xref: /dragonfly/sys/dev/drm/i915/i915_gem.c (revision b29f78b5)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54 
55 #include <sys/resourcevar.h>
56 #include <sys/sfbuf.h>
57 
58 #include <drm/drmP.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "intel_drv.h"
62 #include <linux/shmem_fs.h>
63 #include <linux/completion.h>
64 #include <linux/highmem.h>
65 #include <linux/jiffies.h>
66 #include <linux/time.h>
67 
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
70 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
71 						    unsigned alignment,
72 						    bool map_and_fenceable,
73 						    bool nonblocking);
74 static int i915_gem_phys_pwrite(struct drm_device *dev,
75 				struct drm_i915_gem_object *obj,
76 				struct drm_i915_gem_pwrite *args,
77 				struct drm_file *file);
78 
79 static void i915_gem_write_fence(struct drm_device *dev, int reg,
80 				 struct drm_i915_gem_object *obj);
81 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
82 					 struct drm_i915_fence_reg *fence,
83 					 bool enable);
84 
85 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
86 
87 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj);
88 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
89 
90 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
91 {
92 	if (obj->tiling_mode)
93 		i915_gem_release_mmap(obj);
94 
95 	/* As we do not have an associated fence register, we will force
96 	 * a tiling change if we ever need to acquire one.
97 	 */
98 	obj->fence_dirty = false;
99 	obj->fence_reg = I915_FENCE_REG_NONE;
100 }
101 
102 static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
103 static void i915_gem_lowmem(void *arg);
104 
105 /* some bookkeeping */
106 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
107 				  size_t size)
108 {
109 	dev_priv->mm.object_count++;
110 	dev_priv->mm.object_memory += size;
111 }
112 
113 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
114 				     size_t size)
115 {
116 	dev_priv->mm.object_count--;
117 	dev_priv->mm.object_memory -= size;
118 }
119 
120 static int
121 i915_gem_wait_for_error(struct i915_gpu_error *error)
122 {
123 	int ret;
124 
125 #define EXIT_COND (!i915_reset_in_progress(error) || \
126 		   i915_terminally_wedged(error))
127 	if (EXIT_COND)
128 		return 0;
129 
130 	/*
131 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
132 	 * userspace. If it takes that long something really bad is going on and
133 	 * we should simply try to bail out and fail as gracefully as possible.
134 	 */
135 	ret = wait_event_interruptible_timeout(error->reset_queue,
136 					       EXIT_COND,
137 					       10*HZ);
138 	if (ret == 0) {
139 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
140 		return -EIO;
141 	} else if (ret < 0) {
142 		return ret;
143 	}
144 #undef EXIT_COND
145 
146 	return 0;
147 }
148 
149 int i915_mutex_lock_interruptible(struct drm_device *dev)
150 {
151 	struct drm_i915_private *dev_priv = dev->dev_private;
152 	int ret;
153 
154 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
155 	if (ret)
156 		return ret;
157 
158 	ret = lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_SLEEPFAIL);
159 	if (ret)
160 		return -EINTR;
161 
162 	WARN_ON(i915_verify_lists(dev));
163 	return 0;
164 }
165 
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
168 {
169 	return !obj->active;
170 }
171 
172 int
173 i915_gem_init_ioctl(struct drm_device *dev, void *data,
174 		    struct drm_file *file)
175 {
176 	struct drm_i915_gem_init *args = data;
177 
178 	if (drm_core_check_feature(dev, DRIVER_MODESET))
179 		return -ENODEV;
180 
181 	if (args->gtt_start >= args->gtt_end ||
182 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
183 		return -EINVAL;
184 
185 	/* GEM with user mode setting was never supported on ilk and later. */
186 	if (INTEL_INFO(dev)->gen >= 5)
187 		return -ENODEV;
188 
189 	mutex_lock(&dev->struct_mutex);
190 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
191 				  args->gtt_end);
192 	mutex_unlock(&dev->struct_mutex);
193 
194 	return 0;
195 }
196 
197 int
198 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
199 			    struct drm_file *file)
200 {
201 	struct drm_i915_private *dev_priv = dev->dev_private;
202 	struct drm_i915_gem_get_aperture *args = data;
203 	struct drm_i915_gem_object *obj;
204 	size_t pinned;
205 
206 	pinned = 0;
207 	mutex_lock(&dev->struct_mutex);
208 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
209 		if (obj->pin_count)
210 			pinned += obj->gtt_space->size;
211 	mutex_unlock(&dev->struct_mutex);
212 
213 	args->aper_size = dev_priv->gtt.total;
214 	args->aper_available_size = args->aper_size - pinned;
215 
216 	return 0;
217 }
218 
219 void i915_gem_object_free(struct drm_i915_gem_object *obj)
220 {
221 	kfree(obj);
222 }
223 
224 static int
225 i915_gem_create(struct drm_file *file,
226 		struct drm_device *dev,
227 		uint64_t size,
228 		uint32_t *handle_p)
229 {
230 	struct drm_i915_gem_object *obj;
231 	int ret;
232 	u32 handle;
233 
234 	size = roundup(size, PAGE_SIZE);
235 	if (size == 0)
236 		return -EINVAL;
237 
238 	/* Allocate the new object */
239 	obj = i915_gem_alloc_object(dev, size);
240 	if (obj == NULL)
241 		return -ENOMEM;
242 
243 	handle = 0;
244 	ret = drm_gem_handle_create(file, &obj->base, &handle);
245 	if (ret) {
246 		drm_gem_object_release(&obj->base);
247 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
248 		drm_free(obj, M_DRM);
249 		return (-ret);
250 	}
251 
252 	/* drop reference from allocate - handle holds it now */
253 	drm_gem_object_unreference(&obj->base);
254 	*handle_p = handle;
255 	return 0;
256 }
257 
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 		     struct drm_device *dev,
261 		     struct drm_mode_create_dumb *args)
262 {
263 
264 	/* have to work out size/pitch and return them */
265 	args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
266 	args->size = args->pitch * args->height;
267 	return i915_gem_create(file, dev,
268 			       args->size, &args->handle);
269 }
270 
271 int i915_gem_dumb_destroy(struct drm_file *file,
272 			  struct drm_device *dev,
273 			  uint32_t handle)
274 {
275 
276 	return drm_gem_handle_delete(file, handle);
277 }
278 
279 /**
280  * Creates a new mm object and returns a handle to it.
281  */
282 int
283 i915_gem_create_ioctl(struct drm_device *dev, void *data,
284 		      struct drm_file *file)
285 {
286 	struct drm_i915_gem_create *args = data;
287 
288 	return i915_gem_create(file, dev,
289 			       args->size, &args->handle);
290 }
291 
292 static inline void vm_page_reference(vm_page_t m)
293 {
294 	vm_page_flag_set(m, PG_REFERENCED);
295 }
296 
297 static int
298 i915_gem_shmem_pread(struct drm_device *dev,
299 		     struct drm_i915_gem_object *obj,
300 		     struct drm_i915_gem_pread *args,
301 		     struct drm_file *file)
302 {
303 	vm_object_t vm_obj;
304 	vm_page_t m;
305 	struct sf_buf *sf;
306 	vm_offset_t mkva;
307 	vm_pindex_t obj_pi;
308 	int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
309 
310 	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
311 
312 	obj->dirty = 1;
313 	vm_obj = obj->base.vm_obj;
314 	ret = 0;
315 
316 	VM_OBJECT_LOCK(vm_obj);
317 	vm_object_pip_add(vm_obj, 1);
318 	while (args->size > 0) {
319 		obj_pi = OFF_TO_IDX(args->offset);
320 		obj_po = args->offset & PAGE_MASK;
321 
322 		m = shmem_read_mapping_page(vm_obj, obj_pi);
323 		VM_OBJECT_UNLOCK(vm_obj);
324 
325 		sf = sf_buf_alloc(m);
326 		mkva = sf_buf_kva(sf);
327 		length = min(args->size, PAGE_SIZE - obj_po);
328 		while (length > 0) {
329 			if (do_bit17_swizzling &&
330 			    (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
331 				cnt = roundup2(obj_po + 1, 64);
332 				cnt = min(cnt - obj_po, length);
333 				swizzled_po = obj_po ^ 64;
334 			} else {
335 				cnt = length;
336 				swizzled_po = obj_po;
337 			}
338 			ret = -copyout_nofault(
339 			    (char *)mkva + swizzled_po,
340 			    (void *)(uintptr_t)args->data_ptr, cnt);
341 			if (ret != 0)
342 				break;
343 			args->data_ptr += cnt;
344 			args->size -= cnt;
345 			length -= cnt;
346 			args->offset += cnt;
347 			obj_po += cnt;
348 		}
349 		sf_buf_free(sf);
350 		VM_OBJECT_LOCK(vm_obj);
351 		vm_page_reference(m);
352 		vm_page_busy_wait(m, FALSE, "i915gem");
353 		vm_page_unwire(m, 1);
354 		vm_page_wakeup(m);
355 
356 		if (ret != 0)
357 			break;
358 	}
359 	vm_object_pip_wakeup(vm_obj);
360 	VM_OBJECT_UNLOCK(vm_obj);
361 
362 	return (ret);
363 }
364 
365 /**
366  * Reads data from the object referenced by handle.
367  *
368  * On error, the contents of *data are undefined.
369  */
370 int
371 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
372 		     struct drm_file *file)
373 {
374 	struct drm_i915_gem_pread *args = data;
375 	struct drm_i915_gem_object *obj;
376 	int ret = 0;
377 
378 	if (args->size == 0)
379 		return 0;
380 
381 	ret = i915_mutex_lock_interruptible(dev);
382 	if (ret)
383 		return ret;
384 
385 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
386 	if (&obj->base == NULL) {
387 		ret = -ENOENT;
388 		goto unlock;
389 	}
390 
391 	/* Bounds check source.  */
392 	if (args->offset > obj->base.size ||
393 	    args->size > obj->base.size - args->offset) {
394 		ret = -EINVAL;
395 		goto out;
396 	}
397 
398 	ret = i915_gem_shmem_pread(dev, obj, args, file);
399 out:
400 	drm_gem_object_unreference(&obj->base);
401 unlock:
402 	mutex_unlock(&dev->struct_mutex);
403 	return ret;
404 }
405 
406 #if 0
407 /* This is the fast write path which cannot handle
408  * page faults in the source data
409  */
410 
411 static inline int
412 fast_user_write(struct io_mapping *mapping,
413 		loff_t page_base, int page_offset,
414 		char __user *user_data,
415 		int length)
416 {
417 	void __iomem *vaddr_atomic;
418 	void *vaddr;
419 	unsigned long unwritten;
420 
421 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
422 	/* We can use the cpu mem copy function because this is X86. */
423 	vaddr = (void __force*)vaddr_atomic + page_offset;
424 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
425 						      user_data, length);
426 	io_mapping_unmap_atomic(vaddr_atomic);
427 	return unwritten;
428 }
429 
430 /**
431  * This is the fast pwrite path, where we copy the data directly from the
432  * user into the GTT, uncached.
433  */
434 static int
435 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
436 			 struct drm_i915_gem_object *obj,
437 			 struct drm_i915_gem_pwrite *args,
438 			 struct drm_file *file)
439 {
440 	drm_i915_private_t *dev_priv = dev->dev_private;
441 	ssize_t remain;
442 	loff_t offset, page_base;
443 	char __user *user_data;
444 	int page_offset, page_length, ret;
445 
446 	ret = i915_gem_object_pin(obj, 0, true, true);
447 	if (ret)
448 		goto out;
449 
450 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
451 	if (ret)
452 		goto out_unpin;
453 
454 	ret = i915_gem_object_put_fence(obj);
455 	if (ret)
456 		goto out_unpin;
457 
458 	user_data = to_user_ptr(args->data_ptr);
459 	remain = args->size;
460 
461 	offset = obj->gtt_offset + args->offset;
462 
463 	while (remain > 0) {
464 		/* Operation in this page
465 		 *
466 		 * page_base = page offset within aperture
467 		 * page_offset = offset within page
468 		 * page_length = bytes to copy for this page
469 		 */
470 		page_base = offset & PAGE_MASK;
471 		page_offset = offset_in_page(offset);
472 		page_length = remain;
473 		if ((page_offset + remain) > PAGE_SIZE)
474 			page_length = PAGE_SIZE - page_offset;
475 
476 		/* If we get a fault while copying data, then (presumably) our
477 		 * source page isn't available.  Return the error and we'll
478 		 * retry in the slow path.
479 		 */
480 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
481 				    page_offset, user_data, page_length)) {
482 			ret = -EFAULT;
483 			goto out_unpin;
484 		}
485 
486 		remain -= page_length;
487 		user_data += page_length;
488 		offset += page_length;
489 	}
490 
491 out_unpin:
492 	i915_gem_object_unpin(obj);
493 out:
494 	return ret;
495 }
496 #endif
497 
498 static int
499 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
500     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
501 {
502 	vm_offset_t mkva;
503 	int ret;
504 
505 	/*
506 	 * Pass the unaligned physical address and size to pmap_mapdev_attr()
507 	 * so it can properly calculate whether an extra page needs to be
508 	 * mapped or not to cover the requested range.  The function will
509 	 * add the page offset into the returned mkva for us.
510 	 */
511 	mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base + obj->gtt_offset +
512 	    offset, size, PAT_WRITE_COMBINING);
513 	ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
514 	pmap_unmapdev(mkva, size);
515 	return ret;
516 }
517 
518 static int
519 i915_gem_shmem_pwrite(struct drm_device *dev,
520 		      struct drm_i915_gem_object *obj,
521 		      struct drm_i915_gem_pwrite *args,
522 		      struct drm_file *file)
523 {
524 	vm_object_t vm_obj;
525 	vm_page_t m;
526 	struct sf_buf *sf;
527 	vm_offset_t mkva;
528 	vm_pindex_t obj_pi;
529 	int cnt, do_bit17_swizzling, length, obj_po, ret, swizzled_po;
530 
531 	do_bit17_swizzling = 0;
532 
533 	obj->dirty = 1;
534 	vm_obj = obj->base.vm_obj;
535 	ret = 0;
536 
537 	VM_OBJECT_LOCK(vm_obj);
538 	vm_object_pip_add(vm_obj, 1);
539 	while (args->size > 0) {
540 		obj_pi = OFF_TO_IDX(args->offset);
541 		obj_po = args->offset & PAGE_MASK;
542 
543 		m = shmem_read_mapping_page(vm_obj, obj_pi);
544 		VM_OBJECT_UNLOCK(vm_obj);
545 
546 		sf = sf_buf_alloc(m);
547 		mkva = sf_buf_kva(sf);
548 		length = min(args->size, PAGE_SIZE - obj_po);
549 		while (length > 0) {
550 			if (do_bit17_swizzling &&
551 			    (VM_PAGE_TO_PHYS(m) & (1 << 17)) != 0) {
552 				cnt = roundup2(obj_po + 1, 64);
553 				cnt = min(cnt - obj_po, length);
554 				swizzled_po = obj_po ^ 64;
555 			} else {
556 				cnt = length;
557 				swizzled_po = obj_po;
558 			}
559 			ret = -copyin_nofault(
560 			    (void *)(uintptr_t)args->data_ptr,
561 			    (char *)mkva + swizzled_po, cnt);
562 			if (ret != 0)
563 				break;
564 			args->data_ptr += cnt;
565 			args->size -= cnt;
566 			length -= cnt;
567 			args->offset += cnt;
568 			obj_po += cnt;
569 		}
570 		sf_buf_free(sf);
571 		VM_OBJECT_LOCK(vm_obj);
572 		vm_page_dirty(m);
573 		vm_page_reference(m);
574 		vm_page_busy_wait(m, FALSE, "i915gem");
575 		vm_page_unwire(m, 1);
576 		vm_page_wakeup(m);
577 
578 		if (ret != 0)
579 			break;
580 	}
581 	vm_object_pip_wakeup(vm_obj);
582 	VM_OBJECT_UNLOCK(vm_obj);
583 
584 	return (ret);
585 }
586 
587 /**
588  * Writes data to the object referenced by handle.
589  *
590  * On error, the contents of the buffer that were to be modified are undefined.
