1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27 
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57 
58 #define pipelined 0
59 
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61 				 struct i915_vma *vma)
62 {
63 	i915_reg_t fence_reg_lo, fence_reg_hi;
64 	int fence_pitch_shift;
65 	u64 val;
66 
67 	if (INTEL_INFO(fence->i915)->gen >= 6) {
68 		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69 		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71 
72 	} else {
73 		fence_reg_lo = FENCE_REG_965_LO(fence->id);
74 		fence_reg_hi = FENCE_REG_965_HI(fence->id);
75 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76 	}
77 
78 	val = 0;
79 	if (vma) {
80 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
81 
82 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
83 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85 		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
86 
87 		val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
88 		val |= vma->node.start;
89 		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
90 		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
91 			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
92 		val |= I965_FENCE_REG_VALID;
93 	}
94 
95 	if (!pipelined) {
96 		struct drm_i915_private *dev_priv = fence->i915;
97 
98 		/* To w/a incoherency with non-atomic 64-bit register updates,
99 		 * we split the 64-bit update into two 32-bit writes. In order
100 		 * for a partial fence not to be evaluated between writes, we
101 		 * precede the update with write to turn off the fence register,
102 		 * and only enable the fence as the last step.
103 		 *
104 		 * For extra levels of paranoia, we make sure each step lands
105 		 * before applying the next step.
106 		 */
107 		I915_WRITE(fence_reg_lo, 0);
108 		POSTING_READ(fence_reg_lo);
109 
110 		I915_WRITE(fence_reg_hi, upper_32_bits(val));
111 		I915_WRITE(fence_reg_lo, lower_32_bits(val));
112 		POSTING_READ(fence_reg_lo);
113 	}
114 }
115 
116 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117 				 struct i915_vma *vma)
118 {
119 	u32 val;
120 
121 	val = 0;
122 	if (vma) {
123 		unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124 		bool is_y_tiled = tiling == I915_TILING_Y;
125 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
126 
127 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128 		GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
129 		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
130 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
131 
132 		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
133 			stride /= 128;
134 		else
135 			stride /= 512;
136 		GEM_BUG_ON(!is_power_of_2(stride));
137 
138 		val = vma->node.start;
139 		if (is_y_tiled)
140 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
141 		val |= I915_FENCE_SIZE_BITS(vma->fence_size);
142 		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143 
144 		val |= I830_FENCE_REG_VALID;
145 	}
146 
147 	if (!pipelined) {
148 		struct drm_i915_private *dev_priv = fence->i915;
149 		i915_reg_t reg = FENCE_REG(fence->id);
150 
151 		I915_WRITE(reg, val);
152 		POSTING_READ(reg);
153 	}
154 }
155 
156 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157 				 struct i915_vma *vma)
158 {
159 	u32 val;
160 
161 	val = 0;
162 	if (vma) {
163 		unsigned int stride = i915_gem_object_get_stride(vma->obj);
164 
165 		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166 		GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
167 		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
168 		GEM_BUG_ON(!is_power_of_2(stride / 128));
169 		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
170 
171 		val = vma->node.start;
172 		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
173 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
174 		val |= I830_FENCE_SIZE_BITS(vma->fence_size);
175 		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
176 		val |= I830_FENCE_REG_VALID;
177 	}
178 
179 	if (!pipelined) {
180 		struct drm_i915_private *dev_priv = fence->i915;
181 		i915_reg_t reg = FENCE_REG(fence->id);
182 
183 		I915_WRITE(reg, val);
184 		POSTING_READ(reg);
185 	}
186 }
187 
188 static void fence_write(struct drm_i915_fence_reg *fence,
189 			struct i915_vma *vma)
190 {
191 	/* Previous access through the fence register is marshalled by
192 	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
193 	 * and explicitly managed for internal users.
194 	 */
195 
196 	if (IS_GEN2(fence->i915))
197 		i830_write_fence_reg(fence, vma);
198 	else if (IS_GEN3(fence->i915))
199 		i915_write_fence_reg(fence, vma);
200 	else
201 		i965_write_fence_reg(fence, vma);
202 
203 	/* Access through the fenced region afterwards is
204 	 * ordered by the posting reads whilst writing the registers.
