xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision 7b21e84b)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 
40 #define RQ_BUG_ON(expr)
41 
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 		return true;
59 
60 	return obj->pin_display;
61 }
62 
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 				  size_t size)
66 {
67 	spin_lock(&dev_priv->mm.object_stat_lock);
68 	dev_priv->mm.object_count++;
69 	dev_priv->mm.object_memory += size;
70 	spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72 
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 				     size_t size)
75 {
76 	spin_lock(&dev_priv->mm.object_stat_lock);
77 	dev_priv->mm.object_count--;
78 	dev_priv->mm.object_memory -= size;
79 	spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81 
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 	int ret;
86 
87 #define EXIT_COND (!i915_reset_in_progress(error) || \
88 		   i915_terminally_wedged(error))
89 	if (EXIT_COND)
90 		return 0;
91 
92 	/*
93 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
94 	 * userspace. If it takes that long something really bad is going on and
95 	 * we should simply try to bail out and fail as gracefully as possible.
96 	 */
97 	ret = wait_event_interruptible_timeout(error->reset_queue,
98 					       EXIT_COND,
99 					       10*HZ);
100 	if (ret == 0) {
101 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
102 		return -EIO;
103 	} else if (ret < 0) {
104 		return ret;
105 	}
106 #undef EXIT_COND
107 
108 	return 0;
109 }
110 
111 int i915_mutex_lock_interruptible(struct drm_device *dev)
112 {
113 	struct drm_i915_private *dev_priv = dev->dev_private;
114 	int ret;
115 
116 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
117 	if (ret)
118 		return ret;
119 
120 	ret = mutex_lock_interruptible(&dev->struct_mutex);
121 	if (ret)
122 		return ret;
123 
124 	WARN_ON(i915_verify_lists(dev));
125 	return 0;
126 }
127 
128 int
129 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
130 			    struct drm_file *file)
131 {
132 	struct drm_i915_private *dev_priv = dev->dev_private;
133 	struct drm_i915_gem_get_aperture *args = data;
134 	struct i915_gtt *ggtt = &dev_priv->gtt;
135 	struct i915_vma *vma;
136 	size_t pinned;
137 
138 	pinned = 0;
139 	mutex_lock(&dev->struct_mutex);
140 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
141 		if (vma->pin_count)
142 			pinned += vma->node.size;
143 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
144 		if (vma->pin_count)
145 			pinned += vma->node.size;
146 	mutex_unlock(&dev->struct_mutex);
147 
148 	args->aper_size = dev_priv->gtt.base.total;
149 	args->aper_available_size = args->aper_size - pinned;
150 
151 	return 0;
152 }
153 
154 #if 0
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 #endif
268 
269 static int
270 drop_pages(struct drm_i915_gem_object *obj)
271 {
272 	struct i915_vma *vma, *next;
273 	int ret;
274 
275 	drm_gem_object_reference(&obj->base);
276 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
277 		if (i915_vma_unbind(vma))
278 			break;
279 
280 	ret = i915_gem_object_put_pages(obj);
281 	drm_gem_object_unreference(&obj->base);
282 
283 	return ret;
284 }
285 
286 int
287 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
288 			    int align)
289 {
290 	drm_dma_handle_t *phys;
291 	int ret;
292 
293 	if (obj->phys_handle) {
294 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
295 			return -EBUSY;
296 
297 		return 0;
298 	}
299 
300 	if (obj->madv != I915_MADV_WILLNEED)
301 		return -EFAULT;
302 
303 #if 0
304 	if (obj->base.filp == NULL)
305 		return -EINVAL;
306 #endif
307 
308 	ret = drop_pages(obj);
309 	if (ret)
310 		return ret;
311 
312 	/* create a new object */
313 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
314 	if (!phys)
315 		return -ENOMEM;
316 
317 	obj->phys_handle = phys;
318 #if 0
319 	obj->ops = &i915_gem_phys_ops;
320 #endif
321 
322 	return i915_gem_object_get_pages(obj);
323 }
324 
325 static int
326 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
327 		     struct drm_i915_gem_pwrite *args,
328 		     struct drm_file *file_priv)
329 {
330 	struct drm_device *dev = obj->base.dev;
331 	void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
332 	char __user *user_data = to_user_ptr(args->data_ptr);
333 	int ret = 0;
334 
335 	/* We manually control the domain here and pretend that it
336 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
337 	 */
338 	ret = i915_gem_object_wait_rendering(obj, false);
339 	if (ret)
340 		return ret;
341 
342 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
343 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
344 		unsigned long unwritten;
345 
346 		/* The physical object once assigned is fixed for the lifetime
347 		 * of the obj, so we can safely drop the lock and continue
348 		 * to access vaddr.
349 		 */
350 		mutex_unlock(&dev->struct_mutex);
351 		unwritten = copy_from_user(vaddr, user_data, args->size);
352 		mutex_lock(&dev->struct_mutex);
353 		if (unwritten) {
354 			ret = -EFAULT;
355 			goto out;
356 		}
357 	}
358 
359 	drm_clflush_virt_range(vaddr, args->size);
360 	i915_gem_chipset_flush(dev);
361 
362 out:
363 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
364 	return ret;
365 }
366 
367 void *i915_gem_object_alloc(struct drm_device *dev)
368 {
369 	return kmalloc(sizeof(struct drm_i915_gem_object),
370 	    M_DRM, M_WAITOK | M_ZERO);
371 }
372 
373 void i915_gem_object_free(struct drm_i915_gem_object *obj)
374 {
375 	kfree(obj);
376 }
377 
378 static int
379 i915_gem_create(struct drm_file *file,
380 		struct drm_device *dev,
381 		uint64_t size,
382 		uint32_t *handle_p)
383 {
384 	struct drm_i915_gem_object *obj;
385 	int ret;
386 	u32 handle;
387 
388 	size = roundup(size, PAGE_SIZE);
389 	if (size == 0)
390 		return -EINVAL;
391 
392 	/* Allocate the new object */
393 	obj = i915_gem_alloc_object(dev, size);
394 	if (obj == NULL)
395 		return -ENOMEM;
396 
397 	ret = drm_gem_handle_create(file, &obj->base, &handle);
398 	/* drop reference from allocate - handle holds it now */
399 	drm_gem_object_unreference_unlocked(&obj->base);
400 	if (ret)
401 		return ret;
402 
403 	*handle_p = handle;
404 	return 0;
405 }
406 
407 int
408 i915_gem_dumb_create(struct drm_file *file,
409 		     struct drm_device *dev,
410 		     struct drm_mode_create_dumb *args)
411 {
412 	/* have to work out size/pitch and return them */
413 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
414 	args->size = args->pitch * args->height;
415 	return i915_gem_create(file, dev,
416 			       args->size, &args->handle);
417 }
418 
419 /**
420  * Creates a new mm object and returns a handle to it.
421  */
422 int
423 i915_gem_create_ioctl(struct drm_device *dev, void *data,
424 		      struct drm_file *file)
425 {
426 	struct drm_i915_gem_create *args = data;
427 
428 	return i915_gem_create(file, dev,
429 			       args->size, &args->handle);
430 }
431 
432 static inline int
433 __copy_to_user_swizzled(char __user *cpu_vaddr,
434 			const char *gpu_vaddr, int gpu_offset,
435 			int length)
436 {
437 	int ret, cpu_offset = 0;
438 
439 	while (length > 0) {
440 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
441 		int this_length = min(cacheline_end - gpu_offset, length);
442 		int swizzled_gpu_offset = gpu_offset ^ 64;
443 
444 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
445 				     gpu_vaddr + swizzled_gpu_offset,
446 				     this_length);
447 		if (ret)
448 			return ret + length;
449 
450 		cpu_offset += this_length;
451 		gpu_offset += this_length;
452 		length -= this_length;
453 	}
454 
455 	return 0;
456 }
457 
458 static inline int
459 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
460 			  const char __user *cpu_vaddr,
461 			  int length)
462 {
463 	int ret, cpu_offset = 0;
464 
465 	while (length > 0) {
466 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
467 		int this_length = min(cacheline_end - gpu_offset, length);
468 		int swizzled_gpu_offset = gpu_offset ^ 64;
469 
470 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
471 				       cpu_vaddr + cpu_offset,
472 				       this_length);
473 		if (ret)
474 			return ret + length;
475 
476 		cpu_offset += this_length;
477 		gpu_offset += this_length;
478 		length -= this_length;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Pins the specified object's pages and synchronizes the object with
486  * GPU accesses. Sets needs_clflush to non-zero if the caller should
487  * flush the object from the CPU cache.
488  */
489 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
490 				    int *needs_clflush)
491 {
492 	int ret;
493 
494 	*needs_clflush = 0;
495 
496 #if 0
497 	if (!obj->base.filp)
498 		return -EINVAL;
499 #endif
500 
501 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
502 		/* If we're not in the cpu read domain, set ourself into the gtt
503 		 * read domain and manually flush cachelines (if required). This
504 		 * optimizes for the case when the gpu will dirty the data
505 		 * anyway again before the next pread happens. */
506 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
507 							obj->cache_level);
508 		ret = i915_gem_object_wait_rendering(obj, true);
509 		if (ret)
510 			return ret;
511 	}
512 
513 	ret = i915_gem_object_get_pages(obj);
514 	if (ret)
515 		return ret;
516 
517 	i915_gem_object_pin_pages(obj);
518 
519 	return ret;
520 }
521 
522 /* Per-page copy function for the shmem pread fastpath.
523  * Flushes invalid cachelines before reading the target if
524  * needs_clflush is set. */
525 static int
526 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
527 		 char __user *user_data,
528 		 bool page_do_bit17_swizzling, bool needs_clflush)
529 {
530 	char *vaddr;
531 	int ret;
532 
533 	if (unlikely(page_do_bit17_swizzling))
534 		return -EINVAL;
535 
536 	vaddr = kmap_atomic(page);
537 	if (needs_clflush)
538 		drm_clflush_virt_range(vaddr + shmem_page_offset,
539 				       page_length);
540 	ret = __copy_to_user_inatomic(user_data,
541 				      vaddr + shmem_page_offset,
542 				      page_length);
543 	kunmap_atomic(vaddr);
544 
545 	return ret ? -EFAULT : 0;
546 }
547 
548 static void
549 shmem_clflush_swizzled_range(char *addr, unsigned long length,
550 			     bool swizzled)
551 {
552 	if (unlikely(swizzled)) {
553 		unsigned long start = (unsigned long) addr;
554 		unsigned long end = (unsigned long) addr + length;
555 
556 		/* For swizzling simply ensure that we always flush both
557 		 * channels. Lame, but simple and it works. Swizzled
558 		 * pwrite/pread is far from a hotpath - current userspace
559 		 * doesn't use it at all. */
560 		start = round_down(start, 128);
561 		end = round_up(end, 128);
562 
563 		drm_clflush_virt_range((void *)start, end - start);
564 	} else {
565 		drm_clflush_virt_range(addr, length);
566 	}
567 
568 }
569 
570 /* Only difference to the fast-path function is that this can handle bit17
571  * and uses non-atomic copy and kmap functions. */
572 static int
573 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
574 		 char __user *user_data,
575 		 bool page_do_bit17_swizzling, bool needs_clflush)
576 {
577 	char *vaddr;
578 	int ret;
579 
580 	vaddr = kmap(page);
581 	if (needs_clflush)
582 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
583 					     page_length,
584 					     page_do_bit17_swizzling);
585 
586 	if (page_do_bit17_swizzling)
587 		ret = __copy_to_user_swizzled(user_data,
588 					      vaddr, shmem_page_offset,
589 					      page_length);
590 	else
591 		ret = __copy_to_user(user_data,
592 				     vaddr + shmem_page_offset,
593 				     page_length);
594 	kunmap(page);
595 
596 	return ret ? - EFAULT : 0;
597 }
598 
599 static int
600 i915_gem_shmem_pread(struct drm_device *dev,
601 		     struct drm_i915_gem_object *obj,
602 		     struct drm_i915_gem_pread *args,
603 		     struct drm_file *file)
604 {
605 	char __user *user_data;
606 	ssize_t remain;
607 	loff_t offset;
608 	int shmem_page_offset, page_length, ret = 0;
609 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
610 	int prefaulted = 0;
611 	int needs_clflush = 0;
612 	struct sg_page_iter sg_iter;
613 
614 	user_data = to_user_ptr(args->data_ptr);
615 	remain = args->size;
616 
617 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
618 
619 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
620 	if (ret)
621 		return ret;
622 
623 	offset = args->offset;
624 
625 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
626 			 offset >> PAGE_SHIFT) {
627 		struct vm_page *page = sg_page_iter_page(&sg_iter);
628 
629 		if (remain <= 0)
630 			break;
631 
632 		/* Operation in this page
633 		 *
634 		 * shmem_page_offset = offset within page in shmem file
635 		 * page_length = bytes to copy for this page
636 		 */
637 		shmem_page_offset = offset_in_page(offset);
638 		page_length = remain;
639 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
640 			page_length = PAGE_SIZE - shmem_page_offset;
641 
642 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
643 			(page_to_phys(page) & (1 << 17)) != 0;
644 
645 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
646 				       user_data, page_do_bit17_swizzling,
647 				       needs_clflush);
648 		if (ret == 0)
649 			goto next_page;
650 
651 		mutex_unlock(&dev->struct_mutex);
652 
653 		if (likely(!i915.prefault_disable) && !prefaulted) {
654 			ret = fault_in_multipages_writeable(user_data, remain);
655 			/* Userspace is tricking us, but we've already clobbered
656 			 * its pages with the prefault and promised to write the
657 			 * data up to the first fault. Hence ignore any errors
658 			 * and just continue. */
659 			(void)ret;
660 			prefaulted = 1;
661 		}
662 
663 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
664 				       user_data, page_do_bit17_swizzling,
665 				       needs_clflush);
666 
667 		mutex_lock(&dev->struct_mutex);
668 
669 		if (ret)
670 			goto out;
671 
672 next_page:
673 		remain -= page_length;
674 		user_data += page_length;
675 		offset += page_length;
676 	}
677 
678 out:
679 	i915_gem_object_unpin_pages(obj);
680 
681 	return ret;
682 }
683 
684 /**
685  * Reads data from the object referenced by handle.
686  *
687  * On error, the contents of *data are undefined.
688  */
689 int
690 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
691 		     struct drm_file *file)
692 {
693 	struct drm_i915_gem_pread *args = data;
694 	struct drm_i915_gem_object *obj;
695 	int ret = 0;
696 
697 	if (args->size == 0)
698 		return 0;
699 
700 	ret = i915_mutex_lock_interruptible(dev);
701 	if (ret)
702 		return ret;
703 
704 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
705 	if (&obj->base == NULL) {
706 		ret = -ENOENT;
707 		goto unlock;
708 	}
709 
710 	/* Bounds check source.  */
711 	if (args->offset > obj->base.size ||
712 	    args->size > obj->base.size - args->offset) {
713 		ret = -EINVAL;
714 		goto out;
715 	}
716 
717 	/* prime objects have no backing filp to GEM pread/pwrite
718 	 * pages from.
719 	 */
720 
721 	trace_i915_gem_object_pread(obj, args->offset, args->size);
722 
723 	ret = i915_gem_shmem_pread(dev, obj, args, file);
724 
725 out:
726 	drm_gem_object_unreference(&obj->base);
727 unlock:
728 	mutex_unlock(&dev->struct_mutex);
729 	return ret;
730 }
731 
732 /* This is the fast write path which cannot handle
733  * page faults in the source data
734  */
735 
736 static inline int
737 fast_user_write(struct io_mapping *mapping,
738 		loff_t page_base, int page_offset,
739 		char __user *user_data,
740 		int length)
741 {
742 	void __iomem *vaddr_atomic;
743 	void *vaddr;
744 	unsigned long unwritten;
745 
746 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
747 	/* We can use the cpu mem copy function because this is X86. */
748 	vaddr = (char __force*)vaddr_atomic + page_offset;
749 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
750 						      user_data, length);
751 	io_mapping_unmap_atomic(vaddr_atomic);
752 	return unwritten;
753 }
754 
755 /**
756  * This is the fast pwrite path, where we copy the data directly from the
757  * user into the GTT, uncached.
758  */
759 static int
760 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
761 			 struct drm_i915_gem_object *obj,
762 			 struct drm_i915_gem_pwrite *args,
763 			 struct drm_file *file)
764 {
765 	struct drm_i915_private *dev_priv = dev->dev_private;
766 	ssize_t remain;
767 	loff_t offset, page_base;
768 	char __user *user_data;
769 	int page_offset, page_length, ret;
770 
771 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
772 	if (ret)
773 		goto out;
774 
775 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
776 	if (ret)
777 		goto out_unpin;
778 
779 	ret = i915_gem_object_put_fence(obj);
780 	if (ret)
781 		goto out_unpin;
782 
783 	user_data = to_user_ptr(args->data_ptr);
784 	remain = args->size;
785 
786 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
787 
788 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
789 
790 	while (remain > 0) {
791 		/* Operation in this page
792 		 *
793 		 * page_base = page offset within aperture
794 		 * page_offset = offset within page
795 		 * page_length = bytes to copy for this page
796 		 */
797 		page_base = offset & ~PAGE_MASK;
798 		page_offset = offset_in_page(offset);
799 		page_length = remain;
800 		if ((page_offset + remain) > PAGE_SIZE)
801 			page_length = PAGE_SIZE - page_offset;
802 
803 		/* If we get a fault while copying data, then (presumably) our
804 		 * source page isn't available.  Return the error and we'll
805 		 * retry in the slow path.
806 		 */
807 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
808 				    page_offset, user_data, page_length)) {
809 			ret = -EFAULT;
810 			goto out_flush;
811 		}
812 
813 		remain -= page_length;
814 		user_data += page_length;
815 		offset += page_length;
816 	}
817 
818 out_flush:
819 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
820 out_unpin:
821 	i915_gem_object_ggtt_unpin(obj);
822 out:
823 	return ret;
824 }
825 
826 /* Per-page copy function for the shmem pwrite fastpath.
