 	 */
1456 	partial_cacheline_write = 0;
1457 	if (needs_clflush & CLFLUSH_BEFORE)
1458 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1459 
1460 	user_data = u64_to_user_ptr(args->data_ptr);
1461 	remain = args->size;
1462 	offset = offset_in_page(args->offset);
1463 #ifdef __DragonFly__
1464 	vm_obj = obj->base.filp;
1465 	VM_OBJECT_LOCK(vm_obj);
1466 	vm_object_pip_add(vm_obj, 1);
1467 #endif
1468 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1469 		struct page *page = i915_gem_object_get_page(obj, idx);
1470 		int length;
1471 
1472 		length = remain;
1473 		if (offset + length > PAGE_SIZE)
1474 			length = PAGE_SIZE - offset;
1475 
1476 		ret = shmem_pwrite(page, offset, length, user_data,
1477 				   page_to_phys(page) & obj_do_bit17_swizzling,
1478 				   (offset | length) & partial_cacheline_write,
1479 				   needs_clflush & CLFLUSH_AFTER);
1480 		if (ret)
1481 			break;
1482 
1483 		remain -= length;
1484 		user_data += length;
1485 		offset = 0;
1486 	}
1487 #ifdef __DragonFly__
1488 	if (vm_obj != obj->base.filp) {
1489 		kprintf("i915_gem_shmem_pwrite: VM_OBJECT CHANGED! %p %p\n",
1490 			vm_obj, obj->base.filp);
1491 	}
1492 	vm_object_pip_wakeup(vm_obj);
1493 	VM_OBJECT_UNLOCK(vm_obj);
1494 #endif
1495 
1496 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1497 	i915_gem_obj_finish_shmem_access(obj);
1498 	return ret;
1499 }
1500 
1501 /**
1502  * Writes data to the object referenced by handle.
1503  * @dev: drm device
1504  * @data: ioctl data blob
1505  * @file: drm file
1506  *
1507  * On error, the contents of the buffer that were to be modified are undefined.
1508  */
1509 int
1510 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1511 		      struct drm_file *file)
1512 {
1513 	struct drm_i915_gem_pwrite *args = data;
1514 	struct drm_i915_gem_object *obj;
1515 	int ret;
1516 
1517 	if (args->size == 0)
1518 		return 0;
1519 
1520 #if 0
1521 	if (!access_ok(VERIFY_READ,
1522 		       u64_to_user_ptr(args->data_ptr),
1523 		       args->size))
1524 		return -EFAULT;
1525 #endif
1526 
1527 	obj = i915_gem_object_lookup(file, args->handle);
1528 	if (!obj)
1529 		return -ENOENT;
1530 
1531 	/* Bounds check destination. */
1532 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1533 		ret = -EINVAL;
1534 		goto err;
1535 	}
1536 
1537 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1538 
1539 	ret = -ENODEV;
1540 	if (obj->ops->pwrite)
1541 		ret = obj->ops->pwrite(obj, args);
1542 	if (ret != -ENODEV)
1543 		goto err;
1544 
1545 	ret = i915_gem_object_wait(obj,
1546 				   I915_WAIT_INTERRUPTIBLE |
1547 				   I915_WAIT_ALL,
1548 				   MAX_SCHEDULE_TIMEOUT,
1549 				   to_rps_client(file));
1550 	if (ret)
1551 		goto err;
1552 
1553 	ret = i915_gem_object_pin_pages(obj);
1554 	if (ret)
1555 		goto err;
1556 
1557 	ret = -EFAULT;
1558 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1559 	 * it would end up going through the fenced access, and we'll get
1560 	 * different detiling behavior between reading and writing.
1561 	 * pread/pwrite currently are reading and writing from the CPU
1562 	 * perspective, requiring manual detiling by the client.
1563 	 */
1564 	if (!i915_gem_object_has_struct_page(obj) ||
1565 	    cpu_write_needs_clflush(obj))
1566 		/* Note that the gtt paths might fail with non-page-backed user
1567 		 * pointers (e.g. gtt mappings when moving data between
1568 		 * textures). Fallback to the shmem path in that case.
1569 		 */
1570 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1571 
1572 	if (ret == -EFAULT || ret == -ENOSPC) {
1573 		if (obj->phys_handle)
1574 			ret = i915_gem_phys_pwrite(obj, args, file);
1575 		else
1576 			ret = i915_gem_shmem_pwrite(obj, args);
1577 	}
1578 
1579 	i915_gem_object_unpin_pages(obj);
1580 err:
1581 	i915_gem_object_put(obj);
1582 	return ret;
1583 }
1584 
1585 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1586 {
1587 	struct drm_i915_private *i915;
1588 	struct list_head *list;
1589 	struct i915_vma *vma;
1590 
1591 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1592 
1593 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1594 		if (!i915_vma_is_ggtt(vma))
1595 			break;
1596 
1597 		if (i915_vma_is_active(vma))
1598 			continue;
1599 
1600 		if (!drm_mm_node_allocated(&vma->node))
1601 			continue;
1602 
1603 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1604 	}
1605 
1606 	i915 = to_i915(obj->base.dev);
1607 	lockmgr(&i915->mm.obj_lock, LK_EXCLUSIVE);
1608 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1609 	list_move_tail(&obj->mm.link, list);
1610 	lockmgr(&i915->mm.obj_lock, LK_RELEASE);
1611 }
1612 
1613 /**
1614  * Called when user space prepares to use an object with the CPU, either
1615  * through the mmap ioctl's mapping or a GTT mapping.
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1622 			  struct drm_file *file)
1623 {
1624 	struct drm_i915_gem_set_domain *args = data;
1625 	struct drm_i915_gem_object *obj;
1626 	uint32_t read_domains = args->read_domains;
1627 	uint32_t write_domain = args->write_domain;
1628 	int err;
1629 
1630 	/* Only handle setting domains to types used by the CPU. */
1631 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1632 		return -EINVAL;
1633 
1634 	/* Having something in the write domain implies it's in the read
1635 	 * domain, and only that read domain.  Enforce that in the request.
1636 	 */
1637 	if (write_domain != 0 && read_domains != write_domain)
1638 		return -EINVAL;
1639 
1640 	obj = i915_gem_object_lookup(file, args->handle);
1641 	if (!obj)
1642 		return -ENOENT;
1643 
1644 	/* Try to flush the object off the GPU without holding the lock.
1645 	 * We will repeat the flush holding the lock in the normal manner
1646 	 * to catch cases where we are gazumped.
1647 	 */
1648 	err = i915_gem_object_wait(obj,
1649 				   I915_WAIT_INTERRUPTIBLE |
1650 				   (write_domain ? I915_WAIT_ALL : 0),
1651 				   MAX_SCHEDULE_TIMEOUT,
1652 				   to_rps_client(file));
1653 	if (err)
1654 		goto out;
1655 
1656 	/* Flush and acquire obj->pages so that we are coherent through
1657 	 * direct access in memory with previous cached writes through
1658 	 * shmemfs and that our cache domain tracking remains valid.
1659 	 * For example, if the obj->filp was moved to swap without us
1660 	 * being notified and releasing the pages, we would mistakenly
1661 	 * continue to assume that the obj remained out of the CPU cached
1662 	 * domain.
1663 	 */
1664 	err = i915_gem_object_pin_pages(obj);
1665 	if (err)
1666 		goto out;
1667 
1668 	err = i915_mutex_lock_interruptible(dev);
1669 	if (err)
1670 		goto out_unpin;
1671 
1672 	if (read_domains & I915_GEM_DOMAIN_WC)
1673 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1674 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1675 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1676 	else
1677 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1678 
1679 	/* And bump the LRU for this access */
1680 	i915_gem_object_bump_inactive_ggtt(obj);
1681 
1682 	mutex_unlock(&dev->struct_mutex);
1683 
1684 	if (write_domain != 0)
1685 		intel_fb_obj_invalidate(obj,
1686 					fb_write_origin(obj, write_domain));
1687 
1688 out_unpin:
1689 	i915_gem_object_unpin_pages(obj);
1690 out:
1691 	i915_gem_object_put(obj);
1692 	return err;
1693 }
1694 
1695 /**
1696  * Called when user space has done writes to this buffer
1697  * @dev: drm device
1698  * @data: ioctl data blob
1699  * @file: drm file
1700  */
1701 int
1702 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1703 			 struct drm_file *file)
1704 {
1705 	struct drm_i915_gem_sw_finish *args = data;
1706 	struct drm_i915_gem_object *obj;
1707 
1708 	obj = i915_gem_object_lookup(file, args->handle);
1709 	if (!obj)
1710 		return -ENOENT;
1711 
1712 	/* Pinned buffers may be scanout, so flush the cache */
1713 	i915_gem_object_flush_if_display(obj);
1714 	i915_gem_object_put(obj);
1715 
1716 	return 0;
1717 }
1718 
1719 static int
1720 vm_object_map_wc_callback(vm_page_t p, void *data)
1721 {
1722 	pmap_page_set_memattr(p, VM_MEMATTR_WRITE_COMBINING);
1723 
1724 	return 0;
1725 }
1726 
1727 /**
1728  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1729  *			 it is mapped to.
1730  * @dev: drm device
1731  * @data: ioctl data blob
1732  * @file: drm file
1733  *
1734  * While the mapping holds a reference on the contents of the object, it doesn't
1735  * imply a ref on the object itself.
1736  *
1737  * IMPORTANT:
1738  *
1739  * DRM driver writers who look a this function as an example for how to do GEM
1740  * mmap support, please don't implement mmap support like here. The modern way
1741  * to implement DRM mmap support is with an mmap offset ioctl (like
1742  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1743  * That way debug tooling like valgrind will understand what's going on, hiding
1744  * the mmap call in a driver private ioctl will break that. The i915 driver only
1745  * does cpu mmaps this way because we didn't know better.
1746  */
1747 int
1748 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1749 		    struct drm_file *file)
1750 {
1751 	struct drm_i915_gem_mmap *args = data;
1752 	struct drm_i915_gem_object *obj;
1753 	unsigned long addr;
1754 #ifdef __DragonFly__
1755 	struct proc *p = curproc;
1756 	vm_map_t map = &p->p_vmspace->vm_map;
1757 	vm_size_t size;
1758 	int error = 0, rv;
1759 	struct vm_object *vm_obj;
1760 	struct rb_vm_page_scan_info info;
1761 #endif
1762 
1763 	if (args->flags & ~(I915_MMAP_WC))
1764 		return -EINVAL;
1765 
1766 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1767 		return -ENODEV;
1768 
1769 	obj = i915_gem_object_lookup(file, args->handle);
1770 	if (!obj)
1771 		return -ENOENT;
1772 
1773 	/* prime objects have no backing filp to GEM mmap
1774 	 * pages from.
1775 	 */
1776 	if (!obj->base.filp) {
1777 		i915_gem_object_put(obj);
1778 		return -EINVAL;
1779 	}
1780 
1781 #ifdef __DragonFly__
1782 	if (args->size == 0)
1783 		goto out;
1784 
1785 	size = round_page(args->size);
1786 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1787 		error = -ENOMEM;
1788 		goto out;
1789 	}
1790 
1791 	/*
1792 	 * Call hint to ensure that NULL is not returned as a valid address
1793 	 * and to reduce vm_map traversals. XXX causes instability, use a
1794 	 * fixed low address as the start point instead to avoid the NULL
1795 	 * return issue.
1796 	 */
1797 	addr = PAGE_SIZE;
1798 
1799 	/*
1800 	 * Use 256KB alignment.  It is unclear why this matters for a
1801 	 * virtual address but it appears to fix a number of application/X
1802 	 * crashes and kms console switching is much faster.
1803 	 */
1804 	vm_object_hold(obj->base.filp);
1805 	vm_object_reference_locked(obj->base.filp);
1806 	vm_object_drop(obj->base.filp);
1807 
1808 	/* Something gets wrong here: fails to mmap 4096 */
1809 	rv = vm_map_find(map, obj->base.filp, NULL,
1810 			 args->offset, &addr, args->size,
1811 			 256 * 1024, /* align */
1812 			 TRUE, /* fitit */
1813 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_DRM_GEM,
1814 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1815 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1816 			 MAP_SHARED /* cow */);
1817 	if (rv != KERN_SUCCESS) {
1818 		vm_object_deallocate(obj->base.filp);
1819 		error = -vm_mmap_to_errno(rv);
1820 	} else {
1821 		args->addr_ptr = (uint64_t)addr;
1822 	}
1823 #else
1824 	addr = vm_mmap(obj->base.filp, 0, args->size,
1825 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1826 		       args->offset);
1827 #endif	/* __DragonFly__ */
1828 	if (args->flags & I915_MMAP_WC) {	/* I915_PARAM_MMAP_VERSION */
1829 		struct mm_struct *mm = current->mm;
1830 #if 0
1831 		struct vm_area_struct *vma;
1832 #endif
1833 
1834 		if (down_write_killable(&mm->mmap_sem)) {
1835 			i915_gem_object_put(obj);
1836 			return -EINTR;
1837 		}
1838 #ifdef __DragonFly__
1839 		vm_obj = obj->base.filp;
1840 		vm_object_hold(vm_obj);
1841 		vm_obj->memattr = pgprot_writecombine(vm_obj->memattr);
1842 		/* Change attributes of all pages in the mapping here */
1843 		info.error = 0;
1844 		info.count = 0;
1845 		vm_page_rb_tree_RB_SCAN(
1846 			&vm_obj->rb_memq,		/* *head */
1847 			NULL, 				/* *scancmp */
1848 			vm_object_map_wc_callback,	/* *callback */
1849 			&info				/* *data */
1850 		);
1851 		vm_object_drop(vm_obj);
1852 #else
1853 		vma = find_vma(mm, addr);
1854 		if (vma)
1855 			vma->vm_page_prot =
1856 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1857 		else
1858 			addr = -ENOMEM;
1859 #endif	/* __DragonFly__ */
1860 		up_write(&mm->mmap_sem);
1861 
1862 		/* This may race, but that's ok, it only gets set */
1863 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1864 	}
1865 
1866 out:
1867 	i915_gem_object_put(obj);
1868 	if (IS_ERR((void *)addr))
1869 		return addr;
1870 
1871 	args->addr_ptr = (uint64_t) addr;
1872 
1873 	return 0;
1874 }
1875 
1876 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1877 {
1878 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1879 }
1880 
1881 /**
1882  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1883  *
1884  * A history of the GTT mmap interface:
1885  *
1886  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1887  *     aligned and suitable for fencing, and still fit into the available
1888  *     mappable space left by the pinned display objects. A classic problem
1889  *     we called the page-fault-of-doom where we would ping-pong between
1890  *     two objects that could not fit inside the GTT and so the memcpy
1891  *     would page one object in at the expense of the other between every
1892  *     single byte.
1893  *
1894  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1895  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1896  *     object is too large for the available space (or simply too large
1897  *     for the mappable aperture!), a view is created instead and faulted
1898  *     into userspace. (This view is aligned and sized appropriately for
1899  *     fenced access.)
1900  *
1901  * 2 - Recognise WC as a separate cache domain so that we can flush the
1902  *     delayed writes via GTT before performing direct access via WC.
1903  *
1904  * Restrictions:
1905  *
1906  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1907  *    hangs on some architectures, corruption on others. An attempt to service
1908  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1909  *
1910  *  * the object must be able to fit into RAM (physical memory, though no
1911  *    limited to the mappable aperture).
1912  *
1913  *
1914  * Caveats:
1915  *
1916  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1917  *    all data to system memory. Subsequent access will not be synchronized.
1918  *
1919  *  * all mappings are revoked on runtime device suspend.
1920  *
1921  *  * there are only 8, 16 or 32 fence registers to share between all users
1922  *    (older machines require fence register for display and blitter access
1923  *    as well). Contention of the fence registers will cause the previous users
1924  *    to be unmapped and any new access will generate new page faults.
1925  *
1926  *  * running out of memory while servicing a fault may generate a SIGBUS,
1927  *    rather than the expected SIGSEGV.
1928  */
1929 int i915_gem_mmap_gtt_version(void)
1930 {
1931 	return 2;
1932 }
1933 
1934 static inline struct i915_ggtt_view
1935 compute_partial_view(struct drm_i915_gem_object *obj,
1936 		     pgoff_t page_offset,
1937 		     unsigned int chunk)
1938 {
1939 	struct i915_ggtt_view view;
1940 
1941 	if (i915_gem_object_is_tiled(obj))
1942 		chunk = roundup(chunk, tile_row_pages(obj));
1943 
1944 	view.type = I915_GGTT_VIEW_PARTIAL;
1945 	view.partial.offset = rounddown(page_offset, chunk);
1946 	view.partial.size =
1947 		min_t(unsigned int, chunk,
1948 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1949 
1950 	/* If the partial covers the entire object, just create a normal VMA. */
1951 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1952 		view.type = I915_GGTT_VIEW_NORMAL;
1953 
1954 	return view;
1955 }
1956 
1957 #ifdef __DragonFly__
1958 static inline void drm_vma_node_unmap(struct drm_vma_offset_node *node,
1959 				      struct address_space *file_mapping)
1960 {
1961 	struct drm_i915_gem_object *obj = container_of(
1962 		node,struct drm_i915_gem_object, base.vma_node);
1963 	vm_object_t devobj;
1964 
1965 	devobj = cdev_pager_lookup(obj);
1966 	if (devobj != NULL) {
1967 		VM_OBJECT_LOCK(devobj);
1968 		vm_object_page_remove(devobj, 0, 0, false);
1969 		VM_OBJECT_UNLOCK(devobj);
1970 		vm_object_deallocate(devobj);
1971 	}
1972 }
1973 #endif
1974 
1975 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
1976 {
1977 	struct i915_vma *vma;
1978 
1979 	GEM_BUG_ON(!obj->userfault_count);
1980 
1981 	obj->userfault_count = 0;
1982 	list_del(&obj->userfault_link);
1983 #ifdef __DragonFly__
1984 	drm_vma_node_unmap(&obj->base.vma_node, NULL);
1985 #else
1986 	drm_vma_node_unmap(&obj->base.vma_node,
1987 			   obj->base.dev->anon_inode->i_mapping);
1988 #endif
1989 
1990 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1991 		if (!i915_vma_is_ggtt(vma))
1992 			break;
1993 
1994 		i915_vma_unset_userfault(vma);
1995 	}
1996 }
1997 
1998 /**
1999  * i915_gem_fault - fault a page into the GTT
2000  *
2001  * vm_obj is locked on entry and expected to be locked on return.
