1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27 
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57 
58 #define pipelined 0
59 
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61 				 struct i915_vma *vma)
62 {
63 	i915_reg_t fence_reg_lo, fence_reg_hi;
64 	int fence_pitch_shift;
65 	u64 val;
66 
67 	if (INTEL_INFO(fence->i915)->gen >= 6) {
68 		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69 		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71 
72 	} else {
73 		fence_reg_lo = FENCE_REG_965_LO(fence->id);
74 		fence_reg_hi = FENCE_REG_965_HI(fence->id);
75 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76 	}
77 
78 	val = 0;
79 	if (vma) {
80 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
81 
82 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
83 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85 		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
86 
87 		val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
88 		val |= vma->node.start;
89 		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
90 		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
91 			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
92 		val |= I965_FENCE_REG_VALID;
93 	}
94 
95 	if (!pipelined) {
96 		struct drm_i915_private *dev_priv = fence->i915;
97 
98 		/* To w/a incoherency with non-atomic 64-bit register updates,
99 		 * we split the 64-bit update into two 32-bit writes. In order
100 		 * for a partial fence not to be evaluated between writes, we
101 		 * precede the update with write to turn off the fence register,
102 		 * and only enable the fence as the last step.
103 		 *
104 		 * For extra levels of paranoia, we make sure each step lands
105 		 * before applying the next step.
106 		 */
107 		I915_WRITE(fence_reg_lo, 0);
108 		POSTING_READ(fence_reg_lo);
109 
110 		I915_WRITE(fence_reg_hi, upper_32_bits(val));
111 		I915_WRITE(fence_reg_lo, lower_32_bits(val));
112 		POSTING_READ(fence_reg_lo);
113 	}
114 }
115 
116 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117 				 struct i915_vma *vma)
118 {
119 	u32 val;
120 
121 	val = 0;
122 	if (vma) {
123 		unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124 		bool is_y_tiled = tiling == I915_TILING_Y;
125 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
126 
127 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128 		GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
129 		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
130 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
131 
132 		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
133 			stride /= 128;
134 		else
135 			stride /= 512;
136 		GEM_BUG_ON(!is_power_of_2(stride));
137 
138 		val = vma->node.start;
139 		if (is_y_tiled)
140 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
141 		val |= I915_FENCE_SIZE_BITS(vma->fence_size);
142 		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143 
144 		val |= I830_FENCE_REG_VALID;
145 	}
146 
147 	if (!pipelined) {
148 		struct drm_i915_private *dev_priv = fence->i915;
149 		i915_reg_t reg = FENCE_REG(fence->id);
150 
151 		I915_WRITE(reg, val);
152 		POSTING_READ(reg);
153 	}
154 }
155 
156 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157 				 struct i915_vma *vma)
158 {
159 	u32 val;
160 
161 	val = 0;
162 	if (vma) {
163 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
164 
165 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166 		GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
167 		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
168 		GEM_BUG_ON(!is_power_of_2(stride / 128));
169 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
170 
171 		val = vma->node.start;
172 		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
173 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
174 		val |= I830_FENCE_SIZE_BITS(vma->fence_size);
175 		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
176 		val |= I830_FENCE_REG_VALID;
177 	}
178 
179 	if (!pipelined) {
180 		struct drm_i915_private *dev_priv = fence->i915;
181 		i915_reg_t reg = FENCE_REG(fence->id);
182 
183 		I915_WRITE(reg, val);
184 		POSTING_READ(reg);
185 	}
186 }
187 
188 static void fence_write(struct drm_i915_fence_reg *fence,
189 			struct i915_vma *vma)
190 {
191 	/* Previous access through the fence register is marshalled by
192 	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
193 	 * and explicitly managed for internal users.
194 	 */
195 
196 	if (IS_GEN2(fence->i915))
197 		i830_write_fence_reg(fence, vma);
198 	else if (IS_GEN3(fence->i915))
199 		i915_write_fence_reg(fence, vma);
200 	else
201 		i965_write_fence_reg(fence, vma);
202 
203 	/* Access through the fenced region afterwards is
204 	 * ordered by the posting reads whilst writing the registers.
