1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28 
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/pagemap.h>
35 #include <asm/cpufeature.h>
36 
37 #define  __EXEC_OBJECT_HAS_PIN (1<<31)
38 #define  __EXEC_OBJECT_HAS_FENCE (1<<30)
39 #define  __EXEC_OBJECT_NEEDS_MAP (1<<29)
40 #define  __EXEC_OBJECT_NEEDS_BIAS (1<<28)
41 
42 #define BATCH_OFFSET_BIAS (256*1024)
43 
44 struct eb_vmas {
45 	struct list_head vmas;
46 	int and;
47 	union {
48 		struct i915_vma *lut[0];
49 		struct hlist_head buckets[0];
50 	};
51 };
52 
53 static struct eb_vmas *
54 eb_create(struct drm_i915_gem_execbuffer2 *args)
55 {
56 	struct eb_vmas *eb = NULL;
57 
58 	if (args->flags & I915_EXEC_HANDLE_LUT) {
59 		unsigned size = args->buffer_count;
60 		size *= sizeof(struct i915_vma *);
61 		size += sizeof(struct eb_vmas);
62 		eb = kmalloc(size, M_DRM, M_NOWAIT);
63 	}
64 
65 	if (eb == NULL) {
66 		unsigned size = args->buffer_count;
67 		unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
68 		BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
69 		while (count > 2*size)
70 			count >>= 1;
71 		eb = kzalloc(count*sizeof(struct hlist_head) +
72 			     sizeof(struct eb_vmas),
73 			     GFP_TEMPORARY);
74 		if (eb == NULL)
75 			return eb;
76 
77 		eb->and = count - 1;
78 	} else
79 		eb->and = -args->buffer_count;
80 
81 	INIT_LIST_HEAD(&eb->vmas);
82 	return eb;
83 }
84 
85 static void
86 eb_reset(struct eb_vmas *eb)
87 {
88 	if (eb->and >= 0)
89 		memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
90 }
91 
92 static int
93 eb_lookup_vmas(struct eb_vmas *eb,
94 	       struct drm_i915_gem_exec_object2 *exec,
95 	       const struct drm_i915_gem_execbuffer2 *args,
96 	       struct i915_address_space *vm,
97 	       struct drm_file *file)
98 {
99 	struct drm_i915_gem_object *obj;
100 	struct list_head objects;
101 	int i, ret;
102 
103 	INIT_LIST_HEAD(&objects);
104 	lockmgr(&file->table_lock, LK_EXCLUSIVE);
105 	/* Grab a reference to the object and release the lock so we can lookup
106 	 * or create the VMA without using GFP_ATOMIC */
107 	for (i = 0; i < args->buffer_count; i++) {
108 		obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
109 		if (obj == NULL) {
110 			lockmgr(&file->table_lock, LK_RELEASE);
111 			DRM_DEBUG("Invalid object handle %d at index %d\n",
112 				   exec[i].handle, i);
113 			ret = -ENOENT;
114 			goto err;
115 		}
116 
117 		if (!list_empty(&obj->obj_exec_link)) {
118 			lockmgr(&file->table_lock, LK_RELEASE);
119 			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
120 				   obj, exec[i].handle, i);
121 			ret = -EINVAL;
122 			goto err;
123 		}
124 
125 		drm_gem_object_reference(&obj->base);
126 		list_add_tail(&obj->obj_exec_link, &objects);
127 	}
128 	lockmgr(&file->table_lock, LK_RELEASE);
129 
130 	i = 0;
131 	while (!list_empty(&objects)) {
132 		struct i915_vma *vma;
133 
134 		obj = list_first_entry(&objects,
135 				       struct drm_i915_gem_object,
136 				       obj_exec_link);
137 
138 		/*
139 		 * NOTE: We can leak any vmas created here when something fails
140 		 * later on. But that's no issue since vma_unbind can deal with
141 		 * vmas which are not actually bound. And since only
142 		 * lookup_or_create exists as an interface to get at the vma
143 		 * from the (obj, vm) we don't run the risk of creating
144 		 * duplicated vmas for the same vm.
145 		 */
146 		vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
147 		if (IS_ERR(vma)) {
148 			DRM_DEBUG("Failed to lookup VMA\n");
149 			ret = PTR_ERR(vma);
150 			goto err;
151 		}
152 
153 		/* Transfer ownership from the objects list to the vmas list. */
154 		list_add_tail(&vma->exec_list, &eb->vmas);
155 		list_del_init(&obj->obj_exec_link);
156 
157 		vma->exec_entry = &exec[i];
158 		if (eb->and < 0) {
159 			eb->lut[i] = vma;
160 		} else {
161 			uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
162 			vma->exec_handle = handle;
163 			hlist_add_head(&vma->exec_node,
164 				       &eb->buckets[handle & eb->and]);
165 		}
166 		++i;
167 	}
168 
169 	return 0;
170 
171 
172 err:
173 	while (!list_empty(&objects)) {
174 		obj = list_first_entry(&objects,
175 				       struct drm_i915_gem_object,
176 				       obj_exec_link);
177 		list_del_init(&obj->obj_exec_link);
178 		drm_gem_object_unreference(&obj->base);
179 	}
180 	/*
181 	 * Objects already transfered to the vmas list will be unreferenced by
182 	 * eb_destroy.
183 	 */
184 
185 	return ret;
186 }
187 
188 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
189 {
190 	if (eb->and < 0) {
191 		if (handle >= -eb->and)
192 			return NULL;
193 		return eb->lut[handle];
194 	} else {
195 		struct hlist_head *head;
196 		struct i915_vma *vma;
197 
198 		head = &eb->buckets[handle & eb->and];
199 		hlist_for_each_entry(vma, head, exec_node) {
200 			if (vma->exec_handle == handle)
201 				return vma;
202 		}
203 		return NULL;
204 	}
205 }
206 
207 static void
208 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
209 {
210 	struct drm_i915_gem_exec_object2 *entry;
211 	struct drm_i915_gem_object *obj = vma->obj;
212 
213 	if (!drm_mm_node_allocated(&vma->node))
214 		return;
215 
216 	entry = vma->exec_entry;
217 
218 	if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
219 		i915_gem_object_unpin_fence(obj);
220 
221 	if (entry->flags & __EXEC_OBJECT_HAS_PIN)
222 		vma->pin_count--;
223 
224 	entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
225 }
226 
227 static void eb_destroy(struct eb_vmas *eb)
228 {
229 	while (!list_empty(&eb->vmas)) {
230 		struct i915_vma *vma;
231 
232 		vma = list_first_entry(&eb->vmas,
233 				       struct i915_vma,
234 				       exec_list);
235 		list_del_init(&vma->exec_list);
236 		i915_gem_execbuffer_unreserve_vma(vma);
237 		drm_gem_object_unreference(&vma->obj->base);
238 	}
239 	kfree(eb);
240 }
241 
242 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
243 {
244 	return (HAS_LLC(obj->base.dev) ||
245 		obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
246 		obj->cache_level != I915_CACHE_NONE);
247 }
248 
249 /* Used to convert any address to canonical form.
250  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
251  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
252  * addresses to be in a canonical form:
253  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
254  * canonical form [63:48] == [47]."
