xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision b29f78b5)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "intel_drv.h"
29 
30 #include <linux/highmem.h>
31 
32 /* PPGTT stuff */
33 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
34 
35 #define GEN6_PDE_VALID			(1 << 0)
36 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
37 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
38 
39 #define GEN6_PTE_VALID			(1 << 0)
40 #define GEN6_PTE_UNCACHED		(1 << 1)
41 #define HSW_PTE_UNCACHED		(0)
42 #define GEN6_PTE_CACHE_LLC		(2 << 1)
43 #define GEN6_PTE_CACHE_LLC_MLC		(3 << 1)
44 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
45 
46 static gen6_gtt_pte_t gen6_pte_encode(struct drm_device *dev,
47 				      dma_addr_t addr,
48 				      enum i915_cache_level level)
49 {
50 	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
51 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
52 
53 	switch (level) {
54 	case I915_CACHE_LLC_MLC:
55 		pte |= GEN6_PTE_CACHE_LLC_MLC;
56 		break;
57 	case I915_CACHE_LLC:
58 		pte |= GEN6_PTE_CACHE_LLC;
59 		break;
60 	case I915_CACHE_NONE:
61 		pte |= GEN6_PTE_UNCACHED;
62 		break;
63 	default:
64 		BUG();
65 	}
66 
67 	return pte;
68 }
69 
70 #define BYT_PTE_WRITEABLE		(1 << 1)
71 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
72 
73 static gen6_gtt_pte_t byt_pte_encode(struct drm_device *dev,
74 				     dma_addr_t addr,
75 				     enum i915_cache_level level)
76 {
77 	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
78 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
79 
80 	/* Mark the page as writeable.  Other platforms don't have a
81 	 * setting for read-only/writable, so this matches that behavior.
82 	 */
83 	pte |= BYT_PTE_WRITEABLE;
84 
85 	if (level != I915_CACHE_NONE)
86 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
87 
88 	return pte;
89 }
90 
91 static gen6_gtt_pte_t hsw_pte_encode(struct drm_device *dev,
92 				     dma_addr_t addr,
93 				     enum i915_cache_level level)
94 {
95 	gen6_gtt_pte_t pte = GEN6_PTE_VALID;
96 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
97 
98 	if (level != I915_CACHE_NONE)
99 		pte |= GEN6_PTE_CACHE_LLC;
100 
101 	return pte;
102 }
103 
104 static int gen6_ppgtt_enable(struct drm_device *dev)
105 {
106 	drm_i915_private_t *dev_priv = dev->dev_private;
107 	uint32_t pd_offset;
108 	struct intel_ring_buffer *ring;
109 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
110 	uint32_t pd_entry, first_pd_entry_in_global_pt;
111 	int i;
112 
113 	WARN_ON(ppgtt->pd_offset & 0x3f);
114 
115 	first_pd_entry_in_global_pt = 512 * 1024 - I915_PPGTT_PD_ENTRIES;
116 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
117 		dma_addr_t pt_addr;
118 
119 		pt_addr = VM_PAGE_TO_PHYS(ppgtt->pt_pages[i]);
120 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
121 		pd_entry |= GEN6_PDE_VALID;
122 
123 		intel_gtt_write(first_pd_entry_in_global_pt + i, pd_entry);
124 	}
125 	intel_gtt_read_pte(first_pd_entry_in_global_pt);
126 
127 	pd_offset = ppgtt->pd_offset;
128 	pd_offset /= 64; /* in cachelines, */
129 	pd_offset <<= 16;
130 
131 	if (INTEL_INFO(dev)->gen == 6) {
132 		uint32_t ecochk, gab_ctl, ecobits;
133 
134 		ecobits = I915_READ(GAC_ECO_BITS);
135 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
136 					 ECOBITS_PPGTT_CACHE64B);
137 
138 		gab_ctl = I915_READ(GAB_CTL);
139 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
140 
141 		ecochk = I915_READ(GAM_ECOCHK);
142 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
143 				       ECOCHK_PPGTT_CACHE64B);
144 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
145 	} else if (INTEL_INFO(dev)->gen >= 7) {
146 		uint32_t ecochk, ecobits;
147 
148 		ecobits = I915_READ(GAC_ECO_BITS);
