xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision cb740add)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 #include <linux/bitmap.h>
35 
36 #include <sys/mplock2.h>
37 
38 /**
39  * DOC: Global GTT views
40  *
41  * Background and previous state
42  *
43  * Historically objects could exists (be bound) in global GTT space only as
44  * singular instances with a view representing all of the object's backing pages
45  * in a linear fashion. This view will be called a normal view.
46  *
47  * To support multiple views of the same object, where the number of mapped
48  * pages is not equal to the backing store, or where the layout of the pages
49  * is not linear, concept of a GGTT view was added.
50  *
51  * One example of an alternative view is a stereo display driven by a single
52  * image. In this case we would have a framebuffer looking like this
53  * (2x2 pages):
54  *
55  *    12
56  *    34
57  *
58  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59  * rendering. In contrast, fed to the display engine would be an alternative
60  * view which could look something like this:
61  *
62  *   1212
63  *   3434
64  *
65  * In this example both the size and layout of pages in the alternative view is
66  * different from the normal view.
67  *
68  * Implementation and usage
69  *
70  * GGTT views are implemented using VMAs and are distinguished via enum
71  * i915_ggtt_view_type and struct i915_ggtt_view.
72  *
73  * A new flavour of core GEM functions which work with GGTT bound objects were
74  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75  * renaming  in large amounts of code. They take the struct i915_ggtt_view
76  * parameter encapsulating all metadata required to implement a view.
77  *
78  * As a helper for callers which are only interested in the normal view,
79  * globally const i915_ggtt_view_normal singleton instance exists. All old core
80  * GEM API functions, the ones not taking the view parameter, are operating on,
81  * or with the normal GGTT view.
82  *
83  * Code wanting to add or use a new GGTT view needs to:
84  *
85  * 1. Add a new enum with a suitable name.
86  * 2. Extend the metadata in the i915_ggtt_view structure if required.
87  * 3. Add support to i915_get_vma_pages().
88  *
89  * New views are required to build a scatter-gather table from within the
90  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91  * exists for the lifetime of an VMA.
92  *
93  * Core API is designed to have copy semantics which means that passed in
94  * struct i915_ggtt_view does not need to be persistent (left around after
95  * calling the core API functions).
96  *
97  */
98 
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101 
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103 	.type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106 	.type = I915_GGTT_VIEW_ROTATED,
107 };
108 
109 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
110 {
111 	bool has_aliasing_ppgtt;
112 	bool has_full_ppgtt;
113 	bool has_full_48bit_ppgtt;
114 
115 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
116 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
117 	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
118 
119 	if (intel_vgpu_active(dev))
120 		has_full_ppgtt = false; /* emulation is too hard */
121 
122 	/*
123 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
124 	 * execlists, the sole mechanism available to submit work.
125 	 */
126 	if (INTEL_INFO(dev)->gen < 9 &&
127 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
128 		return 0;
129 
130 	if (enable_ppgtt == 1)
131 		return 1;
132 
133 	if (enable_ppgtt == 2 && has_full_ppgtt)
134 		return 2;
135 
136 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
137 		return 3;
138 
139 #ifdef CONFIG_INTEL_IOMMU
140 	/* Disable ppgtt on SNB if VT-d is on. */
141 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
142 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
143 		return 0;
144 	}
145 #endif
146 
147 	/* Early VLV doesn't have this */
148 	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
149 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
150 		return 0;
151 	}
152 
153 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
154 		return has_full_48bit_ppgtt ? 3 : 2;
155 	else
156 		return has_aliasing_ppgtt ? 1 : 0;
157 }
158 
159 static int ppgtt_bind_vma(struct i915_vma *vma,
160 			  enum i915_cache_level cache_level,
161 			  u32 unused)
162 {
163 	u32 pte_flags = 0;
164 
165 	/* Currently applicable only to VLV */
166 	if (vma->obj->gt_ro)
167 		pte_flags |= PTE_READ_ONLY;
168 
169 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
170 				cache_level, pte_flags);
171 
172 	return 0;
173 }
174 
175 static void ppgtt_unbind_vma(struct i915_vma *vma)
176 {
177 	vma->vm->clear_range(vma->vm,
178 			     vma->node.start,
179 			     vma->obj->base.size,
180 			     true);
181 }
182 
183 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
184 				  enum i915_cache_level level,
185 				  bool valid)