255  */
256 #define GEN8_HIGH_ADDRESS_BIT 47
257 static inline uint64_t gen8_canonical_addr(uint64_t address)
258 {
259 	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
260 }
261 
262 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
263 {
264 	return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
265 }
266 
267 static inline uint64_t
268 relocation_target(struct drm_i915_gem_relocation_entry *reloc,
269 		  uint64_t target_offset)
270 {
271 	return gen8_canonical_addr((int)reloc->delta + target_offset);
272 }
273 
274 static int
275 relocate_entry_cpu(struct drm_i915_gem_object *obj,
276 		   struct drm_i915_gem_relocation_entry *reloc,
277 		   uint64_t target_offset)
278 {
279 	struct drm_device *dev = obj->base.dev;
280 	uint32_t page_offset = offset_in_page(reloc->offset);
281 	uint64_t delta = relocation_target(reloc, target_offset);
282 	char *vaddr;
283 	int ret;
284 
285 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
286 	if (ret)
287 		return ret;
288 
289 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
290 				reloc->offset >> PAGE_SHIFT));
291 	*(uint32_t *)(vaddr + page_offset) = lower_32_bits(delta);
292 
293 	if (INTEL_INFO(dev)->gen >= 8) {
294 		page_offset = offset_in_page(page_offset + sizeof(uint32_t));
295 
296 		if (page_offset == 0) {
297 			kunmap_atomic(vaddr);
298 			vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
299 			    (reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
300 		}
301 
302 		*(uint32_t *)(vaddr + page_offset) = upper_32_bits(delta);
303 	}
304 
305 	kunmap_atomic(vaddr);
306 
307 	return 0;
308 }
309 
310 static int
311 relocate_entry_gtt(struct drm_i915_gem_object *obj,
312 		   struct drm_i915_gem_relocation_entry *reloc,
313 		   uint64_t target_offset)
314 {
315 	struct drm_device *dev = obj->base.dev;
316 	struct drm_i915_private *dev_priv = to_i915(dev);
317 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
318 	uint64_t delta = relocation_target(reloc, target_offset);
319 	uint64_t offset;
320 	void __iomem *reloc_page;
321 	int ret;
322 
323 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
324 	if (ret)
325 		return ret;
326 
327 	ret = i915_gem_object_put_fence(obj);
328 	if (ret)
329 		return ret;
330 
331 	/* Map the page containing the relocation we're going to perform.  */
332 	offset = i915_gem_obj_ggtt_offset(obj);
333 	offset += reloc->offset;
334 	reloc_page = io_mapping_map_atomic_wc(ggtt->mappable,
335 					      offset & ~PAGE_MASK);
336 	iowrite32(lower_32_bits(delta), reloc_page + offset_in_page(offset));
337 
338 	if (INTEL_INFO(dev)->gen >= 8) {
339 		offset += sizeof(uint32_t);
340 
341 		if (offset_in_page(offset) == 0) {
342 			io_mapping_unmap_atomic(reloc_page);
343 			reloc_page =
344 				io_mapping_map_atomic_wc(ggtt->mappable,
345 							 offset);
346 		}
347 
348 		iowrite32(upper_32_bits(delta),
349 			  reloc_page + offset_in_page(offset));
350 	}
351 
352 	io_mapping_unmap_atomic(reloc_page);
353 
354 	return 0;
355 }
356 
357 static void
358 clflush_write32(void *addr, uint32_t value)
359 {
360 	/* This is not a fast path, so KISS. */
361 	drm_clflush_virt_range(addr, sizeof(uint32_t));
362 	*(uint32_t *)addr = value;
363 	drm_clflush_virt_range(addr, sizeof(uint32_t));
364 }
365 
366 static int
367 relocate_entry_clflush(struct drm_i915_gem_object *obj,
368 		       struct drm_i915_gem_relocation_entry *reloc,
369 		       uint64_t target_offset)
370 {
371 	struct drm_device *dev = obj->base.dev;
372 	uint32_t page_offset = offset_in_page(reloc->offset);
373 	uint64_t delta = relocation_target(reloc, target_offset);
374 	char *vaddr;
375 	int ret;
376 
377 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
378 	if (ret)
379 		return ret;
380 
381 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
382 				reloc->offset >> PAGE_SHIFT));
383 	clflush_write32(vaddr + page_offset, lower_32_bits(delta));
384 
385 	if (INTEL_INFO(dev)->gen >= 8) {
386 		page_offset = offset_in_page(page_offset + sizeof(uint32_t));
387 
388 		if (page_offset == 0) {
389 			kunmap_atomic(vaddr);
390 			vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
391 			    (reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
392 		}
393 
394 		clflush_write32(vaddr + page_offset, upper_32_bits(delta));
395 	}
396 
397 	kunmap_atomic(vaddr);
398 
399 	return 0;
400 }
401 
402 static int
403 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
404 				   struct eb_vmas *eb,
405 				   struct drm_i915_gem_relocation_entry *reloc)
406 {
407 	struct drm_device *dev = obj->base.dev;
408 	struct drm_gem_object *target_obj;
409 	struct drm_i915_gem_object *target_i915_obj;
410 	struct i915_vma *target_vma;
411 	uint64_t target_offset;
412 	int ret;
413 
414 	/* we've already hold a reference to all valid objects */
415 	target_vma = eb_get_vma(eb, reloc->target_handle);
416 	if (unlikely(target_vma == NULL))
417 		return -ENOENT;
418 	target_i915_obj = target_vma->obj;
419 	target_obj = &target_vma->obj->base;
420 
421 	target_offset = gen8_canonical_addr(target_vma->node.start);
422 
423 	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
424 	 * pipe_control writes because the gpu doesn't properly redirect them
425 	 * through the ppgtt for non_secure batchbuffers. */
426 	if (unlikely(IS_GEN6(dev) &&
427 	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
428 		ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
429 				    PIN_GLOBAL);
430 		if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
431 			return ret;
432 	}
433 
434 	/* Validate that the target is in a valid r/w GPU domain */
435 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
436 		DRM_DEBUG("reloc with multiple write domains: "
437 			  "obj %p target %d offset %d "
438 			  "read %08x write %08x",
439 			  obj, reloc->target_handle,
440 			  (int) reloc->offset,
441 			  reloc->read_domains,
442 			  reloc->write_domain);
443 		return -EINVAL;
444 	}
445 	if (unlikely((reloc->write_domain | reloc->read_domains)
446 		     & ~I915_GEM_GPU_DOMAINS)) {
447 		DRM_DEBUG("reloc with read/write non-GPU domains: "
448 			  "obj %p target %d offset %d "
449 			  "read %08x write %08x",
450 			  obj, reloc->target_handle,
451 			  (int) reloc->offset,
452 			  reloc->read_domains,
453 			  reloc->write_domain);
454 		return -EINVAL;
455 	}
456 
457 	target_obj->pending_read_domains |= reloc->read_domains;
458 	target_obj->pending_write_domain |= reloc->write_domain;
459 
460 	/* If the relocation already has the right value in it, no
461 	 * more work needs to be done.