149 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
150 
151 		ecochk = I915_READ(GAM_ECOCHK);
152 		if (IS_HASWELL(dev)) {
153 			ecochk |= ECOCHK_PPGTT_WB_HSW;
154 		} else {
155 			ecochk |= ECOCHK_PPGTT_LLC_IVB;
156 			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
157 		}
158 		I915_WRITE(GAM_ECOCHK, ecochk);
159 		/* GFX_MODE is per-ring on gen7+ */
160 	}
161 
162 	for_each_ring(ring, dev_priv, i) {
163 		if (INTEL_INFO(dev)->gen >= 7)
164 			I915_WRITE(RING_MODE_GEN7(ring),
165 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
166 
167 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
168 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
169 	}
170 	return 0;
171 }
172 
173 /* PPGTT support for Sandybdrige/Gen6 and later */
174 static void gen6_ppgtt_clear_range(struct i915_hw_ppgtt *ppgtt,
175 				   unsigned first_entry,
176 				   unsigned num_entries)
177 {
178 	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
179 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
180 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
181 	unsigned last_pte, i;
182 
183 	scratch_pte = ppgtt->pte_encode(ppgtt->dev,
184 					ppgtt->scratch_page_dma_addr,
185 					I915_CACHE_LLC);
186 
187 	while (num_entries) {
188 		last_pte = first_pte + num_entries;
189 		if (last_pte > I915_PPGTT_PT_ENTRIES)
190 			last_pte = I915_PPGTT_PT_ENTRIES;
191 
192 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
193 
194 		for (i = first_pte; i < last_pte; i++)
195 			pt_vaddr[i] = scratch_pte;
196 
197 		kunmap_atomic(pt_vaddr);
198 
199 		num_entries -= last_pte - first_pte;
200 		first_pte = 0;
201 		act_pt++;
202 	}
203 }
204 
205 static void gen6_ppgtt_insert_entries(struct i915_hw_ppgtt *ppgtt,
206 				      struct sg_table *pages,
207 				      unsigned first_entry,
208 				      enum i915_cache_level cache_level)
209 {
210 	gen6_gtt_pte_t *pt_vaddr;
211 	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
212 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
213 	unsigned i, j, m, segment_len;
214 	dma_addr_t page_addr;
215 	struct scatterlist *sg;
216 
217 	/* init sg walking */
218 	sg = pages->sgl;
219 	i = 0;
220 	segment_len = sg_dma_len(sg) >> PAGE_SHIFT;
221 	m = 0;
222 
223 	while (i < pages->nents) {
224 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
225 
226 		for (j = first_pte; j < I915_PPGTT_PT_ENTRIES; j++) {
227 			page_addr = sg_dma_address(sg) + (m << PAGE_SHIFT);
228 			pt_vaddr[j] = ppgtt->pte_encode(ppgtt->dev, page_addr,
229 						      cache_level);
230 
231 			/* grab the next page */
232 			if (++m == segment_len) {
233 				if (++i == pages->nents)
234 					break;
235 
236 				sg = sg_next(sg);
237 				segment_len = sg_dma_len(sg) >> PAGE_SHIFT;
238 				m = 0;
239 			}
240 		}
241 
242 		kunmap_atomic(pt_vaddr);
243 
244 		first_pte = 0;
245 		act_pt++;
246 	}
247 }
248 
249 static void gen6_ppgtt_cleanup(struct i915_hw_ppgtt *ppgtt)
250 {
251 #if 0
252 	int i;
253 
254 	if (ppgtt->pt_dma_addr) {
255 		for (i = 0; i < ppgtt->num_pd_entries; i++)
256 			pci_unmap_page(ppgtt->dev->pdev,
257 				       ppgtt->pt_dma_addr[i],
258 				       4096, PCI_DMA_BIDIRECTIONAL);
259 	}
260 
261 	kfree(ppgtt->pt_dma_addr);
262 	for (i = 0; i < ppgtt->num_pd_entries; i++)
263 		__free_page(ppgtt->pt_pages[i]);
264 	kfree(ppgtt->pt_pages);
265 	kfree(ppgtt);
266 #endif
267 }
268 
269 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
270 {
271 	struct drm_device *dev = ppgtt->dev;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 	unsigned first_pd_entry_in_global_pt;
274 	int i;
275 	int ret = -ENOMEM;
276 
277 	/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
278 	 * entries. For aliasing ppgtt support we just steal them at the end for
279 	 * now.