2002  *
2003  * This is a OBJT_MGTDEVICE object, *mres will be NULL and should be set
2004  * to the desired vm_page.  The page is not indexed into the vm_obj.
2005  *
2006  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
2007  * in that case.  Release all resources and wait 1 tick before retrying.
2008  * This is a huge problem which needs to be fixed by getting rid of most
2009  * of the interruptability.  The linux code does not retry but does appear
2010  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
2011  * to be able to retry.
2012  *
2013  * --
2014  * @vma: VMA in question
2015  * @vmf: fault info
2016  *
2017  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2018  * from userspace.  The fault handler takes care of binding the object to
2019  * the GTT (if needed), allocating and programming a fence register (again,
2020  * only if needed based on whether the old reg is still valid or the object
2021  * is tiled) and inserting a new PTE into the faulting process.
2022  *
2023  * Note that the faulting process may involve evicting existing objects
2024  * from the GTT and/or fence registers to make room.  So performance may
2025  * suffer if the GTT working set is large or there are few fence registers
2026  * left.
2027  *
2028  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2029  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2030  * vm_obj is locked on entry and expected to be locked on return.  The VM
2031  * pager has placed an anonymous memory page at (obj,offset) which we have
2032  * to replace.
2033  */
2034 // int i915_gem_fault(struct vm_fault *vmf)
2035 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
2036 {
2037 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
2038 	struct vm_area_struct *area;
2039 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
2040 	struct drm_device *dev = obj->base.dev;
2041 	struct drm_i915_private *dev_priv = to_i915(dev);
2042 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2043 	bool write = !!(prot & VM_PROT_WRITE);
2044 	struct i915_vma *vma;
2045 	pgoff_t page_offset;
2046 	vm_page_t m;
2047 	unsigned int flags;
2048 	int ret;
2049 #ifdef __DragonFly__
2050 	int didref = 0;
2051 	struct vm_area_struct vmas;
2052 
2053 	/* Fill-in vm_area_struct */
2054 	area = &vmas;
2055 	area->vm_private_data = vm_obj->handle;
2056 	area->vm_start = 0;
2057 	area->vm_end = obj->base.size;
2058 	area->vm_mm = current->mm;
2059 	// XXX: in Linux, mmap_sem is held on entry of this function
2060 	// XXX: should that be an exclusive lock ?
2061 	down_read(&area->vm_mm->mmap_sem);
2062 #endif
2063 
2064 	/* We don't use vmf->pgoff since that has the fake offset */
2065 	page_offset = (unsigned long)offset >> PAGE_SHIFT;
2066 
2067 	/*
2068 	 * vm_fault() has supplied us with a busied page placeholding
2069 	 * the operation.  This presents a lock order reversal issue
2070 	 * again i915_gem_release_mmap() for our device mutex.
2071 	 *
2072 	 * Deal with the problem by getting rid of the placeholder now,
2073 	 * and then dealing with the potential for a new placeholder when
2074 	 * we try to insert later.
2075 	 */
2076 	KKASSERT(*mres == NULL);
2077 	m = NULL;
2078 
2079 retry:
2080 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2081 
2082 	/* Try to flush the object off the GPU first without holding the lock.
2083 	 * Upon acquiring the lock, we will perform our sanity checks and then
2084 	 * repeat the flush holding the lock in the normal manner to catch cases
2085 	 * where we are gazumped.
2086 	 */
2087 	ret = i915_gem_object_wait(obj,
2088 				   I915_WAIT_INTERRUPTIBLE,
2089 				   MAX_SCHEDULE_TIMEOUT,
2090 				   NULL);
2091 	if (ret)
2092 		goto err;
2093 
2094 	ret = i915_gem_object_pin_pages(obj);
2095 	if (ret)
2096 		goto err;
2097 
2098 	intel_runtime_pm_get(dev_priv);
2099 
2100 	ret = i915_mutex_lock_interruptible(dev);
2101 	if (ret) {
2102 		if (ret != -EINTR)
2103 		    kprintf("i915: caught bug(%d) (mutex_lock_inter)\n", ret);
2104 		goto err_rpm;
2105 	}
2106 
2107 	/* Access to snoopable pages through the GTT is incoherent. */
2108 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2109 		kprintf("i915: caught bug() (cache_level %d %d)\n",
2110 			(obj->cache_level), !HAS_LLC(dev_priv));
2111 		ret = -EFAULT;
2112 		goto err_unlock;
2113 	}
2114 
2115 	/* If the object is smaller than a couple of partial vma, it is
2116 	 * not worth only creating a single partial vma - we may as well
2117 	 * clear enough space for the full object.
2118 	 */
2119 	flags = PIN_MAPPABLE;
2120 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
2121 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
2122 
2123 	/* Now pin it into the GTT as needed */
2124 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2125 	if (IS_ERR(vma)) {
2126 		/* Use a partial view if it is bigger than available space */
2127 		struct i915_ggtt_view view =
2128 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2129 
2130 		kprintf("i915_gem_fault: CHUNKING PASS\n");
2131 
2132 		/* Userspace is now writing through an untracked VMA, abandon
2133 		 * all hope that the hardware is able to track future writes.
2134 		 */
2135 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2136 
2137 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
2138 	}
2139 	if (IS_ERR(vma)) {
2140 		kprintf("i915: caught bug() (VMA error %ld objsize %ld)\n",
2141 			PTR_ERR(vma), obj->base.size);
2142 		ret = PTR_ERR(vma);
2143 		goto err_unlock;
2144 	}
2145 
2146 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2147 	if (ret) {
2148 		kprintf("i915: caught bug(%d) (set_to_gtt_dom)\n", ret);
2149 		goto err_unpin;
2150 	}
2151 
2152 	ret = i915_vma_pin_fence(vma);
2153 	if (ret) {
2154 		kprintf("i915: caught bug(%d) (vma_pin_fence)\n", ret);
2155 		goto err_unpin;
2156 	}
2157 
2158 #ifdef __DragonFly__
2159 	/*
2160 	 * Add a pip count to avoid destruction and certain other
2161 	 * complex operations (such as collapses?) while unlocked.
2162 	 */
2163 	vm_object_pip_add(vm_obj, 1);
2164 	didref = 1;
2165 
2166 	ret = 0;
2167 
2168 #if 0
2169 	/* NO LONGER USED */
2170 	{
2171 		vm_page_t m;
2172 
2173 		m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
2174 		if (m) {
2175 			if (vm_page_busy_try(m, false)) {
2176 				kprintf("i915_gem_fault: BUSY\n");
2177 				ret = -EINTR;
2178 				goto err_unpin;
2179 			}
2180 		}
2181 		goto have_page;
2182 	}
2183 #endif
2184 
2185 	/* Finally, remap it using the new GTT offset */
2186 	m = vm_phys_fictitious_to_vm_page(ggtt->mappable_base +
2187 			vma->node.start + offset);
2188 
2189 	if (m == NULL) {
2190 		kprintf("i915: caught bug() (phys_fict_to_vm)\n");
2191 		ret = -EFAULT;
2192 		goto err_fence;
2193 	}
2194 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
2195 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
2196 
2197 	/*
2198 	 * Try to busy the page.  Fails on non-zero return.
2199 	 */
2200 	if (vm_page_busy_try(m, false)) {
2201 		kprintf("i915_gem_fault: BUSY(2)\n");
2202 		ret = -EINTR;
2203 		goto err_fence;
2204 	}
2205 	m->valid = VM_PAGE_BITS_ALL;
2206 
2207 #ifdef USE_INSERT
2208 	/* NO LONGER USED */
2209 	/*
2210 	 * This should always work since we already checked via a lookup
2211 	 * above.
2212 	 */
2213 	if (vm_page_insert(m, vm_obj, OFF_TO_IDX(offset)) == FALSE) {
2214 		kprintf("i915:gem_fault: page %p,%jd already in object\n",
2215 			vm_obj,
2216 			OFF_TO_IDX(offset));
2217 		vm_page_wakeup(m);
2218 		ret = -EINTR;
2219 		goto err_unpin;
2220 	}
2221 have_page:
2222 #endif
2223 	*mres = m;
2224 	ret = VM_PAGER_OK;
2225 
2226 	/*
2227 	 * ALTERNATIVE ERROR RETURN.
2228 	 *
2229 	 * OBJECT EXPECTED TO BE LOCKED.
2230 	 */
2231 #endif
2232 
2233 	/* Mark as being mmapped into userspace for later revocation */
2234 	assert_rpm_wakelock_held(dev_priv);
2235 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2236 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2237 	GEM_BUG_ON(!obj->userfault_count);
2238 
2239 err_fence:
2240 	i915_vma_unpin_fence(vma);
2241 err_unpin:
2242 	__i915_vma_unpin(vma);
2243 err_unlock:
2244 	mutex_unlock(&dev->struct_mutex);
2245 err_rpm:
2246 	intel_runtime_pm_put(dev_priv);
2247 	i915_gem_object_unpin_pages(obj);
2248 err:
2249 	switch (ret) {
2250 	case -EIO:
2251 		/*
2252 		 * We eat errors when the gpu is terminally wedged to avoid
2253 		 * userspace unduly crashing (gl has no provisions for mmaps to
2254 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2255 		 * and so needs to be reported.
2256 		 */
2257 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2258 //			ret = VM_FAULT_SIGBUS;
2259 			break;
2260 		}
2261 	case -EAGAIN:
2262 		/*
2263 		 * EAGAIN means the gpu is hung and we'll wait for the error
2264 		 * handler to reset everything when re-faulting in
2265 		 * i915_mutex_lock_interruptible.
2266 		 */
2267 	case -ERESTARTSYS:
2268 	case -EINTR:
2269 #ifdef __DragonFly__
2270 		if (didref) {
2271 			kprintf("i915: caught bug(%d) (retry)\n", ret);
2272 			vm_object_pip_wakeup(vm_obj);
2273 			didref = 0;
2274 		}
2275 		VM_OBJECT_UNLOCK(vm_obj);
2276 		int dummy;
2277 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2278 		VM_OBJECT_LOCK(vm_obj);
2279 		goto retry;
2280 	case VM_PAGER_OK:
2281 		break;
2282 #endif
2283 	default:
2284 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2285 		ret = VM_PAGER_ERROR;
2286 		break;
2287 	}
2288 
2289 #ifdef __DragonFly__
2290 	if (didref)
2291 		vm_object_pip_wakeup(vm_obj);
2292 	else
2293 		kprintf("i915: caught bug(%d)\n", ret);
2294 
2295 	up_read(&area->vm_mm->mmap_sem);
2296 #endif
2297 
2298 	return ret;
2299 }
2300 
2301 /**
2302  * i915_gem_release_mmap - remove physical page mappings
2303  * @obj: obj in question
2304  *
2305  * Preserve the reservation of the mmapping with the DRM core code, but
2306  * relinquish ownership of the pages back to the system.
2307  *
2308  * It is vital that we remove the page mapping if we have mapped a tiled
2309  * object through the GTT and then lose the fence register due to
2310  * resource pressure. Similarly if the object has been moved out of the
2311  * aperture, than pages mapped into userspace must be revoked. Removing the
2312  * mapping will then trigger a page fault on the next user access, allowing
2313  * fixup by i915_gem_fault().
2314  */
2315 void
2316 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2317 {
2318 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2319 
2320 	/* Serialisation between user GTT access and our code depends upon
2321 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2322 	 * pagefault then has to wait until we release the mutex.
2323 	 *
2324 	 * Note that RPM complicates somewhat by adding an additional
2325 	 * requirement that operations to the GGTT be made holding the RPM
2326 	 * wakeref.
2327 	 */
2328 	lockdep_assert_held(&i915->drm.struct_mutex);
2329 	intel_runtime_pm_get(i915);
2330 
2331 	if (!obj->userfault_count)
2332 		goto out;
2333 
2334 	__i915_gem_object_release_mmap(obj);
2335 
2336 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2337 	 * memory transactions from userspace before we return. The TLB
2338 	 * flushing implied above by changing the PTE above *should* be
2339 	 * sufficient, an extra barrier here just provides us with a bit
2340 	 * of paranoid documentation about our requirement to serialise
2341 	 * memory writes before touching registers / GSM.
2342 	 */
2343 	wmb();
2344 
2345 out:
2346 	intel_runtime_pm_put(i915);
2347 }
2348 
2349 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2350 {
2351 	struct drm_i915_gem_object *obj, *on;
2352 	int i;
2353 
2354 	/*
2355 	 * Only called during RPM suspend. All users of the userfault_list
2356 	 * must be holding an RPM wakeref to ensure that this can not
2357 	 * run concurrently with themselves (and use the struct_mutex for
2358 	 * protection between themselves).
2359 	 */
2360 
2361 	list_for_each_entry_safe(obj, on,
2362 				 &dev_priv->mm.userfault_list, userfault_link)
2363 		__i915_gem_object_release_mmap(obj);
2364 
2365 	/* The fence will be lost when the device powers down. If any were
2366 	 * in use by hardware (i.e. they are pinned), we should not be powering
2367 	 * down! All other fences will be reacquired by the user upon waking.
2368 	 */
2369 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2370 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2371 
2372 		/* Ideally we want to assert that the fence register is not
2373 		 * live at this point (i.e. that no piece of code will be
2374 		 * trying to write through fence + GTT, as that both violates
2375 		 * our tracking of activity and associated locking/barriers,
2376 		 * but also is illegal given that the hw is powered down).
2377 		 *
2378 		 * Previously we used reg->pin_count as a "liveness" indicator.
2379 		 * That is not sufficient, and we need a more fine-grained
2380 		 * tool if we want to have a sanity check here.
2381 		 */
2382 
2383 		if (!reg->vma)
2384 			continue;
2385 
2386 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2387 		reg->dirty = true;
2388 	}
2389 }
2390 
2391 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2392 {
2393 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2394 	int err;
2395 
2396 	err = drm_gem_create_mmap_offset(&obj->base);
2397 	if (likely(!err))
2398 		return 0;
2399 
2400 	/* Attempt to reap some mmap space from dead objects */
2401 	do {
2402 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2403 		if (err)
2404 			break;
2405 
2406 		i915_gem_drain_freed_objects(dev_priv);
2407 		err = drm_gem_create_mmap_offset(&obj->base);
2408 		if (!err)
2409 			break;
2410 
2411 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2412 
2413 	return err;
2414 }
2415 
2416 #if 0
2417 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2418 {
2419 	drm_gem_free_mmap_offset(&obj->base);
2420 }
2421 #endif
2422 
2423 int
2424 i915_gem_mmap_gtt(struct drm_file *file,
2425 		  struct drm_device *dev,
2426 		  uint32_t handle,
2427 		  uint64_t *offset)
2428 {
2429 	struct drm_i915_gem_object *obj;
2430 	int ret;
2431 
2432 	obj = i915_gem_object_lookup(file, handle);
2433 	if (!obj)
2434 		return -ENOENT;
2435 
2436 	ret = i915_gem_object_create_mmap_offset(obj);
2437 	if (ret == 0)
2438 		*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2439 		    DRM_GEM_MAPPING_KEY;
2440 
2441 	i915_gem_object_put(obj);
2442 	return ret;
2443 }
2444 
2445 /**
2446  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2447  * @dev: DRM device
2448  * @data: GTT mapping ioctl data
2449  * @file: GEM object info
2450  *
2451  * Simply returns the fake offset to userspace so it can mmap it.
2452  * The mmap call will end up in drm_gem_mmap(), which will set things
2453  * up so we can get faults in the handler above.
2454  *
2455  * The fault handler will take care of binding the object into the GTT
2456  * (since it may have been evicted to make room for something), allocating
2457  * a fence register, and mapping the appropriate aperture address into
2458  * userspace.
2459  */
2460 int
2461 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2462 			struct drm_file *file)
2463 {
2464 	struct drm_i915_gem_mmap_gtt *args = data;
2465 
2466 	return i915_gem_mmap_gtt(file, dev, args->handle, (uint64_t *)&args->offset);
2467 }
2468 
2469 /* Immediately discard the backing storage */
2470 static void
2471 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2472 {
2473 	vm_object_t vm_obj = obj->base.filp;
2474 
2475 	if (obj->base.filp == NULL)
2476 		return;
2477 
2478 	VM_OBJECT_LOCK(vm_obj);
2479 	vm_object_page_remove(vm_obj, 0, 0, false);
2480 	VM_OBJECT_UNLOCK(vm_obj);
2481 
2482 	/* Our goal here is to return as much of the memory as
2483 	 * is possible back to the system as we are called from OOM.
2484 	 * To do this we must instruct the shmfs to drop all of its
2485 	 * backing pages, *now*.