827  * Flushes invalid cachelines before writing to the target if
828  * needs_clflush_before is set and flushes out any written cachelines after
829  * writing if needs_clflush is set. */
830 static int
831 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
832 		  char __user *user_data,
833 		  bool page_do_bit17_swizzling,
834 		  bool needs_clflush_before,
835 		  bool needs_clflush_after)
836 {
837 	char *vaddr;
838 	int ret;
839 
840 	if (unlikely(page_do_bit17_swizzling))
841 		return -EINVAL;
842 
843 	vaddr = kmap_atomic(page);
844 	if (needs_clflush_before)
845 		drm_clflush_virt_range(vaddr + shmem_page_offset,
846 				       page_length);
847 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
848 					user_data, page_length);
849 	if (needs_clflush_after)
850 		drm_clflush_virt_range(vaddr + shmem_page_offset,
851 				       page_length);
852 	kunmap_atomic(vaddr);
853 
854 	return ret ? -EFAULT : 0;
855 }
856 
857 /* Only difference to the fast-path function is that this can handle bit17
858  * and uses non-atomic copy and kmap functions. */
859 static int
860 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
861 		  char __user *user_data,
862 		  bool page_do_bit17_swizzling,
863 		  bool needs_clflush_before,
864 		  bool needs_clflush_after)
865 {
866 	char *vaddr;
867 	int ret;
868 
869 	vaddr = kmap(page);
870 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
871 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
872 					     page_length,
873 					     page_do_bit17_swizzling);
874 	if (page_do_bit17_swizzling)
875 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
876 						user_data,
877 						page_length);
878 	else
879 		ret = __copy_from_user(vaddr + shmem_page_offset,
880 				       user_data,
881 				       page_length);
882 	if (needs_clflush_after)
883 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
884 					     page_length,
885 					     page_do_bit17_swizzling);
886 	kunmap(page);
887 
888 	return ret ? -EFAULT : 0;
889 }
890 
891 static int
892 i915_gem_shmem_pwrite(struct drm_device *dev,
893 		      struct drm_i915_gem_object *obj,
894 		      struct drm_i915_gem_pwrite *args,
895 		      struct drm_file *file)
896 {
897 	ssize_t remain;
898 	loff_t offset;
899 	char __user *user_data;
900 	int shmem_page_offset, page_length, ret = 0;
901 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
902 	int hit_slowpath = 0;
903 	int needs_clflush_after = 0;
904 	int needs_clflush_before = 0;
905 	struct sg_page_iter sg_iter;
906 
907 	user_data = to_user_ptr(args->data_ptr);
908 	remain = args->size;
909 
910 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
911 
912 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913 		/* If we're not in the cpu write domain, set ourself into the gtt
914 		 * write domain and manually flush cachelines (if required). This
915 		 * optimizes for the case when the gpu will use the data
916 		 * right away and we therefore have to clflush anyway. */
917 		needs_clflush_after = cpu_write_needs_clflush(obj);
918 		ret = i915_gem_object_wait_rendering(obj, false);
919 		if (ret)
920 			return ret;
921 	}
922 	/* Same trick applies to invalidate partially written cachelines read
923 	 * before writing. */
924 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
925 		needs_clflush_before =
926 			!cpu_cache_is_coherent(dev, obj->cache_level);
927 
928 	ret = i915_gem_object_get_pages(obj);
929 	if (ret)
930 		return ret;
931 
932 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
933 
934 	i915_gem_object_pin_pages(obj);
935 
936 	offset = args->offset;
937 	obj->dirty = 1;
938 
939 	VM_OBJECT_LOCK(obj->base.vm_obj);
940 	vm_object_pip_add(obj->base.vm_obj, 1);
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct vm_page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (cpu_clflush_line_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 	vm_object_pip_wakeup(obj->base.vm_obj);
996 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
997 
998 out:
999 	i915_gem_object_unpin_pages(obj);
1000 
1001 	if (hit_slowpath) {
1002 		/*
1003 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1004 		 * cachelines in-line while writing and the object moved
1005 		 * out of the cpu write domain while we've dropped the lock.
1006 		 */
1007 		if (!needs_clflush_after &&
1008 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1009 			if (i915_gem_clflush_object(obj, obj->pin_display))
1010 				needs_clflush_after = true;
1011 		}
1012 	}
1013 
1014 	if (needs_clflush_after)
1015 		i915_gem_chipset_flush(dev);
1016 	else
1017 		obj->cache_dirty = true;
1018 
1019 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * Writes data to the object referenced by handle.
1025  *
1026  * On error, the contents of the buffer that were to be modified are undefined.
1027  */
1028 int
1029 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1030 		      struct drm_file *file)
1031 {
1032 	struct drm_i915_private *dev_priv = dev->dev_private;
1033 	struct drm_i915_gem_pwrite *args = data;
1034 	struct drm_i915_gem_object *obj;
1035 	int ret;
1036 
1037 	if (args->size == 0)
1038 		return 0;
1039 
1040 	if (likely(!i915.prefault_disable)) {
1041 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1042 						   args->size);
1043 		if (ret)
1044 			return -EFAULT;
1045 	}
1046 
1047 	intel_runtime_pm_get(dev_priv);
1048 
1049 	ret = i915_mutex_lock_interruptible(dev);
1050 	if (ret)
1051 		goto put_rpm;
1052 
1053 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1054 	if (&obj->base == NULL) {
1055 		ret = -ENOENT;
1056 		goto unlock;
1057 	}
1058 
1059 	/* Bounds check destination. */
1060 	if (args->offset > obj->base.size ||
1061 	    args->size > obj->base.size - args->offset) {
1062 		ret = -EINVAL;
1063 		goto out;
1064 	}
1065 
1066 	/* prime objects have no backing filp to GEM pread/pwrite
1067 	 * pages from.
1068 	 */
1069 
1070 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1071 
1072 	ret = -EFAULT;
1073 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1074 	 * it would end up going through the fenced access, and we'll get
1075 	 * different detiling behavior between reading and writing.
1076 	 * pread/pwrite currently are reading and writing from the CPU
1077 	 * perspective, requiring manual detiling by the client.
1078 	 */
1079 	if (obj->tiling_mode == I915_TILING_NONE &&
1080 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1081 	    cpu_write_needs_clflush(obj)) {
1082 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1083 		/* Note that the gtt paths might fail with non-page-backed user
1084 		 * pointers (e.g. gtt mappings when moving data between
1085 		 * textures). Fallback to the shmem path in that case. */
1086 	}
1087 
1088 	if (ret == -EFAULT || ret == -ENOSPC) {
1089 		if (obj->phys_handle)
1090 			ret = i915_gem_phys_pwrite(obj, args, file);
1091 		else
1092 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1093 	}
1094 
1095 out:
1096 	drm_gem_object_unreference(&obj->base);
1097 unlock:
1098 	mutex_unlock(&dev->struct_mutex);
1099 put_rpm:
1100 	intel_runtime_pm_put(dev_priv);
1101 
1102 	return ret;
1103 }
1104 
1105 int
1106 i915_gem_check_wedge(struct i915_gpu_error *error,
1107 		     bool interruptible)
1108 {
1109 	if (i915_reset_in_progress(error)) {
1110 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1111 		 * -EIO unconditionally for these. */
1112 		if (!interruptible)
1113 			return -EIO;
1114 
1115 		/* Recovery complete, but the reset failed ... */
1116 		if (i915_terminally_wedged(error))
1117 			return -EIO;
1118 
1119 		/*
1120 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1121 		 * to work properly to reinit the hw state while the gpu is
1122 		 * still marked as reset-in-progress. Handle this with a flag.
1123 		 */
1124 		if (!error->reload_in_reset)
1125 			return -EAGAIN;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void fake_irq(unsigned long data)
1132 {
1133 	wakeup_one((void *)data);
1134 }
1135 
1136 static bool missed_irq(struct drm_i915_private *dev_priv,
1137 		       struct intel_engine_cs *ring)
1138 {
1139 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1140 }
1141 
1142 #if 0
1143 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1144 {
1145 	unsigned long timeout;
1146 	unsigned cpu;
1147 
1148 	/* When waiting for high frequency requests, e.g. during synchronous
1149 	 * rendering split between the CPU and GPU, the finite amount of time
1150 	 * required to set up the irq and wait upon it limits the response
1151 	 * rate. By busywaiting on the request completion for a short while we
1152 	 * can service the high frequency waits as quick as possible. However,
1153 	 * if it is a slow request, we want to sleep as quickly as possible.
1154 	 * The tradeoff between waiting and sleeping is roughly the time it
1155 	 * takes to sleep on a request, on the order of a microsecond.
1156 	 */
1157 
1158 	if (req->ring->irq_refcount)
1159 		return -EBUSY;
1160 
1161 	/* Only spin if we know the GPU is processing this request */
1162 	if (!i915_gem_request_started(req, true))
1163 		return -EAGAIN;
1164 
1165 	timeout = local_clock_us(&cpu) + 5;
1166 	while (!need_resched()) {
1167 		if (i915_gem_request_completed(req, true))
1168 			return 0;
1169 
1170 		if (signal_pending_state(state, current))
1171 			break;
1172 
1173 		if (busywait_stop(timeout, cpu))
1174 			break;
1175 
1176 		cpu_relax_lowlatency();
1177 	}
1178 
1179 	if (i915_gem_request_completed(req, false))
1180 		return 0;
1181 
1182 	return -EAGAIN;
1183 }
1184 #endif
1185 
1186 /**
1187  * __i915_wait_request - wait until execution of request has finished
1188  * @req: duh!
1189  * @reset_counter: reset sequence associated with the given request
1190  * @interruptible: do an interruptible wait (normally yes)
1191  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1192  *
1193  * Note: It is of utmost importance that the passed in seqno and reset_counter
1194  * values have been read by the caller in an smp safe manner. Where read-side
1195  * locks are involved, it is sufficient to read the reset_counter before
1196  * unlocking the lock that protects the seqno. For lockless tricks, the
1197  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1198  * inserted.
1199  *
1200  * Returns 0 if the request was found within the alloted time. Else returns the
1201  * errno with remaining time filled in timeout argument.
1202  */
1203 int __i915_wait_request(struct drm_i915_gem_request *req,
1204 			unsigned reset_counter,
1205 			bool interruptible,
1206 			s64 *timeout,
1207 			struct intel_rps_client *rps)
1208 {
1209 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1210 	struct drm_device *dev = ring->dev;
1211 	struct drm_i915_private *dev_priv = dev->dev_private;
1212 	const bool irq_test_in_progress =
1213 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1214 	unsigned long timeout_expire;
1215 	s64 before, now;
1216 	int ret, sl_timeout = 1;
1217 
1218 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219 
1220 	if (list_empty(&req->list))
1221 		return 0;
1222 
1223 	if (i915_gem_request_completed(req, true))
1224 		return 0;
1225 
1226 	timeout_expire = 0;
1227 	if (timeout) {
1228 		if (WARN_ON(*timeout < 0))
1229 			return -EINVAL;
1230 
1231 		if (*timeout == 0)
1232 			return -ETIME;
1233 
1234 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1235 	}
1236 
1237 	if (INTEL_INFO(dev_priv)->gen >= 6)
1238 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1239 
1240 	/* Record current time in case interrupted by signal, or wedged */
1241 	trace_i915_gem_request_wait_begin(req);
1242 	before = ktime_get_raw_ns();
1243 
1244 	/* Optimistic spin for the next jiffie before touching IRQs */
1245 #if 0
1246 	ret = __i915_spin_request(req);
1247 	if (ret == 0)
1248 		goto out;
1249 #endif
1250 
1251 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1252 		ret = -ENODEV;
1253 		goto out;
1254 	}
1255 
1256 	lockmgr(&ring->irq_queue.lock, LK_EXCLUSIVE);
1257 	for (;;) {
1258 		struct timer_list timer;
1259 
1260 		/* We need to check whether any gpu reset happened in between
1261 		 * the caller grabbing the seqno and now ... */
1262 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1263 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1264 			 * is truely gone. */
1265 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1266 			if (ret == 0)
1267 				ret = -EAGAIN;
1268 			break;
1269 		}
1270 
1271 		if (i915_gem_request_completed(req, false)) {
1272 			ret = 0;
1273 			break;
1274 		}
1275 
1276 		if (interruptible && signal_pending(curthread->td_lwp)) {
1277 			ret = -ERESTARTSYS;
1278 			break;
1279 		}
1280 
1281 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1282 			ret = -ETIME;
1283 			break;
1284 		}
1285 
1286 		timer.function = NULL;
1287 		if (timeout || missed_irq(dev_priv, ring)) {
1288 			unsigned long expire;
1289 
1290 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)&ring->irq_queue);
1291 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1292 			sl_timeout = expire - jiffies;
1293 			if (sl_timeout < 1)
1294 				sl_timeout = 1;
1295 			mod_timer(&timer, expire);
1296 		}
1297 
1298 #if 0
1299 		io_schedule();
1300 #endif
1301 
1302 		if (timer.function) {
1303 			del_singleshot_timer_sync(&timer);
1304 			destroy_timer_on_stack(&timer);
1305 		}
1306 
1307 		lksleep(&ring->irq_queue, &ring->irq_queue.lock,
1308 			interruptible ? PCATCH : 0, "lwe", sl_timeout);
1309 	}
1310 	lockmgr(&ring->irq_queue.lock, LK_RELEASE);
1311 	if (!irq_test_in_progress)
1312 		ring->irq_put(ring);
1313 
1314 out:
1315 	now = ktime_get_raw_ns();
1316 	trace_i915_gem_request_wait_end(req);
1317 
1318 	if (timeout) {
1319 		s64 tres = *timeout - (now - before);
1320 
1321 		*timeout = tres < 0 ? 0 : tres;
1322 
1323 		/*
1324 		 * Apparently ktime isn't accurate enough and occasionally has a
1325 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 		 * things up to make the test happy. We allow up to 1 jiffy.
1327 		 *
1328 		 * This is a regrssion from the timespec->ktime conversion.
1329 		 */
1330 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 			*timeout = 0;
1332 	}
1333 
1334 	return ret;
1335 }
1336 
1337 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1338 				   struct drm_file *file)
1339 {
1340 	struct drm_i915_private *dev_private;
1341 	struct drm_i915_file_private *file_priv;
1342 
1343 	WARN_ON(!req || !file || req->file_priv);
1344 
1345 	if (!req || !file)
1346 		return -EINVAL;
1347 
1348 	if (req->file_priv)
1349 		return -EINVAL;
1350 
1351 	dev_private = req->ring->dev->dev_private;
1352 	file_priv = file->driver_priv;
1353 
1354 	spin_lock(&file_priv->mm.lock);
1355 	req->file_priv = file_priv;
1356 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1357 	spin_unlock(&file_priv->mm.lock);
1358 
1359 	req->pid = curproc->p_pid;
1360 
1361 	return 0;
1362 }
1363 
1364 static inline void
1365 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1366 {
1367 	struct drm_i915_file_private *file_priv = request->file_priv;
1368 
1369 	if (!file_priv)
1370 		return;
1371 
1372 	spin_lock(&file_priv->mm.lock);
1373 	list_del(&request->client_list);
1374 	request->file_priv = NULL;
1375 	spin_unlock(&file_priv->mm.lock);
1376 
1377 #if 0
1378 	put_pid(request->pid);
1379 	request->pid = NULL;
1380 #endif
1381 }
1382 
1383 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1384 {
1385 	trace_i915_gem_request_retire(request);
1386 
1387 	/* We know the GPU must have read the request to have
1388 	 * sent us the seqno + interrupt, so use the position
1389 	 * of tail of the request to update the last known position
1390 	 * of the GPU head.
1391 	 *
1392 	 * Note this requires that we are always called in request
1393 	 * completion order.
1394 	 */
1395 	request->ringbuf->last_retired_head = request->postfix;
1396 
1397 	list_del_init(&request->list);
1398 	i915_gem_request_remove_from_client(request);
1399 
1400 	i915_gem_request_unreference(request);
1401 }
1402 
1403 static void
1404 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1405 {
1406 	struct intel_engine_cs *engine = req->ring;
1407 	struct drm_i915_gem_request *tmp;
1408 
1409 	lockdep_assert_held(&engine->dev->struct_mutex);
1410 
1411 	if (list_empty(&req->list))
1412 		return;
1413 
1414 	do {
1415 		tmp = list_first_entry(&engine->request_list,
1416 				       typeof(*tmp), list);
1417 
1418 		i915_gem_request_retire(tmp);
1419 	} while (tmp != req);
1420 
1421 	WARN_ON(i915_verify_lists(engine->dev));
1422 }
1423 
1424 /**
1425  * Waits for a request to be signaled, and cleans up the
1426  * request and object lists appropriately for that event.
1427  */
1428 int
1429 i915_wait_request(struct drm_i915_gem_request *req)
1430 {
1431 	struct drm_device *dev;
1432 	struct drm_i915_private *dev_priv;
1433 	bool interruptible;
1434 	int ret;
1435 
1436 	BUG_ON(req == NULL);
1437 
1438 	dev = req->ring->dev;
1439 	dev_priv = dev->dev_private;
1440 	interruptible = dev_priv->mm.interruptible;
1441 
1442 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1443 
1444 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1445 	if (ret)
1446 		return ret;
1447 
1448 	ret = __i915_wait_request(req,
1449 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1450 				  interruptible, NULL, NULL);
1451 	if (ret)
1452 		return ret;
1453 
1454 	__i915_gem_request_retire__upto(req);
1455 	return 0;
1456 }
1457 
1458 /**
1459  * Ensures that all rendering to the object has completed and the object is
1460  * safe to unbind from the GTT or access from the CPU.
1461  */
1462 int
1463 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1464 			       bool readonly)
1465 {
1466 	int ret, i;
1467 
1468 	if (!obj->active)
1469 		return 0;
1470 
1471 	if (readonly) {
1472 		if (obj->last_write_req != NULL) {
1473 			ret = i915_wait_request(obj->last_write_req);
1474 			if (ret)
1475 				return ret;
1476 
1477 			i = obj->last_write_req->ring->id;
1478 			if (obj->last_read_req[i] == obj->last_write_req)
1479 				i915_gem_object_retire__read(obj, i);
1480 			else
1481 				i915_gem_object_retire__write(obj);
1482 		}
1483 	} else {
1484 		for (i = 0; i < I915_NUM_RINGS; i++) {
1485 			if (obj->last_read_req[i] == NULL)
1486 				continue;
1487 
1488 			ret = i915_wait_request(obj->last_read_req[i]);
1489 			if (ret)
1490 				return ret;
1491 
1492 			i915_gem_object_retire__read(obj, i);
1493 		}
1494 		RQ_BUG_ON(obj->active);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static void
1501 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1502 			       struct drm_i915_gem_request *req)
1503 {
1504 	int ring = req->ring->id;
1505 
1506 	if (obj->last_read_req[ring] == req)
1507 		i915_gem_object_retire__read(obj, ring);
1508 	else if (obj->last_write_req == req)
1509 		i915_gem_object_retire__write(obj);
1510 
1511 	__i915_gem_request_retire__upto(req);
1512 }
1513 
1514 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1515  * as the object state may change during this call.
1516  */
1517 static __must_check int
1518 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1519 					    struct intel_rps_client *rps,
1520 					    bool readonly)
1521 {
1522 	struct drm_device *dev = obj->base.dev;
1523 	struct drm_i915_private *dev_priv = dev->dev_private;
1524 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1525 	unsigned reset_counter;
1526 	int ret, i, n = 0;
1527 
1528 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1529 	BUG_ON(!dev_priv->mm.interruptible);
1530 
1531 	if (!obj->active)
1532 		return 0;
1533 
1534 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1535 	if (ret)
1536 		return ret;
1537 
1538 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1539 
1540 	if (readonly) {
1541 		struct drm_i915_gem_request *req;
1542 
1543 		req = obj->last_write_req;
1544 		if (req == NULL)
1545 			return 0;
1546 
1547 		requests[n++] = i915_gem_request_reference(req);
1548 	} else {
1549 		for (i = 0; i < I915_NUM_RINGS; i++) {
1550 			struct drm_i915_gem_request *req;
1551 
1552 			req = obj->last_read_req[i];
1553 			if (req == NULL)
1554 				continue;
1555 
1556 			requests[n++] = i915_gem_request_reference(req);
1557 		}
1558 	}
1559 
1560 	mutex_unlock(&dev->struct_mutex);
1561 	for (i = 0; ret == 0 && i < n; i++)
1562 		ret = __i915_wait_request(requests[i], reset_counter, true,
1563 					  NULL, rps);
1564 	mutex_lock(&dev->struct_mutex);
1565 
1566 	for (i = 0; i < n; i++) {
1567 		if (ret == 0)
1568 			i915_gem_object_retire_request(obj, requests[i]);
1569 		i915_gem_request_unreference(requests[i]);
1570 	}
1571 
1572 	return ret;
1573 }
1574 
1575 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1576 {
1577 	struct drm_i915_file_private *fpriv = file->driver_priv;
1578 	return &fpriv->rps;
1579 }
1580 
1581 /**
1582  * Called when user space prepares to use an object with the CPU, either
1583  * through the mmap ioctl's mapping or a GTT mapping.
