xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision 6996755b)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 #include <linux/swiotlb.h>
48 
49 #include <sys/mman.h>
50 #include <vm/vm_map.h>
51 #include <vm/vm_param.h>
52 
53 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
54 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
55 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
56 
57 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58 {
59 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60 		return false;
61 
62 	if (!i915_gem_object_is_coherent(obj))
63 		return true;
64 
65 	return obj->pin_display;
66 }
67 
68 static int
69 insert_mappable_node(struct i915_ggtt *ggtt,
70                      struct drm_mm_node *node, u32 size)
71 {
72 	memset(node, 0, sizeof(*node));
73 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
74 					   size, 0, I915_COLOR_UNEVICTABLE,
75 					   0, ggtt->mappable_end,
76 					   DRM_MM_INSERT_LOW);
77 }
78 
79 static void
80 remove_mappable_node(struct drm_mm_node *node)
81 {
82 	drm_mm_remove_node(node);
83 }
84 
85 /* some bookkeeping */
86 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87 				  u64 size)
88 {
89 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
90 	dev_priv->mm.object_count++;
91 	dev_priv->mm.object_memory += size;
92 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
93 }
94 
95 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96 				     u64 size)
97 {
98 	lockmgr(&dev_priv->mm.object_stat_lock, LK_EXCLUSIVE);
99 	dev_priv->mm.object_count--;
100 	dev_priv->mm.object_memory -= size;
101 	lockmgr(&dev_priv->mm.object_stat_lock, LK_RELEASE);
102 }
103 
104 static int
105 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 {
107 	int ret;
108 
109 	might_sleep();
110 
111 	/*
112 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 	 * userspace. If it takes that long something really bad is going on and
114 	 * we should simply try to bail out and fail as gracefully as possible.
115 	 */
116 	ret = wait_event_interruptible_timeout(error->reset_queue,
117 					       !i915_reset_backoff(error),
118 					       I915_RESET_TIMEOUT);
119 	if (ret == 0) {
120 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 		return -EIO;
122 	} else if (ret < 0) {
123 		return ret;
124 	} else {
125 		return 0;
126 	}
127 }
128 
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 	struct drm_i915_private *dev_priv = to_i915(dev);
132 	int ret;
133 
134 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 	if (ret)
136 		return ret;
137 
138 	ret = mutex_lock_interruptible(&dev->struct_mutex);
139 	if (ret)
140 		return ret;
141 
142 	return 0;
143 }
144 
145 int
146 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
147 			    struct drm_file *file)
148 {
149 	struct drm_i915_private *dev_priv = to_i915(dev);
150 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
151 	struct drm_i915_gem_get_aperture *args = data;
152 	struct i915_vma *vma;
153 	size_t pinned;
154 
155 	pinned = 0;
156 	mutex_lock(&dev->struct_mutex);
157 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
158 		if (i915_vma_is_pinned(vma))
159 			pinned += vma->node.size;
160 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
161 		if (i915_vma_is_pinned(vma))
162 			pinned += vma->node.size;
163 	mutex_unlock(&dev->struct_mutex);
164 
165 	args->aper_size = ggtt->base.total;
166 	args->aper_available_size = args->aper_size - pinned;
167 
168 	return 0;
169 }
170 
171 static struct sg_table *
172 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
173 {
174 #if 0
175 	struct address_space *mapping = obj->base.filp->f_mapping;
176 #else
177 	vm_object_t vm_obj = obj->base.filp;
178 #endif
179 	drm_dma_handle_t *phys;
180 	struct sg_table *st;
181 	struct scatterlist *sg;
182 	char *vaddr;
183 	int i;
184 
185 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186 		return ERR_PTR(-EINVAL);
187 
188 	/* Always aligning to the object size, allows a single allocation
189 	 * to handle all possible callers, and given typical object sizes,
190 	 * the alignment of the buddy allocation will naturally match.
191 	 */
192 	phys = drm_pci_alloc(obj->base.dev,
193 			     obj->base.size,
194 			     roundup_pow_of_two(obj->base.size));
195 	if (!phys)
196 		return ERR_PTR(-ENOMEM);
197 
198 	vaddr = phys->vaddr;
199 	VM_OBJECT_LOCK(vm_obj);
200 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
201 		struct page *page;
202 		char *src;
203 
204 #if 0
205 		page = shmem_read_mapping_page(mapping, i);
206 #else
207 		page = shmem_read_mapping_page(vm_obj, i);
208 #endif
209 		if (IS_ERR(page)) {
210 			st = ERR_CAST(page);
211 			goto err_phys;
212 		}
213 
214 		src = kmap_atomic(page);
215 		memcpy(vaddr, src, PAGE_SIZE);
216 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
217 		kunmap_atomic(src);
218 
219 		put_page(page);
220 		vaddr += PAGE_SIZE;
221 	}
222 	VM_OBJECT_UNLOCK(vm_obj);
223 
224 	i915_gem_chipset_flush(to_i915(obj->base.dev));
225 
226 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
227 	if (!st) {
228 		st = ERR_PTR(-ENOMEM);
229 		goto err_phys;
230 	}
231 
232 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
233 		kfree(st);
234 		st = ERR_PTR(-ENOMEM);
235 		goto err_phys;
236 	}
237 
238 	sg = st->sgl;
239 	sg->offset = 0;
240 	sg->length = obj->base.size;
241 
242 	sg_dma_address(sg) = phys->busaddr;
243 	sg_dma_len(sg) = obj->base.size;
244 
245 	obj->phys_handle = phys;
246 	return st;
247 
248 err_phys:
249 	drm_pci_free(obj->base.dev, phys);
250 	return st;
251 }
252 
253 static void
254 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
255 				struct sg_table *pages,
256 				bool needs_clflush)
257 {
258 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
259 
260 	if (obj->mm.madv == I915_MADV_DONTNEED)
261 		obj->mm.dirty = false;
262 
263 	if (needs_clflush &&
264 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
265 	    !i915_gem_object_is_coherent(obj))
266 		drm_clflush_sg(pages);
267 
268 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
269 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
270 }
271 
272 static void
273 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
274 			       struct sg_table *pages)
275 {
276 	__i915_gem_object_release_shmem(obj, pages, false);
277 
278 	if (obj->mm.dirty) {
279 #if 0
280 		struct address_space *mapping = obj->base.filp->f_mapping;
281 #else
282 		vm_object_t vm_obj = obj->base.filp;
283 #endif
284 		char *vaddr = obj->phys_handle->vaddr;
285 		int i;
286 
287 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
288 			struct page *page;
289 			char *dst;
290 
291 			page = shmem_read_mapping_page(vm_obj, i);
292 			if (IS_ERR(page))
293 				continue;
294 
295 			dst = kmap_atomic(page);
296 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
297 			memcpy(dst, vaddr, PAGE_SIZE);
298 			kunmap_atomic(dst);
299 
300 			set_page_dirty(page);
301 			if (obj->mm.madv == I915_MADV_WILLNEED)
302 				mark_page_accessed(page);
303 			put_page(page);
304 			vaddr += PAGE_SIZE;
305 		}
306 		obj->mm.dirty = false;
307 	}
308 
309 	sg_free_table(pages);
310 	kfree(pages);
311 
312 	drm_pci_free(obj->base.dev, obj->phys_handle);
313 }
314 
315 static void
316 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317 {
318 	i915_gem_object_unpin_pages(obj);
319 }
320 
321 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322 	.get_pages = i915_gem_object_get_pages_phys,
323 	.put_pages = i915_gem_object_put_pages_phys,
324 	.release = i915_gem_object_release_phys,
325 };
326 
327 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
328 
329 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
330 {
331 	struct i915_vma *vma;
332 	LINUX_LIST_HEAD(still_in_list);
333 	int ret;
334 
335 	lockdep_assert_held(&obj->base.dev->struct_mutex);
336 
337 	/* Closed vma are removed from the obj->vma_list - but they may
338 	 * still have an active binding on the object. To remove those we
339 	 * must wait for all rendering to complete to the object (as unbinding
340 	 * must anyway), and retire the requests.
341 	 */
342 	ret = i915_gem_object_wait(obj,
343 				   I915_WAIT_INTERRUPTIBLE |
344 				   I915_WAIT_LOCKED |
345 				   I915_WAIT_ALL,
346 				   MAX_SCHEDULE_TIMEOUT,
347 				   NULL);
348 	if (ret)
349 		return ret;
350 
351 	i915_gem_retire_requests(to_i915(obj->base.dev));
352 
353 	while ((vma = list_first_entry_or_null(&obj->vma_list,
354 					       struct i915_vma,
355 					       obj_link))) {
356 		list_move_tail(&vma->obj_link, &still_in_list);
357 		ret = i915_vma_unbind(vma);
358 		if (ret)
359 			break;
360 	}
361 	list_splice(&still_in_list, &obj->vma_list);
362 
363 	return ret;
364 }
365 
366 static long
367 i915_gem_object_wait_fence(struct dma_fence *fence,
368 			   unsigned int flags,
369 			   long timeout,
370 			   struct intel_rps_client *rps)
371 {
372 	struct drm_i915_gem_request *rq;
373 
374 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
375 
376 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
377 		return timeout;
378 
379 	if (!dma_fence_is_i915(fence))
380 		return dma_fence_wait_timeout(fence,
381 					      flags & I915_WAIT_INTERRUPTIBLE,
382 					      timeout);
383 
384 	rq = to_request(fence);
385 	if (i915_gem_request_completed(rq))
386 		goto out;
387 
388 	/* This client is about to stall waiting for the GPU. In many cases
389 	 * this is undesirable and limits the throughput of the system, as
390 	 * many clients cannot continue processing user input/output whilst
391 	 * blocked. RPS autotuning may take tens of milliseconds to respond
392 	 * to the GPU load and thus incurs additional latency for the client.
393 	 * We can circumvent that by promoting the GPU frequency to maximum
394 	 * before we wait. This makes the GPU throttle up much more quickly
395 	 * (good for benchmarks and user experience, e.g. window animations),
396 	 * but at a cost of spending more power processing the workload
397 	 * (bad for battery). Not all clients even want their results
398 	 * immediately and for them we should just let the GPU select its own
399 	 * frequency to maximise efficiency. To prevent a single client from
400 	 * forcing the clocks too high for the whole system, we only allow
401 	 * each client to waitboost once in a busy period.
402 	 */
403 	if (rps) {
404 		if (INTEL_GEN(rq->i915) >= 6)
405 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
406 		else
407 			rps = NULL;
408 	}
409 
410 	timeout = i915_wait_request(rq, flags, timeout);
411 
412 out:
413 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
414 		i915_gem_request_retire_upto(rq);
415 
416 	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
417 		/* The GPU is now idle and this client has stalled.
418 		 * Since no other client has submitted a request in the
419 		 * meantime, assume that this client is the only one
420 		 * supplying work to the GPU but is unable to keep that
421 		 * work supplied because it is waiting. Since the GPU is
422 		 * then never kept fully busy, RPS autoclocking will
423 		 * keep the clocks relatively low, causing further delays.
424 		 * Compensate by giving the synchronous client credit for
425 		 * a waitboost next time.
426 		 */
427 		lockmgr(&rq->i915->rps.client_lock, LK_EXCLUSIVE);
428 		list_del_init(&rps->link);
429 		lockmgr(&rq->i915->rps.client_lock, LK_RELEASE);
430 	}
431 
432 	return timeout;
433 }
434 
435 static long
436 i915_gem_object_wait_reservation(struct reservation_object *resv,
437 				 unsigned int flags,
438 				 long timeout,
439 				 struct intel_rps_client *rps)
440 {
441 	unsigned int seq = __read_seqcount_begin(&resv->seq);
442 	struct dma_fence *excl;
443 	bool prune_fences = false;
444 
445 	if (flags & I915_WAIT_ALL) {
446 		struct dma_fence **shared;
447 		unsigned int count, i;
448 		int ret;
449 
450 		ret = reservation_object_get_fences_rcu(resv,
451 							&excl, &count, &shared);
452 		if (ret)
453 			return ret;
454 
455 		for (i = 0; i < count; i++) {
456 			timeout = i915_gem_object_wait_fence(shared[i],
457 							     flags, timeout,
458 							     rps);
459 			if (timeout < 0)
460 				break;
461 
462 			dma_fence_put(shared[i]);
463 		}
464 
465 		for (; i < count; i++)
466 			dma_fence_put(shared[i]);
467 		kfree(shared);
468 
469 		prune_fences = count && timeout >= 0;
470 	} else {
471 		excl = reservation_object_get_excl_rcu(resv);
472 	}
473 
474 	if (excl && timeout >= 0) {
475 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
476 		prune_fences = timeout >= 0;
477 	}
478 
479 	dma_fence_put(excl);
480 
481 	/* Oportunistically prune the fences iff we know they have *all* been
482 	 * signaled and that the reservation object has not been changed (i.e.
483 	 * no new fences have been added).
484 	 */
485 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
486 		if (reservation_object_trylock(resv)) {
487 			if (!__read_seqcount_retry(&resv->seq, seq))
488 				reservation_object_add_excl_fence(resv, NULL);
489 			reservation_object_unlock(resv);
490 		}
491 	}
492 
493 	return timeout;
494 }
495 
496 static void __fence_set_priority(struct dma_fence *fence, int prio)
497 {
498 	struct drm_i915_gem_request *rq;
499 	struct intel_engine_cs *engine;
500 
501 	if (!dma_fence_is_i915(fence))
502 		return;
503 
504 	rq = to_request(fence);
505 	engine = rq->engine;
506 	if (!engine->schedule)
507 		return;
508 
509 	engine->schedule(rq, prio);
510 }
511 
512 static void fence_set_priority(struct dma_fence *fence, int prio)
513 {
514 	/* Recurse once into a fence-array */
515 	if (dma_fence_is_array(fence)) {
516 		struct dma_fence_array *array = to_dma_fence_array(fence);
517 		int i;
518 
519 		for (i = 0; i < array->num_fences; i++)
520 			__fence_set_priority(array->fences[i], prio);
521 	} else {
522 		__fence_set_priority(fence, prio);
523 	}
524 }
525 
526 int
527 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
528 			      unsigned int flags,
529 			      int prio)
530 {
531 	struct dma_fence *excl;
532 
533 	if (flags & I915_WAIT_ALL) {
534 		struct dma_fence **shared;
535 		unsigned int count, i;
536 		int ret;
537 
538 		ret = reservation_object_get_fences_rcu(obj->resv,
539 							&excl, &count, &shared);
540 		if (ret)
541 			return ret;
542 
543 		for (i = 0; i < count; i++) {
544 			fence_set_priority(shared[i], prio);
545 			dma_fence_put(shared[i]);
546 		}
547 
548 		kfree(shared);
549 	} else {
550 		excl = reservation_object_get_excl_rcu(obj->resv);
551 	}
552 
553 	if (excl) {
554 		fence_set_priority(excl, prio);
555 		dma_fence_put(excl);
556 	}
557 	return 0;
558 }
559 
560 /**
561  * Waits for rendering to the object to be completed
562  * @obj: i915 gem object
563  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
564  * @timeout: how long to wait
565  * @rps: client (user process) to charge for any waitboosting
566  */
567 int
568 i915_gem_object_wait(struct drm_i915_gem_object *obj,
569 		     unsigned int flags,
570 		     long timeout,
571 		     struct intel_rps_client *rps)
572 {
573 	might_sleep();
574 #if IS_ENABLED(CONFIG_LOCKDEP)
575 	GEM_BUG_ON(debug_locks &&
576 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
577 		   !!(flags & I915_WAIT_LOCKED));
578 #endif
579 	GEM_BUG_ON(timeout < 0);
580 
581 	timeout = i915_gem_object_wait_reservation(obj->resv,
582 						   flags, timeout,
583 						   rps);
584 	return timeout < 0 ? timeout : 0;
585 }
586 
587 static struct intel_rps_client *to_rps_client(struct drm_file *file)
588 {
589 	struct drm_i915_file_private *fpriv = file->driver_priv;
590 
591 	return &fpriv->rps;
592 }
593 
594 int
595 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
596 			    int align)
597 {
598 	int ret;
599 
600 	if (align > obj->base.size)
601 		return -EINVAL;
602 
603 	if (obj->ops == &i915_gem_phys_ops)
604 		return 0;
605 
606 	if (obj->mm.madv != I915_MADV_WILLNEED)
607 		return -EFAULT;
608 
609 	if (obj->base.filp == NULL)
610 		return -EINVAL;
611 
612 	ret = i915_gem_object_unbind(obj);
613 	if (ret)
614 		return ret;
615 
616 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
617 	if (obj->mm.pages)
618 		return -EBUSY;
619 
620 	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
621 	obj->ops = &i915_gem_phys_ops;
622 
623 	ret = i915_gem_object_pin_pages(obj);
624 	if (ret)
625 		goto err_xfer;
626 
627 	return 0;
628 
629 err_xfer:
630 	obj->ops = &i915_gem_object_ops;
631 	return ret;
632 }
633 
634 static int
635 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
636 		     struct drm_i915_gem_pwrite *args,
637 		     struct drm_file *file)
638 {
639 	void *vaddr = obj->phys_handle->vaddr + args->offset;
640 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
641 
642 	/* We manually control the domain here and pretend that it
643 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
644 	 */
645 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
646 	if (copy_from_user(vaddr, user_data, args->size))
647 		return -EFAULT;
648 
649 	drm_clflush_virt_range(vaddr, args->size);
650 	i915_gem_chipset_flush(to_i915(obj->base.dev));
651 
652 	intel_fb_obj_flush(obj, ORIGIN_CPU);
653 	return 0;
654 }
655 
656 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
657 {
658 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
659 }
660 
661 void i915_gem_object_free(struct drm_i915_gem_object *obj)
662 {
663 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
664 	kmem_cache_free(dev_priv->objects, obj);
665 }
666 
667 static int
668 i915_gem_create(struct drm_file *file,
669 		struct drm_i915_private *dev_priv,
670 		uint64_t size,
671 		uint32_t *handle_p)
672 {
673 	struct drm_i915_gem_object *obj;
674 	int ret;
675 	u32 handle;
676 
677 	size = roundup(size, PAGE_SIZE);
678 	if (size == 0)
679 		return -EINVAL;
680 
681 	/* Allocate the new object */
682 	obj = i915_gem_object_create(dev_priv, size);
683 	if (IS_ERR(obj))
684 		return PTR_ERR(obj);
685 
686 	ret = drm_gem_handle_create(file, &obj->base, &handle);
687 	/* drop reference from allocate - handle holds it now */
688 	i915_gem_object_put(obj);
689 	if (ret)
690 		return ret;
691 
692 	*handle_p = handle;
693 	return 0;
694 }
695 
696 int
697 i915_gem_dumb_create(struct drm_file *file,
698 		     struct drm_device *dev,
699 		     struct drm_mode_create_dumb *args)
700 {
701 	/* have to work out size/pitch and return them */
702 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
703 	args->size = args->pitch * args->height;
704 	return i915_gem_create(file, to_i915(dev),
705 			       args->size, &args->handle);
706 }
707 
708 /**
709  * Creates a new mm object and returns a handle to it.
710  * @dev: drm device pointer
711  * @data: ioctl data blob
712  * @file: drm file pointer
713  */
714 int
715 i915_gem_create_ioctl(struct drm_device *dev, void *data,
716 		      struct drm_file *file)
717 {
718 	struct drm_i915_private *dev_priv = to_i915(dev);
719 	struct drm_i915_gem_create *args = data;
720 
721 	i915_gem_flush_free_objects(dev_priv);
722 
723 	return i915_gem_create(file, dev_priv,
724 			       args->size, &args->handle);
725 }
726 
727 static inline int
728 __copy_to_user_swizzled(char __user *cpu_vaddr,
729 			const char *gpu_vaddr, int gpu_offset,
730 			int length)
731 {
732 	int ret, cpu_offset = 0;
733 
734 	while (length > 0) {
735 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
736 		int this_length = min(cacheline_end - gpu_offset, length);
737 		int swizzled_gpu_offset = gpu_offset ^ 64;
738 
739 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
740 				     gpu_vaddr + swizzled_gpu_offset,
741 				     this_length);
742 		if (ret)
743 			return ret + length;
744 
745 		cpu_offset += this_length;
746 		gpu_offset += this_length;
747 		length -= this_length;
748 	}
749 
750 	return 0;
751 }
752 
753 static inline int
754 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
755 			  const char __user *cpu_vaddr,
756 			  int length)
757 {
758 	int ret, cpu_offset = 0;
759 
760 	while (length > 0) {
761 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
762 		int this_length = min(cacheline_end - gpu_offset, length);
763 		int swizzled_gpu_offset = gpu_offset ^ 64;
764 
765 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
766 				       cpu_vaddr + cpu_offset,
767 				       this_length);
768 		if (ret)
769 			return ret + length;
770 
771 		cpu_offset += this_length;
772 		gpu_offset += this_length;
773 		length -= this_length;
774 	}
775 
776 	return 0;
777 }
778 
779 /*
780  * Pins the specified object's pages and synchronizes the object with
781  * GPU accesses. Sets needs_clflush to non-zero if the caller should
782  * flush the object from the CPU cache.
783  */
784 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
785 				    unsigned int *needs_clflush)
786 {
787 	int ret;
788 
789 	lockdep_assert_held(&obj->base.dev->struct_mutex);
790 
791 	*needs_clflush = 0;
792 	if (!i915_gem_object_has_struct_page(obj))
793 		return -ENODEV;
794 
795 	ret = i915_gem_object_wait(obj,
796 				   I915_WAIT_INTERRUPTIBLE |
797 				   I915_WAIT_LOCKED,
798 				   MAX_SCHEDULE_TIMEOUT,
799 				   NULL);
800 	if (ret)
801 		return ret;
802 
803 	ret = i915_gem_object_pin_pages(obj);
804 	if (ret)
805 		return ret;
806 
807 	if (i915_gem_object_is_coherent(obj) ||
808 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
809 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
810 		if (ret)
811 			goto err_unpin;
812 		else
813 			goto out;
814 	}
815 
816 	i915_gem_object_flush_gtt_write_domain(obj);
817 
818 	/* If we're not in the cpu read domain, set ourself into the gtt
819 	 * read domain and manually flush cachelines (if required). This
820 	 * optimizes for the case when the gpu will dirty the data
821 	 * anyway again before the next pread happens.