462 	 */
463 	if (target_offset == reloc->presumed_offset)
464 		return 0;
465 
466 	/* Check that the relocation address is valid... */
467 	if (unlikely(reloc->offset >
468 		obj->base.size - (INTEL_INFO(dev)->gen >= 8 ? 8 : 4))) {
469 		DRM_DEBUG("Relocation beyond object bounds: "
470 			  "obj %p target %d offset %d size %d.\n",
471 			  obj, reloc->target_handle,
472 			  (int) reloc->offset,
473 			  (int) obj->base.size);
474 		return -EINVAL;
475 	}
476 	if (unlikely(reloc->offset & 3)) {
477 		DRM_DEBUG("Relocation not 4-byte aligned: "
478 			  "obj %p target %d offset %d.\n",
479 			  obj, reloc->target_handle,
480 			  (int) reloc->offset);
481 		return -EINVAL;
482 	}
483 
484 	/* We can't wait for rendering with pagefaults disabled */
485 	if (obj->active && (curthread->td_flags & TDF_NOFAULT))
486 		return -EFAULT;
487 
488 	if (use_cpu_reloc(obj))
489 		ret = relocate_entry_cpu(obj, reloc, target_offset);
490 	else if (obj->map_and_fenceable)
491 		ret = relocate_entry_gtt(obj, reloc, target_offset);
492 	else if (static_cpu_has(X86_FEATURE_CLFLUSH))
493 		ret = relocate_entry_clflush(obj, reloc, target_offset);
494 	else {
495 		WARN_ONCE(1, "Impossible case in relocation handling\n");
496 		ret = -ENODEV;
497 	}
498 
499 	if (ret)
500 		return ret;
501 
502 	/* and update the user's relocation entry */
503 	reloc->presumed_offset = target_offset;
504 
505 	return 0;
506 }
507 
508 static int
509 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
510 				 struct eb_vmas *eb)
511 {
512 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
513 	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
514 	struct drm_i915_gem_relocation_entry __user *user_relocs;
515 	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
516 	int remain, ret;
517 
518 	user_relocs = u64_to_user_ptr(entry->relocs_ptr);
519 
520 	remain = entry->relocation_count;
521 	while (remain) {
522 		struct drm_i915_gem_relocation_entry *r = stack_reloc;
523 		int count = remain;
524 		if (count > ARRAY_SIZE(stack_reloc))
525 			count = ARRAY_SIZE(stack_reloc);
526 		remain -= count;
527 
528 		if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
529 			return -EFAULT;
530 
531 		do {
532 			u64 offset = r->presumed_offset;
533 
534 			ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r);
535 			if (ret)
536 				return ret;
537 
538 			if (r->presumed_offset != offset &&
539 			    __put_user(r->presumed_offset, &user_relocs->presumed_offset)) {
540 				return -EFAULT;
541 			}
542 
543 			user_relocs++;
544 			r++;
545 		} while (--count);
546 	}
547 
548 	return 0;
549 #undef N_RELOC
550 }
551 
552 static int
553 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
554 				      struct eb_vmas *eb,
555 				      struct drm_i915_gem_relocation_entry *relocs)
556 {
557 	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
558 	int i, ret;
559 
560 	for (i = 0; i < entry->relocation_count; i++) {
561 		ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i]);
562 		if (ret)
563 			return ret;
564 	}
565 
566 	return 0;
567 }
568 
569 static int
570 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
571 {
572 	struct i915_vma *vma;
573 	int ret = 0;
574 
575 	/* This is the fast path and we cannot handle a pagefault whilst
576 	 * holding the struct mutex lest the user pass in the relocations
577 	 * contained within a mmaped bo. For in such a case we, the page
578 	 * fault handler would call i915_gem_fault() and we would try to
579 	 * acquire the struct mutex again. Obviously this is bad and so
580 	 * lockdep complains vehemently.
581 	 */
582 	pagefault_disable();
583 	list_for_each_entry(vma, &eb->vmas, exec_list) {
584 		ret = i915_gem_execbuffer_relocate_vma(vma, eb);
585 		if (ret)
586 			break;
587 	}
588 	pagefault_enable();
589 
590 	return ret;
591 }
592 
593 static bool only_mappable_for_reloc(unsigned int flags)
594 {
595 	return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
596 		__EXEC_OBJECT_NEEDS_MAP;
597 }
598 
599 static int
600 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
601 				struct intel_engine_cs *engine,
602 				bool *need_reloc)
603 {
604 	struct drm_i915_gem_object *obj = vma->obj;
605 	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
606 	uint64_t flags;
607 	int ret;
608 
609 	flags = PIN_USER;
610 	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
611 		flags |= PIN_GLOBAL;
612 
613 	if (!drm_mm_node_allocated(&vma->node)) {
614 		/* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
615 		 * limit address to the first 4GBs for unflagged objects.
616 		 */
617 		if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
618 			flags |= PIN_ZONE_4G;
619 		if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
620 			flags |= PIN_GLOBAL | PIN_MAPPABLE;
621 		if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
622 			flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
623 		if (entry->flags & EXEC_OBJECT_PINNED)
624 			flags |= entry->offset | PIN_OFFSET_FIXED;
625 		if ((flags & PIN_MAPPABLE) == 0)
626 			flags |= PIN_HIGH;
627 	}
628 
629 	ret = i915_gem_object_pin(obj, vma->vm, entry->alignment, flags);
630 	if ((ret == -ENOSPC  || ret == -E2BIG) &&
631 	    only_mappable_for_reloc(entry->flags))
632 		ret = i915_gem_object_pin(obj, vma->vm,
633 					  entry->alignment,
634 					  flags & ~PIN_MAPPABLE);
635 	if (ret)
636 		return ret;
637 
638 	entry->flags |= __EXEC_OBJECT_HAS_PIN;
639 
640 	if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
641 		ret = i915_gem_object_get_fence(obj);
642 		if (ret)
643 			return ret;
644 
645 		if (i915_gem_object_pin_fence(obj))
646 			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
647 	}
648 
649 	if (entry->offset != vma->node.start) {
650 		entry->offset = vma->node.start;
651 		*need_reloc = true;
652 	}
653 
654 	if (entry->flags & EXEC_OBJECT_WRITE) {
655 		obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
656 		obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
657 	}
658 
659 	return 0;
660 }
661 
662 static bool
663 need_reloc_mappable(struct i915_vma *vma)
664 {
665 	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
666 
667 	if (entry->relocation_count == 0)
668 		return false;
669 
670 	if (!vma->is_ggtt)
671 		return false;
672 
673 	/* See also use_cpu_reloc() */
674 	if (HAS_LLC(vma->obj->base.dev))
675 		return false;
676 
677 	if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
678 		return false;
679 
680 	return true;
681 }
682 
683 static bool
684 eb_vma_misplaced(struct i915_vma *vma)
685 {
686 	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
687 	struct drm_i915_gem_object *obj = vma->obj;
688 
689 	WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP && !vma->is_ggtt);
690 
691 	if (entry->alignment &&
692 	    vma->node.start & (entry->alignment - 1))
693 		return true;
694 
695 	if (entry->flags & EXEC_OBJECT_PINNED &&
696 	    vma->node.start != entry->offset)
697 		return true;
698 
699 	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
700 	    vma->node.start < BATCH_OFFSET_BIAS)
701 		return true;
702 
703 	/* avoid costly ping-pong once a batch bo ended up non-mappable */
704 	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP && !obj->map_and_fenceable)
705 		return !only_mappable_for_reloc(entry->flags);
706 
707 	if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
708 	    (vma->node.start + vma->node.size - 1) >> 32)
709 		return true;
710 
711 	return false;
712 }
713 
714 static int
715 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
716 			    struct list_head *vmas,
717 			    struct intel_context *ctx,
718 			    bool *need_relocs)
719 {
720 	struct drm_i915_gem_object *obj;
721 	struct i915_vma *vma;
722 	struct i915_address_space *vm;
723 	struct list_head ordered_vmas;
724 	struct list_head pinned_vmas;
725 	bool has_fenced_gpu_access = INTEL_INFO(engine->dev)->gen < 4;
726 	int retry;
727 
728 	i915_gem_retire_requests_ring(engine);
729 
730 	vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
731 
732 	INIT_LIST_HEAD(&ordered_vmas);
733 	INIT_LIST_HEAD(&pinned_vmas);
734 	while (!list_empty(vmas)) {
735 		struct drm_i915_gem_exec_object2 *entry;
736 		bool need_fence, need_mappable;
737 
738 		vma = list_first_entry(vmas, struct i915_vma, exec_list);
739 		obj = vma->obj;
740 		entry = vma->exec_entry;
741 
742 		if (ctx->flags & CONTEXT_NO_ZEROMAP)
743 			entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
744 
745 		if (!has_fenced_gpu_access)
746 			entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
747 		need_fence =
748 			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
749 			obj->tiling_mode != I915_TILING_NONE;
750 		need_mappable = need_fence || need_reloc_mappable(vma);
751 
752 		if (entry->flags & EXEC_OBJECT_PINNED)
753 			list_move_tail(&vma->exec_list, &pinned_vmas);
754 		else if (need_mappable) {
755 			entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
756 			list_move(&vma->exec_list, &ordered_vmas);
757 		} else
758 			list_move_tail(&vma->exec_list, &ordered_vmas);
759 
760 		obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
761 		obj->base.pending_write_domain = 0;
762 	}
763 	list_splice(&ordered_vmas, vmas);
764 	list_splice(&pinned_vmas, vmas);
765 
766 	/* Attempt to pin all of the buffers into the GTT.