2486 	 */
2487 #if 0
2488 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2489 #endif
2490 	obj->mm.madv = __I915_MADV_PURGED;
2491 	obj->mm.pages = ERR_PTR(-EFAULT);
2492 }
2493 
2494 /* Try to discard unwanted pages */
2495 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2496 {
2497 #if 0
2498 	struct address_space *mapping;
2499 #endif
2500 
2501 	lockdep_assert_held(&obj->mm.lock);
2502 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2503 
2504 	switch (obj->mm.madv) {
2505 	case I915_MADV_DONTNEED:
2506 		i915_gem_object_truncate(obj);
2507 	case __I915_MADV_PURGED:
2508 		return;
2509 	}
2510 
2511 	if (obj->base.filp == NULL)
2512 		return;
2513 
2514 #if 0
2515 	mapping = obj->base.filp->f_mapping,
2516 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2517 #endif
2518 	invalidate_mapping_pages(obj->base.filp, 0, (loff_t)-1);
2519 }
2520 
2521 static void
2522 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2523 			      struct sg_table *pages)
2524 {
2525 	struct sgt_iter sgt_iter;
2526 	struct page *page;
2527 
2528 	__i915_gem_object_release_shmem(obj, pages, true);
2529 
2530 	i915_gem_gtt_finish_pages(obj, pages);
2531 
2532 	if (i915_gem_object_needs_bit17_swizzle(obj))
2533 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2534 
2535 	for_each_sgt_page(page, sgt_iter, pages) {
2536 		if (obj->mm.dirty)
2537 			set_page_dirty(page);
2538 
2539 		if (obj->mm.madv == I915_MADV_WILLNEED)
2540 			mark_page_accessed(page);
2541 
2542 		put_page(page);
2543 	}
2544 	obj->mm.dirty = false;
2545 
2546 	sg_free_table(pages);
2547 	kfree(pages);
2548 }
2549 
2550 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2551 {
2552 	struct radix_tree_iter iter;
2553 	void __rcu **slot;
2554 
2555 	rcu_read_lock();
2556 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2557 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2558 	rcu_read_unlock();
2559 }
2560 
2561 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2562 				 enum i915_mm_subclass subclass)
2563 {
2564 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2565 	struct sg_table *pages;
2566 
2567 	if (i915_gem_object_has_pinned_pages(obj))
2568 		return;
2569 
2570 	GEM_BUG_ON(obj->bind_count);
2571 	if (!i915_gem_object_has_pages(obj))
2572 		return;
2573 
2574 	/* May be called by shrinker from within get_pages() (on another bo) */
2575 	mutex_lock_nested(&obj->mm.lock, subclass);
2576 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2577 		goto unlock;
2578 
2579 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2580 	 * array, hence protect them from being reaped by removing them from gtt
2581 	 * lists early. */
2582 	pages = fetch_and_zero(&obj->mm.pages);
2583 	GEM_BUG_ON(!pages);
2584 
2585 	lockmgr(&i915->mm.obj_lock, LK_EXCLUSIVE);
2586 	list_del(&obj->mm.link);
2587 	lockmgr(&i915->mm.obj_lock, LK_RELEASE);
2588 
2589 	if (obj->mm.mapping) {
2590 		void *ptr;
2591 
2592 		ptr = page_mask_bits(obj->mm.mapping);
2593 		if (is_vmalloc_addr(ptr))
2594 			vunmap(ptr);
2595 		else
2596 			kunmap(kmap_to_page(ptr));
2597 
2598 		obj->mm.mapping = NULL;
2599 	}
2600 
2601 	__i915_gem_object_reset_page_iter(obj);
2602 
2603 	if (!IS_ERR(pages))
2604 		obj->ops->put_pages(obj, pages);
2605 
2606 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2607 
2608 unlock:
2609 	mutex_unlock(&obj->mm.lock);
2610 }
2611 
2612 static bool i915_sg_trim(struct sg_table *orig_st)
2613 {
2614 	struct sg_table new_st;
2615 	struct scatterlist *sg, *new_sg;
2616 	unsigned int i;
2617 
2618 	if (orig_st->nents == orig_st->orig_nents)
2619 		return false;
2620 
2621 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2622 		return false;
2623 
2624 	new_sg = new_st.sgl;
2625 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2626 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2627 		/* called before being DMA mapped, no need to copy sg->dma_* */
2628 		new_sg = sg_next(new_sg);
2629 	}
2630 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2631 
2632 	sg_free_table(orig_st);
2633 
2634 	*orig_st = new_st;
2635 	return true;
2636 }
2637 
2638 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2639 {
2640 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2641 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2642 	unsigned long i;
2643 	struct vm_object *mapping;
2644 	struct sg_table *st;
2645 	struct scatterlist *sg;
2646 	struct sgt_iter sgt_iter;
2647 	struct page *page;
2648 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2649 	unsigned int max_segment = i915_sg_segment_size();
2650 	unsigned int sg_page_sizes;
2651 	gfp_t noreclaim;
2652 	int ret;
2653 
2654 	/* Assert that the object is not currently in any GPU domain. As it
2655 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2656 	 * a GPU cache
2657 	 */
2658 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2659 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2660 
2661 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
2662 	if (st == NULL)
2663 		return -ENOMEM;
2664 
2665 rebuild_st:
2666 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2667 		kfree(st);
2668 		return -ENOMEM;
2669 	}
2670 
2671 	/* Get the list of pages out of our struct file.  They'll be pinned
2672 	 * at this point until we release them.
2673 	 *
2674 	 * Fail silently without starting the shrinker
2675 	 */
2676 #ifdef __DragonFly__
2677 	mapping = obj->base.filp;
2678 	VM_OBJECT_LOCK(mapping);
2679 #endif
2680 	noreclaim = mapping_gfp_constraint(mapping,
2681 					   ~(__GFP_IO | __GFP_RECLAIM));
2682 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2683 
2684 	sg = st->sgl;
2685 	st->nents = 0;
2686 	sg_page_sizes = 0;
2687 	for (i = 0; i < page_count; i++) {
2688 		const unsigned int shrink[] = {
2689 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2690 			0,
2691 		}, *s = shrink;
2692 		gfp_t gfp = noreclaim;
2693 
2694 		do {
2695 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2696 			if (likely(!IS_ERR(page)))
2697 				break;
2698 
2699 			if (!*s) {
2700 				ret = PTR_ERR(page);
2701 				goto err_sg;
2702 			}
2703 
2704 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2705 			cond_resched();
2706 
2707 			/* We've tried hard to allocate the memory by reaping
2708 			 * our own buffer, now let the real VM do its job and
2709 			 * go down in flames if truly OOM.
2710 			 *
2711 			 * However, since graphics tend to be disposable,
2712 			 * defer the oom here by reporting the ENOMEM back
2713 			 * to userspace.
2714 			 */
2715 			if (!*s) {
2716 				/* reclaim and warn, but no oom */
2717 				gfp = mapping_gfp_mask(mapping);
2718 
2719 				/* Our bo are always dirty and so we require
2720 				 * kswapd to reclaim our pages (direct reclaim
2721 				 * does not effectively begin pageout of our
2722 				 * buffers on its own). However, direct reclaim
2723 				 * only waits for kswapd when under allocation
2724 				 * congestion. So as a result __GFP_RECLAIM is
2725 				 * unreliable and fails to actually reclaim our
2726 				 * dirty pages -- unless you try over and over
2727 				 * again with !__GFP_NORETRY. However, we still
2728 				 * want to fail this allocation rather than
2729 				 * trigger the out-of-memory killer and for
2730 				 * this we want __GFP_RETRY_MAYFAIL.
2731 				 */
2732 				gfp |= __GFP_RETRY_MAYFAIL;
2733 			}
2734 		} while (1);
2735 
2736 		if (!i ||
2737 		    sg->length >= max_segment ||
2738 		    page_to_pfn(page) != last_pfn + 1) {
2739 			if (i) {
2740 				sg_page_sizes |= sg->length;
2741 				sg = sg_next(sg);
2742 			}
2743 			st->nents++;
2744 			sg_set_page(sg, page, PAGE_SIZE, 0);
2745 		} else {
2746 			sg->length += PAGE_SIZE;
2747 		}
2748 		last_pfn = page_to_pfn(page);
2749 
2750 		/* Check that the i965g/gm workaround works. */
2751 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2752 	}
2753 	if (sg) { /* loop terminated early; short sg table */
2754 		sg_page_sizes |= sg->length;
2755 		sg_mark_end(sg);
2756 	}
2757 #ifdef __DragonFly__
2758 	VM_OBJECT_UNLOCK(mapping);
2759 #endif
2760 
2761 	/* Trim unused sg entries to avoid wasting memory. */
2762 	i915_sg_trim(st);
2763 
2764 	ret = i915_gem_gtt_prepare_pages(obj, st);
2765 	if (ret) {
2766 		/* DMA remapping failed? One possible cause is that
2767 		 * it could not reserve enough large entries, asking
2768 		 * for PAGE_SIZE chunks instead may be helpful.
2769 		 */
2770 		if (max_segment > PAGE_SIZE) {
2771 			for_each_sgt_page(page, sgt_iter, st)
2772 				put_page(page);
2773 			sg_free_table(st);
2774 
2775 			max_segment = PAGE_SIZE;
2776 			goto rebuild_st;
2777 		} else {
2778 			dev_warn(&dev_priv->drm.pdev->dev,
2779 				 "Failed to DMA remap %lu pages\n",
2780 				 page_count);
2781 			goto err_pages;
2782 		}
2783 	}
2784 
2785 	if (i915_gem_object_needs_bit17_swizzle(obj))
2786 		i915_gem_object_do_bit_17_swizzle(obj, st);
2787 
2788 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2789 
2790 	return 0;
2791 
2792 err_sg:
2793 	sg_mark_end(sg);
2794 err_pages:
2795 	for_each_sgt_page(page, sgt_iter, st)
2796 		put_page(page);
2797 #ifdef __DragonFly__
2798 	VM_OBJECT_UNLOCK(mapping);
2799 #endif
2800 	sg_free_table(st);
2801 	kfree(st);
2802 
2803 	/* shmemfs first checks if there is enough memory to allocate the page
2804 	 * and reports ENOSPC should there be insufficient, along with the usual
2805 	 * ENOMEM for a genuine allocation failure.
2806 	 *
2807 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2808 	 * space and so want to translate the error from shmemfs back to our
2809 	 * usual understanding of ENOMEM.
2810 	 */
2811 	if (ret == -ENOSPC)
2812 		ret = -ENOMEM;
2813 
2814 	return ret;
2815 }
2816 
2817 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2818 				 struct sg_table *pages,
2819 				 unsigned int sg_page_sizes)
2820 {
2821 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2822 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2823 	int i;
2824 
2825 	lockdep_assert_held(&obj->mm.lock);
2826 
2827 	obj->mm.get_page.sg_pos = pages->sgl;
2828 	obj->mm.get_page.sg_idx = 0;
2829 
2830 	obj->mm.pages = pages;
2831 
2832 	if (i915_gem_object_is_tiled(obj) &&
2833 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2834 		GEM_BUG_ON(obj->mm.quirked);
2835 		__i915_gem_object_pin_pages(obj);
2836 		obj->mm.quirked = true;
2837 	}
2838 
2839 	GEM_BUG_ON(!sg_page_sizes);
2840 	obj->mm.page_sizes.phys = sg_page_sizes;
2841 
2842 	/*
2843 	 * Calculate the supported page-sizes which fit into the given
2844 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2845 	 * to use opportunistically when later inserting into the GTT. For
2846 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2847 	 * 64K or 4K pages, although in practice this will depend on a number of
2848 	 * other factors.
2849 	 */
2850 	obj->mm.page_sizes.sg = 0;
2851 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2852 		if (obj->mm.page_sizes.phys & ~0u << i)
2853 			obj->mm.page_sizes.sg |= BIT(i);
2854 	}
2855 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2856 
2857 	lockmgr(&i915->mm.obj_lock, LK_EXCLUSIVE);
2858 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2859 	lockmgr(&i915->mm.obj_lock, LK_RELEASE);
2860 }
2861 
2862 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2863 {
2864 	int err;
2865 
2866 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2867 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2868 		return -EFAULT;
2869 	}
2870 
2871 	err = obj->ops->get_pages(obj);
2872 	GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2873 
2874 	return err;
2875 }
2876 
2877 /* Ensure that the associated pages are gathered from the backing storage
2878  * and pinned into our object. i915_gem_object_pin_pages() may be called
2879  * multiple times before they are released by a single call to
2880  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2881  * either as a result of memory pressure (reaping pages under the shrinker)
2882  * or as the object is itself released.
2883  */
2884 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2885 {
2886 	int err;
2887 
2888 	err = mutex_lock_interruptible(&obj->mm.lock);
2889 	if (err)
2890 		return err;
2891 
2892 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2893 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2894 
2895 		err = ____i915_gem_object_get_pages(obj);
2896 		if (err)
2897 			goto unlock;
2898 
2899 		smp_mb__before_atomic();
2900 	}
2901 	atomic_inc(&obj->mm.pages_pin_count);
2902 
2903 unlock:
2904 	mutex_unlock(&obj->mm.lock);
2905 	return err;
2906 }
2907 
2908 /* The 'mapping' part of i915_gem_object_pin_map() below */
2909 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2910 				 enum i915_map_type type)
2911 {
2912 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2913 	struct sg_table *sgt = obj->mm.pages;
2914 	struct sgt_iter sgt_iter;
2915 	struct page *page;
2916 	struct page *stack_pages[32];
2917 	struct page **pages = stack_pages;
2918 	unsigned long i = 0;
2919 	pgprot_t pgprot;
2920 	void *addr;
2921 
2922 	/* A single page can always be kmapped */
2923 	if (n_pages == 1 && type == I915_MAP_WB)
2924 		return kmap(sg_page(sgt->sgl));
2925 
2926 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2927 		/* Too big for stack -- allocate temporary array instead */
2928 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2929 		if (!pages)
2930 			return NULL;
2931 	}
2932 
2933 	for_each_sgt_page(page, sgt_iter, sgt)
2934 		pages[i++] = page;
2935 
2936 	/* Check that we have the expected number of pages */
2937 	GEM_BUG_ON(i != n_pages);
2938 
2939 	switch (type) {
2940 	default:
2941 		MISSING_CASE(type);
2942 		/* fallthrough to use PAGE_KERNEL anyway */
2943 	case I915_MAP_WB:
2944 		pgprot = PAGE_KERNEL;
2945 		break;
2946 	case I915_MAP_WC:
2947 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2948 		break;
2949 	}
2950 	addr = vmap(pages, n_pages, 0, pgprot);
2951 
2952 	if (pages != stack_pages)
2953 		kvfree(pages);
2954 
2955 	return addr;
2956 }
2957 
2958 /* get, pin, and map the pages of the object into kernel space */
2959 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2960 			      enum i915_map_type type)
2961 {
2962 	enum i915_map_type has_type;
2963 	bool pinned;
2964 	void *ptr;
2965 	int ret;
2966 
2967 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2968 
2969 	ret = mutex_lock_interruptible(&obj->mm.lock);
2970 	if (ret)
2971 		return ERR_PTR(ret);
2972 
2973 	pinned = !(type & I915_MAP_OVERRIDE);
2974 	type &= ~I915_MAP_OVERRIDE;
2975 
2976 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2977 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2978 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2979 
2980 			ret = ____i915_gem_object_get_pages(obj);
2981 			if (ret)
2982 				goto err_unlock;
2983 
2984 			smp_mb__before_atomic();
2985 		}
2986 		atomic_inc(&obj->mm.pages_pin_count);
2987 		pinned = false;
2988 	}
2989 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2990 
2991 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2992 	if (ptr && has_type != type) {
2993 		if (pinned) {
2994 			ret = -EBUSY;
2995 			goto err_unpin;
2996 		}
2997 
2998 		if (is_vmalloc_addr(ptr))
2999 			vunmap(ptr);
3000 		else
3001 			kunmap(kmap_to_page(ptr));
3002 
3003 		ptr = obj->mm.mapping = NULL;
3004 	}
3005 
3006 	if (!ptr) {
3007 		ptr = i915_gem_object_map(obj, type);
3008 		if (!ptr) {
3009 			ret = -ENOMEM;
3010 			goto err_unpin;
3011 		}
3012 
3013 		obj->mm.mapping = page_pack_bits(ptr, type);
3014 	}
3015 
3016 out_unlock:
3017 	mutex_unlock(&obj->mm.lock);
3018 	return ptr;
3019 
3020 err_unpin:
3021 	atomic_dec(&obj->mm.pages_pin_count);
3022 err_unlock:
3023 	ptr = ERR_PTR(ret);
3024 	goto out_unlock;
3025 }
3026 
3027 static int
3028 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
3029 			   const struct drm_i915_gem_pwrite *arg)
3030 {
3031 #ifndef __DragonFly__
3032 	struct address_space *mapping = obj->base.filp->f_mapping;
3033 #endif
3034 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
3035 	u64 remain, offset;
3036 	unsigned int pg;
3037 
3038 	/* Before we instantiate/pin the backing store for our use, we
3039 	 * can prepopulate the shmemfs filp efficiently using a write into
3040 	 * the pagecache. We avoid the penalty of instantiating all the
3041 	 * pages, important if the user is just writing to a few and never
3042 	 * uses the object on the GPU, and using a direct write into shmemfs
3043 	 * allows it to avoid the cost of retrieving a page (either swapin
3044 	 * or clearing-before-use) before it is overwritten.
3045 	 */
3046 	if (i915_gem_object_has_pages(obj))
3047 		return -ENODEV;
3048 
3049 	if (obj->mm.madv != I915_MADV_WILLNEED)
3050 		return -EFAULT;
3051 
3052 	/* Before the pages are instantiated the object is treated as being
3053 	 * in the CPU domain. The pages will be clflushed as required before
3054 	 * use, and we can freely write into the pages directly. If userspace
3055 	 * races pwrite with any other operation; corruption will ensue -
3056 	 * that is userspace's prerogative!