205 	 */
206 
207 	fence->dirty = false;
208 }
209 
210 static int fence_update(struct drm_i915_fence_reg *fence,
211 			struct i915_vma *vma)
212 {
213 	int ret;
214 
215 	if (vma) {
216 		if (!i915_vma_is_map_and_fenceable(vma))
217 			return -EINVAL;
218 
219 		if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220 			 !i915_gem_object_get_tiling(vma->obj),
221 			 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222 			 i915_gem_object_get_stride(vma->obj),
223 			 i915_gem_object_get_tiling(vma->obj)))
224 			return -EINVAL;
225 
226 		ret = i915_gem_active_retire(&vma->last_fence,
227 					     &vma->obj->base.dev->struct_mutex);
228 		if (ret)
229 			return ret;
230 	}
231 
232 	if (fence->vma) {
233 		ret = i915_gem_active_retire(&fence->vma->last_fence,
234 				      &fence->vma->obj->base.dev->struct_mutex);
235 		if (ret)
236 			return ret;
237 	}
238 
239 	if (fence->vma && fence->vma != vma) {
240 		/* Ensure that all userspace CPU access is completed before
241 		 * stealing the fence.
242 		 */
243 		i915_gem_release_mmap(fence->vma->obj);
244 
245 		fence->vma->fence = NULL;
246 		fence->vma = NULL;
247 
248 		list_move(&fence->link, &fence->i915->mm.fence_list);
249 	}
250 
251 	/* We only need to update the register itself if the device is awake.
252 	 * If the device is currently powered down, we will defer the write
253 	 * to the runtime resume, see i915_gem_restore_fences().
254 	 */
255 	if (intel_runtime_pm_get_if_in_use(fence->i915)) {
256 		fence_write(fence, vma);
257 		intel_runtime_pm_put(fence->i915);
258 	}
259 
260 	if (vma) {
261 		if (fence->vma != vma) {
262 			vma->fence = fence;
263 			fence->vma = vma;
264 		}
265 
266 		list_move_tail(&fence->link, &fence->i915->mm.fence_list);
267 	}
268 
269 	return 0;
270 }
271 
272 /**
273  * i915_vma_put_fence - force-remove fence for a VMA
274  * @vma: vma to map linearly (not through a fence reg)
275  *
276  * This function force-removes any fence from the given object, which is useful
277  * if the kernel wants to do untiled GTT access.
278  *
279  * Returns:
280  *
281  * 0 on success, negative error code on failure.
282  */
283 int
284 i915_vma_put_fence(struct i915_vma *vma)
285 {
286 	struct drm_i915_fence_reg *fence = vma->fence;
287 
288 	if (!fence)
289 		return 0;
290 
291 	if (fence->pin_count)
292 		return -EBUSY;
293 
294 	return fence_update(fence, NULL);
295 }
296 
297 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
298 {
299 	struct drm_i915_fence_reg *fence;
300 
301 	list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
302 		if (fence->pin_count)
303 			continue;
304 
305 		return fence;
306 	}
307 
308 	/* Wait for completion of pending flips which consume fences */
309 	if (intel_has_pending_fb_unpin(dev_priv))
310 		return ERR_PTR(-EAGAIN);
311 
312 	return ERR_PTR(-EDEADLK);
313 }
314 
315 /**
316  * i915_vma_get_fence - set up fencing for a vma
317  * @vma: vma to map through a fence reg
318  *
319  * When mapping objects through the GTT, userspace wants to be able to write
320  * to them without having to worry about swizzling if the object is tiled.
321  * This function walks the fence regs looking for a free one for @obj,
322  * stealing one if it can't find any.
323  *
324  * It then sets up the reg based on the object's properties: address, pitch
325  * and tiling format.
326  *
327  * For an untiled surface, this removes any existing fence.
328  *
329  * Returns:
330  *
331  * 0 on success, negative error code on failure.
332  */
333 int
334 i915_vma_get_fence(struct i915_vma *vma)
335 {
336 	struct drm_i915_fence_reg *fence;
337 	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
338 
339 	/* Note that we revoke fences on runtime suspend. Therefore the user
340 	 * must keep the device awake whilst using the fence.