822 	 */
823 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
824 		*needs_clflush = CLFLUSH_BEFORE;
825 
826 out:
827 	/* return with the pages pinned */
828 	return 0;
829 
830 err_unpin:
831 	i915_gem_object_unpin_pages(obj);
832 	return ret;
833 }
834 
835 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
836 				     unsigned int *needs_clflush)
837 {
838 	int ret;
839 
840 	lockdep_assert_held(&obj->base.dev->struct_mutex);
841 
842 	*needs_clflush = 0;
843 	if (!i915_gem_object_has_struct_page(obj))
844 		return -ENODEV;
845 
846 	ret = i915_gem_object_wait(obj,
847 				   I915_WAIT_INTERRUPTIBLE |
848 				   I915_WAIT_LOCKED |
849 				   I915_WAIT_ALL,
850 				   MAX_SCHEDULE_TIMEOUT,
851 				   NULL);
852 	if (ret)
853 		return ret;
854 
855 	ret = i915_gem_object_pin_pages(obj);
856 	if (ret)
857 		return ret;
858 
859 	if (i915_gem_object_is_coherent(obj) ||
860 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 		if (ret)
863 			goto err_unpin;
864 		else
865 			goto out;
866 	}
867 
868 	i915_gem_object_flush_gtt_write_domain(obj);
869 
870 	/* If we're not in the cpu write domain, set ourself into the
871 	 * gtt write domain and manually flush cachelines (as required).
872 	 * This optimizes for the case when the gpu will use the data
873 	 * right away and we therefore have to clflush anyway.
874 	 */
875 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
876 		*needs_clflush |= CLFLUSH_AFTER;
877 
878 	/* Same trick applies to invalidate partially written cachelines read
879 	 * before writing.
880 	 */
881 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
882 		*needs_clflush |= CLFLUSH_BEFORE;
883 
884 out:
885 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
886 	obj->mm.dirty = true;
887 	/* return with the pages pinned */
888 	return 0;
889 
890 err_unpin:
891 	i915_gem_object_unpin_pages(obj);
892 	return ret;
893 }
894 
895 static void
896 shmem_clflush_swizzled_range(char *addr, unsigned long length,
897 			     bool swizzled)
898 {
899 	if (unlikely(swizzled)) {
900 		unsigned long start = (unsigned long) addr;
901 		unsigned long end = (unsigned long) addr + length;
902 
903 		/* For swizzling simply ensure that we always flush both
904 		 * channels. Lame, but simple and it works. Swizzled
905 		 * pwrite/pread is far from a hotpath - current userspace
906 		 * doesn't use it at all. */
907 		start = round_down(start, 128);
908 		end = round_up(end, 128);
909 
910 		drm_clflush_virt_range((void *)start, end - start);
911 	} else {
912 		drm_clflush_virt_range(addr, length);
913 	}
914 
915 }
916 
917 /* Only difference to the fast-path function is that this can handle bit17
918  * and uses non-atomic copy and kmap functions. */
919 static int
920 shmem_pread_slow(struct page *page, int offset, int length,
921 		 char __user *user_data,
922 		 bool page_do_bit17_swizzling, bool needs_clflush)
923 {
924 	char *vaddr;
925 	int ret;
926 
927 	vaddr = kmap(page);
928 	if (needs_clflush)
929 		shmem_clflush_swizzled_range(vaddr + offset, length,
930 					     page_do_bit17_swizzling);
931 
932 	if (page_do_bit17_swizzling)
933 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
934 	else
935 		ret = __copy_to_user(user_data, vaddr + offset, length);
936 	kunmap(page);
937 
938 	return ret ? - EFAULT : 0;
939 }
940 
941 static int
942 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
943 	    bool page_do_bit17_swizzling, bool needs_clflush)
944 {
945 	int ret;
946 
947 	ret = -ENODEV;
948 	if (!page_do_bit17_swizzling) {
949 		char *vaddr = kmap_atomic(page);
950 
951 		if (needs_clflush)
952 			drm_clflush_virt_range(vaddr + offset, length);
953 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
954 		kunmap_atomic(vaddr);
955 	}
956 	if (ret == 0)
957 		return 0;
958 
959 	return shmem_pread_slow(page, offset, length, user_data,
960 				page_do_bit17_swizzling, needs_clflush);
961 }
962 
963 static int
964 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
965 		     struct drm_i915_gem_pread *args)
966 {
967 	char __user *user_data;
968 	u64 remain;
969 	unsigned int obj_do_bit17_swizzling;
970 	unsigned int needs_clflush;
971 	unsigned int idx, offset;
972 	int ret;
973 
974 	obj_do_bit17_swizzling = 0;
975 	if (i915_gem_object_needs_bit17_swizzle(obj))
976 		obj_do_bit17_swizzling = BIT(17);
977 
978 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
979 	if (ret)
980 		return ret;
981 
982 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
983 	mutex_unlock(&obj->base.dev->struct_mutex);
984 	if (ret)
985 		return ret;
986 
987 	remain = args->size;
988 	user_data = u64_to_user_ptr(args->data_ptr);
989 	offset = offset_in_page(args->offset);
990 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
991 		struct page *page = i915_gem_object_get_page(obj, idx);
992 		int length;
993 
994 		length = remain;
995 		if (offset + length > PAGE_SIZE)
996 			length = PAGE_SIZE - offset;
997 
998 		ret = shmem_pread(page, offset, length, user_data,
999 				  page_to_phys(page) & obj_do_bit17_swizzling,
1000 				  needs_clflush);
1001 		if (ret)
1002 			break;
1003 
1004 		remain -= length;
1005 		user_data += length;
1006 		offset = 0;
1007 	}
1008 
1009 	i915_gem_obj_finish_shmem_access(obj);
1010 	return ret;
1011 }
1012 
1013 static inline bool
1014 gtt_user_read(struct io_mapping *mapping,
1015 	      loff_t base, int offset,
1016 	      char __user *user_data, int length)
1017 {
1018 	void *vaddr;
1019 	unsigned long unwritten;
1020 
1021 	/* We can use the cpu mem copy function because this is X86. */
1022 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1023 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1024 	io_mapping_unmap_atomic(vaddr);
1025 	if (unwritten) {
1026 		vaddr = (void __force *)
1027 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1028 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1029 		io_mapping_unmap(vaddr);
1030 	}
1031 	return unwritten;
1032 }
1033 
1034 static int
1035 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1036 		   const struct drm_i915_gem_pread *args)
1037 {
1038 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1039 	struct i915_ggtt *ggtt = &i915->ggtt;
1040 	struct drm_mm_node node;
1041 	struct i915_vma *vma;
1042 	void __user *user_data;
1043 	u64 remain, offset;
1044 	int ret;
1045 
1046 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1047 	if (ret)
1048 		return ret;
1049 
1050 	intel_runtime_pm_get(i915);
1051 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1052 				       PIN_MAPPABLE | PIN_NONBLOCK);
1053 	if (!IS_ERR(vma)) {
1054 		node.start = i915_ggtt_offset(vma);
1055 		node.allocated = false;
1056 		ret = i915_vma_put_fence(vma);
1057 		if (ret) {
1058 			i915_vma_unpin(vma);
1059 			vma = ERR_PTR(ret);
1060 		}
1061 	}
1062 	if (IS_ERR(vma)) {
1063 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1064 		if (ret)
1065 			goto out_unlock;
1066 		GEM_BUG_ON(!node.allocated);
1067 	}
1068 
1069 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1070 	if (ret)
1071 		goto out_unpin;
1072 
1073 	mutex_unlock(&i915->drm.struct_mutex);
1074 
1075 	user_data = u64_to_user_ptr(args->data_ptr);
1076 	remain = args->size;
1077 	offset = args->offset;
1078 
1079 	while (remain > 0) {
1080 		/* Operation in this page
1081 		 *
1082 		 * page_base = page offset within aperture
1083 		 * page_offset = offset within page
1084 		 * page_length = bytes to copy for this page
1085 		 */
1086 		u32 page_base = node.start;
1087 		unsigned page_offset = offset_in_page(offset);
1088 		unsigned page_length = PAGE_SIZE - page_offset;
1089 		page_length = remain < page_length ? remain : page_length;
1090 		if (node.allocated) {
1091 			wmb();
1092 			ggtt->base.insert_page(&ggtt->base,
1093 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1094 					       node.start, I915_CACHE_NONE, 0);
1095 			wmb();
1096 		} else {
1097 			page_base += offset & LINUX_PAGE_MASK;
1098 		}
1099 
1100 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1101 				  user_data, page_length)) {
1102 			ret = -EFAULT;
1103 			break;
1104 		}
1105 
1106 		remain -= page_length;
1107 		user_data += page_length;
1108 		offset += page_length;
1109 	}
1110 
1111 	mutex_lock(&i915->drm.struct_mutex);
1112 out_unpin:
1113 	if (node.allocated) {
1114 		wmb();
1115 		ggtt->base.clear_range(&ggtt->base,
1116 				       node.start, node.size);
1117 		remove_mappable_node(&node);
1118 	} else {
1119 		i915_vma_unpin(vma);
1120 	}
1121 out_unlock:
1122 	intel_runtime_pm_put(i915);
1123 	mutex_unlock(&i915->drm.struct_mutex);
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * Reads data from the object referenced by handle.
1130  * @dev: drm device pointer
1131  * @data: ioctl data blob
1132  * @file: drm file pointer
1133  *
1134  * On error, the contents of *data are undefined.
1135  */
1136 int
1137 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1138 		     struct drm_file *file)
1139 {
1140 	struct drm_i915_gem_pread *args = data;
1141 	struct drm_i915_gem_object *obj;
1142 	int ret;
1143 
1144 	if (args->size == 0)
1145 		return 0;
1146 
1147 #if 0
1148 	if (!access_ok(VERIFY_WRITE,
1149 		       u64_to_user_ptr(args->data_ptr),
1150 		       args->size))
1151 		return -EFAULT;
1152 #endif
1153 
1154 	obj = i915_gem_object_lookup(file, args->handle);
1155 	if (!obj)
1156 		return -ENOENT;
1157 
1158 	/* Bounds check source.  */
1159 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1160 		ret = -EINVAL;
1161 		goto out;
1162 	}
1163 
1164 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1165 
1166 	ret = i915_gem_object_wait(obj,
1167 				   I915_WAIT_INTERRUPTIBLE,
1168 				   MAX_SCHEDULE_TIMEOUT,
1169 				   to_rps_client(file));
1170 	if (ret)
1171 		goto out;
1172 
1173 	ret = i915_gem_object_pin_pages(obj);
1174 	if (ret)
1175 		goto out;
1176 
1177 	ret = i915_gem_shmem_pread(obj, args);
1178 	if (ret == -EFAULT || ret == -ENODEV)
1179 		ret = i915_gem_gtt_pread(obj, args);
1180 
1181 	i915_gem_object_unpin_pages(obj);
1182 out:
1183 	i915_gem_object_put(obj);
1184 	return ret;
1185 }
1186 
1187 /* This is the fast write path which cannot handle
1188  * page faults in the source data
1189  */
1190 
1191 static inline bool
1192 ggtt_write(struct io_mapping *mapping,
1193 	   loff_t base, int offset,
1194 	   char __user *user_data, int length)
1195 {
1196 	void *vaddr;
1197 	unsigned long unwritten;
1198 
1199 	/* We can use the cpu mem copy function because this is X86. */
1200 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1201 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1202 						      user_data, length);
1203 	io_mapping_unmap_atomic(vaddr);
1204 	if (unwritten) {
1205 		vaddr = (void __force *)
1206 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1207 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1208 		io_mapping_unmap(vaddr);
1209 	}
1210 
1211 	return unwritten;
1212 }
1213 
1214 /**
1215  * This is the fast pwrite path, where we copy the data directly from the
1216  * user into the GTT, uncached.
1217  * @obj: i915 GEM object
1218  * @args: pwrite arguments structure
1219  */
1220 static int
1221 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1222 			 const struct drm_i915_gem_pwrite *args)
1223 {
1224 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1225 	struct i915_ggtt *ggtt = &i915->ggtt;
1226 	struct drm_mm_node node;
1227 	struct i915_vma *vma;
1228 	u64 remain, offset;
1229 	void __user *user_data;
1230 	int ret;
1231 
1232 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1233 	if (ret)
1234 		return ret;
1235 
1236 	intel_runtime_pm_get(i915);
1237 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1238 				       PIN_MAPPABLE | PIN_NONBLOCK);
1239 	if (!IS_ERR(vma)) {
1240 		node.start = i915_ggtt_offset(vma);
1241 		node.allocated = false;
1242 		ret = i915_vma_put_fence(vma);
1243 		if (ret) {
1244 			i915_vma_unpin(vma);
1245 			vma = ERR_PTR(ret);
1246 		}
1247 	}
1248 	if (IS_ERR(vma)) {
1249 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1250 		if (ret)
1251 			goto out_unlock;
1252 		GEM_BUG_ON(!node.allocated);
1253 	}
1254 
1255 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1256 	if (ret)
1257 		goto out_unpin;
1258 
1259 	mutex_unlock(&i915->drm.struct_mutex);
1260 
1261 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1262 
1263 	user_data = u64_to_user_ptr(args->data_ptr);
1264 	offset = args->offset;
1265 	remain = args->size;
1266 	while (remain) {
1267 		/* Operation in this page
1268 		 *
1269 		 * page_base = page offset within aperture
1270 		 * page_offset = offset within page
1271 		 * page_length = bytes to copy for this page
1272 		 */
1273 		u32 page_base = node.start;
1274 		unsigned int page_offset = offset_in_page(offset);
1275 		unsigned int page_length = PAGE_SIZE - page_offset;
1276 		page_length = remain < page_length ? remain : page_length;
1277 		if (node.allocated) {
1278 			wmb(); /* flush the write before we modify the GGTT */
1279 			ggtt->base.insert_page(&ggtt->base,
1280 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1281 					       node.start, I915_CACHE_NONE, 0);
1282 			wmb(); /* flush modifications to the GGTT (insert_page) */
1283 		} else {
1284 			page_base += offset & LINUX_PAGE_MASK;
1285 		}
1286 		/* If we get a fault while copying data, then (presumably) our
1287 		 * source page isn't available.  Return the error and we'll
1288 		 * retry in the slow path.
1289 		 * If the object is non-shmem backed, we retry again with the
1290 		 * path that handles page fault.
1291 		 */
1292 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1293 			       user_data, page_length)) {
1294 			ret = -EFAULT;
1295 			break;
1296 		}
1297 
1298 		remain -= page_length;
1299 		user_data += page_length;
1300 		offset += page_length;
1301 	}
1302 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1303 
1304 	mutex_lock(&i915->drm.struct_mutex);
1305 out_unpin:
1306 	if (node.allocated) {
1307 		wmb();
1308 		ggtt->base.clear_range(&ggtt->base,
1309 				       node.start, node.size);
1310 		remove_mappable_node(&node);
1311 	} else {
1312 		i915_vma_unpin(vma);
1313 	}
1314 out_unlock:
1315 	intel_runtime_pm_put(i915);
1316 	mutex_unlock(&i915->drm.struct_mutex);
1317 	return ret;
1318 }
1319 
1320 static int
1321 shmem_pwrite_slow(struct page *page, int offset, int length,
1322 		  char __user *user_data,
1323 		  bool page_do_bit17_swizzling,
1324 		  bool needs_clflush_before,
1325 		  bool needs_clflush_after)
1326 {
1327 	char *vaddr;
1328 	int ret;
1329 
1330 	vaddr = kmap(page);
1331 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1332 		shmem_clflush_swizzled_range(vaddr + offset, length,
1333 					     page_do_bit17_swizzling);
1334 	if (page_do_bit17_swizzling)
1335 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1336 						length);
1337 	else
1338 		ret = __copy_from_user(vaddr + offset, user_data, length);
1339 	if (needs_clflush_after)
1340 		shmem_clflush_swizzled_range(vaddr + offset, length,
1341 					     page_do_bit17_swizzling);
1342 	kunmap(page);
1343 
1344 	return ret ? -EFAULT : 0;
1345 }
1346 
1347 /* Per-page copy function for the shmem pwrite fastpath.
1348  * Flushes invalid cachelines before writing to the target if
1349  * needs_clflush_before is set and flushes out any written cachelines after
1350  * writing if needs_clflush is set.
1351  */
1352 static int
1353 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1354 	     bool page_do_bit17_swizzling,
1355 	     bool needs_clflush_before,
1356 	     bool needs_clflush_after)
1357 {
1358 	int ret;
1359 
1360 	ret = -ENODEV;
1361 	if (!page_do_bit17_swizzling) {
1362 		char *vaddr = kmap_atomic(page);
1363 
1364 		if (needs_clflush_before)
1365 			drm_clflush_virt_range(vaddr + offset, len);
1366 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1367 		if (needs_clflush_after)
1368 			drm_clflush_virt_range(vaddr + offset, len);
1369 
1370 		kunmap_atomic(vaddr);
1371 	}
1372 	if (ret == 0)
1373 		return ret;
1374 
1375 	return shmem_pwrite_slow(page, offset, len, user_data,
1376 				 page_do_bit17_swizzling,
1377 				 needs_clflush_before,
1378 				 needs_clflush_after);
1379 }
1380 
1381 static int
1382 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1383 		      const struct drm_i915_gem_pwrite *args)
1384 {
1385 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1386 	void __user *user_data;
1387 	u64 remain;
1388 	unsigned int obj_do_bit17_swizzling;
1389 	unsigned int partial_cacheline_write;
1390 	unsigned int needs_clflush;
1391 	unsigned int offset, idx;
1392 	int ret;
1393 #ifdef __DragonFly__
1394 	vm_object_t vm_obj;
1395 #endif
1396 
1397 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1398 	if (ret)
1399 		return ret;
1400 
1401 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1402 	mutex_unlock(&i915->drm.struct_mutex);
1403 	if (ret)
1404 		return ret;
1405 
1406 	obj_do_bit17_swizzling = 0;
1407 	if (i915_gem_object_needs_bit17_swizzle(obj))
1408 		obj_do_bit17_swizzling = BIT(17);
1409 
1410 	/* If we don't overwrite a cacheline completely we need to be
1411 	 * careful to have up-to-date data by first clflushing. Don't
1412 	 * overcomplicate things and flush the entire patch.
1413 	 */
1414 	partial_cacheline_write = 0;
1415 	if (needs_clflush & CLFLUSH_BEFORE)
1416 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1417 
1418 	user_data = u64_to_user_ptr(args->data_ptr);
1419 	remain = args->size;
1420 	offset = offset_in_page(args->offset);
1421 #ifdef __DragonFly__
1422 	vm_obj = obj->base.filp;
1423 	VM_OBJECT_LOCK(vm_obj);
1424 	vm_object_pip_add(vm_obj, 1);
1425 #endif
1426 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1427 		struct page *page = i915_gem_object_get_page(obj, idx);
1428 		int length;
1429 
1430 		length = remain;
1431 		if (offset + length > PAGE_SIZE)
1432 			length = PAGE_SIZE - offset;
1433 
1434 		ret = shmem_pwrite(page, offset, length, user_data,
1435 				   page_to_phys(page) & obj_do_bit17_swizzling,
1436 				   (offset | length) & partial_cacheline_write,
1437 				   needs_clflush & CLFLUSH_AFTER);
1438 		if (ret)
1439 			break;
1440 
1441 		remain -= length;
1442 		user_data += length;
1443 		offset = 0;
1444 	}
1445 #ifdef __DragonFly__
1446 	if (vm_obj != obj->base.filp) {
1447 		kprintf("i915_gem_shmem_pwrite: VM_OBJECT CHANGED! %p %p\n",
1448 			vm_obj, obj->base.filp);
1449 	}
1450 	vm_object_pip_wakeup(vm_obj);
1451 	VM_OBJECT_UNLOCK(vm_obj);
1452 #endif
1453 
1454 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1455 	i915_gem_obj_finish_shmem_access(obj);
1456 	return ret;
1457 }
1458 
1459 /**
1460  * Writes data to the object referenced by handle.
1461  * @dev: drm device
1462  * @data: ioctl data blob
1463  * @file: drm file
1464  *
1465  * On error, the contents of the buffer that were to be modified are undefined.
1466  */
1467 int
1468 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1469 		      struct drm_file *file)
1470 {
1471 	struct drm_i915_gem_pwrite *args = data;
1472 	struct drm_i915_gem_object *obj;
1473 	int ret;
1474 
1475 	if (args->size == 0)
1476 		return 0;
1477 
1478 #if 0
1479 	if (!access_ok(VERIFY_READ,
1480 		       u64_to_user_ptr(args->data_ptr),
1481 		       args->size))
1482 		return -EFAULT;
1483 #endif
1484 
1485 	obj = i915_gem_object_lookup(file, args->handle);
1486 	if (!obj)
1487 		return -ENOENT;
1488 
1489 	/* Bounds check destination. */
1490 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1491 		ret = -EINVAL;
1492 		goto err;
1493 	}
1494 
1495 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1496 
1497 	ret = -ENODEV;
1498 	if (obj->ops->pwrite)
1499 		ret = obj->ops->pwrite(obj, args);
1500 	if (ret != -ENODEV)
1501 		goto err;
1502 
1503 	ret = i915_gem_object_wait(obj,
1504 				   I915_WAIT_INTERRUPTIBLE |
1505 				   I915_WAIT_ALL,
1506 				   MAX_SCHEDULE_TIMEOUT,
1507 				   to_rps_client(file));
1508 	if (ret)
1509 		goto err;
1510 
1511 	ret = i915_gem_object_pin_pages(obj);
1512 	if (ret)
1513 		goto err;
1514 
1515 	ret = -EFAULT;
1516 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1517 	 * it would end up going through the fenced access, and we'll get
1518 	 * different detiling behavior between reading and writing.
