1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28 
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
33 
34 #include <drm/drmP.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
37 
38 #include "i915_drv.h"
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
43 
44 enum {
45 	FORCE_CPU_RELOC = 1,
46 	FORCE_GTT_RELOC,
47 	FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50 
51 #define __EXEC_OBJECT_HAS_REF		BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
58 
59 #define __EXEC_HAS_RELOC	BIT(31)
60 #define __EXEC_VALIDATED	BIT(30)
61 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62 #define UPDATE			PIN_OFFSET_FIXED
63 
64 #define BATCH_OFFSET_BIAS (256*1024)
65 
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68 
69 /**
70  * DOC: User command execution
71  *
72  * Userspace submits commands to be executed on the GPU as an instruction
73  * stream within a GEM object we call a batchbuffer. This instructions may
74  * refer to other GEM objects containing auxiliary state such as kernels,
75  * samplers, render targets and even secondary batchbuffers. Userspace does
76  * not know where in the GPU memory these objects reside and so before the
77  * batchbuffer is passed to the GPU for execution, those addresses in the
78  * batchbuffer and auxiliary objects are updated. This is known as relocation,
79  * or patching. To try and avoid having to relocate each object on the next
80  * execution, userspace is told the location of those objects in this pass,
81  * but this remains just a hint as the kernel may choose a new location for
82  * any object in the future.
83  *
84  * Processing an execbuf ioctl is conceptually split up into a few phases.
85  *
86  * 1. Validation - Ensure all the pointers, handles and flags are valid.
87  * 2. Reservation - Assign GPU address space for every object
88  * 3. Relocation - Update any addresses to point to the final locations
89  * 4. Serialisation - Order the request with respect to its dependencies
90  * 5. Construction - Construct a request to execute the batchbuffer
91  * 6. Submission (at some point in the future execution)
92  *
93  * Reserving resources for the execbuf is the most complicated phase. We
94  * neither want to have to migrate the object in the address space, nor do
95  * we want to have to update any relocations pointing to this object. Ideally,
96  * we want to leave the object where it is and for all the existing relocations
97  * to match. If the object is given a new address, or if userspace thinks the
98  * object is elsewhere, we have to parse all the relocation entries and update
99  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
100  * all the target addresses in all of its objects match the value in the
101  * relocation entries and that they all match the presumed offsets given by the
102  * list of execbuffer objects. Using this knowledge, we know that if we haven't
103  * moved any buffers, all the relocation entries are valid and we can skip
104  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
105  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
106  *
107  *      The addresses written in the objects must match the corresponding
108  *      reloc.presumed_offset which in turn must match the corresponding
109  *      execobject.offset.
110  *
111  *      Any render targets written to in the batch must be flagged with
112  *      EXEC_OBJECT_WRITE.
113  *
114  *      To avoid stalling, execobject.offset should match the current
115  *      address of that object within the active context.
116  *
117  * The reservation is done is multiple phases. First we try and keep any
118  * object already bound in its current location - so as long as meets the
119  * constraints imposed by the new execbuffer. Any object left unbound after the
120  * first pass is then fitted into any available idle space. If an object does
121  * not fit, all objects are removed from the reservation and the process rerun
122  * after sorting the objects into a priority order (more difficult to fit
123  * objects are tried first). Failing that, the entire VM is cleared and we try
124  * to fit the execbuf once last time before concluding that it simply will not
125  * fit.
126  *
127  * A small complication to all of this is that we allow userspace not only to
128  * specify an alignment and a size for the object in the address space, but
129  * we also allow userspace to specify the exact offset. This objects are
130  * simpler to place (the location is known a priori) all we have to do is make
131  * sure the space is available.
132  *
133  * Once all the objects are in place, patching up the buried pointers to point
134  * to the final locations is a fairly simple job of walking over the relocation
135  * entry arrays, looking up the right address and rewriting the value into
136  * the object. Simple! ... The relocation entries are stored in user memory
137  * and so to access them we have to copy them into a local buffer. That copy
138  * has to avoid taking any pagefaults as they may lead back to a GEM object
139  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
140  * the relocation into multiple passes. First we try to do everything within an
141  * atomic context (avoid the pagefaults) which requires that we never wait. If
142  * we detect that we may wait, or if we need to fault, then we have to fallback
143  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
144  * bells yet?) Dropping the mutex means that we lose all the state we have
145  * built up so far for the execbuf and we must reset any global data. However,
146  * we do leave the objects pinned in their final locations - which is a
147  * potential issue for concurrent execbufs. Once we have left the mutex, we can
148  * allocate and copy all the relocation entries into a large array at our
149  * leisure, reacquire the mutex, reclaim all the objects and other state and
150  * then proceed to update any incorrect addresses with the objects.
151  *
152  * As we process the relocation entries, we maintain a record of whether the
153  * object is being written to. Using NORELOC, we expect userspace to provide
154  * this information instead. We also check whether we can skip the relocation
155  * by comparing the expected value inside the relocation entry with the target's
156  * final address. If they differ, we have to map the current object and rewrite
157  * the 4 or 8 byte pointer within.
158  *
159  * Serialising an execbuf is quite simple according to the rules of the GEM
160  * ABI. Execution within each context is ordered by the order of submission.
161  * Writes to any GEM object are in order of submission and are exclusive. Reads
162  * from a GEM object are unordered with respect to other reads, but ordered by
163  * writes. A write submitted after a read cannot occur before the read, and
164  * similarly any read submitted after a write cannot occur before the write.
165  * Writes are ordered between engines such that only one write occurs at any
166  * time (completing any reads beforehand) - using semaphores where available
167  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
168  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
169  * reads before starting, and any read (either using set-domain or pread) must
170  * flush all GPU writes before starting. (Note we only employ a barrier before,
171  * we currently rely on userspace not concurrently starting a new execution
172  * whilst reading or writing to an object. This may be an advantage or not
173  * depending on how much you trust userspace not to shoot themselves in the
174  * foot.) Serialisation may just result in the request being inserted into
175  * a DAG awaiting its turn, but most simple is to wait on the CPU until
176  * all dependencies are resolved.
177  *
178  * After all of that, is just a matter of closing the request and handing it to
179  * the hardware (well, leaving it in a queue to be executed). However, we also
180  * offer the ability for batchbuffers to be run with elevated privileges so
181  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
182  * Before any batch is given extra privileges we first must check that it
183  * contains no nefarious instructions, we check that each instruction is from
184  * our whitelist and all registers are also from an allowed list. We first
185  * copy the user's batchbuffer to a shadow (so that the user doesn't have
186  * access to it, either by the CPU or GPU as we scan it) and then parse each
187  * instruction. If everything is ok, we set a flag telling the hardware to run
188  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
189  */
190 
191 struct i915_execbuffer {
192 	struct drm_i915_private *i915; /** i915 backpointer */
193 	struct drm_file *file; /** per-file lookup tables and limits */
194 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
195 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 	struct i915_vma **vma;
197 	unsigned int *flags;
198 
199 	struct intel_engine_cs *engine; /** engine to queue the request to */
200 	struct i915_gem_context *ctx; /** context for building the request */
201 	struct i915_address_space *vm; /** GTT and vma for the request */
202 
203 	struct drm_i915_gem_request *request; /** our request to build */
204 	struct i915_vma *batch; /** identity of the batch obj/vma */
205 
206 	/** actual size of execobj[] as we may extend it for the cmdparser */
207 	unsigned int buffer_count;
208 
209 	/** list of vma not yet bound during reservation phase */
210 	struct list_head unbound;
211 
212 	/** list of vma that have execobj.relocation_count */
213 	struct list_head relocs;
214 
215 	/**
216 	 * Track the most recently used object for relocations, as we
217 	 * frequently have to perform multiple relocations within the same
218 	 * obj/page
219 	 */
220 	struct reloc_cache {
221 		struct drm_mm_node node; /** temporary GTT binding */
222 		unsigned long vaddr; /** Current kmap address */
223 		unsigned long page; /** Currently mapped page index */
224 		unsigned int gen; /** Cached value of INTEL_GEN */
225 		bool use_64bit_reloc : 1;
226 		bool has_llc : 1;
227 		bool has_fence : 1;
228 		bool needs_unfenced : 1;
229 
230 		struct drm_i915_gem_request *rq;
231 		u32 *rq_cmd;
232 		unsigned int rq_size;
233 	} reloc_cache;
234 
235 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
236 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
237 
238 	u32 batch_start_offset; /** Location within object of batch */
239 	u32 batch_len; /** Length of batch within object */
240 	u32 batch_flags; /** Flags composed for emit_bb_start() */
241 
242 	/**
243 	 * Indicate either the size of the hastable used to resolve
244 	 * relocation handles, or if negative that we are using a direct
245 	 * index into the execobj[].
246 	 */
247 	int lut_size;
248 	struct hlist_head *buckets; /** ht for relocation handles */
249 };
250 
251 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
252 
253 /*
254  * Used to convert any address to canonical form.
255  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
256  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
257  * addresses to be in a canonical form:
258  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
259  * canonical form [63:48] == [47]."
260  */
261 #define GEN8_HIGH_ADDRESS_BIT 47
262 static inline u64 gen8_canonical_addr(u64 address)
263 {
264 	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
265 }
266 
267 static inline u64 gen8_noncanonical_addr(u64 address)
268 {
269 	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
270 }
271 
272 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
273 {
274 	return eb->engine->needs_cmd_parser && eb->batch_len;
275 }
276 
277 static int eb_create(struct i915_execbuffer *eb)
278 {
279 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
280 		unsigned int size = 1 + ilog2(eb->buffer_count);
281 
282 		/*
283 		 * Without a 1:1 association between relocation handles and
284 		 * the execobject[] index, we instead create a hashtable.
285 		 * We size it dynamically based on available memory, starting
286 		 * first with 1:1 assocative hash and scaling back until
287 		 * the allocation succeeds.
288 		 *
289 		 * Later on we use a positive lut_size to indicate we are
290 		 * using this hashtable, and a negative value to indicate a
291 		 * direct lookup.
292 		 */
293 		do {
294 			gfp_t flags;
295 
296 			/* While we can still reduce the allocation size, don't
297 			 * raise a warning and allow the allocation to fail.
