xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision 9317c2d0)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include "intel_frontbuffer.h"
35 
36 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
37 
38 /**
39  * DOC: Global GTT views
40  *
41  * Background and previous state
42  *
43  * Historically objects could exists (be bound) in global GTT space only as
44  * singular instances with a view representing all of the object's backing pages
45  * in a linear fashion. This view will be called a normal view.
46  *
47  * To support multiple views of the same object, where the number of mapped
48  * pages is not equal to the backing store, or where the layout of the pages
49  * is not linear, concept of a GGTT view was added.
50  *
51  * One example of an alternative view is a stereo display driven by a single
52  * image. In this case we would have a framebuffer looking like this
53  * (2x2 pages):
54  *
55  *    12
56  *    34
57  *
58  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59  * rendering. In contrast, fed to the display engine would be an alternative
60  * view which could look something like this:
61  *
62  *   1212
63  *   3434
64  *
65  * In this example both the size and layout of pages in the alternative view is
66  * different from the normal view.
67  *
68  * Implementation and usage
69  *
70  * GGTT views are implemented using VMAs and are distinguished via enum
71  * i915_ggtt_view_type and struct i915_ggtt_view.
72  *
73  * A new flavour of core GEM functions which work with GGTT bound objects were
74  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75  * renaming  in large amounts of code. They take the struct i915_ggtt_view
76  * parameter encapsulating all metadata required to implement a view.
77  *
78  * As a helper for callers which are only interested in the normal view,
79  * globally const i915_ggtt_view_normal singleton instance exists. All old core
80  * GEM API functions, the ones not taking the view parameter, are operating on,
81  * or with the normal GGTT view.
82  *
83  * Code wanting to add or use a new GGTT view needs to:
84  *
85  * 1. Add a new enum with a suitable name.
86  * 2. Extend the metadata in the i915_ggtt_view structure if required.
87  * 3. Add support to i915_get_vma_pages().
88  *
89  * New views are required to build a scatter-gather table from within the
90  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91  * exists for the lifetime of an VMA.
92  *
93  * Core API is designed to have copy semantics which means that passed in
94  * struct i915_ggtt_view does not need to be persistent (left around after
95  * calling the core API functions).
96  *
97  */
98 
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101 
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103 	.type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106 	.type = I915_GGTT_VIEW_ROTATED,
107 };
108 
109 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
110 			       	int enable_ppgtt)
111 {
112 	bool has_aliasing_ppgtt;
113 	bool has_full_ppgtt;
114 	bool has_full_48bit_ppgtt;
115 
116 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
117 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
118 	has_full_48bit_ppgtt =
119 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
120 
121 	if (intel_vgpu_active(dev_priv)) {
122 		/* emulation is too hard */
123 		has_full_ppgtt = false;
124 		has_full_48bit_ppgtt = false;
125 	}
126 
127 	if (!has_aliasing_ppgtt)
128 		return 0;
129 
130 	/*
131 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
132 	 * execlists, the sole mechanism available to submit work.
133 	 */
134 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
135 		return 0;
136 
137 	if (enable_ppgtt == 1)
138 		return 1;
139 
140 	if (enable_ppgtt == 2 && has_full_ppgtt)
141 		return 2;
142 
143 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
144 		return 3;
145 
146 #ifdef CONFIG_INTEL_IOMMU
147 	/* Disable ppgtt on SNB if VT-d is on. */
148 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
149 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
150 		return 0;
151 	}
152 #endif
153 
154 	/* Early VLV doesn't have this */
155 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
156 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
157 		return 0;
158 	}
159 
160 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
161 		return has_full_48bit_ppgtt ? 3 : 2;
162 	else
163 		return has_aliasing_ppgtt ? 1 : 0;
164 }
165 
166 static int ppgtt_bind_vma(struct i915_vma *vma,
167 			  enum i915_cache_level cache_level,
168 			  u32 unused)
169 {
170 	u32 pte_flags = 0;
171 
172 	vma->pages = vma->obj->mm.pages;
173 
174 	/* Currently applicable only to VLV */
175 	if (vma->obj->gt_ro)
176 		pte_flags |= PTE_READ_ONLY;
177 
178 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
179 				cache_level, pte_flags);
180 
181 	return 0;
182 }
183 
184 static void ppgtt_unbind_vma(struct i915_vma *vma)
185 {
186 	vma->vm->clear_range(vma->vm,
187 			     vma->node.start,
188 			     vma->size);
189 }
190 
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 				  enum i915_cache_level level)
193 {
194 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
195 	pte |= addr;
196 
197 	switch (level) {
198 	case I915_CACHE_NONE:
199 		pte |= PPAT_UNCACHED_INDEX;
200 		break;
201 	case I915_CACHE_WT:
202 		pte |= PPAT_DISPLAY_ELLC_INDEX;
203 		break;
204 	default:
205 		pte |= PPAT_CACHED_INDEX;
206 		break;
207 	}
208 
209 	return pte;
210 }
211 
212 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
213 				  const enum i915_cache_level level)
214 {
215 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
216 	pde |= addr;
217 	if (level != I915_CACHE_NONE)
218 		pde |= PPAT_CACHED_PDE_INDEX;
219 	else
220 		pde |= PPAT_UNCACHED_INDEX;
221 	return pde;
222 }
223 
224 #define gen8_pdpe_encode gen8_pde_encode
225 #define gen8_pml4e_encode gen8_pde_encode
226 
227 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
228 				 enum i915_cache_level level,
229 				 u32 unused)
230 {
231 	gen6_pte_t pte = GEN6_PTE_VALID;
232 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
233 
234 	switch (level) {
235 	case I915_CACHE_L3_LLC:
236 	case I915_CACHE_LLC:
237 		pte |= GEN6_PTE_CACHE_LLC;
238 		break;
239 	case I915_CACHE_NONE:
240 		pte |= GEN6_PTE_UNCACHED;
241 		break;
242 	default:
243 		MISSING_CASE(level);
244 	}
245 
246 	return pte;
247 }
248 
249 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
250 				 enum i915_cache_level level,
251 				 u32 unused)
252 {
253 	gen6_pte_t pte = GEN6_PTE_VALID;
254 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
255 
256 	switch (level) {
257 	case I915_CACHE_L3_LLC:
258 		pte |= GEN7_PTE_CACHE_L3_LLC;
259 		break;
260 	case I915_CACHE_LLC:
261 		pte |= GEN6_PTE_CACHE_LLC;
262 		break;
263 	case I915_CACHE_NONE:
264 		pte |= GEN6_PTE_UNCACHED;
265 		break;
266 	default:
267 		MISSING_CASE(level);
268 	}
269 
270 	return pte;
271 }
272 
273 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
274 				 enum i915_cache_level level,
275 				 u32 flags)
276 {
277 	gen6_pte_t pte = GEN6_PTE_VALID;
278 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
279 
280 	if (!(flags & PTE_READ_ONLY))
281 		pte |= BYT_PTE_WRITEABLE;
282 
283 	if (level != I915_CACHE_NONE)
284 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
285 
286 	return pte;
287 }
288 
289 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
290 				 enum i915_cache_level level,
291 				 u32 unused)
292 {
293 	gen6_pte_t pte = GEN6_PTE_VALID;
294 	pte |= HSW_PTE_ADDR_ENCODE(addr);
295 
296 	if (level != I915_CACHE_NONE)
297 		pte |= HSW_WB_LLC_AGE3;
298 
299 	return pte;
300 }
301 
302 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
303 				  enum i915_cache_level level,
304 				  u32 unused)
305 {
306 	gen6_pte_t pte = GEN6_PTE_VALID;
307 	pte |= HSW_PTE_ADDR_ENCODE(addr);
308 
309 	switch (level) {
310 	case I915_CACHE_NONE:
311 		break;
312 	case I915_CACHE_WT:
313 		pte |= HSW_WT_ELLC_LLC_AGE3;
314 		break;
315 	default:
316 		pte |= HSW_WB_ELLC_LLC_AGE3;
317 		break;
318 	}
319 
320 	return pte;
321 }
322 
323 static int __setup_page_dma(struct drm_i915_private *dev_priv,
324 			    struct i915_page_dma *p, gfp_t flags)
325 {
326 	struct device *kdev = &dev_priv->drm.pdev->dev;
327 
328 	p->page = alloc_page(flags);
329 	if (!p->page)
330 		return -ENOMEM;
331 
332 	p->daddr = dma_map_page(kdev,
333 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
334 
335 	if (dma_mapping_error(kdev, p->daddr)) {
336 		__free_page(p->page);
337 		return -EINVAL;
338 	}
339 
340 	return 0;
341 }
342 
343 static int setup_page_dma(struct drm_i915_private *dev_priv,
344 			  struct i915_page_dma *p)
345 {
346 	return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
347 }
348 
349 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
350 			     struct i915_page_dma *p)
351 {
352 	struct pci_dev *pdev = dev_priv->drm.pdev;
353 
354 	if (WARN_ON(!p->page))
355 		return;
356 
357 	dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
358 	__free_page(p->page);
359 	memset(p, 0, sizeof(*p));
360 }
361 
362 static void *kmap_page_dma(struct i915_page_dma *p)
363 {
364 	return kmap_atomic(p->page);
365 }
366 
367 /* We use the flushing unmap only with ppgtt structures:
368  * page directories, page tables and scratch pages.
369  */
370 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
371 {
372 	/* There are only few exceptions for gen >=6. chv and bxt.
373 	 * And we are not sure about the latter so play safe for now.