1584  */
1585 int
1586 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1587 			  struct drm_file *file)
1588 {
1589 	struct drm_i915_gem_set_domain *args = data;
1590 	struct drm_i915_gem_object *obj;
1591 	uint32_t read_domains = args->read_domains;
1592 	uint32_t write_domain = args->write_domain;
1593 	int ret;
1594 
1595 	/* Only handle setting domains to types used by the CPU. */
1596 	if (write_domain & I915_GEM_GPU_DOMAINS)
1597 		return -EINVAL;
1598 
1599 	if (read_domains & I915_GEM_GPU_DOMAINS)
1600 		return -EINVAL;
1601 
1602 	/* Having something in the write domain implies it's in the read
1603 	 * domain, and only that read domain.  Enforce that in the request.
1604 	 */
1605 	if (write_domain != 0 && read_domains != write_domain)
1606 		return -EINVAL;
1607 
1608 	ret = i915_mutex_lock_interruptible(dev);
1609 	if (ret)
1610 		return ret;
1611 
1612 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1613 	if (&obj->base == NULL) {
1614 		ret = -ENOENT;
1615 		goto unlock;
1616 	}
1617 
1618 	/* Try to flush the object off the GPU without holding the lock.
1619 	 * We will repeat the flush holding the lock in the normal manner
1620 	 * to catch cases where we are gazumped.
1621 	 */
1622 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1623 							  to_rps_client(file),
1624 							  !write_domain);
1625 	if (ret)
1626 		goto unref;
1627 
1628 	if (read_domains & I915_GEM_DOMAIN_GTT)
1629 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1630 	else
1631 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1632 
1633 	if (write_domain != 0)
1634 		intel_fb_obj_invalidate(obj,
1635 					write_domain == I915_GEM_DOMAIN_GTT ?
1636 					ORIGIN_GTT : ORIGIN_CPU);
1637 
1638 unref:
1639 	drm_gem_object_unreference(&obj->base);
1640 unlock:
1641 	mutex_unlock(&dev->struct_mutex);
1642 	return ret;
1643 }
1644 
1645 /**
1646  * Called when user space has done writes to this buffer
1647  */
1648 int
1649 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1650 			 struct drm_file *file)
1651 {
1652 	struct drm_i915_gem_sw_finish *args = data;
1653 	struct drm_i915_gem_object *obj;
1654 	int ret = 0;
1655 
1656 	ret = i915_mutex_lock_interruptible(dev);
1657 	if (ret)
1658 		return ret;
1659 
1660 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1661 	if (&obj->base == NULL) {
1662 		ret = -ENOENT;
1663 		goto unlock;
1664 	}
1665 
1666 	/* Pinned buffers may be scanout, so flush the cache */
1667 	if (obj->pin_display)
1668 		i915_gem_object_flush_cpu_write_domain(obj);
1669 
1670 	drm_gem_object_unreference(&obj->base);
1671 unlock:
1672 	mutex_unlock(&dev->struct_mutex);
1673 	return ret;
1674 }
1675 
1676 /**
1677  * Maps the contents of an object, returning the address it is mapped
1678  * into.
1679  *
1680  * While the mapping holds a reference on the contents of the object, it doesn't
1681  * imply a ref on the object itself.
1682  *
1683  * IMPORTANT:
1684  *
1685  * DRM driver writers who look a this function as an example for how to do GEM
1686  * mmap support, please don't implement mmap support like here. The modern way
1687  * to implement DRM mmap support is with an mmap offset ioctl (like
1688  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1689  * That way debug tooling like valgrind will understand what's going on, hiding
1690  * the mmap call in a driver private ioctl will break that. The i915 driver only
1691  * does cpu mmaps this way because we didn't know better.
1692  */
1693 int
1694 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1695 		    struct drm_file *file)
1696 {
1697 	struct drm_i915_gem_mmap *args = data;
1698 	struct drm_gem_object *obj;
1699 	unsigned long addr;
1700 
1701 	struct proc *p = curproc;
1702 	vm_map_t map = &p->p_vmspace->vm_map;
1703 	vm_size_t size;
1704 	int error = 0, rv;
1705 
1706 	if (args->flags & ~(I915_MMAP_WC))
1707 		return -EINVAL;
1708 
1709 	obj = drm_gem_object_lookup(dev, file, args->handle);
1710 	if (obj == NULL)
1711 		return -ENOENT;
1712 
1713 	if (args->size == 0)
1714 		goto out;
1715 
1716 	size = round_page(args->size);
1717 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1718 		error = -ENOMEM;
1719 		goto out;
1720 	}
1721 
1722 	/* prime objects have no backing filp to GEM mmap
1723 	 * pages from.
1724 	 */
1725 
1726 	/*
1727 	 * Call hint to ensure that NULL is not returned as a valid address
1728 	 * and to reduce vm_map traversals. XXX causes instability, use a
1729 	 * fixed low address as the start point instead to avoid the NULL
1730 	 * return issue.
1731 	 */
1732 
1733 	addr = PAGE_SIZE;
1734 
1735 	/*
1736 	 * Use 256KB alignment.  It is unclear why this matters for a
1737 	 * virtual address but it appears to fix a number of application/X
1738 	 * crashes and kms console switching is much faster.
1739 	 */
1740 	vm_object_hold(obj->vm_obj);
1741 	vm_object_reference_locked(obj->vm_obj);
1742 	vm_object_drop(obj->vm_obj);
1743 
1744 	rv = vm_map_find(map, obj->vm_obj, NULL,
1745 			 args->offset, &addr, args->size,
1746 			 256 * 1024, /* align */
1747 			 TRUE, /* fitit */
1748 			 VM_MAPTYPE_NORMAL, /* maptype */
1749 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1750 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1751 			 MAP_SHARED /* cow */);
1752 	if (rv != KERN_SUCCESS) {
1753 		vm_object_deallocate(obj->vm_obj);
1754 		error = -vm_mmap_to_errno(rv);
1755 	} else {
1756 		args->addr_ptr = (uint64_t)addr;
1757 	}
1758 out:
1759 	drm_gem_object_unreference(obj);
1760 	return (error);
1761 }
1762 
1763 /**
1764  * i915_gem_fault - fault a page into the GTT
1765  *
1766  * vm_obj is locked on entry and expected to be locked on return.
1767  *
1768  * The vm_pager has placemarked the object with an anonymous memory page
1769  * which we must replace atomically to avoid races against concurrent faults
1770  * on the same page.  XXX we currently are unable to do this atomically.
1771  *
1772  * If we are to return an error we should not touch the anonymous page,
1773  * the caller will deallocate it.
1774  *
1775  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1776  * in that case.  Release all resources and wait 1 tick before retrying.
1777  * This is a huge problem which needs to be fixed by getting rid of most
1778  * of the interruptability.  The linux code does not retry but does appear
1779  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1780  * to be able to retry.
1781  *
1782  * --
1783  * @vma: VMA in question
1784  * @vmf: fault info
1785  *
1786  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1787  * from userspace.  The fault handler takes care of binding the object to
1788  * the GTT (if needed), allocating and programming a fence register (again,
1789  * only if needed based on whether the old reg is still valid or the object
1790  * is tiled) and inserting a new PTE into the faulting process.
1791  *
1792  * Note that the faulting process may involve evicting existing objects
1793  * from the GTT and/or fence registers to make room.  So performance may
1794  * suffer if the GTT working set is large or there are few fence registers
1795  * left.
1796  *
1797  * vm_obj is locked on entry and expected to be locked on return.  The VM
1798  * pager has placed an anonymous memory page at (obj,offset) which we have
1799  * to replace.
1800  */
1801 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1802 {
1803 	struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1804 	struct drm_device *dev = obj->base.dev;
1805 	struct drm_i915_private *dev_priv = dev->dev_private;
1806 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1807 	unsigned long page_offset;
1808 	vm_page_t m, oldm = NULL;
1809 	int ret = 0;
1810 	bool write = !!(prot & VM_PROT_WRITE);
1811 
1812 	intel_runtime_pm_get(dev_priv);
1813 
1814 	/* We don't use vmf->pgoff since that has the fake offset */
1815 	page_offset = (unsigned long)offset;
1816 
1817 retry:
1818 	ret = i915_mutex_lock_interruptible(dev);
1819 	if (ret)
1820 		goto out;
1821 
1822 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1823 
1824 	/* Try to flush the object off the GPU first without holding the lock.
1825 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1826 	 * repeat the flush holding the lock in the normal manner to catch cases
1827 	 * where we are gazumped.
1828 	 */
1829 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1830 	if (ret)
1831 		goto unlock;
1832 
1833 	/* Access to snoopable pages through the GTT is incoherent. */
1834 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1835 		ret = -EFAULT;
1836 		goto unlock;
1837 	}
1838 
1839 	/* Use a partial view if the object is bigger than the aperture. */
1840 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1841 	    obj->tiling_mode == I915_TILING_NONE) {
1842 #if 0
1843 		static const unsigned int chunk_size = 256; // 1 MiB
1844 
1845 		memset(&view, 0, sizeof(view));
1846 		view.type = I915_GGTT_VIEW_PARTIAL;
1847 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1848 		view.params.partial.size =
1849 			min_t(unsigned int,
1850 			      chunk_size,
1851 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1852 			      view.params.partial.offset);
1853 #endif
1854 	}
1855 
1856 	/* Now pin it into the GTT if needed */
1857 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1858 	if (ret)
1859 		goto unlock;
1860 
1861 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1862 	if (ret)
1863 		goto unpin;
1864 
1865 	ret = i915_gem_object_get_fence(obj);
1866 	if (ret)
1867 		goto unpin;
1868 
1869 	/*
1870 	 * START FREEBSD MAGIC
1871 	 *
1872 	 * Add a pip count to avoid destruction and certain other
1873 	 * complex operations (such as collapses?) while unlocked.
1874 	 */
1875 	vm_object_pip_add(vm_obj, 1);
1876 
1877 	/*
1878 	 * XXX We must currently remove the placeholder page now to avoid
1879 	 * a deadlock against a concurrent i915_gem_release_mmap().
1880 	 * Otherwise concurrent operation will block on the busy page
1881 	 * while holding locks which we need to obtain.
1882 	 */
1883 	if (*mres != NULL) {
1884 		oldm = *mres;
1885 		if ((oldm->flags & PG_BUSY) == 0)
1886 			kprintf("i915_gem_fault: Page was not busy\n");
1887 		else
1888 			vm_page_remove(oldm);
1889 		*mres = NULL;
1890 	} else {
1891 		oldm = NULL;
1892 	}
1893 
1894 	ret = 0;
1895 	m = NULL;
1896 
1897 	/*
1898 	 * Since the object lock was dropped, another thread might have
1899 	 * faulted on the same GTT address and instantiated the mapping.
1900 	 * Recheck.
1901 	 */
1902 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1903 	if (m != NULL) {
1904 		/*
1905 		 * Try to busy the page, retry on failure (non-zero ret).
1906 		 */
1907 		if (vm_page_busy_try(m, false)) {
1908 			kprintf("i915_gem_fault: PG_BUSY\n");
1909 			ret = -EINTR;
1910 			goto unlock;
1911 		}
1912 		goto have_page;
1913 	}
1914 	/*
1915 	 * END FREEBSD MAGIC
1916 	 */
1917 
1918 	obj->fault_mappable = true;
1919 
1920 	/* Finally, remap it using the new GTT offset */
1921 	m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1922 			i915_gem_obj_ggtt_offset_view(obj, &view) + offset);
1923 	if (m == NULL) {
1924 		ret = -EFAULT;
1925 		goto unpin;
1926 	}
1927 	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1928 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1929 
1930 	/*
1931 	 * Try to busy the page.  Fails on non-zero return.
1932 	 */
1933 	if (vm_page_busy_try(m, false)) {
1934 		kprintf("i915_gem_fault: PG_BUSY(2)\n");
1935 		ret = -EINTR;
1936 		goto unpin;
1937 	}
1938 	m->valid = VM_PAGE_BITS_ALL;
1939 
1940 #if 0
1941 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1942 		/* Overriding existing pages in partial view does not cause
1943 		 * us any trouble as TLBs are still valid because the fault
1944 		 * is due to userspace losing part of the mapping or never
1945 		 * having accessed it before (at this partials' range).
1946 		 */
1947 		unsigned long base = vma->vm_start +
1948 				     (view.params.partial.offset << PAGE_SHIFT);
1949 		unsigned int i;
1950 
1951 		for (i = 0; i < view.params.partial.size; i++) {
1952 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1953 			if (ret)
1954 				break;
1955 		}
1956 
1957 		obj->fault_mappable = true;
1958 	} else {
1959 		if (!obj->fault_mappable) {
1960 			unsigned long size = min_t(unsigned long,
1961 						   vma->vm_end - vma->vm_start,
1962 						   obj->base.size);
1963 			int i;
1964 
1965 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1966 				ret = vm_insert_pfn(vma,
1967 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1968 						    pfn + i);
1969 				if (ret)
1970 					break;
1971 			}
1972 
1973 			obj->fault_mappable = true;
1974 		} else
1975 			ret = vm_insert_pfn(vma,
1976 					    (unsigned long)vmf->virtual_address,
1977 					    pfn + page_offset);
1978 #endif
1979 			vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1980 #if 0
1981 	}
1982 #endif
1983 
1984 have_page:
1985 	*mres = m;
1986 
1987 	i915_gem_object_ggtt_unpin_view(obj, &view);
1988 	mutex_unlock(&dev->struct_mutex);
1989 	ret = VM_PAGER_OK;
1990 	goto done;
1991 
1992 	/*
1993 	 * ALTERNATIVE ERROR RETURN.
1994 	 *
1995 	 * OBJECT EXPECTED TO BE LOCKED.
1996 	 */
1997 unpin:
1998 	i915_gem_object_ggtt_unpin_view(obj, &view);
1999 unlock:
2000 	mutex_unlock(&dev->struct_mutex);
2001 out:
2002 	switch (ret) {
2003 	case -EIO:
2004 		/*
2005 		 * We eat errors when the gpu is terminally wedged to avoid
2006 		 * userspace unduly crashing (gl has no provisions for mmaps to
2007 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 		 * and so needs to be reported.
2009 		 */
2010 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 //			ret = VM_FAULT_SIGBUS;
2012 			break;
2013 		}
2014 	case -EAGAIN:
2015 		/*
2016 		 * EAGAIN means the gpu is hung and we'll wait for the error
2017 		 * handler to reset everything when re-faulting in
2018 		 * i915_mutex_lock_interruptible.
2019 		 */
2020 	case -ERESTARTSYS:
2021 	case -EINTR:
2022 		VM_OBJECT_UNLOCK(vm_obj);
2023 		int dummy;
2024 		tsleep(&dummy, 0, "delay", 1); /* XXX */
2025 		VM_OBJECT_LOCK(vm_obj);
2026 		goto retry;
2027 	default:
2028 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2029 		ret = VM_PAGER_ERROR;
2030 		break;
2031 	}
2032 
2033 done:
2034 	if (oldm != NULL)
2035 		vm_page_free(oldm);
2036 	vm_object_pip_wakeup(vm_obj);
2037 
2038 	intel_runtime_pm_put(dev_priv);
2039 	return ret;
2040 }
2041 
2042 /**
2043  * i915_gem_release_mmap - remove physical page mappings
2044  * @obj: obj in question
2045  *
2046  * Preserve the reservation of the mmapping with the DRM core code, but
2047  * relinquish ownership of the pages back to the system.
2048  *
2049  * It is vital that we remove the page mapping if we have mapped a tiled
2050  * object through the GTT and then lose the fence register due to
2051  * resource pressure. Similarly if the object has been moved out of the
2052  * aperture, than pages mapped into userspace must be revoked. Removing the
2053  * mapping will then trigger a page fault on the next user access, allowing
2054  * fixup by i915_gem_fault().
2055  */
2056 void
2057 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2058 {
2059 	vm_object_t devobj;
2060 	vm_page_t m;
2061 	int i, page_count;
2062 
2063 	if (!obj->fault_mappable)
2064 		return;
2065 
2066 	devobj = cdev_pager_lookup(obj);
2067 	if (devobj != NULL) {
2068 		page_count = OFF_TO_IDX(obj->base.size);
2069 
2070 		VM_OBJECT_LOCK(devobj);
2071 		for (i = 0; i < page_count; i++) {
2072 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2073 			if (m == NULL)
2074 				continue;
2075 			cdev_pager_free_page(devobj, m);
2076 		}
2077 		VM_OBJECT_UNLOCK(devobj);
2078 		vm_object_deallocate(devobj);
2079 	}
2080 
2081 	obj->fault_mappable = false;
2082 }
2083 
2084 void
2085 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2086 {
2087 	struct drm_i915_gem_object *obj;
2088 
2089 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2090 		i915_gem_release_mmap(obj);
2091 }
2092 
2093 uint32_t
2094 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2095 {
2096 	uint32_t gtt_size;
2097 
2098 	if (INTEL_INFO(dev)->gen >= 4 ||
2099 	    tiling_mode == I915_TILING_NONE)
2100 		return size;
2101 
2102 	/* Previous chips need a power-of-two fence region when tiling */
2103 	if (INTEL_INFO(dev)->gen == 3)
2104 		gtt_size = 1024*1024;
2105 	else
2106 		gtt_size = 512*1024;
2107 
2108 	while (gtt_size < size)
2109 		gtt_size <<= 1;
2110 
2111 	return gtt_size;
2112 }
2113 
2114 /**
2115  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2116  * @obj: object to check
2117  *
2118  * Return the required GTT alignment for an object, taking into account
2119  * potential fence register mapping.
2120  */
2121 uint32_t
2122 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2123 			   int tiling_mode, bool fenced)
2124 {
2125 	/*
2126 	 * Minimum alignment is 4k (GTT page size), but might be greater
2127 	 * if a fence register is needed for the object.
2128 	 */
2129 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2130 	    tiling_mode == I915_TILING_NONE)
2131 		return 4096;
2132 
2133 	/*
2134 	 * Previous chips need to be aligned to the size of the smallest
2135 	 * fence register that can contain the object.
2136 	 */
2137 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2138 }
2139 
2140 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2141 {
2142 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2143 	int ret;
2144 
2145 #if 0
2146 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2147 		return 0;
2148 #endif
2149 
2150 	dev_priv->mm.shrinker_no_lock_stealing = true;
2151 
2152 	ret = drm_gem_create_mmap_offset(&obj->base);
2153 	if (ret != -ENOSPC)
2154 		goto out;
2155 
2156 	/* Badly fragmented mmap space? The only way we can recover
2157 	 * space is by destroying unwanted objects. We can't randomly release
2158 	 * mmap_offsets as userspace expects them to be persistent for the
2159 	 * lifetime of the objects. The closest we can is to release the
2160 	 * offsets on purgeable objects by truncating it and marking it purged,
2161 	 * which prevents userspace from ever using that object again.
2162 	 */
2163 	i915_gem_shrink(dev_priv,
2164 			obj->base.size >> PAGE_SHIFT,
2165 			I915_SHRINK_BOUND |
2166 			I915_SHRINK_UNBOUND |
2167 			I915_SHRINK_PURGEABLE);
2168 	ret = drm_gem_create_mmap_offset(&obj->base);
2169 	if (ret != -ENOSPC)
2170 		goto out;
2171 
2172 	i915_gem_shrink_all(dev_priv);
2173 	ret = drm_gem_create_mmap_offset(&obj->base);
2174 out:
2175 	dev_priv->mm.shrinker_no_lock_stealing = false;
2176 
2177 	return ret;
2178 }
2179 
2180 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2181 {
2182 	drm_gem_free_mmap_offset(&obj->base);
2183 }
2184 
2185 int
2186 i915_gem_mmap_gtt(struct drm_file *file,
2187 		  struct drm_device *dev,
2188 		  uint32_t handle,
2189 		  uint64_t *offset)
2190 {
2191 	struct drm_i915_gem_object *obj;
2192 	int ret;
2193 
2194 	ret = i915_mutex_lock_interruptible(dev);
2195 	if (ret)
2196 		return ret;
2197 
2198 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2199 	if (&obj->base == NULL) {
2200 		ret = -ENOENT;
2201 		goto unlock;
2202 	}
2203 
2204 	if (obj->madv != I915_MADV_WILLNEED) {
2205 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2206 		ret = -EFAULT;
2207 		goto out;
2208 	}
2209 
2210 	ret = i915_gem_object_create_mmap_offset(obj);
2211 	if (ret)
2212 		goto out;
2213 
2214 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2215 	    DRM_GEM_MAPPING_KEY;
2216 
2217 out:
2218 	drm_gem_object_unreference(&obj->base);
2219 unlock:
2220 	mutex_unlock(&dev->struct_mutex);
2221 	return ret;
2222 }
2223 
2224 /**
2225  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2226  * @dev: DRM device
2227  * @data: GTT mapping ioctl data
2228  * @file: GEM object info
2229  *
2230  * Simply returns the fake offset to userspace so it can mmap it.