298 			 * On the last pass though, we want to try as hard
299 			 * as possible to perform the allocation and warn
300 			 * if it fails.
301 			 */
302 			flags = GFP_KERNEL;
303 			if (size > 1)
304 				flags |= __GFP_NORETRY | __GFP_NOWARN;
305 
306 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307 					      flags);
308 			if (eb->buckets)
309 				break;
310 		} while (--size);
311 
312 		if (unlikely(!size))
313 			return -ENOMEM;
314 
315 		eb->lut_size = size;
316 	} else {
317 		eb->lut_size = -eb->buffer_count;
318 	}
319 
320 	return 0;
321 }
322 
323 static bool
324 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 		 const struct i915_vma *vma,
326 		 unsigned int flags)
327 {
328 	if (vma->node.size < entry->pad_to_size)
329 		return true;
330 
331 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
332 		return true;
333 
334 	if (flags & EXEC_OBJECT_PINNED &&
335 	    vma->node.start != entry->offset)
336 		return true;
337 
338 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 	    vma->node.start < BATCH_OFFSET_BIAS)
340 		return true;
341 
342 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 	    (vma->node.start + vma->node.size - 1) >> 32)
344 		return true;
345 
346 	return false;
347 }
348 
349 static inline bool
350 eb_pin_vma(struct i915_execbuffer *eb,
351 	   const struct drm_i915_gem_exec_object2 *entry,
352 	   struct i915_vma *vma)
353 {
354 	unsigned int exec_flags = *vma->exec_flags;
355 	u64 pin_flags;
356 
357 	if (vma->node.size)
358 		pin_flags = vma->node.start;
359 	else
360 		pin_flags = entry->offset & PIN_OFFSET_MASK;
361 
362 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
363 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
364 		pin_flags |= PIN_GLOBAL;
365 
366 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
367 		return false;
368 
369 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
370 		if (unlikely(i915_vma_pin_fence(vma))) {
371 			i915_vma_unpin(vma);
372 			return false;
373 		}
374 
375 		if (vma->fence)
376 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
377 	}
378 
379 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
380 	return !eb_vma_misplaced(entry, vma, exec_flags);
381 }
382 
383 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
384 {
385 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
386 
387 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
388 		__i915_vma_unpin_fence(vma);
389 
390 	__i915_vma_unpin(vma);
391 }
392 
393 static inline void
394 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
395 {
396 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
397 		return;
398 
399 	__eb_unreserve_vma(vma, *flags);
400 	*flags &= ~__EXEC_OBJECT_RESERVED;
401 }
402 
403 static int
404 eb_validate_vma(struct i915_execbuffer *eb,
405 		struct drm_i915_gem_exec_object2 *entry,
406 		struct i915_vma *vma)
407 {
408 	if (unlikely(entry->flags & eb->invalid_flags))
409 		return -EINVAL;
410 
411 	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
412 		return -EINVAL;
413 
414 	/*
415 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
416 	 * any non-page-aligned or non-canonical addresses.
417 	 */
418 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
419 		     entry->offset != gen8_canonical_addr(entry->offset & LINUX_PAGE_MASK)))
420 		return -EINVAL;
421 
422 	/* pad_to_size was once a reserved field, so sanitize it */
423 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
424 		if (unlikely(offset_in_page(entry->pad_to_size)))
425 			return -EINVAL;
426 	} else {
427 		entry->pad_to_size = 0;
428 	}
429 
430 	if (unlikely(vma->exec_flags)) {
431 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
432 			  entry->handle, (int)(entry - eb->exec));
433 		return -EINVAL;
434 	}
435 
436 	/*
437 	 * From drm_mm perspective address space is continuous,
438 	 * so from this point we're always using non-canonical
439 	 * form internally.
440 	 */
441 	entry->offset = gen8_noncanonical_addr(entry->offset);
442 
443 	if (!eb->reloc_cache.has_fence) {
444 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
445 	} else {
446 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
447 		     eb->reloc_cache.needs_unfenced) &&
448 		    i915_gem_object_is_tiled(vma->obj))
449 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
450 	}
451 
452 	if (!(entry->flags & EXEC_OBJECT_PINNED))
453 		entry->flags |= eb->context_flags;
454 
455 	return 0;
456 }
457 
458 static int
459 eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
460 {
461 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
462 	int err;
463 
464 	GEM_BUG_ON(i915_vma_is_closed(vma));
465 
466 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
467 		err = eb_validate_vma(eb, entry, vma);
468 		if (unlikely(err))
469 			return err;
470 	}
471 
472 	if (eb->lut_size > 0) {
473 		vma->exec_handle = entry->handle;
474 		hlist_add_head(&vma->exec_node,
475 			       &eb->buckets[hash_32(entry->handle,
476 						    eb->lut_size)]);
477 	}
478 
479 	if (entry->relocation_count)
480 		list_add_tail(&vma->reloc_link, &eb->relocs);
481 
482 	/*
483 	 * Stash a pointer from the vma to execobj, so we can query its flags,
484 	 * size, alignment etc as provided by the user. Also we stash a pointer
485 	 * to the vma inside the execobj so that we can use a direct lookup
486 	 * to find the right target VMA when doing relocations.
487 	 */
488 	eb->vma[i] = vma;
489 	eb->flags[i] = entry->flags;
490 	vma->exec_flags = &eb->flags[i];
491 
492 	err = 0;
493 	if (eb_pin_vma(eb, entry, vma)) {
494 		if (entry->offset != vma->node.start) {
495 			entry->offset = vma->node.start | UPDATE;
496 			eb->args->flags |= __EXEC_HAS_RELOC;
497 		}
498 	} else {
499 		eb_unreserve_vma(vma, vma->exec_flags);
500 
501 		list_add_tail(&vma->exec_link, &eb->unbound);
502 		if (drm_mm_node_allocated(&vma->node))
503 			err = i915_vma_unbind(vma);
504 		if (unlikely(err))
505 			vma->exec_flags = NULL;
506 	}
507 	return err;
508 }
509 
510 static inline int use_cpu_reloc(const struct reloc_cache *cache,
511 				const struct drm_i915_gem_object *obj)
512 {
513 	if (!i915_gem_object_has_struct_page(obj))
514 		return false;
515 
516 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
517 		return true;
518 
519 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
520 		return false;
521 
522 	return (cache->has_llc ||
523 		obj->cache_dirty ||
524 		obj->cache_level != I915_CACHE_NONE);
525 }
526 
527 static int eb_reserve_vma(const struct i915_execbuffer *eb,
528 			  struct i915_vma *vma)
529 {
530 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
531 	unsigned int exec_flags = *vma->exec_flags;
532 	u64 pin_flags;
533 	int err;
534 
535 	pin_flags = PIN_USER | PIN_NONBLOCK;
536 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
537 		pin_flags |= PIN_GLOBAL;
538 
539 	/*
540 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
541 	 * limit address to the first 4GBs for unflagged objects.
542 	 */
543 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
544 		pin_flags |= PIN_ZONE_4G;
545 
546 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
547 		pin_flags |= PIN_MAPPABLE;
548 
549 	if (exec_flags & EXEC_OBJECT_PINNED) {
550 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
551 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
552 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
553 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
554 	}
555 
556 	err = i915_vma_pin(vma,
557 			   entry->pad_to_size, entry->alignment,
558 			   pin_flags);
559 	if (err)
560 		return err;
561 
562 	if (entry->offset != vma->node.start) {
563 		entry->offset = vma->node.start | UPDATE;
564 		eb->args->flags |= __EXEC_HAS_RELOC;
565 	}
566 
567 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
568 		err = i915_vma_pin_fence(vma);
569 		if (unlikely(err)) {
570 			i915_vma_unpin(vma);
571 			return err;
572 		}
573 
574 		if (vma->fence)
575 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
576 	}
577 
578 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
579 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
580 
581 	return 0;
582 }
583 
584 static int eb_reserve(struct i915_execbuffer *eb)
585 {
586 	const unsigned int count = eb->buffer_count;
587 	struct list_head last;
588 	struct i915_vma *vma;
589 	unsigned int i, pass;
590 	int err;
591 
592 	/*
593 	 * Attempt to pin all of the buffers into the GTT.
594 	 * This is done in 3 phases:
595 	 *
596 	 * 1a. Unbind all objects that do not match the GTT constraints for
597 	 *     the execbuffer (fenceable, mappable, alignment etc).
598 	 * 1b. Increment pin count for already bound objects.
599 	 * 2.  Bind new objects.
600 	 * 3.  Decrement pin count.
601 	 *
602 	 * This avoid unnecessary unbinding of later objects in order to make
603 	 * room for the earlier objects *unless* we need to defragment.