280 	 */
281 	first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
282 
283 	if (IS_HASWELL(dev)) {
284 		ppgtt->pte_encode = hsw_pte_encode;
285 	} else if (IS_VALLEYVIEW(dev)) {
286 		ppgtt->pte_encode = byt_pte_encode;
287 	} else {
288 		ppgtt->pte_encode = gen6_pte_encode;
289 	}
290 	ppgtt->num_pd_entries = I915_PPGTT_PD_ENTRIES;
291 	ppgtt->enable = gen6_ppgtt_enable;
292 	ppgtt->clear_range = gen6_ppgtt_clear_range;
293 	ppgtt->insert_entries = gen6_ppgtt_insert_entries;
294 	ppgtt->cleanup = gen6_ppgtt_cleanup;
295 	ppgtt->pt_pages = kzalloc(sizeof(struct vm_page *)*ppgtt->num_pd_entries,
296 				  GFP_KERNEL);
297 	if (!ppgtt->pt_pages)
298 		return -ENOMEM;
299 
300 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
301 		ppgtt->pt_pages[i] = vm_page_alloc(NULL, 0,
302 		    VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
303 		if (!ppgtt->pt_pages[i])
304 			goto err_pt_alloc;
305 	}
306 
307 	ppgtt->clear_range(ppgtt, 0,
308 			   ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
309 
310 	ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
311 
312 	return 0;
313 
314 err_pt_alloc:
315 	dev_priv->mm.aliasing_ppgtt = ppgtt;
316 	i915_gem_cleanup_aliasing_ppgtt(dev);
317 
318 	return ret;
319 }
320 
321 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
322 {
323 	struct drm_i915_private *dev_priv = dev->dev_private;
324 	struct i915_hw_ppgtt *ppgtt;
325 	int ret;
326 
327 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
328 	if (!ppgtt)
329 		return -ENOMEM;
330 
331 	ppgtt->dev = dev;
332 	ppgtt->scratch_page_dma_addr = dev_priv->gtt.scratch_page_dma;
333 
334 	if (INTEL_INFO(dev)->gen < 8)
335 		ret = gen6_ppgtt_init(ppgtt);
336 	else
337 		BUG();
338 
339 	if (ret)
340 		kfree(ppgtt);
341 	else
342 		dev_priv->mm.aliasing_ppgtt = ppgtt;
343 
344 	return ret;
345 }
346 
347 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
348 {
349 	struct drm_i915_private *dev_priv = dev->dev_private;
350 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
351 
352 	if (!ppgtt)
353 		return;
354 
355 	ppgtt->cleanup(ppgtt);
356 	dev_priv->mm.aliasing_ppgtt = NULL;
357 }
358 
359 static void
360 i915_ppgtt_insert_pages(struct i915_hw_ppgtt *ppgtt, unsigned first_entry,
361     unsigned num_entries, vm_page_t *pages, enum i915_cache_level cache_level)
362 {
363 	uint32_t *pt_vaddr;
364 	unsigned act_pd = first_entry / I915_PPGTT_PT_ENTRIES;
365 	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
366 	unsigned last_pte, i;
367 	dma_addr_t page_addr;
368 
369 	while (num_entries) {
370 		last_pte = first_pte + num_entries;
371 		if (last_pte > I915_PPGTT_PT_ENTRIES)
372 			last_pte = I915_PPGTT_PT_ENTRIES;
373 
374 		pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pd]);
375 
376 		for (i = first_pte; i < last_pte; i++) {
377 			page_addr = VM_PAGE_TO_PHYS(*pages);
378 			pt_vaddr[i] = ppgtt->pte_encode(ppgtt->dev, page_addr,
379 						 cache_level);
380 
381 			pages++;
