xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision 896f2e3a)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "intel_drv.h"
29 
30 #include <linux/highmem.h>
31 
32 #define GEN6_PPGTT_PD_ENTRIES 512
33 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
34 typedef uint64_t gen8_gtt_pte_t;
35 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
36 
37 /* PPGTT stuff */
38 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
39 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
40 
41 #define GEN6_PDE_VALID			(1 << 0)
42 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
43 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
44 
45 #define GEN6_PTE_VALID			(1 << 0)
46 #define GEN6_PTE_UNCACHED		(1 << 1)
47 #define HSW_PTE_UNCACHED		(0)
48 #define GEN6_PTE_CACHE_LLC		(2 << 1)
49 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
50 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
51 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
52 
53 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
54  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
55  */
56 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
57 					 (((bits) & 0x8) << (11 - 3)))
58 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
59 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
60 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
61 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
62 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
63 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
64 
65 #define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
66 #define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
67 #define GEN8_LEGACY_PDPS		4
68 
69 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
70 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
71 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
72 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
73 
74 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
75 					     enum i915_cache_level level,
76 					     bool valid)
77 {
78 	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
79 	pte |= addr;
80 	if (level != I915_CACHE_NONE)
81 		pte |= PPAT_CACHED_INDEX;
82 	else
83 		pte |= PPAT_UNCACHED_INDEX;
84 	return pte;
85 }
86 
87 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
88 					     dma_addr_t addr,
89 					     enum i915_cache_level level)
90 {
91 	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
92 	pde |= addr;
93 	if (level != I915_CACHE_NONE)
94 		pde |= PPAT_CACHED_PDE_INDEX;
95 	else
96 		pde |= PPAT_UNCACHED_INDEX;
97 	return pde;
98 }
99 
100 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
101 				     enum i915_cache_level level,
102 				     bool valid)
103 {
104 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
105 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
106 
107 	switch (level) {
108 	case I915_CACHE_L3_LLC:
109 	case I915_CACHE_LLC:
110 		pte |= GEN6_PTE_CACHE_LLC;
111 		break;
112 	case I915_CACHE_NONE:
113 		pte |= GEN6_PTE_UNCACHED;
114 		break;
115 	default:
116 		WARN_ON(1);
117 	}
118 
119 	return pte;
120 }
121 
122 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
123 				     enum i915_cache_level level,
124 				     bool valid)
125 {
126 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
127 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
128 
129 	switch (level) {
130 	case I915_CACHE_L3_LLC:
131 		pte |= GEN7_PTE_CACHE_L3_LLC;
132 		break;
133 	case I915_CACHE_LLC:
134 		pte |= GEN6_PTE_CACHE_LLC;
135 		break;
136 	case I915_CACHE_NONE:
137 		pte |= GEN6_PTE_UNCACHED;
138 		break;
139 	default:
140 		WARN_ON(1);
141 	}
142 
143 	return pte;
144 }
145 
146 #define BYT_PTE_WRITEABLE		(1 << 1)
147 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
148 
149 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
150 				     enum i915_cache_level level,
151 				     bool valid)
152 {
153 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
154 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
155 
156 	/* Mark the page as writeable.  Other platforms don't have a
157 	 * setting for read-only/writable, so this matches that behavior.
158 	 */
159 	pte |= BYT_PTE_WRITEABLE;
160 
161 	if (level != I915_CACHE_NONE)
162 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
163 
164 	return pte;
165 }
166 
167 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
168 				     enum i915_cache_level level,
169 				     bool valid)
170 {
171 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
172 	pte |= HSW_PTE_ADDR_ENCODE(addr);
173 
174 	if (level != I915_CACHE_NONE)
175 		pte |= HSW_WB_LLC_AGE3;
176 
177 	return pte;
178 }
179 
180 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
181 				      enum i915_cache_level level,
182 				      bool valid)
183 {
184 	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
185 	pte |= HSW_PTE_ADDR_ENCODE(addr);
186 
187 	switch (level) {
188 	case I915_CACHE_NONE:
189 		break;
190 	case I915_CACHE_WT:
191 		pte |= HSW_WT_ELLC_LLC_AGE3;
192 		break;
193 	default:
194 		pte |= HSW_WB_ELLC_LLC_AGE3;
195 		break;
196 	}
197 
198 	return pte;
199 }
200 
201 /* Broadwell Page Directory Pointer Descriptors */
202 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
203 			   uint64_t val)
204 {
205 	int ret;
206 
207 	BUG_ON(entry >= 4);
208 
209 	ret = intel_ring_begin(ring, 6);
210 	if (ret)
211 		return ret;
212 
213 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
215 	intel_ring_emit(ring, (u32)(val >> 32));
216 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
217 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
218 	intel_ring_emit(ring, (u32)(val));
219 	intel_ring_advance(ring);
220 
221 	return 0;
222 }
223 