205 	 */
206 
207 	fence->dirty = false;
208 }
209 
210 static int fence_update(struct drm_i915_fence_reg *fence,
211 			struct i915_vma *vma)
212 {
213 	int ret;
214 
215 	if (vma) {
216 		if (!i915_vma_is_map_and_fenceable(vma))
217 			return -EINVAL;
218 
219 		if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220 			 !i915_gem_object_get_tiling(vma->obj),
221 			 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222 			 i915_gem_object_get_stride(vma->obj),
223 			 i915_gem_object_get_tiling(vma->obj)))
224 			return -EINVAL;
225 
226 		ret = i915_gem_active_retire(&vma->last_fence,
227 					     &vma->obj->base.dev->struct_mutex);
228 		if (ret)
229 			return ret;
230 	}
231 
232 	if (fence->vma) {
233 		ret = i915_gem_active_retire(&fence->vma->last_fence,
234 				      &fence->vma->obj->base.dev->struct_mutex);
235 		if (ret)
236 			return ret;
237 	}
238 
239 	if (fence->vma && fence->vma != vma) {
240 		/* Ensure that all userspace CPU access is completed before
241 		 * stealing the fence.
242 		 */
243 		GEM_BUG_ON(fence->vma->fence != fence);
244 		i915_vma_revoke_mmap(fence->vma);
245 
246 		fence->vma->fence = NULL;
247 		fence->vma = NULL;
248 
249 		list_move(&fence->link, &fence->i915->mm.fence_list);
250 	}
251 
252 	/* We only need to update the register itself if the device is awake.
253 	 * If the device is currently powered down, we will defer the write
254 	 * to the runtime resume, see i915_gem_restore_fences().
255 	 */
256 	if (intel_runtime_pm_get_if_in_use(fence->i915)) {
257 		fence_write(fence, vma);
258 		intel_runtime_pm_put(fence->i915);
259 	}
260 
261 	if (vma) {
262 		if (fence->vma != vma) {
263 			vma->fence = fence;
264 			fence->vma = vma;
265 		}
266 
267 		list_move_tail(&fence->link, &fence->i915->mm.fence_list);
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * i915_vma_put_fence - force-remove fence for a VMA
275  * @vma: vma to map linearly (not through a fence reg)
276  *
277  * This function force-removes any fence from the given object, which is useful
278  * if the kernel wants to do untiled GTT access.
279  *
280  * Returns:
281  *
282  * 0 on success, negative error code on failure.
283  */
284 int i915_vma_put_fence(struct i915_vma *vma)
285 {
286 	struct drm_i915_fence_reg *fence = vma->fence;
287 
288 	if (!fence)
289 		return 0;
290 
291 	if (fence->pin_count)
292 		return -EBUSY;
293 
294 	return fence_update(fence, NULL);
295 }
296 
297 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
298 {
299 	struct drm_i915_fence_reg *fence;
300 
301 	list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
302 		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
303 
304 		if (fence->pin_count)
305 			continue;
306 
307 		return fence;
308 	}
309 
310 	/* Wait for completion of pending flips which consume fences */
311 	if (intel_has_pending_fb_unpin(dev_priv))
312 		return ERR_PTR(-EAGAIN);
313 
314 	return ERR_PTR(-EDEADLK);
315 }
316 
317 /**
318  * i915_vma_pin_fence - set up fencing for a vma
319  * @vma: vma to map through a fence reg
320  *
321  * When mapping objects through the GTT, userspace wants to be able to write
322  * to them without having to worry about swizzling if the object is tiled.
323  * This function walks the fence regs looking for a free one for @obj,
324  * stealing one if it can't find any.
325  *
326  * It then sets up the reg based on the object's properties: address, pitch
327  * and tiling format.
328  *
329  * For an untiled surface, this removes any existing fence.
330  *
331  * Returns:
332  *
333  * 0 on success, negative error code on failure.
334  */
335 int
336 i915_vma_pin_fence(struct i915_vma *vma)
337 {
338 	struct drm_i915_fence_reg *fence;
339 	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
340 	int err;
341 
342 	/* Note that we revoke fences on runtime suspend. Therefore the user
343 	 * must keep the device awake whilst using the fence.
344 	 */
345 	assert_rpm_wakelock_held(vma->vm->i915);
346 
347 	/* Just update our place in the LRU if our fence is getting reused. */
348 	if (vma->fence) {
349 		fence = vma->fence;
350 		GEM_BUG_ON(fence->vma != vma);
351 		fence->pin_count++;
352 		if (!fence->dirty) {
353 			list_move_tail(&fence->link,
354 				       &fence->i915->mm.fence_list);
355 			return 0;
356 		}
357 	} else if (set) {
358 		fence = fence_find(vma->vm->i915);
359 		if (IS_ERR(fence))
360 			return PTR_ERR(fence);
361 
362 		GEM_BUG_ON(fence->pin_count);
363 		fence->pin_count++;
364 	} else
365 		return 0;
366 
367 	err = fence_update(fence, set);
368 	if (err)
369 		goto out_unpin;
370 
371 	GEM_BUG_ON(fence->vma != set);
372 	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
373 
374 	if (set)
375 		return 0;
376 
377 out_unpin:
378 	fence->pin_count--;
379 	return err;
380 }
381 
382 /**
383  * i915_reserve_fence - Reserve a fence for vGPU
384  * @dev_priv: i915 device private
385  *
386  * This function walks the fence regs looking for a free one and remove
387  * it from the fence_list. It is used to reserve fence for vGPU to use.