1519 	 * pread/pwrite currently are reading and writing from the CPU
1520 	 * perspective, requiring manual detiling by the client.
1521 	 */
1522 	if (!i915_gem_object_has_struct_page(obj) ||
1523 	    cpu_write_needs_clflush(obj))
1524 		/* Note that the gtt paths might fail with non-page-backed user
1525 		 * pointers (e.g. gtt mappings when moving data between
1526 		 * textures). Fallback to the shmem path in that case.
1527 		 */
1528 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1529 
1530 	if (ret == -EFAULT || ret == -ENOSPC) {
1531 		if (obj->phys_handle)
1532 			ret = i915_gem_phys_pwrite(obj, args, file);
1533 		else
1534 			ret = i915_gem_shmem_pwrite(obj, args);
1535 	}
1536 
1537 	i915_gem_object_unpin_pages(obj);
1538 err:
1539 	i915_gem_object_put(obj);
1540 	return ret;
1541 }
1542 
1543 static inline enum fb_op_origin
1544 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1545 {
1546 	return (domain == I915_GEM_DOMAIN_GTT ?
1547 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1548 }
1549 
1550 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1551 {
1552 	struct drm_i915_private *i915;
1553 	struct list_head *list;
1554 	struct i915_vma *vma;
1555 
1556 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1557 		if (!i915_vma_is_ggtt(vma))
1558 			break;
1559 
1560 		if (i915_vma_is_active(vma))
1561 			continue;
1562 
1563 		if (!drm_mm_node_allocated(&vma->node))
1564 			continue;
1565 
1566 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1567 	}
1568 
1569 	i915 = to_i915(obj->base.dev);
1570 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1571 	list_move_tail(&obj->global_link, list);
1572 }
1573 
1574 /**
1575  * Called when user space prepares to use an object with the CPU, either
1576  * through the mmap ioctl's mapping or a GTT mapping.
1577  * @dev: drm device
1578  * @data: ioctl data blob
1579  * @file: drm file
1580  */
1581 int
1582 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1583 			  struct drm_file *file)
1584 {
1585 	struct drm_i915_gem_set_domain *args = data;
1586 	struct drm_i915_gem_object *obj;
1587 	uint32_t read_domains = args->read_domains;
1588 	uint32_t write_domain = args->write_domain;
1589 	int err;
1590 
1591 	/* Only handle setting domains to types used by the CPU. */
1592 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1593 		return -EINVAL;
1594 
1595 	/* Having something in the write domain implies it's in the read
1596 	 * domain, and only that read domain.  Enforce that in the request.
1597 	 */
1598 	if (write_domain != 0 && read_domains != write_domain)
1599 		return -EINVAL;
1600 
1601 	obj = i915_gem_object_lookup(file, args->handle);
1602 	if (!obj)
1603 		return -ENOENT;
1604 
1605 	/* Try to flush the object off the GPU without holding the lock.
1606 	 * We will repeat the flush holding the lock in the normal manner
1607 	 * to catch cases where we are gazumped.
1608 	 */
1609 	err = i915_gem_object_wait(obj,
1610 				   I915_WAIT_INTERRUPTIBLE |
1611 				   (write_domain ? I915_WAIT_ALL : 0),
1612 				   MAX_SCHEDULE_TIMEOUT,
1613 				   to_rps_client(file));
1614 	if (err)
1615 		goto out;
1616 
1617 	/* Flush and acquire obj->pages so that we are coherent through
1618 	 * direct access in memory with previous cached writes through
1619 	 * shmemfs and that our cache domain tracking remains valid.
1620 	 * For example, if the obj->filp was moved to swap without us
1621 	 * being notified and releasing the pages, we would mistakenly
1622 	 * continue to assume that the obj remained out of the CPU cached
1623 	 * domain.
1624 	 */
1625 	err = i915_gem_object_pin_pages(obj);
1626 	if (err)
1627 		goto out;
1628 
1629 	err = i915_mutex_lock_interruptible(dev);
1630 	if (err)
1631 		goto out_unpin;
1632 
1633 	if (read_domains & I915_GEM_DOMAIN_GTT)
1634 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1635 	else
1636 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1637 
1638 	/* And bump the LRU for this access */
1639 	i915_gem_object_bump_inactive_ggtt(obj);
1640 
1641 	mutex_unlock(&dev->struct_mutex);
1642 
1643 	if (write_domain != 0)
1644 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1645 
1646 out_unpin:
1647 	i915_gem_object_unpin_pages(obj);
1648 out:
1649 	i915_gem_object_put(obj);
1650 	return err;
1651 }
1652 
1653 /**
1654  * Called when user space has done writes to this buffer
1655  * @dev: drm device
1656  * @data: ioctl data blob
1657  * @file: drm file
1658  */
1659 int
1660 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1661 			 struct drm_file *file)
1662 {
1663 	struct drm_i915_gem_sw_finish *args = data;
1664 	struct drm_i915_gem_object *obj;
1665 
1666 	obj = i915_gem_object_lookup(file, args->handle);
1667 	if (!obj)
1668 		return -ENOENT;
1669 
1670 	/* Pinned buffers may be scanout, so flush the cache */
1671 	i915_gem_object_flush_if_display(obj);
1672 	i915_gem_object_put(obj);
1673 
1674 	return 0;
1675 }
1676 
1677 /**
1678  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1679  *			 it is mapped to.
1680  * @dev: drm device
1681  * @data: ioctl data blob
1682  * @file: drm file
1683  *
1684  * While the mapping holds a reference on the contents of the object, it doesn't
1685  * imply a ref on the object itself.
1686  *
1687  * IMPORTANT:
1688  *
1689  * DRM driver writers who look a this function as an example for how to do GEM
1690  * mmap support, please don't implement mmap support like here. The modern way
1691  * to implement DRM mmap support is with an mmap offset ioctl (like
1692  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1693  * That way debug tooling like valgrind will understand what's going on, hiding
1694  * the mmap call in a driver private ioctl will break that. The i915 driver only
1695  * does cpu mmaps this way because we didn't know better.
1696  */
1697 int
1698 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1699 		    struct drm_file *file)
1700 {
1701 	struct drm_i915_gem_mmap *args = data;
1702 	struct drm_i915_gem_object *obj;
1703 	unsigned long addr;
1704 #ifdef __DragonFly__
1705 	struct proc *p = curproc;
1706 	vm_map_t map = &p->p_vmspace->vm_map;
1707 	vm_size_t size;
1708 	int error = 0, rv;
1709 #endif
1710 
1711 	if (args->flags & ~(I915_MMAP_WC))
1712 		return -EINVAL;
1713 
1714 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1715 		return -ENODEV;
1716 
1717 	obj = i915_gem_object_lookup(file, args->handle);
1718 	if (!obj)
1719 		return -ENOENT;
1720 
1721 	/* prime objects have no backing filp to GEM mmap
1722 	 * pages from.
1723 	 */
1724 	if (!obj->base.filp) {
1725 		i915_gem_object_put(obj);
1726 		return -EINVAL;
1727 	}
1728 
1729 	if (args->size == 0)
1730 		goto out;
1731 
1732 	size = round_page(args->size);
1733 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1734 		error = -ENOMEM;
1735 		goto out;
1736 	}
1737 
1738 	/*
1739 	 * Call hint to ensure that NULL is not returned as a valid address
1740 	 * and to reduce vm_map traversals. XXX causes instability, use a
1741 	 * fixed low address as the start point instead to avoid the NULL
1742 	 * return issue.
1743 	 */
1744 	addr = PAGE_SIZE;
1745 
1746 	/*
1747 	 * Use 256KB alignment.  It is unclear why this matters for a
1748 	 * virtual address but it appears to fix a number of application/X
1749 	 * crashes and kms console switching is much faster.
1750 	 */
1751 	vm_object_hold(obj->base.filp);
1752 	vm_object_reference_locked(obj->base.filp);
1753 	vm_object_drop(obj->base.filp);
1754 
1755 	/* Something gets wrong here: fails to mmap 4096 */
1756 	rv = vm_map_find(map, obj->base.filp, NULL,
1757 			 args->offset, &addr, args->size,
1758 			 256 * 1024, /* align */
1759 			 TRUE, /* fitit */
1760 			 VM_MAPTYPE_NORMAL, VM_SUBSYS_DRM_GEM,
1761 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1762 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1763 			 MAP_SHARED /* cow */);
1764 	if (rv != KERN_SUCCESS) {
1765 		vm_object_deallocate(obj->base.filp);
1766 		error = -vm_mmap_to_errno(rv);
1767 	} else {
1768 		args->addr_ptr = (uint64_t)addr;
1769 	}
1770 
1771 	if (args->flags & I915_MMAP_WC) {	/* I915_PARAM_MMAP_VERSION */
1772 #if 0
1773 	addr = vm_mmap(obj->base.filp, 0, args->size,
1774 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1775 		       args->offset);
1776 	if (args->flags & I915_MMAP_WC) {
1777 		struct mm_struct *mm = current->mm;
1778 		struct vm_area_struct *vma;
1779 
1780 		if (down_write_killable(&mm->mmap_sem)) {
1781 			i915_gem_object_put(obj);
1782 			return -EINTR;
1783 		}
1784 		vma = find_vma(mm, addr);
1785 		if (vma)
1786 			vma->vm_page_prot =
1787 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1788 		else
1789 			addr = -ENOMEM;
1790 		up_write(&mm->mmap_sem);
1791 #endif
1792 
1793 		/* This may race, but that's ok, it only gets set */
1794 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1795 	}
1796 
1797 out:
1798 	i915_gem_object_put(obj);
1799 	if (IS_ERR((void *)addr))
1800 		return addr;
1801 
1802 	args->addr_ptr = (uint64_t) addr;
1803 
1804 	return 0;
1805 }
1806 
1807 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1808 {
1809 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1810 }
1811 
1812 /**
1813  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1814  *
1815  * A history of the GTT mmap interface:
1816  *
1817  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1818  *     aligned and suitable for fencing, and still fit into the available
1819  *     mappable space left by the pinned display objects. A classic problem
1820  *     we called the page-fault-of-doom where we would ping-pong between
1821  *     two objects that could not fit inside the GTT and so the memcpy
1822  *     would page one object in at the expense of the other between every
1823  *     single byte.
1824  *
1825  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1826  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1827  *     object is too large for the available space (or simply too large
1828  *     for the mappable aperture!), a view is created instead and faulted
1829  *     into userspace. (This view is aligned and sized appropriately for
1830  *     fenced access.)
1831  *
1832  * Restrictions:
1833  *
1834  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1835  *    hangs on some architectures, corruption on others. An attempt to service
1836  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1837  *
1838  *  * the object must be able to fit into RAM (physical memory, though no
1839  *    limited to the mappable aperture).
1840  *
1841  *
1842  * Caveats:
1843  *
1844  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1845  *    all data to system memory. Subsequent access will not be synchronized.
1846  *
1847  *  * all mappings are revoked on runtime device suspend.
1848  *
1849  *  * there are only 8, 16 or 32 fence registers to share between all users
1850  *    (older machines require fence register for display and blitter access
1851  *    as well). Contention of the fence registers will cause the previous users
1852  *    to be unmapped and any new access will generate new page faults.
1853  *
1854  *  * running out of memory while servicing a fault may generate a SIGBUS,
1855  *    rather than the expected SIGSEGV.
1856  */
1857 int i915_gem_mmap_gtt_version(void)
1858 {
1859 	return 1;
1860 }
1861 
1862 static inline struct i915_ggtt_view
1863 compute_partial_view(struct drm_i915_gem_object *obj,
1864 		     pgoff_t page_offset,
1865 		     unsigned int chunk)
1866 {
1867 	struct i915_ggtt_view view;
1868 
1869 	if (i915_gem_object_is_tiled(obj))
1870 		chunk = roundup(chunk, tile_row_pages(obj));
1871 
1872 	view.type = I915_GGTT_VIEW_PARTIAL;
1873 	view.partial.offset = rounddown(page_offset, chunk);
1874 	view.partial.size =
1875 		min_t(unsigned int, chunk,
1876 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1877 
1878 	/* If the partial covers the entire object, just create a normal VMA. */
1879 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1880 		view.type = I915_GGTT_VIEW_NORMAL;
1881 
1882 	return view;
1883 }
1884 
1885 /**
1886  * i915_gem_fault - fault a page into the GTT
1887  *
1888  * vm_obj is locked on entry and expected to be locked on return.
1889  *
1890  * This is a OBJT_MGTDEVICE object, *mres will be NULL and should be set
1891  * to the desired vm_page.  The page is not indexed into the vm_obj.
1892  *
1893  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1894  * in that case.  Release all resources and wait 1 tick before retrying.
1895  * This is a huge problem which needs to be fixed by getting rid of most
1896  * of the interruptability.  The linux code does not retry but does appear
1897  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1898  * to be able to retry.
1899  *
1900  * --
1901  * @vma: VMA in question
1902  * @vmf: fault info
1903  *
1904  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1905  * from userspace.  The fault handler takes care of binding the object to
1906  * the GTT (if needed), allocating and programming a fence register (again,
1907  * only if needed based on whether the old reg is still valid or the object
1908  * is tiled) and inserting a new PTE into the faulting process.
1909  *
1910  * Note that the faulting process may involve evicting existing objects
1911  * from the GTT and/or fence registers to make room.  So performance may
1912  * suffer if the GTT working set is large or there are few fence registers
1913  * left.
1914  *
1915  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1916  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1917  * vm_obj is locked on entry and expected to be locked on return.  The VM
1918  * pager has placed an anonymous memory page at (obj,offset) which we have
1919  * to replace.
1920  */
1921 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1922 {
1923 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1924 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1925 	struct drm_device *dev = obj->base.dev;
1926 	struct drm_i915_private *dev_priv = to_i915(dev);
1927 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1928 	bool write = !!(prot & VM_PROT_WRITE);
1929 	struct i915_vma *vma;
1930 	pgoff_t page_offset;
1931 	vm_page_t m;
1932 	unsigned int flags;
1933 	int ret;
1934 	int didref = 0;
1935 	struct vm_area_struct tmp_vm_area;
1936 	struct vm_area_struct *area = &tmp_vm_area;
1937 
1938 	/* Fill-in vm_area_struct */
1939 	area->vm_private_data = vm_obj->handle;
1940 	area->vm_start = 0;
1941 	area->vm_end = obj->base.size;
1942 
1943 	/* We don't use vmf->pgoff since that has the fake offset */
1944 	page_offset = (unsigned long)offset >> PAGE_SHIFT;
1945 
1946 	/*
1947 	 * vm_fault() has supplied us with a busied page placeholding
1948 	 * the operation.  This presents a lock order reversal issue
1949 	 * again i915_gem_release_mmap() for our device mutex.
1950 	 *
1951 	 * Deal with the problem by getting rid of the placeholder now,
1952 	 * and then dealing with the potential for a new placeholder when
1953 	 * we try to insert later.
1954 	 */
1955 	KKASSERT(*mres == NULL);
1956 	m = NULL;
1957 
1958 retry:
1959 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1960 
1961 	/* Try to flush the object off the GPU first without holding the lock.
1962 	 * Upon acquiring the lock, we will perform our sanity checks and then
1963 	 * repeat the flush holding the lock in the normal manner to catch cases
1964 	 * where we are gazumped.
1965 	 */
1966 	ret = i915_gem_object_wait(obj,
1967 				   I915_WAIT_INTERRUPTIBLE,
1968 				   MAX_SCHEDULE_TIMEOUT,
1969 				   NULL);
1970 	if (ret)
1971 		goto err;
1972 
1973 	ret = i915_gem_object_pin_pages(obj);
1974 	if (ret)
1975 		goto err;
1976 
1977 	intel_runtime_pm_get(dev_priv);
1978 
1979 	ret = i915_mutex_lock_interruptible(dev);
1980 	if (ret) {
1981 		if (ret != -EINTR)
1982 		    kprintf("i915: caught bug(%d) (mutex_lock_inter)\n", ret);
1983 		goto err_rpm;
1984 	}
1985 
1986 	/* Access to snoopable pages through the GTT is incoherent. */
1987 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1988 		kprintf("i915: caught bug() (cache_level %d %d)\n",
1989 			(obj->cache_level), !HAS_LLC(dev_priv));
1990 		ret = -EFAULT;
1991 		goto err_unlock;
1992 	}
1993 
1994 	/* If the object is smaller than a couple of partial vma, it is
1995 	 * not worth only creating a single partial vma - we may as well
1996 	 * clear enough space for the full object.
1997 	 */
1998 	flags = PIN_MAPPABLE;
1999 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
2000 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
2001 
2002 	/* Now pin it into the GTT as needed */
2003 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2004 	if (IS_ERR(vma)) {
2005 		/* Use a partial view if it is bigger than available space */
2006 		struct i915_ggtt_view view =
2007 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2008 
2009 		kprintf("i915_gem_fault: CHUNKING PASS\n");
2010 
2011 		/* Userspace is now writing through an untracked VMA, abandon
2012 		 * all hope that the hardware is able to track future writes.
2013 		 */
2014 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2015 
2016 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
2017 	}
2018 	if (IS_ERR(vma)) {
2019 		kprintf("i915: caught bug() (VMA error %ld objsize %ld)\n",
2020 			PTR_ERR(vma), obj->base.size);
2021 		ret = PTR_ERR(vma);
2022 		goto err_unlock;
2023 	}
2024 
2025 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2026 	if (ret) {
2027 		kprintf("i915: caught bug(%d) (set_to_gtt_dom)\n", ret);
2028 		goto err_unpin;
2029 	}
2030 
2031 	ret = i915_vma_get_fence(vma);
2032 	if (ret) {
2033 		kprintf("i915: caught bug(%d) (vma_get_fence)\n", ret);
2034 		goto err_unpin;
2035 	}
2036 
2037 	/*
2038 	 * START FREEBSD MAGIC
2039 	 *
2040 	 * Add a pip count to avoid destruction and certain other
2041 	 * complex operations (such as collapses?) while unlocked.
2042 	 */
2043 	vm_object_pip_add(vm_obj, 1);
2044 	didref = 1;
2045 
2046 	ret = 0;
2047 
2048 	/* Mark as being mmapped into userspace for later revocation */
2049 	assert_rpm_wakelock_held(dev_priv);
2050 	if (list_empty(&obj->userfault_link))
2051 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2052 
2053 	/* Finally, remap it using the new GTT offset */
2054 	m = vm_phys_fictitious_to_vm_page(ggtt->mappable_base +
2055 			i915_ggtt_offset(vma) + offset);
2056 	if (m == NULL) {
2057 		kprintf("i915: caught bug() (phys_fict_to_vm)\n");
2058 		ret = -EFAULT;
2059 		goto err_unpin;
2060 	}
2061 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
2062 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
2063 
2064 	/*
2065 	 * Try to busy the page.  Fails on non-zero return.
2066 	 */
2067 	if (vm_page_busy_try(m, false)) {
2068 		kprintf("i915_gem_fault: BUSY(2)\n");
2069 		ret = -EINTR;
2070 		goto err_unpin;
2071 	}
2072 	m->valid = VM_PAGE_BITS_ALL;
2073 	*mres = m;
2074 
2075 	__i915_vma_unpin(vma);
2076 	mutex_unlock(&dev->struct_mutex);
2077 	ret = VM_PAGER_OK;
2078 	goto done;
2079 
2080 	/*
2081 	 * ALTERNATIVE ERROR RETURN.
2082 	 *
2083 	 * OBJECT EXPECTED TO BE LOCKED.
2084 	 */
2085 err_unpin:
2086 	__i915_vma_unpin(vma);
2087 err_unlock:
2088 	mutex_unlock(&dev->struct_mutex);
2089 err_rpm:
2090 	intel_runtime_pm_put(dev_priv);
2091 	i915_gem_object_unpin_pages(obj);
2092 err:
2093 	switch (ret) {
2094 	case -EIO:
2095 		/*
2096 		 * We eat errors when the gpu is terminally wedged to avoid
2097 		 * userspace unduly crashing (gl has no provisions for mmaps to
2098 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2099 		 * and so needs to be reported.
2100 		 */
2101 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2102 //			ret = VM_FAULT_SIGBUS;
2103 			break;
2104 		}
2105 	case -EAGAIN:
2106 		/*
2107 		 * EAGAIN means the gpu is hung and we'll wait for the error
2108 		 * handler to reset everything when re-faulting in
2109 		 * i915_mutex_lock_interruptible.