224 static int gen8_ppgtt_enable(struct drm_device *dev)
225 {
226 	struct drm_i915_private *dev_priv = dev->dev_private;
227 	struct intel_ring_buffer *ring;
228 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
229 	int i, j, ret;
230 
231 	/* bit of a hack to find the actual last used pd */
232 	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
233 
234 	for_each_ring(ring, dev_priv, j) {
235 		I915_WRITE(RING_MODE_GEN7(ring),
236 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
237 	}
238 
239 	for (i = used_pd - 1; i >= 0; i--) {
240 		dma_addr_t addr = ppgtt->pd_dma_addr[i];
241 		for_each_ring(ring, dev_priv, j) {
242 			ret = gen8_write_pdp(ring, i, addr);
243 			if (ret)
244 				goto err_out;
245 		}
246 	}
247 	return 0;
248 
249 err_out:
250 	for_each_ring(ring, dev_priv, j)
251 		I915_WRITE(RING_MODE_GEN7(ring),
252 			   _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
253 	return ret;
254 }
255 
256 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
257 				   unsigned first_entry,
258 				   unsigned num_entries,
259 				   bool use_scratch)
260 {
261 	struct i915_hw_ppgtt *ppgtt =
262 		container_of(vm, struct i915_hw_ppgtt, base);
263 	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
264 	unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
265 	unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
266 	unsigned last_pte, i;
267 
268 	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
269 				      I915_CACHE_LLC, use_scratch);
270 
271 	while (num_entries) {
272 		struct vm_page *page_table = &ppgtt->gen8_pt_pages[act_pt];
273 
274 		last_pte = first_pte + num_entries;
275 		if (last_pte > GEN8_PTES_PER_PAGE)
276 			last_pte = GEN8_PTES_PER_PAGE;
277 
278 		pt_vaddr = kmap_atomic(page_table);
279 
280 		for (i = first_pte; i < last_pte; i++)
281 			pt_vaddr[i] = scratch_pte;
282 
283 		kunmap_atomic(pt_vaddr);
284 
285 		num_entries -= last_pte - first_pte;
286 		first_pte = 0;
287 		act_pt++;
288 	}
289 }
290 
291 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
292 				      vm_page_t *pages,
293 				      unsigned int first_entry,
294 				      unsigned int num_entries,
295 				      enum i915_cache_level cache_level)
296 {
297 	struct i915_hw_ppgtt *ppgtt =
298 		container_of(vm, struct i915_hw_ppgtt, base);
299 	gen8_gtt_pte_t *pt_vaddr;
300 	unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
301 	unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
302 	int i;
303 
304 	pt_vaddr = NULL;
305 	for (i=0;i<num_entries;i++) {
306 		if (pt_vaddr == NULL)
307 			pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
308 
309 		pt_vaddr[act_pte] =
310 			gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
311 					cache_level, true);
312 		if (++act_pte == GEN8_PTES_PER_PAGE) {
313 			kunmap_atomic(pt_vaddr);
314 			pt_vaddr = NULL;
315 			act_pt++;
316 			act_pte = 0;
317 		}
318 	}
319 	if (pt_vaddr)
320 		kunmap_atomic(pt_vaddr);
321 }
322 
323 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
324 {
325 	struct i915_hw_ppgtt *ppgtt =
326 		container_of(vm, struct i915_hw_ppgtt, base);
327 	int i, j;
328 
329 	drm_mm_takedown(&vm->mm);
330 
331 	for (i = 0; i < ppgtt->num_pd_pages ; i++) {
332 		if (ppgtt->pd_dma_addr[i]) {
333 			pci_unmap_page(ppgtt->base.dev->pdev,
334 				       ppgtt->pd_dma_addr[i],
335 				       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
336 
337 			for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
338 				dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
339 				if (addr)
340 					pci_unmap_page(ppgtt->base.dev->pdev,
341 						       addr,
342 						       PAGE_SIZE,
343 						       PCI_DMA_BIDIRECTIONAL);
344 
345 			}
346 		}
347 		kfree(ppgtt->gen8_pt_dma_addr[i]);
348 	}
349 
350 	__free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
351 	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
352 }
353 
354 /**
355  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
356  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
357  * represents 1GB of memory
358  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
359  *
360  * TODO: Do something with the size parameter
361  **/
362 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
363 {
364 	struct vm_page *pt_pages;
365 	int i, j, ret = -ENOMEM;
366 	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
367 	const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
368 
369 	if (size % (1<<30))
370 		DRM_INFO("Pages will be wasted unless GTT size (%lu) is divisible by 1GB\n", size);
371 
372 	/* FIXME: split allocation into smaller pieces. For now we only ever do
373 	 * this once, but with full PPGTT, the multiple contiguous allocations
374 	 * will be bad.
375 	 */
376 	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
377 	if (!ppgtt->pd_pages)
378 		return -ENOMEM;
379 
380 	pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
381 	if (!pt_pages) {
382 		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
383 		return -ENOMEM;
384 	}
385 
386 	ppgtt->gen8_pt_pages = pt_pages;
387 	ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
388 	ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
389 	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
390 	ppgtt->enable = gen8_ppgtt_enable;
391 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
392 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
393 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
394 	ppgtt->base.start = 0;
395 	ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
396 
397 	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
398 
399 	/*
400 	 * - Create a mapping for the page directories.
401 	 * - For each page directory:
402 	 *      allocate space for page table mappings.