374 	 */
375 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
376 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
377 
378 	kunmap_atomic(vaddr);
379 }
380 
381 #define kmap_px(px) kmap_page_dma(px_base(px))
382 #define kunmap_px(ppgtt, vaddr) \
383 		kunmap_page_dma(to_i915((ppgtt)->base.dev), (vaddr))
384 
385 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
386 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
387 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
388 #define fill32_px(dev_priv, px, v) \
389 		fill_page_dma_32((dev_priv), px_base(px), (v))
390 
391 static void fill_page_dma(struct drm_i915_private *dev_priv,
392 			  struct i915_page_dma *p, const uint64_t val)
393 {
394 	int i;
395 	uint64_t * const vaddr = kmap_page_dma(p);
396 
397 	for (i = 0; i < 512; i++)
398 		vaddr[i] = val;
399 
400 	kunmap_page_dma(dev_priv, vaddr);
401 }
402 
403 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
404 			     struct i915_page_dma *p, const uint32_t val32)
405 {
406 	uint64_t v = val32;
407 
408 	v = v << 32 | val32;
409 
410 	fill_page_dma(dev_priv, p, v);
411 }
412 
413 static int
414 setup_scratch_page(struct drm_i915_private *dev_priv,
415 		   struct i915_page_dma *scratch,
416 		   gfp_t gfp)
417 {
418 	return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
419 }
420 
421 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
422 				 struct i915_page_dma *scratch)
423 {
424 	cleanup_page_dma(dev_priv, scratch);
425 }
426 
427 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
428 {
429 	struct i915_page_table *pt;
430 	const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
431 	int ret = -ENOMEM;
432 
433 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 	if (!pt)
435 		return ERR_PTR(-ENOMEM);
436 
437 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 				GFP_KERNEL);
439 
440 	if (!pt->used_ptes)
441 		goto fail_bitmap;
442 
443 	ret = setup_px(dev_priv, pt);
444 	if (ret)
445 		goto fail_page_m;
446 
447 	return pt;
448 
449 fail_page_m:
450 	kfree(pt->used_ptes);
451 fail_bitmap:
452 	kfree(pt);
453 
454 	return ERR_PTR(ret);
455 }
456 
457 static void free_pt(struct drm_i915_private *dev_priv,
458 		    struct i915_page_table *pt)
459 {
460 	cleanup_px(dev_priv, pt);
461 	kfree(pt->used_ptes);
462 	kfree(pt);
463 }
464 
465 static void gen8_initialize_pt(struct i915_address_space *vm,
466 			       struct i915_page_table *pt)
467 {
468 	gen8_pte_t scratch_pte;
469 
470 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
471 				      I915_CACHE_LLC);
472 
473 	fill_px(to_i915(vm->dev), pt, scratch_pte);
474 }
475 
476 static void gen6_initialize_pt(struct i915_address_space *vm,
477 			       struct i915_page_table *pt)
478 {
479 	gen6_pte_t scratch_pte;
480 
481 	WARN_ON(vm->scratch_page.daddr == 0);
482 
483 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
484 				     I915_CACHE_LLC, 0);
485 
486 	fill32_px(to_i915(vm->dev), pt, scratch_pte);
487 }
488 
489 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
490 {
491 	struct i915_page_directory *pd;
492 	int ret = -ENOMEM;
493 
494 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
495 	if (!pd)
496 		return ERR_PTR(-ENOMEM);
497 
498 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
499 				sizeof(*pd->used_pdes), GFP_KERNEL);
500 	if (!pd->used_pdes)
501 		goto fail_bitmap;
502 
503 	ret = setup_px(dev_priv, pd);
504 	if (ret)
505 		goto fail_page_m;
506 
507 	return pd;
508 
509 fail_page_m:
510 	kfree(pd->used_pdes);
511 fail_bitmap:
512 	kfree(pd);
513 
514 	return ERR_PTR(ret);
515 }
516 
517 static void free_pd(struct drm_i915_private *dev_priv,
518 		    struct i915_page_directory *pd)
519 {
520 	if (px_page(pd)) {
521 		cleanup_px(dev_priv, pd);
522 		kfree(pd->used_pdes);
523 		kfree(pd);
524 	}
525 }
526 
527 static void gen8_initialize_pd(struct i915_address_space *vm,
528 			       struct i915_page_directory *pd)
529 {
530 	gen8_pde_t scratch_pde;
531 
532 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
533 
534 	fill_px(to_i915(vm->dev), pd, scratch_pde);
535 }
536 
537 static int __pdp_init(struct drm_i915_private *dev_priv,
538 		      struct i915_page_directory_pointer *pdp)
539 {
540 	size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
541 
542 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
543 				  sizeof(unsigned long),
544 				  GFP_KERNEL);
545 	if (!pdp->used_pdpes)
546 		return -ENOMEM;
547 
548 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
549 				      GFP_KERNEL);
550 	if (!pdp->page_directory) {
551 		kfree(pdp->used_pdpes);
552 		/* the PDP might be the statically allocated top level. Keep it
553 		 * as clean as possible */
554 		pdp->used_pdpes = NULL;
555 		return -ENOMEM;
556 	}
557 
558 	return 0;
559 }
560 
561 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
562 {
563 	kfree(pdp->used_pdpes);
564 	kfree(pdp->page_directory);
565 	pdp->page_directory = NULL;
566 }
567 
568 static struct
569 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
570 {
571 	struct i915_page_directory_pointer *pdp;
572 	int ret = -ENOMEM;
573 
574 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
575 
576 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
577 	if (!pdp)
578 		return ERR_PTR(-ENOMEM);
579 
580 	ret = __pdp_init(dev_priv, pdp);
581 	if (ret)
582 		goto fail_bitmap;
583 
584 	ret = setup_px(dev_priv, pdp);
585 	if (ret)
586 		goto fail_page_m;
587 
588 	return pdp;
589 
590 fail_page_m:
591 	__pdp_fini(pdp);
592 fail_bitmap:
593 	kfree(pdp);
594 
595 	return ERR_PTR(ret);
596 }
597 
598 static void free_pdp(struct drm_i915_private *dev_priv,
599 		     struct i915_page_directory_pointer *pdp)
600 {
601 	__pdp_fini(pdp);
602 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
603 		cleanup_px(dev_priv, pdp);
604 		kfree(pdp);
605 	}
606 }
607 
608 static void gen8_initialize_pdp(struct i915_address_space *vm,
609 				struct i915_page_directory_pointer *pdp)
610 {
611 	gen8_ppgtt_pdpe_t scratch_pdpe;
612 
613 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
614 
615 	fill_px(to_i915(vm->dev), pdp, scratch_pdpe);
616 }
617 
618 static void gen8_initialize_pml4(struct i915_address_space *vm,
619 				 struct i915_pml4 *pml4)
620 {
621 	gen8_ppgtt_pml4e_t scratch_pml4e;
622 
623 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
624 					  I915_CACHE_LLC);
625 
626 	fill_px(to_i915(vm->dev), pml4, scratch_pml4e);
627 }
628 
629 static void
630 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
631 			  struct i915_page_directory_pointer *pdp,
632 			  struct i915_page_directory *pd,
633 			  int index)
634 {
635 	gen8_ppgtt_pdpe_t *page_directorypo;
636 
637 	if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
638 		return;
639 
640 	page_directorypo = kmap_px(pdp);
641 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
642 	kunmap_px(ppgtt, page_directorypo);
643 }
644 
645 static void
646 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
647 				  struct i915_pml4 *pml4,
648 				  struct i915_page_directory_pointer *pdp,
649 				  int index)
650 {
651 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
652 
653 	WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
654 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
655 	kunmap_px(ppgtt, pagemap);
656 }
657 
658 /* Broadwell Page Directory Pointer Descriptors */
659 static int gen8_write_pdp(struct drm_i915_gem_request *req,
660 			  unsigned entry,
661 			  dma_addr_t addr)
662 {
663 	struct intel_ring *ring = req->ring;
664 	struct intel_engine_cs *engine = req->engine;
665 	int ret;
666 
667 	BUG_ON(entry >= 4);
668 
669 	ret = intel_ring_begin(req, 6);
670 	if (ret)
671 		return ret;
672 
673 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
675 	intel_ring_emit(ring, upper_32_bits(addr));
676 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
678 	intel_ring_emit(ring, lower_32_bits(addr));
679 	intel_ring_advance(ring);
680 
681 	return 0;
682 }
683 
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685 				 struct drm_i915_gem_request *req)
686 {
687 	int i, ret;
688 
689 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691 
692 		ret = gen8_write_pdp(req, i, pd_daddr);
693 		if (ret)
694 			return ret;
695 	}
696 
697 	return 0;
698 }
699 
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701 			      struct drm_i915_gem_request *req)
702 {
703 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705 
706 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
707  * the page table structures, we mark them dirty so that
708  * context switching/execlist queuing code takes extra steps
709  * to ensure that tlbs are flushed.
710  */
711 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
712 {
713 	ppgtt->pd_dirty_rings = INTEL_INFO(to_i915(ppgtt->base.dev))->ring_mask;
714 }
715 
716 /* Removes entries from a single page table, releasing it if it's empty.
717  * Caller can use the return value to update higher-level entries.
718  */
719 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
720 				struct i915_page_table *pt,
721 				uint64_t start,
722 				uint64_t length)
723 {
724 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
725 	unsigned int num_entries = gen8_pte_count(start, length);
726 	unsigned int pte = gen8_pte_index(start);
727 	unsigned int pte_end = pte + num_entries;
728 	gen8_pte_t *pt_vaddr;
729 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
730 						 I915_CACHE_LLC);
731 
732 	if (WARN_ON(!px_page(pt)))
733 		return false;
734 
735 	GEM_BUG_ON(pte_end > GEN8_PTES);
736 
737 	bitmap_clear(pt->used_ptes, pte, num_entries);
738 	if (USES_FULL_PPGTT(vm->i915)) {
739 		if (bitmap_empty(pt->used_ptes, GEN8_PTES))
740 			return true;
741 	}
742 
743 	pt_vaddr = kmap_px(pt);
744 
745 	while (pte < pte_end)
746 		pt_vaddr[pte++] = scratch_pte;
747 
748 	kunmap_px(ppgtt, pt_vaddr);
749 
750 	return false;
751 }
752 
753 /* Removes entries from a single page dir, releasing it if it's empty.
754  * Caller can use the return value to update higher-level entries
755  */
756 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
757 				struct i915_page_directory *pd,
758 				uint64_t start,
759 				uint64_t length)
760 {
761 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
762 	struct i915_page_table *pt;
763 	uint64_t pde;
764 	gen8_pde_t *pde_vaddr;
765 	gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
766 						 I915_CACHE_LLC);
767 
768 	gen8_for_each_pde(pt, pd, start, length, pde) {
769 		if (WARN_ON(!pd->page_table[pde]))
770 			break;
771 
772 		if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
773 			__clear_bit(pde, pd->used_pdes);
774 			pde_vaddr = kmap_px(pd);
775 			pde_vaddr[pde] = scratch_pde;
776 			kunmap_px(ppgtt, pde_vaddr);
777 			free_pt(to_i915(vm->dev), pt);
778 		}
779 	}
780 
781 	if (bitmap_empty(pd->used_pdes, I915_PDES))
782 		return true;
783 
784 	return false;
785 }
786 
787 /* Removes entries from a single page dir pointer, releasing it if it's empty.
788  * Caller can use the return value to update higher-level entries
789  */
790 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
791 				 struct i915_page_directory_pointer *pdp,
792 				 uint64_t start,
793 				 uint64_t length)
794 {
795 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
796 	struct i915_page_directory *pd;
797 	uint64_t pdpe;
798 	gen8_ppgtt_pdpe_t *pdpe_vaddr;
799 	gen8_ppgtt_pdpe_t scratch_pdpe =
800 		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
801 
802 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
803 		if (WARN_ON(!pdp->page_directory[pdpe]))
804 			break;
805 
806 		if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
807 			__clear_bit(pdpe, pdp->used_pdpes);
808 			if (USES_FULL_48BIT_PPGTT(dev_priv)) {
809 				pdpe_vaddr = kmap_px(pdp);
810 				pdpe_vaddr[pdpe] = scratch_pdpe;
811 				kunmap_px(ppgtt, pdpe_vaddr);
812 			}
813 			free_pd(to_i915(vm->dev), pd);
814 		}
815 	}
816 
817 	mark_tlbs_dirty(ppgtt);
818 
819 	if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
820 		return true;
821 
822 	return false;
823 }
824 
825 /* Removes entries from a single pml4.
826  * This is the top-level structure in 4-level page tables used on gen8+.
827  * Empty entries are always scratch pml4e.