591  */
592 int
593 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
594 		      struct drm_file *file)
595 {
596 	struct drm_i915_gem_pwrite *args = data;
597 	struct drm_i915_gem_object *obj;
598 	vm_page_t *ma;
599 	vm_offset_t start, end;
600 	int npages, ret;
601 
602 	if (args->size == 0)
603 		return 0;
604 
605 	start = trunc_page(args->data_ptr);
606 	end = round_page(args->data_ptr + args->size);
607 	npages = howmany(end - start, PAGE_SIZE);
608 	ma = kmalloc(npages * sizeof(vm_page_t), M_DRM, M_WAITOK |
609 	    M_ZERO);
610 	npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
611 	    (vm_offset_t)args->data_ptr, args->size,
612 	    VM_PROT_READ, ma, npages);
613 	if (npages == -1) {
614 		ret = -EFAULT;
615 		goto free_ma;
616 	}
617 
618 	ret = i915_mutex_lock_interruptible(dev);
619 	if (ret != 0)
620 		goto unlocked;
621 
622 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
623 	if (&obj->base == NULL) {
624 		ret = -ENOENT;
625 		goto unlock;
626 	}
627 
628 	/* Bounds check destination. */
629 	if (args->offset > obj->base.size ||
630 	    args->size > obj->base.size - args->offset) {
631 		ret = -EINVAL;
632 		goto out;
633 	}
634 
635 	if (obj->phys_obj) {
636 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
637 	} else if (obj->gtt_space &&
638 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
639 		ret = i915_gem_object_pin(obj, 0, true, false);
640 		if (ret != 0)
641 			goto out;
642 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
643 		if (ret != 0)
644 			goto out_unpin;
645 		ret = i915_gem_object_put_fence(obj);
646 		if (ret != 0)
647 			goto out_unpin;
648 		ret = i915_gem_gtt_write(dev, obj, args->data_ptr, args->size,
649 		    args->offset, file);
650 out_unpin:
651 		i915_gem_object_unpin(obj);
652 	} else {
653 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
654 		if (ret != 0)
655 			goto out;
656 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
657 	}
658 out:
659 	drm_gem_object_unreference(&obj->base);
660 unlock:
661 	mutex_unlock(&dev->struct_mutex);
662 unlocked:
663 	vm_page_unhold_pages(ma, npages);
664 free_ma:
665 	drm_free(ma, M_DRM);
666 	return ret;
667 }
668 
669 int
670 i915_gem_check_wedge(struct i915_gpu_error *error,
671 		     bool interruptible)
672 {
673 	if (i915_reset_in_progress(error)) {
674 		/* Non-interruptible callers can't handle -EAGAIN, hence return
675 		 * -EIO unconditionally for these. */
676 		if (!interruptible)
677 			return -EIO;
678 
679 		/* Recovery complete, but the reset failed ... */
680 		if (i915_terminally_wedged(error))
681 			return -EIO;
682 
683 		return -EAGAIN;
684 	}
685 
686 	return 0;
687 }
688 
689 /*
690  * Compare seqno against outstanding lazy request. Emit a request if they are
691  * equal.
692  */
693 static int
694 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
695 {
696 	int ret;
697 
698 	DRM_LOCK_ASSERT(ring->dev);
699 
700 	ret = 0;
701 	if (seqno == ring->outstanding_lazy_request)
702 		ret = i915_add_request(ring, NULL);
703 
704 	return ret;
705 }
706 
707 /**
708  * __wait_seqno - wait until execution of seqno has finished
709  * @ring: the ring expected to report seqno
710  * @seqno: duh!
711  * @reset_counter: reset sequence associated with the given seqno
712  * @interruptible: do an interruptible wait (normally yes)
713  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
714  *
715  * Note: It is of utmost importance that the passed in seqno and reset_counter
716  * values have been read by the caller in an smp safe manner. Where read-side
717  * locks are involved, it is sufficient to read the reset_counter before
718  * unlocking the lock that protects the seqno. For lockless tricks, the
719  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
720  * inserted.
721  *
722  * Returns 0 if the seqno was found within the alloted time. Else returns the
723  * errno with remaining time filled in timeout argument.
724  */
725 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
726 			unsigned reset_counter,
727 			bool interruptible, struct timespec *timeout)
728 {
729 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
730 	struct timespec before, now, wait_time={1,0};
731 	unsigned long timeout_jiffies;
732 	long end;
733 	bool wait_forever = true;
734 	int ret;
735 
736 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
737 		return 0;
738 
739 	if (timeout != NULL) {
740 		wait_time = *timeout;
741 		wait_forever = false;
742 	}
743 
744 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
745 
746 	if (WARN_ON(!ring->irq_get(ring)))
747 		return -ENODEV;
748 
749 	/* Record current time in case interrupted by signal, or wedged * */
750 	getrawmonotonic(&before);
751 
752 #define EXIT_COND \
753 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
754 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
755 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
756 	do {
757 		if (interruptible)
758 			end = wait_event_interruptible_timeout(ring->irq_queue,
759 							       EXIT_COND,
760 							       timeout_jiffies);
761 		else
762 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
763 						 timeout_jiffies);
764 
765 		/* We need to check whether any gpu reset happened in between
766 		 * the caller grabbing the seqno and now ... */
767 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
768 			end = -EAGAIN;
769 
770 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
771 		 * gone. */
772 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
773 		if (ret)
774 			end = ret;
775 	} while (end == 0 && wait_forever);
776 
777 	getrawmonotonic(&now);
778 
779 	ring->irq_put(ring);
780 #undef EXIT_COND
781 
782 	if (timeout) {
783 		struct timespec sleep_time = timespec_sub(now, before);
784 		*timeout = timespec_sub(*timeout, sleep_time);
785 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
786 			set_normalized_timespec(timeout, 0, 0);
787 	}
788 
789 	switch (end) {
790 	case -EIO:
791 	case -EAGAIN: /* Wedged */
792 	case -ERESTARTSYS: /* Signal */
793 		return (int)end;
794 	case 0: /* Timeout */
795 		return -ETIMEDOUT;	/* -ETIME on Linux */
796 	default: /* Completed */
797 		WARN_ON(end < 0); /* We're not aware of other errors */
798 		return 0;
799 	}
800 }
801 
802 /**
803  * Waits for a sequence number to be signaled, and cleans up the
804  * request and object lists appropriately for that event.
805  */
806 int
807 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
808 {
809 	struct drm_device *dev = ring->dev;
810 	struct drm_i915_private *dev_priv = dev->dev_private;
811 	bool interruptible = dev_priv->mm.interruptible;
812 	int ret;
813 
814 	DRM_LOCK_ASSERT(dev);
815 	BUG_ON(seqno == 0);
816 
817 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
818 	if (ret)
819 		return ret;
820 
821 	ret = i915_gem_check_olr(ring, seqno);
822 	if (ret)
823 		return ret;
824 
825 	return __wait_seqno(ring, seqno,
826 			    atomic_read(&dev_priv->gpu_error.reset_counter),
827 			    interruptible, NULL);
828 }
829 
830 static int
831 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
832 				     struct intel_ring_buffer *ring)
833 {
834 	i915_gem_retire_requests_ring(ring);
835 
836 	/* Manually manage the write flush as we may have not yet
837 	 * retired the buffer.
838 	 *
839 	 * Note that the last_write_seqno is always the earlier of
840 	 * the two (read/write) seqno, so if we haved successfully waited,
841 	 * we know we have passed the last write.
842 	 */
843 	obj->last_write_seqno = 0;
844 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
845 
846 	return 0;
847 }
848 
849 /**
850  * Ensures that all rendering to the object has completed and the object is
851  * safe to unbind from the GTT or access from the CPU.
852  */
853 static __must_check int
854 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
855 			       bool readonly)
856 {
857 	struct intel_ring_buffer *ring = obj->ring;
858 	u32 seqno;
859 	int ret;
860 
861 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
862 	if (seqno == 0)
863 		return 0;
864 
865 	ret = i915_wait_seqno(ring, seqno);
866 	if (ret)
867 		return ret;
868 
869 	return i915_gem_object_wait_rendering__tail(obj, ring);
870 }
871 
872 /* A nonblocking variant of the above wait. This is a highly dangerous routine
873  * as the object state may change during this call.
874  */
875 static __must_check int
876 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
877 					    bool readonly)
878 {
879 	struct drm_device *dev = obj->base.dev;
880 	struct drm_i915_private *dev_priv = dev->dev_private;
881 	struct intel_ring_buffer *ring = obj->ring;
882 	unsigned reset_counter;
883 	u32 seqno;
884 	int ret;
885 
886 	DRM_LOCK_ASSERT(dev);
887 	BUG_ON(!dev_priv->mm.interruptible);
888 
889 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
890 	if (seqno == 0)
891 		return 0;
892 
893 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
894 	if (ret)
895 		return ret;
896 
897 	ret = i915_gem_check_olr(ring, seqno);
898 	if (ret)
899 		return ret;
900 
901 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
902 	mutex_unlock(&dev->struct_mutex);
903 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
904 	mutex_lock(&dev->struct_mutex);
905 	if (ret)
906 		return ret;
907 
908 	return i915_gem_object_wait_rendering__tail(obj, ring);
909 }
910 
911 /**
912  * Called when user space prepares to use an object with the CPU, either
913  * through the mmap ioctl's mapping or a GTT mapping.
914  */
915 int
916 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
917 			  struct drm_file *file)
918 {
919 	struct drm_i915_gem_set_domain *args = data;
920 	struct drm_i915_gem_object *obj;
921 	uint32_t read_domains = args->read_domains;
922 	uint32_t write_domain = args->write_domain;
923 	int ret;
924 
925 	/* Only handle setting domains to types used by the CPU. */
926 	if (write_domain & I915_GEM_GPU_DOMAINS)
927 		return -EINVAL;
928 
929 	if (read_domains & I915_GEM_GPU_DOMAINS)
930 		return -EINVAL;
931 
932 	/* Having something in the write domain implies it's in the read
933 	 * domain, and only that read domain.  Enforce that in the request.
934 	 */
935 	if (write_domain != 0 && read_domains != write_domain)
936 		return -EINVAL;
937 
938 	ret = i915_mutex_lock_interruptible(dev);
939 	if (ret)
940 		return ret;
941 
942 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
943 	if (&obj->base == NULL) {
944 		ret = -ENOENT;
945 		goto unlock;
946 	}
947 
948 	/* Try to flush the object off the GPU without holding the lock.
949 	 * We will repeat the flush holding the lock in the normal manner
950 	 * to catch cases where we are gazumped.
951 	 */
952 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
953 	if (ret)
954 		goto unref;
955 
956 	if (read_domains & I915_GEM_DOMAIN_GTT) {
957 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
958 
959 		/* Silently promote "you're not bound, there was nothing to do"
960 		 * to success, since the client was just asking us to
961 		 * make sure everything was done.
962 		 */
963 		if (ret == -EINVAL)
964 			ret = 0;
965 	} else {
966 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
967 	}
968 
969 unref:
970 	drm_gem_object_unreference(&obj->base);
971 unlock:
972 	mutex_unlock(&dev->struct_mutex);
973 	return ret;
974 }
975 
976 /**
977  * Called when user space has done writes to this buffer
978  */
979 int
980 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
981 			 struct drm_file *file)
982 {
983 	struct drm_i915_gem_sw_finish *args = data;
984 	struct drm_i915_gem_object *obj;
985 	int ret = 0;
986 
987 	ret = i915_mutex_lock_interruptible(dev);
988 	if (ret)
989 		return ret;
990 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
991 	if (&obj->base == NULL) {
992 		ret = -ENOENT;
993 		goto unlock;
994 	}
995 
996 	/* Pinned buffers may be scanout, so flush the cache */
997 	if (obj->pin_count)
998 		i915_gem_object_flush_cpu_write_domain(obj);
999 
1000 	drm_gem_object_unreference(&obj->base);
1001 unlock:
1002 	mutex_unlock(&dev->struct_mutex);
1003 	return ret;
1004 }
1005 
1006 /**
1007  * Maps the contents of an object, returning the address it is mapped
1008  * into.
1009  *
1010  * While the mapping holds a reference on the contents of the object, it doesn't
1011  * imply a ref on the object itself.
1012  */
1013 int
1014 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1015 		    struct drm_file *file)
1016 {
1017 	struct drm_i915_gem_mmap *args = data;
1018 	struct drm_gem_object *obj;
1019 	struct proc *p = curproc;
1020 	vm_map_t map = &p->p_vmspace->vm_map;
1021 	vm_offset_t addr;
1022 	vm_size_t size;
1023 	int error = 0, rv;
1024 
1025 	obj = drm_gem_object_lookup(dev, file, args->handle);
1026 	if (obj == NULL)
1027 		return -ENOENT;
1028 
1029 	if (args->size == 0)
1030 		goto out;
1031 
1032 	size = round_page(args->size);
1033 	if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1034 		error = ENOMEM;
1035 		goto out;
1036 	}
1037 
1038 	addr = 0;
1039 	vm_object_hold(obj->vm_obj);
1040 	vm_object_reference_locked(obj->vm_obj);
1041 	vm_object_drop(obj->vm_obj);
1042 	rv = vm_map_find(map, obj->vm_obj, NULL,
1043 			 args->offset, &addr, args->size,
1044 			 PAGE_SIZE, /* align */
1045 			 TRUE, /* fitit */
1046 			 VM_MAPTYPE_NORMAL, /* maptype */
1047 			 VM_PROT_READ | VM_PROT_WRITE, /* prot */
1048 			 VM_PROT_READ | VM_PROT_WRITE, /* max */
1049 			 MAP_SHARED /* cow */);
1050 	if (rv != KERN_SUCCESS) {
1051 		vm_object_deallocate(obj->vm_obj);
1052 		error = -vm_mmap_to_errno(rv);
1053 	} else {
1054 		args->addr_ptr = (uint64_t)addr;
1055 	}
1056 out:
1057 	drm_gem_object_unreference(obj);
1058 	return (error);
1059 }
1060 
1061 /**
1062  * i915_gem_fault - fault a page into the GTT
1063  * vma: VMA in question
1064  * vmf: fault info
1065  *
1066  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067  * from userspace.  The fault handler takes care of binding the object to
1068  * the GTT (if needed), allocating and programming a fence register (again,
1069  * only if needed based on whether the old reg is still valid or the object
1070  * is tiled) and inserting a new PTE into the faulting process.
1071  *
1072  * Note that the faulting process may involve evicting existing objects
1073  * from the GTT and/or fence registers to make room.  So performance may
1074  * suffer if the GTT working set is large or there are few fence registers
1075  * left.
1076  */
1077 #if 0
1078 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1079 {
1080 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1081 	struct drm_device *dev = obj->base.dev;
1082 	drm_i915_private_t *dev_priv = dev->dev_private;
1083 	pgoff_t page_offset;
1084 	unsigned long pfn;
1085 	int ret = 0;
1086 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1087 
1088 	/* We don't use vmf->pgoff since that has the fake offset */
1089 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1090 		PAGE_SHIFT;
1091 
1092 	ret = i915_mutex_lock_interruptible(dev);
1093 	if (ret)
1094 		goto out;
1095 
1096 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1097 
1098 	/* Access to snoopable pages through the GTT is incoherent. */
1099 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1100 		ret = -EINVAL;
1101 		goto unlock;
1102 	}
1103 
1104 	/* Now bind it into the GTT if needed */
1105 	ret = i915_gem_object_pin(obj, 0, true, false);
1106 	if (ret)
1107 		goto unlock;
1108 
1109 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1110 	if (ret)
1111 		goto unpin;
1112 
1113 	ret = i915_gem_object_get_fence(obj);
1114 	if (ret)
1115 		goto unpin;
1116 
1117 	obj->fault_mappable = true;
1118 
1119 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1120 		page_offset;
1121 
1122 	/* Finally, remap it using the new GTT offset */
1123 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1124 unpin:
1125 	i915_gem_object_unpin(obj);
1126 unlock:
1127 	mutex_unlock(&dev->struct_mutex);
1128 out:
1129 	switch (ret) {
1130 	case -EIO:
1131 		/* If this -EIO is due to a gpu hang, give the reset code a
1132 		 * chance to clean up the mess. Otherwise return the proper
1133 		 * SIGBUS. */
1134 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1135 			return VM_FAULT_SIGBUS;
1136 	case -EAGAIN:
1137 		/* Give the error handler a chance to run and move the
1138 		 * objects off the GPU active list. Next time we service the
1139 		 * fault, we should be able to transition the page into the
1140 		 * GTT without touching the GPU (and so avoid further
1141 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1142 		 * with coherency, just lost writes.
1143 		 */
1144 		set_need_resched();
1145 	case 0:
1146 	case -ERESTARTSYS:
1147 	case -EINTR:
1148 	case -EBUSY:
1149 		/*
1150 		 * EBUSY is ok: this just means that another thread
1151 		 * already did the job.
1152 		 */
1153 		return VM_FAULT_NOPAGE;
1154 	case -ENOMEM:
1155 		return VM_FAULT_OOM;
1156 	case -ENOSPC:
1157 		return VM_FAULT_SIGBUS;
1158 	default:
1159 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1160 		return VM_FAULT_SIGBUS;
1161 	}
1162 }
1163 #endif
1164 
1165 /**
1166  * i915_gem_release_mmap - remove physical page mappings
1167  * @obj: obj in question
1168  *
1169  * Preserve the reservation of the mmapping with the DRM core code, but
1170  * relinquish ownership of the pages back to the system.
1171  *
1172  * It is vital that we remove the page mapping if we have mapped a tiled
1173  * object through the GTT and then lose the fence register due to
1174  * resource pressure. Similarly if the object has been moved out of the
1175  * aperture, than pages mapped into userspace must be revoked. Removing the
1176  * mapping will then trigger a page fault on the next user access, allowing
1177  * fixup by i915_gem_fault().