403 	 *      map each page table
404 	 */
405 	for (i = 0; i < max_pdp; i++) {
406 		dma_addr_t temp;
407 		temp = pci_map_page(ppgtt->base.dev->pdev,
408 				    &ppgtt->pd_pages[i], 0,
409 				    PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
410 		if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
411 			goto err_out;
412 
413 		ppgtt->pd_dma_addr[i] = temp;
414 
415 		ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, M_DRM, M_WAITOK);
416 		if (!ppgtt->gen8_pt_dma_addr[i])
417 			goto err_out;
418 
419 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
420 			struct vm_page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
421 			temp = pci_map_page(ppgtt->base.dev->pdev,
422 					    p, 0, PAGE_SIZE,
423 					    PCI_DMA_BIDIRECTIONAL);
424 
425 			if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
426 				goto err_out;
427 
428 			ppgtt->gen8_pt_dma_addr[i][j] = temp;
429 		}
430 	}
431 
432 	/* For now, the PPGTT helper functions all require that the PDEs are
433 	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
434 	 * will never need to touch the PDEs again */
435 	for (i = 0; i < max_pdp; i++) {
436 		gen8_ppgtt_pde_t *pd_vaddr;
437 		pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
438 		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
439 			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
440 			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
441 						      I915_CACHE_LLC);
442 		}
443 		kunmap_atomic(pd_vaddr);
444 	}
445 
446 	ppgtt->base.clear_range(&ppgtt->base, 0,
447 				ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
448 				true);
449 
450 	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
451 			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
452 	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%ld wasted)\n",
453 			 ppgtt->num_pt_pages,
454 			 (ppgtt->num_pt_pages - num_pt_pages) +
455 			 size % (1<<30));
456 	return 0;
457 
458 err_out:
459 	ppgtt->base.cleanup(&ppgtt->base);
460 	return ret;
461 }
462 
463 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
464 {
465 	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
466 	gen6_gtt_pte_t __iomem *pd_addr;
467 	uint32_t pd_entry;
468 	int i;
469 
470 	WARN_ON(ppgtt->pd_offset & 0x3f);
471 	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
472 		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
473 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
474 		dma_addr_t pt_addr;
475 
476 		pt_addr = ppgtt->pt_dma_addr[i];
477 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
478 		pd_entry |= GEN6_PDE_VALID;
479 
480 		writel(pd_entry, pd_addr + i);
481 	}
482 	readl(pd_addr);
483 }
484 
485 static int gen6_ppgtt_enable(struct drm_device *dev)
486 {
487 	drm_i915_private_t *dev_priv = dev->dev_private;
488 	uint32_t pd_offset;
489 	struct intel_ring_buffer *ring;
490 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
491 	int i;
492 
493 	BUG_ON(ppgtt->pd_offset & 0x3f);
494 
495 	gen6_write_pdes(ppgtt);
496 
497 	pd_offset = ppgtt->pd_offset;
498 	pd_offset /= 64; /* in cachelines, */
499 	pd_offset <<= 16;
500 
501 	if (INTEL_INFO(dev)->gen == 6) {
502 		uint32_t ecochk, gab_ctl, ecobits;
503 
504 		ecobits = I915_READ(GAC_ECO_BITS);
505 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
506 					 ECOBITS_PPGTT_CACHE64B);
507 
508 		gab_ctl = I915_READ(GAB_CTL);
509 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
510 
511 		ecochk = I915_READ(GAM_ECOCHK);
512 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
513 				       ECOCHK_PPGTT_CACHE64B);
514 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
515 	} else if (INTEL_INFO(dev)->gen >= 7) {
516 		uint32_t ecochk, ecobits;
517 
518 		ecobits = I915_READ(GAC_ECO_BITS);
519 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
520 
521 		ecochk = I915_READ(GAM_ECOCHK);
522 		if (IS_HASWELL(dev)) {
523 			ecochk |= ECOCHK_PPGTT_WB_HSW;
524 		} else {
525 			ecochk |= ECOCHK_PPGTT_LLC_IVB;
526 			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
527 		}
528 		I915_WRITE(GAM_ECOCHK, ecochk);
529 		/* GFX_MODE is per-ring on gen7+ */
530 	}
531 
532 	for_each_ring(ring, dev_priv, i) {
533 		if (INTEL_INFO(dev)->gen >= 7)
534 			I915_WRITE(RING_MODE_GEN7(ring),
535 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
536 
537 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
538 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
539 	}
540 	return 0;
541 }
542 
543 /* PPGTT support for Sandybdrige/Gen6 and later */
544 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
545 				   unsigned first_entry,
546 				   unsigned num_entries,
547 				   bool use_scratch)
548 {
549 	struct i915_hw_ppgtt *ppgtt =
550 		container_of(vm, struct i915_hw_ppgtt, base);
551 	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
552 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
553 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
554 	unsigned last_pte, i;
555 
556 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
557 
558 	while (num_entries) {
559 		last_pte = first_pte + num_entries;
560 		if (last_pte > I915_PPGTT_PT_ENTRIES)
561 			last_pte = I915_PPGTT_PT_ENTRIES;
562 
563 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
564 
565 		for (i = first_pte; i < last_pte; i++)
566 			pt_vaddr[i] = scratch_pte;
567 
568 		kunmap_atomic(pt_vaddr);
569 
570 		num_entries -= last_pte - first_pte;
571 		first_pte = 0;
572 		act_pt++;
573 	}
574 }
575 
576 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
577 				      vm_page_t *pages,
578 				      unsigned first_entry,
579 				      unsigned num_entries,
580 				      enum i915_cache_level cache_level)
581 {
582 	struct i915_hw_ppgtt *ppgtt =
583 		container_of(vm, struct i915_hw_ppgtt, base);
584 	gen6_gtt_pte_t *pt_vaddr;
585 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
586 	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
587 
588 	pt_vaddr = NULL;
589 	for (int i=0;i<num_entries;i++) {
590 		if (pt_vaddr == NULL)
591 			pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
592 
593 		pt_vaddr[act_pte] =
594 			vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
595 				       cache_level, true);
596 		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
597 			kunmap_atomic(pt_vaddr);
598 			pt_vaddr = NULL;
599 			act_pt++;
600 			act_pte = 0;
601 		}
602 	}
603 	if (pt_vaddr)
604 		kunmap_atomic(pt_vaddr);
605 }
606 
607 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
608 {
609 	struct i915_hw_ppgtt *ppgtt =
610 		container_of(vm, struct i915_hw_ppgtt, base);
611 	int i;
612 