2231  * The mmap call will end up in drm_gem_mmap(), which will set things
2232  * up so we can get faults in the handler above.
2233  *
2234  * The fault handler will take care of binding the object into the GTT
2235  * (since it may have been evicted to make room for something), allocating
2236  * a fence register, and mapping the appropriate aperture address into
2237  * userspace.
2238  */
2239 int
2240 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2241 			struct drm_file *file)
2242 {
2243 	struct drm_i915_gem_mmap_gtt *args = data;
2244 
2245 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2246 }
2247 
2248 /* Immediately discard the backing storage */
2249 static void
2250 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2251 {
2252 	vm_object_t vm_obj;
2253 
2254 	vm_obj = obj->base.vm_obj;
2255 	VM_OBJECT_LOCK(vm_obj);
2256 	vm_object_page_remove(vm_obj, 0, 0, false);
2257 	VM_OBJECT_UNLOCK(vm_obj);
2258 
2259 	obj->madv = __I915_MADV_PURGED;
2260 }
2261 
2262 /* Try to discard unwanted pages */
2263 static void
2264 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2265 {
2266 #if 0
2267 	struct address_space *mapping;
2268 #endif
2269 
2270 	switch (obj->madv) {
2271 	case I915_MADV_DONTNEED:
2272 		i915_gem_object_truncate(obj);
2273 	case __I915_MADV_PURGED:
2274 		return;
2275 	}
2276 
2277 #if 0
2278 	if (obj->base.filp == NULL)
2279 		return;
2280 
2281 	mapping = file_inode(obj->base.filp)->i_mapping,
2282 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2283 #endif
2284 }
2285 
2286 static void
2287 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2288 {
2289 	struct sg_page_iter sg_iter;
2290 	int ret;
2291 
2292 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2293 
2294 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2295 	if (ret) {
2296 		/* In the event of a disaster, abandon all caches and
2297 		 * hope for the best.
2298 		 */
2299 		WARN_ON(ret != -EIO);
2300 		i915_gem_clflush_object(obj, true);
2301 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2302 	}
2303 
2304 	i915_gem_gtt_finish_object(obj);
2305 
2306 	if (i915_gem_object_needs_bit17_swizzle(obj))
2307 		i915_gem_object_save_bit_17_swizzle(obj);
2308 
2309 	if (obj->madv == I915_MADV_DONTNEED)
2310 		obj->dirty = 0;
2311 
2312 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2313 		struct vm_page *page = sg_page_iter_page(&sg_iter);
2314 
2315 		if (obj->dirty)
2316 			set_page_dirty(page);
2317 
2318 		if (obj->madv == I915_MADV_WILLNEED)
2319 			mark_page_accessed(page);
2320 
2321 		vm_page_busy_wait(page, FALSE, "i915gem");
2322 		vm_page_unwire(page, 1);
2323 		vm_page_wakeup(page);
2324 	}
2325 	obj->dirty = 0;
2326 
2327 	sg_free_table(obj->pages);
2328 	kfree(obj->pages);
2329 }
2330 
2331 int
2332 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2333 {
2334 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2335 
2336 	if (obj->pages == NULL)
2337 		return 0;
2338 
2339 	if (obj->pages_pin_count)
2340 		return -EBUSY;
2341 
2342 	BUG_ON(i915_gem_obj_bound_any(obj));
2343 
2344 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2345 	 * array, hence protect them from being reaped by removing them from gtt
2346 	 * lists early. */
2347 	list_del(&obj->global_list);
2348 
2349 	ops->put_pages(obj);
2350 	obj->pages = NULL;
2351 
2352 	i915_gem_object_invalidate(obj);
2353 
2354 	return 0;
2355 }
2356 
2357 static int
2358 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2359 {
2360 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2361 	int page_count, i;
2362 	vm_object_t vm_obj;
2363 	struct sg_table *st;
2364 	struct scatterlist *sg;
2365 	struct sg_page_iter sg_iter;
2366 	struct vm_page *page;
2367 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2368 	int ret;
2369 
2370 	/* Assert that the object is not currently in any GPU domain. As it
2371 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2372 	 * a GPU cache
2373 	 */
2374 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2375 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2376 
2377 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2378 	if (st == NULL)
2379 		return -ENOMEM;
2380 
2381 	page_count = obj->base.size / PAGE_SIZE;
2382 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2383 		kfree(st);
2384 		return -ENOMEM;
2385 	}
2386 
2387 	/* Get the list of pages out of our struct file.  They'll be pinned
2388 	 * at this point until we release them.
2389 	 *
2390 	 * Fail silently without starting the shrinker
2391 	 */
2392 	vm_obj = obj->base.vm_obj;
2393 	VM_OBJECT_LOCK(vm_obj);
2394 	sg = st->sgl;
2395 	st->nents = 0;
2396 	for (i = 0; i < page_count; i++) {
2397 		page = shmem_read_mapping_page(vm_obj, i);
2398 		if (IS_ERR(page)) {
2399 			i915_gem_shrink(dev_priv,
2400 					page_count,
2401 					I915_SHRINK_BOUND |
2402 					I915_SHRINK_UNBOUND |
2403 					I915_SHRINK_PURGEABLE);
2404 			page = shmem_read_mapping_page(vm_obj, i);
2405 		}
2406 		if (IS_ERR(page)) {
2407 			/* We've tried hard to allocate the memory by reaping
2408 			 * our own buffer, now let the real VM do its job and
2409 			 * go down in flames if truly OOM.
2410 			 */
2411 			i915_gem_shrink_all(dev_priv);
2412 			page = shmem_read_mapping_page(vm_obj, i);
2413 			if (IS_ERR(page)) {
2414 				ret = PTR_ERR(page);
2415 				goto err_pages;
2416 			}
2417 		}
2418 #ifdef CONFIG_SWIOTLB
2419 		if (swiotlb_nr_tbl()) {
2420 			st->nents++;
2421 			sg_set_page(sg, page, PAGE_SIZE, 0);
2422 			sg = sg_next(sg);
2423 			continue;
2424 		}
2425 #endif
2426 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2427 			if (i)
2428 				sg = sg_next(sg);
2429 			st->nents++;
2430 			sg_set_page(sg, page, PAGE_SIZE, 0);
2431 		} else {
2432 			sg->length += PAGE_SIZE;
2433 		}
2434 		last_pfn = page_to_pfn(page);
2435 
2436 		/* Check that the i965g/gm workaround works. */
2437 	}
2438 #ifdef CONFIG_SWIOTLB
2439 	if (!swiotlb_nr_tbl())
2440 #endif
2441 		sg_mark_end(sg);
2442 	obj->pages = st;
2443 	VM_OBJECT_UNLOCK(vm_obj);
2444 
2445 	ret = i915_gem_gtt_prepare_object(obj);
2446 	if (ret)
2447 		goto err_pages;
2448 
2449 	if (i915_gem_object_needs_bit17_swizzle(obj))
2450 		i915_gem_object_do_bit_17_swizzle(obj);
2451 
2452 	if (obj->tiling_mode != I915_TILING_NONE &&
2453 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2454 		i915_gem_object_pin_pages(obj);
2455 
2456 	return 0;
2457 
2458 err_pages:
2459 	sg_mark_end(sg);
2460 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2461 		page = sg_page_iter_page(&sg_iter);
2462 		vm_page_busy_wait(page, FALSE, "i915gem");
2463 		vm_page_unwire(page, 0);
2464 		vm_page_wakeup(page);
2465 	}
2466 	VM_OBJECT_UNLOCK(vm_obj);
2467 	sg_free_table(st);
2468 	kfree(st);
2469 
2470 	/* shmemfs first checks if there is enough memory to allocate the page
2471 	 * and reports ENOSPC should there be insufficient, along with the usual
2472 	 * ENOMEM for a genuine allocation failure.
2473 	 *
2474 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2475 	 * space and so want to translate the error from shmemfs back to our
2476 	 * usual understanding of ENOMEM.
2477 	 */
2478 	if (ret == -ENOSPC)
2479 		ret = -ENOMEM;
2480 
2481 	return ret;
2482 }
2483 
2484 /* Ensure that the associated pages are gathered from the backing storage
2485  * and pinned into our object. i915_gem_object_get_pages() may be called
2486  * multiple times before they are released by a single call to
2487  * i915_gem_object_put_pages() - once the pages are no longer referenced
2488  * either as a result of memory pressure (reaping pages under the shrinker)
2489  * or as the object is itself released.
2490  */
2491 int
2492 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2493 {
2494 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2495 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2496 	int ret;
2497 
2498 	if (obj->pages)
2499 		return 0;
2500 
2501 	if (obj->madv != I915_MADV_WILLNEED) {
2502 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2503 		return -EFAULT;
2504 	}
2505 
2506 	BUG_ON(obj->pages_pin_count);
2507 
2508 	ret = ops->get_pages(obj);
2509 	if (ret)
2510 		return ret;
2511 
2512 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2513 
2514 	obj->get_page.sg = obj->pages->sgl;
2515 	obj->get_page.last = 0;
2516 
2517 	return 0;
2518 }
2519 
2520 void i915_vma_move_to_active(struct i915_vma *vma,
2521 			     struct drm_i915_gem_request *req)
2522 {
2523 	struct drm_i915_gem_object *obj = vma->obj;
2524 	struct intel_engine_cs *ring;
2525 
2526 	ring = i915_gem_request_get_ring(req);
2527 
2528 	/* Add a reference if we're newly entering the active list. */
2529 	if (obj->active == 0)
2530 		drm_gem_object_reference(&obj->base);
2531 	obj->active |= intel_ring_flag(ring);
2532 
2533 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2534 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2535 
2536 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2537 }
2538 
2539 static void
2540 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2541 {
2542 	RQ_BUG_ON(obj->last_write_req == NULL);
2543 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2544 
2545 	i915_gem_request_assign(&obj->last_write_req, NULL);
2546 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2547 }
2548 
2549 static void
2550 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2551 {
2552 	struct i915_vma *vma;
2553 
2554 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2555 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2556 
2557 	list_del_init(&obj->ring_list[ring]);
2558 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2559 
2560 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2561 		i915_gem_object_retire__write(obj);
2562 
2563 	obj->active &= ~(1 << ring);
2564 	if (obj->active)
2565 		return;
2566 
2567 	/* Bump our place on the bound list to keep it roughly in LRU order
2568 	 * so that we don't steal from recently used but inactive objects
2569 	 * (unless we are forced to ofc!)
2570 	 */
2571 	list_move_tail(&obj->global_list,
2572 		       &to_i915(obj->base.dev)->mm.bound_list);
2573 
2574 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2575 		if (!list_empty(&vma->mm_list))
2576 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2577 	}
2578 
2579 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2580 	drm_gem_object_unreference(&obj->base);
2581 }
2582 
2583 static int
2584 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2585 {
2586 	struct drm_i915_private *dev_priv = dev->dev_private;
2587 	struct intel_engine_cs *ring;
2588 	int ret, i, j;
2589 
2590 	/* Carefully retire all requests without writing to the rings */
2591 	for_each_ring(ring, dev_priv, i) {
2592 		ret = intel_ring_idle(ring);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 	i915_gem_retire_requests(dev);
2597 
2598 	/* Finally reset hw state */
2599 	for_each_ring(ring, dev_priv, i) {
2600 		intel_ring_init_seqno(ring, seqno);
2601 
2602 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2603 			ring->semaphore.sync_seqno[j] = 0;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2610 {
2611 	struct drm_i915_private *dev_priv = dev->dev_private;
2612 	int ret;
2613 
2614 	if (seqno == 0)
2615 		return -EINVAL;
2616 
2617 	/* HWS page needs to be set less than what we
2618 	 * will inject to ring
2619 	 */
2620 	ret = i915_gem_init_seqno(dev, seqno - 1);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/* Carefully set the last_seqno value so that wrap
2625 	 * detection still works
2626 	 */
2627 	dev_priv->next_seqno = seqno;
2628 	dev_priv->last_seqno = seqno - 1;
2629 	if (dev_priv->last_seqno == 0)
2630 		dev_priv->last_seqno--;
2631 
2632 	return 0;
2633 }
2634 
2635 int
2636 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2637 {
2638 	struct drm_i915_private *dev_priv = dev->dev_private;
2639 
2640 	/* reserve 0 for non-seqno */
2641 	if (dev_priv->next_seqno == 0) {
2642 		int ret = i915_gem_init_seqno(dev, 0);
2643 		if (ret)
2644 			return ret;
2645 
2646 		dev_priv->next_seqno = 1;
2647 	}
2648 
2649 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2650 	return 0;
2651 }
2652 
2653 /*
2654  * NB: This function is not allowed to fail. Doing so would mean the the
2655  * request is not being tracked for completion but the work itself is
2656  * going to happen on the hardware. This would be a Bad Thing(tm).
2657  */
2658 void __i915_add_request(struct drm_i915_gem_request *request,
2659 			struct drm_i915_gem_object *obj,
2660 			bool flush_caches)
2661 {
2662 	struct intel_engine_cs *ring;
2663 	struct drm_i915_private *dev_priv;
2664 	struct intel_ringbuffer *ringbuf;
2665 	u32 request_start;
2666 	int ret;
2667 
2668 	if (WARN_ON(request == NULL))
2669 		return;
2670 
2671 	ring = request->ring;
2672 	dev_priv = ring->dev->dev_private;
2673 	ringbuf = request->ringbuf;
2674 
2675 	/*
2676 	 * To ensure that this call will not fail, space for its emissions
2677 	 * should already have been reserved in the ring buffer. Let the ring
2678 	 * know that it is time to use that space up.
2679 	 */
2680 	intel_ring_reserved_space_use(ringbuf);
2681 
2682 	request_start = intel_ring_get_tail(ringbuf);
2683 	/*
2684 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2685 	 * after having emitted the batchbuffer command. Hence we need to fix
2686 	 * things up similar to emitting the lazy request. The difference here
2687 	 * is that the flush _must_ happen before the next request, no matter
2688 	 * what.
2689 	 */
2690 	if (flush_caches) {
2691 		if (i915.enable_execlists)
2692 			ret = logical_ring_flush_all_caches(request);
2693 		else
2694 			ret = intel_ring_flush_all_caches(request);
2695 		/* Not allowed to fail! */
2696 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2697 	}
2698 
2699 	/* Record the position of the start of the request so that
2700 	 * should we detect the updated seqno part-way through the
2701 	 * GPU processing the request, we never over-estimate the
2702 	 * position of the head.
2703 	 */
2704 	request->postfix = intel_ring_get_tail(ringbuf);
2705 
2706 	if (i915.enable_execlists)
2707 		ret = ring->emit_request(request);
2708 	else {
2709 		ret = ring->add_request(request);
2710 
2711 		request->tail = intel_ring_get_tail(ringbuf);
2712 	}
2713 
2714 	/* Not allowed to fail! */
2715 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2716 
2717 	request->head = request_start;
2718 
2719 	/* Whilst this request exists, batch_obj will be on the
2720 	 * active_list, and so will hold the active reference. Only when this
2721 	 * request is retired will the the batch_obj be moved onto the
2722 	 * inactive_list and lose its active reference. Hence we do not need
2723 	 * to explicitly hold another reference here.
2724 	 */
2725 	request->batch_obj = obj;
2726 
2727 	request->emitted_jiffies = jiffies;
2728 	request->previous_seqno = ring->last_submitted_seqno;
2729 	ring->last_submitted_seqno = request->seqno;
2730 	list_add_tail(&request->list, &ring->request_list);
2731 
2732 	trace_i915_gem_request_add(request);
2733 
2734 	i915_queue_hangcheck(ring->dev);
2735 
2736 	queue_delayed_work(dev_priv->wq,
2737 			   &dev_priv->mm.retire_work,
2738 			   round_jiffies_up_relative(HZ));
2739 	intel_mark_busy(dev_priv->dev);
2740 
2741 	/* Sanity check that the reserved size was large enough. */
2742 	intel_ring_reserved_space_end(ringbuf);
2743 }
2744 
2745 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2746 				   const struct intel_context *ctx)
2747 {
2748 	unsigned long elapsed;
2749 
2750 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2751 
2752 	if (ctx->hang_stats.banned)
2753 		return true;
2754 
2755 	if (ctx->hang_stats.ban_period_seconds &&
2756 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2757 		if (!i915_gem_context_is_default(ctx)) {
2758 			DRM_DEBUG("context hanging too fast, banning!\n");
2759 			return true;
2760 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2761 			if (i915_stop_ring_allow_warn(dev_priv))
2762 				DRM_ERROR("gpu hanging too fast, banning!\n");
2763 			return true;
2764 		}
2765 	}
2766 
2767 	return false;
2768 }
2769 
2770 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2771 				  struct intel_context *ctx,
2772 				  const bool guilty)
2773 {
2774 	struct i915_ctx_hang_stats *hs;
2775 
2776 	if (WARN_ON(!ctx))
2777 		return;
2778 
2779 	hs = &ctx->hang_stats;
2780 
2781 	if (guilty) {
2782 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2783 		hs->batch_active++;
2784 		hs->guilty_ts = get_seconds();
2785 	} else {
2786 		hs->batch_pending++;
2787 	}
2788 }
2789 
2790 void i915_gem_request_free(struct kref *req_ref)
2791 {
2792 	struct drm_i915_gem_request *req = container_of(req_ref,
2793 						 typeof(*req), ref);
2794 	struct intel_context *ctx = req->ctx;
2795 
2796 	if (req->file_priv)
2797 		i915_gem_request_remove_from_client(req);
2798 
2799 	if (ctx) {
2800 		if (i915.enable_execlists) {
2801 			if (ctx != req->ring->default_context)
2802 				intel_lr_context_unpin(req);
2803 		}
2804 
2805 		i915_gem_context_unreference(ctx);
2806 	}
2807 
2808 	kfree(req);
2809 }
2810 
2811 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2812 			   struct intel_context *ctx,
2813 			   struct drm_i915_gem_request **req_out)
2814 {
2815 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2816 	struct drm_i915_gem_request *req;
2817 	int ret;
2818 
2819 	if (!req_out)
2820 		return -EINVAL;
2821 
2822 	*req_out = NULL;
2823 
2824 	req = kzalloc(sizeof(*req), GFP_KERNEL);
2825 	if (req == NULL)
2826 		return -ENOMEM;
2827 
2828 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2829 	if (ret)
2830 		goto err;
2831 
2832 	kref_init(&req->ref);
2833 	req->i915 = dev_priv;
2834 	req->ring = ring;
2835 	req->ctx  = ctx;
2836 	i915_gem_context_reference(req->ctx);
2837 
2838 	if (i915.enable_execlists)
2839 		ret = intel_logical_ring_alloc_request_extras(req);
2840 	else
2841 		ret = intel_ring_alloc_request_extras(req);
2842 	if (ret) {
2843 		i915_gem_context_unreference(req->ctx);
2844 		goto err;
2845 	}
2846 
2847 	/*
2848 	 * Reserve space in the ring buffer for all the commands required to
2849 	 * eventually emit this request. This is to guarantee that the
2850 	 * i915_add_request() call can't fail. Note that the reserve may need
2851 	 * to be redone if the request is not actually submitted straight
2852 	 * away, e.g. because a GPU scheduler has deferred it.