767 	 * This is done in 3 phases:
768 	 *
769 	 * 1a. Unbind all objects that do not match the GTT constraints for
770 	 *     the execbuffer (fenceable, mappable, alignment etc).
771 	 * 1b. Increment pin count for already bound objects.
772 	 * 2.  Bind new objects.
773 	 * 3.  Decrement pin count.
774 	 *
775 	 * This avoid unnecessary unbinding of later objects in order to make
776 	 * room for the earlier objects *unless* we need to defragment.
777 	 */
778 	retry = 0;
779 	do {
780 		int ret = 0;
781 
782 		/* Unbind any ill-fitting objects or pin. */
783 		list_for_each_entry(vma, vmas, exec_list) {
784 			if (!drm_mm_node_allocated(&vma->node))
785 				continue;
786 
787 			if (eb_vma_misplaced(vma))
788 				ret = i915_vma_unbind(vma);
789 			else
790 				ret = i915_gem_execbuffer_reserve_vma(vma,
791 								      engine,
792 								      need_relocs);
793 			if (ret)
794 				goto err;
795 		}
796 
797 		/* Bind fresh objects */
798 		list_for_each_entry(vma, vmas, exec_list) {
799 			if (drm_mm_node_allocated(&vma->node))
800 				continue;
801 
802 			ret = i915_gem_execbuffer_reserve_vma(vma, engine,
803 							      need_relocs);
804 			if (ret)
805 				goto err;
806 		}
807 
808 err:
809 		if (ret != -ENOSPC || retry++)
810 			return ret;
811 
812 		/* Decrement pin count for bound objects */
813 		list_for_each_entry(vma, vmas, exec_list)
814 			i915_gem_execbuffer_unreserve_vma(vma);
815 
816 		ret = i915_gem_evict_vm(vm, true);
817 		if (ret)
818 			return ret;
819 	} while (1);
820 }
821 
822 static int
823 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
824 				  struct drm_i915_gem_execbuffer2 *args,
825 				  struct drm_file *file,
826 				  struct intel_engine_cs *engine,
827 				  struct eb_vmas *eb,
828 				  struct drm_i915_gem_exec_object2 *exec,
829 				  struct intel_context *ctx)
830 {
831 	struct drm_i915_gem_relocation_entry *reloc;
832 	struct i915_address_space *vm;
833 	struct i915_vma *vma;
834 	bool need_relocs;
835 	int *reloc_offset;
836 	int i, total, ret;
837 	unsigned count = args->buffer_count;
838 
839 	vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
840 
841 	/* We may process another execbuffer during the unlock... */
842 	while (!list_empty(&eb->vmas)) {
843 		vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
844 		list_del_init(&vma->exec_list);
845 		i915_gem_execbuffer_unreserve_vma(vma);
846 		drm_gem_object_unreference(&vma->obj->base);
847 	}
848 
849 	mutex_unlock(&dev->struct_mutex);
850 
851 	total = 0;
852 	for (i = 0; i < count; i++)
853 		total += exec[i].relocation_count;
854 
855 	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
856 	reloc = drm_malloc_ab(total, sizeof(*reloc));
857 	if (reloc == NULL || reloc_offset == NULL) {
858 		drm_free_large(reloc);
859 		drm_free_large(reloc_offset);
860 		mutex_lock(&dev->struct_mutex);
861 		return -ENOMEM;
862 	}
863 
864 	total = 0;
865 	for (i = 0; i < count; i++) {
866 		struct drm_i915_gem_relocation_entry __user *user_relocs;
867 		u64 invalid_offset = (u64)-1;
868 		int j;
869 
870 		user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
871 
872 		if (copy_from_user(reloc+total, user_relocs,
873 				   exec[i].relocation_count * sizeof(*reloc))) {
874 			ret = -EFAULT;
875 			mutex_lock(&dev->struct_mutex);
876 			goto err;
877 		}
878 
879 		/* As we do not update the known relocation offsets after
880 		 * relocating (due to the complexities in lock handling),
881 		 * we need to mark them as invalid now so that we force the
882 		 * relocation processing next time. Just in case the target
883 		 * object is evicted and then rebound into its old
884 		 * presumed_offset before the next execbuffer - if that
885 		 * happened we would make the mistake of assuming that the
886 		 * relocations were valid.
887 		 */
888 		for (j = 0; j < exec[i].relocation_count; j++) {
889 			if (__copy_to_user(&user_relocs[j].presumed_offset,
890 					   &invalid_offset,
891 					   sizeof(invalid_offset))) {
892 				ret = -EFAULT;
893 				mutex_lock(&dev->struct_mutex);
894 				goto err;
895 			}
896 		}
897 
898 		reloc_offset[i] = total;
899 		total += exec[i].relocation_count;
900 	}
901 
902 	ret = i915_mutex_lock_interruptible(dev);
903 	if (ret) {
904 		mutex_lock(&dev->struct_mutex);
905 		goto err;
906 	}
907 
908 	/* reacquire the objects */
909 	eb_reset(eb);
910 	ret = eb_lookup_vmas(eb, exec, args, vm, file);
911 	if (ret)
912 		goto err;
913 
914 	need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
915 	ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
916 					  &need_relocs);
917 	if (ret)
918 		goto err;
919 
920 	list_for_each_entry(vma, &eb->vmas, exec_list) {
921 		int offset = vma->exec_entry - exec;
922 		ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
923 							    reloc + reloc_offset[offset]);
924 		if (ret)
925 			goto err;
926 	}
927 
928 	/* Leave the user relocations as are, this is the painfully slow path,
929 	 * and we want to avoid the complication of dropping the lock whilst
930 	 * having buffers reserved in the aperture and so causing spurious
931 	 * ENOSPC for random operations.