613 	drm_mm_takedown(&ppgtt->base.mm);
614 
615 	if (ppgtt->pt_dma_addr) {
616 		for (i = 0; i < ppgtt->num_pd_entries; i++)
617 			pci_unmap_page(ppgtt->base.dev->pdev,
618 				       ppgtt->pt_dma_addr[i],
619 				       4096, PCI_DMA_BIDIRECTIONAL);
620 	}
621 
622 	kfree(ppgtt->pt_dma_addr);
623 	for (i = 0; i < ppgtt->num_pd_entries; i++)
624 		__free_page(ppgtt->pt_pages[i]);
625 	kfree(ppgtt->pt_pages);
626 	kfree(ppgtt);
627 }
628 
629 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
630 {
631 	struct drm_device *dev = ppgtt->base.dev;
632 	struct drm_i915_private *dev_priv = dev->dev_private;
633 	unsigned first_pd_entry_in_global_pt;
634 	int i;
635 	int ret = -ENOMEM;
636 
637 	/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
638 	 * entries. For aliasing ppgtt support we just steal them at the end for
639 	 * now. */
640 	first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
641 
642 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
643 	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
644 	ppgtt->enable = gen6_ppgtt_enable;
645 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
646 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
647 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
648 	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
649 	ppgtt->base.start = 0;
650 	ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
651 	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
652 				  GFP_KERNEL);
653 	if (!ppgtt->pt_pages)
654 		return -ENOMEM;
655 
656 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
657 		ppgtt->pt_pages[i] = vm_page_alloc(NULL, 0,
658 		    VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
659 		if (!ppgtt->pt_pages[i])
660 			goto err_pt_alloc;
661 	}
662 
663 	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
664 				     GFP_KERNEL);
665 	if (!ppgtt->pt_dma_addr)
666 		goto err_pt_alloc;
667 
668 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
669 		dma_addr_t pt_addr;
670 
671 		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
672 				       PCI_DMA_BIDIRECTIONAL);
673 
674 #if 0
675 		if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
676 			ret = -EIO;
677 			goto err_pd_pin;	/* XXX where is label? */
678 
679 		}
680 #endif
681 		ppgtt->pt_dma_addr[i] = pt_addr;
682 	}
683 
684 	ppgtt->base.clear_range(&ppgtt->base, 0,
685 				ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
686 
687 	ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
688 
689 	return 0;
690 
691 err_pt_alloc:
692 	kfree(ppgtt->pt_dma_addr);
693 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
694 		if (ppgtt->pt_pages[i])
695 			__free_page(ppgtt->pt_pages[i]);
696 
697 	}
698 	kfree(ppgtt->pt_pages);
699 
700 	return ret;
701 }
702 
703 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
704 {
705 	struct drm_i915_private *dev_priv = dev->dev_private;
706 	struct i915_hw_ppgtt *ppgtt;
707 	int ret;
708 
709 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
710 	if (!ppgtt)
711 		return -ENOMEM;
712 
713 	ppgtt->base.dev = dev;
714 
715 	if (INTEL_INFO(dev)->gen < 8)
716 		ret = gen6_ppgtt_init(ppgtt);
717 	else if (IS_GEN8(dev))
718 		ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
719 	else
720 		BUG();
721 
722 	if (ret)
723 		kfree(ppgtt);
724 	else {
725 		dev_priv->mm.aliasing_ppgtt = ppgtt;
726 		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
727 			    ppgtt->base.total);
728 	}
729 
730 	return ret;
731 }
732 
733 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
734 {
735 	struct drm_i915_private *dev_priv = dev->dev_private;
736 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
737 
738 	if (!ppgtt)
739 		return;
740 
741 	ppgtt->base.cleanup(&ppgtt->base);
742 	dev_priv->mm.aliasing_ppgtt = NULL;
743 }
744 
745 #if 0
746 static void
747 i915_ppgtt_insert_pages(struct i915_address_space *vm, unsigned first_entry,
748     unsigned num_entries, vm_page_t *pages, enum i915_cache_level cache_level)
749 {
750 	struct i915_hw_ppgtt *ppgtt =
751                container_of(vm, struct i915_hw_ppgtt, base);
752 	uint32_t *pt_vaddr4;
753 	uint64_t *pt_vaddr8;
754 	unsigned act_pd = first_entry / I915_PPGTT_PT_ENTRIES;
755 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
756 	unsigned last_pte, i;
757 	dma_addr_t page_addr;
758 
759 	while (num_entries) {
760 		last_pte = first_pte + num_entries;
761 		if (last_pte > I915_PPGTT_PT_ENTRIES)
762 			last_pte = I915_PPGTT_PT_ENTRIES;
763 
764 		/*
765 		 * XXX severe hack.  The insert_entries() function pointer
766 		 * needs to be setup and used instead of this mess.
767 		 */
768 		if (IS_GEN8(ppgtt->base.dev)) {
769 			pt_vaddr4 = NULL;
770 			pt_vaddr8 = kmap_atomic(&ppgtt->gen8_pt_pages[act_pd]);
771 		} else {
772 			pt_vaddr4 = kmap_atomic(ppgtt->pt_pages[act_pd]);
773 			pt_vaddr8 = NULL;
774 		}
775 
776 		for (i = first_pte; i < last_pte; i++) {
777 			page_addr = VM_PAGE_TO_PHYS(*pages);
778 			if (IS_GEN8(ppgtt->base.dev)) {
779 				pt_vaddr8[i] = gen8_pte_encode(page_addr, cache_level, true);
780 			} else {
781 				pt_vaddr4[i] = vm->pte_encode(page_addr, cache_level, true);
782 			}
783 
784 			pages++;
785 		}
786 
787 		if (IS_GEN8(ppgtt->base.dev))
788 			kunmap_atomic(pt_vaddr8);
789 		else
790 			kunmap_atomic(pt_vaddr4);
791 
792 		num_entries -= last_pte - first_pte;
793 		first_pte = 0;
794 		act_pd++;
795 	}
796 }
797 #endif
798 
799 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
800 			    struct drm_i915_gem_object *obj,
801 			    enum i915_cache_level cache_level)
802 {
803 #if 0
804 	i915_ppgtt_insert_pages(&ppgtt->base,
805 			      i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
806 	    obj->base.size >> PAGE_SHIFT, obj->pages, cache_level);
807 #endif
808 	ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
809 				   i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
810 				   obj->base.size >> PAGE_SHIFT,
811 				   cache_level);
812 }
813 
814 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
815 			      struct drm_i915_gem_object *obj)
816 {
817 	ppgtt->base.clear_range(&ppgtt->base,
818 				i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
819 				obj->base.size >> PAGE_SHIFT,
820 				true);
821 }
822 
823 extern int intel_iommu_gfx_mapped;
824 /* Certain Gen5 chipsets require require idling the GPU before
825  * unmapping anything from the GTT when VT-d is enabled.
826  */
827 static inline bool needs_idle_maps(struct drm_device *dev)
828 {
829 #ifdef CONFIG_INTEL_IOMMU
830 	/* Query intel_iommu to see if we need the workaround. Presumably that
831 	 * was loaded first.