1178  */
1179 void
1180 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1181 {
1182 	vm_object_t devobj;
1183 	vm_page_t m;
1184 	int i, page_count;
1185 
1186 	if (!obj->fault_mappable)
1187 		return;
1188 
1189 	devobj = cdev_pager_lookup(obj);
1190 	if (devobj != NULL) {
1191 		page_count = OFF_TO_IDX(obj->base.size);
1192 
1193 		VM_OBJECT_LOCK(devobj);
1194 		for (i = 0; i < page_count; i++) {
1195 			m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1196 			if (m == NULL)
1197 				continue;
1198 			cdev_pager_free_page(devobj, m);
1199 		}
1200 		VM_OBJECT_UNLOCK(devobj);
1201 		vm_object_deallocate(devobj);
1202 	}
1203 
1204 	obj->fault_mappable = false;
1205 }
1206 
1207 uint32_t
1208 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1209 {
1210 	uint32_t gtt_size;
1211 
1212 	if (INTEL_INFO(dev)->gen >= 4 ||
1213 	    tiling_mode == I915_TILING_NONE)
1214 		return size;
1215 
1216 	/* Previous chips need a power-of-two fence region when tiling */
1217 	if (INTEL_INFO(dev)->gen == 3)
1218 		gtt_size = 1024*1024;
1219 	else
1220 		gtt_size = 512*1024;
1221 
1222 	while (gtt_size < size)
1223 		gtt_size <<= 1;
1224 
1225 	return gtt_size;
1226 }
1227 
1228 /**
1229  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1230  * @obj: object to check
1231  *
1232  * Return the required GTT alignment for an object, taking into account
1233  * potential fence register mapping.
1234  */
1235 uint32_t
1236 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1237 			   int tiling_mode, bool fenced)
1238 {
1239 
1240 	/*
1241 	 * Minimum alignment is 4k (GTT page size), but might be greater
1242 	 * if a fence register is needed for the object.
1243 	 */
1244 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1245 	    tiling_mode == I915_TILING_NONE)
1246 		return 4096;
1247 
1248 	/*
1249 	 * Previous chips need to be aligned to the size of the smallest
1250 	 * fence register that can contain the object.
1251 	 */
1252 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1253 }
1254 
1255 int
1256 i915_gem_mmap_gtt(struct drm_file *file,
1257 		  struct drm_device *dev,
1258 		  uint32_t handle,
1259 		  uint64_t *offset)
1260 {
1261 	struct drm_i915_private *dev_priv = dev->dev_private;
1262 	struct drm_i915_gem_object *obj;
1263 	int ret;
1264 
1265 	ret = i915_mutex_lock_interruptible(dev);
1266 	if (ret)
1267 		return ret;
1268 
1269 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1270 	if (&obj->base == NULL) {
1271 		ret = -ENOENT;
1272 		goto unlock;
1273 	}
1274 
1275 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1276 		ret = -E2BIG;
1277 		goto out;
1278 	}
1279 
1280 	if (obj->madv != I915_MADV_WILLNEED) {
1281 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1282 		ret = -EINVAL;
1283 		goto out;
1284 	}
1285 
1286 	ret = drm_gem_create_mmap_offset(&obj->base);
1287 	if (ret)
1288 		goto out;
1289 
1290 	*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1291 	    DRM_GEM_MAPPING_KEY;
1292 out:
1293 	drm_gem_object_unreference(&obj->base);
1294 unlock:
1295 	mutex_unlock(&dev->struct_mutex);
1296 	return ret;
1297 }
1298 
1299 /**
1300  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1301  * @dev: DRM device
1302  * @data: GTT mapping ioctl data
1303  * @file: GEM object info
1304  *
1305  * Simply returns the fake offset to userspace so it can mmap it.
1306  * The mmap call will end up in drm_gem_mmap(), which will set things
1307  * up so we can get faults in the handler above.
1308  *
1309  * The fault handler will take care of binding the object into the GTT
1310  * (since it may have been evicted to make room for something), allocating
1311  * a fence register, and mapping the appropriate aperture address into
1312  * userspace.
1313  */
1314 int
1315 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1316 			struct drm_file *file)
1317 {
1318 	struct drm_i915_gem_mmap_gtt *args = data;
1319 
1320 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1321 }
1322 
1323 /* Immediately discard the backing storage */
1324 static void
1325 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1326 {
1327 	vm_object_t vm_obj;
1328 
1329 	vm_obj = obj->base.vm_obj;
1330 	VM_OBJECT_LOCK(vm_obj);
1331 	vm_object_page_remove(vm_obj, 0, 0, false);
1332 	VM_OBJECT_UNLOCK(vm_obj);
1333 	obj->madv = __I915_MADV_PURGED;
1334 }
1335 
1336 static inline int
1337 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1338 {
1339 	return obj->madv == I915_MADV_DONTNEED;
1340 }
1341 
1342 static void
1343 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1344 {
1345 	vm_page_t m;
1346 	int page_count, i;
1347 
1348 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1349 
1350 	if (obj->tiling_mode != I915_TILING_NONE)
1351 		i915_gem_object_save_bit_17_swizzle(obj);
1352 	if (obj->madv == I915_MADV_DONTNEED)
1353 		obj->dirty = 0;
1354 	page_count = obj->base.size / PAGE_SIZE;
1355 	VM_OBJECT_LOCK(obj->base.vm_obj);
1356 #if GEM_PARANOID_CHECK_GTT
1357 	i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count);
1358 #endif
1359 	for (i = 0; i < page_count; i++) {
1360 		m = obj->pages[i];
1361 		if (obj->dirty)
1362 			vm_page_dirty(m);
1363 		if (obj->madv == I915_MADV_WILLNEED)
1364 			vm_page_reference(m);
1365 		vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
1366 		vm_page_unwire(obj->pages[i], 1);
1367 		vm_page_wakeup(obj->pages[i]);
1368 	}
1369 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
1370 	obj->dirty = 0;
1371 	drm_free(obj->pages, M_DRM);
1372 	obj->pages = NULL;
1373 }
1374 
1375 int
1376 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1377 {
1378 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1379 
1380 	if (obj->pages == NULL)
1381 		return 0;
1382 
1383 	BUG_ON(obj->gtt_space);
1384 
1385 	if (obj->pages_pin_count)
1386 		return -EBUSY;
1387 
1388 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1389 	 * array, hence protect them from being reaped by removing them from gtt
1390 	 * lists early. */
1391 	list_del(&obj->global_list);
1392 
1393 	ops->put_pages(obj);
1394 	obj->pages = NULL;
1395 
1396 	if (i915_gem_object_is_purgeable(obj))
1397 		i915_gem_object_truncate(obj);
1398 
1399 	return 0;
1400 }
1401 
1402 static int
1403 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1404 {
1405 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1406 	struct drm_device *dev;
1407 	vm_object_t vm_obj;
1408 	int page_count, i, j;
1409 	struct vm_page *page;
1410 
1411 	dev = obj->base.dev;
1412 	KASSERT(obj->pages == NULL, ("Obj already has pages"));
1413 	page_count = obj->base.size / PAGE_SIZE;
1414 	obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
1415 	    M_WAITOK);
1416 
1417 	vm_obj = obj->base.vm_obj;
1418 	VM_OBJECT_LOCK(vm_obj);
1419 
1420 	for (i = 0; i < page_count; i++) {
1421 		page = shmem_read_mapping_page(vm_obj, i);
1422 		if (IS_ERR(page)) {
1423 			i915_gem_purge(dev_priv, page_count);
1424 			goto err_pages;
1425 		}
1426 
1427 		obj->pages[i] = page;
1428 	}
1429 
1430 	VM_OBJECT_UNLOCK(vm_obj);
1431 	if (i915_gem_object_needs_bit17_swizzle(obj))
1432 		i915_gem_object_do_bit_17_swizzle(obj);
1433 
1434 	return 0;
1435 
1436 err_pages:
1437 	for (j = 0; j < i; j++) {
1438 		page = obj->pages[j];
1439 		vm_page_busy_wait(page, FALSE, "i915gem");
1440 		vm_page_unwire(page, 0);
1441 		vm_page_wakeup(page);
1442 	}
1443 	VM_OBJECT_UNLOCK(vm_obj);
1444 	drm_free(obj->pages, M_DRM);
1445 	obj->pages = NULL;
1446 	return (-EIO);
1447 }
1448 
1449 /* Ensure that the associated pages are gathered from the backing storage
1450  * and pinned into our object. i915_gem_object_get_pages() may be called
1451  * multiple times before they are released by a single call to
1452  * i915_gem_object_put_pages() - once the pages are no longer referenced
1453  * either as a result of memory pressure (reaping pages under the shrinker)
1454  * or as the object is itself released.
1455  */
1456 int
1457 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1458 {
1459 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1460 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1461 	int ret;
1462 
1463 	if (obj->pages)
1464 		return 0;
1465 
1466 	if (obj->madv != I915_MADV_WILLNEED) {
1467 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1468 		return -EINVAL;
1469 	}
1470 
1471 	BUG_ON(obj->pages_pin_count);
1472 
1473 	ret = ops->get_pages(obj);
1474 	if (ret)
1475 		return ret;
1476 
1477 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1478 	return 0;
1479 }
1480 
1481 void
1482 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1483 			       struct intel_ring_buffer *ring)
1484 {
1485 	struct drm_device *dev = obj->base.dev;
1486 	struct drm_i915_private *dev_priv = dev->dev_private;
1487 	u32 seqno = intel_ring_get_seqno(ring);
1488 
1489 	BUG_ON(ring == NULL);
1490 	if (obj->ring != ring && obj->last_write_seqno) {
1491 		/* Keep the seqno relative to the current ring */
1492 		obj->last_write_seqno = seqno;
1493 	}
1494 	obj->ring = ring;
1495 
1496 	/* Add a reference if we're newly entering the active list. */
1497 	if (!obj->active) {
1498 		drm_gem_object_reference(&obj->base);
1499 		obj->active = 1;
1500 	}
1501 
1502 	/* Move from whatever list we were on to the tail of execution. */
1503 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1504 	list_move_tail(&obj->ring_list, &ring->active_list);
1505 
1506 	obj->last_read_seqno = seqno;
1507 
1508 	if (obj->fenced_gpu_access) {
1509 		obj->last_fenced_seqno = seqno;
1510 
1511 		/* Bump MRU to take account of the delayed flush */
1512 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1513 			struct drm_i915_fence_reg *reg;
1514 
1515 			reg = &dev_priv->fence_regs[obj->fence_reg];
1516 			list_move_tail(&reg->lru_list,
1517 				       &dev_priv->mm.fence_list);
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1524 {
1525 	struct drm_device *dev = obj->base.dev;
1526 	struct drm_i915_private *dev_priv = dev->dev_private;
1527 
1528 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1529 	BUG_ON(!obj->active);
1530 
1531 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1532 
1533 	list_del_init(&obj->ring_list);
1534 	obj->ring = NULL;
1535 
1536 	obj->last_read_seqno = 0;
1537 	obj->last_write_seqno = 0;
1538 	obj->base.write_domain = 0;
1539 
1540 	obj->last_fenced_seqno = 0;
1541 	obj->fenced_gpu_access = false;
1542 
1543 	obj->active = 0;
1544 	drm_gem_object_unreference(&obj->base);
1545 
1546 	WARN_ON(i915_verify_lists(dev));
1547 }
1548 
1549 static int
1550 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1551 {
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	struct intel_ring_buffer *ring;
1554 	int ret, i, j;
1555 
1556 	/* Carefully retire all requests without writing to the rings */
1557 	for_each_ring(ring, dev_priv, i) {
1558 		ret = intel_ring_idle(ring);
1559 		if (ret)
1560 			return ret;
1561 	}
1562 	i915_gem_retire_requests(dev);
1563 
1564 	/* Finally reset hw state */
1565 	for_each_ring(ring, dev_priv, i) {
1566 		intel_ring_init_seqno(ring, seqno);
1567 
1568 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1569 			ring->sync_seqno[j] = 0;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1576 {
1577 	struct drm_i915_private *dev_priv = dev->dev_private;
1578 	int ret;
1579 
1580 	if (seqno == 0)
1581 		return -EINVAL;
1582 
1583 	/* HWS page needs to be set less than what we
1584 	 * will inject to ring
1585 	 */
1586 	ret = i915_gem_init_seqno(dev, seqno - 1);
1587 	if (ret)
1588 		return ret;
1589 
1590 	/* Carefully set the last_seqno value so that wrap
1591 	 * detection still works
1592 	 */
1593 	dev_priv->next_seqno = seqno;
1594 	dev_priv->last_seqno = seqno - 1;
1595 	if (dev_priv->last_seqno == 0)
1596 		dev_priv->last_seqno--;
1597 
1598 	return 0;
1599 }
1600 
1601 int
1602 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1603 {
1604 	struct drm_i915_private *dev_priv = dev->dev_private;
1605 
1606 	/* reserve 0 for non-seqno */
1607 	if (dev_priv->next_seqno == 0) {
1608 		int ret = i915_gem_init_seqno(dev, 0);
1609 		if (ret)
1610 			return ret;
1611 
1612 		dev_priv->next_seqno = 1;
1613 	}
1614 
1615 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1616 	return 0;
1617 }
1618 
1619 int __i915_add_request(struct intel_ring_buffer *ring,
1620 		       struct drm_file *file,
1621 		       struct drm_i915_gem_object *obj,
1622 		       u32 *out_seqno)
1623 {
1624 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1625 	struct drm_i915_gem_request *request;
1626 	u32 request_ring_position, request_start;
1627 	int was_empty;
1628 	int ret;
1629 
1630 	request_start = intel_ring_get_tail(ring);
1631 	/*
1632 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1633 	 * after having emitted the batchbuffer command. Hence we need to fix
1634 	 * things up similar to emitting the lazy request. The difference here
1635 	 * is that the flush _must_ happen before the next request, no matter
1636 	 * what.
1637 	 */
1638 	ret = intel_ring_flush_all_caches(ring);
1639 	if (ret)
1640 		return ret;
1641 
1642 	request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1643 	if (request == NULL)
1644 		return -ENOMEM;
1645 
1646 
1647 	/* Record the position of the start of the request so that
1648 	 * should we detect the updated seqno part-way through the
1649 	 * GPU processing the request, we never over-estimate the
1650 	 * position of the head.
1651 	 */
1652 	request_ring_position = intel_ring_get_tail(ring);
1653 
1654 	ret = ring->add_request(ring);
1655 	if (ret) {
1656 		kfree(request);
1657 		return ret;
1658 	}
1659 
1660 	request->seqno = intel_ring_get_seqno(ring);
1661 	request->ring = ring;
1662 	request->head = request_start;
1663 	request->tail = request_ring_position;
1664 	request->ctx = ring->last_context;
1665 	request->batch_obj = obj;
1666 
1667 	/* Whilst this request exists, batch_obj will be on the
1668 	 * active_list, and so will hold the active reference. Only when this
1669 	 * request is retired will the the batch_obj be moved onto the
1670 	 * inactive_list and lose its active reference. Hence we do not need
1671 	 * to explicitly hold another reference here.
1672 	 */
1673 
1674 	if (request->ctx)
1675 		i915_gem_context_reference(request->ctx);
1676 
1677 	request->emitted_jiffies = jiffies;
1678 	was_empty = list_empty(&ring->request_list);
1679 	list_add_tail(&request->list, &ring->request_list);
1680 	request->file_priv = NULL;
1681 
1682 	if (file) {
1683 		struct drm_i915_file_private *file_priv = file->driver_priv;
1684 
1685 		spin_lock(&file_priv->mm.lock);
1686 		request->file_priv = file_priv;
1687 		list_add_tail(&request->client_list,
1688 			      &file_priv->mm.request_list);
1689 		spin_unlock(&file_priv->mm.lock);
1690 	}
1691 
1692 	ring->outstanding_lazy_request = 0;
1693 
1694 	if (!dev_priv->mm.suspended) {
1695 		if (i915_enable_hangcheck) {
1696 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
1697 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
1698 		}
1699 		if (was_empty) {
1700 			queue_delayed_work(dev_priv->wq,
1701 					   &dev_priv->mm.retire_work,
1702 					   round_jiffies_up_relative(hz));
1703 			intel_mark_busy(dev_priv->dev);
1704 		}
1705 	}
1706 
1707 	if (out_seqno)
1708 		*out_seqno = request->seqno;
1709 	return 0;
1710 }
1711 
1712 static inline void
1713 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1714 {
1715 	struct drm_i915_file_private *file_priv = request->file_priv;
1716 
1717 	if (!file_priv)
1718 		return;
1719 
1720 	spin_lock(&file_priv->mm.lock);
1721 	if (request->file_priv) {
1722 		list_del(&request->client_list);
1723 		request->file_priv = NULL;
1724 	}
1725 	spin_unlock(&file_priv->mm.lock);
1726 }
1727 
1728 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
1729 {
1730 	if (acthd >= obj->gtt_offset &&
1731 	    acthd < obj->gtt_offset + obj->base.size)
1732 		return true;
1733 
1734 	return false;
1735 }
1736 
1737 static bool i915_head_inside_request(const u32 acthd_unmasked,
1738 				     const u32 request_start,
1739 				     const u32 request_end)
1740 {
1741 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
1742 
1743 	if (request_start < request_end) {
1744 		if (acthd >= request_start && acthd < request_end)
1745 			return true;
1746 	} else if (request_start > request_end) {
1747 		if (acthd >= request_start || acthd < request_end)
1748 			return true;
1749 	}
1750 
1751 	return false;
1752 }
1753 
1754 static bool i915_request_guilty(struct drm_i915_gem_request *request,
1755 				const u32 acthd, bool *inside)
1756 {
1757 	/* There is a possibility that unmasked head address
1758 	 * pointing inside the ring, matches the batch_obj address range.