932 	 */
933 
934 err:
935 	drm_free_large(reloc);
936 	drm_free_large(reloc_offset);
937 	return ret;
938 }
939 
940 static int
941 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
942 				struct list_head *vmas)
943 {
944 	const unsigned other_rings = ~intel_engine_flag(req->engine);
945 	struct i915_vma *vma;
946 	uint32_t flush_domains = 0;
947 	bool flush_chipset = false;
948 	int ret;
949 
950 	list_for_each_entry(vma, vmas, exec_list) {
951 		struct drm_i915_gem_object *obj = vma->obj;
952 
953 		if (obj->active & other_rings) {
954 			ret = i915_gem_object_sync(obj, req->engine, &req);
955 			if (ret)
956 				return ret;
957 		}
958 
959 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
960 			flush_chipset |= i915_gem_clflush_object(obj, false);
961 
962 		flush_domains |= obj->base.write_domain;
963 	}
964 
965 	if (flush_chipset)
966 		i915_gem_chipset_flush(req->engine->dev);
967 
968 	if (flush_domains & I915_GEM_DOMAIN_GTT)
969 		wmb();
970 
971 	/* Unconditionally invalidate gpu caches and ensure that we do flush
972 	 * any residual writes from the previous batch.
973 	 */
974 	return intel_ring_invalidate_all_caches(req);
975 }
976 
977 static bool
978 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
979 {
980 	if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
981 		return false;
982 
983 	/* Kernel clipping was a DRI1 misfeature */
984 	if (exec->num_cliprects || exec->cliprects_ptr)
985 		return false;
986 
987 	if (exec->DR4 == 0xffffffff) {
988 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
989 		exec->DR4 = 0;
990 	}
991 	if (exec->DR1 || exec->DR4)
992 		return false;
993 
994 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
995 		return false;
996 
997 	return true;
998 }
999 
1000 static int
1001 validate_exec_list(struct drm_device *dev,
1002 		   struct drm_i915_gem_exec_object2 *exec,
1003 		   int count)
1004 {
1005 	unsigned relocs_total = 0;
1006 	unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1007 	unsigned invalid_flags;
1008 	int i;
1009 
1010 	invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1011 	if (USES_FULL_PPGTT(dev))
1012 		invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1013 
1014 	for (i = 0; i < count; i++) {
1015 		char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1016 		int length; /* limited by fault_in_pages_readable() */
1017 
1018 		if (exec[i].flags & invalid_flags)
1019 			return -EINVAL;
1020 
1021 		/* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1022 		 * any non-page-aligned or non-canonical addresses.
1023 		 */
1024 		if (exec[i].flags & EXEC_OBJECT_PINNED) {
1025 			if (exec[i].offset !=
1026 			    gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1027 				return -EINVAL;
1028 
1029 			/* From drm_mm perspective address space is continuous,
1030 			 * so from this point we're always using non-canonical
1031 			 * form internally.
1032 			 */
1033 			exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1034 		}
1035 
1036 		if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1037 			return -EINVAL;
1038 
1039 		/* First check for malicious input causing overflow in
1040 		 * the worst case where we need to allocate the entire
1041 		 * relocation tree as a single array.
1042 		 */
1043 		if (exec[i].relocation_count > relocs_max - relocs_total)
1044 			return -EINVAL;
1045 		relocs_total += exec[i].relocation_count;
1046 
1047 		length = exec[i].relocation_count *
1048 			sizeof(struct drm_i915_gem_relocation_entry);
1049 		/*
1050 		 * We must check that the entire relocation array is safe
1051 		 * to read, but since we may need to update the presumed
1052 		 * offsets during execution, check for full write access.
1053 		 */
1054 #if 0
1055 		if (!access_ok(VERIFY_WRITE, ptr, length))
1056 			return -EFAULT;
1057 #endif
1058 
1059 		if (likely(!i915.prefault_disable)) {
1060 			if (fault_in_multipages_readable(ptr, length))
1061 				return -EFAULT;
1062 		}
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static struct intel_context *
1069 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1070 			  struct intel_engine_cs *engine, const u32 ctx_id)
1071 {
1072 	struct intel_context *ctx = NULL;
1073 	struct i915_ctx_hang_stats *hs;
1074 
1075 	if (engine->id != RCS && ctx_id != DEFAULT_CONTEXT_HANDLE)
1076 		return ERR_PTR(-EINVAL);
1077 
1078 	ctx = i915_gem_context_get(file->driver_priv, ctx_id);
1079 	if (IS_ERR(ctx))
1080 		return ctx;
1081 
1082 	hs = &ctx->hang_stats;
1083 	if (hs->banned) {
1084 		DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1085 		return ERR_PTR(-EIO);
1086 	}
1087 
1088 	if (i915.enable_execlists && !ctx->engine[engine->id].state) {
1089 		int ret = intel_lr_context_deferred_alloc(ctx, engine);
1090 		if (ret) {
1091 			DRM_DEBUG("Could not create LRC %u: %d\n", ctx_id, ret);
1092 			return ERR_PTR(ret);
1093 		}
1094 	}
1095 
1096 	return ctx;
1097 }
1098 
1099 void
1100 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1101 				   struct drm_i915_gem_request *req)
1102 {
1103 	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1104 	struct i915_vma *vma;
1105 
1106 	list_for_each_entry(vma, vmas, exec_list) {
1107 		struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1108 		struct drm_i915_gem_object *obj = vma->obj;
1109 		u32 old_read = obj->base.read_domains;
1110 		u32 old_write = obj->base.write_domain;
1111 
1112 		obj->dirty = 1; /* be paranoid  */
1113 		obj->base.write_domain = obj->base.pending_write_domain;
1114 		if (obj->base.write_domain == 0)
1115 			obj->base.pending_read_domains |= obj->base.read_domains;
1116 		obj->base.read_domains = obj->base.pending_read_domains;
1117 
1118 		i915_vma_move_to_active(vma, req);
1119 		if (obj->base.write_domain) {
1120 			i915_gem_request_assign(&obj->last_write_req, req);
1121 
1122 			intel_fb_obj_invalidate(obj, ORIGIN_CS);
1123 
1124 			/* update for the implicit flush after a batch */
1125 			obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126 		}
1127 		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
1128 			i915_gem_request_assign(&obj->last_fenced_req, req);
1129 			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
1130 				struct drm_i915_private *dev_priv = to_i915(engine->dev);
1131 				list_move_tail(&dev_priv->fence_regs[obj->fence_reg].lru_list,
1132 					       &dev_priv->mm.fence_list);
1133 			}
1134 		}
1135 
1136 		trace_i915_gem_object_change_domain(obj, old_read, old_write);
1137 	}
1138 }
1139 
1140 static void
1141 i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params)
1142 {
1143 	/* Unconditionally force add_request to emit a full flush. */
1144 	params->engine->gpu_caches_dirty = true;
1145 
1146 	/* Add a breadcrumb for the completion of the batch buffer */
1147 	__i915_add_request(params->request, params->batch_obj, true);
1148 }
1149 