382 		}
383 
384 		kunmap_atomic(pt_vaddr);
385 
386 		num_entries -= last_pte - first_pte;
387 		first_pte = 0;
388 		act_pd++;
389 	}
390 }
391 
392 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
393 			    struct drm_i915_gem_object *obj,
394 			    enum i915_cache_level cache_level)
395 {
396 	i915_ppgtt_insert_pages(ppgtt, obj->gtt_space->start >> PAGE_SHIFT,
397 	    obj->base.size >> PAGE_SHIFT, obj->pages, cache_level);
398 }
399 
400 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
401 			      struct drm_i915_gem_object *obj)
402 {
403 	ppgtt->clear_range(ppgtt,
404 			   obj->gtt_space->start >> PAGE_SHIFT,
405 			   obj->base.size >> PAGE_SHIFT);
406 }
407 
408 extern int intel_iommu_gfx_mapped;
409 /* Certain Gen5 chipsets require require idling the GPU before
410  * unmapping anything from the GTT when VT-d is enabled.
411  */
412 static inline bool needs_idle_maps(struct drm_device *dev)
413 {
414 #ifdef CONFIG_INTEL_IOMMU
415 	/* Query intel_iommu to see if we need the workaround. Presumably that
416 	 * was loaded first.
417 	 */
418 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
419 		return true;
420 #endif
421 	return false;
422 }
423 
424 static bool do_idling(struct drm_i915_private *dev_priv)
425 {
426 	bool ret = dev_priv->mm.interruptible;
427 
428 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
429 		dev_priv->mm.interruptible = false;
430 		if (i915_gpu_idle(dev_priv->dev)) {
431 			DRM_ERROR("Couldn't idle GPU\n");
432 			/* Wait a bit, in hopes it avoids the hang */
433 			udelay(10);
434 		}
435 	}
436 
437 	return ret;
438 }
439 
440 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
441 {
442 	if (unlikely(dev_priv->gtt.do_idle_maps))
443 		dev_priv->mm.interruptible = interruptible;
444 }
445 
446 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
447 {
448 	struct drm_i915_private *dev_priv = dev->dev_private;
449 	struct drm_i915_gem_object *obj;
450 
451 	/* First fill our portion of the GTT with scratch pages */
452 	dev_priv->gtt.gtt_clear_range(dev, dev_priv->gtt.start / PAGE_SIZE,
453 				      dev_priv->gtt.total / PAGE_SIZE);
454 
455 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
456 		i915_gem_clflush_object(obj);
457 		i915_gem_gtt_bind_object(obj, obj->cache_level);
458 	}
459 
460 	i915_gem_chipset_flush(dev);
461 }
462 
463 #if 0
464 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
465 {
466 	if (obj->has_dma_mapping)
467 		return 0;
468 
469 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
470 			obj->pages->sgl, obj->pages->nents,
471 			PCI_DMA_BIDIRECTIONAL))
472 		return -ENOSPC;
473 
474 	return 0;
475 }
476 #endif
477 
478 /*
479  * Binds an object into the global gtt with the specified cache level. The object
480  * will be accessible to the GPU via commands whose operands reference offsets
481  * within the global GTT as well as accessible by the GPU through the GMADR
482  * mapped BAR (dev_priv->mm.gtt->gtt).