604 	 */
605 
606 	pass = 0;
607 	err = 0;
608 	do {
609 		list_for_each_entry(vma, &eb->unbound, exec_link) {
610 			err = eb_reserve_vma(eb, vma);
611 			if (err)
612 				break;
613 		}
614 		if (err != -ENOSPC)
615 			return err;
616 
617 		/* Resort *all* the objects into priority order */
618 		INIT_LIST_HEAD(&eb->unbound);
619 		INIT_LIST_HEAD(&last);
620 		for (i = 0; i < count; i++) {
621 			unsigned int flags = eb->flags[i];
622 			struct i915_vma *vma = eb->vma[i];
623 
624 			if (flags & EXEC_OBJECT_PINNED &&
625 			    flags & __EXEC_OBJECT_HAS_PIN)
626 				continue;
627 
628 			eb_unreserve_vma(vma, &eb->flags[i]);
629 
630 			if (flags & EXEC_OBJECT_PINNED)
631 				list_add(&vma->exec_link, &eb->unbound);
632 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
633 				list_add_tail(&vma->exec_link, &eb->unbound);
634 			else
635 				list_add_tail(&vma->exec_link, &last);
636 		}
637 		list_splice_tail(&last, &eb->unbound);
638 
639 		switch (pass++) {
640 		case 0:
641 			break;
642 
643 		case 1:
644 			/* Too fragmented, unbind everything and retry */
645 			err = i915_gem_evict_vm(eb->vm);
646 			if (err)
647 				return err;
648 			break;
649 
650 		default:
651 			return -ENOSPC;
652 		}
653 	} while (1);
654 }
655 
656 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
657 {
658 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
659 		return 0;
660 	else
661 		return eb->buffer_count - 1;
662 }
663 
664 static int eb_select_context(struct i915_execbuffer *eb)
665 {
666 	struct i915_gem_context *ctx;
667 
668 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
669 	if (unlikely(!ctx))
670 		return -ENOENT;
671 
672 	eb->ctx = ctx;
673 	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
674 
675 	eb->context_flags = 0;
676 	if (ctx->flags & CONTEXT_NO_ZEROMAP)
677 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
678 
679 	return 0;
680 }
681 
682 static int eb_lookup_vmas(struct i915_execbuffer *eb)
683 {
684 	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
685 	struct drm_i915_gem_object *obj;
686 	unsigned int i;
687 	int err;
688 
689 	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
690 		return -ENOENT;
691 
692 	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
693 		return -EIO;
694 
695 	INIT_LIST_HEAD(&eb->relocs);
696 	INIT_LIST_HEAD(&eb->unbound);
697 
698 	for (i = 0; i < eb->buffer_count; i++) {
699 		u32 handle = eb->exec[i].handle;
700 		struct i915_lut_handle *lut;
701 		struct i915_vma *vma;
702 
703 		vma = radix_tree_lookup(handles_vma, handle);
704 		if (likely(vma))
705 			goto add_vma;
706 
707 		obj = i915_gem_object_lookup(eb->file, handle);
708 		if (unlikely(!obj)) {
709 			err = -ENOENT;
710 			goto err_vma;
711 		}
712 
713 		vma = i915_vma_instance(obj, eb->vm, NULL);
714 		if (unlikely(IS_ERR(vma))) {
715 			err = PTR_ERR(vma);
716 			goto err_obj;
717 		}
718 
719 		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
720 		if (unlikely(!lut)) {
721 			err = -ENOMEM;
722 			goto err_obj;
723 		}
724 
725 		err = radix_tree_insert(handles_vma, handle, vma);
726 		if (unlikely(err)) {
727 			kfree(lut);
728 			goto err_obj;
729 		}
730 
731 		/* transfer ref to ctx */
732 		vma->open_count++;
733 		list_add(&lut->obj_link, &obj->lut_list);
734 		list_add(&lut->ctx_link, &eb->ctx->handles_list);
735 		lut->ctx = eb->ctx;
736 		lut->handle = handle;
737 
738 add_vma:
739 		err = eb_add_vma(eb, i, vma);
740 		if (unlikely(err))
741 			goto err_vma;
742 
743 		GEM_BUG_ON(vma != eb->vma[i]);
744 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
745 	}
746 
747 	/* take note of the batch buffer before we might reorder the lists */
748 	i = eb_batch_index(eb);
749 	eb->batch = eb->vma[i];
750 	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
751 
752 	/*
753 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
754 	 * to negative relocation deltas. Usually that works out ok since the
755 	 * relocate address is still positive, except when the batch is placed
756 	 * very low in the GTT. Ensure this doesn't happen.
757 	 *
758 	 * Note that actual hangs have only been observed on gen7, but for
759 	 * paranoia do it everywhere.
760 	 */
761 	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
762 		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
763 	if (eb->reloc_cache.has_fence)
764 		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
765 
766 	eb->args->flags |= __EXEC_VALIDATED;
767 	return eb_reserve(eb);
768 
769 err_obj:
770 	i915_gem_object_put(obj);
771 err_vma:
772 	eb->vma[i] = NULL;
773 	return err;
774 }
775 
776 static struct i915_vma *
777 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
778 {
779 	if (eb->lut_size < 0) {
780 		if (handle >= -eb->lut_size)
781 			return NULL;
782 		return eb->vma[handle];
783 	} else {
784 		struct hlist_head *head;
785 		struct i915_vma *vma;
786 
787 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
788 		hlist_for_each_entry(vma, head, exec_node) {
789 			if (vma->exec_handle == handle)
790 				return vma;
791 		}
792 		return NULL;
793 	}
794 }
795 
796 static void eb_release_vmas(const struct i915_execbuffer *eb)
797 {
798 	const unsigned int count = eb->buffer_count;
799 	unsigned int i;
800 
801 	for (i = 0; i < count; i++) {
802 		struct i915_vma *vma = eb->vma[i];
803 		unsigned int flags = eb->flags[i];
804 
805 		if (!vma)
806 			break;
807 
808 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
809 		vma->exec_flags = NULL;
810 		eb->vma[i] = NULL;
811 
812 		if (flags & __EXEC_OBJECT_HAS_PIN)
813 			__eb_unreserve_vma(vma, flags);
814 
815 		if (flags & __EXEC_OBJECT_HAS_REF)
816 			i915_vma_put(vma);
817 	}
818 }
819 
820 static void eb_reset_vmas(const struct i915_execbuffer *eb)
821 {
822 	eb_release_vmas(eb);
823 	if (eb->lut_size > 0)
824 		memset(eb->buckets, 0,
825 		       sizeof(struct hlist_head) << eb->lut_size);
826 }
827 
828 static void eb_destroy(const struct i915_execbuffer *eb)
829 {
830 	GEM_BUG_ON(eb->reloc_cache.rq);
831 
832 	if (eb->lut_size > 0)
833 		kfree(eb->buckets);
834 }
835 
836 static inline u64
837 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
838 		  const struct i915_vma *target)
839 {
840 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
841 }
842 
843 static void reloc_cache_init(struct reloc_cache *cache,
844 			     struct drm_i915_private *i915)
845 {
846 	cache->page = -1;
847 	cache->vaddr = 0;
848 	/* Must be a variable in the struct to allow GCC to unroll. */
849 	cache->gen = INTEL_GEN(i915);
850 	cache->has_llc = HAS_LLC(i915);
851 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
852 	cache->has_fence = cache->gen < 4;
853 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
854 	cache->node.allocated = false;
855 	cache->rq = NULL;
856 	cache->rq_size = 0;
857 }
858 
859 static inline void *unmask_page(unsigned long p)
860 {
861 	return (void *)(uintptr_t)(p & LINUX_PAGE_MASK);
862 }
863 
864 static inline unsigned int unmask_flags(unsigned long p)
865 {
866 	return p & ~LINUX_PAGE_MASK;
867 }
868 
869 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
870 
871 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
872 {
873 	struct drm_i915_private *i915 =
874 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
875 	return &i915->ggtt;
876 }
877 
878 static void reloc_gpu_flush(struct reloc_cache *cache)
879 {
880 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
881 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
882 	i915_gem_object_unpin_map(cache->rq->batch->obj);
883 	i915_gem_chipset_flush(cache->rq->i915);
884 
885 	__i915_add_request(cache->rq, true);
886 	cache->rq = NULL;
887 }
888 
889 static void reloc_cache_reset(struct reloc_cache *cache)
890 {
891 	void *vaddr;
892 
893 	if (cache->rq)
894 		reloc_gpu_flush(cache);
895 
896 	if (!cache->vaddr)
897 		return;
898 
899 	vaddr = unmask_page(cache->vaddr);
900 	if (cache->vaddr & KMAP) {
901 		if (cache->vaddr & CLFLUSH_AFTER)
902 			mb();
903 
904 		kunmap_atomic(vaddr);
905 		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
906 	} else {
907 		wmb();
908 		io_mapping_unmap_atomic((void __iomem *)vaddr);
909 		if (cache->node.allocated) {
910 			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
911 
912 			ggtt->base.clear_range(&ggtt->base,
913 					       cache->node.start,
914 					       cache->node.size);
915 			drm_mm_remove_node(&cache->node);
916 		} else {
917 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
918 		}
919 	}
920 
921 	cache->vaddr = 0;
922 	cache->page = -1;
923 }
924 
925 static void *reloc_kmap(struct drm_i915_gem_object *obj,
926 			struct reloc_cache *cache,
927 			unsigned long page)
928 {
929 	void *vaddr;
930 
931 	if (cache->vaddr) {
932 		kunmap_atomic(unmask_page(cache->vaddr));
933 	} else {
934 		unsigned int flushes;
935 		int err;
936 
937 		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
938 		if (err)
939 			return ERR_PTR(err);
940 
941 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
942 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK);
943 
944 		cache->vaddr = flushes | KMAP;
945 		cache->node.mm = (void *)obj;
946 		if (flushes)
947 			mb();
948 	}
949 
950 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
951 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
952 	cache->page = page;
953 
954 	return vaddr;
955 }
956 
957 static void *reloc_iomap(struct drm_i915_gem_object *obj,
958 			 struct reloc_cache *cache,
959 			 unsigned long page)
960 {
961 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962 	unsigned long offset;
963 	void *vaddr;
964 
965 	if (cache->vaddr) {
966 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
967 	} else {
968 		struct i915_vma *vma;
969 		int err;
970 
971 		if (use_cpu_reloc(cache, obj))
972 			return NULL;
973 
974 		err = i915_gem_object_set_to_gtt_domain(obj, true);
975 		if (err)
976 			return ERR_PTR(err);
977 
978 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
979 					       PIN_MAPPABLE |
980 					       PIN_NONBLOCK |
981 					       PIN_NONFAULT);
982 		if (IS_ERR(vma)) {
983 			memset(&cache->node, 0, sizeof(cache->node));
984 			err = drm_mm_insert_node_in_range
985 				(&ggtt->base.mm, &cache->node,
986 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
987 				 0, ggtt->mappable_end,
988 				 DRM_MM_INSERT_LOW);
989 			if (err) /* no inactive aperture space, use cpu reloc */
990 				return NULL;
991 		} else {
992 			err = i915_vma_put_fence(vma);
993 			if (err) {
994 				i915_vma_unpin(vma);
995 				return ERR_PTR(err);
996 			}
997 
998 			cache->node.start = vma->node.start;
999 			cache->node.mm = (void *)vma;
1000 		}
1001 	}
1002 
1003 	offset = cache->node.start;
1004 	if (cache->node.allocated) {
1005 		wmb();
1006 		ggtt->base.insert_page(&ggtt->base,
1007 				       i915_gem_object_get_dma_address(obj, page),
1008 				       offset, I915_CACHE_NONE, 0);
1009 	} else {
1010 		offset += page << PAGE_SHIFT;
1011 	}
1012 
1013 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
1014 							 offset);
1015 	cache->page = page;
1016 	cache->vaddr = (unsigned long)vaddr;
1017 
1018 	return vaddr;
1019 }
1020 
1021 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1022 			 struct reloc_cache *cache,
1023 			 unsigned long page)
1024 {
1025 	void *vaddr;
1026 
1027 	if (cache->page == page) {
1028 		vaddr = unmask_page(cache->vaddr);
1029 	} else {
1030 		vaddr = NULL;
1031 		if ((cache->vaddr & KMAP) == 0)
1032 			vaddr = reloc_iomap(obj, cache, page);
1033 		if (!vaddr)
1034 			vaddr = reloc_kmap(obj, cache, page);
1035 	}
1036 
1037 	return vaddr;
1038 }
1039 
1040 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1041 {
1042 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1043 		if (flushes & CLFLUSH_BEFORE) {
1044 			clflushopt(addr);
1045 			mb();
1046 		}
1047 
1048 		*addr = value;
1049 
1050 		/*
1051 		 * Writes to the same cacheline are serialised by the CPU
1052 		 * (including clflush). On the write path, we only require
1053 		 * that it hits memory in an orderly fashion and place
1054 		 * mb barriers at the start and end of the relocation phase
1055 		 * to ensure ordering of clflush wrt to the system.