1150 static int
1151 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1152 			    struct drm_i915_gem_request *req)
1153 {
1154 	struct intel_engine_cs *engine = req->engine;
1155 	struct drm_i915_private *dev_priv = dev->dev_private;
1156 	int ret, i;
1157 
1158 	if (!IS_GEN7(dev) || engine != &dev_priv->engine[RCS]) {
1159 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1160 		return -EINVAL;
1161 	}
1162 
1163 	ret = intel_ring_begin(req, 4 * 3);
1164 	if (ret)
1165 		return ret;
1166 
1167 	for (i = 0; i < 4; i++) {
1168 		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
1169 		intel_ring_emit_reg(engine, GEN7_SO_WRITE_OFFSET(i));
1170 		intel_ring_emit(engine, 0);
1171 	}
1172 
1173 	intel_ring_advance(engine);
1174 
1175 	return 0;
1176 }
1177 
1178 static struct drm_i915_gem_object*
1179 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1180 			  struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1181 			  struct eb_vmas *eb,
1182 			  struct drm_i915_gem_object *batch_obj,
1183 			  u32 batch_start_offset,
1184 			  u32 batch_len,
1185 			  bool is_master)
1186 {
1187 	struct drm_i915_gem_object *shadow_batch_obj;
1188 	struct i915_vma *vma;
1189 	int ret;
1190 
1191 	shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1192 						   PAGE_ALIGN(batch_len));
1193 	if (IS_ERR(shadow_batch_obj))
1194 		return shadow_batch_obj;
1195 
1196 	ret = i915_parse_cmds(engine,
1197 			      batch_obj,
1198 			      shadow_batch_obj,
1199 			      batch_start_offset,
1200 			      batch_len,
1201 			      is_master);
1202 	if (ret)
1203 		goto err;
1204 
1205 	ret = i915_gem_obj_ggtt_pin(shadow_batch_obj, 0, 0);
1206 	if (ret)
1207 		goto err;
1208 
1209 	i915_gem_object_unpin_pages(shadow_batch_obj);
1210 
1211 	memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1212 
1213 	vma = i915_gem_obj_to_ggtt(shadow_batch_obj);
1214 	vma->exec_entry = shadow_exec_entry;
1215 	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1216 	drm_gem_object_reference(&shadow_batch_obj->base);
1217 	list_add_tail(&vma->exec_list, &eb->vmas);
1218 
1219 	shadow_batch_obj->base.pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1220 
1221 	return shadow_batch_obj;
1222 
1223 err:
1224 	i915_gem_object_unpin_pages(shadow_batch_obj);
1225 	if (ret == -EACCES) /* unhandled chained batch */
1226 		return batch_obj;
1227 	else
1228 		return ERR_PTR(ret);
1229 }
1230 
1231 int
1232 i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
1233 			       struct drm_i915_gem_execbuffer2 *args,
1234 			       struct list_head *vmas)
1235 {
1236 	struct drm_device *dev = params->dev;
1237 	struct intel_engine_cs *engine = params->engine;
1238 	struct drm_i915_private *dev_priv = dev->dev_private;
1239 	u64 exec_start, exec_len;
1240 	int instp_mode;
1241 	u32 instp_mask;
1242 	int ret;
1243 
1244 	ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1245 	if (ret)
1246 		return ret;
1247 
1248 	ret = i915_switch_context(params->request);
1249 	if (ret)
1250 		return ret;
1251 
1252 	WARN(params->ctx->ppgtt && params->ctx->ppgtt->pd_dirty_rings & (1<<engine->id),
1253 	     "%s didn't clear reload\n", engine->name);
1254 
1255 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1256 	instp_mask = I915_EXEC_CONSTANTS_MASK;
1257 	switch (instp_mode) {
1258 	case I915_EXEC_CONSTANTS_REL_GENERAL:
1259 	case I915_EXEC_CONSTANTS_ABSOLUTE:
1260 	case I915_EXEC_CONSTANTS_REL_SURFACE:
1261 		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
1262 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1263 			return -EINVAL;
1264 		}
1265 
1266 		if (instp_mode != dev_priv->relative_constants_mode) {
1267 			if (INTEL_INFO(dev)->gen < 4) {
1268 				DRM_DEBUG("no rel constants on pre-gen4\n");
1269 				return -EINVAL;
1270 			}
1271 
1272 			if (INTEL_INFO(dev)->gen > 5 &&
1273 			    instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1274 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1275 				return -EINVAL;
1276 			}
1277 
1278 			/* The HW changed the meaning on this bit on gen6 */
1279 			if (INTEL_INFO(dev)->gen >= 6)
1280 				instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1281 		}
1282 		break;
1283 	default:
1284 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1285 		return -EINVAL;
1286 	}
1287 
1288 	if (engine == &dev_priv->engine[RCS] &&
1289 	    instp_mode != dev_priv->relative_constants_mode) {
1290 		ret = intel_ring_begin(params->request, 4);
1291 		if (ret)
1292 			return ret;
1293 
1294 		intel_ring_emit(engine, MI_NOOP);
1295 		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
1296 		intel_ring_emit_reg(engine, INSTPM);
1297 		intel_ring_emit(engine, instp_mask << 16 | instp_mode);
1298 		intel_ring_advance(engine);
1299 
1300 		dev_priv->relative_constants_mode = instp_mode;
1301 	}
1302 
1303 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1304 		ret = i915_reset_gen7_sol_offsets(dev, params->request);
1305 		if (ret)
1306 			return ret;
1307 	}
1308 
1309 	exec_len   = args->batch_len;
1310 	exec_start = params->batch_obj_vm_offset +
1311 		     params->args_batch_start_offset;
1312 
1313 	if (exec_len == 0)
1314 		exec_len = params->batch_obj->base.size;
1315 
1316 	ret = engine->dispatch_execbuffer(params->request,
1317 					exec_start, exec_len,
1318 					params->dispatch_flags);
1319 	if (ret)
1320 		return ret;
1321 
1322 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1323 
1324 	i915_gem_execbuffer_move_to_active(vmas, params->request);
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * Find one BSD ring to dispatch the corresponding BSD command.
1331  * The ring index is returned.
1332  */
1333 static unsigned int
1334 gen8_dispatch_bsd_ring(struct drm_i915_private *dev_priv, struct drm_file *file)
1335 {
1336 	struct drm_i915_file_private *file_priv = file->driver_priv;
1337 
1338 	/* Check whether the file_priv has already selected one ring. */
1339 	if ((int)file_priv->bsd_ring < 0) {
1340 		/* If not, use the ping-pong mechanism to select one. */
1341 		mutex_lock(&dev_priv->dev->struct_mutex);
1342 		file_priv->bsd_ring = dev_priv->mm.bsd_ring_dispatch_index;
1343 		dev_priv->mm.bsd_ring_dispatch_index ^= 1;
1344 		mutex_unlock(&dev_priv->dev->struct_mutex);
1345 	}
1346 
1347 	return file_priv->bsd_ring;
1348 }
1349 
1350 static struct drm_i915_gem_object *
1351 eb_get_batch(struct eb_vmas *eb)
1352 {
1353 	struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
1354 
1355 	/*
1356 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
1357 	 * to negative relocation deltas. Usually that works out ok since the
1358 	 * relocate address is still positive, except when the batch is placed
1359 	 * very low in the GTT. Ensure this doesn't happen.
1360 	 *
1361 	 * Note that actual hangs have only been observed on gen7, but for
1362 	 * paranoia do it everywhere.