832 	 */
833 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
834 		return true;
835 #endif
836 	return false;
837 }
838 
839 static bool do_idling(struct drm_i915_private *dev_priv)
840 {
841 	bool ret = dev_priv->mm.interruptible;
842 
843 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
844 		dev_priv->mm.interruptible = false;
845 		if (i915_gpu_idle(dev_priv->dev)) {
846 			DRM_ERROR("Couldn't idle GPU\n");
847 			/* Wait a bit, in hopes it avoids the hang */
848 			udelay(10);
849 		}
850 	}
851 
852 	return ret;
853 }
854 
855 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
856 {
857 	if (unlikely(dev_priv->gtt.do_idle_maps))
858 		dev_priv->mm.interruptible = interruptible;
859 }
860 
861 void i915_check_and_clear_faults(struct drm_device *dev)
862 {
863 	struct drm_i915_private *dev_priv = dev->dev_private;
864 	struct intel_ring_buffer *ring;
865 	int i;
866 
867 	if (INTEL_INFO(dev)->gen < 6)
868 		return;
869 
870 	for_each_ring(ring, dev_priv, i) {
871 		u32 fault_reg;
872 		fault_reg = I915_READ(RING_FAULT_REG(ring));
873 		if (fault_reg & RING_FAULT_VALID) {
874 #if 0
875 			DRM_DEBUG_DRIVER("Unexpected fault\n"
876 					 "\tAddr: 0x%08lx\\n"
877 					 "\tAddress space: %s\n"
878 					 "\tSource ID: %d\n"
879 					 "\tType: %d\n",
880 					 fault_reg & PAGE_MASK,
881 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
882 					 RING_FAULT_SRCID(fault_reg),
883 					 RING_FAULT_FAULT_TYPE(fault_reg));
884 #endif
885 			I915_WRITE(RING_FAULT_REG(ring),
886 				   fault_reg & ~RING_FAULT_VALID);
887 		}
888 	}
889 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
890 }
891 
892 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
893 {
894 	struct drm_i915_private *dev_priv = dev->dev_private;
895 
896 	/* Don't bother messing with faults pre GEN6 as we have little
897 	 * documentation supporting that it's a good idea.
898 	 */
899 	if (INTEL_INFO(dev)->gen < 6)
900 		return;
901 
902 	i915_check_and_clear_faults(dev);
903 
904 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
905 				       dev_priv->gtt.base.start / PAGE_SIZE,
906 				       dev_priv->gtt.base.total / PAGE_SIZE,
907 				       true);
908 }
909 
910 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
911 {
912 	struct drm_i915_private *dev_priv = dev->dev_private;
913 	struct drm_i915_gem_object *obj;
914 
915 	i915_check_and_clear_faults(dev);
916 
917 	/* First fill our portion of the GTT with scratch pages */
918 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
919 				       dev_priv->gtt.base.start / PAGE_SIZE,
920 				       dev_priv->gtt.base.total / PAGE_SIZE,
921 				       true);
922 
923 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
924 		i915_gem_clflush_object(obj, obj->pin_display);
925 		i915_gem_gtt_bind_object(obj, obj->cache_level);
926 	}
927 
928 	i915_gem_chipset_flush(dev);
929 }
930 
931 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
932 {
933 	if (obj->has_dma_mapping)
934 		return 0;
935 
936 #if 0
937 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
938 			obj->pages->sgl, obj->pages->nents,
939 			PCI_DMA_BIDIRECTIONAL))
940 		return -ENOSPC;
941 #endif
942 
943 	return 0;
944 }
945 
946 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
947 {
948 #if 0
949 	writeq(pte, addr);
950 #else
951 	iowrite32((u32)pte, addr);
952 	iowrite32(pte >> 32, addr + 4);
953 #endif
954 }
955 
956 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
957 				     vm_page_t *pages,
958 				     unsigned int first_entry,
959 				     unsigned int num_entries,
960 				     enum i915_cache_level level)
961 {
962 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
963 	gen8_gtt_pte_t __iomem *gtt_entries =
964 		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
965 	int i = 0;
966 	dma_addr_t addr;
967 
968 	for (i=0;i<num_entries;i++) {
969 		addr = VM_PAGE_TO_PHYS(pages[i]);
970 		gen8_set_pte(&gtt_entries[i],
971 			     gen8_pte_encode(addr, level, true));
972 	}
973 
974 	/*
975 	 * XXX: This serves as a posting read to make sure that the PTE has
976 	 * actually been updated. There is some concern that even though
977 	 * registers and PTEs are within the same BAR that they are potentially
978 	 * of NUMA access patterns. Therefore, even with the way we assume
979 	 * hardware should work, we must keep this posting read for paranoia.
980 	 */
981 	if (i != 0)
982 		WARN_ON(readq(&gtt_entries[i-1])
983 			!= gen8_pte_encode(addr, level, true));
984 
985 	/* This next bit makes the above posting read even more important. We
986 	 * want to flush the TLBs only after we're certain all the PTE updates
987 	 * have finished.
988 	 */
989 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
990 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
991 }
992 
993 /*
994  * Binds an object into the global gtt with the specified cache level. The object
995  * will be accessible to the GPU via commands whose operands reference offsets
996  * within the global GTT as well as accessible by the GPU through the GMADR
997  * mapped BAR (dev_priv->mm.gtt->gtt).
998  */
999 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1000 				     vm_page_t *pages,
1001 				     unsigned int first_entry,
1002 				     unsigned int num_entries,
1003 				     enum i915_cache_level level)
1004 {
1005 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1006 	gen6_gtt_pte_t __iomem *gtt_entries =
1007 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1008 	int i = 0;
1009 	dma_addr_t addr;
1010 
1011 	for (i = 0; i < num_entries; i++) {
1012 		addr = VM_PAGE_TO_PHYS(pages[i]);
1013 		iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1014 	}
1015 
1016 	/* XXX: This serves as a posting read to make sure that the PTE has
1017 	 * actually been updated. There is some concern that even though
1018 	 * registers and PTEs are within the same BAR that they are potentially
1019 	 * of NUMA access patterns. Therefore, even with the way we assume
1020 	 * hardware should work, we must keep this posting read for paranoia.