1056 		 */
1057 		if (flushes & CLFLUSH_AFTER)
1058 			clflushopt(addr);
1059 	} else
1060 		*addr = value;
1061 }
1062 
1063 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1064 			     struct i915_vma *vma,
1065 			     unsigned int len)
1066 {
1067 	struct reloc_cache *cache = &eb->reloc_cache;
1068 	struct drm_i915_gem_object *obj;
1069 	struct drm_i915_gem_request *rq;
1070 	struct i915_vma *batch;
1071 	u32 *cmd;
1072 	int err;
1073 
1074 	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);
1075 
1076 	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1077 	if (IS_ERR(obj))
1078 		return PTR_ERR(obj);
1079 
1080 	cmd = i915_gem_object_pin_map(obj,
1081 				      cache->has_llc ?
1082 				      I915_MAP_FORCE_WB :
1083 				      I915_MAP_FORCE_WC);
1084 	i915_gem_object_unpin_pages(obj);
1085 	if (IS_ERR(cmd))
1086 		return PTR_ERR(cmd);
1087 
1088 	err = i915_gem_object_set_to_wc_domain(obj, false);
1089 	if (err)
1090 		goto err_unmap;
1091 
1092 	batch = i915_vma_instance(obj, vma->vm, NULL);
1093 	if (IS_ERR(batch)) {
1094 		err = PTR_ERR(batch);
1095 		goto err_unmap;
1096 	}
1097 
1098 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1099 	if (err)
1100 		goto err_unmap;
1101 
1102 	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
1103 	if (IS_ERR(rq)) {
1104 		err = PTR_ERR(rq);
1105 		goto err_unpin;
1106 	}
1107 
1108 	err = i915_gem_request_await_object(rq, vma->obj, true);
1109 	if (err)
1110 		goto err_request;
1111 
1112 	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
1113 	if (err)
1114 		goto err_request;
1115 
1116 	err = i915_switch_context(rq);
1117 	if (err)
1118 		goto err_request;
1119 
1120 	err = eb->engine->emit_bb_start(rq,
1121 					batch->node.start, PAGE_SIZE,
1122 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1123 	if (err)
1124 		goto err_request;
1125 
1126 	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1127 	i915_vma_move_to_active(batch, rq, 0);
1128 	reservation_object_lock(batch->resv, NULL);
1129 	reservation_object_add_excl_fence(batch->resv, &rq->fence);
1130 	reservation_object_unlock(batch->resv);
1131 	i915_vma_unpin(batch);
1132 
1133 	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1134 	reservation_object_lock(vma->resv, NULL);
1135 	reservation_object_add_excl_fence(vma->resv, &rq->fence);
1136 	reservation_object_unlock(vma->resv);
1137 
1138 	rq->batch = batch;
1139 
1140 	cache->rq = rq;
1141 	cache->rq_cmd = cmd;
1142 	cache->rq_size = 0;
1143 
1144 	/* Return with batch mapping (cmd) still pinned */
1145 	return 0;
1146 
1147 err_request:
1148 	i915_add_request(rq);
1149 err_unpin:
1150 	i915_vma_unpin(batch);
1151 err_unmap:
1152 	i915_gem_object_unpin_map(obj);
1153 	return err;
1154 }
1155 
1156 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1157 		      struct i915_vma *vma,
1158 		      unsigned int len)
1159 {
1160 	struct reloc_cache *cache = &eb->reloc_cache;
1161 	u32 *cmd;
1162 
1163 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1164 		reloc_gpu_flush(cache);
1165 
1166 	if (unlikely(!cache->rq)) {
1167 		int err;
1168 
1169 		/* If we need to copy for the cmdparser, we will stall anyway */
1170 		if (eb_use_cmdparser(eb))
1171 			return ERR_PTR(-EWOULDBLOCK);
1172 
1173 		if (!intel_engine_can_store_dword(eb->engine))
1174 			return ERR_PTR(-ENODEV);
1175 
1176 		err = __reloc_gpu_alloc(eb, vma, len);
1177 		if (unlikely(err))
1178 			return ERR_PTR(err);
1179 	}
1180 
1181 	cmd = cache->rq_cmd + cache->rq_size;
1182 	cache->rq_size += len;
1183 
1184 	return cmd;
1185 }
1186 
1187 static u64
1188 relocate_entry(struct i915_vma *vma,
1189 	       const struct drm_i915_gem_relocation_entry *reloc,
1190 	       struct i915_execbuffer *eb,
1191 	       const struct i915_vma *target)
1192 {
1193 	u64 offset = reloc->offset;
1194 	u64 target_offset = relocation_target(reloc, target);
1195 	bool wide = eb->reloc_cache.use_64bit_reloc;
1196 	void *vaddr;
1197 
1198 	if (!eb->reloc_cache.vaddr &&
1199 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1200 	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1201 		const unsigned int gen = eb->reloc_cache.gen;
1202 		unsigned int len;
1203 		u32 *batch;
1204 		u64 addr;
1205 
1206 		if (wide)
1207 			len = offset & 7 ? 8 : 5;
1208 		else if (gen >= 4)
1209 			len = 4;
1210 		else
1211 			len = 3;
1212 
1213 		batch = reloc_gpu(eb, vma, len);
1214 		if (IS_ERR(batch))
1215 			goto repeat;
1216 
1217 		addr = gen8_canonical_addr(vma->node.start + offset);
1218 		if (wide) {
1219 			if (offset & 7) {
1220 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1221 				*batch++ = lower_32_bits(addr);
1222 				*batch++ = upper_32_bits(addr);
1223 				*batch++ = lower_32_bits(target_offset);
1224 
1225 				addr = gen8_canonical_addr(addr + 4);
1226 
1227 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1228 				*batch++ = lower_32_bits(addr);
1229 				*batch++ = upper_32_bits(addr);
1230 				*batch++ = upper_32_bits(target_offset);
1231 			} else {
1232 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1233 				*batch++ = lower_32_bits(addr);
1234 				*batch++ = upper_32_bits(addr);
1235 				*batch++ = lower_32_bits(target_offset);
1236 				*batch++ = upper_32_bits(target_offset);
1237 			}
1238 		} else if (gen >= 6) {
1239 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1240 			*batch++ = 0;
1241 			*batch++ = addr;
1242 			*batch++ = target_offset;
1243 		} else if (gen >= 4) {
1244 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1245 			*batch++ = 0;
1246 			*batch++ = addr;
1247 			*batch++ = target_offset;
1248 		} else {
1249 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1250 			*batch++ = addr;
1251 			*batch++ = target_offset;
1252 		}
1253 
1254 		goto out;
1255 	}
1256 
1257 repeat:
1258 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1259 	if (IS_ERR(vaddr))
1260 		return PTR_ERR(vaddr);
1261 
1262 	clflush_write32(vaddr + offset_in_page(offset),
1263 			lower_32_bits(target_offset),
1264 			eb->reloc_cache.vaddr);
1265 
1266 	if (wide) {
1267 		offset += sizeof(u32);
1268 		target_offset >>= 32;
1269 		wide = false;
1270 		goto repeat;
1271 	}
1272 
1273 out:
1274 	return target->node.start | UPDATE;
1275 }
1276 
1277 static u64
1278 eb_relocate_entry(struct i915_execbuffer *eb,
1279 		  struct i915_vma *vma,
1280 		  const struct drm_i915_gem_relocation_entry *reloc)
1281 {
1282 	struct i915_vma *target;
1283 	int err;
1284 
1285 	/* we've already hold a reference to all valid objects */
1286 	target = eb_get_vma(eb, reloc->target_handle);
1287 	if (unlikely(!target))
1288 		return -ENOENT;
1289 
1290 	/* Validate that the target is in a valid r/w GPU domain */
1291 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1292 		DRM_DEBUG("reloc with multiple write domains: "
1293 			  "target %d offset %d "
1294 			  "read %08x write %08x",
1295 			  reloc->target_handle,
1296 			  (int) reloc->offset,
1297 			  reloc->read_domains,
1298 			  reloc->write_domain);
1299 		return -EINVAL;
1300 	}
1301 	if (unlikely((reloc->write_domain | reloc->read_domains)
1302 		     & ~I915_GEM_GPU_DOMAINS)) {
1303 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1304 			  "target %d offset %d "
1305 			  "read %08x write %08x",
1306 			  reloc->target_handle,
1307 			  (int) reloc->offset,
1308 			  reloc->read_domains,
1309 			  reloc->write_domain);
1310 		return -EINVAL;
1311 	}
1312 
1313 	if (reloc->write_domain) {
1314 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1315 
1316 		/*
1317 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1318 		 * for MI and pipe_control writes because the gpu doesn't
1319 		 * properly redirect them through the ppgtt for non_secure
1320 		 * batchbuffers.