2110 		 */
2111 	case -ERESTARTSYS:
2112 	case -EINTR:
2113 #ifdef __DragonFly__
2114 		if (didref) {
2115 			kprintf("i915: caught bug(%d) (retry)\n", ret);
2116 			vm_object_pip_wakeup(vm_obj);
2117 			didref = 0;
2118 		}
2119 		VM_OBJECT_UNLOCK(vm_obj);
2120 		int dummy;
2121 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2122 		VM_OBJECT_LOCK(vm_obj);
2123 		goto retry;
2124 #endif
2125 	default:
2126 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2127 		ret = VM_PAGER_ERROR;
2128 		break;
2129 	}
2130 
2131 #ifdef __DragonFly__
2132 done:
2133 	if (didref)
2134 		vm_object_pip_wakeup(vm_obj);
2135 	else
2136 		kprintf("i915: caught bug(%d)\n", ret);
2137 #endif
2138 
2139 	return ret;
2140 }
2141 
2142 #ifdef __DragonFly__
2143 static inline void drm_vma_node_unmap(struct drm_vma_offset_node *node,
2144 				      struct address_space *file_mapping)
2145 {
2146 	struct drm_i915_gem_object *obj = container_of(
2147 		node,struct drm_i915_gem_object, base.vma_node);
2148 	vm_object_t devobj;
2149 
2150 	devobj = cdev_pager_lookup(obj);
2151 	if (devobj != NULL) {
2152 		VM_OBJECT_LOCK(devobj);
2153 		vm_object_page_remove(devobj, 0, 0, false);
2154 		VM_OBJECT_UNLOCK(devobj);
2155 		vm_object_deallocate(devobj);
2156 	}
2157 }
2158 #endif
2159 
2160 /**
2161  * i915_gem_release_mmap - remove physical page mappings
2162  * @obj: obj in question
2163  *
2164  * Preserve the reservation of the mmapping with the DRM core code, but
2165  * relinquish ownership of the pages back to the system.
2166  *
2167  * It is vital that we remove the page mapping if we have mapped a tiled
2168  * object through the GTT and then lose the fence register due to
2169  * resource pressure. Similarly if the object has been moved out of the
2170  * aperture, than pages mapped into userspace must be revoked. Removing the
2171  * mapping will then trigger a page fault on the next user access, allowing
2172  * fixup by i915_gem_fault().
2173  */
2174 void
2175 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2176 {
2177 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2178 
2179 	/* Serialisation between user GTT access and our code depends upon
2180 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2181 	 * pagefault then has to wait until we release the mutex.
2182 	 *
2183 	 * Note that RPM complicates somewhat by adding an additional
2184 	 * requirement that operations to the GGTT be made holding the RPM
2185 	 * wakeref.
2186 	 */
2187 	lockdep_assert_held(&i915->drm.struct_mutex);
2188 	intel_runtime_pm_get(i915);
2189 
2190 	if (list_empty(&obj->userfault_link))
2191 		goto out;
2192 
2193 	list_del_init(&obj->userfault_link);
2194 #ifndef __DragonFly__
2195 	drm_vma_node_unmap(&obj->base.vma_node,
2196 			   obj->base.dev->anon_inode->i_mapping);
2197 #else
2198 	drm_vma_node_unmap(&obj->base.vma_node, NULL);
2199 #endif
2200 
2201 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2202 	 * memory transactions from userspace before we return. The TLB
2203 	 * flushing implied above by changing the PTE above *should* be
2204 	 * sufficient, an extra barrier here just provides us with a bit
2205 	 * of paranoid documentation about our requirement to serialise
2206 	 * memory writes before touching registers / GSM.
2207 	 */
2208 	wmb();
2209 
2210 out:
2211 	intel_runtime_pm_put(i915);
2212 }
2213 
2214 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2215 {
2216 	struct drm_i915_gem_object *obj, *on;
2217 	int i;
2218 
2219 	/*
2220 	 * Only called during RPM suspend. All users of the userfault_list
2221 	 * must be holding an RPM wakeref to ensure that this can not
2222 	 * run concurrently with themselves (and use the struct_mutex for
2223 	 * protection between themselves).
2224 	 */
2225 
2226 	list_for_each_entry_safe(obj, on,
2227 				 &dev_priv->mm.userfault_list, userfault_link) {
2228 		list_del_init(&obj->userfault_link);
2229 #ifndef __DragonFly__
2230 		drm_vma_node_unmap(&obj->base.vma_node,
2231 				   obj->base.dev->anon_inode->i_mapping);
2232 #else
2233 		drm_vma_node_unmap(&obj->base.vma_node, NULL);
2234 #endif
2235 	}
2236 
2237 	/* The fence will be lost when the device powers down. If any were
2238 	 * in use by hardware (i.e. they are pinned), we should not be powering
2239 	 * down! All other fences will be reacquired by the user upon waking.
2240 	 */
2241 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2242 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2243 
2244 		/* Ideally we want to assert that the fence register is not
2245 		 * live at this point (i.e. that no piece of code will be
2246 		 * trying to write through fence + GTT, as that both violates
2247 		 * our tracking of activity and associated locking/barriers,
2248 		 * but also is illegal given that the hw is powered down).
2249 		 *
2250 		 * Previously we used reg->pin_count as a "liveness" indicator.
2251 		 * That is not sufficient, and we need a more fine-grained
2252 		 * tool if we want to have a sanity check here.
2253 		 */
2254 
2255 		if (!reg->vma)
2256 			continue;
2257 
2258 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2259 		reg->dirty = true;
2260 	}
2261 }
2262 
2263 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2264 {
2265 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2266 	int err;
2267 
2268 	err = drm_gem_create_mmap_offset(&obj->base);
2269 	if (likely(!err))
2270 		return 0;
2271 
2272 	/* Attempt to reap some mmap space from dead objects */
2273 	do {
2274 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2275 		if (err)
2276 			break;
2277 
2278 		i915_gem_drain_freed_objects(dev_priv);
2279 		err = drm_gem_create_mmap_offset(&obj->base);
2280 		if (!err)
2281 			break;
2282 
2283 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2284 
2285 	return err;
2286 }
2287 
2288 #if 0
2289 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2290 {
2291 	drm_gem_free_mmap_offset(&obj->base);
2292 }
2293 #endif
2294 
2295 int
2296 i915_gem_mmap_gtt(struct drm_file *file,
2297 		  struct drm_device *dev,
2298 		  uint32_t handle,
2299 		  uint64_t *offset)
2300 {
2301 	struct drm_i915_gem_object *obj;
2302 	int ret;
2303 
2304 	obj = i915_gem_object_lookup(file, handle);
2305 	if (!obj)
2306 		return -ENOENT;
2307 
2308 	ret = i915_gem_object_create_mmap_offset(obj);
2309 	if (ret == 0)
2310 		*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2311 		    DRM_GEM_MAPPING_KEY;
2312 
2313 	i915_gem_object_put(obj);
2314 	return ret;
2315 }
2316 
2317 /**
2318  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2319  * @dev: DRM device
2320  * @data: GTT mapping ioctl data
2321  * @file: GEM object info
2322  *
2323  * Simply returns the fake offset to userspace so it can mmap it.
2324  * The mmap call will end up in drm_gem_mmap(), which will set things
2325  * up so we can get faults in the handler above.
2326  *
2327  * The fault handler will take care of binding the object into the GTT
2328  * (since it may have been evicted to make room for something), allocating
2329  * a fence register, and mapping the appropriate aperture address into
2330  * userspace.
2331  */
2332 int
2333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2334 			struct drm_file *file)
2335 {
2336 	struct drm_i915_gem_mmap_gtt *args = data;
2337 
2338 	return i915_gem_mmap_gtt(file, dev, args->handle, (uint64_t *)&args->offset);
2339 }
2340 
2341 /* Immediately discard the backing storage */
2342 static void
2343 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2344 {
2345 	vm_object_t vm_obj = obj->base.filp;
2346 
2347 	if (obj->base.filp == NULL)
2348 		return;
2349 
2350 	VM_OBJECT_LOCK(vm_obj);
2351 	vm_object_page_remove(vm_obj, 0, 0, false);
2352 	VM_OBJECT_UNLOCK(vm_obj);
2353 
2354 	/* Our goal here is to return as much of the memory as
2355 	 * is possible back to the system as we are called from OOM.
2356 	 * To do this we must instruct the shmfs to drop all of its
2357 	 * backing pages, *now*.
2358 	 */
2359 #if 0
2360 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2361 #endif
2362 	obj->mm.madv = __I915_MADV_PURGED;
2363 	obj->mm.pages = ERR_PTR(-EFAULT);
2364 }
2365 
2366 /* Try to discard unwanted pages */
2367 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2368 {
2369 #if 0
2370 	struct address_space *mapping;
2371 #endif
2372 
2373 	lockdep_assert_held(&obj->mm.lock);
2374 	GEM_BUG_ON(obj->mm.pages);
2375 
2376 	switch (obj->mm.madv) {
2377 	case I915_MADV_DONTNEED:
2378 		i915_gem_object_truncate(obj);
2379 	case __I915_MADV_PURGED:
2380 		return;
2381 	}
2382 
2383 	if (obj->base.filp == NULL)
2384 		return;
2385 
2386 #if 0
2387 	mapping = obj->base.filp->f_mapping,
2388 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2389 #endif
2390 	invalidate_mapping_pages(obj->base.filp, 0, (loff_t)-1);
2391 }
2392 
2393 static void
2394 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2395 			      struct sg_table *pages)
2396 {
2397 	struct sgt_iter sgt_iter;
2398 	struct page *page;
2399 
2400 	__i915_gem_object_release_shmem(obj, pages, true);
2401 
2402 	i915_gem_gtt_finish_pages(obj, pages);
2403 
2404 	if (i915_gem_object_needs_bit17_swizzle(obj))
2405 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2406 
2407 	for_each_sgt_page(page, sgt_iter, pages) {
2408 		if (obj->mm.dirty)
2409 			set_page_dirty(page);
2410 
2411 		if (obj->mm.madv == I915_MADV_WILLNEED)
2412 			mark_page_accessed(page);
2413 
2414 		put_page(page);
2415 	}
2416 	obj->mm.dirty = false;
2417 
2418 	sg_free_table(pages);
2419 	kfree(pages);
2420 }
2421 
2422 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2423 {
2424 	struct radix_tree_iter iter;
2425 	void **slot;
2426 
2427 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2428 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2429 }
2430 
2431 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2432 				 enum i915_mm_subclass subclass)
2433 {
2434 	struct sg_table *pages;
2435 
2436 	if (i915_gem_object_has_pinned_pages(obj))
2437 		return;
2438 
2439 	GEM_BUG_ON(obj->bind_count);
2440 	if (!READ_ONCE(obj->mm.pages))
2441 		return;
2442 
2443 	/* May be called by shrinker from within get_pages() (on another bo) */
2444 	mutex_lock_nested(&obj->mm.lock, subclass);
2445 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2446 		goto unlock;
2447 
2448 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2449 	 * array, hence protect them from being reaped by removing them from gtt
2450 	 * lists early. */
2451 	pages = fetch_and_zero(&obj->mm.pages);
2452 	GEM_BUG_ON(!pages);
2453 
2454 	if (obj->mm.mapping) {
2455 		void *ptr;
2456 
2457 		ptr = ptr_mask_bits(obj->mm.mapping);
2458 		if (is_vmalloc_addr(ptr))
2459 			vunmap(ptr);
2460 		else
2461 			kunmap(kmap_to_page(ptr));
2462 
2463 		obj->mm.mapping = NULL;
2464 	}
2465 
2466 	__i915_gem_object_reset_page_iter(obj);
2467 
2468 	if (!IS_ERR(pages))
2469 		obj->ops->put_pages(obj, pages);
2470 
2471 unlock:
2472 	mutex_unlock(&obj->mm.lock);
2473 }
2474 
2475 static bool i915_sg_trim(struct sg_table *orig_st)
2476 {
2477 	struct sg_table new_st;
2478 	struct scatterlist *sg, *new_sg;
2479 	unsigned int i;
2480 
2481 	if (orig_st->nents == orig_st->orig_nents)
2482 		return false;
2483 
2484 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2485 		return false;
2486 
2487 	new_sg = new_st.sgl;
2488 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2489 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2490 		/* called before being DMA mapped, no need to copy sg->dma_* */
2491 		new_sg = sg_next(new_sg);
2492 	}
2493 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2494 
2495 	sg_free_table(orig_st);
2496 
2497 	*orig_st = new_st;
2498 	return true;
2499 }
2500 
2501 static struct sg_table *
2502 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2503 {
2504 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2505 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2506 	unsigned long i;
2507 	struct vm_object *mapping;
2508 	struct sg_table *st;
2509 	struct scatterlist *sg;
2510 	struct sgt_iter sgt_iter;
2511 	struct page *page;
2512 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2513 	unsigned int max_segment;
2514 	gfp_t noreclaim;
2515 	int ret;
2516 
2517 	/* Assert that the object is not currently in any GPU domain. As it
2518 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2519 	 * a GPU cache
2520 	 */
2521 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2522 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2523 
2524 	max_segment = swiotlb_max_segment();
2525 	if (!max_segment)
2526 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2527 
2528 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
2529 	if (st == NULL)
2530 		return ERR_PTR(-ENOMEM);
2531 
2532 rebuild_st:
2533 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2534 		kfree(st);
2535 		return ERR_PTR(-ENOMEM);
2536 	}
2537 
2538 	/* Get the list of pages out of our struct file.  They'll be pinned
2539 	 * at this point until we release them.
2540 	 *
2541 	 * Fail silently without starting the shrinker
2542 	 */
2543 #ifdef __DragonFly__
2544 	mapping = obj->base.filp;
2545 	VM_OBJECT_LOCK(mapping);
2546 #endif
2547 	noreclaim = mapping_gfp_constraint(mapping,
2548 					   ~(__GFP_IO | __GFP_RECLAIM));
2549 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2550 
2551 	sg = st->sgl;
2552 	st->nents = 0;
2553 	for (i = 0; i < page_count; i++) {
2554 		const unsigned int shrink[] = {
2555 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2556 			0,
2557 		}, *s = shrink;
2558 		gfp_t gfp = noreclaim;
2559 
2560 		do {
2561 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2562 			if (likely(!IS_ERR(page)))
2563 				break;
2564 
2565 			if (!*s) {
2566 				ret = PTR_ERR(page);
2567 				goto err_sg;
2568 			}
2569 
2570 			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2571 			cond_resched();
2572 
2573 			/* We've tried hard to allocate the memory by reaping
2574 			 * our own buffer, now let the real VM do its job and
2575 			 * go down in flames if truly OOM.
2576 			 *
2577 			 * However, since graphics tend to be disposable,
2578 			 * defer the oom here by reporting the ENOMEM back
2579 			 * to userspace.
2580 			 */
2581 			if (!*s) {
2582 				/* reclaim and warn, but no oom */
2583 				gfp = mapping_gfp_mask(mapping);
2584 
2585 				/* Our bo are always dirty and so we require
2586 				 * kswapd to reclaim our pages (direct reclaim
2587 				 * does not effectively begin pageout of our
2588 				 * buffers on its own). However, direct reclaim
2589 				 * only waits for kswapd when under allocation
2590 				 * congestion. So as a result __GFP_RECLAIM is
2591 				 * unreliable and fails to actually reclaim our
2592 				 * dirty pages -- unless you try over and over
2593 				 * again with !__GFP_NORETRY. However, we still
2594 				 * want to fail this allocation rather than
2595 				 * trigger the out-of-memory killer and for
2596 				 * this we want the future __GFP_MAYFAIL.
2597 				 */
2598 			}
2599 		} while (1);
2600 
2601 		if (!i ||
2602 		    sg->length >= max_segment ||
2603 		    page_to_pfn(page) != last_pfn + 1) {
2604 			if (i)
2605 				sg = sg_next(sg);
2606 			st->nents++;
2607 			sg_set_page(sg, page, PAGE_SIZE, 0);
2608 		} else {
2609 			sg->length += PAGE_SIZE;
2610 		}
2611 		last_pfn = page_to_pfn(page);
2612 
2613 		/* Check that the i965g/gm workaround works. */
2614 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2615 	}
2616 	if (sg) /* loop terminated early; short sg table */
2617 		sg_mark_end(sg);
2618 #ifdef __DragonFly__
2619 	VM_OBJECT_UNLOCK(mapping);
2620 #endif
2621 
2622 	/* Trim unused sg entries to avoid wasting memory. */
2623 	i915_sg_trim(st);
2624 
2625 	ret = i915_gem_gtt_prepare_pages(obj, st);
2626 	if (ret) {
2627 		/* DMA remapping failed? One possible cause is that
2628 		 * it could not reserve enough large entries, asking
2629 		 * for PAGE_SIZE chunks instead may be helpful.
2630 		 */
2631 		if (max_segment > PAGE_SIZE) {
2632 			for_each_sgt_page(page, sgt_iter, st)
2633 				put_page(page);
2634 			sg_free_table(st);
2635 
2636 			max_segment = PAGE_SIZE;
2637 			goto rebuild_st;
2638 		} else {
2639 			dev_warn(&dev_priv->drm.pdev->dev,
2640 				 "Failed to DMA remap %lu pages\n",
2641 				 page_count);
2642 			goto err_pages;
2643 		}
2644 	}
2645 
2646 	if (i915_gem_object_needs_bit17_swizzle(obj))
2647 		i915_gem_object_do_bit_17_swizzle(obj, st);
2648 
2649 	return st;
2650 
2651 err_sg:
2652 	sg_mark_end(sg);
2653 err_pages:
2654 	for_each_sgt_page(page, sgt_iter, st)
2655 		put_page(page);
2656 #ifdef __DragonFly__
2657 	VM_OBJECT_UNLOCK(mapping);
2658 #endif
2659 	sg_free_table(st);
2660 	kfree(st);
2661 
2662 	/* shmemfs first checks if there is enough memory to allocate the page
2663 	 * and reports ENOSPC should there be insufficient, along with the usual
2664 	 * ENOMEM for a genuine allocation failure.
2665 	 *
2666 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2667 	 * space and so want to translate the error from shmemfs back to our
2668 	 * usual understanding of ENOMEM.
2669 	 */
2670 	if (ret == -ENOSPC)
2671 		ret = -ENOMEM;
2672 
2673 	return ERR_PTR(ret);
2674 }
2675 
2676 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2677 				 struct sg_table *pages)
2678 {
2679 	lockdep_assert_held(&obj->mm.lock);
2680 
2681 	obj->mm.get_page.sg_pos = pages->sgl;
2682 	obj->mm.get_page.sg_idx = 0;
2683 
2684 	obj->mm.pages = pages;
2685 
2686 	if (i915_gem_object_is_tiled(obj) &&
2687 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2688 		GEM_BUG_ON(obj->mm.quirked);
2689 		__i915_gem_object_pin_pages(obj);
2690 		obj->mm.quirked = true;
2691 	}
2692 }
2693 
2694 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2695 {
2696 	struct sg_table *pages;
2697 
2698 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2699 
2700 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2701 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2702 		return -EFAULT;
2703 	}
2704 
2705 	pages = obj->ops->get_pages(obj);
2706 	if (unlikely(IS_ERR(pages)))
2707 		return PTR_ERR(pages);
2708 
2709 	__i915_gem_object_set_pages(obj, pages);
2710 	return 0;
2711 }
2712 
2713 /* Ensure that the associated pages are gathered from the backing storage
2714  * and pinned into our object. i915_gem_object_pin_pages() may be called
2715  * multiple times before they are released by a single call to
2716  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717  * either as a result of memory pressure (reaping pages under the shrinker)
2718  * or as the object is itself released.
2719  */
2720 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721 {
2722 	int err;
2723 
2724 	err = mutex_lock_interruptible(&obj->mm.lock);
2725 	if (err)
2726 		return err;
2727 
2728 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2729 		err = ____i915_gem_object_get_pages(obj);
2730 		if (err)
2731 			goto unlock;
2732 
2733 		smp_mb__before_atomic();
2734 	}
2735 	atomic_inc(&obj->mm.pages_pin_count);
2736 
2737 unlock:
2738 	mutex_unlock(&obj->mm.lock);
2739 	return err;
2740 }
2741 
2742 /* The 'mapping' part of i915_gem_object_pin_map() below */
2743 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2744 				 enum i915_map_type type)
2745 {
2746 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2747 	struct sg_table *sgt = obj->mm.pages;
2748 	struct sgt_iter sgt_iter;
2749 	struct page *page;
2750 	struct page *stack_pages[32];
2751 	struct page **pages = stack_pages;
2752 	unsigned long i = 0;
2753 	pgprot_t pgprot;
2754 	void *addr;
2755 
2756 	/* A single page can always be kmapped */
2757 	if (n_pages == 1 && type == I915_MAP_WB)
2758 		return kmap(sg_page(sgt->sgl));
2759 
2760 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2761 		/* Too big for stack -- allocate temporary array instead */
2762 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2763 		if (!pages)
2764 			return NULL;
2765 	}
2766 
2767 	for_each_sgt_page(page, sgt_iter, sgt)
2768 		pages[i++] = page;
2769 
2770 	/* Check that we have the expected number of pages */
2771 	GEM_BUG_ON(i != n_pages);
2772 
2773 	switch (type) {
2774 	case I915_MAP_WB:
2775 		pgprot = PAGE_KERNEL;
2776 		break;
2777 	case I915_MAP_WC:
2778 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2779 		break;
2780 	}
2781 	addr = vmap(pages, n_pages, 0, pgprot);
2782 
2783 	if (pages != stack_pages)
2784 		drm_free_large(pages);
2785 
2786 	return addr;
2787 }
2788 
2789 /* get, pin, and map the pages of the object into kernel space */
2790 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2791 			      enum i915_map_type type)
2792 {
2793 	enum i915_map_type has_type;
2794 	bool pinned;
2795 	void *ptr;
2796 	int ret;
2797 
2798 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2799 
2800 	ret = mutex_lock_interruptible(&obj->mm.lock);
2801 	if (ret)
2802 		return ERR_PTR(ret);
2803 
2804 	pinned = true;
2805 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2806 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2807 			ret = ____i915_gem_object_get_pages(obj);
2808 			if (ret)
2809 				goto err_unlock;
2810 
2811 			smp_mb__before_atomic();
2812 		}
2813 		atomic_inc(&obj->mm.pages_pin_count);
2814 		pinned = false;
2815 	}
2816 	GEM_BUG_ON(!obj->mm.pages);
2817 
2818 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2819 	if (ptr && has_type != type) {
2820 		if (pinned) {
2821 			ret = -EBUSY;
2822 			goto err_unpin;
2823 		}
2824 
2825 		if (is_vmalloc_addr(ptr))
2826 			vunmap(ptr);
2827 		else
2828 			kunmap(kmap_to_page(ptr));
2829 
2830 		ptr = obj->mm.mapping = NULL;
2831 	}
2832 
2833 	if (!ptr) {
2834 		ptr = i915_gem_object_map(obj, type);
2835 		if (!ptr) {
2836 			ret = -ENOMEM;
2837 			goto err_unpin;
2838 		}
2839 
2840 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2841 	}
2842 
2843 out_unlock:
2844 	mutex_unlock(&obj->mm.lock);
2845 	return ptr;
2846 
2847 err_unpin:
2848 	atomic_dec(&obj->mm.pages_pin_count);
2849 err_unlock:
2850 	ptr = ERR_PTR(ret);
2851 	goto out_unlock;
2852 }
2853 
2854 static int
2855 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2856 			   const struct drm_i915_gem_pwrite *arg)
2857 {
2858 #ifndef __DragonFly__
2859 	struct address_space *mapping = obj->base.filp->f_mapping;
2860 #else
2861 	struct vm_object *mapping = obj->base.filp;
2862 #endif
2863 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2864 	u64 remain, offset;
2865 	unsigned int pg;
2866 
2867 	/* Before we instantiate/pin the backing store for our use, we
2868 	 * can prepopulate the shmemfs filp efficiently using a write into
2869 	 * the pagecache. We avoid the penalty of instantiating all the
2870 	 * pages, important if the user is just writing to a few and never
2871 	 * uses the object on the GPU, and using a direct write into shmemfs
2872 	 * allows it to avoid the cost of retrieving a page (either swapin
2873 	 * or clearing-before-use) before it is overwritten.