1759 	 * However this is extremely unlikely.
1760 	 */
1761 
1762 	if (request->batch_obj) {
1763 		if (i915_head_inside_object(acthd, request->batch_obj)) {
1764 			*inside = true;
1765 			return true;
1766 		}
1767 	}
1768 
1769 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
1770 		*inside = false;
1771 		return true;
1772 	}
1773 
1774 	return false;
1775 }
1776 
1777 static void i915_set_reset_status(struct intel_ring_buffer *ring,
1778 				  struct drm_i915_gem_request *request,
1779 				  u32 acthd)
1780 {
1781 	struct i915_ctx_hang_stats *hs = NULL;
1782 	bool inside, guilty;
1783 
1784 	/* Innocent until proven guilty */
1785 	guilty = false;
1786 
1787 	if (ring->hangcheck.action != wait &&
1788 	    i915_request_guilty(request, acthd, &inside)) {
1789 		DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
1790 			  ring->name,
1791 			  inside ? "inside" : "flushing",
1792 			  request->batch_obj ?
1793 			  request->batch_obj->gtt_offset : 0,
1794 			  request->ctx ? request->ctx->id : 0,
1795 			  acthd);
1796 
1797 		guilty = true;
1798 	}
1799 
1800 	/* If contexts are disabled or this is the default context, use
1801 	 * file_priv->reset_state
1802 	 */
1803 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
1804 		hs = &request->ctx->hang_stats;
1805 	else if (request->file_priv)
1806 		hs = &request->file_priv->hang_stats;
1807 
1808 	if (hs) {
1809 		if (guilty)
1810 			hs->batch_active++;
1811 		else
1812 			hs->batch_pending++;
1813 	}
1814 }
1815 
1816 static void i915_gem_free_request(struct drm_i915_gem_request *request)
1817 {
1818 	list_del(&request->list);
1819 	i915_gem_request_remove_from_client(request);
1820 
1821 	if (request->ctx)
1822 		i915_gem_context_unreference(request->ctx);
1823 
1824 	kfree(request);
1825 }
1826 
1827 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1828 				      struct intel_ring_buffer *ring)
1829 {
1830 	u32 completed_seqno;
1831 	u32 acthd;
1832 
1833 	acthd = intel_ring_get_active_head(ring);
1834 	completed_seqno = ring->get_seqno(ring, false);
1835 
1836 	while (!list_empty(&ring->request_list)) {
1837 		struct drm_i915_gem_request *request;
1838 
1839 		request = list_first_entry(&ring->request_list,
1840 					   struct drm_i915_gem_request,
1841 					   list);
1842 
1843 		if (request->seqno > completed_seqno)
1844 			i915_set_reset_status(ring, request, acthd);
1845 
1846 		i915_gem_free_request(request);
1847 	}
1848 
1849 	while (!list_empty(&ring->active_list)) {
1850 		struct drm_i915_gem_object *obj;
1851 
1852 		obj = list_first_entry(&ring->active_list,
1853 				       struct drm_i915_gem_object,
1854 				       ring_list);
1855 
1856 		i915_gem_object_move_to_inactive(obj);
1857 	}
1858 }
1859 
1860 void i915_gem_restore_fences(struct drm_device *dev)
1861 {
1862 	struct drm_i915_private *dev_priv = dev->dev_private;
1863 	int i;
1864 
1865 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1866 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1867 
1868 		/*
1869 		 * Commit delayed tiling changes if we have an object still
1870 		 * attached to the fence, otherwise just clear the fence.
1871 		 */
1872 		if (reg->obj) {
1873 			i915_gem_object_update_fence(reg->obj, reg,
1874 						     reg->obj->tiling_mode);
1875 		} else {
1876 			i915_gem_write_fence(dev, i, NULL);
1877 		}
1878 	}
1879 }
1880 
1881 void i915_gem_reset(struct drm_device *dev)
1882 {
1883 	struct drm_i915_private *dev_priv = dev->dev_private;
1884 	struct drm_i915_gem_object *obj;
1885 	struct intel_ring_buffer *ring;
1886 	int i;
1887 
1888 	for_each_ring(ring, dev_priv, i)
1889 		i915_gem_reset_ring_lists(dev_priv, ring);
1890 
1891 	/* Move everything out of the GPU domains to ensure we do any
1892 	 * necessary invalidation upon reuse.
1893 	 */
1894 	list_for_each_entry(obj,
1895 			    &dev_priv->mm.inactive_list,
1896 			    mm_list)
1897 	{
1898 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1899 	}
1900 
1901 	i915_gem_restore_fences(dev);
1902 }
1903 
1904 /**
1905  * This function clears the request list as sequence numbers are passed.
1906  */
1907 void
1908 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1909 {
1910 	uint32_t seqno;
1911 
1912 	if (list_empty(&ring->request_list))
1913 		return;
1914 
1915 	WARN_ON(i915_verify_lists(ring->dev));
1916 
1917 	seqno = ring->get_seqno(ring, true);
1918 
1919 	while (!list_empty(&ring->request_list)) {
1920 		struct drm_i915_gem_request *request;
1921 
1922 		request = list_first_entry(&ring->request_list,
1923 					   struct drm_i915_gem_request,
1924 					   list);
1925 
1926 		if (!i915_seqno_passed(seqno, request->seqno))
1927 			break;
1928 
1929 		/* We know the GPU must have read the request to have
1930 		 * sent us the seqno + interrupt, so use the position
1931 		 * of tail of the request to update the last known position
1932 		 * of the GPU head.
1933 		 */
1934 		ring->last_retired_head = request->tail;
1935 
1936 		i915_gem_free_request(request);
1937 	}
1938 
1939 	/* Move any buffers on the active list that are no longer referenced
1940 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1941 	 */
1942 	while (!list_empty(&ring->active_list)) {
1943 		struct drm_i915_gem_object *obj;
1944 
1945 		obj = list_first_entry(&ring->active_list,
1946 				      struct drm_i915_gem_object,
1947 				      ring_list);
1948 
1949 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1950 			break;
1951 
1952 		i915_gem_object_move_to_inactive(obj);
1953 	}
1954 
1955 	if (unlikely(ring->trace_irq_seqno &&
1956 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1957 		ring->irq_put(ring);
1958 		ring->trace_irq_seqno = 0;
1959 	}
1960 
1961 }
1962 
1963 void
1964 i915_gem_retire_requests(struct drm_device *dev)
1965 {
1966 	drm_i915_private_t *dev_priv = dev->dev_private;
1967 	struct intel_ring_buffer *ring;
1968 	int i;
1969 
1970 	for_each_ring(ring, dev_priv, i)
1971 		i915_gem_retire_requests_ring(ring);
1972 }
1973 
1974 static long
1975 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1976 		  bool purgeable_only)
1977 {
1978 	struct drm_i915_gem_object *obj, *next;
1979 	long count = 0;
1980 
1981 	list_for_each_entry_safe(obj, next,
1982 				 &dev_priv->mm.unbound_list,
1983 				 global_list) {
1984 #if 0
1985 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1986 		    i915_gem_object_put_pages(obj) == 0) {
1987 			count += obj->base.size >> PAGE_SHIFT;
1988 			if (count >= target)
1989 				return count;
1990 		}
1991 #endif
1992 	}
1993 
1994 	list_for_each_entry_safe(obj, next,
1995 				 &dev_priv->mm.inactive_list,
1996 				 mm_list) {
1997 #if 0
1998 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1999 		    i915_gem_object_unbind(obj) == 0 &&
2000 		    i915_gem_object_put_pages(obj) == 0) {
2001 			count += obj->base.size >> PAGE_SHIFT;
2002 			if (count >= target)
2003 				return count;
2004 		}
2005 #endif
2006 	}
2007 
2008 	return count;
2009 }
2010 
2011 static long
2012 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2013 {
2014 	return __i915_gem_shrink(dev_priv, target, true);
2015 }
2016 
2017 static void
2018 i915_gem_retire_work_handler(struct work_struct *work)
2019 {
2020 	drm_i915_private_t *dev_priv;
2021 	struct drm_device *dev;
2022 	struct intel_ring_buffer *ring;
2023 	bool idle;
2024 	int i;
2025 
2026 	dev_priv = container_of(work, drm_i915_private_t,
2027 				mm.retire_work.work);
2028 	dev = dev_priv->dev;
2029 
2030 	/* Come back later if the device is busy... */
2031 	if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) {
2032 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2033 				   round_jiffies_up_relative(hz));
2034 		return;
2035 	}
2036 
2037 	i915_gem_retire_requests(dev);
2038 
2039 	/* Send a periodic flush down the ring so we don't hold onto GEM
2040 	 * objects indefinitely.
2041 	 */
2042 	idle = true;
2043 	for_each_ring(ring, dev_priv, i) {
2044 		if (ring->gpu_caches_dirty)
2045 			i915_add_request(ring, NULL);
2046 
2047 		idle &= list_empty(&ring->request_list);
2048 	}
2049 
2050 	if (!dev_priv->mm.suspended && !idle)
2051 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2052 				   round_jiffies_up_relative(hz));
2053 	if (idle)
2054 		intel_mark_idle(dev);
2055 
2056 	mutex_unlock(&dev->struct_mutex);
2057 }
2058 /**
2059  * Ensures that an object will eventually get non-busy by flushing any required
2060  * write domains, emitting any outstanding lazy request and retiring and
2061  * completed requests.
2062  */
2063 static int
2064 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2065 {
2066 	int ret;
2067 
2068 	if (obj->active) {
2069 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2070 		if (ret)
2071 			return ret;
2072 
2073 		i915_gem_retire_requests_ring(obj->ring);
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2081  * @DRM_IOCTL_ARGS: standard ioctl arguments
2082  *
2083  * Returns 0 if successful, else an error is returned with the remaining time in
2084  * the timeout parameter.
2085  *  -ETIME: object is still busy after timeout
2086  *  -ERESTARTSYS: signal interrupted the wait
2087  *  -ENONENT: object doesn't exist
2088  * Also possible, but rare:
2089  *  -EAGAIN: GPU wedged
2090  *  -ENOMEM: damn
2091  *  -ENODEV: Internal IRQ fail
2092  *  -E?: The add request failed
2093  *
2094  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2095  * non-zero timeout parameter the wait ioctl will wait for the given number of
2096  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2097  * without holding struct_mutex the object may become re-busied before this
2098  * function completes. A similar but shorter * race condition exists in the busy
2099  * ioctl
2100  */
2101 int
2102 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2103 {
2104 	drm_i915_private_t *dev_priv = dev->dev_private;
2105 	struct drm_i915_gem_wait *args = data;
2106 	struct drm_i915_gem_object *obj;
2107 	struct intel_ring_buffer *ring = NULL;
2108 	struct timespec timeout_stack, *timeout = NULL;
2109 	unsigned reset_counter;
2110 	u32 seqno = 0;
2111 	int ret = 0;
2112 
2113 	if (args->timeout_ns >= 0) {
2114 		timeout_stack = ns_to_timespec(args->timeout_ns);
2115 		timeout = &timeout_stack;
2116 	}
2117 
2118 	ret = i915_mutex_lock_interruptible(dev);
2119 	if (ret)
2120 		return ret;
2121 
2122 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2123 	if (&obj->base == NULL) {
2124 		mutex_unlock(&dev->struct_mutex);
2125 		return -ENOENT;
2126 	}
2127 
2128 	/* Need to make sure the object gets inactive eventually. */
2129 	ret = i915_gem_object_flush_active(obj);
2130 	if (ret)
2131 		goto out;
2132 
2133 	if (obj->active) {
2134 		seqno = obj->last_read_seqno;
2135 		ring = obj->ring;
2136 	}
2137 
2138 	if (seqno == 0)
2139 		 goto out;
2140 
2141 	/* Do this after OLR check to make sure we make forward progress polling
2142 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2143 	 */
2144 	if (!args->timeout_ns) {
2145 		ret = -ETIMEDOUT;
2146 		goto out;
2147 	}
2148 
2149 	drm_gem_object_unreference(&obj->base);
2150 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2151 	mutex_unlock(&dev->struct_mutex);
2152 
2153 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2154 	if (timeout)
2155 		args->timeout_ns = timespec_to_ns(timeout);
2156 	return ret;
2157 
2158 out:
2159 	drm_gem_object_unreference(&obj->base);
2160 	mutex_unlock(&dev->struct_mutex);
2161 	return ret;
2162 }
2163 
2164 /**
2165  * i915_gem_object_sync - sync an object to a ring.
2166  *
2167  * @obj: object which may be in use on another ring.
2168  * @to: ring we wish to use the object on. May be NULL.
2169  *
2170  * This code is meant to abstract object synchronization with the GPU.
2171  * Calling with NULL implies synchronizing the object with the CPU
2172  * rather than a particular GPU ring.
2173  *
2174  * Returns 0 if successful, else propagates up the lower layer error.
2175  */
2176 int
2177 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2178 		     struct intel_ring_buffer *to)
2179 {
2180 	struct intel_ring_buffer *from = obj->ring;
2181 	u32 seqno;
2182 	int ret, idx;
2183 
2184 	if (from == NULL || to == from)
2185 		return 0;
2186 
2187 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2188 		return i915_gem_object_wait_rendering(obj, false);
2189 
2190 	idx = intel_ring_sync_index(from, to);
2191 
2192 	seqno = obj->last_read_seqno;
2193 	if (seqno <= from->sync_seqno[idx])
2194 		return 0;
2195 
2196 	ret = i915_gem_check_olr(obj->ring, seqno);
2197 	if (ret)
2198 		return ret;
2199 
2200 	ret = to->sync_to(to, from, seqno);
2201 	if (!ret)
2202 		/* We use last_read_seqno because sync_to()
2203 		 * might have just caused seqno wrap under
2204 		 * the radar.
2205 		 */
2206 		from->sync_seqno[idx] = obj->last_read_seqno;
2207 
2208 	return ret;
2209 }
2210 
2211 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2212 {
2213 	u32 old_write_domain, old_read_domains;
2214 
2215 	/* Force a pagefault for domain tracking on next user access */
2216 	i915_gem_release_mmap(obj);
2217 
2218 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2219 		return;
2220 
2221 	/* Wait for any direct GTT access to complete */
2222 	cpu_mfence();
2223 
2224 	old_read_domains = obj->base.read_domains;
2225 	old_write_domain = obj->base.write_domain;
2226 
2227 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2228 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2229 
2230 }
2231 
2232 /**
2233  * Unbinds an object from the GTT aperture.
2234  */
2235 int
2236 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2237 {
2238 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2239 	int ret;
2240 
2241 	if (obj->gtt_space == NULL)
2242 		return 0;
2243 
2244 	if (obj->pin_count)
2245 		return -EBUSY;
2246 
2247 	BUG_ON(obj->pages == NULL);
2248 
2249 	ret = i915_gem_object_finish_gpu(obj);
2250 	if (ret)
2251 		return ret;
2252 	/* Continue on if we fail due to EIO, the GPU is hung so we
2253 	 * should be safe and we need to cleanup or else we might
2254 	 * cause memory corruption through use-after-free.
2255 	 */
2256 
2257 	i915_gem_object_finish_gtt(obj);
2258 
2259 	/* Move the object to the CPU domain to ensure that
2260 	 * any possible CPU writes while it's not in the GTT
2261 	 * are flushed when we go to remap it.
2262 	 */
2263 	if (ret == 0)
2264 		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2265 	if (ret == -ERESTARTSYS)
2266 		return ret;
2267 	if (ret) {
2268 		/* In the event of a disaster, abandon all caches and
2269 		 * hope for the best.