828  */
829 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
830 				  struct i915_pml4 *pml4,
831 				  uint64_t start,
832 				  uint64_t length)
833 {
834 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
835 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
836 	struct i915_page_directory_pointer *pdp;
837 	uint64_t pml4e;
838 	gen8_ppgtt_pml4e_t *pml4e_vaddr;
839 	gen8_ppgtt_pml4e_t scratch_pml4e =
840 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
841 
842 	GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(to_i915(vm->dev)));
843 
844 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
845 		if (WARN_ON(!pml4->pdps[pml4e]))
846 			break;
847 
848 		if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
849 			__clear_bit(pml4e, pml4->used_pml4es);
850 			pml4e_vaddr = kmap_px(pml4);
851 			pml4e_vaddr[pml4e] = scratch_pml4e;
852 			kunmap_px(ppgtt, pml4e_vaddr);
853 			free_pdp(dev_priv, pdp);
854 		}
855 	}
856 }
857 
858 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
859 				   uint64_t start, uint64_t length)
860 {
861 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
862 
863 	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
864 		gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
865 	else
866 		gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
867 }
868 
869 static void
870 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
871 			      struct i915_page_directory_pointer *pdp,
872 			      struct sg_page_iter *sg_iter,
873 			      uint64_t start,
874 			      enum i915_cache_level cache_level)
875 {
876 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
877 	gen8_pte_t *pt_vaddr;
878 	unsigned pdpe = gen8_pdpe_index(start);
879 	unsigned pde = gen8_pde_index(start);
880 	unsigned pte = gen8_pte_index(start);
881 
882 	pt_vaddr = NULL;
883 
884 	while (__sg_page_iter_next(sg_iter)) {
885 		if (pt_vaddr == NULL) {
886 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
887 			struct i915_page_table *pt = pd->page_table[pde];
888 			pt_vaddr = kmap_px(pt);
889 		}
890 
891 		pt_vaddr[pte] =
892 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
893 					cache_level);
894 		if (++pte == GEN8_PTES) {
895 			kunmap_px(ppgtt, pt_vaddr);
896 			pt_vaddr = NULL;
897 			if (++pde == I915_PDES) {
898 				if (++pdpe == I915_PDPES_PER_PDP(to_i915(vm->dev)))
899 					break;
900 				pde = 0;
901 			}
902 			pte = 0;
903 		}
904 	}
905 
906 	if (pt_vaddr)
907 		kunmap_px(ppgtt, pt_vaddr);
908 }
909 
910 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
911 				      struct sg_table *pages,
912 				      uint64_t start,
913 				      enum i915_cache_level cache_level,
914 				      u32 unused)
915 {
916 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
917 	struct sg_page_iter sg_iter;
918 
919 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
920 
921 	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
922 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
923 					      cache_level);
924 	} else {
925 		struct i915_page_directory_pointer *pdp;
926 		uint64_t pml4e;
927 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
928 
929 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
930 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
931 						      start, cache_level);
932 		}
933 	}
934 }
935 
936 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
937 				  struct i915_page_directory *pd)
938 {
939 	int i;
940 
941 	if (!px_page(pd))
942 		return;
943 
944 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
945 		if (WARN_ON(!pd->page_table[i]))
946 			continue;
947 
948 		free_pt(dev_priv, pd->page_table[i]);
949 		pd->page_table[i] = NULL;
950 	}
951 }
952 
953 static int gen8_init_scratch(struct i915_address_space *vm)
954 {
955 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
956 	int ret;
957 
958 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
959 	if (ret)
960 		return ret;
961 
962 	vm->scratch_pt = alloc_pt(dev_priv);
963 	if (IS_ERR(vm->scratch_pt)) {
964 		ret = PTR_ERR(vm->scratch_pt);
965 		goto free_scratch_page;
966 	}
967 
968 	vm->scratch_pd = alloc_pd(dev_priv);
969 	if (IS_ERR(vm->scratch_pd)) {
970 		ret = PTR_ERR(vm->scratch_pd);
971 		goto free_pt;
972 	}
973 
974 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
975 		vm->scratch_pdp = alloc_pdp(dev_priv);
976 		if (IS_ERR(vm->scratch_pdp)) {
977 			ret = PTR_ERR(vm->scratch_pdp);
978 			goto free_pd;
979 		}
980 	}
981 
982 	gen8_initialize_pt(vm, vm->scratch_pt);
983 	gen8_initialize_pd(vm, vm->scratch_pd);
984 	if (USES_FULL_48BIT_PPGTT(dev_priv))
985 		gen8_initialize_pdp(vm, vm->scratch_pdp);
986 
987 	return 0;
988 
989 free_pd:
990 	free_pd(dev_priv, vm->scratch_pd);
991 free_pt:
992 	free_pt(dev_priv, vm->scratch_pt);
993 free_scratch_page:
994 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
995 
996 	return ret;
997 }
998 
999 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1000 {
1001 	enum vgt_g2v_type msg;
1002 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1003 	int i;
1004 
1005 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1006 		u64 daddr = px_dma(&ppgtt->pml4);
1007 
1008 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1009 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1010 
1011 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1012 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1013 	} else {
1014 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1015 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1016 
1017 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1018 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1019 		}
1020 
1021 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1022 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1023 	}
1024 
1025 	I915_WRITE(vgtif_reg(g2v_notify), msg);
1026 
1027 	return 0;
1028 }
1029 
1030 static void gen8_free_scratch(struct i915_address_space *vm)
1031 {
1032 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1033 
1034 	if (USES_FULL_48BIT_PPGTT(dev_priv))
1035 		free_pdp(dev_priv, vm->scratch_pdp);
1036 	free_pd(dev_priv, vm->scratch_pd);
1037 	free_pt(dev_priv, vm->scratch_pt);
1038 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
1039 }
1040 
1041 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1042 				    struct i915_page_directory_pointer *pdp)
1043 {
1044 	int i;
1045 
1046 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1047 		if (WARN_ON(!pdp->page_directory[i]))
1048 			continue;
1049 
1050 		gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1051 		free_pd(dev_priv, pdp->page_directory[i]);
1052 	}
1053 
1054 	free_pdp(dev_priv, pdp);
1055 }
1056 
1057 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1058 {
1059 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1060 	int i;
1061 
1062 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1063 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
1064 			continue;
1065 
1066 		gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1067 	}
1068 
1069 	cleanup_px(dev_priv, &ppgtt->pml4);
1070 }
1071 
1072 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1073 {
1074 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1075 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1076 
1077 	if (intel_vgpu_active(dev_priv))
1078 		gen8_ppgtt_notify_vgt(ppgtt, false);
1079 
1080 	if (!USES_FULL_48BIT_PPGTT(dev_priv))
1081 		gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1082 	else
1083 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1084 
1085 	gen8_free_scratch(vm);
1086 }
1087 
1088 /**
1089  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1090  * @vm:	Master vm structure.
1091  * @pd:	Page directory for this address range.
1092  * @start:	Starting virtual address to begin allocations.
1093  * @length:	Size of the allocations.
1094  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1095  *		caller to free on error.
1096  *
1097  * Allocate the required number of page tables. Extremely similar to
1098  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1099  * the page directory boundary (instead of the page directory pointer). That
1100  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1101  * possible, and likely that the caller will need to use multiple calls of this
1102  * function to achieve the appropriate allocation.
1103  *
1104  * Return: 0 if success; negative error code otherwise.
1105  */
1106 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1107 				     struct i915_page_directory *pd,
1108 				     uint64_t start,
1109 				     uint64_t length,
1110 				     unsigned long *new_pts)
1111 {
1112 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1113 	struct i915_page_table *pt;
1114 	uint32_t pde;
1115 
1116 	gen8_for_each_pde(pt, pd, start, length, pde) {
1117 		/* Don't reallocate page tables */
1118 		if (test_bit(pde, pd->used_pdes)) {
1119 			/* Scratch is never allocated this way */
1120 			WARN_ON(pt == vm->scratch_pt);
1121 			continue;
1122 		}
1123 
1124 		pt = alloc_pt(dev_priv);
1125 		if (IS_ERR(pt))
1126 			goto unwind_out;
1127 
1128 		gen8_initialize_pt(vm, pt);
1129 		pd->page_table[pde] = pt;
1130 		__set_bit(pde, new_pts);
1131 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1132 	}
1133 
1134 	return 0;
1135 
1136 unwind_out:
1137 	for_each_set_bit(pde, new_pts, I915_PDES)
1138 		free_pt(dev_priv, pd->page_table[pde]);
1139 
1140 	return -ENOMEM;
1141 }
1142 
1143 /**
1144  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1145  * @vm:	Master vm structure.
1146  * @pdp:	Page directory pointer for this address range.
1147  * @start:	Starting virtual address to begin allocations.
1148  * @length:	Size of the allocations.
1149  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1150  *		caller to free on error.
1151  *
1152  * Allocate the required number of page directories starting at the pde index of
1153  * @start, and ending at the pde index @start + @length. This function will skip
1154  * over already allocated page directories within the range, and only allocate
1155  * new ones, setting the appropriate pointer within the pdp as well as the
1156  * correct position in the bitmap @new_pds.
1157  *
1158  * The function will only allocate the pages within the range for a give page
1159  * directory pointer. In other words, if @start + @length straddles a virtually
1160  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1161  * required by the caller, This is not currently possible, and the BUG in the
1162  * code will prevent it.
1163  *
1164  * Return: 0 if success; negative error code otherwise.
1165  */
1166 static int
1167 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1168 				  struct i915_page_directory_pointer *pdp,
1169 				  uint64_t start,
1170 				  uint64_t length,
1171 				  unsigned long *new_pds)
1172 {
1173 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1174 	struct i915_page_directory *pd;
1175 	uint32_t pdpe;
1176 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1177 
1178 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1179 
1180 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1181 		if (test_bit(pdpe, pdp->used_pdpes))
1182 			continue;
1183 
1184 		pd = alloc_pd(dev_priv);
1185 		if (IS_ERR(pd))
1186 			goto unwind_out;
1187 
1188 		gen8_initialize_pd(vm, pd);
1189 		pdp->page_directory[pdpe] = pd;
1190 		__set_bit(pdpe, new_pds);
1191 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1192 	}
1193 
1194 	return 0;
1195 
1196 unwind_out:
1197 	for_each_set_bit(pdpe, new_pds, pdpes)
1198 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1199 
1200 	return -ENOMEM;
1201 }
1202 
1203 /**
1204  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1205  * @vm:	Master vm structure.
1206  * @pml4:	Page map level 4 for this address range.
1207  * @start:	Starting virtual address to begin allocations.
1208  * @length:	Size of the allocations.
1209  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1210  *		caller to free on error.
1211  *
1212  * Allocate the required number of page directory pointers. Extremely similar to
1213  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1214  * The main difference is here we are limited by the pml4 boundary (instead of
1215  * the page directory pointer).
1216  *
1217  * Return: 0 if success; negative error code otherwise.
1218  */
1219 static int
1220 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1221 				  struct i915_pml4 *pml4,
1222 				  uint64_t start,
1223 				  uint64_t length,
1224 				  unsigned long *new_pdps)
1225 {
1226 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1227 	struct i915_page_directory_pointer *pdp;
1228 	uint32_t pml4e;
1229 
1230 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1231 
1232 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1233 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1234 			pdp = alloc_pdp(dev_priv);
1235 			if (IS_ERR(pdp))
1236 				goto unwind_out;
1237 
1238 			gen8_initialize_pdp(vm, pdp);
1239 			pml4->pdps[pml4e] = pdp;
1240 			__set_bit(pml4e, new_pdps);
1241 			trace_i915_page_directory_pointer_entry_alloc(vm,
1242 								      pml4e,
1243 								      start,
1244 								      GEN8_PML4E_SHIFT);
1245 		}
1246 	}
1247 
1248 	return 0;
1249 
1250 unwind_out:
1251 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1252 		free_pdp(dev_priv, pml4->pdps[pml4e]);
1253 
1254 	return -ENOMEM;
1255 }
1256 
1257 static void
1258 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1259 {
1260 	kfree(new_pts);
1261 	kfree(new_pds);
1262 }
1263 
1264 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1265  * of these are based on the number of PDPEs in the system.
1266  */
1267 static
1268 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1269 					 unsigned long **new_pts,
1270 					 uint32_t pdpes)
1271 {
1272 	unsigned long *pds;
1273 	unsigned long *pts;
1274 
1275 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1276 	if (!pds)
1277 		return -ENOMEM;
1278 
1279 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1280 		      GFP_TEMPORARY);
1281 	if (!pts)
1282 		goto err_out;
1283 
1284 	*new_pds = pds;
1285 	*new_pts = pts;
1286 
1287 	return 0;
1288 
1289 err_out:
1290 	free_gen8_temp_bitmaps(pds, pts);
1291 	return -ENOMEM;
1292 }
1293 
1294 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1295 				    struct i915_page_directory_pointer *pdp,
1296 				    uint64_t start,
1297 				    uint64_t length)
1298 {
1299 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1300 	unsigned long *new_page_dirs, *new_page_tables;
1301 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1302 	struct i915_page_directory *pd;
1303 	const uint64_t orig_start = start;
1304 	const uint64_t orig_length = length;
1305 	uint32_t pdpe;
1306 	uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1307 	int ret;
1308 
1309 	/* Wrap is never okay since we can only represent 48b, and we don't
1310 	 * actually use the other side of the canonical address space.
1311 	 */
1312 	if (WARN_ON(start + length < start))
1313 		return -ENODEV;
1314 
1315 	if (WARN_ON(start + length > vm->total))
1316 		return -ENODEV;
1317 
1318 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1319 	if (ret)
1320 		return ret;
1321 
1322 	/* Do the allocations first so we can easily bail out */
1323 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1324 						new_page_dirs);
1325 	if (ret) {
1326 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1327 		return ret;
1328 	}
1329 
1330 	/* For every page directory referenced, allocate page tables */
1331 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1332 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1333 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1334 		if (ret)
1335 			goto err_out;
1336 	}
1337 
1338 	start = orig_start;
1339 	length = orig_length;
1340 
1341 	/* Allocations have completed successfully, so set the bitmaps, and do
1342 	 * the mappings. */
1343 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1344 		gen8_pde_t *const page_directory = kmap_px(pd);
1345 		struct i915_page_table *pt;
1346 		uint64_t pd_len = length;
1347 		uint64_t pd_start = start;
1348 		uint32_t pde;
1349 
1350 		/* Every pd should be allocated, we just did that above. */
1351 		WARN_ON(!pd);
1352 
1353 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1354 			/* Same reasoning as pd */
1355 			WARN_ON(!pt);
1356 			WARN_ON(!pd_len);
1357 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1358 
1359 			/* Set our used ptes within the page table */
1360 			bitmap_set(pt->used_ptes,
1361 				   gen8_pte_index(pd_start),
1362 				   gen8_pte_count(pd_start, pd_len));
1363 
1364 			/* Our pde is now pointing to the pagetable, pt */
1365 			__set_bit(pde, pd->used_pdes);
1366 
1367 			/* Map the PDE to the page table */
1368 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1369 							      I915_CACHE_LLC);
1370 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1371 							gen8_pte_index(start),
1372 							gen8_pte_count(start, length),
1373 							GEN8_PTES);
1374 
1375 			/* NB: We haven't yet mapped ptes to pages. At this
1376 			 * point we're still relying on insert_entries() */
1377 		}
1378 
1379 		kunmap_px(ppgtt, page_directory);
1380 		__set_bit(pdpe, pdp->used_pdpes);
1381 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1382 	}
1383 
1384 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1385 	mark_tlbs_dirty(ppgtt);
1386 	return 0;
1387 
1388 err_out:
1389 	while (pdpe--) {
1390 		unsigned long temp;
1391 
1392 		for_each_set_bit(temp, new_page_tables + pdpe *
1393 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1394 			free_pt(dev_priv,
1395 				pdp->page_directory[pdpe]->page_table[temp]);
1396 	}
1397 
1398 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1399 		free_pd(dev_priv, pdp->page_directory[pdpe]);
1400 
1401 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1402 	mark_tlbs_dirty(ppgtt);
1403 	return ret;
1404 }
1405 
1406 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1407 				    struct i915_pml4 *pml4,
1408 				    uint64_t start,
1409 				    uint64_t length)
1410 {
1411 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1412 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1413 	struct i915_page_directory_pointer *pdp;
1414 	uint64_t pml4e;
1415 	int ret = 0;
1416 
1417 	/* Do the pml4 allocations first, so we don't need to track the newly
1418 	 * allocated tables below the pdp */
1419 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1420 
1421 	/* The pagedirectory and pagetable allocations are done in the shared 3
1422 	 * and 4 level code. Just allocate the pdps.