388  */
389 struct drm_i915_fence_reg *
390 i915_reserve_fence(struct drm_i915_private *dev_priv)
391 {
392 	struct drm_i915_fence_reg *fence;
393 	int count;
394 	int ret;
395 
396 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
397 
398 	/* Keep at least one fence available for the display engine. */
399 	count = 0;
400 	list_for_each_entry(fence, &dev_priv->mm.fence_list, link)
401 		count += !fence->pin_count;
402 	if (count <= 1)
403 		return ERR_PTR(-ENOSPC);
404 
405 	fence = fence_find(dev_priv);
406 	if (IS_ERR(fence))
407 		return fence;
408 
409 	if (fence->vma) {
410 		/* Force-remove fence from VMA */
411 		ret = fence_update(fence, NULL);
412 		if (ret)
413 			return ERR_PTR(ret);
414 	}
415 
416 	list_del(&fence->link);
417 	return fence;
418 }
419 
420 /**
421  * i915_unreserve_fence - Reclaim a reserved fence
422  * @fence: the fence reg
423  *
424  * This function add a reserved fence register from vGPU to the fence_list.
425  */
426 void i915_unreserve_fence(struct drm_i915_fence_reg *fence)
427 {
428 	lockdep_assert_held(&fence->i915->drm.struct_mutex);
429 
430 	list_add(&fence->link, &fence->i915->mm.fence_list);
431 }
432 
433 /**
434  * i915_gem_revoke_fences - revoke fence state
435  * @dev_priv: i915 device private
436  *
437  * Removes all GTT mmappings via the fence registers. This forces any user
438  * of the fence to reacquire that fence before continuing with their access.
439  * One use is during GPU reset where the fence register is lost and we need to
440  * revoke concurrent userspace access via GTT mmaps until the hardware has been
441  * reset and the fence registers have been restored.
442  */
443 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
444 {
445 	int i;
446 
447 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
448 
449 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
450 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
451 
452 		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
453 
454 		if (fence->vma)
455 			i915_vma_revoke_mmap(fence->vma);
456 	}
457 }
458 
459 /**
460  * i915_gem_restore_fences - restore fence state
461  * @dev_priv: i915 device private
462  *
463  * Restore the hw fence state to match the software tracking again, to be called
464  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
465  * the fences, to be reacquired by the user later.
466  */
467 void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
468 {
469 	int i;
470 
471 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
472 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
473 		struct i915_vma *vma = reg->vma;
474 
475 		GEM_BUG_ON(vma && vma->fence != reg);
476 
477 		/*
478 		 * Commit delayed tiling changes if we have an object still
479 		 * attached to the fence, otherwise just clear the fence.
480 		 */
481 		if (vma && !i915_gem_object_is_tiled(vma->obj)) {
482 			GEM_BUG_ON(!reg->dirty);
483 			GEM_BUG_ON(i915_vma_has_userfault(vma));
484 
485 			list_move(&reg->link, &dev_priv->mm.fence_list);
486 			vma->fence = NULL;
487 			vma = NULL;
488 		}
489 
490 		fence_write(reg, vma);
491 		reg->vma = vma;
492 	}
493 }
494 
495 /**
496  * DOC: tiling swizzling details
497  *
498  * The idea behind tiling is to increase cache hit rates by rearranging
499  * pixel data so that a group of pixel accesses are in the same cacheline.
500  * Performance improvement from doing this on the back/depth buffer are on
501  * the order of 30%.
502  *
503  * Intel architectures make this somewhat more complicated, though, by
504  * adjustments made to addressing of data when the memory is in interleaved
505  * mode (matched pairs of DIMMS) to improve memory bandwidth.
506  * For interleaved memory, the CPU sends every sequential 64 bytes
507  * to an alternate memory channel so it can get the bandwidth from both.
508  *
509  * The GPU also rearranges its accesses for increased bandwidth to interleaved
510  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
511  * it does it a little differently, since one walks addresses not just in the
512  * X direction but also Y.  So, along with alternating channels when bit
513  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
514  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
515  * are common to both the 915 and 965-class hardware.