2270 		 */
2271 		i915_gem_clflush_object(obj);
2272 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2273 	}
2274 
2275 	/* release the fence reg _after_ flushing */
2276 	ret = i915_gem_object_put_fence(obj);
2277 	if (ret)
2278 		return ret;
2279 
2280 	if (obj->has_global_gtt_mapping)
2281 		i915_gem_gtt_unbind_object(obj);
2282 	if (obj->has_aliasing_ppgtt_mapping) {
2283 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2284 		obj->has_aliasing_ppgtt_mapping = 0;
2285 	}
2286 	i915_gem_gtt_finish_object(obj);
2287 
2288 	i915_gem_object_put_pages_gtt(obj);
2289 
2290 	list_del_init(&obj->global_list);
2291 	list_del_init(&obj->mm_list);
2292 	/* Avoid an unnecessary call to unbind on rebind. */
2293 	obj->map_and_fenceable = true;
2294 
2295 	drm_mm_put_block(obj->gtt_space);
2296 	obj->gtt_space = NULL;
2297 	obj->gtt_offset = 0;
2298 
2299 	if (i915_gem_object_is_purgeable(obj))
2300 		i915_gem_object_truncate(obj);
2301 
2302 	return ret;
2303 }
2304 
2305 int i915_gpu_idle(struct drm_device *dev)
2306 {
2307 	drm_i915_private_t *dev_priv = dev->dev_private;
2308 	struct intel_ring_buffer *ring;
2309 	int ret, i;
2310 
2311 	/* Flush everything onto the inactive list. */
2312 	for_each_ring(ring, dev_priv, i) {
2313 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2314 		if (ret)
2315 			return ret;
2316 
2317 		ret = intel_ring_idle(ring);
2318 		if (ret)
2319 			return ret;
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2326 				 struct drm_i915_gem_object *obj)
2327 {
2328 	drm_i915_private_t *dev_priv = dev->dev_private;
2329 	int fence_reg;
2330 	int fence_pitch_shift;
2331 
2332 	if (INTEL_INFO(dev)->gen >= 6) {
2333 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2334 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2335 	} else {
2336 		fence_reg = FENCE_REG_965_0;
2337 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2338 	}
2339 
2340 	fence_reg += reg * 8;
2341 
2342 	/* To w/a incoherency with non-atomic 64-bit register updates,
2343 	 * we split the 64-bit update into two 32-bit writes. In order
2344 	 * for a partial fence not to be evaluated between writes, we
2345 	 * precede the update with write to turn off the fence register,
2346 	 * and only enable the fence as the last step.
2347 	 *
2348 	 * For extra levels of paranoia, we make sure each step lands
2349 	 * before applying the next step.
2350 	 */
2351 	I915_WRITE(fence_reg, 0);
2352 	POSTING_READ(fence_reg);
2353 
2354 	if (obj) {
2355 		u32 size = obj->gtt_space->size;
2356 		uint64_t val;
2357 
2358 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2359 				 0xfffff000) << 32;
2360 		val |= obj->gtt_offset & 0xfffff000;
2361 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2362 		if (obj->tiling_mode == I915_TILING_Y)
2363 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2364 		val |= I965_FENCE_REG_VALID;
2365 
2366 		I915_WRITE(fence_reg + 4, val >> 32);
2367 		POSTING_READ(fence_reg + 4);
2368 
2369 		I915_WRITE(fence_reg + 0, val);
2370 		POSTING_READ(fence_reg);
2371 	} else {
2372 		I915_WRITE(fence_reg + 4, 0);
2373 		POSTING_READ(fence_reg + 4);
2374 	}
2375 }
2376 
2377 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2378 				 struct drm_i915_gem_object *obj)
2379 {
2380 	drm_i915_private_t *dev_priv = dev->dev_private;
2381 	u32 val;
2382 
2383 	if (obj) {
2384 		u32 size = obj->gtt_space->size;
2385 		int pitch_val;
2386 		int tile_width;
2387 
2388 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2389 		     (size & -size) != size ||
2390 		     (obj->gtt_offset & (size - 1)),
2391 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2392 		     obj->gtt_offset, obj->map_and_fenceable, size);
2393 
2394 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2395 			tile_width = 128;
2396 		else
2397 			tile_width = 512;
2398 
2399 		/* Note: pitch better be a power of two tile widths */
2400 		pitch_val = obj->stride / tile_width;
2401 		pitch_val = ffs(pitch_val) - 1;
2402 
2403 		val = obj->gtt_offset;
2404 		if (obj->tiling_mode == I915_TILING_Y)
2405 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2406 		val |= I915_FENCE_SIZE_BITS(size);
2407 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2408 		val |= I830_FENCE_REG_VALID;
2409 	} else
2410 		val = 0;
2411 
2412 	if (reg < 8)
2413 		reg = FENCE_REG_830_0 + reg * 4;
2414 	else
2415 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2416 
2417 	I915_WRITE(reg, val);
2418 	POSTING_READ(reg);
2419 }
2420 
2421 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2422 				struct drm_i915_gem_object *obj)
2423 {
2424 	drm_i915_private_t *dev_priv = dev->dev_private;
2425 	uint32_t val;
2426 
2427 	if (obj) {
2428 		u32 size = obj->gtt_space->size;
2429 		uint32_t pitch_val;
2430 
2431 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2432 		     (size & -size) != size ||
2433 		     (obj->gtt_offset & (size - 1)),
2434 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2435 		     obj->gtt_offset, size);
2436 
2437 		pitch_val = obj->stride / 128;
2438 		pitch_val = ffs(pitch_val) - 1;
2439 
2440 		val = obj->gtt_offset;
2441 		if (obj->tiling_mode == I915_TILING_Y)
2442 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2443 		val |= I830_FENCE_SIZE_BITS(size);
2444 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2445 		val |= I830_FENCE_REG_VALID;
2446 	} else
2447 		val = 0;
2448 
2449 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2450 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2451 }
2452 
2453 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2454 {
2455 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2456 }
2457 
2458 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2459 				 struct drm_i915_gem_object *obj)
2460 {
2461 	struct drm_i915_private *dev_priv = dev->dev_private;
2462 
2463 	/* Ensure that all CPU reads are completed before installing a fence
2464 	 * and all writes before removing the fence.
2465 	 */
2466 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2467 		cpu_mfence();
2468 
2469 	WARN(obj && (!obj->stride || !obj->tiling_mode),
2470 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2471 	     obj->stride, obj->tiling_mode);
2472 
2473 	switch (INTEL_INFO(dev)->gen) {
2474 	case 7:
2475 	case 6:
2476 	case 5:
2477 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2478 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2479 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2480 	default: BUG();
2481 	}
2482 
2483 	/* And similarly be paranoid that no direct access to this region
2484 	 * is reordered to before the fence is installed.
2485 	 */
2486 	if (i915_gem_object_needs_mb(obj))
2487 		cpu_mfence();
2488 }
2489 
2490 static inline int fence_number(struct drm_i915_private *dev_priv,
2491 			       struct drm_i915_fence_reg *fence)
2492 {
2493 	return fence - dev_priv->fence_regs;
2494 }
2495 
2496 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2497 					 struct drm_i915_fence_reg *fence,
2498 					 bool enable)
2499 {
2500 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2501 	int reg = fence_number(dev_priv, fence);
2502 
2503 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2504 
2505 	if (enable) {
2506 		obj->fence_reg = reg;
2507 		fence->obj = obj;
2508 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2509 	} else {
2510 		obj->fence_reg = I915_FENCE_REG_NONE;
2511 		fence->obj = NULL;
2512 		list_del_init(&fence->lru_list);
2513 	}
2514 	obj->fence_dirty = false;
2515 }
2516 
2517 static int
2518 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2519 {
2520 	if (obj->last_fenced_seqno) {
2521 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2522 		if (ret)
2523 			return ret;
2524 
2525 		obj->last_fenced_seqno = 0;
2526 	}
2527 
2528 	obj->fenced_gpu_access = false;
2529 	return 0;
2530 }
2531 
2532 int
2533 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2534 {
2535 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2536 	struct drm_i915_fence_reg *fence;
2537 	int ret;
2538 
2539 	ret = i915_gem_object_wait_fence(obj);
2540 	if (ret)
2541 		return ret;
2542 
2543 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2544 		return 0;
2545 
2546 	fence = &dev_priv->fence_regs[obj->fence_reg];
2547 
2548 	i915_gem_object_fence_lost(obj);
2549 	i915_gem_object_update_fence(obj, fence, false);
2550 
2551 	return 0;
2552 }
2553 
2554 static struct drm_i915_fence_reg *
2555 i915_find_fence_reg(struct drm_device *dev)
2556 {
2557 	struct drm_i915_private *dev_priv = dev->dev_private;
2558 	struct drm_i915_fence_reg *reg, *avail;
2559 	int i;
2560 
2561 	/* First try to find a free reg */
2562 	avail = NULL;
2563 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2564 		reg = &dev_priv->fence_regs[i];
2565 		if (!reg->obj)
2566 			return reg;
2567 
2568 		if (!reg->pin_count)
2569 			avail = reg;
2570 	}
2571 
2572 	if (avail == NULL)
2573 		return NULL;
2574 
2575 	/* None available, try to steal one or wait for a user to finish */
2576 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2577 		if (reg->pin_count)
2578 			continue;
2579 
2580 		return reg;
2581 	}
2582 
2583 	return NULL;
2584 }
2585 
2586 /**
2587  * i915_gem_object_get_fence - set up fencing for an object
2588  * @obj: object to map through a fence reg
2589  *
2590  * When mapping objects through the GTT, userspace wants to be able to write
2591  * to them without having to worry about swizzling if the object is tiled.
2592  * This function walks the fence regs looking for a free one for @obj,
2593  * stealing one if it can't find any.
2594  *
2595  * It then sets up the reg based on the object's properties: address, pitch
2596  * and tiling format.
2597  *
2598  * For an untiled surface, this removes any existing fence.
2599  */
2600 int
2601 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2602 {
2603 	struct drm_device *dev = obj->base.dev;
2604 	struct drm_i915_private *dev_priv = dev->dev_private;
2605 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2606 	struct drm_i915_fence_reg *reg;
2607 	int ret;
2608 
2609 	/* Have we updated the tiling parameters upon the object and so
2610 	 * will need to serialise the write to the associated fence register?
2611 	 */
2612 	if (obj->fence_dirty) {
2613 		ret = i915_gem_object_wait_fence(obj);
2614 		if (ret)
2615 			return ret;
2616 	}
2617 
2618 	/* Just update our place in the LRU if our fence is getting reused. */
2619 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2620 		reg = &dev_priv->fence_regs[obj->fence_reg];
2621 		if (!obj->fence_dirty) {
2622 			list_move_tail(&reg->lru_list,
2623 				       &dev_priv->mm.fence_list);
2624 			return 0;
2625 		}
2626 	} else if (enable) {
2627 		reg = i915_find_fence_reg(dev);
2628 		if (reg == NULL)
2629 			return -EDEADLK;
2630 
2631 		if (reg->obj) {
2632 			struct drm_i915_gem_object *old = reg->obj;
2633 
2634 			ret = i915_gem_object_wait_fence(old);
2635 			if (ret)
2636 				return ret;
2637 
2638 			i915_gem_object_fence_lost(old);
2639 		}
2640 	} else
2641 		return 0;
2642 
2643 	i915_gem_object_update_fence(obj, reg, enable);
2644 
2645 	return 0;
2646 }
2647 
2648 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2649 				     struct drm_mm_node *gtt_space,
2650 				     unsigned long cache_level)
2651 {
2652 	struct drm_mm_node *other;
2653 
2654 	/* On non-LLC machines we have to be careful when putting differing
2655 	 * types of snoopable memory together to avoid the prefetcher
2656 	 * crossing memory domains and dying.
2657 	 */
2658 	if (HAS_LLC(dev))
2659 		return true;
2660 
2661 	if (gtt_space == NULL)
2662 		return true;
2663 
2664 	if (list_empty(&gtt_space->node_list))
2665 		return true;
2666 
2667 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2668 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2669 		return false;
2670 
2671 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2672 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2673 		return false;
2674 
2675 	return true;
2676 }
2677 
2678 static void i915_gem_verify_gtt(struct drm_device *dev)
2679 {
2680 #if WATCH_GTT
2681 	struct drm_i915_private *dev_priv = dev->dev_private;
2682 	struct drm_i915_gem_object *obj;
2683 	int err = 0;
2684 
2685 	list_for_each_entry(obj, &dev_priv->mm.global_list, global_list) {
2686 		if (obj->gtt_space == NULL) {
2687 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2688 			err++;
2689 			continue;
2690 		}
2691 
2692 		if (obj->cache_level != obj->gtt_space->color) {
2693 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2694 			       obj->gtt_space->start,
2695 			       obj->gtt_space->start + obj->gtt_space->size,
2696 			       obj->cache_level,
2697 			       obj->gtt_space->color);
2698 			err++;
2699 			continue;
2700 		}
2701 
2702 		if (!i915_gem_valid_gtt_space(dev,
2703 					      obj->gtt_space,
2704 					      obj->cache_level)) {
2705 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2706 			       obj->gtt_space->start,
2707 			       obj->gtt_space->start + obj->gtt_space->size,
2708 			       obj->cache_level);
2709 			err++;
2710 			continue;
2711 		}
2712 	}
2713 
2714 	WARN_ON(err);
2715 #endif
2716 }
2717 
2718 /**
2719  * Finds free space in the GTT aperture and binds the object there.
2720  */
2721 static int
2722 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2723 			    unsigned alignment,
2724 			    bool map_and_fenceable,
2725 			    bool nonblocking)
2726 {
2727 	struct drm_device *dev = obj->base.dev;
2728 	drm_i915_private_t *dev_priv = dev->dev_private;
2729 	struct drm_mm_node *node;
2730 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2731 	bool mappable, fenceable;
2732 	size_t gtt_max = map_and_fenceable ?
2733 		dev_priv->gtt.mappable_end : dev_priv->gtt.total;
2734 	int ret;
2735 
2736 	fence_size = i915_gem_get_gtt_size(dev,
2737 					   obj->base.size,
2738 					   obj->tiling_mode);
2739 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2740 						     obj->base.size,
2741 						     obj->tiling_mode, true);
2742 	unfenced_alignment =
2743 		i915_gem_get_gtt_alignment(dev,
2744 						    obj->base.size,
2745 						    obj->tiling_mode, false);
2746 
2747 	if (alignment == 0)
2748 		alignment = map_and_fenceable ? fence_alignment :
2749 						unfenced_alignment;
2750 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2751 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2752 		return -EINVAL;
2753 	}
2754 
2755 	size = map_and_fenceable ? fence_size : obj->base.size;
2756 
2757 	/* If the object is bigger than the entire aperture, reject it early
2758 	 * before evicting everything in a vain attempt to find space.
2759 	 */
2760 	if (obj->base.size > gtt_max) {
2761 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
2762 			  obj->base.size,
2763 			  map_and_fenceable ? "mappable" : "total",
2764 			  gtt_max);
2765 		return -E2BIG;
2766 	}
2767 
2768  search_free:
2769 	if (map_and_fenceable)
2770 		node = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2771 							  size, alignment, obj->cache_level,
2772 							  0, dev_priv->gtt.mappable_end,
2773 							  false);
2774 	else
2775 		node = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2776 						      size, alignment, obj->cache_level,
2777 						      false);
2778 	if (node != NULL) {
2779 		if (map_and_fenceable)
2780 			obj->gtt_space =
2781 				drm_mm_get_block_range_generic(node,
2782 							       size, alignment, obj->cache_level,
2783 							       0, dev_priv->gtt.mappable_end,
2784 							       false);
2785 		else
2786 			obj->gtt_space =
2787 				drm_mm_get_block_generic(node,
2788 							 size, alignment, obj->cache_level,
2789 							 false);
2790 	}
2791 	if (obj->gtt_space == NULL) {
2792 		ret = i915_gem_evict_something(dev, size, alignment,
2793 					       obj->cache_level,
2794 					       map_and_fenceable,
2795 					       nonblocking);
2796 		if (ret)
2797 			return ret;
2798 
2799 		goto search_free;
2800 	}
2801 
2802 	/*
2803 	 * NOTE: i915_gem_object_get_pages_gtt() cannot
2804 	 *	 return ENOMEM, since we used VM_ALLOC_RETRY.
2805 	 */
2806 	ret = i915_gem_object_get_pages_gtt(obj);
2807 	if (ret != 0) {
2808 		drm_mm_put_block(obj->gtt_space);
2809 		obj->gtt_space = NULL;
2810 		return ret;
2811 	}
2812 
2813 	i915_gem_gtt_bind_object(obj, obj->cache_level);
2814 	if (ret != 0) {
2815 		i915_gem_object_put_pages_gtt(obj);
2816 		drm_mm_put_block(obj->gtt_space);
2817 		obj->gtt_space = NULL;
2818 		if (i915_gem_evict_everything(dev))
2819 			return (ret);
2820 		goto search_free;
2821 	}
2822 
2823 	list_add_tail(&obj->global_list, &dev_priv->mm.bound_list);
2824 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2825 
2826 	obj->gtt_offset = obj->gtt_space->start;
2827 
2828 	fenceable =
2829 		obj->gtt_space->size == fence_size &&
2830 		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2831 
2832 	mappable =
2833 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2834 
2835 	obj->map_and_fenceable = mappable && fenceable;
2836 
2837 	trace_i915_gem_object_bind(obj, map_and_fenceable);
2838 	i915_gem_verify_gtt(dev);
2839 	return 0;
2840 }
2841 
2842 void
2843 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2844 {
2845 
2846 	/* If we don't have a page list set up, then we're not pinned
2847 	 * to GPU, and we can ignore the cache flush because it'll happen
2848 	 * again at bind time.