3057 	 */
3058 
3059 	remain = arg->size;
3060 	offset = arg->offset;
3061 	pg = offset_in_page(offset);
3062 
3063 	do {
3064 		unsigned int len, unwritten;
3065 		struct page *page;
3066 		void *data, *vaddr;
3067 		int err;
3068 
3069 		len = PAGE_SIZE - pg;
3070 		if (len > remain)
3071 			len = remain;
3072 
3073 #ifndef __DragonFly__
3074 		err = pagecache_write_begin(obj->base.filp, mapping,
3075 #else
3076 		err = pagecache_write_begin(obj->base.filp, NULL,
3077 #endif
3078 					    offset, len, 0,
3079 					    &page, &data);
3080 		if (err < 0)
3081 			return err;
3082 
3083 		vaddr = kmap(page);
3084 		unwritten = copy_from_user(vaddr + pg, user_data, len);
3085 		kunmap(page);
3086 
3087 #ifndef __DragonFly__
3088 		err = pagecache_write_end(obj->base.filp, mapping,
3089 #else
3090 		err = pagecache_write_end(obj->base.filp, NULL,
3091 #endif
3092 					  offset, len, len - unwritten,
3093 					  page, data);
3094 		if (err < 0)
3095 			return err;
3096 
3097 		if (unwritten)
3098 			return -EFAULT;
3099 
3100 		remain -= len;
3101 		user_data += len;
3102 		offset += len;
3103 		pg = 0;
3104 	} while (remain);
3105 
3106 	return 0;
3107 }
3108 
3109 static bool ban_context(const struct i915_gem_context *ctx,
3110 			unsigned int score)
3111 {
3112 	return (i915_gem_context_is_bannable(ctx) &&
3113 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
3114 }
3115 
3116 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3117 {
3118 	unsigned int score;
3119 	bool banned;
3120 
3121 	atomic_inc(&ctx->guilty_count);
3122 
3123 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3124 	banned = ban_context(ctx, score);
3125 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
3126 			 ctx->name, score, yesno(banned));
3127 	if (!banned)
3128 		return;
3129 
3130 	i915_gem_context_set_banned(ctx);
3131 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
3132 		atomic_inc(&ctx->file_priv->context_bans);
3133 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
3134 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
3135 	}
3136 }
3137 
3138 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3139 {
3140 	atomic_inc(&ctx->active_count);
3141 }
3142 
3143 struct drm_i915_gem_request *
3144 i915_gem_find_active_request(struct intel_engine_cs *engine)
3145 {
3146 	struct drm_i915_gem_request *request, *active = NULL;
3147 	unsigned long flags;
3148 
3149 	/* We are called by the error capture and reset at a random
3150 	 * point in time. In particular, note that neither is crucially
3151 	 * ordered with an interrupt. After a hang, the GPU is dead and we
3152 	 * assume that no more writes can happen (we waited long enough for
3153 	 * all writes that were in transaction to be flushed) - adding an
3154 	 * extra delay for a recent interrupt is pointless. Hence, we do
3155 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3156 	 */
3157 	spin_lock_irqsave(&engine->timeline->lock, flags);
3158 	list_for_each_entry(request, &engine->timeline->requests, link) {
3159 		if (__i915_gem_request_completed(request,
3160 						 request->global_seqno))
3161 			continue;
3162 
3163 		GEM_BUG_ON(request->engine != engine);
3164 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
3165 				    &request->fence.flags));
3166 
3167 		active = request;
3168 		break;
3169 	}
3170 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3171 
3172 	return active;
3173 }
3174 
3175 static bool engine_stalled(struct intel_engine_cs *engine)
3176 {
3177 	if (!engine->hangcheck.stalled)
3178 		return false;
3179 
3180 	/* Check for possible seqno movement after hang declaration */
3181 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
3182 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
3183 		return false;
3184 	}
3185 
3186 	return true;
3187 }
3188 
3189 /*
3190  * Ensure irq handler finishes, and not run again.
3191  * Also return the active request so that we only search for it once.
3192  */
3193 struct drm_i915_gem_request *
3194 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3195 {
3196 	struct drm_i915_gem_request *request = NULL;
3197 
3198 	/*
3199 	 * During the reset sequence, we must prevent the engine from
3200 	 * entering RC6. As the context state is undefined until we restart
3201 	 * the engine, if it does enter RC6 during the reset, the state
3202 	 * written to the powercontext is undefined and so we may lose
3203 	 * GPU state upon resume, i.e. fail to restart after a reset.
3204 	 */
3205 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3206 
3207 	/*
3208 	 * Prevent the signaler thread from updating the request
3209 	 * state (by calling dma_fence_signal) as we are processing
3210 	 * the reset. The write from the GPU of the seqno is
3211 	 * asynchronous and the signaler thread may see a different
3212 	 * value to us and declare the request complete, even though
3213 	 * the reset routine have picked that request as the active
3214 	 * (incomplete) request. This conflict is not handled
3215 	 * gracefully!
3216 	 */
3217 	kthread_park(engine->breadcrumbs.signaler);
3218 
3219 	/*
3220 	 * Prevent request submission to the hardware until we have
3221 	 * completed the reset in i915_gem_reset_finish(). If a request
3222 	 * is completed by one engine, it may then queue a request
3223 	 * to a second via its engine->irq_tasklet *just* as we are
3224 	 * calling engine->init_hw() and also writing the ELSP.
3225 	 * Turning off the engine->irq_tasklet until the reset is over
3226 	 * prevents the race.
3227 	 */
3228 	tasklet_kill(&engine->execlists.irq_tasklet);
3229 	tasklet_disable(&engine->execlists.irq_tasklet);
3230 
3231 	if (engine->irq_seqno_barrier)
3232 		engine->irq_seqno_barrier(engine);
3233 
3234 	request = i915_gem_find_active_request(engine);
3235 	if (request && request->fence.error == -EIO)
3236 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3237 
3238 	return request;
3239 }
3240 
3241 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3242 {
3243 	struct intel_engine_cs *engine;
3244 	struct drm_i915_gem_request *request;
3245 	enum intel_engine_id id;
3246 	int err = 0;
3247 
3248 	for_each_engine(engine, dev_priv, id) {
3249 		request = i915_gem_reset_prepare_engine(engine);
3250 		if (IS_ERR(request)) {
3251 			err = PTR_ERR(request);
3252 			continue;
3253 		}
3254 
3255 		engine->hangcheck.active_request = request;
3256 	}
3257 
3258 	i915_gem_revoke_fences(dev_priv);
3259 
3260 	return err;
3261 }
3262 
3263 static void skip_request(struct drm_i915_gem_request *request)
3264 {
3265 	void *vaddr = request->ring->vaddr;
3266 	u32 head;
3267 
3268 	/* As this request likely depends on state from the lost
3269 	 * context, clear out all the user operations leaving the
3270 	 * breadcrumb at the end (so we get the fence notifications).
3271 	 */
3272 	head = request->head;
3273 	if (request->postfix < head) {
3274 		memset(vaddr + head, 0, request->ring->size - head);
3275 		head = 0;
3276 	}
3277 	memset(vaddr + head, 0, request->postfix - head);
3278 
3279 	dma_fence_set_error(&request->fence, -EIO);
3280 }
3281 
3282 static void engine_skip_context(struct drm_i915_gem_request *request)
3283 {
3284 	struct intel_engine_cs *engine = request->engine;
3285 	struct i915_gem_context *hung_ctx = request->ctx;
3286 	struct intel_timeline *timeline;
3287 	unsigned long flags;
3288 
3289 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3290 
3291 	spin_lock_irqsave(&engine->timeline->lock, flags);
3292 	lockmgr(&timeline->lock, LK_EXCLUSIVE);
3293 
3294 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3295 		if (request->ctx == hung_ctx)
3296 			skip_request(request);
3297 
3298 	list_for_each_entry(request, &timeline->requests, link)
3299 		skip_request(request);
3300 
3301 	lockmgr(&timeline->lock, LK_RELEASE);
3302 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3303 }
3304 
3305 /* Returns the request if it was guilty of the hang */
3306 static struct drm_i915_gem_request *
3307 i915_gem_reset_request(struct intel_engine_cs *engine,
3308 		       struct drm_i915_gem_request *request)
3309 {
3310 	/* The guilty request will get skipped on a hung engine.
3311 	 *
3312 	 * Users of client default contexts do not rely on logical
3313 	 * state preserved between batches so it is safe to execute
3314 	 * queued requests following the hang. Non default contexts
3315 	 * rely on preserved state, so skipping a batch loses the
3316 	 * evolution of the state and it needs to be considered corrupted.
3317 	 * Executing more queued batches on top of corrupted state is
3318 	 * risky. But we take the risk by trying to advance through
3319 	 * the queued requests in order to make the client behaviour
3320 	 * more predictable around resets, by not throwing away random
3321 	 * amount of batches it has prepared for execution. Sophisticated
3322 	 * clients can use gem_reset_stats_ioctl and dma fence status
3323 	 * (exported via sync_file info ioctl on explicit fences) to observe
3324 	 * when it loses the context state and should rebuild accordingly.
3325 	 *
3326 	 * The context ban, and ultimately the client ban, mechanism are safety
3327 	 * valves if client submission ends up resulting in nothing more than
3328 	 * subsequent hangs.
3329 	 */
3330 
3331 	if (engine_stalled(engine)) {
3332 		i915_gem_context_mark_guilty(request->ctx);
3333 		skip_request(request);
3334 
3335 		/* If this context is now banned, skip all pending requests. */
3336 		if (i915_gem_context_is_banned(request->ctx))
3337 			engine_skip_context(request);
3338 	} else {
3339 		/*
3340 		 * Since this is not the hung engine, it may have advanced
3341 		 * since the hang declaration. Double check by refinding
3342 		 * the active request at the time of the reset.
3343 		 */
3344 		request = i915_gem_find_active_request(engine);
3345 		if (request) {
3346 			i915_gem_context_mark_innocent(request->ctx);
3347 			dma_fence_set_error(&request->fence, -EAGAIN);
3348 
3349 			/* Rewind the engine to replay the incomplete rq */
3350 			spin_lock_irq(&engine->timeline->lock);
3351 			request = list_prev_entry(request, link);
3352 			if (&request->link == &engine->timeline->requests)
3353 				request = NULL;
3354 			spin_unlock_irq(&engine->timeline->lock);
3355 		}
3356 	}
3357 
3358 	return request;
3359 }
3360 
3361 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3362 			   struct drm_i915_gem_request *request)
3363 {
3364 	engine->irq_posted = 0;
3365 
3366 	if (request)
3367 		request = i915_gem_reset_request(engine, request);
3368 
3369 	if (request) {
3370 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3371 				 engine->name, request->global_seqno);
3372 	}
3373 
3374 	/* Setup the CS to resume from the breadcrumb of the hung request */
3375 	engine->reset_hw(engine, request);
3376 }
3377 
3378 void i915_gem_reset(struct drm_i915_private *dev_priv)
3379 {
3380 	struct intel_engine_cs *engine;
3381 	enum intel_engine_id id;
3382 
3383 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3384 
3385 	i915_gem_retire_requests(dev_priv);
3386 
3387 	for_each_engine(engine, dev_priv, id) {
3388 		struct i915_gem_context *ctx;
3389 
3390 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3391 		ctx = fetch_and_zero(&engine->last_retired_context);
3392 		if (ctx)
3393 			engine->context_unpin(engine, ctx);
3394 	}
3395 
3396 	i915_gem_restore_fences(dev_priv);
3397 
3398 	if (dev_priv->gt.awake) {
3399 		intel_sanitize_gt_powersave(dev_priv);
3400 		intel_enable_gt_powersave(dev_priv);
3401 		if (INTEL_GEN(dev_priv) >= 6)
3402 			gen6_rps_busy(dev_priv);
3403 	}
3404 }
3405 
3406 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3407 {
3408 	tasklet_enable(&engine->execlists.irq_tasklet);
3409 	kthread_unpark(engine->breadcrumbs.signaler);
3410 
3411 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3412 }
3413 
3414 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3415 {
3416 	struct intel_engine_cs *engine;
3417 	enum intel_engine_id id;
3418 
3419 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3420 
3421 	for_each_engine(engine, dev_priv, id) {
3422 		engine->hangcheck.active_request = NULL;
3423 		i915_gem_reset_finish_engine(engine);
3424 	}
3425 }
3426 
3427 static void nop_submit_request(struct drm_i915_gem_request *request)
3428 {
3429 	dma_fence_set_error(&request->fence, -EIO);
3430 
3431 	i915_gem_request_submit(request);
3432 }
3433 
3434 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3435 {
3436 	unsigned long flags;
3437 
3438 	dma_fence_set_error(&request->fence, -EIO);
3439 
3440 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3441 	__i915_gem_request_submit(request);
3442 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3443 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3444 }
3445 
3446 void i915_gem_set_wedged(struct drm_i915_private *i915)
3447 {
3448 	struct intel_engine_cs *engine;
3449 	enum intel_engine_id id;
3450 
3451 	/*
3452 	 * First, stop submission to hw, but do not yet complete requests by
3453 	 * rolling the global seqno forward (since this would complete requests
3454 	 * for which we haven't set the fence error to EIO yet).
3455 	 */
3456 	for_each_engine(engine, i915, id)
3457 		engine->submit_request = nop_submit_request;
3458 
3459 	/*
3460 	 * Make sure no one is running the old callback before we proceed with
3461 	 * cancelling requests and resetting the completion tracking. Otherwise
3462 	 * we might submit a request to the hardware which never completes.
3463 	 */
3464 	synchronize_rcu();
3465 
3466 	for_each_engine(engine, i915, id) {
3467 		/* Mark all executing requests as skipped */
3468 		engine->cancel_requests(engine);
3469 
3470 		/*
3471 		 * Only once we've force-cancelled all in-flight requests can we
3472 		 * start to complete all requests.
3473 		 */
3474 		engine->submit_request = nop_complete_submit_request;
3475 	}
3476 
3477 	/*
3478 	 * Make sure no request can slip through without getting completed by
3479 	 * either this call here to intel_engine_init_global_seqno, or the one
3480 	 * in nop_complete_submit_request.
3481 	 */
3482 	synchronize_rcu();
3483 
3484 	for_each_engine(engine, i915, id) {
3485 		unsigned long flags;
3486 
3487 		/* Mark all pending requests as complete so that any concurrent
3488 		 * (lockless) lookup doesn't try and wait upon the request as we
3489 		 * reset it.
3490 		 */
3491 		spin_lock_irqsave(&engine->timeline->lock, flags);
3492 		intel_engine_init_global_seqno(engine,
3493 					       intel_engine_last_submit(engine));
3494 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3495 	}
3496 
3497 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3498 	wake_up_all(&i915->gpu_error.reset_queue);
3499 }
3500 
3501 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3502 {
3503 	struct i915_gem_timeline *tl;
3504 	int i;
3505 
3506 	lockdep_assert_held(&i915->drm.struct_mutex);
3507 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3508 		return true;
3509 
3510 	/* Before unwedging, make sure that all pending operations
3511 	 * are flushed and errored out - we may have requests waiting upon
3512 	 * third party fences. We marked all inflight requests as EIO, and
3513 	 * every execbuf since returned EIO, for consistency we want all
3514 	 * the currently pending requests to also be marked as EIO, which
3515 	 * is done inside our nop_submit_request - and so we must wait.
3516 	 *
3517 	 * No more can be submitted until we reset the wedged bit.
3518 	 */
3519 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3520 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3521 			struct drm_i915_gem_request *rq;
3522 
3523 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3524 						  &i915->drm.struct_mutex);
3525 			if (!rq)
3526 				continue;
3527 
3528 			/* We can't use our normal waiter as we want to
3529 			 * avoid recursively trying to handle the current
3530 			 * reset. The basic dma_fence_default_wait() installs
3531 			 * a callback for dma_fence_signal(), which is
3532 			 * triggered by our nop handler (indirectly, the
3533 			 * callback enables the signaler thread which is
3534 			 * woken by the nop_submit_request() advancing the seqno
3535 			 * and when the seqno passes the fence, the signaler
3536 			 * then signals the fence waking us up).
3537 			 */
3538 			if (dma_fence_default_wait(&rq->fence, true,
3539 						   MAX_SCHEDULE_TIMEOUT) < 0)
3540 				return false;
3541 		}
3542 	}
3543 
3544 	/* Undo nop_submit_request. We prevent all new i915 requests from
3545 	 * being queued (by disallowing execbuf whilst wedged) so having
3546 	 * waited for all active requests above, we know the system is idle
3547 	 * and do not have to worry about a thread being inside
3548 	 * engine->submit_request() as we swap over. So unlike installing
3549 	 * the nop_submit_request on reset, we can do this from normal
3550 	 * context and do not require stop_machine().
3551 	 */
3552 	intel_engines_reset_default_submission(i915);
3553 	i915_gem_contexts_lost(i915);
3554 
3555 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3556 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3557 
3558 	return true;
3559 }
3560 
3561 static void
3562 i915_gem_retire_work_handler(struct work_struct *work)
3563 {
3564 	struct drm_i915_private *dev_priv =
3565 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3566 	struct drm_device *dev = &dev_priv->drm;
3567 
3568 	/* Come back later if the device is busy... */
3569 	if (mutex_trylock(&dev->struct_mutex)) {
3570 		i915_gem_retire_requests(dev_priv);
3571 		mutex_unlock(&dev->struct_mutex);
3572 	}
3573 
3574 	/* Keep the retire handler running until we are finally idle.
3575 	 * We do not need to do this test under locking as in the worst-case
3576 	 * we queue the retire worker once too often.
3577 	 */
3578 	if (READ_ONCE(dev_priv->gt.awake)) {
3579 		i915_queue_hangcheck(dev_priv);
3580 		queue_delayed_work(dev_priv->wq,
3581 				   &dev_priv->gt.retire_work,
3582 				   round_jiffies_up_relative(HZ));
3583 	}
3584 }
3585 
3586 static void
3587 i915_gem_idle_work_handler(struct work_struct *work)
3588 {
3589 	struct drm_i915_private *dev_priv =
3590 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3591 	struct drm_device *dev = &dev_priv->drm;
3592 	bool rearm_hangcheck;
3593 
3594 	if (!READ_ONCE(dev_priv->gt.awake))
3595 		return;
3596 
3597 	/*
3598 	 * Wait for last execlists context complete, but bail out in case a
3599 	 * new request is submitted.
3600 	 */
3601 	wait_for(intel_engines_are_idle(dev_priv), 10);
3602 	if (READ_ONCE(dev_priv->gt.active_requests))
3603 		return;
3604 
3605 	rearm_hangcheck =
3606 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3607 
3608 	if (!mutex_trylock(&dev->struct_mutex)) {
3609 		/* Currently busy, come back later */
3610 		mod_delayed_work(dev_priv->wq,
3611 				 &dev_priv->gt.idle_work,
3612 				 msecs_to_jiffies(50));
3613 		goto out_rearm;
3614 	}
3615 
3616 	/*
3617 	 * New request retired after this work handler started, extend active
3618 	 * period until next instance of the work.
3619 	 */
3620 	if (work_pending(work))
3621 		goto out_unlock;
3622 
3623 	if (dev_priv->gt.active_requests)
3624 		goto out_unlock;
3625 
3626 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3627 		DRM_ERROR("Timeout waiting for engines to idle\n");
3628 
3629 	intel_engines_mark_idle(dev_priv);
3630 	i915_gem_timelines_mark_idle(dev_priv);
3631 
3632 	GEM_BUG_ON(!dev_priv->gt.awake);
3633 	dev_priv->gt.awake = false;
3634 	rearm_hangcheck = false;
3635 
3636 	if (INTEL_GEN(dev_priv) >= 6)
3637 		gen6_rps_idle(dev_priv);
3638 	intel_runtime_pm_put(dev_priv);
3639 out_unlock:
3640 	mutex_unlock(&dev->struct_mutex);
3641 
3642 out_rearm:
3643 	if (rearm_hangcheck) {
3644 		GEM_BUG_ON(!dev_priv->gt.awake);
3645 		i915_queue_hangcheck(dev_priv);
3646 	}
3647 }
3648 
3649 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3650 {
3651 	struct drm_i915_private *i915 = to_i915(gem->dev);
3652 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3653 	struct drm_i915_file_private *fpriv = file->driver_priv;
3654 	struct i915_lut_handle *lut, *ln;
3655 
3656 	mutex_lock(&i915->drm.struct_mutex);
3657 
3658 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3659 		struct i915_gem_context *ctx = lut->ctx;
3660 		struct i915_vma *vma;
3661 
3662 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3663 		if (ctx->file_priv != fpriv)
3664 			continue;
3665 
3666 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3667 		GEM_BUG_ON(vma->obj != obj);
3668 
3669 		/* We allow the process to have multiple handles to the same
3670 		 * vma, in the same fd namespace, by virtue of flink/open.