1423 	 */
1424 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1425 						new_pdps);
1426 	if (ret)
1427 		return ret;
1428 
1429 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1430 	     "The allocation has spanned more than 512GB. "
1431 	     "It is highly likely this is incorrect.");
1432 
1433 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1434 		WARN_ON(!pdp);
1435 
1436 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1437 		if (ret)
1438 			goto err_out;
1439 
1440 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1441 	}
1442 
1443 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1444 		  GEN8_PML4ES_PER_PML4);
1445 
1446 	return 0;
1447 
1448 err_out:
1449 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1450 		gen8_ppgtt_cleanup_3lvl(to_i915(vm->dev), pml4->pdps[pml4e]);
1451 
1452 	return ret;
1453 }
1454 
1455 static int gen8_alloc_va_range(struct i915_address_space *vm,
1456 			       uint64_t start, uint64_t length)
1457 {
1458 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1459 
1460 	if (USES_FULL_48BIT_PPGTT(to_i915(vm->dev)))
1461 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1462 	else
1463 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1464 }
1465 
1466 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1467 			  uint64_t start, uint64_t length,
1468 			  gen8_pte_t scratch_pte,
1469 			  struct seq_file *m)
1470 {
1471 	struct i915_page_directory *pd;
1472 	uint32_t pdpe;
1473 
1474 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1475 		struct i915_page_table *pt;
1476 		uint64_t pd_len = length;
1477 		uint64_t pd_start = start;
1478 		uint32_t pde;
1479 
1480 		if (!test_bit(pdpe, pdp->used_pdpes))
1481 			continue;
1482 
1483 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1484 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1485 			uint32_t  pte;
1486 			gen8_pte_t *pt_vaddr;
1487 
1488 			if (!test_bit(pde, pd->used_pdes))
1489 				continue;
1490 
1491 			pt_vaddr = kmap_px(pt);
1492 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1493 				uint64_t va =
1494 					(pdpe << GEN8_PDPE_SHIFT) |
1495 					(pde << GEN8_PDE_SHIFT) |
1496 					(pte << GEN8_PTE_SHIFT);
1497 				int i;
1498 				bool found = false;
1499 
1500 				for (i = 0; i < 4; i++)
1501 					if (pt_vaddr[pte + i] != scratch_pte)
1502 						found = true;
1503 				if (!found)
1504 					continue;
1505 
1506 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1507 				for (i = 0; i < 4; i++) {
1508 					if (pt_vaddr[pte + i] != scratch_pte)
1509 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1510 					else
1511 						seq_puts(m, "  SCRATCH ");
1512 				}
1513 				seq_puts(m, "\n");
1514 			}
1515 			/* don't use kunmap_px, it could trigger
1516 			 * an unnecessary flush.
1517 			 */
1518 			kunmap_atomic(pt_vaddr);
1519 		}
1520 	}
1521 }
1522 
1523 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1524 {
1525 	struct i915_address_space *vm = &ppgtt->base;
1526 	uint64_t start = ppgtt->base.start;
1527 	uint64_t length = ppgtt->base.total;
1528 	gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1529 						 I915_CACHE_LLC);
1530 
1531 	if (!USES_FULL_48BIT_PPGTT(to_i915(vm->dev))) {
1532 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1533 	} else {
1534 		uint64_t pml4e;
1535 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1536 		struct i915_page_directory_pointer *pdp;
1537 
1538 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1539 			if (!test_bit(pml4e, pml4->used_pml4es))
1540 				continue;
1541 
1542 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1543 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1544 		}
1545 	}
1546 }
1547 
1548 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1549 {
1550 	unsigned long *new_page_dirs, *new_page_tables;
1551 	uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1552 	int ret;
1553 
1554 	/* We allocate temp bitmap for page tables for no gain
1555 	 * but as this is for init only, lets keep the things simple
1556 	 */
1557 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1558 	if (ret)
1559 		return ret;
1560 
1561 	/* Allocate for all pdps regardless of how the ppgtt
1562 	 * was defined.
1563 	 */
1564 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1565 						0, 1ULL << 32,
1566 						new_page_dirs);
1567 	if (!ret)
1568 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1569 
1570 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1571 
1572 	return ret;
1573 }
1574 
1575 /*
1576  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1577  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1578  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1579  * space.
1580  *
1581  */
1582 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1583 {
1584 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1585 	int ret;
1586 
1587 	ret = gen8_init_scratch(&ppgtt->base);
1588 	if (ret)
1589 		return ret;
1590 
1591 	ppgtt->base.start = 0;
1592 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1593 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1594 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1595 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1596 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1597 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1598 	ppgtt->debug_dump = gen8_dump_ppgtt;
1599 
1600 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1601 		ret = setup_px(dev_priv, &ppgtt->pml4);
1602 		if (ret)
1603 			goto free_scratch;
1604 
1605 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1606 
1607 		ppgtt->base.total = 1ULL << 48;
1608 		ppgtt->switch_mm = gen8_48b_mm_switch;
1609 	} else {
1610 		ret = __pdp_init(dev_priv, &ppgtt->pdp);
1611 		if (ret)
1612 			goto free_scratch;
1613 
1614 		ppgtt->base.total = 1ULL << 32;
1615 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1616 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1617 							      0, 0,
1618 							      GEN8_PML4E_SHIFT);
1619 
1620 		if (intel_vgpu_active(dev_priv)) {
1621 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1622 			if (ret)
1623 				goto free_scratch;
1624 		}
1625 	}
1626 
1627 	if (intel_vgpu_active(dev_priv))
1628 		gen8_ppgtt_notify_vgt(ppgtt, true);
1629 
1630 	return 0;
1631 
1632 free_scratch:
1633 	gen8_free_scratch(&ppgtt->base);
1634 	return ret;
1635 }
1636 
1637 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1638 {
1639 	struct i915_address_space *vm = &ppgtt->base;
1640 	struct i915_page_table *unused;
1641 	gen6_pte_t scratch_pte;
1642 	uint32_t pd_entry;
1643 	uint32_t  pte, pde;
1644 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1645 
1646 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1647 				     I915_CACHE_LLC, 0);
1648 
1649 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1650 		u32 expected;
1651 		gen6_pte_t *pt_vaddr;
1652 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1653 		pd_entry = readl(ppgtt->pd_addr + pde);
1654 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1655 
1656 		if (pd_entry != expected)
1657 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1658 				   pde,
1659 				   pd_entry,
1660 				   expected);
1661 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1662 
1663 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1664 
1665 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1666 			unsigned long va =
1667 				(pde * PAGE_SIZE * GEN6_PTES) +
1668 				(pte * PAGE_SIZE);
1669 			int i;
1670 			bool found = false;
1671 			for (i = 0; i < 4; i++)
1672 				if (pt_vaddr[pte + i] != scratch_pte)
1673 					found = true;
1674 			if (!found)
1675 				continue;
1676 
1677 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1678 			for (i = 0; i < 4; i++) {
1679 				if (pt_vaddr[pte + i] != scratch_pte)
1680 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1681 				else
1682 					seq_puts(m, "  SCRATCH ");
1683 			}
1684 			seq_puts(m, "\n");
1685 		}
1686 		kunmap_px(ppgtt, pt_vaddr);
1687 	}
1688 }
1689 
1690 /* Write pde (index) from the page directory @pd to the page table @pt */
1691 static void gen6_write_pde(struct i915_page_directory *pd,
1692 			    const int pde, struct i915_page_table *pt)
1693 {
1694 	/* Caller needs to make sure the write completes if necessary */
1695 	struct i915_hw_ppgtt *ppgtt =
1696 		container_of(pd, struct i915_hw_ppgtt, pd);
1697 	u32 pd_entry;
1698 
1699 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1700 	pd_entry |= GEN6_PDE_VALID;
1701 
1702 	writel(pd_entry, ppgtt->pd_addr + pde);
1703 }
1704 
1705 /* Write all the page tables found in the ppgtt structure to incrementing page
1706  * directories. */
1707 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1708 				  struct i915_page_directory *pd,
1709 				  uint32_t start, uint32_t length)
1710 {
1711 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1712 	struct i915_page_table *pt;
1713 	uint32_t pde;
1714 
1715 	gen6_for_each_pde(pt, pd, start, length, pde)
1716 		gen6_write_pde(pd, pde, pt);
1717 
1718 	/* Make sure write is complete before other code can use this page
1719 	 * table. Also require for WC mapped PTEs */
1720 	readl(ggtt->gsm);
1721 }
1722 
1723 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1724 {
1725 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1726 
1727 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1728 }
1729 
1730 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1731 			 struct drm_i915_gem_request *req)
1732 {
1733 	struct intel_ring *ring = req->ring;
1734 	struct intel_engine_cs *engine = req->engine;
1735 	int ret;
1736 
1737 	/* NB: TLBs must be flushed and invalidated before a switch */
1738 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1739 	if (ret)
1740 		return ret;
1741 
1742 	ret = intel_ring_begin(req, 6);
1743 	if (ret)
1744 		return ret;
1745 
1746 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1747 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1748 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1749 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1750 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1751 	intel_ring_emit(ring, MI_NOOP);
1752 	intel_ring_advance(ring);
1753 
1754 	return 0;
1755 }
1756 
1757 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1758 			  struct drm_i915_gem_request *req)
1759 {
1760 	struct intel_ring *ring = req->ring;
1761 	struct intel_engine_cs *engine = req->engine;
1762 	int ret;
1763 
1764 	/* NB: TLBs must be flushed and invalidated before a switch */
1765 	ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1766 	if (ret)
1767 		return ret;
1768 
1769 	ret = intel_ring_begin(req, 6);
1770 	if (ret)
1771 		return ret;
1772 
1773 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1774 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1775 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1776 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1777 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1778 	intel_ring_emit(ring, MI_NOOP);
1779 	intel_ring_advance(ring);
1780 
1781 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1782 	if (engine->id != RCS) {
1783 		ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1784 		if (ret)
1785 			return ret;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1792 			  struct drm_i915_gem_request *req)
1793 {
1794 	struct intel_engine_cs *engine = req->engine;
1795 	struct drm_i915_private *dev_priv = req->i915;
1796 
1797 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1798 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1799 	return 0;
1800 }
1801 
1802 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1803 {
1804 	struct intel_engine_cs *engine;
1805 	enum intel_engine_id id;
1806 
1807 	for_each_engine(engine, dev_priv, id) {
1808 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1809 				 GEN8_GFX_PPGTT_48B : 0;
1810 		I915_WRITE(RING_MODE_GEN7(engine),
1811 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1812 	}
1813 }
1814 
1815 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1816 {
1817 	struct intel_engine_cs *engine;
1818 	uint32_t ecochk, ecobits;
1819 	enum intel_engine_id id;
1820 
1821 	ecobits = I915_READ(GAC_ECO_BITS);
1822 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1823 
1824 	ecochk = I915_READ(GAM_ECOCHK);
1825 	if (IS_HASWELL(dev_priv)) {
1826 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1827 	} else {
1828 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1829 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1830 	}
1831 	I915_WRITE(GAM_ECOCHK, ecochk);
1832 
1833 	for_each_engine(engine, dev_priv, id) {
1834 		/* GFX_MODE is per-ring on gen7+ */
1835 		I915_WRITE(RING_MODE_GEN7(engine),
1836 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1837 	}
1838 }
1839 
1840 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1841 {
1842 	uint32_t ecochk, gab_ctl, ecobits;
1843 
1844 	ecobits = I915_READ(GAC_ECO_BITS);
1845 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1846 		   ECOBITS_PPGTT_CACHE64B);
1847 
1848 	gab_ctl = I915_READ(GAB_CTL);
1849 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1850 
1851 	ecochk = I915_READ(GAM_ECOCHK);
1852 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1853 
1854 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1855 }
1856 
1857 /* PPGTT support for Sandybdrige/Gen6 and later */
1858 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1859 				   uint64_t start,
1860 				   uint64_t length)
1861 {
1862 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863 	gen6_pte_t *pt_vaddr, scratch_pte;
1864 	unsigned first_entry = start >> PAGE_SHIFT;
1865 	unsigned num_entries = length >> PAGE_SHIFT;
1866 	unsigned act_pt = first_entry / GEN6_PTES;
1867 	unsigned first_pte = first_entry % GEN6_PTES;
1868 	unsigned last_pte, i;
1869 
1870 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1871 				     I915_CACHE_LLC, 0);
1872 
1873 	while (num_entries) {
1874 		last_pte = first_pte + num_entries;
1875 		if (last_pte > GEN6_PTES)
1876 			last_pte = GEN6_PTES;
1877 
1878 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1879 
1880 		for (i = first_pte; i < last_pte; i++)
1881 			pt_vaddr[i] = scratch_pte;
1882 
1883 		kunmap_px(ppgtt, pt_vaddr);
1884 
1885 		num_entries -= last_pte - first_pte;
1886 		first_pte = 0;
1887 		act_pt++;
1888 	}
1889 }
1890 
1891 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1892 				      struct sg_table *pages,
1893 				      uint64_t start,
1894 				      enum i915_cache_level cache_level, u32 flags)
1895 {
1896 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1897 	unsigned first_entry = start >> PAGE_SHIFT;
1898 	unsigned act_pt = first_entry / GEN6_PTES;
1899 	unsigned act_pte = first_entry % GEN6_PTES;
1900 	gen6_pte_t *pt_vaddr = NULL;
1901 	struct sgt_iter sgt_iter;
1902 	dma_addr_t addr;
1903 
1904 	for_each_sgt_dma(addr, sgt_iter, pages) {
1905 		if (pt_vaddr == NULL)
1906 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1907 
1908 		pt_vaddr[act_pte] =
1909 			vm->pte_encode(addr, cache_level, flags);
1910 
1911 		if (++act_pte == GEN6_PTES) {
1912 			kunmap_px(ppgtt, pt_vaddr);
1913 			pt_vaddr = NULL;
1914 			act_pt++;
1915 			act_pte = 0;
1916 		}
1917 	}
1918 
1919 	if (pt_vaddr)
1920 		kunmap_px(ppgtt, pt_vaddr);
1921 }
1922 
1923 static int gen6_alloc_va_range(struct i915_address_space *vm,
1924 			       uint64_t start_in, uint64_t length_in)
1925 {
1926 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1927 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
1928 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1929 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1930 	struct i915_page_table *pt;
1931 	uint32_t start, length, start_save, length_save;
1932 	uint32_t pde;
1933 	int ret;
1934 
1935 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1936 		return -ENODEV;
1937 
1938 	start = start_save = start_in;
1939 	length = length_save = length_in;
1940 
1941 	bitmap_zero(new_page_tables, I915_PDES);
1942 
1943 	/* The allocation is done in two stages so that we can bail out with
1944 	 * minimal amount of pain. The first stage finds new page tables that
1945 	 * need allocation. The second stage marks use ptes within the page
1946 	 * tables.