516  *
517  * The CPU also sometimes XORs in higher bits as well, to improve
518  * bandwidth doing strided access like we do so frequently in graphics.  This
519  * is called "Channel XOR Randomization" in the MCH documentation.  The result
520  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
521  * decode.
522  *
523  * All of this bit 6 XORing has an effect on our memory management,
524  * as we need to make sure that the 3d driver can correctly address object
525  * contents.
526  *
527  * If we don't have interleaved memory, all tiling is safe and no swizzling is
528  * required.
529  *
530  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
531  * 17 is not just a page offset, so as we page an object out and back in,
532  * individual pages in it will have different bit 17 addresses, resulting in
533  * each 64 bytes being swapped with its neighbor!
534  *
535  * Otherwise, if interleaved, we have to tell the 3d driver what the address
536  * swizzling it needs to do is, since it's writing with the CPU to the pages
537  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
538  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
539  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
540  * to match what the GPU expects.
541  */
542 
543 /**
544  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
545  * @dev_priv: i915 device private
546  *
547  * Detects bit 6 swizzling of address lookup between IGD access and CPU
548  * access through main memory.
549  */
550 void
551 i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
552 {
553 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
554 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
555 
556 	if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
557 		/*
558 		 * On BDW+, swizzling is not used. We leave the CPU memory
559 		 * controller in charge of optimizing memory accesses without
560 		 * the extra address manipulation GPU side.
561 		 *
562 		 * VLV and CHV don't have GPU swizzling.
563 		 */
564 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
565 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
566 	} else if (INTEL_GEN(dev_priv) >= 6) {
567 		if (dev_priv->preserve_bios_swizzle) {
568 			if (I915_READ(DISP_ARB_CTL) &
569 			    DISP_TILE_SURFACE_SWIZZLING) {
570 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
571 				swizzle_y = I915_BIT_6_SWIZZLE_9;
572 			} else {
573 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
574 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
575 			}
576 		} else {
577 			uint32_t dimm_c0, dimm_c1;
578 			dimm_c0 = I915_READ(MAD_DIMM_C0);
579 			dimm_c1 = I915_READ(MAD_DIMM_C1);
580 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
581 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
582 			/* Enable swizzling when the channels are populated
583 			 * with identically sized dimms. We don't need to check
584 			 * the 3rd channel because no cpu with gpu attached
585 			 * ships in that configuration. Also, swizzling only
586 			 * makes sense for 2 channels anyway. */
587 			if (dimm_c0 == dimm_c1) {
588 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
589 				swizzle_y = I915_BIT_6_SWIZZLE_9;
590 			} else {
591 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
592 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
593 			}
594 		}
595 	} else if (IS_GEN5(dev_priv)) {
596 		/* On Ironlake whatever DRAM config, GPU always do
597 		 * same swizzling setup.
598 		 */
599 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
600 		swizzle_y = I915_BIT_6_SWIZZLE_9;
601 	} else if (IS_GEN2(dev_priv)) {
602 		/* As far as we know, the 865 doesn't have these bit 6
603 		 * swizzling issues.
604 		 */
605 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
606 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
607 	} else if (IS_MOBILE(dev_priv) ||
608 		   IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
609 		uint32_t dcc;
610 
611 		/* On 9xx chipsets, channel interleave by the CPU is
612 		 * determined by DCC.  For single-channel, neither the CPU
613 		 * nor the GPU do swizzling.  For dual channel interleaved,
614 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
615 		 * 9 for Y tiled.  The CPU's interleave is independent, and
616 		 * can be based on either bit 11 (haven't seen this yet) or
617 		 * bit 17 (common).
618 		 */
619 		dcc = I915_READ(DCC);
620 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
621 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
622 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
623 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
624 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
625 			break;
626 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
627 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
628 				/* This is the base swizzling by the GPU for
629 				 * tiled buffers.
630 				 */
631 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
632 				swizzle_y = I915_BIT_6_SWIZZLE_9;
633 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
634 				/* Bit 11 swizzling by the CPU in addition. */
635 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
636 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
637 			} else {
638 				/* Bit 17 swizzling by the CPU in addition. */
639 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
640 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
641 			}
642 			break;
643 		}
644 
645 		/* check for L-shaped memory aka modified enhanced addressing */
646 		if (IS_GEN4(dev_priv) &&
647 		    !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
648 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
649 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
650 		}
651 
652 		if (dcc == 0xffffffff) {
653 			DRM_ERROR("Couldn't read from MCHBAR.  "
654 				  "Disabling tiling.\n");
655 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
656 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
657 		}
658 	} else {
659 		/* The 965, G33, and newer, have a very flexible memory
660 		 * configuration.  It will enable dual-channel mode
661 		 * (interleaving) on as much memory as it can, and the GPU
662 		 * will additionally sometimes enable different bit 6
663 		 * swizzling for tiled objects from the CPU.