3671 		 */
3672 		GEM_BUG_ON(!vma->open_count);
3673 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3674 			i915_vma_close(vma);
3675 
3676 		list_del(&lut->obj_link);
3677 		list_del(&lut->ctx_link);
3678 
3679 		kmem_cache_free(i915->luts, lut);
3680 		__i915_gem_object_release_unless_active(obj);
3681 	}
3682 
3683 	mutex_unlock(&i915->drm.struct_mutex);
3684 }
3685 
3686 static unsigned long to_wait_timeout(s64 timeout_ns)
3687 {
3688 	if (timeout_ns < 0)
3689 		return MAX_SCHEDULE_TIMEOUT;
3690 
3691 	if (timeout_ns == 0)
3692 		return 0;
3693 
3694 	return nsecs_to_jiffies_timeout(timeout_ns);
3695 }
3696 
3697 /**
3698  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3699  * @dev: drm device pointer
3700  * @data: ioctl data blob
3701  * @file: drm file pointer
3702  *
3703  * Returns 0 if successful, else an error is returned with the remaining time in
3704  * the timeout parameter.
3705  *  -ETIME: object is still busy after timeout
3706  *  -ERESTARTSYS: signal interrupted the wait
3707  *  -ENONENT: object doesn't exist
3708  * Also possible, but rare:
3709  *  -EAGAIN: incomplete, restart syscall
3710  *  -ENOMEM: damn
3711  *  -ENODEV: Internal IRQ fail
3712  *  -E?: The add request failed
3713  *
3714  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3715  * non-zero timeout parameter the wait ioctl will wait for the given number of
3716  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3717  * without holding struct_mutex the object may become re-busied before this
3718  * function completes. A similar but shorter * race condition exists in the busy
3719  * ioctl
3720  */
3721 int
3722 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3723 {
3724 	struct drm_i915_gem_wait *args = data;
3725 	struct drm_i915_gem_object *obj;
3726 	ktime_t start;
3727 	long ret;
3728 
3729 	if (args->flags != 0)
3730 		return -EINVAL;
3731 
3732 	obj = i915_gem_object_lookup(file, args->bo_handle);
3733 	if (!obj)
3734 		return -ENOENT;
3735 
3736 	start = ktime_get();
3737 
3738 	ret = i915_gem_object_wait(obj,
3739 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3740 				   to_wait_timeout(args->timeout_ns),
3741 				   to_rps_client(file));
3742 
3743 	if (args->timeout_ns > 0) {
3744 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3745 		if (args->timeout_ns < 0)
3746 			args->timeout_ns = 0;
3747 
3748 		/*
3749 		 * Apparently ktime isn't accurate enough and occasionally has a
3750 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3751 		 * things up to make the test happy. We allow up to 1 jiffy.
3752 		 *
3753 		 * This is a regression from the timespec->ktime conversion.
3754 		 */
3755 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3756 			args->timeout_ns = 0;
3757 
3758 		/*
3759 		 * Apparently ktime isn't accurate enough and occasionally has a
3760 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3761 		 * things up to make the test happy. We allow up to 1 jiffy.
3762 		 *
3763 		 * This is a regression from the timespec->ktime conversion.
3764 		 */
3765 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3766 			args->timeout_ns = 0;
3767 
3768 		/* Asked to wait beyond the jiffie/scheduler precision? */
3769 		if (ret == -ETIME && args->timeout_ns)
3770 			ret = -EAGAIN;
3771 	}
3772 
3773 	i915_gem_object_put(obj);
3774 	return ret;
3775 }
3776 
3777 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3778 {
3779 	int ret, i;
3780 
3781 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3782 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3783 		if (ret)
3784 			return ret;
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 static int wait_for_engines(struct drm_i915_private *i915)
3791 {
3792 	if (wait_for(intel_engines_are_idle(i915), 50)) {
3793 		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3794 		i915_gem_set_wedged(i915);
3795 		return -EIO;
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3802 {
3803 	int ret;
3804 
3805 	/* If the device is asleep, we have no requests outstanding */
3806 	if (!READ_ONCE(i915->gt.awake))
3807 		return 0;
3808 
3809 	if (flags & I915_WAIT_LOCKED) {
3810 		struct i915_gem_timeline *tl;
3811 
3812 		lockdep_assert_held(&i915->drm.struct_mutex);
3813 
3814 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3815 			ret = wait_for_timeline(tl, flags);
3816 			if (ret)
3817 				return ret;
3818 		}
3819 
3820 		i915_gem_retire_requests(i915);
3821 		GEM_BUG_ON(i915->gt.active_requests);
3822 
3823 		ret = wait_for_engines(i915);
3824 	} else {
3825 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3826 	}
3827 
3828 	return ret;
3829 }
3830 
3831 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3832 {
3833 	/*
3834 	 * We manually flush the CPU domain so that we can override and
3835 	 * force the flush for the display, and perform it asyncrhonously.
3836 	 */
3837 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3838 	if (obj->cache_dirty)
3839 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3840 	obj->base.write_domain = 0;
3841 }
3842 
3843 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3844 {
3845 	if (!READ_ONCE(obj->pin_global))
3846 		return;
3847 
3848 	mutex_lock(&obj->base.dev->struct_mutex);
3849 	__i915_gem_object_flush_for_display(obj);
3850 	mutex_unlock(&obj->base.dev->struct_mutex);
3851 }
3852 
3853 /**
3854  * Moves a single object to the WC read, and possibly write domain.
3855  * @obj: object to act on
3856  * @write: ask for write access or read only
3857  *
3858  * This function returns when the move is complete, including waiting on
3859  * flushes to occur.
3860  */
3861 int
3862 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3863 {
3864 	int ret;
3865 
3866 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3867 
3868 	ret = i915_gem_object_wait(obj,
3869 				   I915_WAIT_INTERRUPTIBLE |
3870 				   I915_WAIT_LOCKED |
3871 				   (write ? I915_WAIT_ALL : 0),
3872 				   MAX_SCHEDULE_TIMEOUT,
3873 				   NULL);
3874 	if (ret)
3875 		return ret;
3876 
3877 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3878 		return 0;
3879 
3880 	/* Flush and acquire obj->pages so that we are coherent through
3881 	 * direct access in memory with previous cached writes through
3882 	 * shmemfs and that our cache domain tracking remains valid.
3883 	 * For example, if the obj->filp was moved to swap without us
3884 	 * being notified and releasing the pages, we would mistakenly
3885 	 * continue to assume that the obj remained out of the CPU cached
3886 	 * domain.
3887 	 */
3888 	ret = i915_gem_object_pin_pages(obj);
3889 	if (ret)
3890 		return ret;
3891 
3892 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3893 
3894 	/* Serialise direct access to this object with the barriers for
3895 	 * coherent writes from the GPU, by effectively invalidating the
3896 	 * WC domain upon first access.
3897 	 */
3898 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3899 		mb();
3900 
3901 	/* It should now be out of any other write domains, and we can update
3902 	 * the domain values for our changes.
3903 	 */
3904 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3905 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3906 	if (write) {
3907 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3908 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3909 		obj->mm.dirty = true;
3910 	}
3911 
3912 	i915_gem_object_unpin_pages(obj);
3913 	return 0;
3914 }
3915 
3916 /**
3917  * Moves a single object to the GTT read, and possibly write domain.
3918  * @obj: object to act on
3919  * @write: ask for write access or read only
3920  *
3921  * This function returns when the move is complete, including waiting on
3922  * flushes to occur.
3923  */
3924 int
3925 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3926 {
3927 	int ret;
3928 
3929 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3930 
3931 	ret = i915_gem_object_wait(obj,
3932 				   I915_WAIT_INTERRUPTIBLE |
3933 				   I915_WAIT_LOCKED |
3934 				   (write ? I915_WAIT_ALL : 0),
3935 				   MAX_SCHEDULE_TIMEOUT,
3936 				   NULL);
3937 	if (ret)
3938 		return ret;
3939 
3940 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3941 		return 0;
3942 
3943 	/* Flush and acquire obj->pages so that we are coherent through
3944 	 * direct access in memory with previous cached writes through
3945 	 * shmemfs and that our cache domain tracking remains valid.
3946 	 * For example, if the obj->filp was moved to swap without us
3947 	 * being notified and releasing the pages, we would mistakenly
3948 	 * continue to assume that the obj remained out of the CPU cached
3949 	 * domain.
3950 	 */
3951 	ret = i915_gem_object_pin_pages(obj);
3952 	if (ret)
3953 		return ret;
3954 
3955 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3956 
3957 	/* Serialise direct access to this object with the barriers for
3958 	 * coherent writes from the GPU, by effectively invalidating the
3959 	 * GTT domain upon first access.
3960 	 */
3961 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3962 		mb();
3963 
3964 	/* It should now be out of any other write domains, and we can update
3965 	 * the domain values for our changes.
3966 	 */
3967 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3968 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3969 	if (write) {
3970 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3971 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3972 		obj->mm.dirty = true;
3973 	}
3974 
3975 	i915_gem_object_unpin_pages(obj);
3976 	return 0;
3977 }
3978 
3979 /**
3980  * Changes the cache-level of an object across all VMA.
3981  * @obj: object to act on
3982  * @cache_level: new cache level to set for the object
3983  *
3984  * After this function returns, the object will be in the new cache-level
3985  * across all GTT and the contents of the backing storage will be coherent,
3986  * with respect to the new cache-level. In order to keep the backing storage
3987  * coherent for all users, we only allow a single cache level to be set
3988  * globally on the object and prevent it from being changed whilst the
3989  * hardware is reading from the object. That is if the object is currently
3990  * on the scanout it will be set to uncached (or equivalent display
3991  * cache coherency) and all non-MOCS GPU access will also be uncached so
3992  * that all direct access to the scanout remains coherent.
3993  */
3994 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3995 				    enum i915_cache_level cache_level)
3996 {
3997 	struct i915_vma *vma;
3998 	int ret;
3999 
4000 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4001 
4002 	if (obj->cache_level == cache_level)
4003 		return 0;
4004 
4005 	/* Inspect the list of currently bound VMA and unbind any that would
4006 	 * be invalid given the new cache-level. This is principally to
4007 	 * catch the issue of the CS prefetch crossing page boundaries and
4008 	 * reading an invalid PTE on older architectures.
4009 	 */
4010 restart:
4011 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4012 		if (!drm_mm_node_allocated(&vma->node))
4013 			continue;
4014 
4015 		if (i915_vma_is_pinned(vma)) {
4016 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4017 			return -EBUSY;
4018 		}
4019 
4020 		if (i915_gem_valid_gtt_space(vma, cache_level))
4021 			continue;
4022 
4023 		ret = i915_vma_unbind(vma);
4024 		if (ret)
4025 			return ret;
4026 
4027 		/* As unbinding may affect other elements in the
4028 		 * obj->vma_list (due to side-effects from retiring
4029 		 * an active vma), play safe and restart the iterator.
4030 		 */
4031 		goto restart;
4032 	}
4033 
4034 	/* We can reuse the existing drm_mm nodes but need to change the
4035 	 * cache-level on the PTE. We could simply unbind them all and
4036 	 * rebind with the correct cache-level on next use. However since
4037 	 * we already have a valid slot, dma mapping, pages etc, we may as
4038 	 * rewrite the PTE in the belief that doing so tramples upon less
4039 	 * state and so involves less work.
4040 	 */
4041 	if (obj->bind_count) {
4042 		/* Before we change the PTE, the GPU must not be accessing it.
4043 		 * If we wait upon the object, we know that all the bound
4044 		 * VMA are no longer active.
4045 		 */
4046 		ret = i915_gem_object_wait(obj,
4047 					   I915_WAIT_INTERRUPTIBLE |
4048 					   I915_WAIT_LOCKED |
4049 					   I915_WAIT_ALL,
4050 					   MAX_SCHEDULE_TIMEOUT,
4051 					   NULL);
4052 		if (ret)
4053 			return ret;
4054 
4055 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4056 		    cache_level != I915_CACHE_NONE) {
4057 			/* Access to snoopable pages through the GTT is
4058 			 * incoherent and on some machines causes a hard
4059 			 * lockup. Relinquish the CPU mmaping to force
4060 			 * userspace to refault in the pages and we can
4061 			 * then double check if the GTT mapping is still
4062 			 * valid for that pointer access.
4063 			 */
4064 			i915_gem_release_mmap(obj);
4065 
4066 			/* As we no longer need a fence for GTT access,
4067 			 * we can relinquish it now (and so prevent having
4068 			 * to steal a fence from someone else on the next
4069 			 * fence request). Note GPU activity would have
4070 			 * dropped the fence as all snoopable access is
4071 			 * supposed to be linear.
4072 			 */
4073 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
4074 				ret = i915_vma_put_fence(vma);
4075 				if (ret)
4076 					return ret;
4077 			}
4078 		} else {
4079 			/* We either have incoherent backing store and
4080 			 * so no GTT access or the architecture is fully
4081 			 * coherent. In such cases, existing GTT mmaps
4082 			 * ignore the cache bit in the PTE and we can
4083 			 * rewrite it without confusing the GPU or having
4084 			 * to force userspace to fault back in its mmaps.
4085 			 */
4086 		}
4087 
4088 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4089 			if (!drm_mm_node_allocated(&vma->node))
4090 				continue;
4091 
4092 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4093 			if (ret)
4094 				return ret;
4095 		}
4096 	}
4097 
4098 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4099 		vma->node.color = cache_level;
4100 	i915_gem_object_set_cache_coherency(obj, cache_level);
4101 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4102 
4103 	return 0;
4104 }
4105 
4106 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4107 			       struct drm_file *file)
4108 {
4109 	struct drm_i915_gem_caching *args = data;
4110 	struct drm_i915_gem_object *obj;
4111 	int err = 0;
4112 
4113 	rcu_read_lock();
4114 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4115 	if (!obj) {
4116 		err = -ENOENT;
4117 		goto out;
4118 	}
4119 
4120 	switch (obj->cache_level) {
4121 	case I915_CACHE_LLC:
4122 	case I915_CACHE_L3_LLC:
4123 		args->caching = I915_CACHING_CACHED;
4124 		break;
4125 
4126 	case I915_CACHE_WT:
4127 		args->caching = I915_CACHING_DISPLAY;
4128 		break;
4129 
4130 	default:
4131 		args->caching = I915_CACHING_NONE;
4132 		break;
4133 	}
4134 out:
4135 	rcu_read_unlock();
4136 	return err;
4137 }
4138 
4139 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4140 			       struct drm_file *file)
4141 {
4142 	struct drm_i915_private *i915 = to_i915(dev);
4143 	struct drm_i915_gem_caching *args = data;
4144 	struct drm_i915_gem_object *obj;
4145 	enum i915_cache_level level;
4146 	int ret = 0;
4147 
4148 	switch (args->caching) {
4149 	case I915_CACHING_NONE:
4150 		level = I915_CACHE_NONE;
4151 		break;
4152 	case I915_CACHING_CACHED:
4153 		/*
4154 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4155 		 * snooped mapping may leave stale data in a corresponding CPU
4156 		 * cacheline, whereas normally such cachelines would get
4157 		 * invalidated.
4158 		 */
4159 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4160 			return -ENODEV;
4161 
4162 		level = I915_CACHE_LLC;
4163 		break;
4164 	case I915_CACHING_DISPLAY:
4165 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4166 		break;
4167 	default:
4168 		return -EINVAL;
4169 	}
4170 
4171 	obj = i915_gem_object_lookup(file, args->handle);
4172 	if (!obj)
4173 		return -ENOENT;
4174 
4175 	if (obj->cache_level == level)
4176 		goto out;
4177 
4178 	ret = i915_gem_object_wait(obj,
4179 				   I915_WAIT_INTERRUPTIBLE,
4180 				   MAX_SCHEDULE_TIMEOUT,
4181 				   to_rps_client(file));
4182 	if (ret)
4183 		goto out;
4184 
4185 	ret = i915_mutex_lock_interruptible(dev);
4186 	if (ret)
4187 		goto out;
4188 
4189 	ret = i915_gem_object_set_cache_level(obj, level);
4190 	mutex_unlock(&dev->struct_mutex);
4191 
4192 out:
4193 	i915_gem_object_put(obj);
4194 	return ret;
4195 }
4196 
4197 /*
4198  * Prepare buffer for display plane (scanout, cursors, etc).
4199  * Can be called from an uninterruptible phase (modesetting) and allows
4200  * any flushes to be pipelined (for pageflips).
4201  */
4202 struct i915_vma *
4203 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4204 				     u32 alignment,
4205 				     const struct i915_ggtt_view *view)
4206 {
4207 	struct i915_vma *vma;
4208 	int ret;
4209 
4210 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4211 
4212 	/* Mark the global pin early so that we account for the
4213 	 * display coherency whilst setting up the cache domains.
4214 	 */
4215 	obj->pin_global++;
4216 
4217 	/* The display engine is not coherent with the LLC cache on gen6.  As
4218 	 * a result, we make sure that the pinning that is about to occur is
4219 	 * done with uncached PTEs. This is lowest common denominator for all
4220 	 * chipsets.