1947 	 */
1948 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1949 		if (pt != vm->scratch_pt) {
1950 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1951 			continue;
1952 		}
1953 
1954 		/* We've already allocated a page table */
1955 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1956 
1957 		pt = alloc_pt(dev_priv);
1958 		if (IS_ERR(pt)) {
1959 			ret = PTR_ERR(pt);
1960 			goto unwind_out;
1961 		}
1962 
1963 		gen6_initialize_pt(vm, pt);
1964 
1965 		ppgtt->pd.page_table[pde] = pt;
1966 		__set_bit(pde, new_page_tables);
1967 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1968 	}
1969 
1970 	start = start_save;
1971 	length = length_save;
1972 
1973 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1974 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1975 
1976 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1977 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1978 			   gen6_pte_count(start, length));
1979 
1980 		if (__test_and_clear_bit(pde, new_page_tables))
1981 			gen6_write_pde(&ppgtt->pd, pde, pt);
1982 
1983 		trace_i915_page_table_entry_map(vm, pde, pt,
1984 					 gen6_pte_index(start),
1985 					 gen6_pte_count(start, length),
1986 					 GEN6_PTES);
1987 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1988 				GEN6_PTES);
1989 	}
1990 
1991 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1992 
1993 	/* Make sure write is complete before other code can use this page
1994 	 * table. Also require for WC mapped PTEs */
1995 	readl(ggtt->gsm);
1996 
1997 	mark_tlbs_dirty(ppgtt);
1998 	return 0;
1999 
2000 unwind_out:
2001 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
2002 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2003 
2004 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
2005 		free_pt(dev_priv, pt);
2006 	}
2007 
2008 	mark_tlbs_dirty(ppgtt);
2009 	return ret;
2010 }
2011 
2012 static int gen6_init_scratch(struct i915_address_space *vm)
2013 {
2014 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2015 	int ret;
2016 
2017 	ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2018 	if (ret)
2019 		return ret;
2020 
2021 	vm->scratch_pt = alloc_pt(dev_priv);
2022 	if (IS_ERR(vm->scratch_pt)) {
2023 		cleanup_scratch_page(dev_priv, &vm->scratch_page);
2024 		return PTR_ERR(vm->scratch_pt);
2025 	}
2026 
2027 	gen6_initialize_pt(vm, vm->scratch_pt);
2028 
2029 	return 0;
2030 }
2031 
2032 static void gen6_free_scratch(struct i915_address_space *vm)
2033 {
2034 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2035 
2036 	free_pt(dev_priv, vm->scratch_pt);
2037 	cleanup_scratch_page(dev_priv, &vm->scratch_page);
2038 }
2039 
2040 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2041 {
2042 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2043 	struct i915_page_directory *pd = &ppgtt->pd;
2044 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2045 	struct i915_page_table *pt;
2046 	uint32_t pde;
2047 
2048 	drm_mm_remove_node(&ppgtt->node);
2049 
2050 	gen6_for_all_pdes(pt, pd, pde)
2051 		if (pt != vm->scratch_pt)
2052 			free_pt(dev_priv, pt);
2053 
2054 	gen6_free_scratch(vm);
2055 }
2056 
2057 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2058 {
2059 	struct i915_address_space *vm = &ppgtt->base;
2060 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2061 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2062 	bool retried = false;
2063 	int ret;
2064 
2065 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2066 	 * allocator works in address space sizes, so it's multiplied by page
2067 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2068 	 */
2069 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2070 
2071 	ret = gen6_init_scratch(vm);
2072 	if (ret)
2073 		return ret;
2074 
2075 alloc:
2076 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2077 						  &ppgtt->node, GEN6_PD_SIZE,
2078 						  GEN6_PD_ALIGN, 0,
2079 						  0, ggtt->base.total,
2080 						  DRM_MM_TOPDOWN);
2081 	if (ret == -ENOSPC && !retried) {
2082 		ret = i915_gem_evict_something(&ggtt->base,
2083 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2084 					       I915_CACHE_NONE,
2085 					       0, ggtt->base.total,
2086 					       0);
2087 		if (ret)
2088 			goto err_out;
2089 
2090 		retried = true;
2091 		goto alloc;
2092 	}
2093 
2094 	if (ret)
2095 		goto err_out;
2096 
2097 
2098 	if (ppgtt->node.start < ggtt->mappable_end)
2099 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2100 
2101 	return 0;
2102 
2103 err_out:
2104 	gen6_free_scratch(vm);
2105 	return ret;
2106 }
2107 
2108 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2109 {
2110 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2111 }
2112 
2113 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2114 				  uint64_t start, uint64_t length)
2115 {
2116 	struct i915_page_table *unused;
2117 	uint32_t pde;
2118 
2119 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2120 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2121 }
2122 
2123 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2124 {
2125 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
2126 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2127 	int ret;
2128 
2129 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2130 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2131 		ppgtt->switch_mm = gen6_mm_switch;
2132 	else if (IS_HASWELL(dev_priv))
2133 		ppgtt->switch_mm = hsw_mm_switch;
2134 	else if (IS_GEN7(dev_priv))
2135 		ppgtt->switch_mm = gen7_mm_switch;
2136 	else
2137 		BUG();
2138 
2139 	ret = gen6_ppgtt_alloc(ppgtt);
2140 	if (ret)
2141 		return ret;
2142 
2143 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2144 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2145 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2146 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2147 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2148 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2149 	ppgtt->base.start = 0;
2150 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2151 	ppgtt->debug_dump = gen6_dump_ppgtt;
2152 
2153 	ppgtt->pd.base.ggtt_offset =
2154 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2155 
2156 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2157 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2158 
2159 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2160 
2161 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2162 
2163 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2164 			 ppgtt->node.size >> 20,
2165 			 ppgtt->node.start / PAGE_SIZE);
2166 
2167 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2168 		  ppgtt->pd.base.ggtt_offset << 10);
2169 
2170 	return 0;
2171 }
2172 
2173 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2174 			   struct drm_i915_private *dev_priv)
2175 {
2176 	ppgtt->base.dev = &dev_priv->drm;
2177 
2178 	if (INTEL_INFO(dev_priv)->gen < 8)
2179 		return gen6_ppgtt_init(ppgtt);
2180 	else
2181 		return gen8_ppgtt_init(ppgtt);
2182 }
2183 
2184 static void i915_address_space_init(struct i915_address_space *vm,
2185 				    struct drm_i915_private *dev_priv,
2186 				    const char *name)
2187 {
2188 	i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2189 	drm_mm_init(&vm->mm, vm->start, vm->total);
2190 	INIT_LIST_HEAD(&vm->active_list);
2191 	INIT_LIST_HEAD(&vm->inactive_list);
2192 	INIT_LIST_HEAD(&vm->unbound_list);
2193 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2194 }
2195 
2196 static void i915_address_space_fini(struct i915_address_space *vm)
2197 {
2198 	i915_gem_timeline_fini(&vm->timeline);
2199 	drm_mm_takedown(&vm->mm);
2200 	list_del(&vm->global_link);
2201 }
2202 
2203 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2204 {
2205 	/* This function is for gtt related workarounds. This function is
2206 	 * called on driver load and after a GPU reset, so you can place
2207 	 * workarounds here even if they get overwritten by GPU reset.
2208 	 */
2209 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2210 	if (IS_BROADWELL(dev_priv))
2211 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2212 	else if (IS_CHERRYVIEW(dev_priv))
2213 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2214 	else if (IS_SKYLAKE(dev_priv))
2215 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2216 	else if (IS_BROXTON(dev_priv))
2217 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2218 }
2219 
2220 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2221 			   struct drm_i915_private *dev_priv,
2222 			   struct drm_i915_file_private *file_priv,
2223 			   const char *name)
2224 {
2225 	int ret;
2226 
2227 	ret = __hw_ppgtt_init(ppgtt, dev_priv);
2228 	if (ret == 0) {
2229 		kref_init(&ppgtt->ref);
2230 		i915_address_space_init(&ppgtt->base, dev_priv, name);
2231 		ppgtt->base.file = file_priv;
2232 	}
2233 
2234 	return ret;
2235 }
2236 
2237 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2238 {
2239 	gtt_write_workarounds(dev_priv);
2240 
2241 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2242 	 * and the PDPs are contained within the context itself.  We don't
2243 	 * need to do anything here. */
2244 	if (i915.enable_execlists)
2245 		return 0;
2246 
2247 	if (!USES_PPGTT(dev_priv))
2248 		return 0;
2249 
2250 	if (IS_GEN6(dev_priv))
2251 		gen6_ppgtt_enable(dev_priv);
2252 	else if (IS_GEN7(dev_priv))
2253 		gen7_ppgtt_enable(dev_priv);
2254 	else if (INTEL_GEN(dev_priv) >= 8)
2255 		gen8_ppgtt_enable(dev_priv);
2256 	else
2257 		MISSING_CASE(INTEL_GEN(dev_priv));
2258 
2259 	return 0;
2260 }
2261 
2262 struct i915_hw_ppgtt *
2263 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2264 		  struct drm_i915_file_private *fpriv,
2265 		  const char *name)
2266 {
2267 	struct i915_hw_ppgtt *ppgtt;
2268 	int ret;
2269 
2270 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2271 	if (!ppgtt)
2272 		return ERR_PTR(-ENOMEM);
2273 
2274 	ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2275 	if (ret) {
2276 		kfree(ppgtt);
2277 		return ERR_PTR(ret);
2278 	}
2279 
2280 	trace_i915_ppgtt_create(&ppgtt->base);
2281 
2282 	return ppgtt;
2283 }
2284 
2285 void i915_ppgtt_release(struct kref *kref)
2286 {
2287 	struct i915_hw_ppgtt *ppgtt =
2288 		container_of(kref, struct i915_hw_ppgtt, ref);
2289 
2290 	trace_i915_ppgtt_release(&ppgtt->base);
2291 
2292 	/* vmas should already be unbound and destroyed */
2293 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2294 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2295 	WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2296 
2297 	i915_address_space_fini(&ppgtt->base);
2298 
2299 	ppgtt->base.cleanup(&ppgtt->base);
2300 	kfree(ppgtt);
2301 }
2302 
2303 /* Certain Gen5 chipsets require require idling the GPU before
2304  * unmapping anything from the GTT when VT-d is enabled.