1321 		 */
1322 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1323 		    IS_GEN6(eb->i915)) {
1324 			err = i915_vma_bind(target, target->obj->cache_level,
1325 					    PIN_GLOBAL);
1326 			if (WARN_ONCE(err,
1327 				      "Unexpected failure to bind target VMA!"))
1328 				return err;
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * If the relocation already has the right value in it, no
1334 	 * more work needs to be done.
1335 	 */
1336 	if (!DBG_FORCE_RELOC &&
1337 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1338 		return 0;
1339 
1340 	/* Check that the relocation address is valid... */
1341 	if (unlikely(reloc->offset >
1342 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1343 		DRM_DEBUG("Relocation beyond object bounds: "
1344 			  "target %d offset %d size %d.\n",
1345 			  reloc->target_handle,
1346 			  (int)reloc->offset,
1347 			  (int)vma->size);
1348 		return -EINVAL;
1349 	}
1350 	if (unlikely(reloc->offset & 3)) {
1351 		DRM_DEBUG("Relocation not 4-byte aligned: "
1352 			  "target %d offset %d.\n",
1353 			  reloc->target_handle,
1354 			  (int)reloc->offset);
1355 		return -EINVAL;
1356 	}
1357 
1358 	/*
1359 	 * If we write into the object, we need to force the synchronisation
1360 	 * barrier, either with an asynchronous clflush or if we executed the
1361 	 * patching using the GPU (though that should be serialised by the
1362 	 * timeline). To be completely sure, and since we are required to
1363 	 * do relocations we are already stalling, disable the user's opt
1364 	 * out of our synchronisation.
1365 	 */
1366 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1367 
1368 	/* and update the user's relocation entry */
1369 	return relocate_entry(vma, reloc, eb, target);
1370 }
1371 
1372 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1373 {
1374 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1375 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1376 	struct drm_i915_gem_relocation_entry __user *urelocs;
1377 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1378 	unsigned int remain;
1379 
1380 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1381 	remain = entry->relocation_count;
1382 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1383 		return -EINVAL;
1384 
1385 	/*
1386 	 * We must check that the entire relocation array is safe
1387 	 * to read. However, if the array is not writable the user loses
1388 	 * the updated relocation values.
1389 	 */
1390 #if 0
1391 	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1392 		return -EFAULT;
1393 #endif
1394 
1395 	do {
1396 		struct drm_i915_gem_relocation_entry *r = stack;
1397 		unsigned int count =
1398 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1399 		unsigned int copied;
1400 
1401 		/*
1402 		 * This is the fast path and we cannot handle a pagefault
1403 		 * whilst holding the struct mutex lest the user pass in the
1404 		 * relocations contained within a mmaped bo. For in such a case
1405 		 * we, the page fault handler would call i915_gem_fault() and
1406 		 * we would try to acquire the struct mutex again. Obviously
1407 		 * this is bad and so lockdep complains vehemently.
1408 		 */
1409 		pagefault_disable();
1410 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1411 		pagefault_enable();
1412 		if (unlikely(copied)) {
1413 			remain = -EFAULT;
1414 			goto out;
1415 		}
1416 
1417 		remain -= count;
1418 		do {
1419 			u64 offset = eb_relocate_entry(eb, vma, r);
1420 
1421 			if (likely(offset == 0)) {
1422 			} else if ((s64)offset < 0) {
1423 				remain = (int)offset;
1424 				goto out;
1425 			} else {
1426 				/*
1427 				 * Note that reporting an error now
1428 				 * leaves everything in an inconsistent
1429 				 * state as we have *already* changed
1430 				 * the relocation value inside the
1431 				 * object. As we have not changed the
1432 				 * reloc.presumed_offset or will not
1433 				 * change the execobject.offset, on the
1434 				 * call we may not rewrite the value
1435 				 * inside the object, leaving it
1436 				 * dangling and causing a GPU hang. Unless
1437 				 * userspace dynamically rebuilds the
1438 				 * relocations on each execbuf rather than
1439 				 * presume a static tree.
1440 				 *
1441 				 * We did previously check if the relocations
1442 				 * were writable (access_ok), an error now
1443 				 * would be a strange race with mprotect,
1444 				 * having already demonstrated that we
1445 				 * can read from this userspace address.
1446 				 */
1447 				offset = gen8_canonical_addr(offset & ~UPDATE);
1448 				__put_user(offset,
1449 					   &urelocs[r-stack].presumed_offset);
1450 			}
1451 		} while (r++, --count);
1452 		urelocs += ARRAY_SIZE(stack);
1453 	} while (remain);
1454 out:
1455 	reloc_cache_reset(&eb->reloc_cache);
1456 	return remain;
1457 }
1458 
1459 static int
1460 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1461 {
1462 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1463 	struct drm_i915_gem_relocation_entry *relocs =
1464 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1465 	unsigned int i;
1466 	int err;
1467 
1468 	for (i = 0; i < entry->relocation_count; i++) {
1469 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1470 
1471 		if ((s64)offset < 0) {
1472 			err = (int)offset;
1473 			goto err;
1474 		}
1475 	}
1476 	err = 0;
1477 err:
1478 	reloc_cache_reset(&eb->reloc_cache);
1479 	return err;
1480 }
1481 
1482 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1483 {
1484 	const char __user *addr, *end;
1485 	unsigned long size;
1486 	char __maybe_unused c;
1487 
1488 	size = entry->relocation_count;
1489 	if (size == 0)
1490 		return 0;
1491 
1492 	if (size > N_RELOC(ULONG_MAX))
1493 		return -EINVAL;
1494 
1495 	addr = u64_to_user_ptr(entry->relocs_ptr);
1496 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1497 #if 0
1498 	if (!access_ok(VERIFY_READ, addr, size))
1499 		return -EFAULT;
1500 #endif
1501 
1502 	end = addr + size;
1503 	for (; addr < end; addr += PAGE_SIZE) {
1504 		int err = __get_user(c, addr);
1505 		if (err)
1506 			return err;
1507 	}
1508 	return __get_user(c, end - 1);
1509 }
1510 
1511 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1512 {
1513 	const unsigned int count = eb->buffer_count;
1514 	unsigned int i;
1515 	int err;
1516 
1517 	for (i = 0; i < count; i++) {
1518 		const unsigned int nreloc = eb->exec[i].relocation_count;
1519 		struct drm_i915_gem_relocation_entry __user *urelocs;
1520 		struct drm_i915_gem_relocation_entry *relocs;
1521 		unsigned long size;
1522 		unsigned long copied;
1523 
1524 		if (nreloc == 0)
1525 			continue;
1526 
1527 		err = check_relocations(&eb->exec[i]);
1528 		if (err)
1529 			goto err;
1530 
1531 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1532 		size = nreloc * sizeof(*relocs);
1533 
1534 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1535 		if (!relocs) {
1536 			kvfree(relocs);
1537 			err = -ENOMEM;
1538 			goto err;
1539 		}
1540 
1541 		/* copy_from_user is limited to < 4GiB */
1542 		copied = 0;
1543 		do {
1544 			unsigned int len =
1545 				min_t(u64, BIT_ULL(31), size - copied);
1546 
1547 			if (__copy_from_user((char *)relocs + copied,
1548 					     (char __user *)urelocs + copied,
1549 					     len)) {
1550 				kvfree(relocs);
1551 				err = -EFAULT;
1552 				goto err;
1553 			}
1554 
1555 			copied += len;
1556 		} while (copied < size);
1557 
1558 		/*
1559 		 * As we do not update the known relocation offsets after
1560 		 * relocating (due to the complexities in lock handling),
1561 		 * we need to mark them as invalid now so that we force the
1562 		 * relocation processing next time. Just in case the target
1563 		 * object is evicted and then rebound into its old
1564 		 * presumed_offset before the next execbuffer - if that
1565 		 * happened we would make the mistake of assuming that the
1566 		 * relocations were valid.
1567 		 */
1568 		user_access_begin();
1569 		for (copied = 0; copied < nreloc; copied++)
1570 			unsafe_put_user(-1,
1571 					&urelocs[copied].presumed_offset,
1572 					end_user);
1573 end_user:
1574 		user_access_end();
1575 
1576 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1577 	}
1578 
1579 	return 0;
1580 
1581 err:
1582 	while (i--) {
1583 		struct drm_i915_gem_relocation_entry *relocs =
1584 			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1585 		if (eb->exec[i].relocation_count)
1586 			kvfree(relocs);
1587 	}
1588 	return err;
1589 }
1590 
1591 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1592 {
1593 	const unsigned int count = eb->buffer_count;
1594 	unsigned int i;
1595 
1596 	if (unlikely(i915_modparams.prefault_disable))
1597 		return 0;
1598 
1599 	for (i = 0; i < count; i++) {
1600 		int err;
1601 
1602 		err = check_relocations(&eb->exec[i]);
1603 		if (err)
1604 			return err;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1611 {
1612 	struct drm_device *dev = &eb->i915->drm;
1613 	bool have_copy = false;
1614 	struct i915_vma *vma;
1615 	int err = 0;
1616 
1617 repeat:
1618 	if (signal_pending(current)) {
1619 		err = -ERESTARTSYS;
1620 		goto out;
1621 	}
1622 
1623 	/* We may process another execbuffer during the unlock... */
1624 	eb_reset_vmas(eb);
1625 	mutex_unlock(&dev->struct_mutex);
1626 
1627 	/*
1628 	 * We take 3 passes through the slowpatch.