341 	 */
342 	assert_rpm_wakelock_held(vma->vm->i915);
343 
344 	/* Just update our place in the LRU if our fence is getting reused. */
345 	if (vma->fence) {
346 		fence = vma->fence;
347 		if (!fence->dirty) {
348 			list_move_tail(&fence->link,
349 				       &fence->i915->mm.fence_list);
350 			return 0;
351 		}
352 	} else if (set) {
353 		fence = fence_find(vma->vm->i915);
354 		if (IS_ERR(fence))
355 			return PTR_ERR(fence);
356 	} else
357 		return 0;
358 
359 	return fence_update(fence, set);
360 }
361 
362 /**
363  * i915_gem_revoke_fences - revoke fence state
364  * @dev_priv: i915 device private
365  *
366  * Removes all GTT mmappings via the fence registers. This forces any user
367  * of the fence to reacquire that fence before continuing with their access.
368  * One use is during GPU reset where the fence register is lost and we need to
369  * revoke concurrent userspace access via GTT mmaps until the hardware has been
370  * reset and the fence registers have been restored.
371  */
372 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
373 {
374 	int i;
375 
376 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
377 
378 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
379 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
380 
381 		if (fence->vma)
382 			i915_gem_release_mmap(fence->vma->obj);
383 	}
384 }
385 
386 /**
387  * i915_gem_restore_fences - restore fence state
388  * @dev_priv: i915 device private
389  *
390  * Restore the hw fence state to match the software tracking again, to be called
391  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
392  * the fences, to be reacquired by the user later.
393  */
394 void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
395 {
396 	int i;
397 
398 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
399 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
400 		struct i915_vma *vma = reg->vma;
401 
402 		/*
403 		 * Commit delayed tiling changes if we have an object still
404 		 * attached to the fence, otherwise just clear the fence.
405 		 */
406 		if (vma && !i915_gem_object_is_tiled(vma->obj)) {
407 			GEM_BUG_ON(!reg->dirty);
408 			GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
409 
410 			list_move(&reg->link, &dev_priv->mm.fence_list);
411 			vma->fence = NULL;
412 			vma = NULL;
413 		}
414 
415 		fence_write(reg, vma);
416 		reg->vma = vma;
417 	}
418 }
419 
420 /**
421  * DOC: tiling swizzling details
422  *
423  * The idea behind tiling is to increase cache hit rates by rearranging
424  * pixel data so that a group of pixel accesses are in the same cacheline.
425  * Performance improvement from doing this on the back/depth buffer are on
426  * the order of 30%.
427  *
428  * Intel architectures make this somewhat more complicated, though, by
429  * adjustments made to addressing of data when the memory is in interleaved
430  * mode (matched pairs of DIMMS) to improve memory bandwidth.
431  * For interleaved memory, the CPU sends every sequential 64 bytes
432  * to an alternate memory channel so it can get the bandwidth from both.
433  *
434  * The GPU also rearranges its accesses for increased bandwidth to interleaved
435  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
436  * it does it a little differently, since one walks addresses not just in the
437  * X direction but also Y.  So, along with alternating channels when bit
438  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
439  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
440  * are common to both the 915 and 965-class hardware.
441  *
442  * The CPU also sometimes XORs in higher bits as well, to improve
443  * bandwidth doing strided access like we do so frequently in graphics.  This
444  * is called "Channel XOR Randomization" in the MCH documentation.  The result
445  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
446  * decode.
447  *
448  * All of this bit 6 XORing has an effect on our memory management,
449  * as we need to make sure that the 3d driver can correctly address object
450  * contents.
451  *
452  * If we don't have interleaved memory, all tiling is safe and no swizzling is
453  * required.
454  *
455  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
456  * 17 is not just a page offset, so as we page an object out and back in,
457  * individual pages in it will have different bit 17 addresses, resulting in
458  * each 64 bytes being swapped with its neighbor!
459  *
460  * Otherwise, if interleaved, we have to tell the 3d driver what the address
461  * swizzling it needs to do is, since it's writing with the CPU to the pages
462  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
463  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
464  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
465  * to match what the GPU expects.