1021 	 */
1022 	if (i != 0)
1023 		WARN_ON(readl(&gtt_entries[i-1]) !=
1024 			vm->pte_encode(addr, level, true));
1025 
1026 	/* This next bit makes the above posting read even more important. We
1027 	 * want to flush the TLBs only after we're certain all the PTE updates
1028 	 * have finished.
1029 	 */
1030 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1031 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1032 }
1033 
1034 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1035 				  unsigned int first_entry,
1036 				  unsigned int num_entries,
1037 				  bool use_scratch)
1038 {
1039 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1040 	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1041 		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1042 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1043 	int i;
1044 
1045 	if (WARN(num_entries > max_entries,
1046 		 "First entry = %d; Num entries = %d (max=%d)\n",
1047 		 first_entry, num_entries, max_entries))
1048 		num_entries = max_entries;
1049 
1050 	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1051 				      I915_CACHE_LLC,
1052 				      use_scratch);
1053 	for (i = 0; i < num_entries; i++)
1054 		gen8_set_pte(&gtt_base[i], scratch_pte);
1055 	readl(gtt_base);
1056 }
1057 
1058 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1059 				  unsigned int first_entry,
1060 				  unsigned int num_entries,
1061 				  bool use_scratch)
1062 {
1063 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1064 	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1065 		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1066 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1067 	int i;
1068 
1069 	if (WARN(num_entries > max_entries,
1070 		 "First entry = %d; Num entries = %d (max=%d)\n",
1071 		 first_entry, num_entries, max_entries))
1072 		num_entries = max_entries;
1073 
1074 	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1075 
1076 	for (i = 0; i < num_entries; i++)
1077 		iowrite32(scratch_pte, &gtt_base[i]);
1078 	readl(gtt_base);
1079 }
1080 
1081 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1082 				     vm_page_t *pages,
1083 				     unsigned int pg_start,
1084 				     unsigned int num_entries,
1085 				     enum i915_cache_level cache_level)
1086 {
1087 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1088 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1089 
1090 	intel_gtt_insert_pages(pg_start, num_entries, pages, flags);
1091 }
1092 
1093 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1094 				  unsigned int first_entry,
1095 				  unsigned int num_entries,
1096 				  bool unused)
1097 {
1098 	intel_gtt_clear_range(first_entry, num_entries);
1099 }
1100 
1101 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1102 			      enum i915_cache_level cache_level)
1103 {
1104 	struct drm_device *dev = obj->base.dev;
1105 	struct drm_i915_private *dev_priv = dev->dev_private;
1106 	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1107 
1108 	dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1109 					  entry,
1110 					  obj->base.size >> PAGE_SHIFT,
1111 					  cache_level);
1112 
1113 	obj->has_global_gtt_mapping = 1;
1114 }
1115 
1116 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1117 {
1118 	struct drm_device *dev = obj->base.dev;
1119 	struct drm_i915_private *dev_priv = dev->dev_private;
1120 	const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1121 
1122 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1123 				       entry,
1124 				       obj->base.size >> PAGE_SHIFT,
1125 				       true);
1126 
1127 	obj->has_global_gtt_mapping = 0;
1128 }
1129 
1130 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1131 {
1132 	struct drm_device *dev = obj->base.dev;
1133 	struct drm_i915_private *dev_priv = dev->dev_private;
1134 	bool interruptible;
1135 
1136 	interruptible = do_idling(dev_priv);
1137 
1138 #if 0
1139 	if (!obj->has_dma_mapping)
1140 		dma_unmap_sg(&dev->pdev->dev,
1141 			     obj->pages->sgl, obj->pages->nents,
1142 			     PCI_DMA_BIDIRECTIONAL);
1143 #endif
1144 
1145 	undo_idling(dev_priv, interruptible);
1146 }
1147 
1148 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1149 				  unsigned long color,
1150 				  unsigned long *start,
1151 				  unsigned long *end)
1152 {
1153 	if (node->color != color)
1154 		*start += 4096;
1155 
1156 	if (!list_empty(&node->node_list)) {
1157 		node = list_entry(node->node_list.next,
1158 				  struct drm_mm_node,
1159 				  node_list);
1160 		if (node->allocated && node->color != color)
1161 			*end -= 4096;
1162 	}
1163 }
1164 
1165 void i915_gem_setup_global_gtt(struct drm_device *dev,
1166 			       unsigned long start,
1167 			       unsigned long mappable_end,
1168 			       unsigned long end)
1169 {
1170 	/* Let GEM Manage all of the aperture.
1171 	 *
1172 	 * However, leave one page at the end still bound to the scratch page.
1173 	 * There are a number of places where the hardware apparently prefetches
1174 	 * past the end of the object, and we've seen multiple hangs with the
1175 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1176 	 * aperture.  One page should be enough to keep any prefetching inside
1177 	 * of the aperture.