483  */
484 #if 0
485 static void gen6_ggtt_insert_entries(struct drm_device *dev,
486 				     struct sg_table *st,
487 				     unsigned int first_entry,
488 				     enum i915_cache_level level)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	gen6_gtt_pte_t __iomem *gtt_entries =
492 		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
493 	int i = 0;
494 	struct sg_page_iter sg_iter;
495 	dma_addr_t addr;
496 
497 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
498 		addr = sg_page_iter_dma_address(&sg_iter);
499 		iowrite32(dev_priv->gtt.pte_encode(dev, addr, level),
500 			  &gtt_entries[i]);
501 		i++;
502 	}
503 
504 	/* XXX: This serves as a posting read to make sure that the PTE has
505 	 * actually been updated. There is some concern that even though
506 	 * registers and PTEs are within the same BAR that they are potentially
507 	 * of NUMA access patterns. Therefore, even with the way we assume
508 	 * hardware should work, we must keep this posting read for paranoia.
509 	 */
510 	if (i != 0)
511 		WARN_ON(readl(&gtt_entries[i-1])
512 			!= dev_priv->gtt.pte_encode(dev, addr, level));
513 
514 	/* This next bit makes the above posting read even more important. We
515 	 * want to flush the TLBs only after we're certain all the PTE updates
516 	 * have finished.
517 	 */
518 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
519 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
520 }
521 
522 static void gen6_ggtt_clear_range(struct drm_device *dev,
523 				  unsigned int first_entry,
524 				  unsigned int num_entries)
525 {
526 	struct drm_i915_private *dev_priv = dev->dev_private;
527 	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
528 		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
529 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
530 	int i;
531 
532 	if (WARN(num_entries > max_entries,
533 		 "First entry = %d; Num entries = %d (max=%d)\n",
534 		 first_entry, num_entries, max_entries))
535 		num_entries = max_entries;
536 
537 	scratch_pte = dev_priv->gtt.pte_encode(dev,
538 					       dev_priv->gtt.scratch_page_dma,
539 					       I915_CACHE_LLC);
540 	for (i = 0; i < num_entries; i++)
541 		iowrite32(scratch_pte, &gtt_base[i]);
542 	readl(gtt_base);
543 }
544 #endif
545 
546 static void i915_ggtt_insert_entries(struct drm_device *dev,
547 				     struct sg_table *st,
548 				     unsigned int pg_start,
549 				     enum i915_cache_level cache_level)
550 {
551 #if 0
552 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
553 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
554 
555 	intel_gtt_insert_sg_entries(st, pg_start, flags);
556 #endif
557 }
558 
559 static void i915_ggtt_clear_range(struct drm_device *dev,
560 				  unsigned int first_entry,
561 				  unsigned int num_entries)
562 {
563 	intel_gtt_clear_range(first_entry, num_entries);
564 }
565 
566 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
567 			      enum i915_cache_level cache_level)
568 {
569 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
570 			AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
571 	intel_gtt_insert_pages(obj->gtt_space->start >> PAGE_SHIFT,
572 	    obj->base.size >> PAGE_SHIFT, obj->pages, flags);
573 
574 	obj->has_global_gtt_mapping = 1;
575 }
576 
577 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
578 {
579 	struct drm_device *dev = obj->base.dev;
580 	struct drm_i915_private *dev_priv = dev->dev_private;
581 
582 	dev_priv->gtt.gtt_clear_range(obj->base.dev,
583 				      obj->gtt_space->start >> PAGE_SHIFT,
584 				      obj->base.size >> PAGE_SHIFT);
585 
586 	obj->has_global_gtt_mapping = 0;
587 }
588 
589 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
590 {
591 	struct drm_device *dev = obj->base.dev;
592 	struct drm_i915_private *dev_priv = dev->dev_private;
593 	bool interruptible;
594 
595 	interruptible = do_idling(dev_priv);
596 
597 #if 0
598 	if (!obj->has_dma_mapping)
599 		dma_unmap_sg(&dev->pdev->dev,
600 			     obj->pages->sgl, obj->pages->nents,
601 			     PCI_DMA_BIDIRECTIONAL);
602 #endif
603 
604 	undo_idling(dev_priv, interruptible);
605 }
606 
607 static void i915_gtt_color_adjust(struct drm_mm_node *node,
608 				  unsigned long color,
609 				  unsigned long *start,
610 				  unsigned long *end)
611 {
612 	if (node->color != color)
613 		*start += 4096;
614 
615 	if (!list_empty(&node->node_list)) {
616 		node = list_entry(node->node_list.next,
617 				  struct drm_mm_node,
618 				  node_list);
619 		if (node->allocated && node->color != color)
620 			*end -= 4096;
621 	}
622 }
623 void i915_gem_setup_global_gtt(struct drm_device *dev,
624 			       unsigned long start,
625 			       unsigned long mappable_end,
626 			       unsigned long end)
627 {
628 	/* Let GEM Manage all of the aperture.