1363 	 */
1364 	if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
1365 		vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
1366 
1367 	return vma->obj;
1368 }
1369 
1370 #define I915_USER_RINGS (4)
1371 
1372 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1373 	[I915_EXEC_DEFAULT]	= RCS,
1374 	[I915_EXEC_RENDER]	= RCS,
1375 	[I915_EXEC_BLT]		= BCS,
1376 	[I915_EXEC_BSD]		= VCS,
1377 	[I915_EXEC_VEBOX]	= VECS
1378 };
1379 
1380 static int
1381 eb_select_ring(struct drm_i915_private *dev_priv,
1382 	       struct drm_file *file,
1383 	       struct drm_i915_gem_execbuffer2 *args,
1384 	       struct intel_engine_cs **ring)
1385 {
1386 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1387 
1388 	if (user_ring_id > I915_USER_RINGS) {
1389 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1390 		return -EINVAL;
1391 	}
1392 
1393 	if ((user_ring_id != I915_EXEC_BSD) &&
1394 	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1395 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
1396 			  "bsd dispatch flags: %d\n", (int)(args->flags));
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1401 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1402 
1403 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1404 			bsd_idx = gen8_dispatch_bsd_ring(dev_priv, file);
1405 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1406 			   bsd_idx <= I915_EXEC_BSD_RING2) {
1407 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
1408 			bsd_idx--;
1409 		} else {
1410 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1411 				  bsd_idx);
1412 			return -EINVAL;
1413 		}
1414 
1415 		*ring = &dev_priv->engine[_VCS(bsd_idx)];
1416 	} else {
1417 		*ring = &dev_priv->engine[user_ring_map[user_ring_id]];
1418 	}
1419 
1420 	if (!intel_engine_initialized(*ring)) {
1421 		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1422 		return -EINVAL;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int
1429 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1430 		       struct drm_file *file,
1431 		       struct drm_i915_gem_execbuffer2 *args,
1432 		       struct drm_i915_gem_exec_object2 *exec)
1433 {
1434 	struct drm_i915_private *dev_priv = to_i915(dev);
1435 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1436 	struct drm_i915_gem_request *req = NULL;
1437 	struct eb_vmas *eb;
1438 	struct drm_i915_gem_object *batch_obj;
1439 	struct drm_i915_gem_exec_object2 shadow_exec_entry;
1440 	struct intel_engine_cs *engine;
1441 	struct intel_context *ctx;
1442 	struct i915_address_space *vm;
1443 	struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1444 	struct i915_execbuffer_params *params = &params_master;
1445 	const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1446 	u32 dispatch_flags;
1447 	int ret;
1448 	bool need_relocs;
1449 
1450 	if (!i915_gem_check_execbuffer(args))
1451 		return -EINVAL;
1452 
1453 	ret = validate_exec_list(dev, exec, args->buffer_count);
1454 	if (ret)
1455 		return ret;
1456 
1457 	dispatch_flags = 0;
1458 	if (args->flags & I915_EXEC_SECURE) {
1459 		dispatch_flags |= I915_DISPATCH_SECURE;
1460 	}
1461 	if (args->flags & I915_EXEC_IS_PINNED)
1462 		dispatch_flags |= I915_DISPATCH_PINNED;
1463 
1464 	ret = eb_select_ring(dev_priv, file, args, &engine);
1465 	if (ret)
1466 		return ret;
1467 
1468 	if (args->buffer_count < 1) {
1469 		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1470 		return -EINVAL;
1471 	}
1472 
1473 	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1474 		if (!HAS_RESOURCE_STREAMER(dev)) {
1475 			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1476 			return -EINVAL;
1477 		}
1478 		if (engine->id != RCS) {
1479 			DRM_DEBUG("RS is not available on %s\n",
1480 				 engine->name);
1481 			return -EINVAL;
1482 		}
1483 
1484 		dispatch_flags |= I915_DISPATCH_RS;
1485 	}
1486 
1487 	intel_runtime_pm_get(dev_priv);
1488 
1489 	ret = i915_mutex_lock_interruptible(dev);
1490 	if (ret)
1491 		goto pre_mutex_err;
1492 
1493 	ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1494 	if (IS_ERR(ctx)) {
1495 		mutex_unlock(&dev->struct_mutex);
1496 		ret = PTR_ERR(ctx);
1497 		goto pre_mutex_err;
1498 	}
1499 
1500 	i915_gem_context_reference(ctx);
1501 
1502 	if (ctx->ppgtt)
1503 		vm = &ctx->ppgtt->base;
1504 	else
1505 		vm = &ggtt->base;
1506 
1507 	memset(&params_master, 0x00, sizeof(params_master));
1508 
1509 	eb = eb_create(args);
1510 	if (eb == NULL) {
1511 		i915_gem_context_unreference(ctx);
1512 		mutex_unlock(&dev->struct_mutex);
1513 		ret = -ENOMEM;
1514 		goto pre_mutex_err;
1515 	}
1516 
1517 	/* Look up object handles */
1518 	ret = eb_lookup_vmas(eb, exec, args, vm, file);
1519 	if (ret)
1520 		goto err;
1521 
1522 	/* take note of the batch buffer before we might reorder the lists */
1523 	batch_obj = eb_get_batch(eb);
1524 
1525 	/* Move the objects en-masse into the GTT, evicting if necessary. */
1526 	need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1527 	ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1528 					  &need_relocs);
1529 	if (ret)
1530 		goto err;
1531 
1532 	/* The objects are in their final locations, apply the relocations. */
1533 	if (need_relocs)
1534 		ret = i915_gem_execbuffer_relocate(eb);
1535 	if (ret) {
1536 		if (ret == -EFAULT) {
1537 			ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1538 								engine,
1539 								eb, exec, ctx);
1540 			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1541 		}
1542 		if (ret)
1543 			goto err;
1544 	}
1545 
1546 	/* Set the pending read domains for the batch buffer to COMMAND */
1547 	if (batch_obj->base.pending_write_domain) {
1548 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1549 		ret = -EINVAL;
1550 		goto err;
1551 	}
1552 
1553 	params->args_batch_start_offset = args->batch_start_offset;
1554 	if (i915_needs_cmd_parser(engine) && args->batch_len) {
1555 		struct drm_i915_gem_object *parsed_batch_obj;
1556 
1557 		parsed_batch_obj = i915_gem_execbuffer_parse(engine,
1558 							     &shadow_exec_entry,
1559 							     eb,
1560 							     batch_obj,
1561 							     args->batch_start_offset,
1562 							     args->batch_len,
1563 							     file->is_master);
1564 		if (IS_ERR(parsed_batch_obj)) {
1565 			ret = PTR_ERR(parsed_batch_obj);
1566 			goto err;
1567 		}
1568 
1569 		/*
1570 		 * parsed_batch_obj == batch_obj means batch not fully parsed:
1571 		 * Accept, but don't promote to secure.
1572 		 */
1573 
1574 		if (parsed_batch_obj != batch_obj) {
1575 			/*
1576 			 * Batch parsed and accepted:
1577 			 *
1578 			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1579 			 * bit from MI_BATCH_BUFFER_START commands issued in
1580 			 * the dispatch_execbuffer implementations. We
1581 			 * specifically don't want that set on batches the
1582 			 * command parser has accepted.
1583 			 */
1584 			dispatch_flags |= I915_DISPATCH_SECURE;
1585 			params->args_batch_start_offset = 0;
1586 			batch_obj = parsed_batch_obj;
1587 		}
1588 	}
1589 
1590 	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1591 
1592 	/* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1593 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
1594 	 * hsw should have this fixed, but bdw mucks it up again. */
1595 	if (dispatch_flags & I915_DISPATCH_SECURE) {
1596 		/*
1597 		 * So on first glance it looks freaky that we pin the batch here
1598 		 * outside of the reservation loop. But:
1599 		 * - The batch is already pinned into the relevant ppgtt, so we
1600 		 *   already have the backing storage fully allocated.
1601 		 * - No other BO uses the global gtt (well contexts, but meh),
1602 		 *   so we don't really have issues with multiple objects not
1603 		 *   fitting due to fragmentation.
1604 		 * So this is actually safe.
1605 		 */
1606 		ret = i915_gem_obj_ggtt_pin(batch_obj, 0, 0);
1607 		if (ret)
1608 			goto err;
1609 
1610 		params->batch_obj_vm_offset = i915_gem_obj_ggtt_offset(batch_obj);
1611 	} else
1612 		params->batch_obj_vm_offset = i915_gem_obj_offset(batch_obj, vm);
1613 
1614 	/* Allocate a request for this batch buffer nice and early. */
1615 	req = i915_gem_request_alloc(engine, ctx);
1616 	if (IS_ERR(req)) {
1617 		ret = PTR_ERR(req);
1618 		goto err_batch_unpin;
1619 	}
1620 
1621 	ret = i915_gem_request_add_to_client(req, file);
1622 	if (ret)
1623 		goto err_request;
1624 
1625 	/*
1626 	 * Save assorted stuff away to pass through to *_submission().