2849 	 */
2850 	if (obj->pages == NULL)
2851 		return;
2852 
2853 	/*
2854 	 * Stolen memory is always coherent with the GPU as it is explicitly
2855 	 * marked as wc by the system, or the system is cache-coherent.
2856 	 */
2857 	if (obj->stolen)
2858 		return;
2859 
2860 	/* If the GPU is snooping the contents of the CPU cache,
2861 	 * we do not need to manually clear the CPU cache lines.  However,
2862 	 * the caches are only snooped when the render cache is
2863 	 * flushed/invalidated.  As we always have to emit invalidations
2864 	 * and flushes when moving into and out of the RENDER domain, correct
2865 	 * snooping behaviour occurs naturally as the result of our domain
2866 	 * tracking.
2867 	 */
2868 	if (obj->cache_level != I915_CACHE_NONE)
2869 		return;
2870 
2871 	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2872 }
2873 
2874 /** Flushes the GTT write domain for the object if it's dirty. */
2875 static void
2876 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2877 {
2878 	uint32_t old_write_domain;
2879 
2880 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2881 		return;
2882 
2883 	/* No actual flushing is required for the GTT write domain.  Writes
2884 	 * to it immediately go to main memory as far as we know, so there's
2885 	 * no chipset flush.  It also doesn't land in render cache.
2886 	 *
2887 	 * However, we do have to enforce the order so that all writes through
2888 	 * the GTT land before any writes to the device, such as updates to
2889 	 * the GATT itself.
2890 	 */
2891 	cpu_sfence();
2892 
2893 	old_write_domain = obj->base.write_domain;
2894 	obj->base.write_domain = 0;
2895 }
2896 
2897 /** Flushes the CPU write domain for the object if it's dirty. */
2898 static void
2899 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2900 {
2901 	uint32_t old_write_domain;
2902 
2903 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2904 		return;
2905 
2906 	i915_gem_clflush_object(obj);
2907 	i915_gem_chipset_flush(obj->base.dev);
2908 	old_write_domain = obj->base.write_domain;
2909 	obj->base.write_domain = 0;
2910 }
2911 
2912 /**
2913  * Moves a single object to the GTT read, and possibly write domain.
2914  *
2915  * This function returns when the move is complete, including waiting on
2916  * flushes to occur.
2917  */
2918 int
2919 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2920 {
2921 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2922 	uint32_t old_write_domain, old_read_domains;
2923 	int ret;
2924 
2925 	/* Not valid to be called on unbound objects. */
2926 	if (obj->gtt_space == NULL)
2927 		return -EINVAL;
2928 
2929 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2930 		return 0;
2931 
2932 	ret = i915_gem_object_wait_rendering(obj, !write);
2933 	if (ret)
2934 		return ret;
2935 
2936 	i915_gem_object_flush_cpu_write_domain(obj);
2937 
2938 	/* Serialise direct access to this object with the barriers for
2939 	 * coherent writes from the GPU, by effectively invalidating the
2940 	 * GTT domain upon first access.
2941 	 */
2942 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2943 		cpu_mfence();
2944 
2945 	old_write_domain = obj->base.write_domain;
2946 	old_read_domains = obj->base.read_domains;
2947 
2948 	/* It should now be out of any other write domains, and we can update
2949 	 * the domain values for our changes.
2950 	 */
2951 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2952 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2953 	if (write) {
2954 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2955 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2956 		obj->dirty = 1;
2957 	}
2958 
2959 	/* And bump the LRU for this access */
2960 	if (i915_gem_object_is_inactive(obj))
2961 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2962 
2963 	return 0;
2964 }
2965 
2966 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2967 				    enum i915_cache_level cache_level)
2968 {
2969 	struct drm_device *dev = obj->base.dev;
2970 	drm_i915_private_t *dev_priv = dev->dev_private;
2971 	int ret;
2972 
2973 	if (obj->cache_level == cache_level)
2974 		return 0;
2975 
2976 	if (obj->pin_count) {
2977 		DRM_DEBUG("can not change the cache level of pinned objects\n");
2978 		return -EBUSY;
2979 	}
2980 
2981 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
2982 		ret = i915_gem_object_unbind(obj);
2983 		if (ret)
2984 			return ret;
2985 	}
2986 
2987 	if (obj->gtt_space) {
2988 		ret = i915_gem_object_finish_gpu(obj);
2989 		if (ret)
2990 			return ret;
2991 
2992 		i915_gem_object_finish_gtt(obj);
2993 
2994 		/* Before SandyBridge, you could not use tiling or fence
2995 		 * registers with snooped memory, so relinquish any fences
2996 		 * currently pointing to our region in the aperture.
2997 		 */
2998 		if (INTEL_INFO(dev)->gen < 6) {
2999 			ret = i915_gem_object_put_fence(obj);
3000 			if (ret)
3001 				return ret;
3002 		}
3003 
3004 		if (obj->has_global_gtt_mapping)
3005 			i915_gem_gtt_bind_object(obj, cache_level);
3006 		if (obj->has_aliasing_ppgtt_mapping)
3007 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3008 					       obj, cache_level);
3009 
3010 		obj->gtt_space->color = cache_level;
3011 	}
3012 
3013 	if (cache_level == I915_CACHE_NONE) {
3014 		u32 old_read_domains, old_write_domain;
3015 
3016 		/* If we're coming from LLC cached, then we haven't
3017 		 * actually been tracking whether the data is in the
3018 		 * CPU cache or not, since we only allow one bit set
3019 		 * in obj->write_domain and have been skipping the clflushes.
3020 		 * Just set it to the CPU cache for now.
3021 		 */
3022 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3023 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3024 
3025 		old_read_domains = obj->base.read_domains;
3026 		old_write_domain = obj->base.write_domain;
3027 
3028 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3029 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3030 
3031 	}
3032 
3033 	obj->cache_level = cache_level;
3034 	i915_gem_verify_gtt(dev);
3035 	return 0;
3036 }
3037 
3038 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3039 			       struct drm_file *file)
3040 {
3041 	struct drm_i915_gem_caching *args = data;
3042 	struct drm_i915_gem_object *obj;
3043 	int ret;
3044 
3045 	ret = i915_mutex_lock_interruptible(dev);
3046 	if (ret)
3047 		return ret;
3048 
3049 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3050 	if (&obj->base == NULL) {
3051 		ret = -ENOENT;
3052 		goto unlock;
3053 	}
3054 
3055 	args->caching = obj->cache_level != I915_CACHE_NONE;
3056 
3057 	drm_gem_object_unreference(&obj->base);
3058 unlock:
3059 	mutex_unlock(&dev->struct_mutex);
3060 	return ret;
3061 }
3062 
3063 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3064 			       struct drm_file *file)
3065 {
3066 	struct drm_i915_gem_caching *args = data;
3067 	struct drm_i915_gem_object *obj;
3068 	enum i915_cache_level level;
3069 	int ret;
3070 
3071 	switch (args->caching) {
3072 	case I915_CACHING_NONE:
3073 		level = I915_CACHE_NONE;
3074 		break;
3075 	case I915_CACHING_CACHED:
3076 		level = I915_CACHE_LLC;
3077 		break;
3078 	default:
3079 		return -EINVAL;
3080 	}
3081 
3082 	ret = i915_mutex_lock_interruptible(dev);
3083 	if (ret)
3084 		return ret;
3085 
3086 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3087 	if (&obj->base == NULL) {
3088 		ret = -ENOENT;
3089 		goto unlock;
3090 	}
3091 
3092 	ret = i915_gem_object_set_cache_level(obj, level);
3093 
3094 	drm_gem_object_unreference(&obj->base);
3095 unlock:
3096 	mutex_unlock(&dev->struct_mutex);
3097 	return ret;
3098 }
3099 
3100 /*
3101  * Prepare buffer for display plane (scanout, cursors, etc).
3102  * Can be called from an uninterruptible phase (modesetting) and allows
3103  * any flushes to be pipelined (for pageflips).
3104  */
3105 int
3106 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3107 				     u32 alignment,
3108 				     struct intel_ring_buffer *pipelined)
3109 {
3110 	u32 old_read_domains, old_write_domain;
3111 	int ret;
3112 
3113 	if (pipelined != obj->ring) {
3114 		ret = i915_gem_object_sync(obj, pipelined);
3115 		if (ret)
3116 			return ret;
3117 	}
3118 
3119 	/* The display engine is not coherent with the LLC cache on gen6.  As
3120 	 * a result, we make sure that the pinning that is about to occur is
3121 	 * done with uncached PTEs. This is lowest common denominator for all
3122 	 * chipsets.
3123 	 *
3124 	 * However for gen6+, we could do better by using the GFDT bit instead
3125 	 * of uncaching, which would allow us to flush all the LLC-cached data
3126 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3127 	 */
3128 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3129 	if (ret)
3130 		return ret;
3131 
3132 	/* As the user may map the buffer once pinned in the display plane
3133 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3134 	 * always use map_and_fenceable for all scanout buffers.
3135 	 */
3136 	ret = i915_gem_object_pin(obj, alignment, true, false);
3137 	if (ret)
3138 		return ret;
3139 
3140 	i915_gem_object_flush_cpu_write_domain(obj);
3141 
3142 	old_write_domain = obj->base.write_domain;
3143 	old_read_domains = obj->base.read_domains;
3144 
3145 	/* It should now be out of any other write domains, and we can update
3146 	 * the domain values for our changes.
3147 	 */
3148 	obj->base.write_domain = 0;
3149 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3150 
3151 	return 0;
3152 }
3153 
3154 int
3155 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3156 {
3157 	int ret;
3158 
3159 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3160 		return 0;
3161 
3162 	ret = i915_gem_object_wait_rendering(obj, false);
3163 	if (ret)
3164 		return ret;
3165 
3166 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3167 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3168 	return 0;
3169 }
3170 
3171 /**
3172  * Moves a single object to the CPU read, and possibly write domain.
3173  *
3174  * This function returns when the move is complete, including waiting on
3175  * flushes to occur.
3176  */
3177 int
3178 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3179 {
3180 	uint32_t old_write_domain, old_read_domains;
3181 	int ret;
3182 
3183 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3184 		return 0;
3185 
3186 	ret = i915_gem_object_wait_rendering(obj, !write);
3187 	if (ret)
3188 		return ret;
3189 
3190 	i915_gem_object_flush_gtt_write_domain(obj);
3191 
3192 	old_write_domain = obj->base.write_domain;
3193 	old_read_domains = obj->base.read_domains;
3194 
3195 	/* Flush the CPU cache if it's still invalid. */
3196 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3197 		i915_gem_clflush_object(obj);
3198 
3199 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3200 	}
3201 
3202 	/* It should now be out of any other write domains, and we can update
3203 	 * the domain values for our changes.
3204 	 */
3205 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3206 
3207 	/* If we're writing through the CPU, then the GPU read domains will
3208 	 * need to be invalidated at next use.
3209 	 */
3210 	if (write) {
3211 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3212 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 /* Throttle our rendering by waiting until the ring has completed our requests
3219  * emitted over 20 msec ago.
3220  *
3221  * Note that if we were to use the current jiffies each time around the loop,
3222  * we wouldn't escape the function with any frames outstanding if the time to
3223  * render a frame was over 20ms.
3224  *
3225  * This should get us reasonable parallelism between CPU and GPU but also
3226  * relatively low latency when blocking on a particular request to finish.
3227  */
3228 static int
3229 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3230 {
3231 	struct drm_i915_private *dev_priv = dev->dev_private;
3232 	struct drm_i915_file_private *file_priv = file->driver_priv;
3233 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3234 	struct drm_i915_gem_request *request;
3235 	struct intel_ring_buffer *ring = NULL;
3236 	unsigned reset_counter;
3237 	u32 seqno = 0;
3238 	int ret;
3239 
3240 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3241 	if (ret)
3242 		return ret;
3243 
3244 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3245 	if (ret)
3246 		return ret;
3247 
3248 	spin_lock(&file_priv->mm.lock);
3249 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3250 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3251 			break;
3252 
3253 		ring = request->ring;
3254 		seqno = request->seqno;
3255 	}
3256 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3257 	spin_unlock(&file_priv->mm.lock);
3258 
3259 	if (seqno == 0)
3260 		return 0;
3261 
3262 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3263 	if (ret == 0)
3264 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3265 
3266 	return ret;
3267 }
3268 
3269 int
3270 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3271 		    uint32_t alignment,
3272 		    bool map_and_fenceable,
3273 		    bool nonblocking)
3274 {
3275 	int ret;
3276 
3277 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3278 		return -EBUSY;
3279 
3280 	if (obj->gtt_space != NULL) {
3281 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3282 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3283 			WARN(obj->pin_count,
3284 			     "bo is already pinned with incorrect alignment:"
3285 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3286 			     " obj->map_and_fenceable=%d\n",
3287 			     obj->gtt_offset, alignment,
3288 			     map_and_fenceable,
3289 			     obj->map_and_fenceable);
3290 			ret = i915_gem_object_unbind(obj);
3291 			if (ret)
3292 				return ret;
3293 		}
3294 	}
3295 
3296 	if (obj->gtt_space == NULL) {
3297 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3298 
3299 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3300 						  map_and_fenceable,
3301 						  nonblocking);
3302 		if (ret)
3303 			return ret;
3304 
3305 		if (!dev_priv->mm.aliasing_ppgtt)
3306 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3307 	}
3308 
3309 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3310 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3311 
3312 	obj->pin_count++;
3313 	obj->pin_mappable |= map_and_fenceable;
3314 
3315 	return 0;
3316 }
3317 
3318 void
3319 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3320 {
3321 	BUG_ON(obj->pin_count == 0);
3322 	BUG_ON(obj->gtt_space == NULL);
3323 
3324 	if (--obj->pin_count == 0)
3325 		obj->pin_mappable = false;
3326 }
3327 
3328 int
3329 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3330 		   struct drm_file *file)
3331 {
3332 	struct drm_i915_gem_pin *args = data;
3333 	struct drm_i915_gem_object *obj;
3334 	int ret;
3335 
3336 	ret = i915_mutex_lock_interruptible(dev);
3337 	if (ret)
3338 		return ret;
3339 
3340 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3341 	if (&obj->base == NULL) {
3342 		ret = -ENOENT;
3343 		goto unlock;
3344 	}
3345 
3346 	if (obj->madv != I915_MADV_WILLNEED) {
3347 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3348 		ret = -EINVAL;
3349 		goto out;
3350 	}
3351 
3352 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3353 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3354 			  args->handle);
3355 		ret = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	if (obj->user_pin_count == 0) {
3360 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3361 		if (ret)
3362 			goto out;
3363 	}
3364 
3365 	obj->user_pin_count++;
3366 	obj->pin_filp = file;
3367 
3368 	/* XXX - flush the CPU caches for pinned objects
3369 	 * as the X server doesn't manage domains yet
3370 	 */
3371 	i915_gem_object_flush_cpu_write_domain(obj);
3372 	args->offset = obj->gtt_offset;
3373 out:
3374 	drm_gem_object_unreference(&obj->base);
3375 unlock:
3376 	mutex_unlock(&dev->struct_mutex);
3377 	return ret;
3378 }
3379 
3380 int
3381 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3382 		     struct drm_file *file)
3383 {
3384 	struct drm_i915_gem_pin *args = data;
3385 	struct drm_i915_gem_object *obj;
3386 	int ret;
3387 
3388 	ret = i915_mutex_lock_interruptible(dev);
3389 	if (ret)
3390 		return ret;
3391 
3392 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3393 	if (&obj->base == NULL) {
3394 		ret = -ENOENT;
3395 		goto unlock;
3396 	}
3397 
3398 	if (obj->pin_filp != file) {
3399 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3400 			  args->handle);
3401 		ret = -EINVAL;
3402 		goto out;
3403 	}
3404 	obj->user_pin_count--;
3405 	if (obj->user_pin_count == 0) {
3406 		obj->pin_filp = NULL;
3407 		i915_gem_object_unpin(obj);
3408 	}
3409 
3410 out:
3411 	drm_gem_object_unreference(&obj->base);
3412 unlock:
3413 	mutex_unlock(&dev->struct_mutex);
3414 	return ret;
3415 }
3416 
3417 int
3418 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3419 		    struct drm_file *file)
3420 {
3421 	struct drm_i915_gem_busy *args = data;
3422 	struct drm_i915_gem_object *obj;
3423 	int ret;
3424 
3425 	ret = i915_mutex_lock_interruptible(dev);
3426 	if (ret)
3427 		return ret;
3428 
3429 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3430 	if (&obj->base == NULL) {
3431 		ret = -ENOENT;
3432 		goto unlock;
3433 	}
3434 
3435 	/* Count all active objects as busy, even if they are currently not used
3436 	 * by the gpu. Users of this interface expect objects to eventually
3437 	 * become non-busy without any further actions, therefore emit any
3438 	 * necessary flushes here.