2853 	 */
2854 	if (i915.enable_execlists)
2855 		ret = intel_logical_ring_reserve_space(req);
2856 	else
2857 		ret = intel_ring_reserve_space(req);
2858 	if (ret) {
2859 		/*
2860 		 * At this point, the request is fully allocated even if not
2861 		 * fully prepared. Thus it can be cleaned up using the proper
2862 		 * free code.
2863 		 */
2864 		i915_gem_request_cancel(req);
2865 		return ret;
2866 	}
2867 
2868 	*req_out = req;
2869 	return 0;
2870 
2871 err:
2872 	kfree(req);
2873 	return ret;
2874 }
2875 
2876 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2877 {
2878 	intel_ring_reserved_space_cancel(req->ringbuf);
2879 
2880 	i915_gem_request_unreference(req);
2881 }
2882 
2883 struct drm_i915_gem_request *
2884 i915_gem_find_active_request(struct intel_engine_cs *ring)
2885 {
2886 	struct drm_i915_gem_request *request;
2887 
2888 	list_for_each_entry(request, &ring->request_list, list) {
2889 		if (i915_gem_request_completed(request, false))
2890 			continue;
2891 
2892 		return request;
2893 	}
2894 
2895 	return NULL;
2896 }
2897 
2898 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2899 				       struct intel_engine_cs *ring)
2900 {
2901 	struct drm_i915_gem_request *request;
2902 	bool ring_hung;
2903 
2904 	request = i915_gem_find_active_request(ring);
2905 
2906 	if (request == NULL)
2907 		return;
2908 
2909 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2910 
2911 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2912 
2913 	list_for_each_entry_continue(request, &ring->request_list, list)
2914 		i915_set_reset_status(dev_priv, request->ctx, false);
2915 }
2916 
2917 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2918 					struct intel_engine_cs *ring)
2919 {
2920 	struct intel_ringbuffer *buffer;
2921 
2922 	while (!list_empty(&ring->active_list)) {
2923 		struct drm_i915_gem_object *obj;
2924 
2925 		obj = list_first_entry(&ring->active_list,
2926 				       struct drm_i915_gem_object,
2927 				       ring_list[ring->id]);
2928 
2929 		i915_gem_object_retire__read(obj, ring->id);
2930 	}
2931 
2932 	/*
2933 	 * Clear the execlists queue up before freeing the requests, as those
2934 	 * are the ones that keep the context and ringbuffer backing objects
2935 	 * pinned in place.
2936 	 */
2937 
2938 	if (i915.enable_execlists) {
2939 		spin_lock_irq(&ring->execlist_lock);
2940 
2941 		/* list_splice_tail_init checks for empty lists */
2942 		list_splice_tail_init(&ring->execlist_queue,
2943 				      &ring->execlist_retired_req_list);
2944 
2945 		spin_unlock_irq(&ring->execlist_lock);
2946 		intel_execlists_retire_requests(ring);
2947 	}
2948 
2949 	/*
2950 	 * We must free the requests after all the corresponding objects have
2951 	 * been moved off active lists. Which is the same order as the normal
2952 	 * retire_requests function does. This is important if object hold
2953 	 * implicit references on things like e.g. ppgtt address spaces through
2954 	 * the request.
2955 	 */
2956 	while (!list_empty(&ring->request_list)) {
2957 		struct drm_i915_gem_request *request;
2958 
2959 		request = list_first_entry(&ring->request_list,
2960 					   struct drm_i915_gem_request,
2961 					   list);
2962 
2963 		i915_gem_request_retire(request);
2964 	}
2965 
2966 	/* Having flushed all requests from all queues, we know that all
2967 	 * ringbuffers must now be empty. However, since we do not reclaim
2968 	 * all space when retiring the request (to prevent HEADs colliding
2969 	 * with rapid ringbuffer wraparound) the amount of available space
2970 	 * upon reset is less than when we start. Do one more pass over
2971 	 * all the ringbuffers to reset last_retired_head.
2972 	 */
2973 	list_for_each_entry(buffer, &ring->buffers, link) {
2974 		buffer->last_retired_head = buffer->tail;
2975 		intel_ring_update_space(buffer);
2976 	}
2977 }
2978 
2979 void i915_gem_reset(struct drm_device *dev)
2980 {
2981 	struct drm_i915_private *dev_priv = dev->dev_private;
2982 	struct intel_engine_cs *ring;
2983 	int i;
2984 
2985 	/*
2986 	 * Before we free the objects from the requests, we need to inspect
2987 	 * them for finding the guilty party. As the requests only borrow
2988 	 * their reference to the objects, the inspection must be done first.
2989 	 */
2990 	for_each_ring(ring, dev_priv, i)
2991 		i915_gem_reset_ring_status(dev_priv, ring);
2992 
2993 	for_each_ring(ring, dev_priv, i)
2994 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2995 
2996 	i915_gem_context_reset(dev);
2997 
2998 	i915_gem_restore_fences(dev);
2999 
3000 	WARN_ON(i915_verify_lists(dev));
3001 }
3002 
3003 /**
3004  * This function clears the request list as sequence numbers are passed.
3005  */
3006 void
3007 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
3008 {
3009 	WARN_ON(i915_verify_lists(ring->dev));
3010 
3011 	/* Retire requests first as we use it above for the early return.
3012 	 * If we retire requests last, we may use a later seqno and so clear
3013 	 * the requests lists without clearing the active list, leading to
3014 	 * confusion.
3015 	 */
3016 	while (!list_empty(&ring->request_list)) {
3017 		struct drm_i915_gem_request *request;
3018 
3019 		request = list_first_entry(&ring->request_list,
3020 					   struct drm_i915_gem_request,
3021 					   list);
3022 
3023 		if (!i915_gem_request_completed(request, true))
3024 			break;
3025 
3026 		i915_gem_request_retire(request);
3027 	}
3028 
3029 	/* Move any buffers on the active list that are no longer referenced
3030 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3031 	 * before we free the context associated with the requests.
3032 	 */
3033 	while (!list_empty(&ring->active_list)) {
3034 		struct drm_i915_gem_object *obj;
3035 
3036 		obj = list_first_entry(&ring->active_list,
3037 				      struct drm_i915_gem_object,
3038 				      ring_list[ring->id]);
3039 
3040 		if (!list_empty(&obj->last_read_req[ring->id]->list))
3041 			break;
3042 
3043 		i915_gem_object_retire__read(obj, ring->id);
3044 	}
3045 
3046 	if (unlikely(ring->trace_irq_req &&
3047 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
3048 		ring->irq_put(ring);
3049 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
3050 	}
3051 
3052 	WARN_ON(i915_verify_lists(ring->dev));
3053 }
3054 
3055 bool
3056 i915_gem_retire_requests(struct drm_device *dev)
3057 {
3058 	struct drm_i915_private *dev_priv = dev->dev_private;
3059 	struct intel_engine_cs *ring;
3060 	bool idle = true;
3061 	int i;
3062 
3063 	for_each_ring(ring, dev_priv, i) {
3064 		i915_gem_retire_requests_ring(ring);
3065 		idle &= list_empty(&ring->request_list);
3066 		if (i915.enable_execlists) {
3067 			unsigned long flags;
3068 
3069 			spin_lock_irqsave(&ring->execlist_lock, flags);
3070 			idle &= list_empty(&ring->execlist_queue);
3071 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
3072 
3073 			intel_execlists_retire_requests(ring);
3074 		}
3075 	}
3076 
3077 	if (idle)
3078 		mod_delayed_work(dev_priv->wq,
3079 				   &dev_priv->mm.idle_work,
3080 				   msecs_to_jiffies(100));
3081 
3082 	return idle;
3083 }
3084 
3085 static void
3086 i915_gem_retire_work_handler(struct work_struct *work)
3087 {
3088 	struct drm_i915_private *dev_priv =
3089 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3090 	struct drm_device *dev = dev_priv->dev;
3091 	bool idle;
3092 
3093 	/* Come back later if the device is busy... */
3094 	idle = false;
3095 	if (mutex_trylock(&dev->struct_mutex)) {
3096 		idle = i915_gem_retire_requests(dev);
3097 		mutex_unlock(&dev->struct_mutex);
3098 	}
3099 	if (!idle)
3100 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3101 				   round_jiffies_up_relative(HZ));
3102 }
3103 
3104 static void
3105 i915_gem_idle_work_handler(struct work_struct *work)
3106 {
3107 	struct drm_i915_private *dev_priv =
3108 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3109 	struct drm_device *dev = dev_priv->dev;
3110 	struct intel_engine_cs *ring;
3111 	int i;
3112 
3113 	for_each_ring(ring, dev_priv, i)
3114 		if (!list_empty(&ring->request_list))
3115 			return;
3116 
3117 	/* we probably should sync with hangcheck here, using cancel_work_sync.
3118 	 * Also locking seems to be fubar here, ring->request_list is protected
3119 	 * by dev->struct_mutex. */
3120 
3121 	intel_mark_idle(dev);
3122 
3123 	if (mutex_trylock(&dev->struct_mutex)) {
3124 		struct intel_engine_cs *ring;
3125 		int i;
3126 
3127 		for_each_ring(ring, dev_priv, i)
3128 			i915_gem_batch_pool_fini(&ring->batch_pool);
3129 
3130 		mutex_unlock(&dev->struct_mutex);
3131 	}
3132 }
3133 
3134 /**
3135  * Ensures that an object will eventually get non-busy by flushing any required
3136  * write domains, emitting any outstanding lazy request and retiring and
3137  * completed requests.
3138  */
3139 static int
3140 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3141 {
3142 	int i;
3143 
3144 	if (!obj->active)
3145 		return 0;
3146 
3147 	for (i = 0; i < I915_NUM_RINGS; i++) {
3148 		struct drm_i915_gem_request *req;
3149 
3150 		req = obj->last_read_req[i];
3151 		if (req == NULL)
3152 			continue;
3153 
3154 		if (list_empty(&req->list))
3155 			goto retire;
3156 
3157 		if (i915_gem_request_completed(req, true)) {
3158 			__i915_gem_request_retire__upto(req);
3159 retire:
3160 			i915_gem_object_retire__read(obj, i);
3161 		}
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 /**
3168  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3169  * @DRM_IOCTL_ARGS: standard ioctl arguments
3170  *
3171  * Returns 0 if successful, else an error is returned with the remaining time in
3172  * the timeout parameter.
3173  *  -ETIME: object is still busy after timeout
3174  *  -ERESTARTSYS: signal interrupted the wait
3175  *  -ENONENT: object doesn't exist
3176  * Also possible, but rare:
3177  *  -EAGAIN: GPU wedged
3178  *  -ENOMEM: damn
3179  *  -ENODEV: Internal IRQ fail
3180  *  -E?: The add request failed
3181  *
3182  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3183  * non-zero timeout parameter the wait ioctl will wait for the given number of
3184  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3185  * without holding struct_mutex the object may become re-busied before this
3186  * function completes. A similar but shorter * race condition exists in the busy
3187  * ioctl
3188  */
3189 int
3190 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3191 {
3192 	struct drm_i915_private *dev_priv = dev->dev_private;
3193 	struct drm_i915_gem_wait *args = data;
3194 	struct drm_i915_gem_object *obj;
3195 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3196 	unsigned reset_counter;
3197 	int i, n = 0;
3198 	int ret;
3199 
3200 	if (args->flags != 0)
3201 		return -EINVAL;
3202 
3203 	ret = i915_mutex_lock_interruptible(dev);
3204 	if (ret)
3205 		return ret;
3206 
3207 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3208 	if (&obj->base == NULL) {
3209 		mutex_unlock(&dev->struct_mutex);
3210 		return -ENOENT;
3211 	}
3212 
3213 	/* Need to make sure the object gets inactive eventually. */
3214 	ret = i915_gem_object_flush_active(obj);
3215 	if (ret)
3216 		goto out;
3217 
3218 	if (!obj->active)
3219 		goto out;
3220 
3221 	/* Do this after OLR check to make sure we make forward progress polling
3222 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3223 	 */
3224 	if (args->timeout_ns == 0) {
3225 		ret = -ETIME;
3226 		goto out;
3227 	}
3228 
3229 	drm_gem_object_unreference(&obj->base);
3230 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3231 
3232 	for (i = 0; i < I915_NUM_RINGS; i++) {
3233 		if (obj->last_read_req[i] == NULL)
3234 			continue;
3235 
3236 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3237 	}
3238 
3239 	mutex_unlock(&dev->struct_mutex);
3240 
3241 	for (i = 0; i < n; i++) {
3242 		if (ret == 0)
3243 			ret = __i915_wait_request(req[i], reset_counter, true,
3244 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3245 						  to_rps_client(file));
3246 		i915_gem_request_unreference__unlocked(req[i]);
3247 	}
3248 	return ret;
3249 
3250 out:
3251 	drm_gem_object_unreference(&obj->base);
3252 	mutex_unlock(&dev->struct_mutex);
3253 	return ret;
3254 }
3255 
3256 static int
3257 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3258 		       struct intel_engine_cs *to,
3259 		       struct drm_i915_gem_request *from_req,
3260 		       struct drm_i915_gem_request **to_req)
3261 {
3262 	struct intel_engine_cs *from;
3263 	int ret;
3264 
3265 	from = i915_gem_request_get_ring(from_req);
3266 	if (to == from)
3267 		return 0;
3268 
3269 	if (i915_gem_request_completed(from_req, true))
3270 		return 0;
3271 
3272 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3273 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3274 		ret = __i915_wait_request(from_req,
3275 					  atomic_read(&i915->gpu_error.reset_counter),
3276 					  i915->mm.interruptible,
3277 					  NULL,
3278 					  &i915->rps.semaphores);
3279 		if (ret)
3280 			return ret;
3281 
3282 		i915_gem_object_retire_request(obj, from_req);
3283 	} else {
3284 		int idx = intel_ring_sync_index(from, to);
3285 		u32 seqno = i915_gem_request_get_seqno(from_req);
3286 
3287 		WARN_ON(!to_req);
3288 
3289 		if (seqno <= from->semaphore.sync_seqno[idx])
3290 			return 0;
3291 
3292 		if (*to_req == NULL) {
3293 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3294 			if (ret)
3295 				return ret;
3296 		}
3297 
3298 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3299 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3300 		if (ret)
3301 			return ret;
3302 
3303 		/* We use last_read_req because sync_to()
3304 		 * might have just caused seqno wrap under
3305 		 * the radar.
3306 		 */
3307 		from->semaphore.sync_seqno[idx] =
3308 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 /**
3315  * i915_gem_object_sync - sync an object to a ring.
3316  *
3317  * @obj: object which may be in use on another ring.
3318  * @to: ring we wish to use the object on. May be NULL.
3319  * @to_req: request we wish to use the object for. See below.
3320  *          This will be allocated and returned if a request is
3321  *          required but not passed in.
3322  *
3323  * This code is meant to abstract object synchronization with the GPU.
3324  * Calling with NULL implies synchronizing the object with the CPU
3325  * rather than a particular GPU ring. Conceptually we serialise writes
3326  * between engines inside the GPU. We only allow one engine to write
3327  * into a buffer at any time, but multiple readers. To ensure each has
3328  * a coherent view of memory, we must:
3329  *
3330  * - If there is an outstanding write request to the object, the new
3331  *   request must wait for it to complete (either CPU or in hw, requests
3332  *   on the same ring will be naturally ordered).
3333  *
3334  * - If we are a write request (pending_write_domain is set), the new
3335  *   request must wait for outstanding read requests to complete.
3336  *
3337  * For CPU synchronisation (NULL to) no request is required. For syncing with
3338  * rings to_req must be non-NULL. However, a request does not have to be
3339  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3340  * request will be allocated automatically and returned through *to_req. Note
3341  * that it is not guaranteed that commands will be emitted (because the system
3342  * might already be idle). Hence there is no need to create a request that
3343  * might never have any work submitted. Note further that if a request is
3344  * returned in *to_req, it is the responsibility of the caller to submit
3345  * that request (after potentially adding more work to it).
3346  *
3347  * Returns 0 if successful, else propagates up the lower layer error.
3348  */
3349 int
3350 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3351 		     struct intel_engine_cs *to,
3352 		     struct drm_i915_gem_request **to_req)
3353 {
3354 	const bool readonly = obj->base.pending_write_domain == 0;
3355 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3356 	int ret, i, n;
3357 
3358 	if (!obj->active)
3359 		return 0;
3360 
3361 	if (to == NULL)
3362 		return i915_gem_object_wait_rendering(obj, readonly);
3363 
3364 	n = 0;
3365 	if (readonly) {
3366 		if (obj->last_write_req)
3367 			req[n++] = obj->last_write_req;
3368 	} else {
3369 		for (i = 0; i < I915_NUM_RINGS; i++)
3370 			if (obj->last_read_req[i])
3371 				req[n++] = obj->last_read_req[i];
3372 	}
3373 	for (i = 0; i < n; i++) {
3374 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3375 		if (ret)
3376 			return ret;
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3383 {
3384 	u32 old_write_domain, old_read_domains;
3385 
3386 	/* Force a pagefault for domain tracking on next user access */
3387 	i915_gem_release_mmap(obj);
3388 
3389 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3390 		return;
3391 
3392 	/* Wait for any direct GTT access to complete */
3393 	mb();
3394 
3395 	old_read_domains = obj->base.read_domains;
3396 	old_write_domain = obj->base.write_domain;
3397 
3398 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3399 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3400 
3401 	trace_i915_gem_object_change_domain(obj,
3402 					    old_read_domains,
3403 					    old_write_domain);
3404 }
3405 
3406 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3407 {
3408 	struct drm_i915_gem_object *obj = vma->obj;
3409 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3410 	int ret;
3411 
3412 	if (list_empty(&vma->vma_link))
3413 		return 0;
3414 
3415 	if (!drm_mm_node_allocated(&vma->node)) {
3416 		i915_gem_vma_destroy(vma);
3417 		return 0;
3418 	}
3419 
3420 	if (vma->pin_count)
3421 		return -EBUSY;
3422 
3423 	BUG_ON(obj->pages == NULL);
3424 
3425 	if (wait) {
3426 		ret = i915_gem_object_wait_rendering(obj, false);
3427 		if (ret)
3428 			return ret;
3429 	}
3430 
3431 	if (i915_is_ggtt(vma->vm) &&
3432 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3433 		i915_gem_object_finish_gtt(obj);
3434 
3435 		/* release the fence reg _after_ flushing */
3436 		ret = i915_gem_object_put_fence(obj);
3437 		if (ret)
3438 			return ret;
3439 	}
3440 
3441 	trace_i915_vma_unbind(vma);
3442 
3443 	vma->vm->unbind_vma(vma);
3444 	vma->bound = 0;
3445 
3446 	list_del_init(&vma->mm_list);
3447 	if (i915_is_ggtt(vma->vm)) {
3448 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3449 			obj->map_and_fenceable = false;
3450 		} else if (vma->ggtt_view.pages) {
3451 			sg_free_table(vma->ggtt_view.pages);
3452 			kfree(vma->ggtt_view.pages);
3453 		}
3454 		vma->ggtt_view.pages = NULL;
3455 	}
3456 
3457 	drm_mm_remove_node(&vma->node);
3458 	i915_gem_vma_destroy(vma);
3459 
3460 	/* Since the unbound list is global, only move to that list if
3461 	 * no more VMAs exist. */
3462 	if (list_empty(&obj->vma_list))
3463 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3464 
3465 	/* And finally now the object is completely decoupled from this vma,
3466 	 * we can drop its hold on the backing storage and allow it to be
3467 	 * reaped by the shrinker.