2305  */
2306 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2307 {
2308 #ifdef CONFIG_INTEL_IOMMU
2309 	/* Query intel_iommu to see if we need the workaround. Presumably that
2310 	 * was loaded first.
2311 	 */
2312 	if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2313 		return true;
2314 #endif
2315 	return false;
2316 }
2317 
2318 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2319 {
2320 	struct intel_engine_cs *engine;
2321 	enum intel_engine_id id;
2322 
2323 	if (INTEL_INFO(dev_priv)->gen < 6)
2324 		return;
2325 
2326 	for_each_engine(engine, dev_priv, id) {
2327 		u32 fault_reg;
2328 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2329 		if (fault_reg & RING_FAULT_VALID) {
2330 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2331 					 "\tAddr: 0x%08ux\n"
2332 					 "\tAddress space: %s\n"
2333 					 "\tSource ID: %d\n"
2334 					 "\tType: %d\n",
2335 					 fault_reg & LINUX_PAGE_MASK,
2336 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2337 					 RING_FAULT_SRCID(fault_reg),
2338 					 RING_FAULT_FAULT_TYPE(fault_reg));
2339 			I915_WRITE(RING_FAULT_REG(engine),
2340 				   fault_reg & ~RING_FAULT_VALID);
2341 		}
2342 	}
2343 
2344 	/* Engine specific init may not have been done till this point. */
2345 	if (dev_priv->engine[RCS])
2346 		POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2347 }
2348 
2349 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2350 {
2351 	if (INTEL_INFO(dev_priv)->gen < 6) {
2352 		intel_gtt_chipset_flush();
2353 	} else {
2354 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2355 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2356 	}
2357 }
2358 
2359 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2360 {
2361 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2362 
2363 	/* Don't bother messing with faults pre GEN6 as we have little
2364 	 * documentation supporting that it's a good idea.
2365 	 */
2366 	if (INTEL_GEN(dev_priv) < 6)
2367 		return;
2368 
2369 	i915_check_and_clear_faults(dev_priv);
2370 
2371 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2372 
2373 	i915_ggtt_flush(dev_priv);
2374 }
2375 
2376 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2377 			       struct sg_table *pages)
2378 {
2379 	if (dma_map_sg(&obj->base.dev->pdev->dev,
2380 		       pages->sgl, pages->nents,
2381 		       PCI_DMA_BIDIRECTIONAL))
2382 		return 0;
2383 
2384 	return -ENOSPC;
2385 }
2386 
2387 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2388 {
2389 	writeq(pte, addr);
2390 }
2391 
2392 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2393 				  dma_addr_t addr,
2394 				  uint64_t offset,
2395 				  enum i915_cache_level level,
2396 				  u32 unused)
2397 {
2398 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2399 	gen8_pte_t __iomem *pte =
2400 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2401 		(offset >> PAGE_SHIFT);
2402 
2403 	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2404 
2405 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2406 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2407 }
2408 
2409 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2410 				     struct sg_table *st,
2411 				     uint64_t start,
2412 				     enum i915_cache_level level, u32 unused)
2413 {
2414 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2415 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2416 	struct sgt_iter sgt_iter;
2417 	gen8_pte_t __iomem *gtt_entries;
2418 	gen8_pte_t gtt_entry;
2419 	dma_addr_t addr;
2420 	int i = 0;
2421 
2422 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2423 
2424 	for_each_sgt_dma(addr, sgt_iter, st) {
2425 		gtt_entry = gen8_pte_encode(addr, level);
2426 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2427 	}
2428 
2429 	/*
2430 	 * XXX: This serves as a posting read to make sure that the PTE has
2431 	 * actually been updated. There is some concern that even though
2432 	 * registers and PTEs are within the same BAR that they are potentially
2433 	 * of NUMA access patterns. Therefore, even with the way we assume
2434 	 * hardware should work, we must keep this posting read for paranoia.
2435 	 */
2436 	if (i != 0)
2437 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2438 
2439 	/* This next bit makes the above posting read even more important. We
2440 	 * want to flush the TLBs only after we're certain all the PTE updates
2441 	 * have finished.
2442 	 */
2443 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2444 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2445 }
2446 
2447 struct insert_entries {
2448 	struct i915_address_space *vm;
2449 	struct sg_table *st;
2450 	uint64_t start;
2451 	enum i915_cache_level level;
2452 	u32 flags;
2453 };
2454 
2455 static int gen8_ggtt_insert_entries__cb(void *_arg)
2456 {
2457 	struct insert_entries *arg = _arg;
2458 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2459 				 arg->start, arg->level, arg->flags);
2460 	return 0;
2461 }
2462 
2463 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2464 					  struct sg_table *st,
2465 					  uint64_t start,
2466 					  enum i915_cache_level level,
2467 					  u32 flags)
2468 {
2469 	struct insert_entries arg = { vm, st, start, level, flags };
2470 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2471 }
2472 
2473 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2474 				  dma_addr_t addr,
2475 				  uint64_t offset,
2476 				  enum i915_cache_level level,
2477 				  u32 flags)
2478 {
2479 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2480 	gen6_pte_t __iomem *pte =
2481 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2482 		(offset >> PAGE_SHIFT);
2483 
2484 	iowrite32(vm->pte_encode(addr, level, flags), pte);
2485 
2486 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2487 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2488 }
2489 
2490 /*
2491  * Binds an object into the global gtt with the specified cache level. The object
2492  * will be accessible to the GPU via commands whose operands reference offsets
2493  * within the global GTT as well as accessible by the GPU through the GMADR
2494  * mapped BAR (dev_priv->mm.gtt->gtt).
2495  */
2496 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2497 				     struct sg_table *st,
2498 				     uint64_t start,
2499 				     enum i915_cache_level level, u32 flags)
2500 {
2501 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2502 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2503 	struct sgt_iter sgt_iter;
2504 	gen6_pte_t __iomem *gtt_entries;
2505 	gen6_pte_t gtt_entry;
2506 	dma_addr_t addr;
2507 	int i = 0;
2508 
2509 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2510 
2511 	for_each_sgt_dma(addr, sgt_iter, st) {
2512 		gtt_entry = vm->pte_encode(addr, level, flags);
2513 		iowrite32(gtt_entry, &gtt_entries[i++]);
2514 	}
2515 
2516 	/* XXX: This serves as a posting read to make sure that the PTE has
2517 	 * actually been updated. There is some concern that even though
2518 	 * registers and PTEs are within the same BAR that they are potentially
2519 	 * of NUMA access patterns. Therefore, even with the way we assume
2520 	 * hardware should work, we must keep this posting read for paranoia.
2521 	 */
2522 	if (i != 0)
2523 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2524 
2525 	/* This next bit makes the above posting read even more important. We
2526 	 * want to flush the TLBs only after we're certain all the PTE updates
2527 	 * have finished.
2528 	 */
2529 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2530 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2531 }
2532 
2533 static void nop_clear_range(struct i915_address_space *vm,
2534 			    uint64_t start, uint64_t length)
2535 {
2536 }
2537 
2538 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2539 				  uint64_t start, uint64_t length)
2540 {
2541 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2542 	unsigned first_entry = start >> PAGE_SHIFT;
2543 	unsigned num_entries = length >> PAGE_SHIFT;
2544 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2545 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2546 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2547 	int i;
2548 
2549 	if (WARN(num_entries > max_entries,
2550 		 "First entry = %d; Num entries = %d (max=%d)\n",
2551 		 first_entry, num_entries, max_entries))
2552 		num_entries = max_entries;
2553 
2554 	scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2555 				      I915_CACHE_LLC);
2556 	for (i = 0; i < num_entries; i++)
2557 		gen8_set_pte(&gtt_base[i], scratch_pte);
2558 	readl(gtt_base);
2559 }
2560 
2561 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2562 				  uint64_t start,
2563 				  uint64_t length)
2564 {
2565 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2566 	unsigned first_entry = start >> PAGE_SHIFT;
2567 	unsigned num_entries = length >> PAGE_SHIFT;
2568 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2569 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2570 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2571 	int i;
2572 
2573 	if (WARN(num_entries > max_entries,
2574 		 "First entry = %d; Num entries = %d (max=%d)\n",
2575 		 first_entry, num_entries, max_entries))
2576 		num_entries = max_entries;
2577 
2578 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2579 				     I915_CACHE_LLC, 0);
2580 
2581 	for (i = 0; i < num_entries; i++)
2582 		iowrite32(scratch_pte, &gtt_base[i]);
2583 	readl(gtt_base);
2584 }
2585 
2586 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2587 				  dma_addr_t addr,
2588 				  uint64_t offset,
2589 				  enum i915_cache_level cache_level,
2590 				  u32 unused)
2591 {
2592 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2593 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2594 
2595 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2596 }
2597 
2598 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2599 				     struct sg_table *pages,
2600 				     uint64_t start,
2601 				     enum i915_cache_level cache_level, u32 unused)
2602 {
2603 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2604 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2605 
2606 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2607 
2608 }
2609 
2610 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2611 				  uint64_t start,
2612 				  uint64_t length)
2613 {
2614 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2615 }
2616 
2617 static int ggtt_bind_vma(struct i915_vma *vma,
2618 			 enum i915_cache_level cache_level,
2619 			 u32 flags)
2620 {
2621 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2622 	struct drm_i915_gem_object *obj = vma->obj;
2623 	u32 pte_flags = 0;
2624 	int ret;
2625 
2626 	ret = i915_get_ggtt_vma_pages(vma);
2627 	if (ret)
2628 		return ret;
2629 
2630 	/* Currently applicable only to VLV */
2631 	if (obj->gt_ro)
2632 		pte_flags |= PTE_READ_ONLY;
2633 
2634 	intel_runtime_pm_get(i915);
2635 	vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2636 				cache_level, pte_flags);
2637 	intel_runtime_pm_put(i915);
2638 
2639 	/*
2640 	 * Without aliasing PPGTT there's no difference between
2641 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2642 	 * upgrade to both bound if we bind either to avoid double-binding.
2643 	 */
2644 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2645 
2646 	return 0;
2647 }
2648 
2649 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2650 				 enum i915_cache_level cache_level,
2651 				 u32 flags)
2652 {
2653 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2654 	u32 pte_flags;
2655 	int ret;
2656 
2657 	ret = i915_get_ggtt_vma_pages(vma);
2658 	if (ret)
2659 		return ret;
2660 
2661 	/* Currently applicable only to VLV */
2662 	pte_flags = 0;
2663 	if (vma->obj->gt_ro)
2664 		pte_flags |= PTE_READ_ONLY;
2665 
2666 
2667 	if (flags & I915_VMA_GLOBAL_BIND) {
2668 		intel_runtime_pm_get(i915);
2669 		vma->vm->insert_entries(vma->vm,
2670 					vma->pages, vma->node.start,
2671 					cache_level, pte_flags);
2672 		intel_runtime_pm_put(i915);
2673 	}
2674 
2675 	if (flags & I915_VMA_LOCAL_BIND) {
2676 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2677 		appgtt->base.insert_entries(&appgtt->base,
2678 					    vma->pages, vma->node.start,
2679 					    cache_level, pte_flags);
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static void ggtt_unbind_vma(struct i915_vma *vma)
2686 {
2687 	struct drm_i915_private *i915 = to_i915(vma->vm->dev);
2688 	struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2689 	const u64 size = min(vma->size, vma->node.size);
2690 
2691 	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2692 		intel_runtime_pm_get(i915);
2693 		vma->vm->clear_range(vma->vm,
2694 				     vma->node.start, size);
2695 		intel_runtime_pm_put(i915);
2696 	}
2697 
2698 	if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2699 		appgtt->base.clear_range(&appgtt->base,
2700 					 vma->node.start, size);
2701 }
2702 
2703 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2704 			       struct sg_table *pages)
2705 {
2706 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2707 	struct device *kdev = &dev_priv->drm.pdev->dev;
2708 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2709 
2710 	if (unlikely(ggtt->do_idle_maps)) {
2711 		if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2712 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2713 			/* Wait a bit, in hopes it avoids the hang */
2714 			udelay(10);
2715 		}
2716 	}
2717 
2718 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2719 }
2720 
2721 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2722 				  unsigned long color,
2723 				  u64 *start,
2724 				  u64 *end)
2725 {
2726 	if (node->color != color)
2727 		*start += 4096;
2728 
2729 	node = list_first_entry_or_null(&node->node_list,
2730 					struct drm_mm_node,
2731 					node_list);
2732 	if (node && node->allocated && node->color != color)
2733 		*end -= 4096;
2734 }
2735 
2736 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2737 {
2738 	/* Let GEM Manage all of the aperture.