3439 	 */
3440 	ret = i915_gem_object_flush_active(obj);
3441 
3442 	args->busy = obj->active;
3443 	if (obj->ring) {
3444 		args->busy |= intel_ring_flag(obj->ring) << 16;
3445 	}
3446 
3447 	drm_gem_object_unreference(&obj->base);
3448 unlock:
3449 	mutex_unlock(&dev->struct_mutex);
3450 	return ret;
3451 }
3452 
3453 int
3454 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3455 			struct drm_file *file_priv)
3456 {
3457 	return i915_gem_ring_throttle(dev, file_priv);
3458 }
3459 
3460 int
3461 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3462 		       struct drm_file *file_priv)
3463 {
3464 	struct drm_i915_gem_madvise *args = data;
3465 	struct drm_i915_gem_object *obj;
3466 	int ret;
3467 
3468 	switch (args->madv) {
3469 	case I915_MADV_DONTNEED:
3470 	case I915_MADV_WILLNEED:
3471 	    break;
3472 	default:
3473 	    return -EINVAL;
3474 	}
3475 
3476 	ret = i915_mutex_lock_interruptible(dev);
3477 	if (ret)
3478 		return ret;
3479 
3480 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3481 	if (&obj->base == NULL) {
3482 		ret = -ENOENT;
3483 		goto unlock;
3484 	}
3485 
3486 	if (obj->pin_count) {
3487 		ret = -EINVAL;
3488 		goto out;
3489 	}
3490 
3491 	if (obj->madv != __I915_MADV_PURGED)
3492 		obj->madv = args->madv;
3493 
3494 	/* if the object is no longer attached, discard its backing storage */
3495 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3496 		i915_gem_object_truncate(obj);
3497 
3498 	args->retained = obj->madv != __I915_MADV_PURGED;
3499 
3500 out:
3501 	drm_gem_object_unreference(&obj->base);
3502 unlock:
3503 	mutex_unlock(&dev->struct_mutex);
3504 	return ret;
3505 }
3506 
3507 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3508 			  const struct drm_i915_gem_object_ops *ops)
3509 {
3510 	INIT_LIST_HEAD(&obj->mm_list);
3511 	INIT_LIST_HEAD(&obj->global_list);
3512 	INIT_LIST_HEAD(&obj->ring_list);
3513 	INIT_LIST_HEAD(&obj->exec_list);
3514 
3515 	obj->ops = ops;
3516 
3517 	obj->fence_reg = I915_FENCE_REG_NONE;
3518 	obj->madv = I915_MADV_WILLNEED;
3519 	/* Avoid an unnecessary call to unbind on the first bind. */
3520 	obj->map_and_fenceable = true;
3521 
3522 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3523 }
3524 
3525 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3526 	.get_pages = i915_gem_object_get_pages_gtt,
3527 	.put_pages = i915_gem_object_put_pages_gtt,
3528 };
3529 
3530 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3531 						  size_t size)
3532 {
3533 	struct drm_i915_gem_object *obj;
3534 #if 0
3535 	struct address_space *mapping;
3536 	u32 mask;
3537 #endif
3538 
3539 	obj = kmalloc(sizeof(*obj), M_DRM, M_WAITOK | M_ZERO);
3540 	if (obj == NULL)
3541 		return NULL;
3542 
3543 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3544 		kfree(obj);
3545 		return NULL;
3546 	}
3547 
3548 #if 0
3549 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3550 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3551 		/* 965gm cannot relocate objects above 4GiB. */
3552 		mask &= ~__GFP_HIGHMEM;
3553 		mask |= __GFP_DMA32;
3554 	}
3555 
3556 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3557 	mapping_set_gfp_mask(mapping, mask);
3558 #endif
3559 
3560 	i915_gem_object_init(obj, &i915_gem_object_ops);
3561 
3562 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3563 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3564 
3565 	if (HAS_LLC(dev)) {
3566 		/* On some devices, we can have the GPU use the LLC (the CPU
3567 		 * cache) for about a 10% performance improvement
3568 		 * compared to uncached.  Graphics requests other than
3569 		 * display scanout are coherent with the CPU in
3570 		 * accessing this cache.  This means in this mode we
3571 		 * don't need to clflush on the CPU side, and on the
3572 		 * GPU side we only need to flush internal caches to
3573 		 * get data visible to the CPU.
3574 		 *
3575 		 * However, we maintain the display planes as UC, and so
3576 		 * need to rebind when first used as such.
3577 		 */
3578 		obj->cache_level = I915_CACHE_LLC;
3579 	} else
3580 		obj->cache_level = I915_CACHE_NONE;
3581 
3582 	return obj;
3583 }
3584 
3585 int i915_gem_init_object(struct drm_gem_object *obj)
3586 {
3587 	BUG();
3588 
3589 	return 0;
3590 }
3591 
3592 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3593 {
3594 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3595 	struct drm_device *dev = obj->base.dev;
3596 	drm_i915_private_t *dev_priv = dev->dev_private;
3597 
3598 	if (obj->phys_obj)
3599 		i915_gem_detach_phys_object(dev, obj);
3600 
3601 	obj->pin_count = 0;
3602 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3603 		bool was_interruptible;
3604 
3605 		was_interruptible = dev_priv->mm.interruptible;
3606 		dev_priv->mm.interruptible = false;
3607 
3608 		WARN_ON(i915_gem_object_unbind(obj));
3609 
3610 		dev_priv->mm.interruptible = was_interruptible;
3611 	}
3612 
3613 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3614 	 * before progressing. */
3615 	if (obj->stolen)
3616 		i915_gem_object_unpin_pages(obj);
3617 
3618 	if (WARN_ON(obj->pages_pin_count))
3619 		obj->pages_pin_count = 0;
3620 	i915_gem_object_put_pages(obj);
3621 	drm_gem_free_mmap_offset(&obj->base);
3622 
3623 	BUG_ON(obj->pages);
3624 
3625 	drm_gem_object_release(&obj->base);
3626 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3627 
3628 	kfree(obj->bit_17);
3629 	i915_gem_object_free(obj);
3630 }
3631 
3632 int
3633 i915_gem_idle(struct drm_device *dev)
3634 {
3635 	drm_i915_private_t *dev_priv = dev->dev_private;
3636 	int ret;
3637 
3638 	mutex_lock(&dev->struct_mutex);
3639 
3640 	if (dev_priv->mm.suspended) {
3641 		mutex_unlock(&dev->struct_mutex);
3642 		return 0;
3643 	}
3644 
3645 	ret = i915_gpu_idle(dev);
3646 	if (ret) {
3647 		mutex_unlock(&dev->struct_mutex);
3648 		return ret;
3649 	}
3650 	i915_gem_retire_requests(dev);
3651 
3652 	/* Under UMS, be paranoid and evict. */
3653 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3654 		i915_gem_evict_everything(dev);
3655 
3656 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3657 	 * We need to replace this with a semaphore, or something.
3658 	 * And not confound mm.suspended!
3659 	 */
3660 	dev_priv->mm.suspended = 1;
3661 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3662 
3663 	i915_kernel_lost_context(dev);
3664 	i915_gem_cleanup_ringbuffer(dev);
3665 
3666 	mutex_unlock(&dev->struct_mutex);
3667 
3668 	/* Cancel the retire work handler, which should be idle now. */
3669 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3670 
3671 	return 0;
3672 }
3673 
3674 void i915_gem_l3_remap(struct drm_device *dev)
3675 {
3676 	drm_i915_private_t *dev_priv = dev->dev_private;
3677 	u32 misccpctl;
3678 	int i;
3679 
3680 	if (!HAS_L3_GPU_CACHE(dev))
3681 		return;
3682 
3683 	if (!dev_priv->l3_parity.remap_info)
3684 		return;
3685 
3686 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3687 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3688 	POSTING_READ(GEN7_MISCCPCTL);
3689 
3690 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3691 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3692 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3693 			DRM_DEBUG("0x%x was already programmed to %x\n",
3694 				  GEN7_L3LOG_BASE + i, remap);
3695 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3696 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3697 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3698 	}
3699 
3700 	/* Make sure all the writes land before disabling dop clock gating */
3701 	POSTING_READ(GEN7_L3LOG_BASE);
3702 
3703 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3704 }
3705 
3706 void i915_gem_init_swizzling(struct drm_device *dev)
3707 {
3708 	drm_i915_private_t *dev_priv = dev->dev_private;
3709 
3710 	if (INTEL_INFO(dev)->gen < 5 ||
3711 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3712 		return;
3713 
3714 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3715 				 DISP_TILE_SURFACE_SWIZZLING);
3716 
3717 	if (IS_GEN5(dev))
3718 		return;
3719 
3720 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3721 	if (IS_GEN6(dev))
3722 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3723 	else if (IS_GEN7(dev))
3724 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3725 	else
3726 		BUG();
3727 }
3728 
3729 static bool
3730 intel_enable_blt(struct drm_device *dev)
3731 {
3732 	int revision;
3733 
3734 	if (!HAS_BLT(dev))
3735 		return false;
3736 
3737 	/* The blitter was dysfunctional on early prototypes */
3738 	revision = pci_read_config(dev->dev, PCIR_REVID, 1);
3739 	if (IS_GEN6(dev) && revision < 8) {
3740 		DRM_INFO("BLT not supported on this pre-production hardware;"
3741 			 " graphics performance will be degraded.\n");
3742 		return false;
3743 	}
3744 
3745 	return true;
3746 }
3747 
3748 static int i915_gem_init_rings(struct drm_device *dev)
3749 {
3750 	struct drm_i915_private *dev_priv = dev->dev_private;
3751 	int ret;
3752 
3753 	ret = intel_init_render_ring_buffer(dev);
3754 	if (ret)
3755 		return ret;
3756 
3757 	if (HAS_BSD(dev)) {
3758 		ret = intel_init_bsd_ring_buffer(dev);
3759 		if (ret)
3760 			goto cleanup_render_ring;
3761 	}
3762 
3763 	if (intel_enable_blt(dev)) {
3764 		ret = intel_init_blt_ring_buffer(dev);
3765 		if (ret)
3766 			goto cleanup_bsd_ring;
3767 	}
3768 
3769 	if (HAS_VEBOX(dev)) {
3770 		ret = intel_init_vebox_ring_buffer(dev);
3771 		if (ret)
3772 			goto cleanup_blt_ring;
3773 	}
3774 
3775 
3776 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3777 	if (ret)
3778 		goto cleanup_vebox_ring;
3779 
3780 	return 0;
3781 
3782 cleanup_vebox_ring:
3783 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3784 cleanup_blt_ring:
3785 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3786 cleanup_bsd_ring:
3787 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3788 cleanup_render_ring:
3789 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3790 
3791 	return ret;
3792 }
3793 
3794 int
3795 i915_gem_init_hw(struct drm_device *dev)
3796 {
3797 	drm_i915_private_t *dev_priv = dev->dev_private;
3798 	int ret;
3799 
3800 #if 0
3801 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3802 		return -EIO;
3803 #endif
3804 
3805 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3806 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3807 
3808 	if (HAS_PCH_NOP(dev)) {
3809 		u32 temp = I915_READ(GEN7_MSG_CTL);
3810 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
3811 		I915_WRITE(GEN7_MSG_CTL, temp);
3812 	}
3813 
3814 	i915_gem_l3_remap(dev);
3815 
3816 	i915_gem_init_swizzling(dev);
3817 
3818 	ret = i915_gem_init_rings(dev);
3819 	if (ret)
3820 		return ret;
3821 
3822 	/*
3823 	 * XXX: There was some w/a described somewhere suggesting loading
3824 	 * contexts before PPGTT.