2874 	 */
2875 	if (READ_ONCE(obj->mm.pages))
2876 		return -ENODEV;
2877 
2878 	/* Before the pages are instantiated the object is treated as being
2879 	 * in the CPU domain. The pages will be clflushed as required before
2880 	 * use, and we can freely write into the pages directly. If userspace
2881 	 * races pwrite with any other operation; corruption will ensue -
2882 	 * that is userspace's prerogative!
2883 	 */
2884 
2885 	remain = arg->size;
2886 	offset = arg->offset;
2887 	pg = offset_in_page(offset);
2888 
2889 	do {
2890 		unsigned int len, unwritten;
2891 		struct page *page;
2892 		void *vaddr;
2893 #if 0
2894 		void *data, *vaddr;
2895 		int err;
2896 #endif
2897 
2898 		len = PAGE_SIZE - pg;
2899 		if (len > remain)
2900 			len = remain;
2901 
2902 #ifndef __DragonFly__
2903 		err = pagecache_write_begin(obj->base.filp, mapping,
2904 					    offset, len, 0,
2905 					    &page, &data);
2906 		if (err < 0)
2907 			return err;
2908 #else
2909 		page = shmem_read_mapping_page(mapping, OFF_TO_IDX(offset));
2910 #endif
2911 
2912 		vaddr = kmap(page);
2913 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2914 		kunmap(page);
2915 
2916 #ifndef __DragonFly__
2917 		err = pagecache_write_end(obj->base.filp, mapping,
2918 					  offset, len, len - unwritten,
2919 					  page, data);
2920 		if (err < 0)
2921 			return err;
2922 #else
2923 		put_page(page);
2924 #endif
2925 
2926 		if (unwritten)
2927 			return -EFAULT;
2928 
2929 		remain -= len;
2930 		user_data += len;
2931 		offset += len;
2932 		pg = 0;
2933 	} while (remain);
2934 
2935 	return 0;
2936 }
2937 
2938 static bool ban_context(const struct i915_gem_context *ctx)
2939 {
2940 	return (i915_gem_context_is_bannable(ctx) &&
2941 		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2942 }
2943 
2944 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2945 {
2946 	ctx->guilty_count++;
2947 	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2948 	if (ban_context(ctx))
2949 		i915_gem_context_set_banned(ctx);
2950 
2951 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2952 			 ctx->name, ctx->ban_score,
2953 			 yesno(i915_gem_context_is_banned(ctx)));
2954 
2955 	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2956 		return;
2957 
2958 	ctx->file_priv->context_bans++;
2959 	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2960 			 ctx->name, ctx->file_priv->context_bans);
2961 }
2962 
2963 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2964 {
2965 	ctx->active_count++;
2966 }
2967 
2968 struct drm_i915_gem_request *
2969 i915_gem_find_active_request(struct intel_engine_cs *engine)
2970 {
2971 	struct drm_i915_gem_request *request, *active = NULL;
2972 	unsigned long flags;
2973 
2974 	/* We are called by the error capture and reset at a random
2975 	 * point in time. In particular, note that neither is crucially
2976 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2977 	 * assume that no more writes can happen (we waited long enough for
2978 	 * all writes that were in transaction to be flushed) - adding an
2979 	 * extra delay for a recent interrupt is pointless. Hence, we do
2980 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2981 	 */
2982 	spin_lock_irqsave(&engine->timeline->lock, flags);
2983 	list_for_each_entry(request, &engine->timeline->requests, link) {
2984 		if (__i915_gem_request_completed(request,
2985 						 request->global_seqno))
2986 			continue;
2987 
2988 		GEM_BUG_ON(request->engine != engine);
2989 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2990 				    &request->fence.flags));
2991 
2992 		active = request;
2993 		break;
2994 	}
2995 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2996 
2997 	return active;
2998 }
2999 
3000 static bool engine_stalled(struct intel_engine_cs *engine)
3001 {
3002 	if (!engine->hangcheck.stalled)
3003 		return false;
3004 
3005 	/* Check for possible seqno movement after hang declaration */
3006 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
3007 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
3008 		return false;
3009 	}
3010 
3011 	return true;
3012 }
3013 
3014 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3015 {
3016 	struct intel_engine_cs *engine;
3017 	enum intel_engine_id id;
3018 	int err = 0;
3019 
3020 	/* Ensure irq handler finishes, and not run again. */
3021 	for_each_engine(engine, dev_priv, id) {
3022 		struct drm_i915_gem_request *request;
3023 
3024 		/* Prevent the signaler thread from updating the request
3025 		 * state (by calling dma_fence_signal) as we are processing
3026 		 * the reset. The write from the GPU of the seqno is
3027 		 * asynchronous and the signaler thread may see a different
3028 		 * value to us and declare the request complete, even though
3029 		 * the reset routine have picked that request as the active
3030 		 * (incomplete) request. This conflict is not handled
3031 		 * gracefully!
3032 		 */
3033 		kthread_park(engine->breadcrumbs.signaler);
3034 
3035 		/* Prevent request submission to the hardware until we have
3036 		 * completed the reset in i915_gem_reset_finish(). If a request
3037 		 * is completed by one engine, it may then queue a request
3038 		 * to a second via its engine->irq_tasklet *just* as we are
3039 		 * calling engine->init_hw() and also writing the ELSP.
3040 		 * Turning off the engine->irq_tasklet until the reset is over
3041 		 * prevents the race.
3042 		 */
3043 		tasklet_kill(&engine->irq_tasklet);
3044 		tasklet_disable(&engine->irq_tasklet);
3045 
3046 		if (engine->irq_seqno_barrier)
3047 			engine->irq_seqno_barrier(engine);
3048 
3049 		if (engine_stalled(engine)) {
3050 			request = i915_gem_find_active_request(engine);
3051 			if (request && request->fence.error == -EIO)
3052 				err = -EIO; /* Previous reset failed! */
3053 		}
3054 	}
3055 
3056 	i915_gem_revoke_fences(dev_priv);
3057 
3058 	return err;
3059 }
3060 
3061 static void skip_request(struct drm_i915_gem_request *request)
3062 {
3063 	void *vaddr = request->ring->vaddr;
3064 	u32 head;
3065 
3066 	/* As this request likely depends on state from the lost
3067 	 * context, clear out all the user operations leaving the
3068 	 * breadcrumb at the end (so we get the fence notifications).
3069 	 */
3070 	head = request->head;
3071 	if (request->postfix < head) {
3072 		memset(vaddr + head, 0, request->ring->size - head);
3073 		head = 0;
3074 	}
3075 	memset(vaddr + head, 0, request->postfix - head);
3076 
3077 	dma_fence_set_error(&request->fence, -EIO);
3078 }
3079 
3080 static void engine_skip_context(struct drm_i915_gem_request *request)
3081 {
3082 	struct intel_engine_cs *engine = request->engine;
3083 	struct i915_gem_context *hung_ctx = request->ctx;
3084 	struct intel_timeline *timeline;
3085 	unsigned long flags;
3086 
3087 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3088 
3089 	spin_lock_irqsave(&engine->timeline->lock, flags);
3090 	lockmgr(&timeline->lock, LK_EXCLUSIVE);
3091 
3092 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3093 		if (request->ctx == hung_ctx)
3094 			skip_request(request);
3095 
3096 	list_for_each_entry(request, &timeline->requests, link)
3097 		skip_request(request);
3098 
3099 	lockmgr(&timeline->lock, LK_RELEASE);
3100 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3101 }
3102 
3103 /* Returns true if the request was guilty of hang */
3104 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
3105 {
3106 	/* Read once and return the resolution */
3107 	const bool guilty = engine_stalled(request->engine);
3108 
3109 	/* The guilty request will get skipped on a hung engine.
3110 	 *
3111 	 * Users of client default contexts do not rely on logical
3112 	 * state preserved between batches so it is safe to execute
3113 	 * queued requests following the hang. Non default contexts
3114 	 * rely on preserved state, so skipping a batch loses the
3115 	 * evolution of the state and it needs to be considered corrupted.
3116 	 * Executing more queued batches on top of corrupted state is
3117 	 * risky. But we take the risk by trying to advance through
3118 	 * the queued requests in order to make the client behaviour
3119 	 * more predictable around resets, by not throwing away random
3120 	 * amount of batches it has prepared for execution. Sophisticated
3121 	 * clients can use gem_reset_stats_ioctl and dma fence status
3122 	 * (exported via sync_file info ioctl on explicit fences) to observe
3123 	 * when it loses the context state and should rebuild accordingly.
3124 	 *
3125 	 * The context ban, and ultimately the client ban, mechanism are safety
3126 	 * valves if client submission ends up resulting in nothing more than
3127 	 * subsequent hangs.
3128 	 */
3129 
3130 	if (guilty) {
3131 		i915_gem_context_mark_guilty(request->ctx);
3132 		skip_request(request);
3133 	} else {
3134 		i915_gem_context_mark_innocent(request->ctx);
3135 		dma_fence_set_error(&request->fence, -EAGAIN);
3136 	}
3137 
3138 	return guilty;
3139 }
3140 
3141 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
3142 {
3143 	struct drm_i915_gem_request *request;
3144 
3145 	request = i915_gem_find_active_request(engine);
3146 	if (request && i915_gem_reset_request(request)) {
3147 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3148 				 engine->name, request->global_seqno);
3149 
3150 		/* If this context is now banned, skip all pending requests. */
3151 		if (i915_gem_context_is_banned(request->ctx))
3152 			engine_skip_context(request);
3153 	}
3154 
3155 	/* Setup the CS to resume from the breadcrumb of the hung request */
3156 	engine->reset_hw(engine, request);
3157 }
3158 
3159 void i915_gem_reset(struct drm_i915_private *dev_priv)
3160 {
3161 	struct intel_engine_cs *engine;
3162 	enum intel_engine_id id;
3163 
3164 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3165 
3166 	i915_gem_retire_requests(dev_priv);
3167 
3168 	for_each_engine(engine, dev_priv, id) {
3169 		struct i915_gem_context *ctx;
3170 
3171 		i915_gem_reset_engine(engine);
3172 		ctx = fetch_and_zero(&engine->last_retired_context);
3173 		if (ctx)
3174 			engine->context_unpin(engine, ctx);
3175 	}
3176 
3177 	i915_gem_restore_fences(dev_priv);
3178 
3179 	if (dev_priv->gt.awake) {
3180 		intel_sanitize_gt_powersave(dev_priv);
3181 		intel_enable_gt_powersave(dev_priv);
3182 		if (INTEL_GEN(dev_priv) >= 6)
3183 			gen6_rps_busy(dev_priv);
3184 	}
3185 }
3186 
3187 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3188 {
3189 	struct intel_engine_cs *engine;
3190 	enum intel_engine_id id;
3191 
3192 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3193 
3194 	for_each_engine(engine, dev_priv, id) {
3195 		tasklet_enable(&engine->irq_tasklet);
3196 		kthread_unpark(engine->breadcrumbs.signaler);
3197 	}
3198 }
3199 
3200 static void nop_submit_request(struct drm_i915_gem_request *request)
3201 {
3202 	dma_fence_set_error(&request->fence, -EIO);
3203 	i915_gem_request_submit(request);
3204 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3205 }
3206 
3207 static void engine_set_wedged(struct intel_engine_cs *engine)
3208 {
3209 	struct drm_i915_gem_request *request;
3210 	unsigned long flags;
3211 
3212 	/* We need to be sure that no thread is running the old callback as
3213 	 * we install the nop handler (otherwise we would submit a request
3214 	 * to hardware that will never complete). In order to prevent this
3215 	 * race, we wait until the machine is idle before making the swap
3216 	 * (using stop_machine()).
3217 	 */
3218 	engine->submit_request = nop_submit_request;
3219 
3220 	/* Mark all executing requests as skipped */
3221 	spin_lock_irqsave(&engine->timeline->lock, flags);
3222 	list_for_each_entry(request, &engine->timeline->requests, link)
3223 		dma_fence_set_error(&request->fence, -EIO);
3224 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3225 
3226 	/* Mark all pending requests as complete so that any concurrent
3227 	 * (lockless) lookup doesn't try and wait upon the request as we
3228 	 * reset it.
3229 	 */
3230 	intel_engine_init_global_seqno(engine,
3231 				       intel_engine_last_submit(engine));
3232 
3233 	/*
3234 	 * Clear the execlists queue up before freeing the requests, as those
3235 	 * are the ones that keep the context and ringbuffer backing objects
3236 	 * pinned in place.
3237 	 */
3238 
3239 	if (i915.enable_execlists) {
3240 		unsigned long flags;
3241 
3242 		spin_lock_irqsave(&engine->timeline->lock, flags);
3243 
3244 		i915_gem_request_put(engine->execlist_port[0].request);
3245 		i915_gem_request_put(engine->execlist_port[1].request);
3246 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3247 		engine->execlist_queue = LINUX_RB_ROOT;
3248 		engine->execlist_first = NULL;
3249 
3250 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3251 	}
3252 }
3253 
3254 static int __i915_gem_set_wedged_BKL(void *data)
3255 {
3256 	struct drm_i915_private *i915 = data;
3257 	struct intel_engine_cs *engine;
3258 	enum intel_engine_id id;
3259 
3260 	for_each_engine(engine, i915, id)
3261 		engine_set_wedged(engine);
3262 
3263 	return 0;
3264 }
3265 
3266 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3267 {
3268 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3269 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3270 
3271 	/* Retire completed requests first so the list of inflight/incomplete
3272 	 * requests is accurate and we don't try and mark successful requests
3273 	 * as in error during __i915_gem_set_wedged_BKL().
3274 	 */
3275 	i915_gem_retire_requests(dev_priv);
3276 
3277 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3278 
3279 	i915_gem_context_lost(dev_priv);
3280 
3281 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3282 }
3283 
3284 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3285 {
3286 	struct i915_gem_timeline *tl;
3287 	int i;
3288 
3289 	lockdep_assert_held(&i915->drm.struct_mutex);
3290 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291 		return true;
3292 
3293 	/* Before unwedging, make sure that all pending operations
3294 	 * are flushed and errored out - we may have requests waiting upon
3295 	 * third party fences. We marked all inflight requests as EIO, and
3296 	 * every execbuf since returned EIO, for consistency we want all
3297 	 * the currently pending requests to also be marked as EIO, which
3298 	 * is done inside our nop_submit_request - and so we must wait.
3299 	 *
3300 	 * No more can be submitted until we reset the wedged bit.
3301 	 */
3302 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3303 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304 			struct drm_i915_gem_request *rq;
3305 
3306 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307 						  &i915->drm.struct_mutex);
3308 			if (!rq)
3309 				continue;
3310 
3311 			/* We can't use our normal waiter as we want to
3312 			 * avoid recursively trying to handle the current
3313 			 * reset. The basic dma_fence_default_wait() installs
3314 			 * a callback for dma_fence_signal(), which is
3315 			 * triggered by our nop handler (indirectly, the
3316 			 * callback enables the signaler thread which is
3317 			 * woken by the nop_submit_request() advancing the seqno
3318 			 * and when the seqno passes the fence, the signaler
3319 			 * then signals the fence waking us up).
3320 			 */
3321 			if (dma_fence_default_wait(&rq->fence, true,
3322 						   MAX_SCHEDULE_TIMEOUT) < 0)
3323 				return false;
3324 		}
3325 	}
3326 
3327 	/* Undo nop_submit_request. We prevent all new i915 requests from
3328 	 * being queued (by disallowing execbuf whilst wedged) so having
3329 	 * waited for all active requests above, we know the system is idle
3330 	 * and do not have to worry about a thread being inside
3331 	 * engine->submit_request() as we swap over. So unlike installing
3332 	 * the nop_submit_request on reset, we can do this from normal
3333 	 * context and do not require stop_machine().
3334 	 */
3335 	intel_engines_reset_default_submission(i915);
3336 
3337 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3338 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3339 
3340 	return true;
3341 }
3342 
3343 static void
3344 i915_gem_retire_work_handler(struct work_struct *work)
3345 {
3346 	struct drm_i915_private *dev_priv =
3347 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3348 	struct drm_device *dev = &dev_priv->drm;
3349 
3350 	/* Come back later if the device is busy... */
3351 	if (mutex_trylock(&dev->struct_mutex)) {
3352 		i915_gem_retire_requests(dev_priv);
3353 		mutex_unlock(&dev->struct_mutex);
3354 	}
3355 
3356 	/* Keep the retire handler running until we are finally idle.
3357 	 * We do not need to do this test under locking as in the worst-case
3358 	 * we queue the retire worker once too often.
3359 	 */
3360 	if (READ_ONCE(dev_priv->gt.awake)) {
3361 		i915_queue_hangcheck(dev_priv);
3362 		queue_delayed_work(dev_priv->wq,
3363 				   &dev_priv->gt.retire_work,
3364 				   round_jiffies_up_relative(HZ));
3365 	}
3366 }
3367 
3368 static void
3369 i915_gem_idle_work_handler(struct work_struct *work)
3370 {
3371 	struct drm_i915_private *dev_priv =
3372 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3373 	struct drm_device *dev = &dev_priv->drm;
3374 	struct intel_engine_cs *engine;
3375 	enum intel_engine_id id;
3376 	bool rearm_hangcheck;
3377 
3378 	if (!READ_ONCE(dev_priv->gt.awake))
3379 		return;
3380 
3381 	/*
3382 	 * Wait for last execlists context complete, but bail out in case a
3383 	 * new request is submitted.
3384 	 */
3385 	wait_for(intel_engines_are_idle(dev_priv), 10);
3386 	if (READ_ONCE(dev_priv->gt.active_requests))
3387 		return;
3388 
3389 	rearm_hangcheck =
3390 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3391 
3392 	if (!mutex_trylock(&dev->struct_mutex)) {
3393 		/* Currently busy, come back later */
3394 		mod_delayed_work(dev_priv->wq,
3395 				 &dev_priv->gt.idle_work,
3396 				 msecs_to_jiffies(50));
3397 		goto out_rearm;
3398 	}
3399 
3400 	/*
3401 	 * New request retired after this work handler started, extend active
3402 	 * period until next instance of the work.
3403 	 */
3404 	if (work_pending(work))
3405 		goto out_unlock;
3406 
3407 	if (dev_priv->gt.active_requests)
3408 		goto out_unlock;
3409 
3410 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3411 		DRM_ERROR("Timeout waiting for engines to idle\n");
3412 
3413 	for_each_engine(engine, dev_priv, id) {
3414 		intel_engine_disarm_breadcrumbs(engine);
3415 		i915_gem_batch_pool_fini(&engine->batch_pool);
3416 	}
3417 
3418 	GEM_BUG_ON(!dev_priv->gt.awake);
3419 	dev_priv->gt.awake = false;
3420 	rearm_hangcheck = false;
3421 
3422 	if (INTEL_GEN(dev_priv) >= 6)
3423 		gen6_rps_idle(dev_priv);
3424 	intel_runtime_pm_put(dev_priv);
3425 out_unlock:
3426 	mutex_unlock(&dev->struct_mutex);
3427 
3428 out_rearm:
3429 	if (rearm_hangcheck) {
3430 		GEM_BUG_ON(!dev_priv->gt.awake);
3431 		i915_queue_hangcheck(dev_priv);
3432 	}
3433 }
3434 
3435 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3436 {
3437 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3438 	struct drm_i915_file_private *fpriv = file->driver_priv;
3439 	struct i915_vma *vma, *vn;
3440 
3441 	mutex_lock(&obj->base.dev->struct_mutex);
3442 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3443 		if (vma->vm->file == fpriv)
3444 			i915_vma_close(vma);
3445 
3446 	if (i915_gem_object_is_active(obj) &&
3447 	    !i915_gem_object_has_active_reference(obj)) {
3448 		i915_gem_object_set_active_reference(obj);
3449 		i915_gem_object_get(obj);
3450 	}
3451 	mutex_unlock(&obj->base.dev->struct_mutex);
3452 }
3453 
3454 static unsigned long to_wait_timeout(s64 timeout_ns)
3455 {
3456 	if (timeout_ns < 0)
3457 		return MAX_SCHEDULE_TIMEOUT;
3458 
3459 	if (timeout_ns == 0)
3460 		return 0;
3461 
3462 	return nsecs_to_jiffies_timeout(timeout_ns);
3463 }
3464 
3465 /**
3466  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3467  * @dev: drm device pointer
3468  * @data: ioctl data blob
3469  * @file: drm file pointer
3470  *
3471  * Returns 0 if successful, else an error is returned with the remaining time in
3472  * the timeout parameter.