2739 	 *
2740 	 * However, leave one page at the end still bound to the scratch page.
2741 	 * There are a number of places where the hardware apparently prefetches
2742 	 * past the end of the object, and we've seen multiple hangs with the
2743 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2744 	 * aperture.  One page should be enough to keep any prefetching inside
2745 	 * of the aperture.
2746 	 */
2747 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2748 	unsigned long hole_start, hole_end;
2749 	struct i915_hw_ppgtt *ppgtt;
2750 	struct drm_mm_node *entry;
2751 	int ret;
2752 	unsigned long mappable = min(ggtt->base.total, ggtt->mappable_end);
2753 
2754 	ret = intel_vgt_balloon(dev_priv);
2755 	if (ret)
2756 		return ret;
2757 
2758 	/* Reserve a mappable slot for our lockless error capture */
2759 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2760 						  &ggtt->error_capture,
2761 						  4096, 0, -1,
2762 						  0, ggtt->mappable_end,
2763 						  0, 0);
2764 	if (ret)
2765 		return ret;
2766 
2767 	/* Clear any non-preallocated blocks */
2768 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2769 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2770 			      hole_start, hole_end);
2771 		ggtt->base.clear_range(&ggtt->base, hole_start,
2772 				       hole_end - hole_start);
2773 	}
2774 
2775 #ifdef __DragonFly__
2776 	DRM_INFO("taking over the fictitious range 0x%llx-0x%llx\n",
2777 	    dev_priv->ggtt.mappable_base, dev_priv->ggtt.mappable_end);
2778 	vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base,
2779 	     dev_priv->ggtt.mappable_base + mappable, VM_MEMATTR_WRITE_COMBINING);
2780 #endif
2781 
2782 	/* And finally clear the reserved guard page */
2783 	ggtt->base.clear_range(&ggtt->base,
2784 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2785 
2786 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2787 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2788 		if (!ppgtt) {
2789 			ret = -ENOMEM;
2790 			goto err;
2791 		}
2792 
2793 		ret = __hw_ppgtt_init(ppgtt, dev_priv);
2794 		if (ret)
2795 			goto err_ppgtt;
2796 
2797 		if (ppgtt->base.allocate_va_range) {
2798 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2799 							    ppgtt->base.total);
2800 			if (ret)
2801 				goto err_ppgtt_cleanup;
2802 		}
2803 
2804 		ppgtt->base.clear_range(&ppgtt->base,
2805 					ppgtt->base.start,
2806 					ppgtt->base.total);
2807 
2808 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2809 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2810 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2811 	}
2812 
2813 	return 0;
2814 
2815 err_ppgtt_cleanup:
2816 	ppgtt->base.cleanup(&ppgtt->base);
2817 err_ppgtt:
2818 	kfree(ppgtt);
2819 err:
2820 	drm_mm_remove_node(&ggtt->error_capture);
2821 	return ret;
2822 }
2823 
2824 /**
2825  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2826  * @dev_priv: i915 device
2827  */
2828 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2829 {
2830 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2831 
2832 	if (dev_priv->mm.aliasing_ppgtt) {
2833 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2834 		ppgtt->base.cleanup(&ppgtt->base);
2835 		kfree(ppgtt);
2836 	}
2837 
2838 	i915_gem_cleanup_stolen(&dev_priv->drm);
2839 
2840 	if (drm_mm_node_allocated(&ggtt->error_capture))
2841 		drm_mm_remove_node(&ggtt->error_capture);
2842 
2843 	if (drm_mm_initialized(&ggtt->base.mm)) {
2844 		intel_vgt_deballoon(dev_priv);
2845 
2846 		mutex_lock(&dev_priv->drm.struct_mutex);
2847 		i915_address_space_fini(&ggtt->base);
2848 		mutex_unlock(&dev_priv->drm.struct_mutex);
2849 	}
2850 
2851 	ggtt->base.cleanup(&ggtt->base);
2852 
2853 	arch_phys_wc_del(ggtt->mtrr);
2854 	io_mapping_fini(&ggtt->mappable);
2855 }
2856 
2857 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2858 {
2859 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2860 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2861 	return snb_gmch_ctl << 20;
2862 }
2863 
2864 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2865 {
2866 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2867 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2868 	if (bdw_gmch_ctl)
2869 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2870 
2871 #ifdef CONFIG_X86_32
2872 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2873 	if (bdw_gmch_ctl > 4)
2874 		bdw_gmch_ctl = 4;
2875 #endif
2876 
2877 	return bdw_gmch_ctl << 20;
2878 }
2879 
2880 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2881 {
2882 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2883 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2884 
2885 	if (gmch_ctrl)
2886 		return 1 << (20 + gmch_ctrl);
2887 
2888 	return 0;
2889 }
2890 
2891 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2892 {
2893 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2894 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2895 	return snb_gmch_ctl << 25; /* 32 MB units */
2896 }
2897 
2898 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2899 {
2900 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2901 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2902 	return bdw_gmch_ctl << 25; /* 32 MB units */
2903 }
2904 
2905 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2906 {
2907 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2908 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2909 
2910 	/*
2911 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2912 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2913 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2914 	 */
2915 	if (gmch_ctrl < 0x11)
2916 		return gmch_ctrl << 25;
2917 	else if (gmch_ctrl < 0x17)
2918 		return (gmch_ctrl - 0x11 + 2) << 22;
2919 	else
2920 		return (gmch_ctrl - 0x17 + 9) << 22;
2921 }
2922 
2923 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2924 {
2925 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2926 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2927 
2928 	if (gen9_gmch_ctl < 0xf0)
2929 		return gen9_gmch_ctl << 25; /* 32 MB units */
2930 	else
2931 		/* 4MB increments starting at 0xf0 for 4MB */
2932 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2933 }
2934 
2935 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2936 {
2937 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
2938 	struct pci_dev *pdev = ggtt->base.dev->pdev;
2939 	phys_addr_t phys_addr;
2940 	int ret;
2941 
2942 	/* For Modern GENs the PTEs and register space are split in the BAR */
2943 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2944 
2945 	/*
2946 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2947 	 * dropped. For WC mappings in general we have 64 byte burst writes
2948 	 * when the WC buffer is flushed, so we can't use it, but have to
2949 	 * resort to an uncached mapping. The WC issue is easily caught by the
2950 	 * readback check when writing GTT PTE entries.
2951 	 */
2952 	if (IS_BROXTON(dev_priv))
2953 		ggtt->gsm = ioremap_nocache(phys_addr, size);
2954 	else
2955 		ggtt->gsm = ioremap_wc(phys_addr, size);
2956 	if (!ggtt->gsm) {
2957 		DRM_ERROR("Failed to map the ggtt page table\n");
2958 		return -ENOMEM;
2959 	}
2960 
2961 	ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2962 	if (ret) {
2963 		DRM_ERROR("Scratch setup failed\n");
2964 		/* iounmap will also get called at remove, but meh */
2965 		iounmap(ggtt->gsm);
2966 		return ret;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2973  * bits. When using advanced contexts each context stores its own PAT, but
2974  * writing this data shouldn't be harmful even in those cases. */
2975 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2976 {
2977 	uint64_t pat;
2978 
2979 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2980 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2981 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2982 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2983 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2984 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2985 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2986 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2987 
2988 	if (!USES_PPGTT(dev_priv))
2989 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2990 		 * so RTL will always use the value corresponding to
2991 		 * pat_sel = 000".
2992 		 * So let's disable cache for GGTT to avoid screen corruptions.
2993 		 * MOCS still can be used though.
2994 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2995 		 * before this patch, i.e. the same uncached + snooping access
2996 		 * like on gen6/7 seems to be in effect.
2997 		 * - So this just fixes blitter/render access. Again it looks
2998 		 * like it's not just uncached access, but uncached + snooping.
2999 		 * So we can still hold onto all our assumptions wrt cpu
3000 		 * clflushing on LLC machines.
3001 		 */
3002 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3003 
3004 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3005 	 * write would work. */
3006 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3007 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3008 }
3009 
3010 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3011 {
3012 	uint64_t pat;
3013 
3014 	/*
3015 	 * Map WB on BDW to snooped on CHV.
3016 	 *
3017 	 * Only the snoop bit has meaning for CHV, the rest is
3018 	 * ignored.
3019 	 *
3020 	 * The hardware will never snoop for certain types of accesses:
3021 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3022 	 * - PPGTT page tables
3023 	 * - some other special cycles
3024 	 *
3025 	 * As with BDW, we also need to consider the following for GT accesses:
3026 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3027 	 * so RTL will always use the value corresponding to
3028 	 * pat_sel = 000".
3029 	 * Which means we must set the snoop bit in PAT entry 0
3030 	 * in order to keep the global status page working.
3031 	 */
3032 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3033 	      GEN8_PPAT(1, 0) |
3034 	      GEN8_PPAT(2, 0) |
3035 	      GEN8_PPAT(3, 0) |
3036 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3037 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3038 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3039 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3040 
3041 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3042 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3043 }
3044 
3045 static void gen6_gmch_remove(struct i915_address_space *vm)
3046 {
3047 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3048 
3049 	iounmap(ggtt->gsm);
3050 	cleanup_scratch_page(to_i915(vm->dev), &vm->scratch_page);
3051 }
3052 
3053 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3054 {
3055 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3056 	struct pci_dev *pdev = dev_priv->drm.pdev;
3057 	unsigned int size;
3058 	u16 snb_gmch_ctl;
3059 
3060 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3061 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3062 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3063 
3064 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3065 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3066 
3067 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3068 
3069 	if (INTEL_GEN(dev_priv) >= 9) {
3070 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3071 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3072 	} else if (IS_CHERRYVIEW(dev_priv)) {
3073 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3074 		size = chv_get_total_gtt_size(snb_gmch_ctl);
3075 	} else {
3076 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3077 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
3078 	}
3079 
3080 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3081 
3082 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3083 		chv_setup_private_ppat(dev_priv);
3084 	else
3085 		bdw_setup_private_ppat(dev_priv);
3086 
3087 	ggtt->base.cleanup = gen6_gmch_remove;
3088 	ggtt->base.bind_vma = ggtt_bind_vma;
3089 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3090 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3091 	ggtt->base.clear_range = nop_clear_range;
3092 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3093 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3094 
3095 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3096 	if (IS_CHERRYVIEW(dev_priv))
3097 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3098 
3099 	return ggtt_probe_common(ggtt, size);
3100 }
3101 
3102 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3103 {
3104 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3105 	struct pci_dev *pdev = dev_priv->drm.pdev;
3106 	unsigned int size;
3107 	u16 snb_gmch_ctl;
3108 
3109 	ggtt->mappable_base = pci_resource_start(pdev, 2);
3110 	ggtt->mappable_end = pci_resource_len(pdev, 2);
3111 
3112 	/* 64/512MB is the current min/max we actually know of, but this is just
3113 	 * a coarse sanity check.