4221 	 *
4222 	 * However for gen6+, we could do better by using the GFDT bit instead
4223 	 * of uncaching, which would allow us to flush all the LLC-cached data
4224 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4225 	 */
4226 	ret = i915_gem_object_set_cache_level(obj,
4227 					      HAS_WT(to_i915(obj->base.dev)) ?
4228 					      I915_CACHE_WT : I915_CACHE_NONE);
4229 	if (ret) {
4230 		vma = ERR_PTR(ret);
4231 		goto err_unpin_global;
4232 	}
4233 
4234 	/* As the user may map the buffer once pinned in the display plane
4235 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4236 	 * always use map_and_fenceable for all scanout buffers. However,
4237 	 * it may simply be too big to fit into mappable, in which case
4238 	 * put it anyway and hope that userspace can cope (but always first
4239 	 * try to preserve the existing ABI).
4240 	 */
4241 	vma = ERR_PTR(-ENOSPC);
4242 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4243 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4244 					       PIN_MAPPABLE | PIN_NONBLOCK);
4245 	if (IS_ERR(vma)) {
4246 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
4247 		unsigned int flags;
4248 
4249 		/* Valleyview is definitely limited to scanning out the first
4250 		 * 512MiB. Lets presume this behaviour was inherited from the
4251 		 * g4x display engine and that all earlier gen are similarly
4252 		 * limited. Testing suggests that it is a little more
4253 		 * complicated than this. For example, Cherryview appears quite
4254 		 * happy to scanout from anywhere within its global aperture.
4255 		 */
4256 		flags = 0;
4257 		if (HAS_GMCH_DISPLAY(i915))
4258 			flags = PIN_MAPPABLE;
4259 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4260 	}
4261 	if (IS_ERR(vma))
4262 		goto err_unpin_global;
4263 
4264 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4265 
4266 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4267 	__i915_gem_object_flush_for_display(obj);
4268 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4269 
4270 	/* It should now be out of any other write domains, and we can update
4271 	 * the domain values for our changes.
4272 	 */
4273 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4274 
4275 	return vma;
4276 
4277 err_unpin_global:
4278 	obj->pin_global--;
4279 	return vma;
4280 }
4281 
4282 void
4283 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4284 {
4285 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4286 
4287 	if (WARN_ON(vma->obj->pin_global == 0))
4288 		return;
4289 
4290 	if (--vma->obj->pin_global == 0)
4291 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4292 
4293 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4294 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4295 
4296 	i915_vma_unpin(vma);
4297 }
4298 
4299 /**
4300  * Moves a single object to the CPU read, and possibly write domain.
4301  * @obj: object to act on
4302  * @write: requesting write or read-only access
4303  *
4304  * This function returns when the move is complete, including waiting on
4305  * flushes to occur.
4306  */
4307 int
4308 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4309 {
4310 	int ret;
4311 
4312 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4313 
4314 	ret = i915_gem_object_wait(obj,
4315 				   I915_WAIT_INTERRUPTIBLE |
4316 				   I915_WAIT_LOCKED |
4317 				   (write ? I915_WAIT_ALL : 0),
4318 				   MAX_SCHEDULE_TIMEOUT,
4319 				   NULL);
4320 	if (ret)
4321 		return ret;
4322 
4323 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4324 
4325 	/* Flush the CPU cache if it's still invalid. */
4326 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4327 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4328 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4329 	}
4330 
4331 	/* It should now be out of any other write domains, and we can update
4332 	 * the domain values for our changes.
4333 	 */
4334 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4335 
4336 	/* If we're writing through the CPU, then the GPU read domains will
4337 	 * need to be invalidated at next use.
4338 	 */
4339 	if (write)
4340 		__start_cpu_write(obj);
4341 
4342 	return 0;
4343 }
4344 
4345 /* Throttle our rendering by waiting until the ring has completed our requests
4346  * emitted over 20 msec ago.
4347  *
4348  * Note that if we were to use the current jiffies each time around the loop,
4349  * we wouldn't escape the function with any frames outstanding if the time to
4350  * render a frame was over 20ms.
4351  *
4352  * This should get us reasonable parallelism between CPU and GPU but also
4353  * relatively low latency when blocking on a particular request to finish.
4354  */
4355 static int
4356 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4357 {
4358 	struct drm_i915_private *dev_priv = to_i915(dev);
4359 	struct drm_i915_file_private *file_priv = file->driver_priv;
4360 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4361 	struct drm_i915_gem_request *request, *target = NULL;
4362 	long ret;
4363 
4364 	/* ABI: return -EIO if already wedged */
4365 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4366 		return -EIO;
4367 
4368 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
4369 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4370 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4371 			break;
4372 
4373 		if (target) {
4374 			list_del(&target->client_link);
4375 			target->file_priv = NULL;
4376 		}
4377 
4378 		target = request;
4379 	}
4380 	if (target)
4381 		i915_gem_request_get(target);
4382 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
4383 
4384 	if (target == NULL)
4385 		return 0;
4386 
4387 	ret = i915_wait_request(target,
4388 				I915_WAIT_INTERRUPTIBLE,
4389 				MAX_SCHEDULE_TIMEOUT);
4390 	i915_gem_request_put(target);
4391 
4392 	return ret < 0 ? ret : 0;
4393 }
4394 
4395 struct i915_vma *
4396 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4397 			 const struct i915_ggtt_view *view,
4398 			 u64 size,
4399 			 u64 alignment,
4400 			 u64 flags)
4401 {
4402 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4403 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4404 	struct i915_vma *vma;
4405 	int ret;
4406 
4407 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4408 
4409 	if (!view && flags & PIN_MAPPABLE) {
4410 		/* If the required space is larger than the available
4411 		 * aperture, we will not able to find a slot for the
4412 		 * object and unbinding the object now will be in
4413 		 * vain. Worse, doing so may cause us to ping-pong
4414 		 * the object in and out of the Global GTT and
4415 		 * waste a lot of cycles under the mutex.
4416 		 */
4417 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4418 			return ERR_PTR(-E2BIG);
4419 
4420 		/* If NONBLOCK is set the caller is optimistically
4421 		 * trying to cache the full object within the mappable
4422 		 * aperture, and *must* have a fallback in place for
4423 		 * situations where we cannot bind the object. We
4424 		 * can be a little more lax here and use the fallback
4425 		 * more often to avoid costly migrations of ourselves
4426 		 * and other objects within the aperture.
4427 		 *
4428 		 * Half-the-aperture is used as a simple heuristic.
4429 		 * More interesting would to do search for a free
4430 		 * block prior to making the commitment to unbind.
4431 		 * That caters for the self-harm case, and with a
4432 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4433 		 * we could try to minimise harm to others.
4434 		 */
4435 		if (flags & PIN_NONBLOCK &&
4436 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4437 			return ERR_PTR(-ENOSPC);
4438 	}
4439 
4440 	vma = i915_vma_instance(obj, vm, view);
4441 	if (unlikely(IS_ERR(vma)))
4442 		return vma;
4443 
4444 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4445 		if (flags & PIN_NONBLOCK) {
4446 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4447 				return ERR_PTR(-ENOSPC);
4448 
4449 			if (flags & PIN_MAPPABLE &&
4450 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4451 				return ERR_PTR(-ENOSPC);
4452 		}
4453 
4454 		WARN(i915_vma_is_pinned(vma),
4455 		     "bo is already pinned in ggtt with incorrect alignment:"
4456 		     " offset=%08x, req.alignment=%llx,"
4457 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4458 		     i915_ggtt_offset(vma), alignment,
4459 		     !!(flags & PIN_MAPPABLE),
4460 		     i915_vma_is_map_and_fenceable(vma));
4461 		ret = i915_vma_unbind(vma);
4462 		if (ret)
4463 			return ERR_PTR(ret);
4464 	}
4465 
4466 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4467 	if (ret)
4468 		return ERR_PTR(ret);
4469 
4470 	return vma;
4471 }
4472 
4473 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4474 {
4475 	/* Note that we could alias engines in the execbuf API, but
4476 	 * that would be very unwise as it prevents userspace from
4477 	 * fine control over engine selection. Ahem.
4478 	 *
4479 	 * This should be something like EXEC_MAX_ENGINE instead of
4480 	 * I915_NUM_ENGINES.
4481 	 */
4482 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4483 	return 0x10000 << id;
4484 }
4485 
4486 static __always_inline unsigned int __busy_write_id(unsigned int id)
4487 {
4488 	/* The uABI guarantees an active writer is also amongst the read
4489 	 * engines. This would be true if we accessed the activity tracking
4490 	 * under the lock, but as we perform the lookup of the object and
4491 	 * its activity locklessly we can not guarantee that the last_write
4492 	 * being active implies that we have set the same engine flag from
4493 	 * last_read - hence we always set both read and write busy for
4494 	 * last_write.
4495 	 */
4496 	return id | __busy_read_flag(id);
4497 }
4498 
4499 #pragma GCC diagnostic push
4500 #pragma GCC diagnostic ignored "-Wdiscarded-qualifiers"
4501 
4502 static __always_inline unsigned int
4503 __busy_set_if_active(const struct dma_fence *fence,
4504 		     unsigned int (*flag)(unsigned int id))
4505 {
4506 	struct drm_i915_gem_request *rq;
4507 
4508 	/* We have to check the current hw status of the fence as the uABI
4509 	 * guarantees forward progress. We could rely on the idle worker
4510 	 * to eventually flush us, but to minimise latency just ask the
4511 	 * hardware.
4512 	 *
4513 	 * Note we only report on the status of native fences.
4514 	 */
4515 	if (!dma_fence_is_i915(fence))
4516 		return 0;
4517 
4518 	/* opencode to_request() in order to avoid const warnings */
4519 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4520 	if (i915_gem_request_completed(rq))
4521 		return 0;
4522 
4523 	return flag(rq->engine->uabi_id);
4524 }
4525 #pragma GCC diagnostic pop
4526 
4527 static __always_inline unsigned int
4528 busy_check_reader(const struct dma_fence *fence)
4529 {
4530 	return __busy_set_if_active(fence, __busy_read_flag);
4531 }
4532 
4533 static __always_inline unsigned int
4534 busy_check_writer(const struct dma_fence *fence)
4535 {
4536 	if (!fence)
4537 		return 0;
4538 
4539 	return __busy_set_if_active(fence, __busy_write_id);
4540 }
4541 
4542 int
4543 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4544 		    struct drm_file *file)
4545 {
4546 	struct drm_i915_gem_busy *args = data;
4547 	struct drm_i915_gem_object *obj;
4548 	struct reservation_object_list *list;
4549 	unsigned int seq;
4550 	int err;
4551 
4552 	err = -ENOENT;
4553 	rcu_read_lock();
4554 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4555 	if (!obj)
4556 		goto out;
4557 
4558 	/* A discrepancy here is that we do not report the status of
4559 	 * non-i915 fences, i.e. even though we may report the object as idle,
4560 	 * a call to set-domain may still stall waiting for foreign rendering.
4561 	 * This also means that wait-ioctl may report an object as busy,
4562 	 * where busy-ioctl considers it idle.
4563 	 *
4564 	 * We trade the ability to warn of foreign fences to report on which
4565 	 * i915 engines are active for the object.
4566 	 *
4567 	 * Alternatively, we can trade that extra information on read/write
4568 	 * activity with
4569 	 *	args->busy =
4570 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4571 	 * to report the overall busyness. This is what the wait-ioctl does.
4572 	 *
4573 	 */
4574 retry:
4575 	seq = raw_read_seqcount(&obj->resv->seq);
4576 
4577 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4578 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4579 
4580 	/* Translate shared fences to READ set of engines */
4581 	list = rcu_dereference(obj->resv->fence);
4582 	if (list) {
4583 		unsigned int shared_count = list->shared_count, i;
4584 
4585 		for (i = 0; i < shared_count; ++i) {
4586 			struct dma_fence *fence =
4587 				rcu_dereference(list->shared[i]);
4588 
4589 			args->busy |= busy_check_reader(fence);
4590 		}
4591 	}
4592 
4593 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4594 		goto retry;
4595 
4596 	err = 0;
4597 out:
4598 	rcu_read_unlock();
4599 	return err;
4600 }
4601 
4602 int
4603 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4604 			struct drm_file *file_priv)
4605 {
4606 	return i915_gem_ring_throttle(dev, file_priv);
4607 }
4608 
4609 int
4610 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4611 		       struct drm_file *file_priv)
4612 {
4613 	struct drm_i915_private *dev_priv = to_i915(dev);
4614 	struct drm_i915_gem_madvise *args = data;
4615 	struct drm_i915_gem_object *obj;
4616 	int err;
4617 
4618 	switch (args->madv) {
4619 	case I915_MADV_DONTNEED:
4620 	case I915_MADV_WILLNEED:
4621 	    break;
4622 	default:
4623 	    return -EINVAL;
4624 	}
4625 
4626 	obj = i915_gem_object_lookup(file_priv, args->handle);
4627 	if (!obj)
4628 		return -ENOENT;
4629 
4630 	err = mutex_lock_interruptible(&obj->mm.lock);
4631 	if (err)
4632 		goto out;
4633 
4634 	if (i915_gem_object_has_pages(obj) &&
4635 	    i915_gem_object_is_tiled(obj) &&
4636 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4637 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4638 			GEM_BUG_ON(!obj->mm.quirked);
4639 			__i915_gem_object_unpin_pages(obj);
4640 			obj->mm.quirked = false;
4641 		}
4642 		if (args->madv == I915_MADV_WILLNEED) {
4643 			GEM_BUG_ON(obj->mm.quirked);
4644 			__i915_gem_object_pin_pages(obj);
4645 			obj->mm.quirked = true;
4646 		}
4647 	}
4648 
4649 	if (obj->mm.madv != __I915_MADV_PURGED)
4650 		obj->mm.madv = args->madv;
4651 
4652 	/* if the object is no longer attached, discard its backing storage */
4653 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4654 	    !i915_gem_object_has_pages(obj))
4655 		i915_gem_object_truncate(obj);
4656 
4657 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4658 	mutex_unlock(&obj->mm.lock);
4659 
4660 out:
4661 	i915_gem_object_put(obj);
4662 	return err;
4663 }
4664 
4665 static void
4666 frontbuffer_retire(struct i915_gem_active *active,
4667 		   struct drm_i915_gem_request *request)
4668 {
4669 	struct drm_i915_gem_object *obj =
4670 		container_of(active, typeof(*obj), frontbuffer_write);
4671 
4672 	intel_fb_obj_flush(obj, ORIGIN_CS);
4673 }
4674 
4675 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4676 			  const struct drm_i915_gem_object_ops *ops)
4677 {
4678 	lockinit(&obj->mm.lock, "i9goml", 0, LK_CANRECURSE);
4679 
4680 	INIT_LIST_HEAD(&obj->vma_list);
4681 	INIT_LIST_HEAD(&obj->lut_list);
4682 	INIT_LIST_HEAD(&obj->batch_pool_link);
4683 
4684 	obj->ops = ops;
4685 
4686 	reservation_object_init(&obj->__builtin_resv);
4687 	obj->resv = &obj->__builtin_resv;
4688 
4689 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4690 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4691 
4692 	obj->mm.madv = I915_MADV_WILLNEED;
4693 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4694 	lockinit(&obj->mm.get_page.lock, "i915ogpl", 0, LK_CANRECURSE);
4695 
4696 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4697 }
4698 
4699 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4700 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4701 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4702 
4703 	.get_pages = i915_gem_object_get_pages_gtt,
4704 	.put_pages = i915_gem_object_put_pages_gtt,
4705 
4706 	.pwrite = i915_gem_object_pwrite_gtt,
4707 };
4708 
4709 static int i915_gem_object_create_shmem(struct drm_device *dev,
4710 					struct drm_gem_object *obj,
4711 					size_t size)
4712 {
4713 #ifndef __DragonFly__
4714 	struct drm_i915_private *i915 = to_i915(dev);
4715 	unsigned long flags = VM_NORESERVE;
4716 	struct file *filp;
4717 #endif
4718 
4719 #ifndef __DragonFly__
4720 	drm_gem_private_object_init(dev, obj, size);
4721 #else
4722 	drm_gem_object_init(dev, obj, size);
4723 #endif
4724 
4725 #ifndef __DragonFly__
4726 	if (i915->mm.gemfs)
4727 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4728 						 flags);
4729 	else
4730 		filp = shmem_file_setup("i915", size, flags);
4731 
4732 	if (IS_ERR(filp))
4733 		return PTR_ERR(filp);
4734 
4735 	obj->filp = filp;
4736 #endif
4737 
4738 	return 0;
4739 }
4740 
4741 struct drm_i915_gem_object *
4742 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4743 {
4744 	struct drm_i915_gem_object *obj;
4745 #if 0
4746 	struct address_space *mapping;
4747 #endif
4748 	unsigned int cache_level;
4749 	gfp_t mask;
4750 	int ret;
4751 
4752 	/* There is a prevalence of the assumption that we fit the object's
4753 	 * page count inside a 32bit _signed_ variable. Let's document this and
4754 	 * catch if we ever need to fix it. In the meantime, if you do spot
4755 	 * such a local variable, please consider fixing!
4756 	 */
4757 	if (size >> PAGE_SHIFT > INT_MAX)
4758 		return ERR_PTR(-E2BIG);
4759 
4760 	if (overflows_type(size, obj->base.size))
4761 		return ERR_PTR(-E2BIG);
4762 
4763 	obj = i915_gem_object_alloc(dev_priv);
4764 	if (obj == NULL)
4765 		return ERR_PTR(-ENOMEM);
4766 
4767 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4768 	if (ret)
4769 		goto fail;
4770 
4771 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4772 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4773 		/* 965gm cannot relocate objects above 4GiB. */
4774 		mask &= ~__GFP_HIGHMEM;
4775 		mask |= __GFP_DMA32;
4776 	}
4777 
4778 #if 0
4779 	mapping = obj->base.filp->f_mapping;
4780 	mapping_set_gfp_mask(mapping, mask);
4781 #endif
4782 
4783 	i915_gem_object_init(obj, &i915_gem_object_ops);
4784 
4785 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4786 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4787 
4788 	if (HAS_LLC(dev_priv))
4789 		/* On some devices, we can have the GPU use the LLC (the CPU
4790 		 * cache) for about a 10% performance improvement
4791 		 * compared to uncached.  Graphics requests other than
4792 		 * display scanout are coherent with the CPU in
4793 		 * accessing this cache.  This means in this mode we
4794 		 * don't need to clflush on the CPU side, and on the
4795 		 * GPU side we only need to flush internal caches to
4796 		 * get data visible to the CPU.
4797 		 *
4798 		 * However, we maintain the display planes as UC, and so
4799 		 * need to rebind when first used as such.