1629 	 *
1630 	 * 1 - we try to just prefault all the user relocation entries and
1631 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1632 	 *
1633 	 * 2 - we copy the user entries to a local buffer here outside of the
1634 	 * local and allow ourselves to wait upon any rendering before
1635 	 * relocations
1636 	 *
1637 	 * 3 - we already have a local copy of the relocation entries, but
1638 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1639 	 */
1640 	if (!err) {
1641 		err = eb_prefault_relocations(eb);
1642 	} else if (!have_copy) {
1643 		err = eb_copy_relocations(eb);
1644 		have_copy = err == 0;
1645 	} else {
1646 		cond_resched();
1647 		err = 0;
1648 	}
1649 	if (err) {
1650 		mutex_lock(&dev->struct_mutex);
1651 		goto out;
1652 	}
1653 
1654 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1655 	flush_workqueue(eb->i915->mm.userptr_wq);
1656 
1657 	err = i915_mutex_lock_interruptible(dev);
1658 	if (err) {
1659 		mutex_lock(&dev->struct_mutex);
1660 		goto out;
1661 	}
1662 
1663 	/* reacquire the objects */
1664 	err = eb_lookup_vmas(eb);
1665 	if (err)
1666 		goto err;
1667 
1668 	GEM_BUG_ON(!eb->batch);
1669 
1670 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1671 		if (!have_copy) {
1672 			pagefault_disable();
1673 			err = eb_relocate_vma(eb, vma);
1674 			pagefault_enable();
1675 			if (err)
1676 				goto repeat;
1677 		} else {
1678 			err = eb_relocate_vma_slow(eb, vma);
1679 			if (err)
1680 				goto err;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Leave the user relocations as are, this is the painfully slow path,
1686 	 * and we want to avoid the complication of dropping the lock whilst
1687 	 * having buffers reserved in the aperture and so causing spurious
1688 	 * ENOSPC for random operations.
1689 	 */
1690 
1691 err:
1692 	if (err == -EAGAIN)
1693 		goto repeat;
1694 
1695 out:
1696 	if (have_copy) {
1697 		const unsigned int count = eb->buffer_count;
1698 		unsigned int i;
1699 
1700 		for (i = 0; i < count; i++) {
1701 			const struct drm_i915_gem_exec_object2 *entry =
1702 				&eb->exec[i];
1703 			struct drm_i915_gem_relocation_entry *relocs;
1704 
1705 			if (!entry->relocation_count)
1706 				continue;
1707 
1708 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1709 			kvfree(relocs);
1710 		}
1711 	}
1712 
1713 	return err;
1714 }
1715 
1716 static int eb_relocate(struct i915_execbuffer *eb)
1717 {
1718 	if (eb_lookup_vmas(eb))
1719 		goto slow;
1720 
1721 	/* The objects are in their final locations, apply the relocations. */
1722 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1723 		struct i915_vma *vma;
1724 
1725 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1726 			if (eb_relocate_vma(eb, vma))
1727 				goto slow;
1728 		}
1729 	}
1730 
1731 	return 0;
1732 
1733 slow:
1734 	return eb_relocate_slow(eb);
1735 }
1736 
1737 static void eb_export_fence(struct i915_vma *vma,
1738 			    struct drm_i915_gem_request *req,
1739 			    unsigned int flags)
1740 {
1741 	struct reservation_object *resv = vma->resv;
1742 
1743 	/*
1744 	 * Ignore errors from failing to allocate the new fence, we can't
1745 	 * handle an error right now. Worst case should be missed
1746 	 * synchronisation leading to rendering corruption.
1747 	 */
1748 	reservation_object_lock(resv, NULL);
1749 	if (flags & EXEC_OBJECT_WRITE)
1750 		reservation_object_add_excl_fence(resv, &req->fence);
1751 	else if (reservation_object_reserve_shared(resv) == 0)
1752 		reservation_object_add_shared_fence(resv, &req->fence);
1753 	reservation_object_unlock(resv);
1754 }
1755 
1756 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1757 {
1758 	const unsigned int count = eb->buffer_count;
1759 	unsigned int i;
1760 	int err;
1761 
1762 	for (i = 0; i < count; i++) {
1763 		unsigned int flags = eb->flags[i];
1764 		struct i915_vma *vma = eb->vma[i];
1765 		struct drm_i915_gem_object *obj = vma->obj;
1766 
1767 		if (flags & EXEC_OBJECT_CAPTURE) {
1768 			struct i915_gem_capture_list *capture;
1769 
1770 			capture = kmalloc(sizeof(*capture), M_DRM, GFP_KERNEL);
1771 			if (unlikely(!capture))
1772 				return -ENOMEM;
1773 
1774 			capture->next = eb->request->capture_list;
1775 			capture->vma = eb->vma[i];
1776 			eb->request->capture_list = capture;
1777 		}
1778 
1779 		/*
1780 		 * If the GPU is not _reading_ through the CPU cache, we need
1781 		 * to make sure that any writes (both previous GPU writes from
1782 		 * before a change in snooping levels and normal CPU writes)
1783 		 * caught in that cache are flushed to main memory.
1784 		 *
1785 		 * We want to say
1786 		 *   obj->cache_dirty &&
1787 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1788 		 * but gcc's optimiser doesn't handle that as well and emits
1789 		 * two jumps instead of one. Maybe one day...
1790 		 */
1791 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1792 			if (i915_gem_clflush_object(obj, 0))
1793 				flags &= ~EXEC_OBJECT_ASYNC;
1794 		}
1795 
1796 		if (flags & EXEC_OBJECT_ASYNC)
1797 			continue;
1798 
1799 		err = i915_gem_request_await_object
1800 			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1801 		if (err)
1802 			return err;
1803 	}
1804 
1805 	for (i = 0; i < count; i++) {
1806 		unsigned int flags = eb->flags[i];
1807 		struct i915_vma *vma = eb->vma[i];
1808 
1809 		i915_vma_move_to_active(vma, eb->request, flags);
1810 		eb_export_fence(vma, eb->request, flags);
1811 
1812 		__eb_unreserve_vma(vma, flags);
1813 		vma->exec_flags = NULL;
1814 
1815 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1816 			i915_vma_put(vma);
1817 	}
1818 	eb->exec = NULL;
1819 
1820 	/* Unconditionally flush any chipset caches (for streaming writes). */
1821 	i915_gem_chipset_flush(eb->i915);
1822 
1823 	/* Unconditionally invalidate GPU caches and TLBs. */
1824 	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1825 }
1826 
1827 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1828 {
1829 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1830 		return false;
1831 
1832 	/* Kernel clipping was a DRI1 misfeature */
1833 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1834 		if (exec->num_cliprects || exec->cliprects_ptr)
1835 			return false;
1836 	}
1837 
1838 	if (exec->DR4 == 0xffffffff) {
1839 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1840 		exec->DR4 = 0;
1841 	}
1842 	if (exec->DR1 || exec->DR4)
1843 		return false;
1844 
1845 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1846 		return false;
1847 
1848 	return true;
1849 }
1850 
1851 void i915_vma_move_to_active(struct i915_vma *vma,
1852 			     struct drm_i915_gem_request *req,
1853 			     unsigned int flags)
1854 {
1855 	struct drm_i915_gem_object *obj = vma->obj;
1856 	const unsigned int idx = req->engine->id;
1857 
1858 	lockdep_assert_held(&req->i915->drm.struct_mutex);
1859 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1860 
1861 	/*
1862 	 * Add a reference if we're newly entering the active list.
1863 	 * The order in which we add operations to the retirement queue is
1864 	 * vital here: mark_active adds to the start of the callback list,
1865 	 * such that subsequent callbacks are called first. Therefore we
1866 	 * add the active reference first and queue for it to be dropped
1867 	 * *last*.
1868 	 */
1869 	if (!i915_vma_is_active(vma))
1870 		obj->active_count++;
1871 	i915_vma_set_active(vma, idx);
1872 	i915_gem_active_set(&vma->last_read[idx], req);
1873 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1874 
1875 	obj->base.write_domain = 0;
1876 	if (flags & EXEC_OBJECT_WRITE) {
1877 		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;
1878 
1879 		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1880 			i915_gem_active_set(&obj->frontbuffer_write, req);
1881 
1882 		obj->base.read_domains = 0;
1883 	}
1884 	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1885 
1886 	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1887 		i915_gem_active_set(&vma->last_fence, req);
1888 }
1889 
1890 static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1891 {
1892 	u32 *cs;
1893 	int i;
1894 
1895 	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1896 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1897 		return -EINVAL;
1898 	}
1899 
1900 	cs = intel_ring_begin(req, 4 * 2 + 2);
1901 	if (IS_ERR(cs))
1902 		return PTR_ERR(cs);
1903 
1904 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1905 	for (i = 0; i < 4; i++) {
1906 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1907 		*cs++ = 0;
1908 	}
1909 	*cs++ = MI_NOOP;
1910 	intel_ring_advance(req, cs);
1911 
1912 	return 0;
1913 }
1914 
1915 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1916 {
1917 	struct drm_i915_gem_object *shadow_batch_obj;
1918 	struct i915_vma *vma;
1919 	int err;
1920 
1921 	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1922 						   PAGE_ALIGN(eb->batch_len));
1923 	if (IS_ERR(shadow_batch_obj))
1924 		return ERR_CAST(shadow_batch_obj);
1925 
1926 	err = intel_engine_cmd_parser(eb->engine,
1927 				      eb->batch->obj,
1928 				      shadow_batch_obj,
1929 				      eb->batch_start_offset,
1930 				      eb->batch_len,
1931 				      is_master);
1932 	if (err) {
1933 		if (err == -EACCES) /* unhandled chained batch */
1934 			vma = NULL;
1935 		else
1936 			vma = ERR_PTR(err);
1937 		goto out;
1938 	}
1939 
1940 	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1941 	if (IS_ERR(vma))
1942 		goto out;
1943 
1944 	eb->vma[eb->buffer_count] = i915_vma_get(vma);
1945 	eb->flags[eb->buffer_count] =
1946 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1947 	vma->exec_flags = &eb->flags[eb->buffer_count];
1948 	eb->buffer_count++;
1949 
1950 out:
1951 	i915_gem_object_unpin_pages(shadow_batch_obj);
1952 	return vma;
1953 }
1954 
1955 static void
1956 add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1957 {
1958 	req->file_priv = file->driver_priv;
1959 	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1960 }
1961 
1962 static int eb_submit(struct i915_execbuffer *eb)
1963 {
1964 	int err;
1965 
1966 	err = eb_move_to_gpu(eb);
1967 	if (err)
1968 		return err;
1969 
1970 	err = i915_switch_context(eb->request);
1971 	if (err)
1972 		return err;
1973 
1974 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1975 		err = i915_reset_gen7_sol_offsets(eb->request);
1976 		if (err)
1977 			return err;
1978 	}
1979 
1980 	err = eb->engine->emit_bb_start(eb->request,
1981 					eb->batch->node.start +
1982 					eb->batch_start_offset,
1983 					eb->batch_len,
1984 					eb->batch_flags);
1985 	if (err)
1986 		return err;
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  * Find one BSD ring to dispatch the corresponding BSD command.