3468 	 */
3469 	i915_gem_object_unpin_pages(obj);
3470 
3471 	return 0;
3472 }
3473 
3474 int i915_vma_unbind(struct i915_vma *vma)
3475 {
3476 	return __i915_vma_unbind(vma, true);
3477 }
3478 
3479 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3480 {
3481 	return __i915_vma_unbind(vma, false);
3482 }
3483 
3484 int i915_gpu_idle(struct drm_device *dev)
3485 {
3486 	struct drm_i915_private *dev_priv = dev->dev_private;
3487 	struct intel_engine_cs *ring;
3488 	int ret, i;
3489 
3490 	/* Flush everything onto the inactive list. */
3491 	for_each_ring(ring, dev_priv, i) {
3492 		if (!i915.enable_execlists) {
3493 			struct drm_i915_gem_request *req;
3494 
3495 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3496 			if (ret)
3497 				return ret;
3498 
3499 			ret = i915_switch_context(req);
3500 			if (ret) {
3501 				i915_gem_request_cancel(req);
3502 				return ret;
3503 			}
3504 
3505 			i915_add_request_no_flush(req);
3506 		}
3507 
3508 		ret = intel_ring_idle(ring);
3509 		if (ret)
3510 			return ret;
3511 	}
3512 
3513 	WARN_ON(i915_verify_lists(dev));
3514 	return 0;
3515 }
3516 
3517 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3518 				     unsigned long cache_level)
3519 {
3520 	struct drm_mm_node *gtt_space = &vma->node;
3521 	struct drm_mm_node *other;
3522 
3523 	/*
3524 	 * On some machines we have to be careful when putting differing types
3525 	 * of snoopable memory together to avoid the prefetcher crossing memory
3526 	 * domains and dying. During vm initialisation, we decide whether or not
3527 	 * these constraints apply and set the drm_mm.color_adjust
3528 	 * appropriately.
3529 	 */
3530 	if (vma->vm->mm.color_adjust == NULL)
3531 		return true;
3532 
3533 	if (!drm_mm_node_allocated(gtt_space))
3534 		return true;
3535 
3536 	if (list_empty(&gtt_space->node_list))
3537 		return true;
3538 
3539 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3540 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3541 		return false;
3542 
3543 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3544 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3545 		return false;
3546 
3547 	return true;
3548 }
3549 
3550 /**
3551  * Finds free space in the GTT aperture and binds the object or a view of it
3552  * there.
3553  */
3554 static struct i915_vma *
3555 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3556 			   struct i915_address_space *vm,
3557 			   const struct i915_ggtt_view *ggtt_view,
3558 			   unsigned alignment,
3559 			   uint64_t flags)
3560 {
3561 	struct drm_device *dev = obj->base.dev;
3562 	struct drm_i915_private *dev_priv = dev->dev_private;
3563 	u32 fence_alignment, unfenced_alignment;
3564 	u32 search_flag, alloc_flag;
3565 	u64 start, end;
3566 	u64 size, fence_size;
3567 	struct i915_vma *vma;
3568 	int ret;
3569 
3570 	if (i915_is_ggtt(vm)) {
3571 		u32 view_size;
3572 
3573 		if (WARN_ON(!ggtt_view))
3574 			return ERR_PTR(-EINVAL);
3575 
3576 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3577 
3578 		fence_size = i915_gem_get_gtt_size(dev,
3579 						   view_size,
3580 						   obj->tiling_mode);
3581 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3582 							     view_size,
3583 							     obj->tiling_mode,
3584 							     true);
3585 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3586 								view_size,
3587 								obj->tiling_mode,
3588 								false);
3589 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3590 	} else {
3591 		fence_size = i915_gem_get_gtt_size(dev,
3592 						   obj->base.size,
3593 						   obj->tiling_mode);
3594 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3595 							     obj->base.size,
3596 							     obj->tiling_mode,
3597 							     true);
3598 		unfenced_alignment =
3599 			i915_gem_get_gtt_alignment(dev,
3600 						   obj->base.size,
3601 						   obj->tiling_mode,
3602 						   false);
3603 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3604 	}
3605 
3606 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3607 	end = vm->total;
3608 	if (flags & PIN_MAPPABLE)
3609 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3610 	if (flags & PIN_ZONE_4G)
3611 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3612 
3613 	if (alignment == 0)
3614 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3615 						unfenced_alignment;
3616 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3617 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3618 			  ggtt_view ? ggtt_view->type : 0,
3619 			  alignment);
3620 		return ERR_PTR(-EINVAL);
3621 	}
3622 
3623 	/* If binding the object/GGTT view requires more space than the entire
3624 	 * aperture has, reject it early before evicting everything in a vain
3625 	 * attempt to find space.
3626 	 */
3627 	if (size > end) {
3628 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%lu > %s aperture=%lu\n",
3629 			  ggtt_view ? ggtt_view->type : 0,
3630 			  size,
3631 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3632 			  end);
3633 		return ERR_PTR(-E2BIG);
3634 	}
3635 
3636 	ret = i915_gem_object_get_pages(obj);
3637 	if (ret)
3638 		return ERR_PTR(ret);
3639 
3640 	i915_gem_object_pin_pages(obj);
3641 
3642 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3643 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3644 
3645 	if (IS_ERR(vma))
3646 		goto err_unpin;
3647 
3648 	if (flags & PIN_OFFSET_FIXED) {
3649 		uint64_t offset = flags & PIN_OFFSET_MASK;
3650 
3651 		if (offset & (alignment - 1) || offset + size > end) {
3652 			ret = -EINVAL;
3653 			goto err_free_vma;
3654 		}
3655 		vma->node.start = offset;
3656 		vma->node.size = size;
3657 		vma->node.color = obj->cache_level;
3658 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3659 		if (ret) {
3660 			ret = i915_gem_evict_for_vma(vma);
3661 			if (ret == 0)
3662 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3663 		}
3664 		if (ret)
3665 			goto err_free_vma;
3666 	} else {
3667 		if (flags & PIN_HIGH) {
3668 			search_flag = DRM_MM_SEARCH_BELOW;
3669 			alloc_flag = DRM_MM_CREATE_TOP;
3670 		} else {
3671 			search_flag = DRM_MM_SEARCH_DEFAULT;
3672 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3673 		}
3674 
3675 search_free:
3676 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3677 							  size, alignment,
3678 							  obj->cache_level,
3679 							  start, end,
3680 							  search_flag,
3681 							  alloc_flag);
3682 		if (ret) {
3683 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3684 						       obj->cache_level,
3685 						       start, end,
3686 						       flags);
3687 			if (ret == 0)
3688 				goto search_free;
3689 
3690 			goto err_free_vma;
3691 		}
3692 	}
3693 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3694 		ret = -EINVAL;
3695 		goto err_remove_node;
3696 	}
3697 
3698 	trace_i915_vma_bind(vma, flags);
3699 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3700 	if (ret)
3701 		goto err_remove_node;
3702 
3703 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3704 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3705 
3706 	return vma;
3707 
3708 err_remove_node:
3709 	drm_mm_remove_node(&vma->node);
3710 err_free_vma:
3711 	i915_gem_vma_destroy(vma);
3712 	vma = ERR_PTR(ret);
3713 err_unpin:
3714 	i915_gem_object_unpin_pages(obj);
3715 	return vma;
3716 }
3717 
3718 bool
3719 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3720 			bool force)
3721 {
3722 	/* If we don't have a page list set up, then we're not pinned
3723 	 * to GPU, and we can ignore the cache flush because it'll happen
3724 	 * again at bind time.
3725 	 */
3726 	if (obj->pages == NULL)
3727 		return false;
3728 
3729 	/*
3730 	 * Stolen memory is always coherent with the GPU as it is explicitly
3731 	 * marked as wc by the system, or the system is cache-coherent.
3732 	 */
3733 	if (obj->stolen || obj->phys_handle)
3734 		return false;
3735 
3736 	/* If the GPU is snooping the contents of the CPU cache,
3737 	 * we do not need to manually clear the CPU cache lines.  However,
3738 	 * the caches are only snooped when the render cache is
3739 	 * flushed/invalidated.  As we always have to emit invalidations
3740 	 * and flushes when moving into and out of the RENDER domain, correct
3741 	 * snooping behaviour occurs naturally as the result of our domain
3742 	 * tracking.
3743 	 */
3744 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3745 		obj->cache_dirty = true;
3746 		return false;
3747 	}
3748 
3749 	trace_i915_gem_object_clflush(obj);
3750 	drm_clflush_sg(obj->pages);
3751 	obj->cache_dirty = false;
3752 
3753 	return true;
3754 }
3755 
3756 /** Flushes the GTT write domain for the object if it's dirty. */
3757 static void
3758 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3759 {
3760 	uint32_t old_write_domain;
3761 
3762 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3763 		return;
3764 
3765 	/* No actual flushing is required for the GTT write domain.  Writes
3766 	 * to it immediately go to main memory as far as we know, so there's
3767 	 * no chipset flush.  It also doesn't land in render cache.
3768 	 *
3769 	 * However, we do have to enforce the order so that all writes through
3770 	 * the GTT land before any writes to the device, such as updates to
3771 	 * the GATT itself.
3772 	 */
3773 	wmb();
3774 
3775 	old_write_domain = obj->base.write_domain;
3776 	obj->base.write_domain = 0;
3777 
3778 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3779 
3780 	trace_i915_gem_object_change_domain(obj,
3781 					    obj->base.read_domains,
3782 					    old_write_domain);
3783 }
3784 
3785 /** Flushes the CPU write domain for the object if it's dirty. */
3786 static void
3787 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3788 {
3789 	uint32_t old_write_domain;
3790 
3791 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3792 		return;
3793 
3794 	if (i915_gem_clflush_object(obj, obj->pin_display))
3795 		i915_gem_chipset_flush(obj->base.dev);
3796 
3797 	old_write_domain = obj->base.write_domain;
3798 	obj->base.write_domain = 0;
3799 
3800 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3801 
3802 	trace_i915_gem_object_change_domain(obj,
3803 					    obj->base.read_domains,
3804 					    old_write_domain);
3805 }
3806 
3807 /**
3808  * Moves a single object to the GTT read, and possibly write domain.
3809  *
3810  * This function returns when the move is complete, including waiting on
3811  * flushes to occur.
3812  */
3813 int
3814 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3815 {
3816 	uint32_t old_write_domain, old_read_domains;
3817 	struct i915_vma *vma;
3818 	int ret;
3819 
3820 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3821 		return 0;
3822 
3823 	ret = i915_gem_object_wait_rendering(obj, !write);
3824 	if (ret)
3825 		return ret;
3826 
3827 	/* Flush and acquire obj->pages so that we are coherent through
3828 	 * direct access in memory with previous cached writes through
3829 	 * shmemfs and that our cache domain tracking remains valid.
3830 	 * For example, if the obj->filp was moved to swap without us
3831 	 * being notified and releasing the pages, we would mistakenly
3832 	 * continue to assume that the obj remained out of the CPU cached
3833 	 * domain.
3834 	 */
3835 	ret = i915_gem_object_get_pages(obj);
3836 	if (ret)
3837 		return ret;
3838 
3839 	i915_gem_object_flush_cpu_write_domain(obj);
3840 
3841 	/* Serialise direct access to this object with the barriers for
3842 	 * coherent writes from the GPU, by effectively invalidating the
3843 	 * GTT domain upon first access.
3844 	 */
3845 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3846 		mb();
3847 
3848 	old_write_domain = obj->base.write_domain;
3849 	old_read_domains = obj->base.read_domains;
3850 
3851 	/* It should now be out of any other write domains, and we can update
3852 	 * the domain values for our changes.
3853 	 */
3854 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3855 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3856 	if (write) {
3857 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3858 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3859 		obj->dirty = 1;
3860 	}
3861 
3862 	trace_i915_gem_object_change_domain(obj,
3863 					    old_read_domains,
3864 					    old_write_domain);
3865 
3866 	/* And bump the LRU for this access */
3867 	vma = i915_gem_obj_to_ggtt(obj);
3868 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3869 		list_move_tail(&vma->mm_list,
3870 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3871 
3872 	return 0;
3873 }
3874 
3875 /**
3876  * Changes the cache-level of an object across all VMA.
3877  *
3878  * After this function returns, the object will be in the new cache-level
3879  * across all GTT and the contents of the backing storage will be coherent,
3880  * with respect to the new cache-level. In order to keep the backing storage
3881  * coherent for all users, we only allow a single cache level to be set
3882  * globally on the object and prevent it from being changed whilst the
3883  * hardware is reading from the object. That is if the object is currently
3884  * on the scanout it will be set to uncached (or equivalent display
3885  * cache coherency) and all non-MOCS GPU access will also be uncached so
3886  * that all direct access to the scanout remains coherent.
3887  */
3888 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3889 				    enum i915_cache_level cache_level)
3890 {
3891 	struct drm_device *dev = obj->base.dev;
3892 	struct i915_vma *vma, *next;
3893 	bool bound = false;
3894 	int ret = 0;
3895 
3896 	if (obj->cache_level == cache_level)
3897 		goto out;
3898 
3899 	/* Inspect the list of currently bound VMA and unbind any that would
3900 	 * be invalid given the new cache-level. This is principally to
3901 	 * catch the issue of the CS prefetch crossing page boundaries and
3902 	 * reading an invalid PTE on older architectures.
3903 	 */
3904 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3905 		if (!drm_mm_node_allocated(&vma->node))
3906 			continue;
3907 
3908 		if (vma->pin_count) {
3909 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3910 			return -EBUSY;
3911 		}
3912 
3913 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3914 			ret = i915_vma_unbind(vma);
3915 			if (ret)
3916 				return ret;
3917 		} else
3918 			bound = true;
3919 	}
3920 
3921 	/* We can reuse the existing drm_mm nodes but need to change the
3922 	 * cache-level on the PTE. We could simply unbind them all and
3923 	 * rebind with the correct cache-level on next use. However since
3924 	 * we already have a valid slot, dma mapping, pages etc, we may as
3925 	 * rewrite the PTE in the belief that doing so tramples upon less
3926 	 * state and so involves less work.
3927 	 */
3928 	if (bound) {
3929 		/* Before we change the PTE, the GPU must not be accessing it.
3930 		 * If we wait upon the object, we know that all the bound
3931 		 * VMA are no longer active.
3932 		 */
3933 		ret = i915_gem_object_wait_rendering(obj, false);
3934 		if (ret)
3935 			return ret;
3936 
3937 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3938 			/* Access to snoopable pages through the GTT is
3939 			 * incoherent and on some machines causes a hard
3940 			 * lockup. Relinquish the CPU mmaping to force
3941 			 * userspace to refault in the pages and we can
3942 			 * then double check if the GTT mapping is still
3943 			 * valid for that pointer access.
3944 			 */
3945 			i915_gem_release_mmap(obj);
3946 
3947 			/* As we no longer need a fence for GTT access,
3948 			 * we can relinquish it now (and so prevent having
3949 			 * to steal a fence from someone else on the next
3950 			 * fence request). Note GPU activity would have
3951 			 * dropped the fence as all snoopable access is
3952 			 * supposed to be linear.
3953 			 */
3954 			ret = i915_gem_object_put_fence(obj);
3955 			if (ret)
3956 				return ret;
3957 		} else {
3958 			/* We either have incoherent backing store and
3959 			 * so no GTT access or the architecture is fully
3960 			 * coherent. In such cases, existing GTT mmaps
3961 			 * ignore the cache bit in the PTE and we can
3962 			 * rewrite it without confusing the GPU or having
3963 			 * to force userspace to fault back in its mmaps.
3964 			 */
3965 		}
3966 
3967 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3968 			if (!drm_mm_node_allocated(&vma->node))
3969 				continue;
3970 
3971 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3972 			if (ret)
3973 				return ret;
3974 		}
3975 	}
3976 
3977 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3978 		vma->node.color = cache_level;
3979 	obj->cache_level = cache_level;
3980 
3981 out:
3982 	/* Flush the dirty CPU caches to the backing storage so that the
3983 	 * object is now coherent at its new cache level (with respect
3984 	 * to the access domain).
3985 	 */
3986 	if (obj->cache_dirty &&
3987 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3988 	    cpu_write_needs_clflush(obj)) {
3989 		if (i915_gem_clflush_object(obj, true))
3990 			i915_gem_chipset_flush(obj->base.dev);
3991 	}
3992 
3993 	return 0;
3994 }
3995 
3996 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3997 			       struct drm_file *file)
3998 {
3999 	struct drm_i915_gem_caching *args = data;
4000 	struct drm_i915_gem_object *obj;
4001 
4002 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4003 	if (&obj->base == NULL)
4004 		return -ENOENT;
4005 
4006 	switch (obj->cache_level) {
4007 	case I915_CACHE_LLC:
4008 	case I915_CACHE_L3_LLC:
4009 		args->caching = I915_CACHING_CACHED;
4010 		break;
4011 
4012 	case I915_CACHE_WT:
4013 		args->caching = I915_CACHING_DISPLAY;
4014 		break;
4015 
4016 	default:
4017 		args->caching = I915_CACHING_NONE;
4018 		break;
4019 	}
4020 
4021 	drm_gem_object_unreference_unlocked(&obj->base);
4022 	return 0;
4023 }
4024 
4025 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4026 			       struct drm_file *file)
4027 {
4028 	struct drm_i915_private *dev_priv = dev->dev_private;
4029 	struct drm_i915_gem_caching *args = data;
4030 	struct drm_i915_gem_object *obj;
4031 	enum i915_cache_level level;
4032 	int ret;
4033 
4034 	switch (args->caching) {
4035 	case I915_CACHING_NONE:
4036 		level = I915_CACHE_NONE;
4037 		break;
4038 	case I915_CACHING_CACHED:
4039 		/*
4040 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4041 		 * snooped mapping may leave stale data in a corresponding CPU
4042 		 * cacheline, whereas normally such cachelines would get
4043 		 * invalidated.
4044 		 */
4045 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4046 			return -ENODEV;
4047 
4048 		level = I915_CACHE_LLC;
4049 		break;
4050 	case I915_CACHING_DISPLAY:
4051 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4052 		break;
4053 	default:
4054 		return -EINVAL;
4055 	}
4056 
4057 	intel_runtime_pm_get(dev_priv);
4058 
4059 	ret = i915_mutex_lock_interruptible(dev);
4060 	if (ret)
4061 		goto rpm_put;
4062 
4063 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4064 	if (&obj->base == NULL) {
4065 		ret = -ENOENT;
4066 		goto unlock;
4067 	}
4068 
4069 	ret = i915_gem_object_set_cache_level(obj, level);
4070 
4071 	drm_gem_object_unreference(&obj->base);
4072 unlock:
4073 	mutex_unlock(&dev->struct_mutex);
4074 rpm_put:
4075 	intel_runtime_pm_put(dev_priv);
4076 
4077 	return ret;
4078 }
4079 
4080 /*
4081  * Prepare buffer for display plane (scanout, cursors, etc).
4082  * Can be called from an uninterruptible phase (modesetting) and allows
4083  * any flushes to be pipelined (for pageflips).
4084  */
4085 int
4086 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4087 				     u32 alignment,
4088 				     const struct i915_ggtt_view *view)
4089 {
4090 	u32 old_read_domains, old_write_domain;
4091 	int ret;
4092 
4093 	/* Mark the pin_display early so that we account for the
4094 	 * display coherency whilst setting up the cache domains.
4095 	 */
4096 	obj->pin_display++;
4097 
4098 	/* The display engine is not coherent with the LLC cache on gen6.  As
4099 	 * a result, we make sure that the pinning that is about to occur is
4100 	 * done with uncached PTEs. This is lowest common denominator for all
4101 	 * chipsets.