3114 	 */
3115 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3116 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3117 		return -ENXIO;
3118 	}
3119 
3120 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3121 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3122 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3123 
3124 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3125 
3126 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3127 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3128 
3129 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3130 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3131 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3132 	ggtt->base.bind_vma = ggtt_bind_vma;
3133 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3134 	ggtt->base.cleanup = gen6_gmch_remove;
3135 
3136 	if (HAS_EDRAM(dev_priv))
3137 		ggtt->base.pte_encode = iris_pte_encode;
3138 	else if (IS_HASWELL(dev_priv))
3139 		ggtt->base.pte_encode = hsw_pte_encode;
3140 	else if (IS_VALLEYVIEW(dev_priv))
3141 		ggtt->base.pte_encode = byt_pte_encode;
3142 	else if (INTEL_GEN(dev_priv) >= 7)
3143 		ggtt->base.pte_encode = ivb_pte_encode;
3144 	else
3145 		ggtt->base.pte_encode = snb_pte_encode;
3146 
3147 	return ggtt_probe_common(ggtt, size);
3148 }
3149 
3150 static void i915_gmch_remove(struct i915_address_space *vm)
3151 {
3152 	intel_gmch_remove();
3153 }
3154 
3155 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3156 {
3157 	struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3158 #if 0
3159 	int ret;
3160 
3161 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3162 	if (!ret) {
3163 		DRM_ERROR("failed to set up gmch\n");
3164 		return -EIO;
3165 	}
3166 #endif
3167 
3168 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3169 		      &ggtt->mappable_base, &ggtt->mappable_end);
3170 
3171 	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3172 	ggtt->base.insert_page = i915_ggtt_insert_page;
3173 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3174 	ggtt->base.clear_range = i915_ggtt_clear_range;
3175 	ggtt->base.bind_vma = ggtt_bind_vma;
3176 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3177 	ggtt->base.cleanup = i915_gmch_remove;
3178 
3179 	if (unlikely(ggtt->do_idle_maps))
3180 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3181 
3182 	return 0;
3183 }
3184 
3185 /**
3186  * i915_ggtt_probe_hw - Probe GGTT hardware location
3187  * @dev_priv: i915 device
3188  */
3189 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3190 {
3191 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3192 	int ret;
3193 
3194 	ggtt->base.dev = &dev_priv->drm;
3195 
3196 	if (INTEL_GEN(dev_priv) <= 5)
3197 		ret = i915_gmch_probe(ggtt);
3198 	else if (INTEL_GEN(dev_priv) < 8)
3199 		ret = gen6_gmch_probe(ggtt);
3200 	else
3201 		ret = gen8_gmch_probe(ggtt);
3202 	if (ret)
3203 		return ret;
3204 
3205 	if ((ggtt->base.total - 1) >> 32) {
3206 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3207 			  " of address space! Found %lldM!\n",
3208 			  ggtt->base.total >> 20);
3209 		ggtt->base.total = 1ULL << 32;
3210 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3211 	}
3212 
3213 	if (ggtt->mappable_end > ggtt->base.total) {
3214 		DRM_ERROR("mappable aperture extends past end of GGTT,"
3215 			  " aperture=%llx, total=%llx\n",
3216 			  ggtt->mappable_end, ggtt->base.total);
3217 		ggtt->mappable_end = ggtt->base.total;
3218 	}
3219 
3220 	/* GMADR is the PCI mmio aperture into the global GTT. */
3221 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3222 		 ggtt->base.total >> 20);
3223 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3224 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3225 #ifdef CONFIG_INTEL_IOMMU
3226 	if (intel_iommu_gfx_mapped)
3227 		DRM_INFO("VT-d active for gfx access\n");
3228 #endif
3229 
3230 	return 0;
3231 }
3232 
3233 /**
3234  * i915_ggtt_init_hw - Initialize GGTT hardware
3235  * @dev_priv: i915 device
3236  */
3237 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3238 {
3239 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3240 	int ret;
3241 
3242 	INIT_LIST_HEAD(&dev_priv->vm_list);
3243 
3244 	/* Subtract the guard page before address space initialization to
3245 	 * shrink the range used by drm_mm.
3246 	 */
3247 	mutex_lock(&dev_priv->drm.struct_mutex);
3248 	ggtt->base.total -= PAGE_SIZE;
3249 	i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3250 	ggtt->base.total += PAGE_SIZE;
3251 	if (!HAS_LLC(dev_priv))
3252 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3253 	mutex_unlock(&dev_priv->drm.struct_mutex);
3254 
3255 	if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3256 				dev_priv->ggtt.mappable_base,
3257 				dev_priv->ggtt.mappable_end)) {
3258 		ret = -EIO;
3259 		goto out_gtt_cleanup;
3260 	}
3261 
3262 	ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3263 
3264 	/*
3265 	 * Initialise stolen early so that we may reserve preallocated
3266 	 * objects for the BIOS to KMS transition.
3267 	 */
3268 	ret = i915_gem_init_stolen(dev_priv);
3269 	if (ret)
3270 		goto out_gtt_cleanup;
3271 
3272 	return 0;
3273 
3274 out_gtt_cleanup:
3275 	ggtt->base.cleanup(&ggtt->base);
3276 	return ret;
3277 }
3278 
3279 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3280 {
3281 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3282 		return -EIO;
3283 
3284 	return 0;
3285 }
3286 
3287 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3288 {
3289 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3290 	struct drm_i915_gem_object *obj, *on;
3291 
3292 	i915_check_and_clear_faults(dev_priv);
3293 
3294 	/* First fill our portion of the GTT with scratch pages */
3295 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3296 
3297 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3298 
3299 	/* clflush objects bound into the GGTT and rebind them. */
3300 	list_for_each_entry_safe(obj, on,
3301 				 &dev_priv->mm.bound_list, global_link) {
3302 		bool ggtt_bound = false;
3303 		struct i915_vma *vma;
3304 
3305 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3306 			if (vma->vm != &ggtt->base)
3307 				continue;
3308 
3309 			if (!i915_vma_unbind(vma))
3310 				continue;
3311 
3312 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3313 					      PIN_UPDATE));
3314 			ggtt_bound = true;
3315 		}
3316 
3317 		if (ggtt_bound)
3318 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3319 	}
3320 
3321 	ggtt->base.closed = false;
3322 
3323 	if (INTEL_GEN(dev_priv) >= 8) {
3324 		if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3325 			chv_setup_private_ppat(dev_priv);
3326 		else
3327 			bdw_setup_private_ppat(dev_priv);
3328 
3329 		return;
3330 	}
3331 
3332 	if (USES_PPGTT(dev_priv)) {
3333 		struct i915_address_space *vm;
3334 
3335 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3336 			/* TODO: Perhaps it shouldn't be gen6 specific */
3337 
3338 			struct i915_hw_ppgtt *ppgtt;
3339 
3340 			if (i915_is_ggtt(vm))
3341 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3342 			else
3343 				ppgtt = i915_vm_to_ppgtt(vm);
3344 
3345 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3346 					      0, ppgtt->base.total);
3347 		}
3348 	}
3349 
3350 	i915_ggtt_flush(dev_priv);
3351 }
3352 
3353 struct i915_vma *
3354 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3355 		    struct i915_address_space *vm,
3356 		    const struct i915_ggtt_view *view)
3357 {
3358 	struct rb_node *rb;
3359 
3360 	rb = obj->vma_tree.rb_node;
3361 	while (rb) {
3362 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3363 		long cmp;
3364 
3365 		cmp = i915_vma_compare(vma, vm, view);
3366 		if (cmp == 0)
3367 			return vma;
3368 
3369 		if (cmp < 0)
3370 			rb = rb->rb_right;
3371 		else
3372 			rb = rb->rb_left;
3373 	}
3374 
3375 	return NULL;
3376 }
3377 
3378 struct i915_vma *
3379 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3380 				  struct i915_address_space *vm,
3381 				  const struct i915_ggtt_view *view)
3382 {
3383 	struct i915_vma *vma;
3384 
3385 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3386 	GEM_BUG_ON(view && !i915_is_ggtt(vm));
3387 
3388 	vma = i915_gem_obj_to_vma(obj, vm, view);
3389 	if (!vma) {
3390 		vma = i915_vma_create(obj, vm, view);
3391 		GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3392 	}
3393 
3394 	GEM_BUG_ON(i915_vma_is_closed(vma));
3395 	return vma;
3396 }
3397 
3398 static struct scatterlist *
3399 rotate_pages(const dma_addr_t *in, unsigned int offset,
3400 	     unsigned int width, unsigned int height,
3401 	     unsigned int stride,
3402 	     struct sg_table *st, struct scatterlist *sg)
3403 {
3404 	unsigned int column, row;
3405 	unsigned int src_idx;
3406 
3407 	for (column = 0; column < width; column++) {
3408 		src_idx = stride * (height - 1) + column;
3409 		for (row = 0; row < height; row++) {
3410 			st->nents++;
3411 			/* We don't need the pages, but need to initialize
3412 			 * the entries so the sg list can be happily traversed.
3413 			 * The only thing we need are DMA addresses.
3414 			 */
3415 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3416 			sg_dma_address(sg) = in[offset + src_idx];
3417 			sg_dma_len(sg) = PAGE_SIZE;
3418 			sg = sg_next(sg);
3419 			src_idx -= stride;
3420 		}
3421 	}
3422 
3423 	return sg;
3424 }
3425 
3426 static struct sg_table *
3427 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3428 			  struct drm_i915_gem_object *obj)
3429 {
3430 	const size_t n_pages = obj->base.size / PAGE_SIZE;
3431 	unsigned int size = intel_rotation_info_size(rot_info);
3432 	struct sgt_iter sgt_iter;
3433 	dma_addr_t dma_addr;
3434 	unsigned long i;
3435 	dma_addr_t *page_addr_list;
3436 	struct sg_table *st;
3437 	struct scatterlist *sg;
3438 	int ret = -ENOMEM;
3439 
3440 	/* Allocate a temporary list of source pages for random access. */
3441 	page_addr_list = drm_malloc_gfp(n_pages,
3442 					sizeof(dma_addr_t),
3443 					GFP_TEMPORARY);
3444 	if (!page_addr_list)
3445 		return ERR_PTR(ret);
3446 
3447 	/* Allocate target SG list. */
3448 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3449 	if (!st)
3450 		goto err_st_alloc;
3451 
3452 	ret = sg_alloc_table(st, size, GFP_KERNEL);
3453 	if (ret)
3454 		goto err_sg_alloc;
3455 
3456 	/* Populate source page list from the object. */
3457 	i = 0;
3458 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3459 		page_addr_list[i++] = dma_addr;
3460 
3461 	GEM_BUG_ON(i != n_pages);
3462 	st->nents = 0;
3463 	sg = st->sgl;
3464 
3465 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3466 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3467 				  rot_info->plane[i].width, rot_info->plane[i].height,
3468 				  rot_info->plane[i].stride, st, sg);
3469 	}
3470 
3471 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3472 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3473 
3474 	drm_free_large(page_addr_list);
3475 
3476 	return st;
3477 
3478 err_sg_alloc:
3479 	kfree(st);
3480 err_st_alloc:
3481 	drm_free_large(page_addr_list);
3482 
3483 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3484 		      obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3485 
3486 	return ERR_PTR(ret);
3487 }
3488 
3489 static struct sg_table *
3490 intel_partial_pages(const struct i915_ggtt_view *view,
3491 		    struct drm_i915_gem_object *obj)
3492 {
3493 	struct sg_table *st;
3494 	struct scatterlist *sg, *iter;
3495 	unsigned int count = view->params.partial.size;
3496 	unsigned int offset;
3497 	int ret = -ENOMEM;
3498 
3499 	st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3500 	if (!st)
3501 		goto err_st_alloc;
3502 
3503 	ret = sg_alloc_table(st, count, GFP_KERNEL);
3504 	if (ret)
3505 		goto err_sg_alloc;
3506 
3507 	iter = i915_gem_object_get_sg(obj,
3508 				      view->params.partial.offset,
3509 				      &offset);
3510 	GEM_BUG_ON(!iter);
3511 
3512 	sg = st->sgl;
3513 	st->nents = 0;
3514 	do {
3515 		unsigned int len;
3516 
3517 		len = min(iter->length - (offset << PAGE_SHIFT),
3518 			  count << PAGE_SHIFT);
3519 		sg_set_page(sg, NULL, len, 0);
3520 		sg_dma_address(sg) =
3521 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
3522 		sg_dma_len(sg) = len;
3523 
3524 		st->nents++;
3525 		count -= len >> PAGE_SHIFT;
3526 		if (count == 0) {
3527 			sg_mark_end(sg);
3528 			return st;
3529 		}
3530 
3531 		sg = __sg_next(sg);
3532 		iter = __sg_next(iter);
3533 		offset = 0;
3534 	} while (1);
3535 
3536 err_sg_alloc:
3537 	kfree(st);
3538 err_st_alloc:
3539 	return ERR_PTR(ret);
3540 }
3541 
3542 static int
3543 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3544 {
3545 	int ret = 0;
3546 
3547 	/* The vma->pages are only valid within the lifespan of the borrowed
3548 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3549 	 * must be the vma->pages. A simple rule is that vma->pages must only
3550 	 * be accessed when the obj->mm.pages are pinned.
3551 	 */
3552 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3553 
3554 	if (vma->pages)
3555 		return 0;
3556 
3557 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3558 		vma->pages = vma->obj->mm.pages;
3559 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3560 		vma->pages =
3561 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3562 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3563 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3564 	else
3565 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3566 			  vma->ggtt_view.type);
3567 
3568 	if (!vma->pages) {
3569 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3570 			  vma->ggtt_view.type);
3571 		ret = -EINVAL;
3572 	} else if (IS_ERR(vma->pages)) {
3573 		ret = PTR_ERR(vma->pages);
3574 		vma->pages = NULL;
3575 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3576 			  vma->ggtt_view.type, ret);
3577 	}
3578 
3579 	return ret;
3580 }
3581 
3582