664 		 *
665 		 * Here's what I found on the G965:
666 		 *    slot fill         memory size  swizzling
667 		 * 0A   0B   1A   1B    1-ch   2-ch
668 		 * 512  0    0    0     512    0     O
669 		 * 512  0    512  0     16     1008  X
670 		 * 512  0    0    512   16     1008  X
671 		 * 0    512  0    512   16     1008  X
672 		 * 1024 1024 1024 0     2048   1024  O
673 		 *
674 		 * We could probably detect this based on either the DRB
675 		 * matching, which was the case for the swizzling required in
676 		 * the table above, or from the 1-ch value being less than
677 		 * the minimum size of a rank.
678 		 *
679 		 * Reports indicate that the swizzling actually
680 		 * varies depending upon page placement inside the
681 		 * channels, i.e. we see swizzled pages where the
682 		 * banks of memory are paired and unswizzled on the
683 		 * uneven portion, so leave that as unknown.
684 		 */
685 		if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
686 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
687 			swizzle_y = I915_BIT_6_SWIZZLE_9;
688 		}
689 	}
690 
691 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
692 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
693 		/* Userspace likes to explode if it sees unknown swizzling,
694 		 * so lie. We will finish the lie when reporting through
695 		 * the get-tiling-ioctl by reporting the physical swizzle
696 		 * mode as unknown instead.
697 		 *
698 		 * As we don't strictly know what the swizzling is, it may be
699 		 * bit17 dependent, and so we need to also prevent the pages
700 		 * from being moved.
701 		 */
702 		dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
703 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
704 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
705 	}
706 
707 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
708 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
709 }
710 
711 /*
712  * Swap every 64 bytes of this page around, to account for it having a new
713  * bit 17 of its physical address and therefore being interpreted differently
714  * by the GPU.
715  */
716 static void
717 i915_gem_swizzle_page(struct page *page)
718 {
719 	char temp[64];
720 	char *vaddr;
721 	int i;
722 
723 	vaddr = kmap(page);
724 
725 	for (i = 0; i < PAGE_SIZE; i += 128) {
726 		memcpy(temp, &vaddr[i], 64);
727 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
728 		memcpy(&vaddr[i + 64], temp, 64);
729 	}
730 
731 	kunmap(page);
732 }
733 
734 /**
735  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
736  * @obj: i915 GEM buffer object
737  * @pages: the scattergather list of physical pages
738  *
739  * This function fixes up the swizzling in case any page frame number for this
740  * object has changed in bit 17 since that state has been saved with
741  * i915_gem_object_save_bit_17_swizzle().
742  *
743  * This is called when pinning backing storage again, since the kernel is free
744  * to move unpinned backing storage around (either by directly moving pages or
745  * by swapping them out and back in again).
746  */
747 void
748 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
749 				  struct sg_table *pages)
750 {
751 	struct sgt_iter sgt_iter;
752 	struct page *page;
753 	int i;
754 
755 	if (obj->bit_17 == NULL)
756 		return;
757 
758 	i = 0;
759 	for_each_sgt_page(page, sgt_iter, pages) {
760 		char new_bit_17 = page_to_phys(page) >> 17;
761 		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
762 			i915_gem_swizzle_page(page);
763 			set_page_dirty(page);
764 		}
765 		i++;
766 	}
767 }
768 
769 /**
770  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
771  * @obj: i915 GEM buffer object
772  * @pages: the scattergather list of physical pages
773  *
774  * This function saves the bit 17 of each page frame number so that swizzling
775  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
776  * be called before the backing storage can be unpinned.
777  */
778 void
779 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
780 				    struct sg_table *pages)
781 {
782 	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
783 	struct sgt_iter sgt_iter;
784 	struct page *page;
785 	int i;
786 
787 	if (obj->bit_17 == NULL) {
788 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
789 				      sizeof(long), GFP_KERNEL);
790 		if (obj->bit_17 == NULL) {
791 			DRM_ERROR("Failed to allocate memory for bit 17 "
792 				  "record\n");
793 			return;
794 		}
795 	}
796 
797 	i = 0;
798 
799 	for_each_sgt_page(page, sgt_iter, pages) {
800 		if (page_to_phys(page) & (1 << 17))
801 			__set_bit(i, obj->bit_17);
802 		else
803 			__clear_bit(i, obj->bit_17);
804 		i++;
805 	}
806 }
807