4800 		 */
4801 		cache_level = I915_CACHE_LLC;
4802 	else
4803 		cache_level = I915_CACHE_NONE;
4804 
4805 	i915_gem_object_set_cache_coherency(obj, cache_level);
4806 
4807 	trace_i915_gem_object_create(obj);
4808 
4809 	return obj;
4810 
4811 fail:
4812 	i915_gem_object_free(obj);
4813 	return ERR_PTR(ret);
4814 }
4815 
4816 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4817 {
4818 	/* If we are the last user of the backing storage (be it shmemfs
4819 	 * pages or stolen etc), we know that the pages are going to be
4820 	 * immediately released. In this case, we can then skip copying
4821 	 * back the contents from the GPU.
4822 	 */
4823 
4824 	if (obj->mm.madv != I915_MADV_WILLNEED)
4825 		return false;
4826 
4827 	if (obj->base.filp == NULL)
4828 		return true;
4829 
4830 	/* At first glance, this looks racy, but then again so would be
4831 	 * userspace racing mmap against close. However, the first external
4832 	 * reference to the filp can only be obtained through the
4833 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4834 	 * acquiring such a reference whilst we are in the middle of
4835 	 * freeing the object.
4836 	 */
4837 #if 0
4838 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4839 #else
4840 	return false;
4841 #endif
4842 }
4843 
4844 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4845 				    struct llist_node *freed)
4846 {
4847 	struct drm_i915_gem_object *obj, *on;
4848 
4849 	intel_runtime_pm_get(i915);
4850 	llist_for_each_entry_safe(obj, on, freed, freed) {
4851 		struct i915_vma *vma, *vn;
4852 
4853 		trace_i915_gem_object_destroy(obj);
4854 
4855 		mutex_lock(&i915->drm.struct_mutex);
4856 
4857 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4858 		list_for_each_entry_safe(vma, vn,
4859 					 &obj->vma_list, obj_link) {
4860 			GEM_BUG_ON(i915_vma_is_active(vma));
4861 			vma->flags &= ~I915_VMA_PIN_MASK;
4862 			i915_vma_close(vma);
4863 		}
4864 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4865 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4866 
4867 		/* This serializes freeing with the shrinker. Since the free
4868 		 * is delayed, first by RCU then by the workqueue, we want the
4869 		 * shrinker to be able to free pages of unreferenced objects,
4870 		 * or else we may oom whilst there are plenty of deferred
4871 		 * freed objects.
4872 		 */
4873 		if (i915_gem_object_has_pages(obj)) {
4874 			lockmgr(&i915->mm.obj_lock, LK_EXCLUSIVE);
4875 			list_del_init(&obj->mm.link);
4876 			lockmgr(&i915->mm.obj_lock, LK_RELEASE);
4877 		}
4878 
4879 		mutex_unlock(&i915->drm.struct_mutex);
4880 
4881 		GEM_BUG_ON(obj->bind_count);
4882 		GEM_BUG_ON(obj->userfault_count);
4883 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4884 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4885 
4886 		if (obj->ops->release)
4887 			obj->ops->release(obj);
4888 
4889 #if 0
4890 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4891 #else
4892 		if (i915_gem_object_has_pinned_pages(obj))
4893 #endif
4894 			atomic_set(&obj->mm.pages_pin_count, 0);
4895 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4896 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4897 
4898 		if (obj->base.import_attach)
4899 			drm_prime_gem_destroy(&obj->base, NULL);
4900 
4901 		reservation_object_fini(&obj->__builtin_resv);
4902 		drm_gem_object_release(&obj->base);
4903 		i915_gem_info_remove_obj(i915, obj->base.size);
4904 
4905 		kfree(obj->bit_17);
4906 		i915_gem_object_free(obj);
4907 
4908 		if (on)
4909 			cond_resched();
4910 	}
4911 	intel_runtime_pm_put(i915);
4912 }
4913 
4914 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4915 {
4916 	struct llist_node *freed;
4917 
4918 	/* Free the oldest, most stale object to keep the free_list short */
4919 	freed = NULL;
4920 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4921 		/* Only one consumer of llist_del_first() allowed */
4922 		lockmgr(&i915->mm.free_lock, LK_EXCLUSIVE);
4923 		freed = llist_del_first(&i915->mm.free_list);
4924 		lockmgr(&i915->mm.free_lock, LK_RELEASE);
4925 	}
4926 	if (unlikely(freed)) {
4927 		freed->next = NULL;
4928 		__i915_gem_free_objects(i915, freed);
4929 	}
4930 }
4931 
4932 static void __i915_gem_free_work(struct work_struct *work)
4933 {
4934 	struct drm_i915_private *i915 =
4935 		container_of(work, struct drm_i915_private, mm.free_work);
4936 	struct llist_node *freed;
4937 
4938 	/* All file-owned VMA should have been released by this point through
4939 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4940 	 * However, the object may also be bound into the global GTT (e.g.
4941 	 * older GPUs without per-process support, or for direct access through
4942 	 * the GTT either for the user or for scanout). Those VMA still need to
4943 	 * unbound now.
4944 	 */
4945 
4946 	lockmgr(&i915->mm.free_lock, LK_EXCLUSIVE);
4947 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4948 		lockmgr(&i915->mm.free_lock, LK_RELEASE);
4949 
4950 		__i915_gem_free_objects(i915, freed);
4951 		if (need_resched())
4952 			return;
4953 
4954 		lockmgr(&i915->mm.free_lock, LK_EXCLUSIVE);
4955 	}
4956 	lockmgr(&i915->mm.free_lock, LK_RELEASE);
4957 }
4958 
4959 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4960 {
4961 	struct drm_i915_gem_object *obj =
4962 		container_of(head, typeof(*obj), rcu);
4963 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4964 
4965 	/* We can't simply use call_rcu() from i915_gem_free_object()
4966 	 * as we need to block whilst unbinding, and the call_rcu
4967 	 * task may be called from softirq context. So we take a
4968 	 * detour through a worker.
4969 	 */
4970 	if (llist_add(&obj->freed, &i915->mm.free_list))
4971 		schedule_work(&i915->mm.free_work);
4972 }
4973 
4974 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4975 {
4976 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4977 
4978 	if (obj->mm.quirked)
4979 		__i915_gem_object_unpin_pages(obj);
4980 
4981 	if (discard_backing_storage(obj))
4982 		obj->mm.madv = I915_MADV_DONTNEED;
4983 
4984 	/* Before we free the object, make sure any pure RCU-only
4985 	 * read-side critical sections are complete, e.g.
4986 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4987 	 * lookup see i915_gem_object_lookup_rcu().
4988 	 */
4989 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4990 }
4991 
4992 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4993 {
4994 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4995 
4996 	if (!i915_gem_object_has_active_reference(obj) &&
4997 	    i915_gem_object_is_active(obj))
4998 		i915_gem_object_set_active_reference(obj);
4999 	else
5000 		i915_gem_object_put(obj);
5001 }
5002 
5003 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
5004 {
5005 	struct intel_engine_cs *engine;
5006 	enum intel_engine_id id;
5007 
5008 	for_each_engine(engine, dev_priv, id)
5009 		GEM_BUG_ON(engine->last_retired_context &&
5010 			   !i915_gem_context_is_kernel(engine->last_retired_context));
5011 }
5012 
5013 void i915_gem_sanitize(struct drm_i915_private *i915)
5014 {
5015 	if (i915_terminally_wedged(&i915->gpu_error)) {
5016 		mutex_lock(&i915->drm.struct_mutex);
5017 		i915_gem_unset_wedged(i915);
5018 		mutex_unlock(&i915->drm.struct_mutex);
5019 	}
5020 
5021 	/*
5022 	 * If we inherit context state from the BIOS or earlier occupants
5023 	 * of the GPU, the GPU may be in an inconsistent state when we
5024 	 * try to take over. The only way to remove the earlier state
5025 	 * is by resetting. However, resetting on earlier gen is tricky as
5026 	 * it may impact the display and we are uncertain about the stability
5027 	 * of the reset, so this could be applied to even earlier gen.
5028 	 */
5029 	if (INTEL_GEN(i915) >= 5) {
5030 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
5031 		WARN_ON(reset && reset != -ENODEV);
5032 	}
5033 }
5034 
5035 int i915_gem_suspend(struct drm_i915_private *dev_priv)
5036 {
5037 	struct drm_device *dev = &dev_priv->drm;
5038 	int ret;
5039 
5040 	intel_runtime_pm_get(dev_priv);
5041 	intel_suspend_gt_powersave(dev_priv);
5042 
5043 	mutex_lock(&dev->struct_mutex);
5044 
5045 	/* We have to flush all the executing contexts to main memory so
5046 	 * that they can saved in the hibernation image. To ensure the last
5047 	 * context image is coherent, we have to switch away from it. That
5048 	 * leaves the dev_priv->kernel_context still active when
5049 	 * we actually suspend, and its image in memory may not match the GPU
5050 	 * state. Fortunately, the kernel_context is disposable and we do
5051 	 * not rely on its state.
5052 	 */
5053 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5054 		ret = i915_gem_switch_to_kernel_context(dev_priv);
5055 		if (ret)
5056 			goto err_unlock;
5057 
5058 		ret = i915_gem_wait_for_idle(dev_priv,
5059 					     I915_WAIT_INTERRUPTIBLE |
5060 					     I915_WAIT_LOCKED);
5061 		if (ret && ret != -EIO)
5062 			goto err_unlock;
5063 
5064 		assert_kernel_context_is_current(dev_priv);
5065 	}
5066 	i915_gem_contexts_lost(dev_priv);
5067 	mutex_unlock(&dev->struct_mutex);
5068 
5069 	intel_guc_suspend(dev_priv);
5070 
5071 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5072 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5073 
5074 	/* As the idle_work is rearming if it detects a race, play safe and
5075 	 * repeat the flush until it is definitely idle.
5076 	 */
5077 	drain_delayed_work(&dev_priv->gt.idle_work);
5078 
5079 	/* Assert that we sucessfully flushed all the work and
5080 	 * reset the GPU back to its idle, low power state.
5081 	 */
5082 	WARN_ON(dev_priv->gt.awake);
5083 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
5084 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5085 
5086 	/*
5087 	 * Neither the BIOS, ourselves or any other kernel
5088 	 * expects the system to be in execlists mode on startup,
5089 	 * so we need to reset the GPU back to legacy mode. And the only
5090 	 * known way to disable logical contexts is through a GPU reset.
5091 	 *
5092 	 * So in order to leave the system in a known default configuration,
5093 	 * always reset the GPU upon unload and suspend. Afterwards we then
5094 	 * clean up the GEM state tracking, flushing off the requests and
5095 	 * leaving the system in a known idle state.
5096 	 *
5097 	 * Note that is of the upmost importance that the GPU is idle and
5098 	 * all stray writes are flushed *before* we dismantle the backing
5099 	 * storage for the pinned objects.
5100 	 *
5101 	 * However, since we are uncertain that resetting the GPU on older
5102 	 * machines is a good idea, we don't - just in case it leaves the
5103 	 * machine in an unusable condition.
5104 	 */
5105 	i915_gem_sanitize(dev_priv);
5106 
5107 	intel_runtime_pm_put(dev_priv);
5108 	return 0;
5109 
5110 err_unlock:
5111 	mutex_unlock(&dev->struct_mutex);
5112 	intel_runtime_pm_put(dev_priv);
5113 	return ret;
5114 }
5115 
5116 void i915_gem_resume(struct drm_i915_private *dev_priv)
5117 {
5118 	struct drm_device *dev = &dev_priv->drm;
5119 
5120 	WARN_ON(dev_priv->gt.awake);
5121 
5122 	mutex_lock(&dev->struct_mutex);
5123 	i915_gem_restore_gtt_mappings(dev_priv);
5124 	i915_gem_restore_fences(dev_priv);
5125 
5126 	/* As we didn't flush the kernel context before suspend, we cannot
5127 	 * guarantee that the context image is complete. So let's just reset
5128 	 * it and start again.
5129 	 */
5130 	dev_priv->gt.resume(dev_priv);
5131 
5132 	mutex_unlock(&dev->struct_mutex);
5133 }
5134 
5135 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5136 {
5137 	if (INTEL_GEN(dev_priv) < 5 ||
5138 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5139 		return;
5140 
5141 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5142 				 DISP_TILE_SURFACE_SWIZZLING);
5143 
5144 	if (IS_GEN5(dev_priv))
5145 		return;
5146 
5147 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5148 	if (IS_GEN6(dev_priv))
5149 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5150 	else if (IS_GEN7(dev_priv))
5151 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5152 	else if (IS_GEN8(dev_priv))
5153 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5154 	else
5155 		BUG();
5156 }
5157 
5158 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5159 {
5160 	I915_WRITE(RING_CTL(base), 0);
5161 	I915_WRITE(RING_HEAD(base), 0);
5162 	I915_WRITE(RING_TAIL(base), 0);
5163 	I915_WRITE(RING_START(base), 0);
5164 }
5165 
5166 static void init_unused_rings(struct drm_i915_private *dev_priv)
5167 {
5168 	if (IS_I830(dev_priv)) {
5169 		init_unused_ring(dev_priv, PRB1_BASE);
5170 		init_unused_ring(dev_priv, SRB0_BASE);
5171 		init_unused_ring(dev_priv, SRB1_BASE);
5172 		init_unused_ring(dev_priv, SRB2_BASE);
5173 		init_unused_ring(dev_priv, SRB3_BASE);
5174 	} else if (IS_GEN2(dev_priv)) {
5175 		init_unused_ring(dev_priv, SRB0_BASE);
5176 		init_unused_ring(dev_priv, SRB1_BASE);
5177 	} else if (IS_GEN3(dev_priv)) {
5178 		init_unused_ring(dev_priv, PRB1_BASE);
5179 		init_unused_ring(dev_priv, PRB2_BASE);
5180 	}
5181 }
5182 
5183 static int __i915_gem_restart_engines(void *data)
5184 {
5185 	struct drm_i915_private *i915 = data;
5186 	struct intel_engine_cs *engine;
5187 	enum intel_engine_id id;
5188 	int err;
5189 
5190 	for_each_engine(engine, i915, id) {
5191 		err = engine->init_hw(engine);
5192 		if (err)
5193 			return err;
5194 	}
5195 
5196 	return 0;
5197 }
5198 
5199 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5200 {
5201 	int ret;
5202 
5203 	dev_priv->gt.last_init_time = ktime_get();
5204 
5205 	/* Double layer security blanket, see i915_gem_init() */
5206 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5207 
5208 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5209 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5210 
5211 	if (IS_HASWELL(dev_priv))
5212 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5213 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5214 
5215 	if (HAS_PCH_NOP(dev_priv)) {
5216 		if (IS_IVYBRIDGE(dev_priv)) {
5217 			u32 temp = I915_READ(GEN7_MSG_CTL);
5218 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5219 			I915_WRITE(GEN7_MSG_CTL, temp);
5220 		} else if (INTEL_GEN(dev_priv) >= 7) {
5221 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5222 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5223 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5224 		}
5225 	}
5226 
5227 	i915_gem_init_swizzling(dev_priv);
5228 
5229 	/*
5230 	 * At least 830 can leave some of the unused rings
5231 	 * "active" (ie. head != tail) after resume which
5232 	 * will prevent c3 entry. Makes sure all unused rings
5233 	 * are totally idle.
5234 	 */
5235 	init_unused_rings(dev_priv);
5236 
5237 	BUG_ON(!dev_priv->kernel_context);
5238 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5239 		ret = -EIO;
5240 		goto out;
5241 	}
5242 
5243 	ret = i915_ppgtt_init_hw(dev_priv);
5244 	if (ret) {
5245 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5246 		goto out;
5247 	}
5248 
5249 	/* Need to do basic initialisation of all rings first: */
5250 	ret = __i915_gem_restart_engines(dev_priv);
5251 	if (ret)
5252 		goto out;
5253 
5254 	intel_mocs_init_l3cc_table(dev_priv);
5255 
5256 	/* We can't enable contexts until all firmware is loaded */
5257 	ret = intel_uc_init_hw(dev_priv);
5258 	if (ret)
5259 		goto out;
5260 
5261 out:
5262 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5263 	return ret;
5264 }
5265 
5266 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
5267 {
5268 	if (INTEL_INFO(dev_priv)->gen < 6)
5269 		return false;
5270 
5271 	/* TODO: make semaphores and Execlists play nicely together */
5272 	if (i915_modparams.enable_execlists)
5273 		return false;
5274 
5275 	if (value >= 0)
5276 		return value;
5277 
5278 	/* Enable semaphores on SNB when IO remapping is off */
5279 	if (IS_GEN6(dev_priv) && intel_vtd_active())
5280 		return false;
5281 
5282 	return true;
5283 }
5284 
5285 int i915_gem_init(struct drm_i915_private *dev_priv)
5286 {
5287 	int ret;
5288 
5289 	/*
5290 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5291 	 * support huge page entries - we will need to check either hypervisor
5292 	 * mm can support huge guest page or just do emulation in gvt.
5293 	 */
5294 	if (intel_vgpu_active(dev_priv))
5295 		mkwrite_device_info(dev_priv)->page_sizes =
5296 			I915_GTT_PAGE_SIZE_4K;
5297 
5298 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5299 
5300 	if (!i915_modparams.enable_execlists) {
5301 		dev_priv->gt.resume = intel_legacy_submission_resume;
5302 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5303 	} else {
5304 		dev_priv->gt.resume = intel_lr_context_resume;
5305 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5306 	}
5307 
5308 	ret = i915_gem_init_userptr(dev_priv);
5309 	if (ret)
5310 		return ret;
5311 
5312 	/* This is just a security blanket to placate dragons.
5313 	 * On some systems, we very sporadically observe that the first TLBs
5314 	 * used by the CS may be stale, despite us poking the TLB reset. If
5315 	 * we hold the forcewake during initialisation these problems
5316 	 * just magically go away.