3473  *  -ETIME: object is still busy after timeout
3474  *  -ERESTARTSYS: signal interrupted the wait
3475  *  -ENONENT: object doesn't exist
3476  * Also possible, but rare:
3477  *  -EAGAIN: GPU wedged
3478  *  -ENOMEM: damn
3479  *  -ENODEV: Internal IRQ fail
3480  *  -E?: The add request failed
3481  *
3482  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3483  * non-zero timeout parameter the wait ioctl will wait for the given number of
3484  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3485  * without holding struct_mutex the object may become re-busied before this
3486  * function completes. A similar but shorter * race condition exists in the busy
3487  * ioctl
3488  */
3489 int
3490 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3491 {
3492 	struct drm_i915_gem_wait *args = data;
3493 	struct drm_i915_gem_object *obj;
3494 	ktime_t start;
3495 	long ret;
3496 
3497 	if (args->flags != 0)
3498 		return -EINVAL;
3499 
3500 	obj = i915_gem_object_lookup(file, args->bo_handle);
3501 	if (!obj)
3502 		return -ENOENT;
3503 
3504 	start = ktime_get();
3505 
3506 	ret = i915_gem_object_wait(obj,
3507 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3508 				   to_wait_timeout(args->timeout_ns),
3509 				   to_rps_client(file));
3510 
3511 	if (args->timeout_ns > 0) {
3512 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3513 		if (args->timeout_ns < 0)
3514 			args->timeout_ns = 0;
3515 
3516 		/*
3517 		 * Apparently ktime isn't accurate enough and occasionally has a
3518 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3519 		 * things up to make the test happy. We allow up to 1 jiffy.
3520 		 *
3521 		 * This is a regression from the timespec->ktime conversion.
3522 		 */
3523 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3524 			args->timeout_ns = 0;
3525 
3526 		/*
3527 		 * Apparently ktime isn't accurate enough and occasionally has a
3528 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3529 		 * things up to make the test happy. We allow up to 1 jiffy.
3530 		 *
3531 		 * This is a regression from the timespec->ktime conversion.
3532 		 */
3533 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3534 			args->timeout_ns = 0;
3535 	}
3536 
3537 	i915_gem_object_put(obj);
3538 	return ret;
3539 }
3540 
3541 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3542 {
3543 	int ret, i;
3544 
3545 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3546 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3547 		if (ret)
3548 			return ret;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3555 {
3556 	return wait_for(intel_engine_is_idle(engine), timeout_ms);
3557 }
3558 
3559 static int wait_for_engines(struct drm_i915_private *i915)
3560 {
3561 	struct intel_engine_cs *engine;
3562 	enum intel_engine_id id;
3563 
3564 	for_each_engine(engine, i915, id) {
3565 		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3566 			i915_gem_set_wedged(i915);
3567 			return -EIO;
3568 		}
3569 
3570 		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3571 			   intel_engine_last_submit(engine));
3572 	}
3573 
3574 	return 0;
3575 }
3576 
3577 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3578 {
3579 	int ret;
3580 
3581 	/* If the device is asleep, we have no requests outstanding */
3582 	if (!READ_ONCE(i915->gt.awake))
3583 		return 0;
3584 
3585 	if (flags & I915_WAIT_LOCKED) {
3586 		struct i915_gem_timeline *tl;
3587 
3588 		lockdep_assert_held(&i915->drm.struct_mutex);
3589 
3590 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3591 			ret = wait_for_timeline(tl, flags);
3592 			if (ret)
3593 				return ret;
3594 		}
3595 
3596 		i915_gem_retire_requests(i915);
3597 		GEM_BUG_ON(i915->gt.active_requests);
3598 
3599 		ret = wait_for_engines(i915);
3600 	} else {
3601 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3602 	}
3603 
3604 	return ret;
3605 }
3606 
3607 /** Flushes the GTT write domain for the object if it's dirty. */
3608 static void
3609 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3610 {
3611 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3612 
3613 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3614 		return;
3615 
3616 	/* No actual flushing is required for the GTT write domain.  Writes
3617 	 * to it "immediately" go to main memory as far as we know, so there's
3618 	 * no chipset flush.  It also doesn't land in render cache.
3619 	 *
3620 	 * However, we do have to enforce the order so that all writes through
3621 	 * the GTT land before any writes to the device, such as updates to
3622 	 * the GATT itself.
3623 	 *
3624 	 * We also have to wait a bit for the writes to land from the GTT.
3625 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3626 	 * timing. This issue has only been observed when switching quickly
3627 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3628 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3629 	 * system agents we cannot reproduce this behaviour).
3630 	 */
3631 	wmb();
3632 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3633 		if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3634 			spin_lock_irq(&dev_priv->uncore.lock);
3635 			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3636 			spin_unlock_irq(&dev_priv->uncore.lock);
3637 			intel_runtime_pm_put(dev_priv);
3638 		}
3639 	}
3640 
3641 	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3642 
3643 	obj->base.write_domain = 0;
3644 }
3645 
3646 /** Flushes the CPU write domain for the object if it's dirty. */
3647 static void
3648 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3649 {
3650 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3651 		return;
3652 
3653 	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3654 	obj->base.write_domain = 0;
3655 }
3656 
3657 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3658 {
3659 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3660 		return;
3661 
3662 	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3663 	obj->base.write_domain = 0;
3664 }
3665 
3666 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3667 {
3668 	if (!READ_ONCE(obj->pin_display))
3669 		return;
3670 
3671 	mutex_lock(&obj->base.dev->struct_mutex);
3672 	__i915_gem_object_flush_for_display(obj);
3673 	mutex_unlock(&obj->base.dev->struct_mutex);
3674 }
3675 
3676 /**
3677  * Moves a single object to the GTT read, and possibly write domain.
3678  * @obj: object to act on
3679  * @write: ask for write access or read only
3680  *
3681  * This function returns when the move is complete, including waiting on
3682  * flushes to occur.
3683  */
3684 int
3685 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3686 {
3687 	int ret;
3688 
3689 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3690 
3691 	ret = i915_gem_object_wait(obj,
3692 				   I915_WAIT_INTERRUPTIBLE |
3693 				   I915_WAIT_LOCKED |
3694 				   (write ? I915_WAIT_ALL : 0),
3695 				   MAX_SCHEDULE_TIMEOUT,
3696 				   NULL);
3697 	if (ret)
3698 		return ret;
3699 
3700 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701 		return 0;
3702 
3703 	/* Flush and acquire obj->pages so that we are coherent through
3704 	 * direct access in memory with previous cached writes through
3705 	 * shmemfs and that our cache domain tracking remains valid.
3706 	 * For example, if the obj->filp was moved to swap without us
3707 	 * being notified and releasing the pages, we would mistakenly
3708 	 * continue to assume that the obj remained out of the CPU cached
3709 	 * domain.
3710 	 */
3711 	ret = i915_gem_object_pin_pages(obj);
3712 	if (ret)
3713 		return ret;
3714 
3715 	i915_gem_object_flush_cpu_write_domain(obj);
3716 
3717 	/* Serialise direct access to this object with the barriers for
3718 	 * coherent writes from the GPU, by effectively invalidating the
3719 	 * GTT domain upon first access.
3720 	 */
3721 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3722 		mb();
3723 
3724 	/* It should now be out of any other write domains, and we can update
3725 	 * the domain values for our changes.
3726 	 */
3727 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3728 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3729 	if (write) {
3730 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3731 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3732 		obj->mm.dirty = true;
3733 	}
3734 
3735 	i915_gem_object_unpin_pages(obj);
3736 	return 0;
3737 }
3738 
3739 /**
3740  * Changes the cache-level of an object across all VMA.
3741  * @obj: object to act on
3742  * @cache_level: new cache level to set for the object
3743  *
3744  * After this function returns, the object will be in the new cache-level
3745  * across all GTT and the contents of the backing storage will be coherent,
3746  * with respect to the new cache-level. In order to keep the backing storage
3747  * coherent for all users, we only allow a single cache level to be set
3748  * globally on the object and prevent it from being changed whilst the
3749  * hardware is reading from the object. That is if the object is currently
3750  * on the scanout it will be set to uncached (or equivalent display
3751  * cache coherency) and all non-MOCS GPU access will also be uncached so
3752  * that all direct access to the scanout remains coherent.
3753  */
3754 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3755 				    enum i915_cache_level cache_level)
3756 {
3757 	struct i915_vma *vma;
3758 	int ret;
3759 
3760 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3761 
3762 	if (obj->cache_level == cache_level)
3763 		return 0;
3764 
3765 	/* Inspect the list of currently bound VMA and unbind any that would
3766 	 * be invalid given the new cache-level. This is principally to
3767 	 * catch the issue of the CS prefetch crossing page boundaries and
3768 	 * reading an invalid PTE on older architectures.
3769 	 */
3770 restart:
3771 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3772 		if (!drm_mm_node_allocated(&vma->node))
3773 			continue;
3774 
3775 		if (i915_vma_is_pinned(vma)) {
3776 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3777 			return -EBUSY;
3778 		}
3779 
3780 		if (i915_gem_valid_gtt_space(vma, cache_level))
3781 			continue;
3782 
3783 		ret = i915_vma_unbind(vma);
3784 		if (ret)
3785 			return ret;
3786 
3787 		/* As unbinding may affect other elements in the
3788 		 * obj->vma_list (due to side-effects from retiring
3789 		 * an active vma), play safe and restart the iterator.
3790 		 */
3791 		goto restart;
3792 	}
3793 
3794 	/* We can reuse the existing drm_mm nodes but need to change the
3795 	 * cache-level on the PTE. We could simply unbind them all and
3796 	 * rebind with the correct cache-level on next use. However since
3797 	 * we already have a valid slot, dma mapping, pages etc, we may as
3798 	 * rewrite the PTE in the belief that doing so tramples upon less
3799 	 * state and so involves less work.
3800 	 */
3801 	if (obj->bind_count) {
3802 		/* Before we change the PTE, the GPU must not be accessing it.
3803 		 * If we wait upon the object, we know that all the bound
3804 		 * VMA are no longer active.
3805 		 */
3806 		ret = i915_gem_object_wait(obj,
3807 					   I915_WAIT_INTERRUPTIBLE |
3808 					   I915_WAIT_LOCKED |
3809 					   I915_WAIT_ALL,
3810 					   MAX_SCHEDULE_TIMEOUT,
3811 					   NULL);
3812 		if (ret)
3813 			return ret;
3814 
3815 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3816 		    cache_level != I915_CACHE_NONE) {
3817 			/* Access to snoopable pages through the GTT is
3818 			 * incoherent and on some machines causes a hard
3819 			 * lockup. Relinquish the CPU mmaping to force
3820 			 * userspace to refault in the pages and we can
3821 			 * then double check if the GTT mapping is still
3822 			 * valid for that pointer access.
3823 			 */
3824 			i915_gem_release_mmap(obj);
3825 
3826 			/* As we no longer need a fence for GTT access,
3827 			 * we can relinquish it now (and so prevent having
3828 			 * to steal a fence from someone else on the next
3829 			 * fence request). Note GPU activity would have
3830 			 * dropped the fence as all snoopable access is
3831 			 * supposed to be linear.
3832 			 */
3833 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3834 				ret = i915_vma_put_fence(vma);
3835 				if (ret)
3836 					return ret;
3837 			}
3838 		} else {
3839 			/* We either have incoherent backing store and
3840 			 * so no GTT access or the architecture is fully
3841 			 * coherent. In such cases, existing GTT mmaps
3842 			 * ignore the cache bit in the PTE and we can
3843 			 * rewrite it without confusing the GPU or having
3844 			 * to force userspace to fault back in its mmaps.
3845 			 */
3846 		}
3847 
3848 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3849 			if (!drm_mm_node_allocated(&vma->node))
3850 				continue;
3851 
3852 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3853 			if (ret)
3854 				return ret;
3855 		}
3856 	}
3857 
3858 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3859 	    i915_gem_object_is_coherent(obj))
3860 		obj->cache_dirty = true;
3861 
3862 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3863 		vma->node.color = cache_level;
3864 	obj->cache_level = cache_level;
3865 
3866 	return 0;
3867 }
3868 
3869 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3870 			       struct drm_file *file)
3871 {
3872 	struct drm_i915_gem_caching *args = data;
3873 	struct drm_i915_gem_object *obj;
3874 	int err = 0;
3875 
3876 	rcu_read_lock();
3877 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3878 	if (!obj) {
3879 		err = -ENOENT;
3880 		goto out;
3881 	}
3882 
3883 	switch (obj->cache_level) {
3884 	case I915_CACHE_LLC:
3885 	case I915_CACHE_L3_LLC:
3886 		args->caching = I915_CACHING_CACHED;
3887 		break;
3888 
3889 	case I915_CACHE_WT:
3890 		args->caching = I915_CACHING_DISPLAY;
3891 		break;
3892 
3893 	default:
3894 		args->caching = I915_CACHING_NONE;
3895 		break;
3896 	}
3897 out:
3898 	rcu_read_unlock();
3899 	return err;
3900 }
3901 
3902 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3903 			       struct drm_file *file)
3904 {
3905 	struct drm_i915_private *i915 = to_i915(dev);
3906 	struct drm_i915_gem_caching *args = data;
3907 	struct drm_i915_gem_object *obj;
3908 	enum i915_cache_level level;
3909 	int ret = 0;
3910 
3911 	switch (args->caching) {
3912 	case I915_CACHING_NONE:
3913 		level = I915_CACHE_NONE;
3914 		break;
3915 	case I915_CACHING_CACHED:
3916 		/*
3917 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3918 		 * snooped mapping may leave stale data in a corresponding CPU
3919 		 * cacheline, whereas normally such cachelines would get
3920 		 * invalidated.
3921 		 */
3922 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3923 			return -ENODEV;
3924 
3925 		level = I915_CACHE_LLC;
3926 		break;
3927 	case I915_CACHING_DISPLAY:
3928 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3929 		break;
3930 	default:
3931 		return -EINVAL;
3932 	}
3933 
3934 	obj = i915_gem_object_lookup(file, args->handle);
3935 	if (!obj)
3936 		return -ENOENT;
3937 
3938 	if (obj->cache_level == level)
3939 		goto out;
3940 
3941 	ret = i915_gem_object_wait(obj,
3942 				   I915_WAIT_INTERRUPTIBLE,
3943 				   MAX_SCHEDULE_TIMEOUT,
3944 				   to_rps_client(file));
3945 	if (ret)
3946 		goto out;
3947 
3948 	ret = i915_mutex_lock_interruptible(dev);
3949 	if (ret)
3950 		goto out;
3951 
3952 	ret = i915_gem_object_set_cache_level(obj, level);
3953 	mutex_unlock(&dev->struct_mutex);
3954 
3955 out:
3956 	i915_gem_object_put(obj);
3957 	return ret;
3958 }
3959 
3960 /*
3961  * Prepare buffer for display plane (scanout, cursors, etc).
3962  * Can be called from an uninterruptible phase (modesetting) and allows
3963  * any flushes to be pipelined (for pageflips).
3964  */
3965 struct i915_vma *
3966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3967 				     u32 alignment,
3968 				     const struct i915_ggtt_view *view)
3969 {
3970 	struct i915_vma *vma;
3971 	int ret;
3972 
3973 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3974 
3975 	/* Mark the pin_display early so that we account for the
3976 	 * display coherency whilst setting up the cache domains.
3977 	 */
3978 	obj->pin_display++;
3979 
3980 	/* The display engine is not coherent with the LLC cache on gen6.  As
3981 	 * a result, we make sure that the pinning that is about to occur is
3982 	 * done with uncached PTEs. This is lowest common denominator for all
3983 	 * chipsets.
3984 	 *
3985 	 * However for gen6+, we could do better by using the GFDT bit instead
3986 	 * of uncaching, which would allow us to flush all the LLC-cached data
3987 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3988 	 */
3989 	ret = i915_gem_object_set_cache_level(obj,
3990 					      HAS_WT(to_i915(obj->base.dev)) ?
3991 					      I915_CACHE_WT : I915_CACHE_NONE);
3992 	if (ret) {
3993 		vma = ERR_PTR(ret);
3994 		goto err_unpin_display;
3995 	}
3996 
3997 	/* As the user may map the buffer once pinned in the display plane
3998 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3999 	 * always use map_and_fenceable for all scanout buffers. However,
4000 	 * it may simply be too big to fit into mappable, in which case
4001 	 * put it anyway and hope that userspace can cope (but always first
4002 	 * try to preserve the existing ABI).
4003 	 */
4004 	vma = ERR_PTR(-ENOSPC);
4005 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4006 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4007 					       PIN_MAPPABLE | PIN_NONBLOCK);
4008 	if (IS_ERR(vma)) {
4009 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
4010 		unsigned int flags;
4011 
4012 		/* Valleyview is definitely limited to scanning out the first
4013 		 * 512MiB. Lets presume this behaviour was inherited from the
4014 		 * g4x display engine and that all earlier gen are similarly
4015 		 * limited. Testing suggests that it is a little more
4016 		 * complicated than this. For example, Cherryview appears quite
4017 		 * happy to scanout from anywhere within its global aperture.
4018 		 */
4019 		flags = 0;
4020 		if (HAS_GMCH_DISPLAY(i915))
4021 			flags = PIN_MAPPABLE;
4022 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4023 	}
4024 	if (IS_ERR(vma))
4025 		goto err_unpin_display;
4026 
4027 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4028 
4029 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4030 	__i915_gem_object_flush_for_display(obj);
4031 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4032 
4033 	/* It should now be out of any other write domains, and we can update
4034 	 * the domain values for our changes.
4035 	 */
4036 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4037 
4038 	return vma;
4039 
4040 err_unpin_display:
4041 	obj->pin_display--;
4042 	return vma;
4043 }
4044 
4045 void
4046 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4047 {
4048 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4049 
4050 	if (WARN_ON(vma->obj->pin_display == 0))
4051 		return;
4052 
4053 	if (--vma->obj->pin_display == 0)
4054 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4055 
4056 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4057 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4058 
4059 	i915_vma_unpin(vma);
4060 }
4061 
4062 /**
4063  * Moves a single object to the CPU read, and possibly write domain.
4064  * @obj: object to act on
4065  * @write: requesting write or read-only access
4066  *
4067  * This function returns when the move is complete, including waiting on
4068  * flushes to occur.
4069  */
4070 int
4071 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4072 {
4073 	int ret;
4074 
4075 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4076 
4077 	ret = i915_gem_object_wait(obj,
4078 				   I915_WAIT_INTERRUPTIBLE |
4079 				   I915_WAIT_LOCKED |
4080 				   (write ? I915_WAIT_ALL : 0),
4081 				   MAX_SCHEDULE_TIMEOUT,
4082 				   NULL);
4083 	if (ret)
4084 		return ret;
4085 
4086 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4087 		return 0;
4088 
4089 	i915_gem_object_flush_gtt_write_domain(obj);
4090 
4091 	/* Flush the CPU cache if it's still invalid. */
4092 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4093 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4094 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4095 	}
4096 
4097 	/* It should now be out of any other write domains, and we can update
4098 	 * the domain values for our changes.
4099 	 */
4100 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4101 
4102 	/* If we're writing through the CPU, then the GPU read domains will
4103 	 * need to be invalidated at next use.
4104 	 */
4105 	if (write) {
4106 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4107 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4108 	}
4109 
4110 	return 0;
4111 }
4112 
4113 /* Throttle our rendering by waiting until the ring has completed our requests
4114  * emitted over 20 msec ago.
4115  *
4116  * Note that if we were to use the current jiffies each time around the loop,
4117  * we wouldn't escape the function with any frames outstanding if the time to
4118  * render a frame was over 20ms.
4119  *
4120  * This should get us reasonable parallelism between CPU and GPU but also
4121  * relatively low latency when blocking on a particular request to finish.
4122  */
4123 static int
4124 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4125 {
4126 	struct drm_i915_private *dev_priv = to_i915(dev);
4127 	struct drm_i915_file_private *file_priv = file->driver_priv;
4128 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4129 	struct drm_i915_gem_request *request, *target = NULL;
4130 	long ret;
4131 
4132 	/* ABI: return -EIO if already wedged */
4133 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4134 		return -EIO;
4135 
4136 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
4137 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4138 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4139 			break;
4140 
4141 		if (target) {
4142 			list_del(&target->client_link);
4143 			target->file_priv = NULL;
4144 		}
4145 
4146 		target = request;
4147 	}
4148 	if (target)
4149 		i915_gem_request_get(target);
4150 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
4151 
4152 	if (target == NULL)
4153 		return 0;
4154 
4155 	ret = i915_wait_request(target,
4156 				I915_WAIT_INTERRUPTIBLE,
4157 				MAX_SCHEDULE_TIMEOUT);
4158 	i915_gem_request_put(target);
4159 
4160 	return ret < 0 ? ret : 0;
4161 }
4162 
4163 struct i915_vma *
4164 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4165 			 const struct i915_ggtt_view *view,
4166 			 u64 size,
4167 			 u64 alignment,
4168 			 u64 flags)
4169 {
4170 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4171 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4172 	struct i915_vma *vma;
4173 	int ret;
4174 
4175 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4176 
4177 	vma = i915_vma_instance(obj, vm, view);
4178 	if (unlikely(IS_ERR(vma)))
4179 		return vma;
4180 
4181 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4182 		if (flags & PIN_NONBLOCK &&
4183 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4184 			return ERR_PTR(-ENOSPC);
4185 
4186 		if (flags & PIN_MAPPABLE) {
4187 			/* If the required space is larger than the available
4188 			 * aperture, we will not able to find a slot for the
4189 			 * object and unbinding the object now will be in
4190 			 * vain. Worse, doing so may cause us to ping-pong
4191 			 * the object in and out of the Global GTT and
4192 			 * waste a lot of cycles under the mutex.