3825 	 */
3826 	i915_gem_context_init(dev);
3827 	if (dev_priv->mm.aliasing_ppgtt) {
3828 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
3829 		if (ret) {
3830 			i915_gem_cleanup_aliasing_ppgtt(dev);
3831 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
3832 		}
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 int i915_gem_init(struct drm_device *dev)
3839 {
3840 	struct drm_i915_private *dev_priv = dev->dev_private;
3841 	int ret;
3842 
3843 	mutex_lock(&dev->struct_mutex);
3844 
3845 	if (IS_VALLEYVIEW(dev)) {
3846 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
3847 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
3848 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
3849 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
3850 	}
3851 
3852 	i915_gem_init_global_gtt(dev);
3853 
3854 	ret = i915_gem_init_hw(dev);
3855 	mutex_unlock(&dev->struct_mutex);
3856 	if (ret) {
3857 		i915_gem_cleanup_aliasing_ppgtt(dev);
3858 		return ret;
3859 	}
3860 
3861 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3862 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3863 		dev_priv->dri1.allow_batchbuffer = 1;
3864 	return 0;
3865 }
3866 
3867 void
3868 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3869 {
3870 	drm_i915_private_t *dev_priv = dev->dev_private;
3871 	struct intel_ring_buffer *ring;
3872 	int i;
3873 
3874 	for_each_ring(ring, dev_priv, i)
3875 		intel_cleanup_ring_buffer(ring);
3876 }
3877 
3878 int
3879 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3880 		       struct drm_file *file_priv)
3881 {
3882 	drm_i915_private_t *dev_priv = dev->dev_private;
3883 	int ret;
3884 
3885 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3886 		return 0;
3887 
3888 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
3889 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3890 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
3891 	}
3892 
3893 	mutex_lock(&dev->struct_mutex);
3894 	dev_priv->mm.suspended = 0;
3895 
3896 	ret = i915_gem_init_hw(dev);
3897 	if (ret != 0) {
3898 		mutex_unlock(&dev->struct_mutex);
3899 		return ret;
3900 	}
3901 
3902 	KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
3903 	mutex_unlock(&dev->struct_mutex);
3904 
3905 	ret = drm_irq_install(dev);
3906 	if (ret)
3907 		goto cleanup_ringbuffer;
3908 
3909 	return 0;
3910 
3911 cleanup_ringbuffer:
3912 	mutex_lock(&dev->struct_mutex);
3913 	i915_gem_cleanup_ringbuffer(dev);
3914 	dev_priv->mm.suspended = 1;
3915 	mutex_unlock(&dev->struct_mutex);
3916 
3917 	return ret;
3918 }
3919 
3920 int
3921 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3922 		       struct drm_file *file_priv)
3923 {
3924 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3925 		return 0;
3926 
3927 	drm_irq_uninstall(dev);
3928 	return i915_gem_idle(dev);
3929 }
3930 
3931 void
3932 i915_gem_lastclose(struct drm_device *dev)
3933 {
3934 	int ret;
3935 
3936 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3937 		return;
3938 
3939 	ret = i915_gem_idle(dev);
3940 	if (ret)
3941 		DRM_ERROR("failed to idle hardware: %d\n", ret);
3942 }
3943 
3944 static void
3945 init_ring_lists(struct intel_ring_buffer *ring)
3946 {
3947 	INIT_LIST_HEAD(&ring->active_list);
3948 	INIT_LIST_HEAD(&ring->request_list);
3949 }
3950 
3951 void
3952 i915_gem_load(struct drm_device *dev)
3953 {
3954 	int i;
3955 	drm_i915_private_t *dev_priv = dev->dev_private;
3956 
3957 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3958 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
3960 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
3961 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3962 	for (i = 0; i < I915_NUM_RINGS; i++)
3963 		init_ring_lists(&dev_priv->ring[i]);
3964 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3965 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3966 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3967 			  i915_gem_retire_work_handler);
3968 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
3969 
3970 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3971 	if (IS_GEN3(dev)) {
3972 		I915_WRITE(MI_ARB_STATE,
3973 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3974 	}
3975 
3976 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3977 
3978 	/* Old X drivers will take 0-2 for front, back, depth buffers */
3979 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3980 		dev_priv->fence_reg_start = 3;
3981 
3982 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
3983 		dev_priv->num_fence_regs = 32;
3984 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3985 		dev_priv->num_fence_regs = 16;
3986 	else
3987 		dev_priv->num_fence_regs = 8;
3988 
3989 	/* Initialize fence registers to zero */
3990 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3991 	i915_gem_restore_fences(dev);
3992 
3993 	i915_gem_detect_bit_6_swizzle(dev);
3994 	init_waitqueue_head(&dev_priv->pending_flip_queue);
3995 
3996 	dev_priv->mm.interruptible = true;
3997 
3998 #if 0
3999 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4000 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4001 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4002 #else
4003 	dev_priv->mm.inactive_shrinker = EVENTHANDLER_REGISTER(vm_lowmem,
4004 	    i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
4005 #endif
4006 }
4007 
4008 /*
4009  * Create a physically contiguous memory object for this object
4010  * e.g. for cursor + overlay regs
4011  */
4012 static int i915_gem_init_phys_object(struct drm_device *dev,
4013 				     int id, int size, int align)
4014 {
4015 	drm_i915_private_t *dev_priv = dev->dev_private;
4016 	struct drm_i915_gem_phys_object *phys_obj;
4017 	int ret;
4018 
4019 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4020 		return 0;
4021 
4022 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4023 	if (!phys_obj)
4024 		return -ENOMEM;
4025 
4026 	phys_obj->id = id;
4027 
4028 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4029 	if (!phys_obj->handle) {
4030 		ret = -ENOMEM;
4031 		goto kfree_obj;
4032 	}
4033 	pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
4034 	    size / PAGE_SIZE, PAT_WRITE_COMBINING);
4035 
4036 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4037 
4038 	return 0;
4039 
4040 kfree_obj:
4041 	drm_free(phys_obj, M_DRM);
4042 	return ret;
4043 }
4044 
4045 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4046 {
4047 	drm_i915_private_t *dev_priv = dev->dev_private;
4048 	struct drm_i915_gem_phys_object *phys_obj;
4049 
4050 	if (!dev_priv->mm.phys_objs[id - 1])
4051 		return;
4052 
4053 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4054 	if (phys_obj->cur_obj) {
4055 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4056 	}
4057 
4058 	drm_pci_free(dev, phys_obj->handle);
4059 	drm_free(phys_obj, M_DRM);
4060 	dev_priv->mm.phys_objs[id - 1] = NULL;
4061 }
4062 
4063 void i915_gem_free_all_phys_object(struct drm_device *dev)
4064 {
4065 	int i;
4066 
4067 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4068 		i915_gem_free_phys_object(dev, i);
4069 }
4070 
4071 void i915_gem_detach_phys_object(struct drm_device *dev,
4072 				 struct drm_i915_gem_object *obj)
4073 {
4074 	struct vm_object *mapping = obj->base.vm_obj;
4075 	char *vaddr;
4076 	int i;
4077 	int page_count;
4078 
4079 	if (!obj->phys_obj)
4080 		return;
4081 	vaddr = obj->phys_obj->handle->vaddr;
4082 
4083 	page_count = obj->base.size / PAGE_SIZE;
4084 	VM_OBJECT_LOCK(obj->base.vm_obj);
4085 	for (i = 0; i < page_count; i++) {
4086 		struct vm_page *page = shmem_read_mapping_page(mapping, i);
4087 		if (!IS_ERR(page)) {
4088 			VM_OBJECT_UNLOCK(obj->base.vm_obj);
4089 			char *dst = kmap_atomic(page);
4090 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091 			kunmap_atomic(dst);
4092 
4093 			drm_clflush_pages(&page, 1);
4094 
4095 #if 0
4096 			set_page_dirty(page);
4097 			mark_page_accessed(page);
4098 			page_cache_release(page);
4099 #endif
4100 			VM_OBJECT_LOCK(obj->base.vm_obj);
4101 			vm_page_reference(page);
4102 			vm_page_dirty(page);
4103 			vm_page_busy_wait(page, FALSE, "i915gem");
4104 			vm_page_unwire(page, 0);
4105 			vm_page_wakeup(page);
4106 		}
4107 	}
4108 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
4109 	intel_gtt_chipset_flush();
4110 
4111 	obj->phys_obj->cur_obj = NULL;
4112 	obj->phys_obj = NULL;
4113 }
4114 
4115 int
4116 i915_gem_attach_phys_object(struct drm_device *dev,
4117 			    struct drm_i915_gem_object *obj,
4118 			    int id,
4119 			    int align)
4120 {
4121 	struct vm_object *mapping = obj->base.vm_obj;
4122 	drm_i915_private_t *dev_priv = dev->dev_private;
4123 	int ret = 0;
4124 	int page_count;
4125 	int i;
4126 
4127 	if (id > I915_MAX_PHYS_OBJECT)
4128 		return -EINVAL;
4129 
4130 	if (obj->phys_obj) {
4131 		if (obj->phys_obj->id == id)
4132 			return 0;
4133 		i915_gem_detach_phys_object(dev, obj);
4134 	}
4135 
4136 	/* create a new object */
4137 	if (!dev_priv->mm.phys_objs[id - 1]) {
4138 		ret = i915_gem_init_phys_object(dev, id,
4139 						obj->base.size, align);
4140 		if (ret) {
4141 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4142 				  id, obj->base.size);
4143 			return ret;
4144 		}
4145 	}
4146 
4147 	/* bind to the object */
4148 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4149 	obj->phys_obj->cur_obj = obj;
4150 
4151 	page_count = obj->base.size / PAGE_SIZE;
4152 
4153 	VM_OBJECT_LOCK(obj->base.vm_obj);
4154 	for (i = 0; i < page_count; i++) {
4155 		struct vm_page *page;
4156 		char *dst, *src;
4157 
4158 		page = shmem_read_mapping_page(mapping, i);
4159 		VM_OBJECT_UNLOCK(obj->base.vm_obj);
4160 		if (IS_ERR(page))
4161 			return PTR_ERR(page);
4162 
4163 		src = kmap_atomic(page);
4164 		dst = (char*)obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4165 		memcpy(dst, src, PAGE_SIZE);
4166 		kunmap_atomic(src);
4167 
4168 #if 0
4169 		mark_page_accessed(page);
4170 		page_cache_release(page);
4171 #endif
4172 		VM_OBJECT_LOCK(obj->base.vm_obj);
4173 		vm_page_reference(page);
4174 		vm_page_busy_wait(page, FALSE, "i915gem");
4175 		vm_page_unwire(page, 0);
4176 		vm_page_wakeup(page);
4177 	}
4178 	VM_OBJECT_UNLOCK(obj->base.vm_obj);
4179 
4180 	return 0;
4181 }
4182 
4183 static int
4184 i915_gem_phys_pwrite(struct drm_device *dev,
4185 		     struct drm_i915_gem_object *obj,
4186 		     struct drm_i915_gem_pwrite *args,
4187 		     struct drm_file *file_priv)
4188 {
4189 	void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4190 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4191 
4192 	if (copyin_nofault(user_data, vaddr, args->size) != 0) {
4193 		unsigned long unwritten;
4194 
4195 		/* The physical object once assigned is fixed for the lifetime
4196 		 * of the obj, so we can safely drop the lock and continue
4197 		 * to access vaddr.
4198 		 */
4199 		mutex_unlock(&dev->struct_mutex);
4200 		unwritten = copy_from_user(vaddr, user_data, args->size);
4201 		mutex_lock(&dev->struct_mutex);
4202 		if (unwritten)
4203 			return -EFAULT;
4204 	}
4205 
4206 	i915_gem_chipset_flush(dev);
4207 	return 0;
4208 }
4209 
4210 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4211 {
4212 	struct drm_i915_file_private *file_priv = file->driver_priv;
4213 
4214 	/* Clean up our request list when the client is going away, so that
4215 	 * later retire_requests won't dereference our soon-to-be-gone
4216 	 * file_priv.
4217 	 */
4218 	spin_lock(&file_priv->mm.lock);
4219 	while (!list_empty(&file_priv->mm.request_list)) {
4220 		struct drm_i915_gem_request *request;
4221 
4222 		request = list_first_entry(&file_priv->mm.request_list,
4223 					   struct drm_i915_gem_request,
4224 					   client_list);
4225 		list_del(&request->client_list);
4226 		request->file_priv = NULL;
4227 	}
4228 	spin_unlock(&file_priv->mm.lock);
4229 }
4230 
4231 static int
4232 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
4233     vm_ooffset_t foff, struct ucred *cred, u_short *color)
4234 {
4235 
4236 	*color = 0; /* XXXKIB */
4237 	return (0);
4238 }
4239 
4240 int i915_intr_pf;
4241 
4242 static int
4243 i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
4244     vm_page_t *mres)
4245 {
4246 	struct drm_gem_object *gem_obj;
4247 	struct drm_i915_gem_object *obj;
4248 	struct drm_device *dev;
4249 	drm_i915_private_t *dev_priv;
4250 	vm_page_t m, oldm;
4251 	int cause, ret;
4252 	bool write;
4253 
4254 	gem_obj = vm_obj->handle;
4255 	obj = to_intel_bo(gem_obj);
4256 	dev = obj->base.dev;
4257 	dev_priv = dev->dev_private;
4258 #if 0
4259 	write = (prot & VM_PROT_WRITE) != 0;
4260 #else
4261 	write = true;
4262 #endif
4263 	vm_object_pip_add(vm_obj, 1);
4264 
4265 	/*
4266 	 * Remove the placeholder page inserted by vm_fault() from the
4267 	 * object before dropping the object lock. If
4268 	 * i915_gem_release_mmap() is active in parallel on this gem
4269 	 * object, then it owns the drm device sx and might find the
4270 	 * placeholder already. Then, since the page is busy,
4271 	 * i915_gem_release_mmap() sleeps waiting for the busy state
4272 	 * of the page cleared. We will be not able to acquire drm
4273 	 * device lock until i915_gem_release_mmap() is able to make a
4274 	 * progress.
4275 	 */
4276 	if (*mres != NULL) {
4277 		oldm = *mres;
4278 		vm_page_remove(oldm);
4279 		*mres = NULL;
4280 	} else
4281 		oldm = NULL;
4282 retry:
4283 	VM_OBJECT_UNLOCK(vm_obj);
4284 unlocked_vmobj:
4285 	cause = ret = 0;
4286 	m = NULL;
4287 
4288 	if (i915_intr_pf) {
4289 		ret = i915_mutex_lock_interruptible(dev);
4290 		if (ret != 0) {
4291 			cause = 10;
4292 			goto out;
4293 		}
4294 	} else
4295 		mutex_lock(&dev->struct_mutex);
4296 
4297 	/*
4298 	 * Since the object lock was dropped, other thread might have
4299 	 * faulted on the same GTT address and instantiated the
4300 	 * mapping for the page.  Recheck.
4301 	 */
4302 	VM_OBJECT_LOCK(vm_obj);
4303 	m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
4304 	if (m != NULL) {
4305 		if ((m->flags & PG_BUSY) != 0) {
4306 			mutex_unlock(&dev->struct_mutex);
4307 #if 0 /* XXX */
4308 			vm_page_sleep(m, "915pee");
4309 #endif
4310 			goto retry;
4311 		}
4312 		goto have_page;
4313 	} else
4314 		VM_OBJECT_UNLOCK(vm_obj);
4315 
4316 	/* Access to snoopable pages through the GTT is incoherent. */
4317 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
4318 		ret = -EINVAL;
4319 		goto unlock;
4320 	}
4321 
4322 	/* Now bind it into the GTT if needed */
4323 	if (!obj->map_and_fenceable) {
4324 		ret = i915_gem_object_unbind(obj);
4325 		if (ret != 0) {
4326 			cause = 20;
4327 			goto unlock;
4328 		}
4329 	}
4330 	if (!obj->gtt_space) {
4331 		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
4332 		if (ret != 0) {
4333 			cause = 30;
4334 			goto unlock;
4335 		}
4336 
4337 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
4338 		if (ret != 0) {
4339 			cause = 40;
4340 			goto unlock;
4341 		}
4342 	}
4343 
4344 	if (obj->tiling_mode == I915_TILING_NONE)
4345 		ret = i915_gem_object_put_fence(obj);
4346 	else
4347 		ret = i915_gem_object_get_fence(obj);
4348 	if (ret != 0) {
4349 		cause = 50;
4350 		goto unlock;
4351 	}
4352 
4353 	if (i915_gem_object_is_inactive(obj))
4354 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
4355 
4356 	obj->fault_mappable = true;
4357 	VM_OBJECT_LOCK(vm_obj);
4358 	m = vm_phys_fictitious_to_vm_page(dev->agp->base + obj->gtt_offset +
4359 	    offset);
4360 	if (m == NULL) {
4361 		cause = 60;
4362 		ret = -EFAULT;
4363 		goto unlock;
4364 	}
4365 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
4366 	    ("not fictitious %p", m));
4367 	KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
4368 
4369 	if ((m->flags & PG_BUSY) != 0) {
4370 		mutex_unlock(&dev->struct_mutex);
4371 #if 0 /* XXX */
4372 		vm_page_sleep(m, "915pbs");
4373 #endif
4374 		goto retry;
4375 	}
4376 	m->valid = VM_PAGE_BITS_ALL;
4377 	vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
4378 have_page:
4379 	*mres = m;
4380 	vm_page_busy_try(m, false);
4381 
4382 	mutex_unlock(&dev->struct_mutex);
4383 	if (oldm != NULL) {
4384 		vm_page_free(oldm);
4385 	}
4386 	vm_object_pip_wakeup(vm_obj);
4387 	return (VM_PAGER_OK);
4388 
4389 unlock:
4390 	mutex_unlock(&dev->struct_mutex);
4391 out:
4392 	KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
4393 	if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
4394 		goto unlocked_vmobj;
4395 	}
4396 	VM_OBJECT_LOCK(vm_obj);
4397 	vm_object_pip_wakeup(vm_obj);
4398 	return (VM_PAGER_ERROR);
4399 }
4400 
4401 static void
4402 i915_gem_pager_dtor(void *handle)
4403 {
4404 	struct drm_gem_object *obj;
4405 	struct drm_device *dev;
4406 
4407 	obj = handle;
4408 	dev = obj->dev;
4409 
4410 	mutex_lock(&dev->struct_mutex);
4411 	drm_gem_free_mmap_offset(obj);
4412 	i915_gem_release_mmap(to_intel_bo(obj));
4413 	drm_gem_object_unreference(obj);
4414 	mutex_unlock(&dev->struct_mutex);
4415 }
4416 
4417 struct cdev_pager_ops i915_gem_pager_ops = {
4418 	.cdev_pg_fault	= i915_gem_pager_fault,
4419 	.cdev_pg_ctor	= i915_gem_pager_ctor,
4420 	.cdev_pg_dtor	= i915_gem_pager_dtor
4421 };
4422 
4423 #define	GEM_PARANOID_CHECK_GTT 0
4424 #if GEM_PARANOID_CHECK_GTT
4425 static void
4426 i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
4427     int page_count)
4428 {
4429 	struct drm_i915_private *dev_priv;
4430 	vm_paddr_t pa;
4431 	unsigned long start, end;
4432 	u_int i;
4433 	int j;
4434 
4435 	dev_priv = dev->dev_private;
4436 	start = OFF_TO_IDX(dev_priv->mm.gtt_start);
4437 	end = OFF_TO_IDX(dev_priv->mm.gtt_end);
4438 	for (i = start; i < end; i++) {
4439 		pa = intel_gtt_read_pte_paddr(i);
4440 		for (j = 0; j < page_count; j++) {
4441 			if (pa == VM_PAGE_TO_PHYS(ma[j])) {
4442 				panic("Page %p in GTT pte index %d pte %x",
4443 				    ma[i], i, intel_gtt_read_pte(i));
4444 			}
4445 		}
4446 	}
4447 	obj->fence_dirty = false;
4448 }
4449 #endif
4450 
4451 static int
4452 i915_gpu_is_active(struct drm_device *dev)
4453 {
4454 	drm_i915_private_t *dev_priv = dev->dev_private;
4455 
4456 	return !list_empty(&dev_priv->mm.active_list);
4457 }
4458 
4459 static void
4460 i915_gem_lowmem(void *arg)
4461 {
4462 	struct drm_device *dev;
4463 	struct drm_i915_private *dev_priv;
4464 	struct drm_i915_gem_object *obj, *next;
4465 	int cnt, cnt_fail, cnt_total;
4466 
4467 	dev = arg;
4468 	dev_priv = dev->dev_private;
4469 
4470 	if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT))
4471 		return;
4472 
4473 rescan:
4474 	/* first scan for clean buffers */
4475 	i915_gem_retire_requests(dev);
4476 
4477 	cnt_total = cnt_fail = cnt = 0;
4478 
4479 	list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4480 	    mm_list) {
4481 		if (i915_gem_object_is_purgeable(obj)) {
4482 			if (i915_gem_object_unbind(obj) != 0)
4483 				cnt_total++;
4484 		} else
4485 			cnt_total++;
4486 	}
4487 
4488 	/* second pass, evict/count anything still on the inactive list */
4489 	list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
4490 	    mm_list) {
4491 		if (i915_gem_object_unbind(obj) == 0)
4492 			cnt++;
4493 		else
4494 			cnt_fail++;
4495 	}
4496 
4497 	if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
4498 		/*
4499 		 * We are desperate for pages, so as a last resort, wait
4500 		 * for the GPU to finish and discard whatever we can.
4501 		 * This has a dramatic impact to reduce the number of
4502 		 * OOM-killer events whilst running the GPU aggressively.
4503 		 */
4504 		if (i915_gpu_idle(dev) == 0)
4505 			goto rescan;
4506 	}
4507 	mutex_unlock(&dev->struct_mutex);
4508 }
4509