1993  * The engine index is returned.
1994  */
1995 static unsigned int
1996 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1997 			 struct drm_file *file)
1998 {
1999 	struct drm_i915_file_private *file_priv = file->driver_priv;
2000 
2001 	/* Check whether the file_priv has already selected one ring. */
2002 	if ((int)file_priv->bsd_engine < 0)
2003 		file_priv->bsd_engine = atomic_fetch_xor(1,
2004 			 &dev_priv->mm.bsd_engine_dispatch_index);
2005 
2006 	return file_priv->bsd_engine;
2007 }
2008 
2009 #define I915_USER_RINGS (4)
2010 
2011 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2012 	[I915_EXEC_DEFAULT]	= RCS,
2013 	[I915_EXEC_RENDER]	= RCS,
2014 	[I915_EXEC_BLT]		= BCS,
2015 	[I915_EXEC_BSD]		= VCS,
2016 	[I915_EXEC_VEBOX]	= VECS
2017 };
2018 
2019 static struct intel_engine_cs *
2020 eb_select_engine(struct drm_i915_private *dev_priv,
2021 		 struct drm_file *file,
2022 		 struct drm_i915_gem_execbuffer2 *args)
2023 {
2024 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2025 	struct intel_engine_cs *engine;
2026 
2027 	if (user_ring_id > I915_USER_RINGS) {
2028 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2029 		return NULL;
2030 	}
2031 
2032 	if ((user_ring_id != I915_EXEC_BSD) &&
2033 	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2034 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2035 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2036 		return NULL;
2037 	}
2038 
2039 	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2040 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2041 
2042 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2043 			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2044 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2045 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2046 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2047 			bsd_idx--;
2048 		} else {
2049 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2050 				  bsd_idx);
2051 			return NULL;
2052 		}
2053 
2054 		engine = dev_priv->engine[_VCS(bsd_idx)];
2055 	} else {
2056 		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2057 	}
2058 
2059 	if (!engine) {
2060 		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2061 		return NULL;
2062 	}
2063 
2064 	return engine;
2065 }
2066 
2067 static void
2068 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2069 {
2070 	while (n--)
2071 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2072 	kvfree(fences);
2073 }
2074 
2075 static struct drm_syncobj **
2076 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2077 		struct drm_file *file)
2078 {
2079 	const unsigned int nfences = args->num_cliprects;
2080 	struct drm_i915_gem_exec_fence __user *user;
2081 	struct drm_syncobj **fences;
2082 	unsigned int n;
2083 	int err;
2084 
2085 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2086 		return NULL;
2087 
2088 	if (nfences > SIZE_MAX / sizeof(*fences))
2089 		return ERR_PTR(-EINVAL);
2090 
2091 	user = u64_to_user_ptr(args->cliprects_ptr);
2092 #if 0
2093 	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
2094 		return ERR_PTR(-EFAULT);
2095 #endif
2096 
2097 	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
2098 				__GFP_NOWARN | GFP_KERNEL);
2099 	if (!fences)
2100 		return ERR_PTR(-ENOMEM);
2101 
2102 	for (n = 0; n < nfences; n++) {
2103 		struct drm_i915_gem_exec_fence fence;
2104 		struct drm_syncobj *syncobj;
2105 
2106 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2107 			err = -EFAULT;
2108 			goto err;
2109 		}
2110 
2111 		syncobj = drm_syncobj_find(file, fence.handle);
2112 		if (!syncobj) {
2113 			DRM_DEBUG("Invalid syncobj handle provided\n");
2114 			err = -ENOENT;
2115 			goto err;
2116 		}
2117 
2118 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2119 	}
2120 
2121 	return fences;
2122 
2123 err:
2124 	__free_fence_array(fences, n);
2125 	return ERR_PTR(err);
2126 }
2127 
2128 static void
2129 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2130 		struct drm_syncobj **fences)
2131 {
2132 	if (fences)
2133 		__free_fence_array(fences, args->num_cliprects);
2134 }
2135 
2136 static int
2137 await_fence_array(struct i915_execbuffer *eb,
2138 		  struct drm_syncobj **fences)
2139 {
2140 	const unsigned int nfences = eb->args->num_cliprects;
2141 	unsigned int n;
2142 	int err;
2143 
2144 	for (n = 0; n < nfences; n++) {
2145 		struct drm_syncobj *syncobj;
2146 		struct dma_fence *fence;
2147 		unsigned int flags;
2148 
2149 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2150 		if (!(flags & I915_EXEC_FENCE_WAIT))
2151 			continue;
2152 
2153 		rcu_read_lock();
2154 		fence = dma_fence_get_rcu_safe(&syncobj->fence);
2155 		rcu_read_unlock();
2156 		if (!fence)
2157 			return -EINVAL;
2158 
2159 		err = i915_gem_request_await_dma_fence(eb->request, fence);
2160 		dma_fence_put(fence);
2161 		if (err < 0)
2162 			return err;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static void
2169 signal_fence_array(struct i915_execbuffer *eb,
2170 		   struct drm_syncobj **fences)
2171 {
2172 	const unsigned int nfences = eb->args->num_cliprects;
2173 	struct dma_fence * const fence = &eb->request->fence;
2174 	unsigned int n;
2175 
2176 	for (n = 0; n < nfences; n++) {
2177 		struct drm_syncobj *syncobj;
2178 		unsigned int flags;
2179 
2180 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2181 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2182 			continue;
2183 
2184 		drm_syncobj_replace_fence(syncobj, fence);
2185 	}
2186 }
2187 
2188 static int
2189 i915_gem_do_execbuffer(struct drm_device *dev,
2190 		       struct drm_file *file,
2191 		       struct drm_i915_gem_execbuffer2 *args,
2192 		       struct drm_i915_gem_exec_object2 *exec,
2193 		       struct drm_syncobj **fences)
2194 {
2195 	struct i915_execbuffer eb;
2196 	struct dma_fence *in_fence = NULL;
2197 	struct sync_file *out_fence = NULL;
2198 	int out_fence_fd = -1;
2199 	int err;
2200 
2201 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2202 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2203 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2204 
2205 	eb.i915 = to_i915(dev);
2206 	eb.file = file;
2207 	eb.args = args;
2208 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2209 		args->flags |= __EXEC_HAS_RELOC;
2210 
2211 	eb.exec = exec;
2212 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2213 	eb.vma[0] = NULL;
2214 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2215 
2216 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2217 	if (USES_FULL_PPGTT(eb.i915))
2218 		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2219 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2220 
2221 	eb.buffer_count = args->buffer_count;
2222 	eb.batch_start_offset = args->batch_start_offset;
2223 	eb.batch_len = args->batch_len;
2224 
2225 	eb.batch_flags = 0;
2226 	if (args->flags & I915_EXEC_SECURE) {
2227 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2228 		    return -EPERM;
2229 
2230 		eb.batch_flags |= I915_DISPATCH_SECURE;
2231 	}
2232 	if (args->flags & I915_EXEC_IS_PINNED)
2233 		eb.batch_flags |= I915_DISPATCH_PINNED;
2234 
2235 	eb.engine = eb_select_engine(eb.i915, file, args);
2236 	if (!eb.engine)
2237 		return -EINVAL;
2238 
2239 	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2240 		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2241 			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2242 			return -EINVAL;
2243 		}
2244 		if (eb.engine->id != RCS) {
2245 			DRM_DEBUG("RS is not available on %s\n",
2246 				 eb.engine->name);
2247 			return -EINVAL;
2248 		}
2249 
2250 		eb.batch_flags |= I915_DISPATCH_RS;
2251 	}
2252 
2253 	if (args->flags & I915_EXEC_FENCE_IN) {
2254 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2255 		if (!in_fence)
2256 			return -EINVAL;
2257 	}
2258 
2259 	if (args->flags & I915_EXEC_FENCE_OUT) {
2260 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2261 		if (out_fence_fd < 0) {
2262 			err = out_fence_fd;
2263 			goto err_in_fence;
2264 		}
2265 	}
2266 
2267 	err = eb_create(&eb);
2268 	if (err)
2269 		goto err_out_fence;
2270 
2271 	GEM_BUG_ON(!eb.lut_size);
2272 
2273 	err = eb_select_context(&eb);
2274 	if (unlikely(err))
2275 		goto err_destroy;
2276 
2277 	/*
2278 	 * Take a local wakeref for preparing to dispatch the execbuf as
2279 	 * we expect to access the hardware fairly frequently in the
2280 	 * process. Upon first dispatch, we acquire another prolonged
2281 	 * wakeref that we hold until the GPU has been idle for at least
2282 	 * 100ms.
2283 	 */
2284 	intel_runtime_pm_get(eb.i915);
2285 
2286 	err = i915_mutex_lock_interruptible(dev);
2287 	if (err)
2288 		goto err_rpm;
2289 
2290 	err = eb_relocate(&eb);
2291 	if (err) {
2292 		/*
2293 		 * If the user expects the execobject.offset and
2294 		 * reloc.presumed_offset to be an exact match,
2295 		 * as for using NO_RELOC, then we cannot update
2296 		 * the execobject.offset until we have completed
2297 		 * relocation.
2298 		 */
2299 		args->flags &= ~__EXEC_HAS_RELOC;
2300 		goto err_vma;
2301 	}
2302 
2303 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2304 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2305 		err = -EINVAL;
2306 		goto err_vma;
2307 	}
2308 	if (eb.batch_start_offset > eb.batch->size ||
2309 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2310 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2311 		err = -EINVAL;
2312 		goto err_vma;
2313 	}
2314 
2315 	if (eb_use_cmdparser(&eb)) {
2316 		struct i915_vma *vma;
2317 
2318 		vma = eb_parse(&eb, drm_is_current_master(file));
2319 		if (IS_ERR(vma)) {
2320 			err = PTR_ERR(vma);
2321 			goto err_vma;
2322 		}
2323 
2324 		if (vma) {
2325 			/*
2326 			 * Batch parsed and accepted:
2327 			 *
2328 			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2329 			 * bit from MI_BATCH_BUFFER_START commands issued in
2330 			 * the dispatch_execbuffer implementations. We
2331 			 * specifically don't want that set on batches the
2332 			 * command parser has accepted.