4193 			 */
4194 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4195 				return ERR_PTR(-E2BIG);
4196 
4197 			/* If NONBLOCK is set the caller is optimistically
4198 			 * trying to cache the full object within the mappable
4199 			 * aperture, and *must* have a fallback in place for
4200 			 * situations where we cannot bind the object. We
4201 			 * can be a little more lax here and use the fallback
4202 			 * more often to avoid costly migrations of ourselves
4203 			 * and other objects within the aperture.
4204 			 *
4205 			 * Half-the-aperture is used as a simple heuristic.
4206 			 * More interesting would to do search for a free
4207 			 * block prior to making the commitment to unbind.
4208 			 * That caters for the self-harm case, and with a
4209 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
4210 			 * we could try to minimise harm to others.
4211 			 */
4212 			if (flags & PIN_NONBLOCK &&
4213 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4214 				return ERR_PTR(-ENOSPC);
4215 		}
4216 
4217 		WARN(i915_vma_is_pinned(vma),
4218 		     "bo is already pinned in ggtt with incorrect alignment:"
4219 		     " offset=%08x, req.alignment=%llx,"
4220 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4221 		     i915_ggtt_offset(vma), alignment,
4222 		     !!(flags & PIN_MAPPABLE),
4223 		     i915_vma_is_map_and_fenceable(vma));
4224 		ret = i915_vma_unbind(vma);
4225 		if (ret)
4226 			return ERR_PTR(ret);
4227 	}
4228 
4229 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4230 	if (ret)
4231 		return ERR_PTR(ret);
4232 
4233 	return vma;
4234 }
4235 
4236 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4237 {
4238 	/* Note that we could alias engines in the execbuf API, but
4239 	 * that would be very unwise as it prevents userspace from
4240 	 * fine control over engine selection. Ahem.
4241 	 *
4242 	 * This should be something like EXEC_MAX_ENGINE instead of
4243 	 * I915_NUM_ENGINES.
4244 	 */
4245 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4246 	return 0x10000 << id;
4247 }
4248 
4249 static __always_inline unsigned int __busy_write_id(unsigned int id)
4250 {
4251 	/* The uABI guarantees an active writer is also amongst the read
4252 	 * engines. This would be true if we accessed the activity tracking
4253 	 * under the lock, but as we perform the lookup of the object and
4254 	 * its activity locklessly we can not guarantee that the last_write
4255 	 * being active implies that we have set the same engine flag from
4256 	 * last_read - hence we always set both read and write busy for
4257 	 * last_write.
4258 	 */
4259 	return id | __busy_read_flag(id);
4260 }
4261 
4262 #pragma GCC diagnostic push
4263 #pragma GCC diagnostic ignored "-Wdiscarded-qualifiers"
4264 
4265 static __always_inline unsigned int
4266 __busy_set_if_active(const struct dma_fence *fence,
4267 		     unsigned int (*flag)(unsigned int id))
4268 {
4269 	struct drm_i915_gem_request *rq;
4270 
4271 	/* We have to check the current hw status of the fence as the uABI
4272 	 * guarantees forward progress. We could rely on the idle worker
4273 	 * to eventually flush us, but to minimise latency just ask the
4274 	 * hardware.
4275 	 *
4276 	 * Note we only report on the status of native fences.
4277 	 */
4278 	if (!dma_fence_is_i915(fence))
4279 		return 0;
4280 
4281 	/* opencode to_request() in order to avoid const warnings */
4282 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4283 	if (i915_gem_request_completed(rq))
4284 		return 0;
4285 
4286 	return flag(rq->engine->exec_id);
4287 }
4288 #pragma GCC diagnostic pop
4289 
4290 static __always_inline unsigned int
4291 busy_check_reader(const struct dma_fence *fence)
4292 {
4293 	return __busy_set_if_active(fence, __busy_read_flag);
4294 }
4295 
4296 static __always_inline unsigned int
4297 busy_check_writer(const struct dma_fence *fence)
4298 {
4299 	if (!fence)
4300 		return 0;
4301 
4302 	return __busy_set_if_active(fence, __busy_write_id);
4303 }
4304 
4305 int
4306 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4307 		    struct drm_file *file)
4308 {
4309 	struct drm_i915_gem_busy *args = data;
4310 	struct drm_i915_gem_object *obj;
4311 	struct reservation_object_list *list;
4312 	unsigned int seq;
4313 	int err;
4314 
4315 	err = -ENOENT;
4316 	rcu_read_lock();
4317 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4318 	if (!obj)
4319 		goto out;
4320 
4321 	/* A discrepancy here is that we do not report the status of
4322 	 * non-i915 fences, i.e. even though we may report the object as idle,
4323 	 * a call to set-domain may still stall waiting for foreign rendering.
4324 	 * This also means that wait-ioctl may report an object as busy,
4325 	 * where busy-ioctl considers it idle.
4326 	 *
4327 	 * We trade the ability to warn of foreign fences to report on which
4328 	 * i915 engines are active for the object.
4329 	 *
4330 	 * Alternatively, we can trade that extra information on read/write
4331 	 * activity with
4332 	 *	args->busy =
4333 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4334 	 * to report the overall busyness. This is what the wait-ioctl does.
4335 	 *
4336 	 */
4337 retry:
4338 	seq = raw_read_seqcount(&obj->resv->seq);
4339 
4340 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4341 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4342 
4343 	/* Translate shared fences to READ set of engines */
4344 	list = rcu_dereference(obj->resv->fence);
4345 	if (list) {
4346 		unsigned int shared_count = list->shared_count, i;
4347 
4348 		for (i = 0; i < shared_count; ++i) {
4349 			struct dma_fence *fence =
4350 				rcu_dereference(list->shared[i]);
4351 
4352 			args->busy |= busy_check_reader(fence);
4353 		}
4354 	}
4355 
4356 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4357 		goto retry;
4358 
4359 	err = 0;
4360 out:
4361 	rcu_read_unlock();
4362 	return err;
4363 }
4364 
4365 int
4366 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4367 			struct drm_file *file_priv)
4368 {
4369 	return i915_gem_ring_throttle(dev, file_priv);
4370 }
4371 
4372 int
4373 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4374 		       struct drm_file *file_priv)
4375 {
4376 	struct drm_i915_private *dev_priv = to_i915(dev);
4377 	struct drm_i915_gem_madvise *args = data;
4378 	struct drm_i915_gem_object *obj;
4379 	int err;
4380 
4381 	switch (args->madv) {
4382 	case I915_MADV_DONTNEED:
4383 	case I915_MADV_WILLNEED:
4384 	    break;
4385 	default:
4386 	    return -EINVAL;
4387 	}
4388 
4389 	obj = i915_gem_object_lookup(file_priv, args->handle);
4390 	if (!obj)
4391 		return -ENOENT;
4392 
4393 	err = mutex_lock_interruptible(&obj->mm.lock);
4394 	if (err)
4395 		goto out;
4396 
4397 	if (obj->mm.pages &&
4398 	    i915_gem_object_is_tiled(obj) &&
4399 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4400 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4401 			GEM_BUG_ON(!obj->mm.quirked);
4402 			__i915_gem_object_unpin_pages(obj);
4403 			obj->mm.quirked = false;
4404 		}
4405 		if (args->madv == I915_MADV_WILLNEED) {
4406 			GEM_BUG_ON(obj->mm.quirked);
4407 			__i915_gem_object_pin_pages(obj);
4408 			obj->mm.quirked = true;
4409 		}
4410 	}
4411 
4412 	if (obj->mm.madv != __I915_MADV_PURGED)
4413 		obj->mm.madv = args->madv;
4414 
4415 	/* if the object is no longer attached, discard its backing storage */
4416 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4417 		i915_gem_object_truncate(obj);
4418 
4419 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4420 	mutex_unlock(&obj->mm.lock);
4421 
4422 out:
4423 	i915_gem_object_put(obj);
4424 	return err;
4425 }
4426 
4427 static void
4428 frontbuffer_retire(struct i915_gem_active *active,
4429 		   struct drm_i915_gem_request *request)
4430 {
4431 	struct drm_i915_gem_object *obj =
4432 		container_of(active, typeof(*obj), frontbuffer_write);
4433 
4434 	intel_fb_obj_flush(obj, ORIGIN_CS);
4435 }
4436 
4437 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4438 			  const struct drm_i915_gem_object_ops *ops)
4439 {
4440 	lockinit(&obj->mm.lock, "i9goml", 0, LK_CANRECURSE);
4441 
4442 	INIT_LIST_HEAD(&obj->global_link);
4443 	INIT_LIST_HEAD(&obj->userfault_link);
4444 	INIT_LIST_HEAD(&obj->obj_exec_link);
4445 	INIT_LIST_HEAD(&obj->vma_list);
4446 	INIT_LIST_HEAD(&obj->batch_pool_link);
4447 
4448 	obj->ops = ops;
4449 
4450 	reservation_object_init(&obj->__builtin_resv);
4451 	obj->resv = &obj->__builtin_resv;
4452 
4453 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4454 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4455 
4456 	obj->mm.madv = I915_MADV_WILLNEED;
4457 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4458 	lockinit(&obj->mm.get_page.lock, "i915ogpl", 0, LK_CANRECURSE);
4459 
4460 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4461 }
4462 
4463 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4464 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4465 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4466 
4467 	.get_pages = i915_gem_object_get_pages_gtt,
4468 	.put_pages = i915_gem_object_put_pages_gtt,
4469 
4470 	.pwrite = i915_gem_object_pwrite_gtt,
4471 };
4472 
4473 struct drm_i915_gem_object *
4474 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4475 {
4476 	struct drm_i915_gem_object *obj;
4477 #if 0
4478 	struct address_space *mapping;
4479 #endif
4480 	gfp_t mask;
4481 	int ret;
4482 
4483 	/* There is a prevalence of the assumption that we fit the object's
4484 	 * page count inside a 32bit _signed_ variable. Let's document this and
4485 	 * catch if we ever need to fix it. In the meantime, if you do spot
4486 	 * such a local variable, please consider fixing!
4487 	 */
4488 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4489 		return ERR_PTR(-E2BIG);
4490 
4491 	if (overflows_type(size, obj->base.size))
4492 		return ERR_PTR(-E2BIG);
4493 
4494 	obj = i915_gem_object_alloc(dev_priv);
4495 	if (obj == NULL)
4496 		return ERR_PTR(-ENOMEM);
4497 
4498 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4499 	if (ret)
4500 		goto fail;
4501 
4502 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4503 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4504 		/* 965gm cannot relocate objects above 4GiB. */
4505 		mask &= ~__GFP_HIGHMEM;
4506 		mask |= __GFP_DMA32;
4507 	}
4508 
4509 #if 0
4510 	mapping = obj->base.filp->f_mapping;
4511 	mapping_set_gfp_mask(mapping, mask);
4512 #endif
4513 
4514 	i915_gem_object_init(obj, &i915_gem_object_ops);
4515 
4516 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4517 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4518 
4519 	if (HAS_LLC(dev_priv)) {
4520 		/* On some devices, we can have the GPU use the LLC (the CPU
4521 		 * cache) for about a 10% performance improvement
4522 		 * compared to uncached.  Graphics requests other than
4523 		 * display scanout are coherent with the CPU in
4524 		 * accessing this cache.  This means in this mode we
4525 		 * don't need to clflush on the CPU side, and on the
4526 		 * GPU side we only need to flush internal caches to
4527 		 * get data visible to the CPU.
4528 		 *
4529 		 * However, we maintain the display planes as UC, and so
4530 		 * need to rebind when first used as such.
4531 		 */
4532 		obj->cache_level = I915_CACHE_LLC;
4533 	} else
4534 		obj->cache_level = I915_CACHE_NONE;
4535 
4536 	trace_i915_gem_object_create(obj);
4537 
4538 	return obj;
4539 
4540 fail:
4541 	i915_gem_object_free(obj);
4542 	return ERR_PTR(ret);
4543 }
4544 
4545 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4546 {
4547 	/* If we are the last user of the backing storage (be it shmemfs
4548 	 * pages or stolen etc), we know that the pages are going to be
4549 	 * immediately released. In this case, we can then skip copying
4550 	 * back the contents from the GPU.
4551 	 */
4552 
4553 	if (obj->mm.madv != I915_MADV_WILLNEED)
4554 		return false;
4555 
4556 	if (obj->base.filp == NULL)
4557 		return true;
4558 
4559 	/* At first glance, this looks racy, but then again so would be
4560 	 * userspace racing mmap against close. However, the first external
4561 	 * reference to the filp can only be obtained through the
4562 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4563 	 * acquiring such a reference whilst we are in the middle of
4564 	 * freeing the object.
4565 	 */
4566 #if 0
4567 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4568 #else
4569 	return false;
4570 #endif
4571 }
4572 
4573 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4574 				    struct llist_node *freed)
4575 {
4576 	struct drm_i915_gem_object *obj, *on;
4577 
4578 	mutex_lock(&i915->drm.struct_mutex);
4579 	intel_runtime_pm_get(i915);
4580 	llist_for_each_entry_safe(obj, on, freed, freed) {
4581 		struct i915_vma *vma, *vn;
4582 
4583 		trace_i915_gem_object_destroy(obj);
4584 
4585 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4586 		list_for_each_entry_safe(vma, vn,
4587 					 &obj->vma_list, obj_link) {
4588 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4589 			GEM_BUG_ON(i915_vma_is_active(vma));
4590 			vma->flags &= ~I915_VMA_PIN_MASK;
4591 			i915_vma_close(vma);
4592 		}
4593 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4594 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4595 
4596 		list_del(&obj->global_link);
4597 	}
4598 	intel_runtime_pm_put(i915);
4599 	mutex_unlock(&i915->drm.struct_mutex);
4600 
4601 	llist_for_each_entry_safe(obj, on, freed, freed) {
4602 		GEM_BUG_ON(obj->bind_count);
4603 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4604 
4605 		if (obj->ops->release)
4606 			obj->ops->release(obj);
4607 
4608 #if 0
4609 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4610 #else
4611 		if (i915_gem_object_has_pinned_pages(obj))
4612 #endif
4613 			atomic_set(&obj->mm.pages_pin_count, 0);
4614 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4615 		GEM_BUG_ON(obj->mm.pages);
4616 
4617 		if (obj->base.import_attach)
4618 			drm_prime_gem_destroy(&obj->base, NULL);
4619 
4620 		reservation_object_fini(&obj->__builtin_resv);
4621 		drm_gem_object_release(&obj->base);
4622 		i915_gem_info_remove_obj(i915, obj->base.size);
4623 
4624 		kfree(obj->bit_17);
4625 		i915_gem_object_free(obj);
4626 	}
4627 }
4628 
4629 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4630 {
4631 	struct llist_node *freed;
4632 
4633 	freed = llist_del_all(&i915->mm.free_list);
4634 	if (unlikely(freed))
4635 		__i915_gem_free_objects(i915, freed);
4636 }
4637 
4638 static void __i915_gem_free_work(struct work_struct *work)
4639 {
4640 	struct drm_i915_private *i915 =
4641 		container_of(work, struct drm_i915_private, mm.free_work);
4642 	struct llist_node *freed;
4643 
4644 	/* All file-owned VMA should have been released by this point through
4645 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4646 	 * However, the object may also be bound into the global GTT (e.g.
4647 	 * older GPUs without per-process support, or for direct access through
4648 	 * the GTT either for the user or for scanout). Those VMA still need to
4649 	 * unbound now.
4650 	 */
4651 
4652 	while ((freed = llist_del_all(&i915->mm.free_list)))
4653 		__i915_gem_free_objects(i915, freed);
4654 }
4655 
4656 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4657 {
4658 	struct drm_i915_gem_object *obj =
4659 		container_of(head, typeof(*obj), rcu);
4660 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4661 
4662 	/* We can't simply use call_rcu() from i915_gem_free_object()
4663 	 * as we need to block whilst unbinding, and the call_rcu
4664 	 * task may be called from softirq context. So we take a
4665 	 * detour through a worker.
4666 	 */
4667 	if (llist_add(&obj->freed, &i915->mm.free_list))
4668 		schedule_work(&i915->mm.free_work);
4669 }
4670 
4671 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4672 {
4673 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4674 
4675 	if (obj->mm.quirked)
4676 		__i915_gem_object_unpin_pages(obj);
4677 
4678 	if (discard_backing_storage(obj))
4679 		obj->mm.madv = I915_MADV_DONTNEED;
4680 
4681 	/* Before we free the object, make sure any pure RCU-only
4682 	 * read-side critical sections are complete, e.g.
4683 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4684 	 * lookup see i915_gem_object_lookup_rcu().
4685 	 */
4686 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4687 }
4688 
4689 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4690 {
4691 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4692 
4693 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4694 	if (i915_gem_object_is_active(obj))
4695 		i915_gem_object_set_active_reference(obj);
4696 	else
4697 		i915_gem_object_put(obj);
4698 }
4699 
4700 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4701 {
4702 	struct intel_engine_cs *engine;
4703 	enum intel_engine_id id;
4704 
4705 	for_each_engine(engine, dev_priv, id)
4706 		GEM_BUG_ON(engine->last_retired_context &&
4707 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4708 }
4709 
4710 void i915_gem_sanitize(struct drm_i915_private *i915)
4711 {
4712 	/*
4713 	 * If we inherit context state from the BIOS or earlier occupants
4714 	 * of the GPU, the GPU may be in an inconsistent state when we
4715 	 * try to take over. The only way to remove the earlier state
4716 	 * is by resetting. However, resetting on earlier gen is tricky as
4717 	 * it may impact the display and we are uncertain about the stability
4718 	 * of the reset, so we only reset recent machines with logical
4719 	 * context support (that must be reset to remove any stray contexts).
4720 	 */
4721 	if (HAS_HW_CONTEXTS(i915)) {
4722 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4723 		WARN_ON(reset && reset != -ENODEV);
4724 	}
4725 }
4726 
4727 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4728 {
4729 	struct drm_device *dev = &dev_priv->drm;
4730 	int ret;
4731 
4732 	intel_runtime_pm_get(dev_priv);
4733 	intel_suspend_gt_powersave(dev_priv);
4734 
4735 	mutex_lock(&dev->struct_mutex);
4736 
4737 	/* We have to flush all the executing contexts to main memory so
4738 	 * that they can saved in the hibernation image. To ensure the last
4739 	 * context image is coherent, we have to switch away from it. That
4740 	 * leaves the dev_priv->kernel_context still active when
4741 	 * we actually suspend, and its image in memory may not match the GPU
4742 	 * state. Fortunately, the kernel_context is disposable and we do
4743 	 * not rely on its state.
4744 	 */
4745 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4746 	if (ret)
4747 		goto err_unlock;
4748 
4749 	ret = i915_gem_wait_for_idle(dev_priv,
4750 				     I915_WAIT_INTERRUPTIBLE |
4751 				     I915_WAIT_LOCKED);
4752 	if (ret)
4753 		goto err_unlock;
4754 
4755 	assert_kernel_context_is_current(dev_priv);
4756 	i915_gem_context_lost(dev_priv);
4757 	mutex_unlock(&dev->struct_mutex);
4758 
4759 	intel_guc_suspend(dev_priv);
4760 
4761 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4762 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4763 
4764 	/* As the idle_work is rearming if it detects a race, play safe and
4765 	 * repeat the flush until it is definitely idle.
4766 	 */
4767 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4768 		;
4769 
4770 	i915_gem_drain_freed_objects(dev_priv);
4771 
4772 	/* Assert that we sucessfully flushed all the work and
4773 	 * reset the GPU back to its idle, low power state.
4774 	 */
4775 	WARN_ON(dev_priv->gt.awake);
4776 	WARN_ON(!intel_engines_are_idle(dev_priv));
4777 
4778 	/*
4779 	 * Neither the BIOS, ourselves or any other kernel
4780 	 * expects the system to be in execlists mode on startup,
4781 	 * so we need to reset the GPU back to legacy mode. And the only
4782 	 * known way to disable logical contexts is through a GPU reset.
4783 	 *
4784 	 * So in order to leave the system in a known default configuration,
4785 	 * always reset the GPU upon unload and suspend. Afterwards we then
4786 	 * clean up the GEM state tracking, flushing off the requests and
4787 	 * leaving the system in a known idle state.
4788 	 *
4789 	 * Note that is of the upmost importance that the GPU is idle and
4790 	 * all stray writes are flushed *before* we dismantle the backing
4791 	 * storage for the pinned objects.
4792 	 *
4793 	 * However, since we are uncertain that resetting the GPU on older
4794 	 * machines is a good idea, we don't - just in case it leaves the
4795 	 * machine in an unusable condition.
4796 	 */
4797 	i915_gem_sanitize(dev_priv);
4798 	goto out_rpm_put;
4799 
4800 err_unlock:
4801 	mutex_unlock(&dev->struct_mutex);
4802 out_rpm_put:
4803 	intel_runtime_pm_put(dev_priv);
4804 	return ret;
4805 }
4806 
4807 void i915_gem_resume(struct drm_i915_private *dev_priv)
4808 {
4809 	struct drm_device *dev = &dev_priv->drm;
4810 
4811 	WARN_ON(dev_priv->gt.awake);
4812 
4813 	mutex_lock(&dev->struct_mutex);
4814 	i915_gem_restore_gtt_mappings(dev_priv);
4815 
4816 	/* As we didn't flush the kernel context before suspend, we cannot
4817 	 * guarantee that the context image is complete. So let's just reset
4818 	 * it and start again.