629 	 *
630 	 * However, leave one page at the end still bound to the scratch page.
631 	 * There are a number of places where the hardware apparently prefetches
632 	 * past the end of the object, and we've seen multiple hangs with the
633 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
634 	 * aperture.  One page should be enough to keep any prefetching inside
635 	 * of the aperture.
636 	 */
637 	drm_i915_private_t *dev_priv = dev->dev_private;
638 	unsigned long mappable;
639 	int error;
640 
641 	BUG_ON(mappable_end > end);
642 
643 	mappable = min(end, mappable_end) - start;
644 
645 	/* Substract the guard page ... */
646 	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
647 	if (!HAS_LLC(dev))
648 		dev_priv->mm.gtt_space.color_adjust = i915_gtt_color_adjust;
649 
650 	dev_priv->gtt.start = start;
651 	dev_priv->gtt.mappable_end = mappable_end;
652 	dev_priv->gtt.total = end - start;
653 
654 	/* ... but ensure that we clear the entire range. */
655 	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
656 	device_printf(dev->dev,
657 	    "taking over the fictitious range 0x%lx-0x%lx\n",
658 	    dev->agp->base + start, dev->agp->base + start + mappable);
659 	error = -vm_phys_fictitious_reg_range(dev->agp->base + start,
660 	    dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
661 }
662 
663 static bool
664 intel_enable_ppgtt(struct drm_device *dev)
665 {
666 	if (i915_enable_ppgtt >= 0)
667 		return i915_enable_ppgtt;
668 
669 #ifdef CONFIG_INTEL_IOMMU
670 	/* Disable ppgtt on SNB if VT-d is on. */
671 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
672 		return false;
673 #endif
674 
675 	return true;
676 }
677 
678 void i915_gem_init_global_gtt(struct drm_device *dev)
679 {
680 	struct drm_i915_private *dev_priv = dev->dev_private;
681 	unsigned long gtt_size, mappable_size;
682 
683 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
684 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
685 
686 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
687 		int ret;
688 
689 		if (INTEL_INFO(dev)->gen <= 7) {
690 			/* PPGTT pdes are stolen from global gtt ptes, so shrink the
691 			 * aperture accordingly when using aliasing ppgtt. */
692 			gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
693 		}
694 
695 		i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
696 
697 		ret = i915_gem_init_aliasing_ppgtt(dev);
698 		if (!ret)
699 			return;
700 
701 		DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
702 		drm_mm_takedown(&dev_priv->mm.gtt_space);
703 		gtt_size += I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
704 	}
705 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
706 }
707 
708 #if 0
709 static int gen6_gmch_probe(struct drm_device *dev,
710 			   size_t *gtt_total,
711 			   size_t *stolen,
712 			   phys_addr_t *mappable_base,
713 			   unsigned long *mappable_end)
714 {
715 	struct drm_i915_private *dev_priv = dev->dev_private;
716 	phys_addr_t gtt_bus_addr;
717 	unsigned int gtt_size;
718 	u16 snb_gmch_ctl;
719 	int ret;
720 
721 	*mappable_base = pci_resource_start(dev->pdev, 2);
722 	*mappable_end = pci_resource_len(dev->pdev, 2);
723 
724 	/* 64/512MB is the current min/max we actually know of, but this is just
725 	 * a coarse sanity check.