5317 	 */
5318 	mutex_lock(&dev_priv->drm.struct_mutex);
5319 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5320 
5321 	ret = i915_gem_init_ggtt(dev_priv);
5322 	if (ret)
5323 		goto out_unlock;
5324 
5325 	ret = i915_gem_contexts_init(dev_priv);
5326 	if (ret)
5327 		goto out_unlock;
5328 
5329 	ret = intel_engines_init(dev_priv);
5330 	if (ret)
5331 		goto out_unlock;
5332 
5333 	ret = i915_gem_init_hw(dev_priv);
5334 	if (ret == -EIO) {
5335 		/* Allow engine initialisation to fail by marking the GPU as
5336 		 * wedged. But we only want to do this where the GPU is angry,
5337 		 * for all other failure, such as an allocation failure, bail.
5338 		 */
5339 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5340 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5341 			i915_gem_set_wedged(dev_priv);
5342 		}
5343 		ret = 0;
5344 	}
5345 
5346 out_unlock:
5347 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5348 	mutex_unlock(&dev_priv->drm.struct_mutex);
5349 
5350 	return ret;
5351 }
5352 
5353 void i915_gem_init_mmio(struct drm_i915_private *i915)
5354 {
5355 	i915_gem_sanitize(i915);
5356 }
5357 
5358 void
5359 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5360 {
5361 	struct intel_engine_cs *engine;
5362 	enum intel_engine_id id;
5363 
5364 	for_each_engine(engine, dev_priv, id)
5365 		dev_priv->gt.cleanup_engine(engine);
5366 }
5367 
5368 void
5369 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5370 {
5371 	int i;
5372 
5373 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5374 	    !IS_CHERRYVIEW(dev_priv))
5375 		dev_priv->num_fence_regs = 32;
5376 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5377 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5378 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5379 		dev_priv->num_fence_regs = 16;
5380 	else
5381 		dev_priv->num_fence_regs = 8;
5382 
5383 	if (intel_vgpu_active(dev_priv))
5384 		dev_priv->num_fence_regs =
5385 				I915_READ(vgtif_reg(avail_rs.fence_num));
5386 
5387 	/* Initialize fence registers to zero */
5388 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5389 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5390 
5391 		fence->i915 = dev_priv;
5392 		fence->id = i;
5393 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5394 	}
5395 	i915_gem_restore_fences(dev_priv);
5396 
5397 	i915_gem_detect_bit_6_swizzle(dev_priv);
5398 }
5399 
5400 int
5401 i915_gem_load_init(struct drm_i915_private *dev_priv)
5402 {
5403 	int err = -ENOMEM;
5404 
5405 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5406 	if (!dev_priv->objects)
5407 		goto err_out;
5408 
5409 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5410 	if (!dev_priv->vmas)
5411 		goto err_objects;
5412 
5413 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5414 	if (!dev_priv->luts)
5415 		goto err_vmas;
5416 
5417 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5418 					SLAB_HWCACHE_ALIGN |
5419 					SLAB_RECLAIM_ACCOUNT |
5420 					SLAB_TYPESAFE_BY_RCU);
5421 	if (!dev_priv->requests)
5422 		goto err_luts;
5423 
5424 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5425 					    SLAB_HWCACHE_ALIGN |
5426 					    SLAB_RECLAIM_ACCOUNT);
5427 	if (!dev_priv->dependencies)
5428 		goto err_requests;
5429 
5430 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5431 	if (!dev_priv->priorities)
5432 		goto err_dependencies;
5433 
5434 	mutex_lock(&dev_priv->drm.struct_mutex);
5435 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5436 	err = i915_gem_timeline_init__global(dev_priv);
5437 	mutex_unlock(&dev_priv->drm.struct_mutex);
5438 	if (err)
5439 		goto err_priorities;
5440 
5441 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5442 
5443 	lockinit(&dev_priv->mm.obj_lock, "i9dpmmo", 0, 0);
5444 	lockinit(&dev_priv->mm.free_lock, "i9dpmmf", 0, 0);
5445 	init_llist_head(&dev_priv->mm.free_list);
5446 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5447 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5448 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5449 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5450 
5451 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5452 			  i915_gem_retire_work_handler);
5453 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5454 			  i915_gem_idle_work_handler);
5455 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5456 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5457 
5458 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5459 
5460 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, 0);
5461 
5462 	return 0;
5463 
5464 err_priorities:
5465 	kmem_cache_destroy(dev_priv->priorities);
5466 err_dependencies:
5467 	kmem_cache_destroy(dev_priv->dependencies);
5468 err_requests:
5469 	kmem_cache_destroy(dev_priv->requests);
5470 err_luts:
5471 	kmem_cache_destroy(dev_priv->luts);
5472 err_vmas:
5473 	kmem_cache_destroy(dev_priv->vmas);
5474 err_objects:
5475 	kmem_cache_destroy(dev_priv->objects);
5476 err_out:
5477 	return err;
5478 }
5479 
5480 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5481 {
5482 	i915_gem_drain_freed_objects(dev_priv);
5483 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5484 	WARN_ON(dev_priv->mm.object_count);
5485 
5486 	mutex_lock(&dev_priv->drm.struct_mutex);
5487 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5488 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5489 	mutex_unlock(&dev_priv->drm.struct_mutex);
5490 
5491 	kmem_cache_destroy(dev_priv->priorities);
5492 	kmem_cache_destroy(dev_priv->dependencies);
5493 	kmem_cache_destroy(dev_priv->requests);
5494 	kmem_cache_destroy(dev_priv->luts);
5495 	kmem_cache_destroy(dev_priv->vmas);
5496 	kmem_cache_destroy(dev_priv->objects);
5497 
5498 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5499 	rcu_barrier();
5500 
5501 #if 0
5502 	i915_gemfs_fini(dev_priv);
5503 #endif
5504 }
5505 
5506 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5507 {
5508 	/* Discard all purgeable objects, let userspace recover those as
5509 	 * required after resuming.
5510 	 */
5511 	i915_gem_shrink_all(dev_priv);
5512 
5513 	return 0;
5514 }
5515 
5516 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5517 {
5518 	struct drm_i915_gem_object *obj;
5519 	struct list_head *phases[] = {
5520 		&dev_priv->mm.unbound_list,
5521 		&dev_priv->mm.bound_list,
5522 		NULL
5523 	}, **p;
5524 
5525 	/* Called just before we write the hibernation image.
5526 	 *
5527 	 * We need to update the domain tracking to reflect that the CPU
5528 	 * will be accessing all the pages to create and restore from the
5529 	 * hibernation, and so upon restoration those pages will be in the
5530 	 * CPU domain.
5531 	 *
5532 	 * To make sure the hibernation image contains the latest state,
5533 	 * we update that state just before writing out the image.
5534 	 *
5535 	 * To try and reduce the hibernation image, we manually shrink
5536 	 * the objects as well, see i915_gem_freeze()
5537 	 */
5538 
5539 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5540 	i915_gem_drain_freed_objects(dev_priv);
5541 
5542 	lockmgr(&dev_priv->mm.obj_lock, LK_EXCLUSIVE);
5543 	for (p = phases; *p; p++) {
5544 		list_for_each_entry(obj, *p, mm.link)
5545 			__start_cpu_write(obj);
5546 	}
5547 	lockmgr(&dev_priv->mm.obj_lock, LK_RELEASE);
5548 
5549 	return 0;
5550 }
5551 
5552 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5553 {
5554 	struct drm_i915_file_private *file_priv = file->driver_priv;
5555 	struct drm_i915_gem_request *request;
5556 
5557 	/* Clean up our request list when the client is going away, so that
5558 	 * later retire_requests won't dereference our soon-to-be-gone
5559 	 * file_priv.
5560 	 */
5561 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
5562 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5563 		request->file_priv = NULL;
5564 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
5565 }
5566 
5567 #ifdef __DragonFly__
5568 int
5569 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5570     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5571 {
5572 	*color = 0; /* XXXKIB */
5573 	return (0);
5574 }
5575 
5576 void
5577 i915_gem_pager_dtor(void *handle)
5578 {
5579 	struct drm_gem_object *obj = handle;
5580 	struct drm_device *dev = obj->dev;
5581 
5582 	drm_gem_free_mmap_offset(obj);
5583 	mutex_lock(&dev->struct_mutex);
5584 	i915_gem_release_mmap(to_intel_bo(obj));
5585 	drm_gem_object_unreference(obj);
5586 	mutex_unlock(&dev->struct_mutex);
5587 }
5588 #endif
5589 
5590 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5591 {
5592 	struct drm_i915_file_private *file_priv;
5593 	int ret;
5594 
5595 	DRM_DEBUG("\n");
5596 
5597 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5598 	if (!file_priv)
5599 		return -ENOMEM;
5600 
5601 	file->driver_priv = file_priv;
5602 	file_priv->dev_priv = i915;
5603 	file_priv->file = file;
5604 
5605 	lockinit(&file_priv->mm.lock, "i915_priv", 0, 0);
5606 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5607 
5608 	file_priv->bsd_engine = -1;
5609 
5610 	ret = i915_gem_context_open(i915, file);
5611 	if (ret)
5612 		kfree(file_priv);
5613 
5614 	return ret;
5615 }
5616 
5617 /**
5618  * i915_gem_track_fb - update frontbuffer tracking
5619  * @old: current GEM buffer for the frontbuffer slots
5620  * @new: new GEM buffer for the frontbuffer slots
5621  * @frontbuffer_bits: bitmask of frontbuffer slots
5622  *
5623  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5624  * from @old and setting them in @new. Both @old and @new can be NULL.
5625  */
5626 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5627 		       struct drm_i915_gem_object *new,
5628 		       unsigned frontbuffer_bits)
5629 {
5630 	/* Control of individual bits within the mask are guarded by
5631 	 * the owning plane->mutex, i.e. we can never see concurrent
5632 	 * manipulation of individual bits. But since the bitfield as a whole
5633 	 * is updated using RMW, we need to use atomics in order to update
5634 	 * the bits.
5635 	 */
5636 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5637 		     sizeof(atomic_t) * BITS_PER_BYTE);
5638 
5639 	if (old) {
5640 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5641 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5642 	}
5643 
5644 	if (new) {
5645 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5646 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5647 	}
5648 }
5649 
5650 /* Allocate a new GEM object and fill it with the supplied data */
5651 struct drm_i915_gem_object *
5652 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5653 			         const void *data, size_t size)
5654 {
5655 	struct drm_i915_gem_object *obj;
5656 	struct vm_object *file;
5657 	size_t offset;
5658 	int err;
5659 
5660 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5661 	if (IS_ERR(obj))
5662 		return obj;
5663 
5664 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5665 
5666 	file = obj->base.filp;
5667 	offset = 0;
5668 	do {
5669 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5670 		struct page *page;
5671 		void *pgdata, *vaddr;
5672 
5673 		err = pagecache_write_begin(file, NULL,
5674 					    offset, len, 0,
5675 					    &page, &pgdata);
5676 		if (err < 0)
5677 			goto fail;
5678 
5679 		vaddr = kmap(page);
5680 		memcpy(vaddr, data, len);
5681 		kunmap(page);
5682 
5683 #ifndef __DragonFly__
5684 		err = pagecache_write_end(file, file->f_mapping,
5685 #else
5686 		err = pagecache_write_end(file, NULL,
5687 #endif
5688 					  offset, len, len,
5689 					  page, pgdata);
5690 		if (err < 0)
5691 			goto fail;
5692 
5693 		size -= len;
5694 		data += len;
5695 		offset += len;
5696 	} while (size);
5697 
5698 	return obj;
5699 
5700 fail:
5701 	i915_gem_object_put(obj);
5702 	return ERR_PTR(err);
5703 }
5704 
5705 struct scatterlist *
5706 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5707 		       unsigned int n,
5708 		       unsigned int *offset)
5709 {
5710 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5711 	struct scatterlist *sg;
5712 	unsigned int idx, count;
5713 
5714 	might_sleep();
5715 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5716 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5717 
5718 	/* As we iterate forward through the sg, we record each entry in a
5719 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5720 	 * this index previously, we will have an entry for it.
5721 	 *
5722 	 * Initial lookup is O(N), but this is amortized to O(1) for
5723 	 * sequential page access (where each new request is consecutive
5724 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5725 	 * i.e. O(1) with a large constant!
5726 	 */
5727 	if (n < READ_ONCE(iter->sg_idx))
5728 		goto lookup;
5729 
5730 	mutex_lock(&iter->lock);
5731 
5732 	/* We prefer to reuse the last sg so that repeated lookup of this
5733 	 * (or the subsequent) sg are fast - comparing against the last
5734 	 * sg is faster than going through the radixtree.
5735 	 */
5736 
5737 	sg = iter->sg_pos;
5738 	idx = iter->sg_idx;
5739 	count = __sg_page_count(sg);
5740 
5741 	while (idx + count <= n) {
5742 		unsigned long exception, i;
5743 		int ret;
5744 
5745 		/* If we cannot allocate and insert this entry, or the
5746 		 * individual pages from this range, cancel updating the
5747 		 * sg_idx so that on this lookup we are forced to linearly
5748 		 * scan onwards, but on future lookups we will try the
5749 		 * insertion again (in which case we need to be careful of
5750 		 * the error return reporting that we have already inserted
5751 		 * this index).
5752 		 */
5753 		ret = radix_tree_insert(&iter->radix, idx, sg);
5754 		if (ret && ret != -EEXIST)
5755 			goto scan;
5756 
5757 		exception =
5758 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5759 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5760 		for (i = 1; i < count; i++) {
5761 			ret = radix_tree_insert(&iter->radix, idx + i,
5762 						(void *)exception);
5763 			if (ret && ret != -EEXIST)
5764 				goto scan;
5765 		}
5766 
5767 		idx += count;
5768 		sg = ____sg_next(sg);
5769 		count = __sg_page_count(sg);
5770 	}
5771 
5772 scan:
5773 	iter->sg_pos = sg;
5774 	iter->sg_idx = idx;
5775 
5776 	mutex_unlock(&iter->lock);
5777 
5778 	if (unlikely(n < idx)) /* insertion completed by another thread */
5779 		goto lookup;
5780 
5781 	/* In case we failed to insert the entry into the radixtree, we need
5782 	 * to look beyond the current sg.
5783 	 */
5784 	while (idx + count <= n) {
5785 		idx += count;
5786 		sg = ____sg_next(sg);
5787 		count = __sg_page_count(sg);
5788 	}
5789 
5790 	*offset = n - idx;
5791 	return sg;
5792 
5793 lookup:
5794 	rcu_read_lock();
5795 
5796 	sg = radix_tree_lookup(&iter->radix, n);
5797 	GEM_BUG_ON(!sg);
5798 
5799 	/* If this index is in the middle of multi-page sg entry,
5800 	 * the radixtree will contain an exceptional entry that points
5801 	 * to the start of that range. We will return the pointer to
5802 	 * the base page and the offset of this page within the
5803 	 * sg entry's range.
5804 	 */
5805 	*offset = 0;
5806 	if (unlikely(radix_tree_exception(sg))) {
5807 		unsigned long base =
5808 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5809 
5810 		sg = radix_tree_lookup(&iter->radix, base);
5811 		GEM_BUG_ON(!sg);
5812 
5813 		*offset = n - base;
5814 	}
5815 
5816 	rcu_read_unlock();
5817 
5818 	return sg;
5819 }
5820 
5821 struct page *
5822 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5823 {
5824 	struct scatterlist *sg;
5825 	unsigned int offset;
5826 
5827 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5828 
5829 	sg = i915_gem_object_get_sg(obj, n, &offset);
5830 	return nth_page(sg_page(sg), offset);
5831 }
5832 
5833 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5834 struct page *
5835 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5836 			       unsigned int n)
5837 {
5838 	struct page *page;
5839 
5840 	page = i915_gem_object_get_page(obj, n);
5841 	if (!obj->mm.dirty)
5842 		set_page_dirty(page);
5843 
5844 	return page;
5845 }
5846 
5847 dma_addr_t
5848 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5849 				unsigned long n)
5850 {
5851 	struct scatterlist *sg;
5852 	unsigned int offset;
5853 
5854 	sg = i915_gem_object_get_sg(obj, n, &offset);
5855 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5856 }
5857 
5858 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5859 {
5860 	struct sg_table *pages;
5861 	int err;
5862 
5863 	if (align > obj->base.size)
5864 		return -EINVAL;
5865 
5866 	if (obj->ops == &i915_gem_phys_ops)
5867 		return 0;
5868 
5869 	if (obj->ops != &i915_gem_object_ops)
5870 		return -EINVAL;
5871 
5872 	err = i915_gem_object_unbind(obj);
5873 	if (err)
5874 		return err;
5875 
5876 	mutex_lock(&obj->mm.lock);
5877 
5878 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5879 		err = -EFAULT;
5880 		goto err_unlock;
5881 	}
5882 
5883 	if (obj->mm.quirked) {
5884 		err = -EFAULT;
5885 		goto err_unlock;
5886 	}
5887 
5888 	if (obj->mm.mapping) {
5889 		err = -EBUSY;
5890 		goto err_unlock;
5891 	}
5892 
5893 	pages = fetch_and_zero(&obj->mm.pages);
5894 	if (pages) {
5895 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5896 
5897 		__i915_gem_object_reset_page_iter(obj);
5898 
5899 		lockmgr(&i915->mm.obj_lock, LK_EXCLUSIVE);
5900 		list_del(&obj->mm.link);
5901 		lockmgr(&i915->mm.obj_lock, LK_RELEASE);
5902 	}
5903 
5904 	obj->ops = &i915_gem_phys_ops;
5905 
5906 	err = ____i915_gem_object_get_pages(obj);
5907 	if (err)
5908 		goto err_xfer;
5909 
5910 	/* Perma-pin (until release) the physical set of pages */
5911 	__i915_gem_object_pin_pages(obj);
5912 
5913 	if (!IS_ERR_OR_NULL(pages))
5914 		i915_gem_object_ops.put_pages(obj, pages);
5915 	mutex_unlock(&obj->mm.lock);
5916 	return 0;
5917 
5918 err_xfer:
5919 	obj->ops = &i915_gem_object_ops;
5920 	obj->mm.pages = pages;
5921 err_unlock:
5922 	mutex_unlock(&obj->mm.lock);
5923 	return err;
5924 }
5925 
5926 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5927 #include "selftests/scatterlist.c"
5928 #include "selftests/mock_gem_device.c"
5929 #include "selftests/huge_gem_object.c"
5930 #include "selftests/huge_pages.c"
5931 #include "selftests/i915_gem_object.c"
5932 #include "selftests/i915_gem_coherency.c"
5933 #endif
5934