4102 	 *
4103 	 * However for gen6+, we could do better by using the GFDT bit instead
4104 	 * of uncaching, which would allow us to flush all the LLC-cached data
4105 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4106 	 */
4107 	ret = i915_gem_object_set_cache_level(obj,
4108 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4109 	if (ret)
4110 		goto err_unpin_display;
4111 
4112 	/* As the user may map the buffer once pinned in the display plane
4113 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4114 	 * always use map_and_fenceable for all scanout buffers.
4115 	 */
4116 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4117 				       view->type == I915_GGTT_VIEW_NORMAL ?
4118 				       PIN_MAPPABLE : 0);
4119 	if (ret)
4120 		goto err_unpin_display;
4121 
4122 	i915_gem_object_flush_cpu_write_domain(obj);
4123 
4124 	old_write_domain = obj->base.write_domain;
4125 	old_read_domains = obj->base.read_domains;
4126 
4127 	/* It should now be out of any other write domains, and we can update
4128 	 * the domain values for our changes.
4129 	 */
4130 	obj->base.write_domain = 0;
4131 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4132 
4133 	trace_i915_gem_object_change_domain(obj,
4134 					    old_read_domains,
4135 					    old_write_domain);
4136 
4137 	return 0;
4138 
4139 err_unpin_display:
4140 	obj->pin_display--;
4141 	return ret;
4142 }
4143 
4144 void
4145 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4146 					 const struct i915_ggtt_view *view)
4147 {
4148 	if (WARN_ON(obj->pin_display == 0))
4149 		return;
4150 
4151 	i915_gem_object_ggtt_unpin_view(obj, view);
4152 
4153 	obj->pin_display--;
4154 }
4155 
4156 /**
4157  * Moves a single object to the CPU read, and possibly write domain.
4158  *
4159  * This function returns when the move is complete, including waiting on
4160  * flushes to occur.
4161  */
4162 int
4163 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4164 {
4165 	uint32_t old_write_domain, old_read_domains;
4166 	int ret;
4167 
4168 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4169 		return 0;
4170 
4171 	ret = i915_gem_object_wait_rendering(obj, !write);
4172 	if (ret)
4173 		return ret;
4174 
4175 	i915_gem_object_flush_gtt_write_domain(obj);
4176 
4177 	old_write_domain = obj->base.write_domain;
4178 	old_read_domains = obj->base.read_domains;
4179 
4180 	/* Flush the CPU cache if it's still invalid. */
4181 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4182 		i915_gem_clflush_object(obj, false);
4183 
4184 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4185 	}
4186 
4187 	/* It should now be out of any other write domains, and we can update
4188 	 * the domain values for our changes.
4189 	 */
4190 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4191 
4192 	/* If we're writing through the CPU, then the GPU read domains will
4193 	 * need to be invalidated at next use.
4194 	 */
4195 	if (write) {
4196 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4197 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4198 	}
4199 
4200 	trace_i915_gem_object_change_domain(obj,
4201 					    old_read_domains,
4202 					    old_write_domain);
4203 
4204 	return 0;
4205 }
4206 
4207 /* Throttle our rendering by waiting until the ring has completed our requests
4208  * emitted over 20 msec ago.
4209  *
4210  * Note that if we were to use the current jiffies each time around the loop,
4211  * we wouldn't escape the function with any frames outstanding if the time to
4212  * render a frame was over 20ms.
4213  *
4214  * This should get us reasonable parallelism between CPU and GPU but also
4215  * relatively low latency when blocking on a particular request to finish.
4216  */
4217 static int
4218 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4219 {
4220 	struct drm_i915_private *dev_priv = dev->dev_private;
4221 	struct drm_i915_file_private *file_priv = file->driver_priv;
4222 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4223 	struct drm_i915_gem_request *request, *target = NULL;
4224 	unsigned reset_counter;
4225 	int ret;
4226 
4227 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4228 	if (ret)
4229 		return ret;
4230 
4231 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4232 	if (ret)
4233 		return ret;
4234 
4235 	spin_lock(&file_priv->mm.lock);
4236 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4237 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4238 			break;
4239 
4240 		/*
4241 		 * Note that the request might not have been submitted yet.
4242 		 * In which case emitted_jiffies will be zero.
4243 		 */
4244 		if (!request->emitted_jiffies)
4245 			continue;
4246 
4247 		target = request;
4248 	}
4249 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4250 	if (target)
4251 		i915_gem_request_reference(target);
4252 	spin_unlock(&file_priv->mm.lock);
4253 
4254 	if (target == NULL)
4255 		return 0;
4256 
4257 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4258 	if (ret == 0)
4259 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4260 
4261 	i915_gem_request_unreference__unlocked(target);
4262 
4263 	return ret;
4264 }
4265 
4266 static bool
4267 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4268 {
4269 	struct drm_i915_gem_object *obj = vma->obj;
4270 
4271 	if (alignment &&
4272 	    vma->node.start & (alignment - 1))
4273 		return true;
4274 
4275 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4276 		return true;
4277 
4278 	if (flags & PIN_OFFSET_BIAS &&
4279 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4280 		return true;
4281 
4282 	if (flags & PIN_OFFSET_FIXED &&
4283 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4284 		return true;
4285 
4286 	return false;
4287 }
4288 
4289 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4290 {
4291 	struct drm_i915_gem_object *obj = vma->obj;
4292 	bool mappable, fenceable;
4293 	u32 fence_size, fence_alignment;
4294 
4295 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4296 					   obj->base.size,
4297 					   obj->tiling_mode);
4298 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4299 						     obj->base.size,
4300 						     obj->tiling_mode,
4301 						     true);
4302 
4303 	fenceable = (vma->node.size == fence_size &&
4304 		     (vma->node.start & (fence_alignment - 1)) == 0);
4305 
4306 	mappable = (vma->node.start + fence_size <=
4307 		    to_i915(obj->base.dev)->gtt.mappable_end);
4308 
4309 	obj->map_and_fenceable = mappable && fenceable;
4310 }
4311 
4312 static int
4313 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4314 		       struct i915_address_space *vm,
4315 		       const struct i915_ggtt_view *ggtt_view,
4316 		       uint32_t alignment,
4317 		       uint64_t flags)
4318 {
4319 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4320 	struct i915_vma *vma;
4321 	unsigned bound;
4322 	int ret;
4323 
4324 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4325 		return -ENODEV;
4326 
4327 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4328 		return -EINVAL;
4329 
4330 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4331 		return -EINVAL;
4332 
4333 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4334 		return -EINVAL;
4335 
4336 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4337 			  i915_gem_obj_to_vma(obj, vm);
4338 
4339 	if (IS_ERR(vma))
4340 		return PTR_ERR(vma);
4341 
4342 	if (vma) {
4343 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4344 			return -EBUSY;
4345 
4346 		if (i915_vma_misplaced(vma, alignment, flags)) {
4347 			WARN(vma->pin_count,
4348 			     "bo is already pinned in %s with incorrect alignment:"
4349 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4350 			     " obj->map_and_fenceable=%d\n",
4351 			     ggtt_view ? "ggtt" : "ppgtt",
4352 			     upper_32_bits(vma->node.start),
4353 			     lower_32_bits(vma->node.start),
4354 			     alignment,
4355 			     !!(flags & PIN_MAPPABLE),
4356 			     obj->map_and_fenceable);
4357 			ret = i915_vma_unbind(vma);
4358 			if (ret)
4359 				return ret;
4360 
4361 			vma = NULL;
4362 		}
4363 	}
4364 
4365 	bound = vma ? vma->bound : 0;
4366 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4367 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4368 						 flags);
4369 		if (IS_ERR(vma))
4370 			return PTR_ERR(vma);
4371 	} else {
4372 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4373 		if (ret)
4374 			return ret;
4375 	}
4376 
4377 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4378 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4379 		__i915_vma_set_map_and_fenceable(vma);
4380 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4381 	}
4382 
4383 	vma->pin_count++;
4384 	return 0;
4385 }
4386 
4387 int
4388 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4389 		    struct i915_address_space *vm,
4390 		    uint32_t alignment,
4391 		    uint64_t flags)
4392 {
4393 	return i915_gem_object_do_pin(obj, vm,
4394 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4395 				      alignment, flags);
4396 }
4397 
4398 int
4399 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4400 			 const struct i915_ggtt_view *view,
4401 			 uint32_t alignment,
4402 			 uint64_t flags)
4403 {
4404 	if (WARN_ONCE(!view, "no view specified"))
4405 		return -EINVAL;
4406 
4407 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4408 				      alignment, flags | PIN_GLOBAL);
4409 }
4410 
4411 void
4412 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4413 				const struct i915_ggtt_view *view)
4414 {
4415 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4416 
4417 	BUG_ON(!vma);
4418 	WARN_ON(vma->pin_count == 0);
4419 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4420 
4421 	--vma->pin_count;
4422 }
4423 
4424 int
4425 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4426 		    struct drm_file *file)
4427 {
4428 	struct drm_i915_gem_busy *args = data;
4429 	struct drm_i915_gem_object *obj;
4430 	int ret;
4431 
4432 	ret = i915_mutex_lock_interruptible(dev);
4433 	if (ret)
4434 		return ret;
4435 
4436 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4437 	if (&obj->base == NULL) {
4438 		ret = -ENOENT;
4439 		goto unlock;
4440 	}
4441 
4442 	/* Count all active objects as busy, even if they are currently not used
4443 	 * by the gpu. Users of this interface expect objects to eventually
4444 	 * become non-busy without any further actions, therefore emit any
4445 	 * necessary flushes here.
4446 	 */
4447 	ret = i915_gem_object_flush_active(obj);
4448 	if (ret)
4449 		goto unref;
4450 
4451 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4452 	args->busy = obj->active << 16;
4453 	if (obj->last_write_req)
4454 		args->busy |= obj->last_write_req->ring->id;
4455 
4456 unref:
4457 	drm_gem_object_unreference(&obj->base);
4458 unlock:
4459 	mutex_unlock(&dev->struct_mutex);
4460 	return ret;
4461 }
4462 
4463 int
4464 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4465 			struct drm_file *file_priv)
4466 {
4467 	return i915_gem_ring_throttle(dev, file_priv);
4468 }
4469 
4470 int
4471 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4472 		       struct drm_file *file_priv)
4473 {
4474 	struct drm_i915_private *dev_priv = dev->dev_private;
4475 	struct drm_i915_gem_madvise *args = data;
4476 	struct drm_i915_gem_object *obj;
4477 	int ret;
4478 
4479 	switch (args->madv) {
4480 	case I915_MADV_DONTNEED:
4481 	case I915_MADV_WILLNEED:
4482 	    break;
4483 	default:
4484 	    return -EINVAL;
4485 	}
4486 
4487 	ret = i915_mutex_lock_interruptible(dev);
4488 	if (ret)
4489 		return ret;
4490 
4491 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4492 	if (&obj->base == NULL) {
4493 		ret = -ENOENT;
4494 		goto unlock;
4495 	}
4496 
4497 	if (i915_gem_obj_is_pinned(obj)) {
4498 		ret = -EINVAL;
4499 		goto out;
4500 	}
4501 
4502 	if (obj->pages &&
4503 	    obj->tiling_mode != I915_TILING_NONE &&
4504 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4505 		if (obj->madv == I915_MADV_WILLNEED)
4506 			i915_gem_object_unpin_pages(obj);
4507 		if (args->madv == I915_MADV_WILLNEED)
4508 			i915_gem_object_pin_pages(obj);
4509 	}
4510 
4511 	if (obj->madv != __I915_MADV_PURGED)
4512 		obj->madv = args->madv;
4513 
4514 	/* if the object is no longer attached, discard its backing storage */
4515 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4516 		i915_gem_object_truncate(obj);
4517 
4518 	args->retained = obj->madv != __I915_MADV_PURGED;
4519 
4520 out:
4521 	drm_gem_object_unreference(&obj->base);
4522 unlock:
4523 	mutex_unlock(&dev->struct_mutex);
4524 	return ret;
4525 }
4526 
4527 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4528 			  const struct drm_i915_gem_object_ops *ops)
4529 {
4530 	int i;
4531 
4532 	INIT_LIST_HEAD(&obj->global_list);
4533 	for (i = 0; i < I915_NUM_RINGS; i++)
4534 		INIT_LIST_HEAD(&obj->ring_list[i]);
4535 	INIT_LIST_HEAD(&obj->obj_exec_link);
4536 	INIT_LIST_HEAD(&obj->vma_list);
4537 	INIT_LIST_HEAD(&obj->batch_pool_link);
4538 
4539 	obj->ops = ops;
4540 
4541 	obj->fence_reg = I915_FENCE_REG_NONE;
4542 	obj->madv = I915_MADV_WILLNEED;
4543 
4544 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4545 }
4546 
4547 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4548 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4549 	.get_pages = i915_gem_object_get_pages_gtt,
4550 	.put_pages = i915_gem_object_put_pages_gtt,
4551 };
4552 
4553 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4554 						  size_t size)
4555 {
4556 	struct drm_i915_gem_object *obj;
4557 #if 0
4558 	struct address_space *mapping;
4559 	gfp_t mask;
4560 #endif
4561 
4562 	obj = i915_gem_object_alloc(dev);
4563 	if (obj == NULL)
4564 		return NULL;
4565 
4566 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4567 		i915_gem_object_free(obj);
4568 		return NULL;
4569 	}
4570 
4571 #if 0
4572 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4573 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4574 		/* 965gm cannot relocate objects above 4GiB. */
4575 		mask &= ~__GFP_HIGHMEM;
4576 		mask |= __GFP_DMA32;
4577 	}
4578 
4579 	mapping = file_inode(obj->base.filp)->i_mapping;
4580 	mapping_set_gfp_mask(mapping, mask);
4581 #endif
4582 
4583 	i915_gem_object_init(obj, &i915_gem_object_ops);
4584 
4585 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4586 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4587 
4588 	if (HAS_LLC(dev)) {
4589 		/* On some devices, we can have the GPU use the LLC (the CPU
4590 		 * cache) for about a 10% performance improvement
4591 		 * compared to uncached.  Graphics requests other than
4592 		 * display scanout are coherent with the CPU in
4593 		 * accessing this cache.  This means in this mode we
4594 		 * don't need to clflush on the CPU side, and on the
4595 		 * GPU side we only need to flush internal caches to
4596 		 * get data visible to the CPU.
4597 		 *
4598 		 * However, we maintain the display planes as UC, and so
4599 		 * need to rebind when first used as such.
4600 		 */
4601 		obj->cache_level = I915_CACHE_LLC;
4602 	} else
4603 		obj->cache_level = I915_CACHE_NONE;
4604 
4605 	trace_i915_gem_object_create(obj);
4606 
4607 	return obj;
4608 }
4609 
4610 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4611 {
4612 	/* If we are the last user of the backing storage (be it shmemfs
4613 	 * pages or stolen etc), we know that the pages are going to be
4614 	 * immediately released. In this case, we can then skip copying
4615 	 * back the contents from the GPU.
4616 	 */
4617 
4618 	if (obj->madv != I915_MADV_WILLNEED)
4619 		return false;
4620 
4621 	if (obj->base.vm_obj == NULL)
4622 		return true;
4623 
4624 	/* At first glance, this looks racy, but then again so would be
4625 	 * userspace racing mmap against close. However, the first external
4626 	 * reference to the filp can only be obtained through the
4627 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4628 	 * acquiring such a reference whilst we are in the middle of
4629 	 * freeing the object.
4630 	 */
4631 #if 0
4632 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4633 #else
4634 	return false;
4635 #endif
4636 }
4637 
4638 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4639 {
4640 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4641 	struct drm_device *dev = obj->base.dev;
4642 	struct drm_i915_private *dev_priv = dev->dev_private;
4643 	struct i915_vma *vma, *next;
4644 
4645 	intel_runtime_pm_get(dev_priv);
4646 
4647 	trace_i915_gem_object_destroy(obj);
4648 
4649 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4650 		int ret;
4651 
4652 		vma->pin_count = 0;
4653 		ret = i915_vma_unbind(vma);
4654 		if (WARN_ON(ret == -ERESTARTSYS)) {
4655 			bool was_interruptible;
4656 
4657 			was_interruptible = dev_priv->mm.interruptible;
4658 			dev_priv->mm.interruptible = false;
4659 
4660 			WARN_ON(i915_vma_unbind(vma));
4661 
4662 			dev_priv->mm.interruptible = was_interruptible;
4663 		}
4664 	}
4665 
4666 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4667 	 * before progressing. */
4668 	if (obj->stolen)
4669 		i915_gem_object_unpin_pages(obj);
4670 
4671 	WARN_ON(obj->frontbuffer_bits);
4672 
4673 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4674 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4675 	    obj->tiling_mode != I915_TILING_NONE)
4676 		i915_gem_object_unpin_pages(obj);
4677 
4678 	if (WARN_ON(obj->pages_pin_count))
4679 		obj->pages_pin_count = 0;
4680 	if (discard_backing_storage(obj))
4681 		obj->madv = I915_MADV_DONTNEED;
4682 	i915_gem_object_put_pages(obj);
4683 	i915_gem_object_free_mmap_offset(obj);
4684 
4685 	BUG_ON(obj->pages);
4686 
4687 #if 0
4688 	if (obj->base.import_attach)
4689 		drm_prime_gem_destroy(&obj->base, NULL);
4690 #endif
4691 
4692 	if (obj->ops->release)
4693 		obj->ops->release(obj);
4694 
4695 	drm_gem_object_release(&obj->base);
4696 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4697 
4698 	kfree(obj->bit_17);
4699 	i915_gem_object_free(obj);
4700 
4701 	intel_runtime_pm_put(dev_priv);
4702 }
4703 
4704 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4705 				     struct i915_address_space *vm)
4706 {
4707 	struct i915_vma *vma;
4708 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4709 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4710 		    vma->vm == vm)
4711 			return vma;
4712 	}
4713 	return NULL;
4714 }
4715 
4716 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4717 					   const struct i915_ggtt_view *view)
4718 {
4719 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4720 	struct i915_vma *vma;
4721 
4722 	if (WARN_ONCE(!view, "no view specified"))
4723 		return ERR_PTR(-EINVAL);
4724 
4725 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4726 		if (vma->vm == ggtt &&
4727 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4728 			return vma;
4729 	return NULL;
4730 }
4731 
4732 void i915_gem_vma_destroy(struct i915_vma *vma)
4733 {
4734 	struct i915_address_space *vm = NULL;
4735 	WARN_ON(vma->node.allocated);
4736 
4737 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4738 	if (!list_empty(&vma->exec_list))
4739 		return;
4740 
4741 	vm = vma->vm;
4742 
4743 	if (!i915_is_ggtt(vm))
4744 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4745 
4746 	list_del(&vma->vma_link);
4747 
4748 	kfree(vma);
4749 }
4750 
4751 static void
4752 i915_gem_stop_ringbuffers(struct drm_device *dev)
4753 {
4754 	struct drm_i915_private *dev_priv = dev->dev_private;
4755 	struct intel_engine_cs *ring;
4756 	int i;
4757 
4758 	for_each_ring(ring, dev_priv, i)
4759 		dev_priv->gt.stop_ring(ring);
4760 }
4761 
4762 int
4763 i915_gem_suspend(struct drm_device *dev)
4764 {
4765 	struct drm_i915_private *dev_priv = dev->dev_private;
4766 	int ret = 0;
4767 
4768 	mutex_lock(&dev->struct_mutex);
4769 	ret = i915_gpu_idle(dev);
4770 	if (ret)
4771 		goto err;
4772 
4773 	i915_gem_retire_requests(dev);
4774 
4775 	i915_gem_stop_ringbuffers(dev);
4776 	mutex_unlock(&dev->struct_mutex);
4777 
4778 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4779 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4780 #if 0
4781 	flush_delayed_work(&dev_priv->mm.idle_work);
4782 #endif
4783 
4784 	/* Assert that we sucessfully flushed all the work and
4785 	 * reset the GPU back to its idle, low power state.