2333 			 */
2334 			eb.batch_flags |= I915_DISPATCH_SECURE;
2335 			eb.batch_start_offset = 0;
2336 			eb.batch = vma;
2337 		}
2338 	}
2339 
2340 	if (eb.batch_len == 0)
2341 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2342 
2343 	/*
2344 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2345 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2346 	 * hsw should have this fixed, but bdw mucks it up again. */
2347 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2348 		struct i915_vma *vma;
2349 
2350 		/*
2351 		 * So on first glance it looks freaky that we pin the batch here
2352 		 * outside of the reservation loop. But:
2353 		 * - The batch is already pinned into the relevant ppgtt, so we
2354 		 *   already have the backing storage fully allocated.
2355 		 * - No other BO uses the global gtt (well contexts, but meh),
2356 		 *   so we don't really have issues with multiple objects not
2357 		 *   fitting due to fragmentation.
2358 		 * So this is actually safe.
2359 		 */
2360 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2361 		if (IS_ERR(vma)) {
2362 			err = PTR_ERR(vma);
2363 			goto err_vma;
2364 		}
2365 
2366 		eb.batch = vma;
2367 	}
2368 
2369 	/* All GPU relocation batches must be submitted prior to the user rq */
2370 	GEM_BUG_ON(eb.reloc_cache.rq);
2371 
2372 	/* Allocate a request for this batch buffer nice and early. */
2373 	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
2374 	if (IS_ERR(eb.request)) {
2375 		err = PTR_ERR(eb.request);
2376 		goto err_batch_unpin;
2377 	}
2378 
2379 	if (in_fence) {
2380 		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
2381 		if (err < 0)
2382 			goto err_request;
2383 	}
2384 
2385 	if (fences) {
2386 		err = await_fence_array(&eb, fences);
2387 		if (err)
2388 			goto err_request;
2389 	}
2390 
2391 	if (out_fence_fd != -1) {
2392 		out_fence = sync_file_create(&eb.request->fence);
2393 		if (!out_fence) {
2394 			err = -ENOMEM;
2395 			goto err_request;
2396 		}
2397 	}
2398 
2399 	/*
2400 	 * Whilst this request exists, batch_obj will be on the
2401 	 * active_list, and so will hold the active reference. Only when this
2402 	 * request is retired will the the batch_obj be moved onto the
2403 	 * inactive_list and lose its active reference. Hence we do not need
2404 	 * to explicitly hold another reference here.
2405 	 */
2406 	eb.request->batch = eb.batch;
2407 
2408 	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
2409 	err = eb_submit(&eb);
2410 err_request:
2411 	__i915_add_request(eb.request, err == 0);
2412 	add_to_client(eb.request, file);
2413 
2414 	if (fences)
2415 		signal_fence_array(&eb, fences);
2416 
2417 	if (out_fence) {
2418 		if (err == 0) {
2419 			fd_install(out_fence_fd, out_fence->file);
2420 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2421 			args->rsvd2 |= (u64)out_fence_fd << 32;
2422 			out_fence_fd = -1;
2423 		} else {
2424 			fput(out_fence->file);
2425 		}
2426 	}
2427 
2428 err_batch_unpin:
2429 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2430 		i915_vma_unpin(eb.batch);
2431 err_vma:
2432 	if (eb.exec)
2433 		eb_release_vmas(&eb);
2434 	mutex_unlock(&dev->struct_mutex);
2435 err_rpm:
2436 	intel_runtime_pm_put(eb.i915);
2437 	i915_gem_context_put(eb.ctx);
2438 err_destroy:
2439 	eb_destroy(&eb);
2440 err_out_fence:
2441 	if (out_fence_fd != -1)
2442 		put_unused_fd(out_fence_fd);
2443 err_in_fence:
2444 	dma_fence_put(in_fence);
2445 	return err;
2446 }
2447 
2448 /*
2449  * Legacy execbuffer just creates an exec2 list from the original exec object
2450  * list array and passes it to the real function.
2451  */
2452 int
2453 i915_gem_execbuffer(struct drm_device *dev, void *data,
2454 		    struct drm_file *file)
2455 {
2456 	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
2457 			   sizeof(struct i915_vma *) +
2458 			   sizeof(unsigned int));
2459 	struct drm_i915_gem_execbuffer *args = data;
2460 	struct drm_i915_gem_execbuffer2 exec2;
2461 	struct drm_i915_gem_exec_object *exec_list = NULL;
2462 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2463 	unsigned int i;
2464 	int err;
2465 
2466 	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2467 		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2468 		return -EINVAL;
2469 	}
2470 
2471 	exec2.buffers_ptr = args->buffers_ptr;
2472 	exec2.buffer_count = args->buffer_count;
2473 	exec2.batch_start_offset = args->batch_start_offset;
2474 	exec2.batch_len = args->batch_len;
2475 	exec2.DR1 = args->DR1;
2476 	exec2.DR4 = args->DR4;
2477 	exec2.num_cliprects = args->num_cliprects;
2478 	exec2.cliprects_ptr = args->cliprects_ptr;
2479 	exec2.flags = I915_EXEC_RENDER;
2480 	i915_execbuffer2_set_context_id(exec2, 0);
2481 
2482 	if (!i915_gem_check_execbuffer(&exec2))
2483 		return -EINVAL;
2484 
2485 	/* Copy in the exec list from userland */
2486 	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
2487 				   __GFP_NOWARN | GFP_KERNEL);
2488 	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2489 				    __GFP_NOWARN | GFP_KERNEL);
2490 	if (exec_list == NULL || exec2_list == NULL) {
2491 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2492 			  args->buffer_count);
2493 		kvfree(exec_list);
2494 		kvfree(exec2_list);
2495 		return -ENOMEM;
2496 	}
2497 	err = copy_from_user(exec_list,
2498 			     u64_to_user_ptr(args->buffers_ptr),
2499 			     sizeof(*exec_list) * args->buffer_count);
2500 	if (err) {
2501 		DRM_DEBUG("copy %d exec entries failed %d\n",
2502 			  args->buffer_count, err);
2503 		kvfree(exec_list);
2504 		kvfree(exec2_list);
2505 		return -EFAULT;
2506 	}
2507 
2508 	for (i = 0; i < args->buffer_count; i++) {
2509 		exec2_list[i].handle = exec_list[i].handle;
2510 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2511 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2512 		exec2_list[i].alignment = exec_list[i].alignment;
2513 		exec2_list[i].offset = exec_list[i].offset;
2514 		if (INTEL_GEN(to_i915(dev)) < 4)
2515 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2516 		else
2517 			exec2_list[i].flags = 0;
2518 	}
2519 
2520 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2521 	if (exec2.flags & __EXEC_HAS_RELOC) {
2522 		struct drm_i915_gem_exec_object __user *user_exec_list =
2523 			u64_to_user_ptr(args->buffers_ptr);
2524 
2525 		/* Copy the new buffer offsets back to the user's exec list. */
2526 		for (i = 0; i < args->buffer_count; i++) {
2527 			if (!(exec2_list[i].offset & UPDATE))
2528 				continue;
2529 
2530 			exec2_list[i].offset =
2531 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2532 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2533 			if (__copy_to_user(&user_exec_list[i].offset,
2534 					   &exec2_list[i].offset,
2535 					   sizeof(user_exec_list[i].offset)))
2536 				break;
2537 		}
2538 	}
2539 
2540 	kvfree(exec_list);
2541 	kvfree(exec2_list);
2542 	return err;
2543 }
2544 
2545 int
2546 i915_gem_execbuffer2(struct drm_device *dev, void *data,
2547 		     struct drm_file *file)
2548 {
2549 	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
2550 			   sizeof(struct i915_vma *) +
2551 			   sizeof(unsigned int));
2552 	struct drm_i915_gem_execbuffer2 *args = data;
2553 	struct drm_i915_gem_exec_object2 *exec2_list;
2554 	struct drm_syncobj **fences = NULL;
2555 	int err;
2556 
2557 	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2558 		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2559 		return -EINVAL;
2560 	}
2561 
2562 	if (!i915_gem_check_execbuffer(args))
2563 		return -EINVAL;
2564 
2565 	/* Allocate an extra slot for use by the command parser */
2566 	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2567 				    __GFP_NOWARN | GFP_KERNEL);
2568 	if (exec2_list == NULL) {
2569 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2570 			  args->buffer_count);
2571 		return -ENOMEM;
2572 	}
2573 	if (copy_from_user(exec2_list,
2574 			   u64_to_user_ptr(args->buffers_ptr),
2575 			   sizeof(*exec2_list) * args->buffer_count)) {
2576 		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
2577 		kvfree(exec2_list);
2578 		return -EFAULT;
2579 	}
2580 
2581 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2582 		fences = get_fence_array(args, file);
2583 		if (IS_ERR(fences)) {
2584 			kvfree(exec2_list);
2585 			return PTR_ERR(fences);
2586 		}
2587 	}
2588 
2589 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2590 
2591 	/*
2592 	 * Now that we have begun execution of the batchbuffer, we ignore
2593 	 * any new error after this point. Also given that we have already
2594 	 * updated the associated relocations, we try to write out the current
2595 	 * object locations irrespective of any error.
2596 	 */
2597 	if (args->flags & __EXEC_HAS_RELOC) {
2598 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2599 			u64_to_user_ptr(args->buffers_ptr);
2600 		unsigned int i;
2601 
2602 		/* Copy the new buffer offsets back to the user's exec list. */
2603 		user_access_begin();
2604 		for (i = 0; i < args->buffer_count; i++) {
2605 			if (!(exec2_list[i].offset & UPDATE))
2606 				continue;
2607 
2608 			exec2_list[i].offset =
2609 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2610 			unsafe_put_user(exec2_list[i].offset,
2611 					&user_exec_list[i].offset,
2612 					end_user);
2613 		}
2614 end_user:
2615 		user_access_end();
2616 	}
2617 
2618 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2619 	put_fence_array(args, fences);
2620 	kvfree(exec2_list);
2621 	return err;
2622 }
2623