1178 	 */
1179 	struct drm_i915_private *dev_priv = dev->dev_private;
1180 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1181 	unsigned long mappable;
1182 	int error;
1183 	struct drm_mm_node *entry;
1184 	struct drm_i915_gem_object *obj;
1185 	unsigned long hole_start, hole_end;
1186 
1187 	kprintf("MAPPABLE_END VS END %016jx %016jx\n", mappable_end, end);
1188 	tsleep(&mappable_end, 0, "DELAY", hz); /* for kprintf */
1189 	/*BUG_ON(mappable_end > end);*/
1190 
1191 	mappable = min(end, mappable_end) - start;
1192 
1193 	/* Subtract the guard page ... */
1194 	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1195 	if (!HAS_LLC(dev))
1196 		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1197 
1198 	/* Mark any preallocated objects as occupied */
1199 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1200 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1201 		int ret;
1202 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1203 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
1204 
1205 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1206 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1207 		if (ret)
1208 			DRM_DEBUG_KMS("Reservation failed\n");
1209 		obj->has_global_gtt_mapping = 1;
1210 	}
1211 
1212 	dev_priv->gtt.base.start = start;
1213 	dev_priv->gtt.base.total = end - start;
1214 
1215 	/* Clear any non-preallocated blocks */
1216 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1217 		const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1218 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1219 			      hole_start, hole_end);
1220 		ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1221 	}
1222 	/* ... but ensure that we clear the entire range. */
1223 	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
1224 	device_printf(dev->dev,
1225 	    "taking over the fictitious range 0x%lx-0x%lx\n",
1226 	    dev->agp->base + start, dev->agp->base + start + mappable);
1227 	error = -vm_phys_fictitious_reg_range(dev->agp->base + start,
1228 	    dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
1229 
1230 	/* And finally clear the reserved guard page */
1231 	ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1232 }
1233 
1234 static bool
1235 intel_enable_ppgtt(struct drm_device *dev)
1236 {
1237 	if (i915_enable_ppgtt >= 0)
1238 		return i915_enable_ppgtt;
1239 
1240 #ifdef CONFIG_INTEL_IOMMU
1241 	/* Disable ppgtt on SNB if VT-d is on. */
1242 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1243 		return false;
1244 #endif
1245 
1246 	return true;
1247 }
1248 
1249 void i915_gem_init_global_gtt(struct drm_device *dev)
1250 {
1251 	struct drm_i915_private *dev_priv = dev->dev_private;
1252 	unsigned long gtt_size, mappable_size;
1253 
1254 	gtt_size = dev_priv->gtt.base.total;
1255 	mappable_size = dev_priv->gtt.mappable_end;
1256 
1257 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1258 		int ret;
1259 
1260 		if (INTEL_INFO(dev)->gen <= 7) {
1261 			/* PPGTT pdes are stolen from global gtt ptes, so shrink the
1262 			 * aperture accordingly when using aliasing ppgtt. */
1263 			gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1264 		}
1265 
1266 		i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1267 
1268 		ret = i915_gem_init_aliasing_ppgtt(dev);
1269 		if (!ret)
1270 			return;
1271 
1272 		DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1273 		drm_mm_takedown(&dev_priv->gtt.base.mm);
1274 		if (INTEL_INFO(dev)->gen < 8)
1275 			gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1276 	}
1277 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1278 }
1279 
1280 static int setup_scratch_page(struct drm_device *dev)
1281 {
1282 	struct drm_i915_private *dev_priv = dev->dev_private;
1283 	struct vm_page *page;
1284 	dma_addr_t dma_addr;
1285 
1286 	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1287 	if (page == NULL)
1288 		return -ENOMEM;
1289 #if 0
1290 	get_page(page);
1291 	set_pages_uc(page, 1);
1292 #endif
1293 
1294 #ifdef CONFIG_INTEL_IOMMU
1295 	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1296 				PCI_DMA_BIDIRECTIONAL);
1297 	if (pci_dma_mapping_error(dev->pdev, dma_addr))
1298 		return -EINVAL;
1299 #else
1300 	dma_addr = page_to_phys(page);
1301 #endif
1302 	dev_priv->gtt.base.scratch.page = page;
1303 	dev_priv->gtt.base.scratch.addr = dma_addr;
1304 
1305 	return 0;
1306 }
1307 
1308 #if 0
1309 static void teardown_scratch_page(struct drm_device *dev)
1310 {
1311 	struct drm_i915_private *dev_priv = dev->dev_private;
1312 	struct page *page = dev_priv->gtt.base.scratch.page;
1313 
1314 	set_pages_wb(page, 1);
1315 	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1316 		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1317 	put_page(page);
1318 	__free_page(page);
1319 }
1320 #endif
1321 
1322 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1323 {
1324 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1325 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1326 	return snb_gmch_ctl << 20;
1327 }
1328 
1329 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1330 {
1331 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1332 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1333 	if (bdw_gmch_ctl)
1334 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1335 	if (bdw_gmch_ctl > 4) {
1336 		WARN_ON(!i915_preliminary_hw_support);
1337 		return 4<<20;
1338 	}
1339 
1340 	return bdw_gmch_ctl << 20;
1341 }
1342 
1343 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1344 {
1345 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1346 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1347 	return snb_gmch_ctl << 25; /* 32 MB units */
1348 }
1349 
1350 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1351 {
1352 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1353 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1354 	return bdw_gmch_ctl << 25; /* 32 MB units */
1355 }
1356 
1357 static int ggtt_probe_common(struct drm_device *dev,
1358 			     size_t gtt_size)
1359 {
1360 	struct drm_i915_private *dev_priv = dev->dev_private;
1361 	phys_addr_t gtt_phys_addr;
1362 	int ret;
1363 
1364 	/* For Modern GENs the PTEs and register space are split in the BAR */
1365 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1366 		(pci_resource_len(dev->pdev, 0) / 2);
1367 
1368 	kprintf("gtt_probe_common: gtt_phys_addr=0x%lx\n", gtt_phys_addr);
1369 	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1370 	if (!dev_priv->gtt.gsm) {
1371 		DRM_ERROR("Failed to map the gtt page table\n");
1372 		return -ENOMEM;
1373 	}
1374 
1375 	ret = setup_scratch_page(dev);
1376 	if (ret) {
1377 		DRM_ERROR("Scratch setup failed\n");