4819 	 */
4820 	dev_priv->gt.resume(dev_priv);
4821 
4822 	mutex_unlock(&dev->struct_mutex);
4823 }
4824 
4825 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4826 {
4827 	if (INTEL_GEN(dev_priv) < 5 ||
4828 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4829 		return;
4830 
4831 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4832 				 DISP_TILE_SURFACE_SWIZZLING);
4833 
4834 	if (IS_GEN5(dev_priv))
4835 		return;
4836 
4837 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4838 	if (IS_GEN6(dev_priv))
4839 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4840 	else if (IS_GEN7(dev_priv))
4841 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4842 	else if (IS_GEN8(dev_priv))
4843 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4844 	else
4845 		BUG();
4846 }
4847 
4848 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4849 {
4850 	I915_WRITE(RING_CTL(base), 0);
4851 	I915_WRITE(RING_HEAD(base), 0);
4852 	I915_WRITE(RING_TAIL(base), 0);
4853 	I915_WRITE(RING_START(base), 0);
4854 }
4855 
4856 static void init_unused_rings(struct drm_i915_private *dev_priv)
4857 {
4858 	if (IS_I830(dev_priv)) {
4859 		init_unused_ring(dev_priv, PRB1_BASE);
4860 		init_unused_ring(dev_priv, SRB0_BASE);
4861 		init_unused_ring(dev_priv, SRB1_BASE);
4862 		init_unused_ring(dev_priv, SRB2_BASE);
4863 		init_unused_ring(dev_priv, SRB3_BASE);
4864 	} else if (IS_GEN2(dev_priv)) {
4865 		init_unused_ring(dev_priv, SRB0_BASE);
4866 		init_unused_ring(dev_priv, SRB1_BASE);
4867 	} else if (IS_GEN3(dev_priv)) {
4868 		init_unused_ring(dev_priv, PRB1_BASE);
4869 		init_unused_ring(dev_priv, PRB2_BASE);
4870 	}
4871 }
4872 
4873 static int __i915_gem_restart_engines(void *data)
4874 {
4875 	struct drm_i915_private *i915 = data;
4876 	struct intel_engine_cs *engine;
4877 	enum intel_engine_id id;
4878 	int err;
4879 
4880 	for_each_engine(engine, i915, id) {
4881 		err = engine->init_hw(engine);
4882 		if (err)
4883 			return err;
4884 	}
4885 
4886 	return 0;
4887 }
4888 
4889 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4890 {
4891 	int ret;
4892 
4893 	dev_priv->gt.last_init_time = ktime_get();
4894 
4895 	/* Double layer security blanket, see i915_gem_init() */
4896 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4897 
4898 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4899 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4900 
4901 	if (IS_HASWELL(dev_priv))
4902 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4903 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4904 
4905 	if (HAS_PCH_NOP(dev_priv)) {
4906 		if (IS_IVYBRIDGE(dev_priv)) {
4907 			u32 temp = I915_READ(GEN7_MSG_CTL);
4908 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4909 			I915_WRITE(GEN7_MSG_CTL, temp);
4910 		} else if (INTEL_GEN(dev_priv) >= 7) {
4911 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4912 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4913 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4914 		}
4915 	}
4916 
4917 	i915_gem_init_swizzling(dev_priv);
4918 
4919 	/*
4920 	 * At least 830 can leave some of the unused rings
4921 	 * "active" (ie. head != tail) after resume which
4922 	 * will prevent c3 entry. Makes sure all unused rings
4923 	 * are totally idle.
4924 	 */
4925 	init_unused_rings(dev_priv);
4926 
4927 	BUG_ON(!dev_priv->kernel_context);
4928 
4929 	ret = i915_ppgtt_init_hw(dev_priv);
4930 	if (ret) {
4931 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4932 		goto out;
4933 	}
4934 
4935 	/* Need to do basic initialisation of all rings first: */
4936 	ret = __i915_gem_restart_engines(dev_priv);
4937 	if (ret)
4938 		goto out;
4939 
4940 	intel_mocs_init_l3cc_table(dev_priv);
4941 
4942 	/* We can't enable contexts until all firmware is loaded */
4943 	ret = intel_uc_init_hw(dev_priv);
4944 	if (ret)
4945 		goto out;
4946 
4947 out:
4948 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4949 	return ret;
4950 }
4951 
4952 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4953 {
4954 	if (INTEL_INFO(dev_priv)->gen < 6)
4955 		return false;
4956 
4957 	/* TODO: make semaphores and Execlists play nicely together */
4958 	if (i915.enable_execlists)
4959 		return false;
4960 
4961 	if (value >= 0)
4962 		return value;
4963 
4964 #ifdef CONFIG_INTEL_IOMMU
4965 	/* Enable semaphores on SNB when IO remapping is off */
4966 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4967 		return false;
4968 #endif
4969 
4970 	return true;
4971 }
4972 
4973 int i915_gem_init(struct drm_i915_private *dev_priv)
4974 {
4975 	int ret;
4976 
4977 	mutex_lock(&dev_priv->drm.struct_mutex);
4978 
4979 	i915_gem_clflush_init(dev_priv);
4980 
4981 	if (!i915.enable_execlists) {
4982 		dev_priv->gt.resume = intel_legacy_submission_resume;
4983 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4984 	} else {
4985 		dev_priv->gt.resume = intel_lr_context_resume;
4986 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4987 	}
4988 
4989 	/* This is just a security blanket to placate dragons.
4990 	 * On some systems, we very sporadically observe that the first TLBs
4991 	 * used by the CS may be stale, despite us poking the TLB reset. If
4992 	 * we hold the forcewake during initialisation these problems
4993 	 * just magically go away.
4994 	 */
4995 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4996 
4997 	i915_gem_init_userptr(dev_priv);
4998 
4999 	ret = i915_gem_init_ggtt(dev_priv);
5000 	if (ret)
5001 		goto out_unlock;
5002 
5003 	ret = i915_gem_context_init(dev_priv);
5004 	if (ret)
5005 		goto out_unlock;
5006 
5007 	ret = intel_engines_init(dev_priv);
5008 	if (ret)
5009 		goto out_unlock;
5010 
5011 	ret = i915_gem_init_hw(dev_priv);
5012 	if (ret == -EIO) {
5013 		/* Allow engine initialisation to fail by marking the GPU as
5014 		 * wedged. But we only want to do this where the GPU is angry,
5015 		 * for all other failure, such as an allocation failure, bail.
5016 		 */
5017 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5018 		i915_gem_set_wedged(dev_priv);
5019 		ret = 0;
5020 	}
5021 
5022 out_unlock:
5023 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5024 	mutex_unlock(&dev_priv->drm.struct_mutex);
5025 
5026 	return ret;
5027 }
5028 
5029 void i915_gem_init_mmio(struct drm_i915_private *i915)
5030 {
5031 	i915_gem_sanitize(i915);
5032 }
5033 
5034 void
5035 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5036 {
5037 	struct intel_engine_cs *engine;
5038 	enum intel_engine_id id;
5039 
5040 	for_each_engine(engine, dev_priv, id)
5041 		dev_priv->gt.cleanup_engine(engine);
5042 }
5043 
5044 void
5045 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5046 {
5047 	int i;
5048 
5049 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5050 	    !IS_CHERRYVIEW(dev_priv))
5051 		dev_priv->num_fence_regs = 32;
5052 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5053 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5054 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5055 		dev_priv->num_fence_regs = 16;
5056 	else
5057 		dev_priv->num_fence_regs = 8;
5058 
5059 	if (intel_vgpu_active(dev_priv))
5060 		dev_priv->num_fence_regs =
5061 				I915_READ(vgtif_reg(avail_rs.fence_num));
5062 
5063 	/* Initialize fence registers to zero */
5064 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5065 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5066 
5067 		fence->i915 = dev_priv;
5068 		fence->id = i;
5069 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5070 	}
5071 	i915_gem_restore_fences(dev_priv);
5072 
5073 	i915_gem_detect_bit_6_swizzle(dev_priv);
5074 }
5075 
5076 int
5077 i915_gem_load_init(struct drm_i915_private *dev_priv)
5078 {
5079 	int err = -ENOMEM;
5080 
5081 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5082 	if (!dev_priv->objects)
5083 		goto err_out;
5084 
5085 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5086 	if (!dev_priv->vmas)
5087 		goto err_objects;
5088 
5089 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5090 					SLAB_HWCACHE_ALIGN |
5091 					SLAB_RECLAIM_ACCOUNT |
5092 					SLAB_TYPESAFE_BY_RCU);
5093 	if (!dev_priv->requests)
5094 		goto err_vmas;
5095 
5096 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5097 					    SLAB_HWCACHE_ALIGN |
5098 					    SLAB_RECLAIM_ACCOUNT);
5099 	if (!dev_priv->dependencies)
5100 		goto err_requests;
5101 
5102 	mutex_lock(&dev_priv->drm.struct_mutex);
5103 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5104 	err = i915_gem_timeline_init__global(dev_priv);
5105 	mutex_unlock(&dev_priv->drm.struct_mutex);
5106 	if (err)
5107 		goto err_dependencies;
5108 
5109 	INIT_LIST_HEAD(&dev_priv->context_list);
5110 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5111 	init_llist_head(&dev_priv->mm.free_list);
5112 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5113 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5114 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5115 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5116 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5117 			  i915_gem_retire_work_handler);
5118 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5119 			  i915_gem_idle_work_handler);
5120 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5121 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5122 
5123 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5124 
5125 	dev_priv->mm.interruptible = true;
5126 
5127 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5128 
5129 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, 0);
5130 
5131 	return 0;
5132 
5133 err_dependencies:
5134 	kmem_cache_destroy(dev_priv->dependencies);
5135 err_requests:
5136 	kmem_cache_destroy(dev_priv->requests);
5137 err_vmas:
5138 	kmem_cache_destroy(dev_priv->vmas);
5139 err_objects:
5140 	kmem_cache_destroy(dev_priv->objects);
5141 err_out:
5142 	return err;
5143 }
5144 
5145 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5146 {
5147 	i915_gem_drain_freed_objects(dev_priv);
5148 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5149 	WARN_ON(dev_priv->mm.object_count);
5150 
5151 	mutex_lock(&dev_priv->drm.struct_mutex);
5152 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5153 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5154 	mutex_unlock(&dev_priv->drm.struct_mutex);
5155 
5156 	kmem_cache_destroy(dev_priv->dependencies);
5157 	kmem_cache_destroy(dev_priv->requests);
5158 	kmem_cache_destroy(dev_priv->vmas);
5159 	kmem_cache_destroy(dev_priv->objects);
5160 
5161 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5162 	rcu_barrier();
5163 }
5164 
5165 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5166 {
5167 	mutex_lock(&dev_priv->drm.struct_mutex);
5168 	i915_gem_shrink_all(dev_priv);
5169 	mutex_unlock(&dev_priv->drm.struct_mutex);
5170 
5171 	return 0;
5172 }
5173 
5174 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5175 {
5176 	struct drm_i915_gem_object *obj;
5177 	struct list_head *phases[] = {
5178 		&dev_priv->mm.unbound_list,
5179 		&dev_priv->mm.bound_list,
5180 		NULL
5181 	}, **p;
5182 
5183 	/* Called just before we write the hibernation image.
5184 	 *
5185 	 * We need to update the domain tracking to reflect that the CPU
5186 	 * will be accessing all the pages to create and restore from the
5187 	 * hibernation, and so upon restoration those pages will be in the
5188 	 * CPU domain.
5189 	 *
5190 	 * To make sure the hibernation image contains the latest state,
5191 	 * we update that state just before writing out the image.
5192 	 *
5193 	 * To try and reduce the hibernation image, we manually shrink
5194 	 * the objects as well.
5195 	 */
5196 
5197 	mutex_lock(&dev_priv->drm.struct_mutex);
5198 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5199 
5200 	for (p = phases; *p; p++) {
5201 		list_for_each_entry(obj, *p, global_link) {
5202 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5203 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5204 		}
5205 	}
5206 	mutex_unlock(&dev_priv->drm.struct_mutex);
5207 
5208 	return 0;
5209 }
5210 
5211 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5212 {
5213 	struct drm_i915_file_private *file_priv = file->driver_priv;
5214 	struct drm_i915_gem_request *request;
5215 
5216 	/* Clean up our request list when the client is going away, so that
5217 	 * later retire_requests won't dereference our soon-to-be-gone
5218 	 * file_priv.
5219 	 */
5220 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
5221 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5222 		request->file_priv = NULL;
5223 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
5224 
5225 	if (!list_empty(&file_priv->rps.link)) {
5226 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
5227 		list_del(&file_priv->rps.link);
5228 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
5229 	}
5230 }
5231 
5232 #ifdef __DragonFly__
5233 int
5234 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5235     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5236 {
5237 	*color = 0; /* XXXKIB */
5238 	return (0);
5239 }
5240 
5241 void
5242 i915_gem_pager_dtor(void *handle)
5243 {
5244 	struct drm_gem_object *obj = handle;
5245 	struct drm_device *dev = obj->dev;
5246 
5247 	drm_gem_free_mmap_offset(obj);
5248 	mutex_lock(&dev->struct_mutex);
5249 	i915_gem_release_mmap(to_intel_bo(obj));
5250 	drm_gem_object_unreference(obj);
5251 	mutex_unlock(&dev->struct_mutex);
5252 }
5253 #endif
5254 
5255 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5256 {
5257 	struct drm_i915_file_private *file_priv;
5258 	int ret;
5259 
5260 	DRM_DEBUG("\n");
5261 
5262 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5263 	if (!file_priv)
5264 		return -ENOMEM;
5265 
5266 	file->driver_priv = file_priv;
5267 	file_priv->dev_priv = to_i915(dev);
5268 	file_priv->file = file;
5269 	INIT_LIST_HEAD(&file_priv->rps.link);
5270 
5271 	lockinit(&file_priv->mm.lock, "i915_priv", 0, 0);
5272 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5273 
5274 	file_priv->bsd_engine = -1;
5275 
5276 	ret = i915_gem_context_open(dev, file);
5277 	if (ret)
5278 		kfree(file_priv);
5279 
5280 	return ret;
5281 }
5282 
5283 /**
5284  * i915_gem_track_fb - update frontbuffer tracking
5285  * @old: current GEM buffer for the frontbuffer slots
5286  * @new: new GEM buffer for the frontbuffer slots
5287  * @frontbuffer_bits: bitmask of frontbuffer slots
5288  *
5289  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5290  * from @old and setting them in @new. Both @old and @new can be NULL.
5291  */
5292 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5293 		       struct drm_i915_gem_object *new,
5294 		       unsigned frontbuffer_bits)
5295 {
5296 	/* Control of individual bits within the mask are guarded by
5297 	 * the owning plane->mutex, i.e. we can never see concurrent
5298 	 * manipulation of individual bits. But since the bitfield as a whole
5299 	 * is updated using RMW, we need to use atomics in order to update
5300 	 * the bits.
5301 	 */
5302 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5303 		     sizeof(atomic_t) * BITS_PER_BYTE);
5304 
5305 	if (old) {
5306 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5307 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5308 	}
5309 
5310 	if (new) {
5311 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5312 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5313 	}
5314 }
5315 
5316 /* XXX */
5317 static int
5318 pagecache_write_begin(struct vm_object *obj, struct address_space *mapping,
5319     loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata)
5320 {
5321 	*pagep = shmem_read_mapping_page(obj, OFF_TO_IDX(pos));
5322 
5323 	return 0;
5324 }
5325 
5326 #if 0
5327 static int
5328 pagecache_write_end(struct file *, struct address_space *mapping,
5329     loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata)
5330 {
5331 }
5332 #endif
5333 
5334 /* Allocate a new GEM object and fill it with the supplied data */
5335 struct drm_i915_gem_object *
5336 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5337 			         const void *data, size_t size)
5338 {
5339 	struct drm_i915_gem_object *obj;
5340 	struct vm_object *file;
5341 	size_t offset;
5342 	int err;
5343 
5344 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5345 	if (IS_ERR(obj))
5346 		return obj;
5347 
5348 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5349 
5350 	file = obj->base.filp;
5351 	offset = 0;
5352 	do {
5353 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5354 		struct page *page;
5355 		void *pgdata, *vaddr;
5356 
5357 		err = pagecache_write_begin(file, NULL,
5358 					    offset, len, 0,
5359 					    &page, &pgdata);
5360 		if (err < 0)
5361 			goto fail;
5362 
5363 		vaddr = kmap(page);
5364 		memcpy(vaddr, data, len);
5365 		kunmap(page);
5366 
5367 #ifndef __DragonFly__
5368 		err = pagecache_write_end(file, file->f_mapping,
5369 					  offset, len, len,
5370 					  page, pgdata);
5371 		if (err < 0)
5372 			goto fail;
5373 #else
5374 		put_page(page);
5375 #endif
5376 
5377 		size -= len;
5378 		data += len;
5379 		offset += len;
5380 	} while (size);
5381 
5382 	return obj;
5383 
5384 fail:
5385 	i915_gem_object_put(obj);
5386 	return ERR_PTR(err);
5387 }
5388 
5389 struct scatterlist *
5390 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5391 		       unsigned int n,
5392 		       unsigned int *offset)
5393 {
5394 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5395 	struct scatterlist *sg;
5396 	unsigned int idx, count;
5397 
5398 	might_sleep();
5399 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5400 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5401 
5402 	/* As we iterate forward through the sg, we record each entry in a
5403 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5404 	 * this index previously, we will have an entry for it.
5405 	 *
5406 	 * Initial lookup is O(N), but this is amortized to O(1) for
5407 	 * sequential page access (where each new request is consecutive
5408 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5409 	 * i.e. O(1) with a large constant!
5410 	 */
5411 	if (n < READ_ONCE(iter->sg_idx))
5412 		goto lookup;
5413 
5414 	mutex_lock(&iter->lock);
5415 
5416 	/* We prefer to reuse the last sg so that repeated lookup of this
5417 	 * (or the subsequent) sg are fast - comparing against the last
5418 	 * sg is faster than going through the radixtree.
5419 	 */
5420 
5421 	sg = iter->sg_pos;
5422 	idx = iter->sg_idx;
5423 	count = __sg_page_count(sg);
5424 
5425 	while (idx + count <= n) {
5426 		unsigned long exception, i;
5427 		int ret;
5428 
5429 		/* If we cannot allocate and insert this entry, or the
5430 		 * individual pages from this range, cancel updating the
5431 		 * sg_idx so that on this lookup we are forced to linearly
5432 		 * scan onwards, but on future lookups we will try the
5433 		 * insertion again (in which case we need to be careful of
5434 		 * the error return reporting that we have already inserted
5435 		 * this index).
5436 		 */
5437 		ret = radix_tree_insert(&iter->radix, idx, sg);
5438 		if (ret && ret != -EEXIST)
5439 			goto scan;
5440 
5441 		exception =
5442 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5443 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5444 		for (i = 1; i < count; i++) {
5445 			ret = radix_tree_insert(&iter->radix, idx + i,
5446 						(void *)exception);
5447 			if (ret && ret != -EEXIST)
5448 				goto scan;
5449 		}
5450 
5451 		idx += count;
5452 		sg = ____sg_next(sg);
5453 		count = __sg_page_count(sg);
5454 	}
5455 
5456 scan:
5457 	iter->sg_pos = sg;
5458 	iter->sg_idx = idx;
5459 
5460 	mutex_unlock(&iter->lock);
5461 
5462 	if (unlikely(n < idx)) /* insertion completed by another thread */
5463 		goto lookup;
5464 
5465 	/* In case we failed to insert the entry into the radixtree, we need
5466 	 * to look beyond the current sg.
5467 	 */
5468 	while (idx + count <= n) {
5469 		idx += count;
5470 		sg = ____sg_next(sg);
5471 		count = __sg_page_count(sg);
5472 	}
5473 
5474 	*offset = n - idx;
5475 	return sg;
5476 
5477 lookup:
5478 	rcu_read_lock();
5479 
5480 	sg = radix_tree_lookup(&iter->radix, n);
5481 	GEM_BUG_ON(!sg);
5482 
5483 	/* If this index is in the middle of multi-page sg entry,
5484 	 * the radixtree will contain an exceptional entry that points
5485 	 * to the start of that range. We will return the pointer to
5486 	 * the base page and the offset of this page within the
5487 	 * sg entry's range.
5488 	 */
5489 	*offset = 0;
5490 	if (unlikely(radix_tree_exception(sg))) {
5491 		unsigned long base =
5492 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5493 
5494 		sg = radix_tree_lookup(&iter->radix, base);
5495 		GEM_BUG_ON(!sg);
5496 
5497 		*offset = n - base;
5498 	}
5499 
5500 	rcu_read_unlock();
5501 
5502 	return sg;
5503 }
5504 
5505 struct page *
5506 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5507 {
5508 	struct scatterlist *sg;
5509 	unsigned int offset;
5510 
5511 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5512 
5513 	sg = i915_gem_object_get_sg(obj, n, &offset);
5514 	return nth_page(sg_page(sg), offset);
5515 }
5516 
5517 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5518 struct page *
5519 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5520 			       unsigned int n)
5521 {
5522 	struct page *page;
5523 
5524 	page = i915_gem_object_get_page(obj, n);
5525 	if (!obj->mm.dirty)
5526 		set_page_dirty(page);
5527 
5528 	return page;
5529 }
5530 
5531 dma_addr_t
5532 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5533 				unsigned long n)
5534 {
5535 	struct scatterlist *sg;
5536 	unsigned int offset;
5537 
5538 	sg = i915_gem_object_get_sg(obj, n, &offset);
5539 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5540 }
5541 
5542 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5543 #include "selftests/scatterlist.c"
5544 #include "selftests/mock_gem_device.c"
5545 #include "selftests/huge_gem_object.c"
5546 #include "selftests/i915_gem_object.c"
5547 #include "selftests/i915_gem_coherency.c"
5548 #endif
5549