4786 	 */
4787 	WARN_ON(dev_priv->mm.busy);
4788 
4789 	return 0;
4790 
4791 err:
4792 	mutex_unlock(&dev->struct_mutex);
4793 	return ret;
4794 }
4795 
4796 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4797 {
4798 	struct intel_engine_cs *ring = req->ring;
4799 	struct drm_device *dev = ring->dev;
4800 	struct drm_i915_private *dev_priv = dev->dev_private;
4801 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4802 	int i, ret;
4803 
4804 	if (!HAS_L3_DPF(dev) || !remap_info)
4805 		return 0;
4806 
4807 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4808 	if (ret)
4809 		return ret;
4810 
4811 	/*
4812 	 * Note: We do not worry about the concurrent register cacheline hang
4813 	 * here because no other code should access these registers other than
4814 	 * at initialization time.
4815 	 */
4816 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4817 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4818 		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4819 		intel_ring_emit(ring, remap_info[i]);
4820 	}
4821 
4822 	intel_ring_advance(ring);
4823 
4824 	return ret;
4825 }
4826 
4827 void i915_gem_init_swizzling(struct drm_device *dev)
4828 {
4829 	struct drm_i915_private *dev_priv = dev->dev_private;
4830 
4831 	if (INTEL_INFO(dev)->gen < 5 ||
4832 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4833 		return;
4834 
4835 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4836 				 DISP_TILE_SURFACE_SWIZZLING);
4837 
4838 	if (IS_GEN5(dev))
4839 		return;
4840 
4841 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4842 	if (IS_GEN6(dev))
4843 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4844 	else if (IS_GEN7(dev))
4845 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4846 	else if (IS_GEN8(dev))
4847 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4848 	else
4849 		BUG();
4850 }
4851 
4852 static void init_unused_ring(struct drm_device *dev, u32 base)
4853 {
4854 	struct drm_i915_private *dev_priv = dev->dev_private;
4855 
4856 	I915_WRITE(RING_CTL(base), 0);
4857 	I915_WRITE(RING_HEAD(base), 0);
4858 	I915_WRITE(RING_TAIL(base), 0);
4859 	I915_WRITE(RING_START(base), 0);
4860 }
4861 
4862 static void init_unused_rings(struct drm_device *dev)
4863 {
4864 	if (IS_I830(dev)) {
4865 		init_unused_ring(dev, PRB1_BASE);
4866 		init_unused_ring(dev, SRB0_BASE);
4867 		init_unused_ring(dev, SRB1_BASE);
4868 		init_unused_ring(dev, SRB2_BASE);
4869 		init_unused_ring(dev, SRB3_BASE);
4870 	} else if (IS_GEN2(dev)) {
4871 		init_unused_ring(dev, SRB0_BASE);
4872 		init_unused_ring(dev, SRB1_BASE);
4873 	} else if (IS_GEN3(dev)) {
4874 		init_unused_ring(dev, PRB1_BASE);
4875 		init_unused_ring(dev, PRB2_BASE);
4876 	}
4877 }
4878 
4879 int i915_gem_init_rings(struct drm_device *dev)
4880 {
4881 	struct drm_i915_private *dev_priv = dev->dev_private;
4882 	int ret;
4883 
4884 	ret = intel_init_render_ring_buffer(dev);
4885 	if (ret)
4886 		return ret;
4887 
4888 	if (HAS_BSD(dev)) {
4889 		ret = intel_init_bsd_ring_buffer(dev);
4890 		if (ret)
4891 			goto cleanup_render_ring;
4892 	}
4893 
4894 	if (HAS_BLT(dev)) {
4895 		ret = intel_init_blt_ring_buffer(dev);
4896 		if (ret)
4897 			goto cleanup_bsd_ring;
4898 	}
4899 
4900 	if (HAS_VEBOX(dev)) {
4901 		ret = intel_init_vebox_ring_buffer(dev);
4902 		if (ret)
4903 			goto cleanup_blt_ring;
4904 	}
4905 
4906 	if (HAS_BSD2(dev)) {
4907 		ret = intel_init_bsd2_ring_buffer(dev);
4908 		if (ret)
4909 			goto cleanup_vebox_ring;
4910 	}
4911 
4912 	return 0;
4913 
4914 cleanup_vebox_ring:
4915 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4916 cleanup_blt_ring:
4917 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4918 cleanup_bsd_ring:
4919 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4920 cleanup_render_ring:
4921 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4922 
4923 	return ret;
4924 }
4925 
4926 int
4927 i915_gem_init_hw(struct drm_device *dev)
4928 {
4929 	struct drm_i915_private *dev_priv = dev->dev_private;
4930 	struct intel_engine_cs *ring;
4931 	int ret, i, j;
4932 
4933 #if 0
4934 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4935 		return -EIO;
4936 #endif
4937 
4938 	/* Double layer security blanket, see i915_gem_init() */
4939 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4940 
4941 	if (dev_priv->ellc_size)
4942 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4943 
4944 	if (IS_HASWELL(dev))
4945 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4946 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4947 
4948 	if (HAS_PCH_NOP(dev)) {
4949 		if (IS_IVYBRIDGE(dev)) {
4950 			u32 temp = I915_READ(GEN7_MSG_CTL);
4951 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4952 			I915_WRITE(GEN7_MSG_CTL, temp);
4953 		} else if (INTEL_INFO(dev)->gen >= 7) {
4954 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4955 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4956 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4957 		}
4958 	}
4959 
4960 	i915_gem_init_swizzling(dev);
4961 
4962 	/*
4963 	 * At least 830 can leave some of the unused rings
4964 	 * "active" (ie. head != tail) after resume which
4965 	 * will prevent c3 entry. Makes sure all unused rings
4966 	 * are totally idle.
4967 	 */
4968 	init_unused_rings(dev);
4969 
4970 	BUG_ON(!dev_priv->ring[RCS].default_context);
4971 
4972 	ret = i915_ppgtt_init_hw(dev);
4973 	if (ret) {
4974 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4975 		goto out;
4976 	}
4977 
4978 	/* Need to do basic initialisation of all rings first: */
4979 	for_each_ring(ring, dev_priv, i) {
4980 		ret = ring->init_hw(ring);
4981 		if (ret)
4982 			goto out;
4983 	}
4984 
4985 	/* We can't enable contexts until all firmware is loaded */
4986 	if (HAS_GUC_UCODE(dev)) {
4987 		ret = intel_guc_ucode_load(dev);
4988 		if (ret) {
4989 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4990 			ret = -EIO;
4991 			goto out;
4992 		}
4993 	}
4994 
4995 	/*
4996 	 * Increment the next seqno by 0x100 so we have a visible break
4997 	 * on re-initialisation
4998 	 */
4999 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5000 	if (ret)
5001 		goto out;
5002 
5003 	/* Now it is safe to go back round and do everything else: */
5004 	for_each_ring(ring, dev_priv, i) {
5005 		struct drm_i915_gem_request *req;
5006 
5007 		WARN_ON(!ring->default_context);
5008 
5009 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5010 		if (ret) {
5011 			i915_gem_cleanup_ringbuffer(dev);
5012 			goto out;
5013 		}
5014 
5015 		if (ring->id == RCS) {
5016 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5017 				i915_gem_l3_remap(req, j);
5018 		}
5019 
5020 		ret = i915_ppgtt_init_ring(req);
5021 		if (ret && ret != -EIO) {
5022 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5023 			i915_gem_request_cancel(req);
5024 			i915_gem_cleanup_ringbuffer(dev);
5025 			goto out;
5026 		}
5027 
5028 		ret = i915_gem_context_enable(req);
5029 		if (ret && ret != -EIO) {
5030 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5031 			i915_gem_request_cancel(req);
5032 			i915_gem_cleanup_ringbuffer(dev);
5033 			goto out;
5034 		}
5035 
5036 		i915_add_request_no_flush(req);
5037 	}
5038 
5039 out:
5040 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5041 	return ret;
5042 }
5043 
5044 int i915_gem_init(struct drm_device *dev)
5045 {
5046 	struct drm_i915_private *dev_priv = dev->dev_private;
5047 	int ret;
5048 
5049 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5050 			i915.enable_execlists);
5051 
5052 	mutex_lock(&dev->struct_mutex);
5053 
5054 	if (!i915.enable_execlists) {
5055 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5056 		dev_priv->gt.init_rings = i915_gem_init_rings;
5057 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5058 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5059 	} else {
5060 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5061 		dev_priv->gt.init_rings = intel_logical_rings_init;
5062 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5063 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5064 	}
5065 
5066 	/* This is just a security blanket to placate dragons.
5067 	 * On some systems, we very sporadically observe that the first TLBs
5068 	 * used by the CS may be stale, despite us poking the TLB reset. If
5069 	 * we hold the forcewake during initialisation these problems
5070 	 * just magically go away.
5071 	 */
5072 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5073 
5074 	ret = i915_gem_init_userptr(dev);
5075 	if (ret)
5076 		goto out_unlock;
5077 
5078 	i915_gem_init_global_gtt(dev);
5079 
5080 	ret = i915_gem_context_init(dev);
5081 	if (ret)
5082 		goto out_unlock;
5083 
5084 	ret = dev_priv->gt.init_rings(dev);
5085 	if (ret)
5086 		goto out_unlock;
5087 
5088 	ret = i915_gem_init_hw(dev);
5089 	if (ret == -EIO) {
5090 		/* Allow ring initialisation to fail by marking the GPU as
5091 		 * wedged. But we only want to do this where the GPU is angry,
5092 		 * for all other failure, such as an allocation failure, bail.
5093 		 */
5094 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5095 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5096 		ret = 0;
5097 	}
5098 
5099 out_unlock:
5100 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5101 	mutex_unlock(&dev->struct_mutex);
5102 
5103 	return ret;
5104 }
5105 
5106 void
5107 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5108 {
5109 	struct drm_i915_private *dev_priv = dev->dev_private;
5110 	struct intel_engine_cs *ring;
5111 	int i;
5112 
5113 	for_each_ring(ring, dev_priv, i)
5114 		dev_priv->gt.cleanup_ring(ring);
5115 
5116     if (i915.enable_execlists)
5117             /*
5118              * Neither the BIOS, ourselves or any other kernel
5119              * expects the system to be in execlists mode on startup,
5120              * so we need to reset the GPU back to legacy mode.
5121              */
5122             intel_gpu_reset(dev);
5123 }
5124 
5125 static void
5126 init_ring_lists(struct intel_engine_cs *ring)
5127 {
5128 	INIT_LIST_HEAD(&ring->active_list);
5129 	INIT_LIST_HEAD(&ring->request_list);
5130 }
5131 
5132 void
5133 i915_gem_load(struct drm_device *dev)
5134 {
5135 	struct drm_i915_private *dev_priv = dev->dev_private;
5136 	int i;
5137 
5138 	INIT_LIST_HEAD(&dev_priv->vm_list);
5139 	INIT_LIST_HEAD(&dev_priv->context_list);
5140 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5141 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5142 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5143 	for (i = 0; i < I915_NUM_RINGS; i++)
5144 		init_ring_lists(&dev_priv->ring[i]);
5145 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5146 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5147 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5148 			  i915_gem_retire_work_handler);
5149 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5150 			  i915_gem_idle_work_handler);
5151 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5152 
5153 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5154 
5155 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5156 		dev_priv->num_fence_regs = 32;
5157 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5158 		dev_priv->num_fence_regs = 16;
5159 	else
5160 		dev_priv->num_fence_regs = 8;
5161 
5162 	if (intel_vgpu_active(dev))
5163 		dev_priv->num_fence_regs =
5164 				I915_READ(vgtif_reg(avail_rs.fence_num));
5165 
5166 	/*
5167 	 * Set initial sequence number for requests.
5168 	 * Using this number allows the wraparound to happen early,
5169 	 * catching any obvious problems.
5170 	 */
5171 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5172 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5173 
5174 	/* Initialize fence registers to zero */
5175 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5176 	i915_gem_restore_fences(dev);
5177 
5178 	i915_gem_detect_bit_6_swizzle(dev);
5179 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5180 
5181 	dev_priv->mm.interruptible = true;
5182 
5183 	i915_gem_shrinker_init(dev_priv);
5184 
5185 	lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5186 }
5187 
5188 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5189 {
5190 	struct drm_i915_file_private *file_priv = file->driver_priv;
5191 
5192 	/* Clean up our request list when the client is going away, so that
5193 	 * later retire_requests won't dereference our soon-to-be-gone
5194 	 * file_priv.
5195 	 */
5196 	spin_lock(&file_priv->mm.lock);
5197 	while (!list_empty(&file_priv->mm.request_list)) {
5198 		struct drm_i915_gem_request *request;
5199 
5200 		request = list_first_entry(&file_priv->mm.request_list,
5201 					   struct drm_i915_gem_request,
5202 					   client_list);
5203 		list_del(&request->client_list);
5204 		request->file_priv = NULL;
5205 	}
5206 	spin_unlock(&file_priv->mm.lock);
5207 
5208 	if (!list_empty(&file_priv->rps.link)) {
5209 		lockmgr(&to_i915(dev)->rps.client_lock, LK_EXCLUSIVE);
5210 		list_del(&file_priv->rps.link);
5211 		lockmgr(&to_i915(dev)->rps.client_lock, LK_RELEASE);
5212 	}
5213 }
5214 
5215 int
5216 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5217     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5218 {
5219 	*color = 0; /* XXXKIB */
5220 	return (0);
5221 }
5222 
5223 void
5224 i915_gem_pager_dtor(void *handle)
5225 {
5226 	struct drm_gem_object *obj;
5227 	struct drm_device *dev;
5228 
5229 	obj = handle;
5230 	dev = obj->dev;
5231 
5232 	mutex_lock(&dev->struct_mutex);
5233 	drm_gem_free_mmap_offset(obj);
5234 	i915_gem_release_mmap(to_intel_bo(obj));
5235 	drm_gem_object_unreference(obj);
5236 	mutex_unlock(&dev->struct_mutex);
5237 }
5238 
5239 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5240 {
5241 	struct drm_i915_file_private *file_priv;
5242 	int ret;
5243 
5244 	DRM_DEBUG_DRIVER("\n");
5245 
5246 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5247 	if (!file_priv)
5248 		return -ENOMEM;
5249 
5250 	file->driver_priv = file_priv;
5251 	file_priv->dev_priv = dev->dev_private;
5252 	file_priv->file = file;
5253 	INIT_LIST_HEAD(&file_priv->rps.link);
5254 
5255 	spin_init(&file_priv->mm.lock, "i915_priv");
5256 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5257 
5258 	ret = i915_gem_context_open(dev, file);
5259 	if (ret)
5260 		kfree(file_priv);
5261 
5262 	return ret;
5263 }
5264 
5265 /**
5266  * i915_gem_track_fb - update frontbuffer tracking
5267  * @old: current GEM buffer for the frontbuffer slots
5268  * @new: new GEM buffer for the frontbuffer slots
5269  * @frontbuffer_bits: bitmask of frontbuffer slots
5270  *
5271  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5272  * from @old and setting them in @new. Both @old and @new can be NULL.
5273  */
5274 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5275 		       struct drm_i915_gem_object *new,
5276 		       unsigned frontbuffer_bits)
5277 {
5278 	if (old) {
5279 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5280 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5281 		old->frontbuffer_bits &= ~frontbuffer_bits;
5282 	}
5283 
5284 	if (new) {
5285 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5286 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5287 		new->frontbuffer_bits |= frontbuffer_bits;
5288 	}
5289 }
5290 
5291 /* All the new VM stuff */
5292 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5293 			struct i915_address_space *vm)
5294 {
5295 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5296 	struct i915_vma *vma;
5297 
5298 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5299 
5300 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5301 		if (i915_is_ggtt(vma->vm) &&
5302 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5303 			continue;
5304 		if (vma->vm == vm)
5305 			return vma->node.start;
5306 	}
5307 
5308 	WARN(1, "%s vma for this object not found.\n",
5309 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5310 	return -1;
5311 }
5312 
5313 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5314 				  const struct i915_ggtt_view *view)
5315 {
5316 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5317 	struct i915_vma *vma;
5318 
5319 	list_for_each_entry(vma, &o->vma_list, vma_link)
5320 		if (vma->vm == ggtt &&
5321 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5322 			return vma->node.start;
5323 
5324 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5325 	return -1;
5326 }
5327 
5328 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5329 			struct i915_address_space *vm)
5330 {
5331 	struct i915_vma *vma;
5332 
5333 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5334 		if (i915_is_ggtt(vma->vm) &&
5335 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5336 			continue;
5337 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5338 			return true;
5339 	}
5340 
5341 	return false;
5342 }
5343 
5344 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5345 				  const struct i915_ggtt_view *view)
5346 {
5347 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5348 	struct i915_vma *vma;
5349 
5350 	list_for_each_entry(vma, &o->vma_list, vma_link)
5351 		if (vma->vm == ggtt &&
5352 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5353 		    drm_mm_node_allocated(&vma->node))
5354 			return true;
5355 
5356 	return false;
5357 }
5358 
5359 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5360 {
5361 	struct i915_vma *vma;
5362 
5363 	list_for_each_entry(vma, &o->vma_list, vma_link)
5364 		if (drm_mm_node_allocated(&vma->node))
5365 			return true;
5366 
5367 	return false;
5368 }
5369 
5370 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5371 				struct i915_address_space *vm)
5372 {
5373 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5374 	struct i915_vma *vma;
5375 
5376 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5377 
5378 	BUG_ON(list_empty(&o->vma_list));
5379 
5380 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5381 		if (i915_is_ggtt(vma->vm) &&
5382 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5383 			continue;
5384 		if (vma->vm == vm)
5385 			return vma->node.size;
5386 	}
5387 	return 0;
5388 }
5389 
5390 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5391 {
5392 	struct i915_vma *vma;
5393 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5394 		if (vma->pin_count > 0)
5395 			return true;
5396 
5397 	return false;
5398 }
5399 
5400 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5401 struct vm_page *
5402 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5403 {
5404 	struct vm_page *page;
5405 
5406 	/* Only default objects have per-page dirty tracking */
5407 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5408 		return NULL;
5409 
5410 	page = i915_gem_object_get_page(obj, n);
5411 	set_page_dirty(page);
5412 	return page;
5413 }
5414 
5415 /* Allocate a new GEM object and fill it with the supplied data */
5416 struct drm_i915_gem_object *
5417 i915_gem_object_create_from_data(struct drm_device *dev,
5418 			         const void *data, size_t size)
5419 {
5420 	struct drm_i915_gem_object *obj;
5421 	struct sg_table *sg;
5422 	size_t bytes;
5423 	int ret;
5424 
5425 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5426 	if (IS_ERR_OR_NULL(obj))
5427 		return obj;
5428 
5429 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5430 	if (ret)
5431 		goto fail;
5432 
5433 	ret = i915_gem_object_get_pages(obj);
5434 	if (ret)
5435 		goto fail;
5436 
5437 	i915_gem_object_pin_pages(obj);
5438 	sg = obj->pages;
5439 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, data, size);
5440 	obj->dirty = 1;		/* Backing store is now out of date */
5441 	i915_gem_object_unpin_pages(obj);
5442 
5443 	if (WARN_ON(bytes != size)) {
5444 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5445 		ret = -EFAULT;
5446 		goto fail;
5447 	}
5448 
5449 	return obj;
5450 
5451 fail:
5452 	drm_gem_object_unreference(&obj->base);
5453 	return ERR_PTR(ret);
5454 }
5455