466  */
467 
468 /**
469  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
470  * @dev_priv: i915 device private
471  *
472  * Detects bit 6 swizzling of address lookup between IGD access and CPU
473  * access through main memory.
474  */
475 void
476 i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
477 {
478 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
479 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
480 
481 	if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
482 		/*
483 		 * On BDW+, swizzling is not used. We leave the CPU memory
484 		 * controller in charge of optimizing memory accesses without
485 		 * the extra address manipulation GPU side.
486 		 *
487 		 * VLV and CHV don't have GPU swizzling.
488 		 */
489 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
490 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
491 	} else if (INTEL_GEN(dev_priv) >= 6) {
492 		if (dev_priv->preserve_bios_swizzle) {
493 			if (I915_READ(DISP_ARB_CTL) &
494 			    DISP_TILE_SURFACE_SWIZZLING) {
495 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
496 				swizzle_y = I915_BIT_6_SWIZZLE_9;
497 			} else {
498 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
499 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
500 			}
501 		} else {
502 			uint32_t dimm_c0, dimm_c1;
503 			dimm_c0 = I915_READ(MAD_DIMM_C0);
504 			dimm_c1 = I915_READ(MAD_DIMM_C1);
505 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
506 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
507 			/* Enable swizzling when the channels are populated
508 			 * with identically sized dimms. We don't need to check
509 			 * the 3rd channel because no cpu with gpu attached
510 			 * ships in that configuration. Also, swizzling only
511 			 * makes sense for 2 channels anyway. */
512 			if (dimm_c0 == dimm_c1) {
513 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
514 				swizzle_y = I915_BIT_6_SWIZZLE_9;
515 			} else {
516 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
517 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
518 			}
519 		}
520 	} else if (IS_GEN5(dev_priv)) {
521 		/* On Ironlake whatever DRAM config, GPU always do
522 		 * same swizzling setup.
523 		 */
524 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
525 		swizzle_y = I915_BIT_6_SWIZZLE_9;
526 	} else if (IS_GEN2(dev_priv)) {
527 		/* As far as we know, the 865 doesn't have these bit 6
528 		 * swizzling issues.
529 		 */
530 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
531 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
532 	} else if (IS_MOBILE(dev_priv) ||
533 		   IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
534 		uint32_t dcc;
535 
536 		/* On 9xx chipsets, channel interleave by the CPU is
537 		 * determined by DCC.  For single-channel, neither the CPU
538 		 * nor the GPU do swizzling.  For dual channel interleaved,
539 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
540 		 * 9 for Y tiled.  The CPU's interleave is independent, and
541 		 * can be based on either bit 11 (haven't seen this yet) or
542 		 * bit 17 (common).
543 		 */
544 		dcc = I915_READ(DCC);
545 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
546 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
547 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
548 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
549 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
550 			break;
551 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
552 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
553 				/* This is the base swizzling by the GPU for
554 				 * tiled buffers.
555 				 */
556 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
557 				swizzle_y = I915_BIT_6_SWIZZLE_9;
558 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
559 				/* Bit 11 swizzling by the CPU in addition. */
560 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
561 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
562 			} else {
563 				/* Bit 17 swizzling by the CPU in addition. */
564 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
565 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
566 			}
567 			break;
568 		}
569 
570 		/* check for L-shaped memory aka modified enhanced addressing */
571 		if (IS_GEN4(dev_priv) &&
572 		    !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
573 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
575 		}
576 
577 		if (dcc == 0xffffffff) {
578 			DRM_ERROR("Couldn't read from MCHBAR.  "
579 				  "Disabling tiling.\n");
580 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
581 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
582 		}
583 	} else {
584 		/* The 965, G33, and newer, have a very flexible memory
585 		 * configuration.  It will enable dual-channel mode
586 		 * (interleaving) on as much memory as it can, and the GPU
587 		 * will additionally sometimes enable different bit 6
588 		 * swizzling for tiled objects from the CPU.