1378 		/* iounmap will also get called at remove, but meh */
1379 #if 0
1380 		iounmap(dev_priv->gtt.gsm);
1381 #endif
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1388  * bits. When using advanced contexts each context stores its own PAT, but
1389  * writing this data shouldn't be harmful even in those cases. */
1390 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1391 {
1392 #define GEN8_PPAT_UC		(0<<0)
1393 #define GEN8_PPAT_WC		(1<<0)
1394 #define GEN8_PPAT_WT		(2<<0)
1395 #define GEN8_PPAT_WB		(3<<0)
1396 #define GEN8_PPAT_ELLC_OVERRIDE	(0<<2)
1397 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1398 #define GEN8_PPAT_LLC		(1<<2)
1399 #define GEN8_PPAT_LLCELLC	(2<<2)
1400 #define GEN8_PPAT_LLCeLLC	(3<<2)
1401 #define GEN8_PPAT_AGE(x)	(x<<4)
1402 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1403 	uint64_t pat;
1404 
1405 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1406 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1407 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1408 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1409 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1410 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1411 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1412 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1413 
1414 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1415 	 * write would work. */
1416 	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1417 	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1418 }
1419 
1420 static int gen8_gmch_probe(struct drm_device *dev,
1421 			   size_t *gtt_total,
1422 			   size_t *stolen,
1423 			   phys_addr_t *mappable_base,
1424 			   unsigned long *mappable_end)
1425 {
1426 	struct drm_i915_private *dev_priv = dev->dev_private;
1427 	unsigned int gtt_size;
1428 	u16 snb_gmch_ctl;
1429 	int ret;
1430 
1431 	/* TODO: We're not aware of mappable constraints on gen8 yet */
1432 	*mappable_base = pci_resource_start(dev->pdev, 2);
1433 	*mappable_end = pci_resource_len(dev->pdev, 2);
1434 
1435 #if 0
1436 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1437 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1438 #endif
1439 
1440 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1441 
1442 	*stolen = gen8_get_stolen_size(snb_gmch_ctl);
1443 
1444 	gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1445 	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1446 
1447 	gen8_setup_private_ppat(dev_priv);
1448 
1449 	ret = ggtt_probe_common(dev, gtt_size);
1450 
1451 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1452 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1453 
1454 	return ret;
1455 }
1456 
1457 static int gen6_gmch_probe(struct drm_device *dev,
1458 			   size_t *gtt_total,
1459 			   size_t *stolen,
1460 			   phys_addr_t *mappable_base,
1461 			   unsigned long *mappable_end)
1462 {
1463 	struct drm_i915_private *dev_priv = dev->dev_private;
1464 	unsigned int gtt_size;
1465 	u16 snb_gmch_ctl;
1466 	int ret;
1467 
1468 	*mappable_base = pci_resource_start(dev->pdev, 2);
1469 	*mappable_end = pci_resource_len(dev->pdev, 2);
1470 
1471 	/* 64/512MB is the current min/max we actually know of, but this is just
1472 	 * a coarse sanity check.
1473 	 */
1474 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1475 		DRM_ERROR("Unknown GMADR size (%lx)\n",
1476 			  dev_priv->gtt.mappable_end);
1477 		return -ENXIO;
1478 	}
1479 
1480 #if 0
1481 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1482 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1483 #endif
1484 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1485 
1486 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
1487 
1488 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1489 	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1490 
1491 	ret = ggtt_probe_common(dev, gtt_size);
1492 
1493 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1494 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1495 
1496 	return ret;
1497 }
1498 
1499 static void gen6_gmch_remove(struct i915_address_space *vm)
1500 {
1501 #if 0
1502 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1503 
1504 	drm_mm_takedown(&vm->mm);
1505 	iounmap(gtt->gsm);
1506 	teardown_scratch_page(vm->dev);
1507 #endif
1508 }
1509 
1510 static int i915_gmch_probe(struct drm_device *dev,
1511 			   size_t *gtt_total,
1512 			   size_t *stolen,
1513 			   phys_addr_t *mappable_base,
1514 			   unsigned long *mappable_end)
1515 {
1516 	struct drm_i915_private *dev_priv = dev->dev_private;
1517 #if 0
1518 	int ret;
1519 
1520 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1521 	if (!ret) {
1522 		DRM_ERROR("failed to set up gmch\n");
1523 		return -EIO;
1524 	}
1525 #endif
1526 
1527 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1528 
1529 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1530 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1531 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1532 
1533 	if (unlikely(dev_priv->gtt.do_idle_maps))
1534 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1535 
1536 	return 0;
1537 }
1538 
1539 static void i915_gmch_remove(struct i915_address_space *vm)
1540 {
1541 }
1542 
1543 int i915_gem_gtt_init(struct drm_device *dev)
1544 {
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 	struct i915_gtt *gtt = &dev_priv->gtt;
1547 	int ret;
1548 
1549 	if (INTEL_INFO(dev)->gen <= 5) {
1550 		gtt->gtt_probe = i915_gmch_probe;
1551 		gtt->base.cleanup = i915_gmch_remove;
1552 	} else if (INTEL_INFO(dev)->gen < 8) {
1553 		gtt->gtt_probe = gen6_gmch_probe;
1554 		gtt->base.cleanup = gen6_gmch_remove;
1555 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
1556 			gtt->base.pte_encode = iris_pte_encode;
1557 		else if (IS_HASWELL(dev))
1558 			gtt->base.pte_encode = hsw_pte_encode;
1559 		else if (IS_VALLEYVIEW(dev))
1560 			gtt->base.pte_encode = byt_pte_encode;
1561 		else if (INTEL_INFO(dev)->gen >= 7)
1562 			gtt->base.pte_encode = ivb_pte_encode;
1563 		else
1564 			gtt->base.pte_encode = snb_pte_encode;
1565 	} else {
1566 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1567 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1568 	}
1569 
1570 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1571 			     &gtt->mappable_base, &gtt->mappable_end);
1572 	if (ret)
1573 		return ret;
1574 
1575 	gtt->base.dev = dev;
1576 
1577 	/* GMADR is the PCI mmio aperture into the global GTT. */
1578 	DRM_INFO("Memory usable by graphics device = %zdM\n",
1579 		 gtt->base.total >> 20);
1580 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1581 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1582 
1583 	return 0;
1584 }
1585