1627 	 * NB: This data should be 'persistent' and not local as it will
1628 	 * kept around beyond the duration of the IOCTL once the GPU
1629 	 * scheduler arrives.
1630 	 */
1631 	params->dev                     = dev;
1632 	params->file                    = file;
1633 	params->engine                    = engine;
1634 	params->dispatch_flags          = dispatch_flags;
1635 	params->batch_obj               = batch_obj;
1636 	params->ctx                     = ctx;
1637 	params->request                 = req;
1638 
1639 	ret = dev_priv->gt.execbuf_submit(params, args, &eb->vmas);
1640 err_request:
1641 	i915_gem_execbuffer_retire_commands(params);
1642 
1643 err_batch_unpin:
1644 	/*
1645 	 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1646 	 * batch vma for correctness. For less ugly and less fragility this
1647 	 * needs to be adjusted to also track the ggtt batch vma properly as
1648 	 * active.
1649 	 */
1650 	if (dispatch_flags & I915_DISPATCH_SECURE)
1651 		i915_gem_object_ggtt_unpin(batch_obj);
1652 
1653 err:
1654 	/* the request owns the ref now */
1655 	i915_gem_context_unreference(ctx);
1656 	eb_destroy(eb);
1657 
1658 	mutex_unlock(&dev->struct_mutex);
1659 
1660 pre_mutex_err:
1661 	/* intel_gpu_busy should also get a ref, so it will free when the device
1662 	 * is really idle. */
1663 	intel_runtime_pm_put(dev_priv);
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Legacy execbuffer just creates an exec2 list from the original exec object
1669  * list array and passes it to the real function.
1670  */
1671 int
1672 i915_gem_execbuffer(struct drm_device *dev, void *data,
1673 		    struct drm_file *file)
1674 {
1675 	struct drm_i915_gem_execbuffer *args = data;
1676 	struct drm_i915_gem_execbuffer2 exec2;
1677 	struct drm_i915_gem_exec_object *exec_list = NULL;
1678 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1679 	int ret, i;
1680 
1681 	if (args->buffer_count < 1) {
1682 		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1683 		return -EINVAL;
1684 	}
1685 
1686 	/* Copy in the exec list from userland */
1687 	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1688 	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1689 	if (exec_list == NULL || exec2_list == NULL) {
1690 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1691 			  args->buffer_count);
1692 		drm_free_large(exec_list);
1693 		drm_free_large(exec2_list);
1694 		return -ENOMEM;
1695 	}
1696 	ret = copy_from_user(exec_list,
1697 			     u64_to_user_ptr(args->buffers_ptr),
1698 			     sizeof(*exec_list) * args->buffer_count);
1699 	if (ret != 0) {
1700 		DRM_DEBUG("copy %d exec entries failed %d\n",
1701 			  args->buffer_count, ret);
1702 		drm_free_large(exec_list);
1703 		drm_free_large(exec2_list);
1704 		return -EFAULT;
1705 	}
1706 
1707 	for (i = 0; i < args->buffer_count; i++) {
1708 		exec2_list[i].handle = exec_list[i].handle;
1709 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
1710 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1711 		exec2_list[i].alignment = exec_list[i].alignment;
1712 		exec2_list[i].offset = exec_list[i].offset;
1713 		if (INTEL_INFO(dev)->gen < 4)
1714 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1715 		else
1716 			exec2_list[i].flags = 0;
1717 	}
1718 
1719 	exec2.buffers_ptr = args->buffers_ptr;
1720 	exec2.buffer_count = args->buffer_count;
1721 	exec2.batch_start_offset = args->batch_start_offset;
1722 	exec2.batch_len = args->batch_len;
1723 	exec2.DR1 = args->DR1;
1724 	exec2.DR4 = args->DR4;
1725 	exec2.num_cliprects = args->num_cliprects;
1726 	exec2.cliprects_ptr = args->cliprects_ptr;
1727 	exec2.flags = I915_EXEC_RENDER;
1728 	i915_execbuffer2_set_context_id(exec2, 0);
1729 
1730 	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1731 	if (!ret) {
1732 		struct drm_i915_gem_exec_object __user *user_exec_list =
1733 			u64_to_user_ptr(args->buffers_ptr);
1734 
1735 		/* Copy the new buffer offsets back to the user's exec list. */
1736 		for (i = 0; i < args->buffer_count; i++) {
1737 			exec2_list[i].offset =
1738 				gen8_canonical_addr(exec2_list[i].offset);
1739 			ret = __copy_to_user(&user_exec_list[i].offset,
1740 					     &exec2_list[i].offset,
1741 					     sizeof(user_exec_list[i].offset));
1742 			if (ret) {
1743 				ret = -EFAULT;
1744 				DRM_DEBUG("failed to copy %d exec entries "
1745 					  "back to user (%d)\n",
1746 					  args->buffer_count, ret);
1747 				break;
1748 			}
1749 		}
1750 	}
1751 
1752 	drm_free_large(exec_list);
1753 	drm_free_large(exec2_list);
1754 	return ret;
1755 }
1756 
1757 int
1758 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1759 		     struct drm_file *file)
1760 {
1761 	struct drm_i915_gem_execbuffer2 *args = data;
1762 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1763 	int ret;
1764 
1765 	if (args->buffer_count < 1 ||
1766 	    args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1767 		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1768 		return -EINVAL;
1769 	}
1770 
1771 	if (args->rsvd2 != 0) {
1772 		DRM_DEBUG("dirty rvsd2 field\n");
1773 		return -EINVAL;
1774 	}
1775 
1776 	exec2_list = drm_malloc_gfp(args->buffer_count,
1777 				    sizeof(*exec2_list),
1778 				    GFP_TEMPORARY);
1779 	if (exec2_list == NULL) {
1780 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1781 			  args->buffer_count);
1782 		return -ENOMEM;
1783 	}
1784 	ret = copy_from_user(exec2_list,
1785 			     u64_to_user_ptr(args->buffers_ptr),
1786 			     sizeof(*exec2_list) * args->buffer_count);
1787 	if (ret != 0) {
1788 		DRM_DEBUG("copy %d exec entries failed %d\n",
1789 			  args->buffer_count, ret);
1790 		drm_free_large(exec2_list);
1791 		return -EFAULT;
1792 	}
1793 
1794 	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1795 	if (!ret) {
1796 		/* Copy the new buffer offsets back to the user's exec list. */
1797 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
1798 				   u64_to_user_ptr(args->buffers_ptr);
1799 		int i;
1800 
1801 		for (i = 0; i < args->buffer_count; i++) {
1802 			exec2_list[i].offset =
1803 				gen8_canonical_addr(exec2_list[i].offset);
1804 			ret = __copy_to_user(&user_exec_list[i].offset,
1805 					     &exec2_list[i].offset,
1806 					     sizeof(user_exec_list[i].offset));
1807 			if (ret) {
1808 				ret = -EFAULT;
1809 				DRM_DEBUG("failed to copy %d exec entries "
1810 					  "back to user\n",
1811 					  args->buffer_count);
1812 				break;
1813 			}
1814 		}
1815 	}
1816 
1817 	drm_free_large(exec2_list);
1818 	return ret;
1819 }
1820