589 		 *
590 		 * Here's what I found on the G965:
591 		 *    slot fill         memory size  swizzling
592 		 * 0A   0B   1A   1B    1-ch   2-ch
593 		 * 512  0    0    0     512    0     O
594 		 * 512  0    512  0     16     1008  X
595 		 * 512  0    0    512   16     1008  X
596 		 * 0    512  0    512   16     1008  X
597 		 * 1024 1024 1024 0     2048   1024  O
598 		 *
599 		 * We could probably detect this based on either the DRB
600 		 * matching, which was the case for the swizzling required in
601 		 * the table above, or from the 1-ch value being less than
602 		 * the minimum size of a rank.
603 		 *
604 		 * Reports indicate that the swizzling actually
605 		 * varies depending upon page placement inside the
606 		 * channels, i.e. we see swizzled pages where the
607 		 * banks of memory are paired and unswizzled on the
608 		 * uneven portion, so leave that as unknown.
609 		 */
610 		if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
611 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612 			swizzle_y = I915_BIT_6_SWIZZLE_9;
613 		}
614 	}
615 
616 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
617 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
618 		/* Userspace likes to explode if it sees unknown swizzling,
619 		 * so lie. We will finish the lie when reporting through
620 		 * the get-tiling-ioctl by reporting the physical swizzle
621 		 * mode as unknown instead.
622 		 *
623 		 * As we don't strictly know what the swizzling is, it may be
624 		 * bit17 dependent, and so we need to also prevent the pages
625 		 * from being moved.
626 		 */
627 		dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
628 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
629 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
630 	}
631 
632 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
633 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
634 }
635 
636 /*
637  * Swap every 64 bytes of this page around, to account for it having a new
638  * bit 17 of its physical address and therefore being interpreted differently
639  * by the GPU.
640  */
641 static void
642 i915_gem_swizzle_page(struct page *page)
643 {
644 	char temp[64];
645 	char *vaddr;
646 	int i;
647 
648 	vaddr = kmap(page);
649 
650 	for (i = 0; i < PAGE_SIZE; i += 128) {
651 		memcpy(temp, &vaddr[i], 64);
652 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
653 		memcpy(&vaddr[i + 64], temp, 64);
654 	}
655 
656 	kunmap(page);
657 }
658 
659 /**
660  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
661  * @obj: i915 GEM buffer object
662  * @pages: the scattergather list of physical pages
663  *
664  * This function fixes up the swizzling in case any page frame number for this
665  * object has changed in bit 17 since that state has been saved with
666  * i915_gem_object_save_bit_17_swizzle().
667  *
668  * This is called when pinning backing storage again, since the kernel is free
669  * to move unpinned backing storage around (either by directly moving pages or
670  * by swapping them out and back in again).
671  */
672 void
673 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
674 				  struct sg_table *pages)
675 {
676 	struct sgt_iter sgt_iter;
677 	struct page *page;
678 	int i;
679 
680 	if (obj->bit_17 == NULL)
681 		return;
682 
683 	i = 0;
684 	for_each_sgt_page(page, sgt_iter, pages) {
685 		char new_bit_17 = page_to_phys(page) >> 17;
686 		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
687 			i915_gem_swizzle_page(page);
688 			set_page_dirty(page);
689 		}
690 		i++;
691 	}
692 }
693 
694 /**
695  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
696  * @obj: i915 GEM buffer object
697  * @pages: the scattergather list of physical pages
698  *
699  * This function saves the bit 17 of each page frame number so that swizzling
700  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
701  * be called before the backing storage can be unpinned.
702  */
703 void
704 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
705 				    struct sg_table *pages)
706 {
707 	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
708 	struct sgt_iter sgt_iter;
709 	struct page *page;
710 	int i;
711 
712 	if (obj->bit_17 == NULL) {
713 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
714 				      sizeof(long), GFP_KERNEL);
715 		if (obj->bit_17 == NULL) {
716 			DRM_ERROR("Failed to allocate memory for bit 17 "
717 				  "record\n");
718 			return;
719 		}
720 	}
721 
722 	i = 0;
723 
724 	for_each_sgt_page(page, sgt_iter, pages) {
725 		if (page_to_phys(page) & (1 << 17))
726 			__set_bit(i, obj->bit_17);
727 		else
728 			__clear_bit(i, obj->bit_17);
729 		i++;
730 	}
731 }
732