726 	 */
727 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
728 		DRM_ERROR("Unknown GMADR size (%lx)\n",
729 			  dev_priv->gtt.mappable_end);
730 		return -ENXIO;
731 	}
732 
733 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
734 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
735 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
736 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
737 
738 	if (IS_GEN7(dev) && !IS_VALLEYVIEW(dev))
739 		*stolen = gen7_get_stolen_size(snb_gmch_ctl);
740 	else
741 		*stolen = gen6_get_stolen_size(snb_gmch_ctl);
742 
743 	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
744 
745 	/* For Modern GENs the PTEs and register space are split in the BAR */
746 	gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
747 		(pci_resource_len(dev->pdev, 0) / 2);
748 
749 	dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
750 	if (!dev_priv->gtt.gsm) {
751 		DRM_ERROR("Failed to map the gtt page table\n");
752 		return -ENOMEM;
753 	}
754 
755 	ret = setup_scratch_page(dev);
756 	if (ret)
757 		DRM_ERROR("Scratch setup failed\n");
758 
759 	dev_priv->gtt.gtt_clear_range = gen6_ggtt_clear_range;
760 	dev_priv->gtt.gtt_insert_entries = gen6_ggtt_insert_entries;
761 
762 	return 0;
763 }
764 
765 static void gen6_gmch_remove(struct drm_device *dev)
766 {
767 	struct drm_i915_private *dev_priv = dev->dev_private;
768 	iounmap(dev_priv->gtt.gsm);
769 	teardown_scratch_page(dev_priv->dev);
770 }
771 #endif
772 
773 static int i915_gmch_probe(struct drm_device *dev,
774 			   size_t *gtt_total,
775 			   size_t *stolen,
776 			   phys_addr_t *mappable_base,
777 			   unsigned long *mappable_end)
778 {
779 	return 0;
780 }
781 
782 static void i915_gmch_remove(struct drm_device *dev)
783 {
784 }
785 
786 int i915_gem_gtt_init(struct drm_device *dev)
787 {
788 	struct drm_i915_private *dev_priv = dev->dev_private;
789 
790 	/* XXX Legacy agp stuff */
791 	dev_priv->mm.gtt = intel_gtt_get();
792 	if (!dev_priv->mm.gtt) {
793 		DRM_ERROR("Failed to initialize GTT\n");
794 		return -ENODEV;
795 	}
796 
797 	if (INTEL_INFO(dev)->gen <= 5 || 1) {
798 		dev_priv->gtt.gtt_probe = i915_gmch_probe;
799 		dev_priv->gtt.gtt_remove = i915_gmch_remove;
800 
801 		dev_priv->gtt.do_idle_maps = needs_idle_maps(dev);
802 
803 		dev_priv->gtt.gtt_clear_range = i915_ggtt_clear_range;
804 		dev_priv->gtt.gtt_insert_entries = i915_ggtt_insert_entries;
805 #if 0
806 	} else {
807 		dev_priv->gtt.gtt_probe = gen6_gmch_probe;
808 		dev_priv->gtt.gtt_remove = gen6_gmch_remove;
809 #endif
810 		if (IS_HASWELL(dev)) {
811 			dev_priv->gtt.pte_encode = hsw_pte_encode;
812 		} else if (IS_VALLEYVIEW(dev)) {
813 			dev_priv->gtt.pte_encode = byt_pte_encode;
814 		} else {
815 			dev_priv->gtt.pte_encode = gen6_pte_encode;
816 		}
817 
818 		return 0;
819 	}
820 
821 	dev_priv->mm.gtt = kmalloc(sizeof(*dev_priv->mm.gtt), M_DRM, M_WAITOK | M_ZERO);
822 	if (!dev_priv->mm.gtt)
823 		return -ENOMEM;
824 
825 	/* GMADR is the PCI mmio aperture into the global GTT. */
826 	DRM_INFO("Memory usable by graphics device = %zdM\n",
827 		 dev_priv->gtt.total >> 20);
828 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n",
829 			 dev_priv->gtt.mappable_end >> 20);
830 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n",
831 			 dev_priv->gtt.stolen_size >> 20);
832 
833 	return 0;
834 }
835