186 {
187 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
188 	pte |= addr;
189 
190 	switch (level) {
191 	case I915_CACHE_NONE:
192 		pte |= PPAT_UNCACHED_INDEX;
193 		break;
194 	case I915_CACHE_WT:
195 		pte |= PPAT_DISPLAY_ELLC_INDEX;
196 		break;
197 	default:
198 		pte |= PPAT_CACHED_INDEX;
199 		break;
200 	}
201 
202 	return pte;
203 }
204 
205 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
206 				  const enum i915_cache_level level)
207 {
208 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
209 	pde |= addr;
210 	if (level != I915_CACHE_NONE)
211 		pde |= PPAT_CACHED_PDE_INDEX;
212 	else
213 		pde |= PPAT_UNCACHED_INDEX;
214 	return pde;
215 }
216 
217 #define gen8_pdpe_encode gen8_pde_encode
218 #define gen8_pml4e_encode gen8_pde_encode
219 
220 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
221 				 enum i915_cache_level level,
222 				 bool valid, u32 unused)
223 {
224 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
225 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
226 
227 	switch (level) {
228 	case I915_CACHE_L3_LLC:
229 	case I915_CACHE_LLC:
230 		pte |= GEN6_PTE_CACHE_LLC;
231 		break;
232 	case I915_CACHE_NONE:
233 		pte |= GEN6_PTE_UNCACHED;
234 		break;
235 	default:
236 		MISSING_CASE(level);
237 	}
238 
239 	return pte;
240 }
241 
242 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
243 				 enum i915_cache_level level,
244 				 bool valid, u32 unused)
245 {
246 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
247 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
248 
249 	switch (level) {
250 	case I915_CACHE_L3_LLC:
251 		pte |= GEN7_PTE_CACHE_L3_LLC;
252 		break;
253 	case I915_CACHE_LLC:
254 		pte |= GEN6_PTE_CACHE_LLC;
255 		break;
256 	case I915_CACHE_NONE:
257 		pte |= GEN6_PTE_UNCACHED;
258 		break;
259 	default:
260 		MISSING_CASE(level);
261 	}
262 
263 	return pte;
264 }
265 
266 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
267 				 enum i915_cache_level level,
268 				 bool valid, u32 flags)
269 {
270 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
271 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
272 
273 	if (!(flags & PTE_READ_ONLY))
274 		pte |= BYT_PTE_WRITEABLE;
275 
276 	if (level != I915_CACHE_NONE)
277 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
278 
279 	return pte;
280 }
281 
282 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
283 				 enum i915_cache_level level,
284 				 bool valid, u32 unused)
285 {
286 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287 	pte |= HSW_PTE_ADDR_ENCODE(addr);
288 
289 	if (level != I915_CACHE_NONE)
290 		pte |= HSW_WB_LLC_AGE3;
291 
292 	return pte;
293 }
294 
295 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
296 				  enum i915_cache_level level,
297 				  bool valid, u32 unused)
298 {
299 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
300 	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 
302 	switch (level) {
303 	case I915_CACHE_NONE:
304 		break;
305 	case I915_CACHE_WT:
306 		pte |= HSW_WT_ELLC_LLC_AGE3;
307 		break;
308 	default:
309 		pte |= HSW_WB_ELLC_LLC_AGE3;
310 		break;
311 	}
312 
313 	return pte;
314 }
315 
316 static int __setup_page_dma(struct drm_device *dev,
317 			    struct i915_page_dma *p, gfp_t flags)
318 {
319 	struct device *device = &dev->pdev->dev;
320 
321 	p->page = alloc_page(flags);
322 	if (!p->page)
323 		return -ENOMEM;
324 
325 	p->daddr = dma_map_page(device,
326 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
327 
328 	if (dma_mapping_error(device, p->daddr)) {
329 		__free_page(p->page);
330 		return -EINVAL;
331 	}
332 
333 	return 0;
334 }
335 
336 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338 	return __setup_page_dma(dev, p, GFP_KERNEL);
339 }
340 
341 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
342 {
343 	if (WARN_ON(!p->page))
344 		return;
345 
346 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
347 	__free_page(p->page);
348 	memset(p, 0, sizeof(*p));
349 }
350 
351 static void *kmap_page_dma(struct i915_page_dma *p)
352 {
353 	return kmap_atomic(p->page);
354 }
355 
356 /* We use the flushing unmap only with ppgtt structures:
357  * page directories, page tables and scratch pages.
358  */
359 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
360 {
361 	/* There are only few exceptions for gen >=6. chv and bxt.
362 	 * And we are not sure about the latter so play safe for now.
363 	 */
364 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
365 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
366 
367 	kunmap_atomic(vaddr);
368 }
369 
370 #define kmap_px(px) kmap_page_dma(px_base(px))
371 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
372 
373 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
374 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
375 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
376 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
377 
378 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
379 			  const uint64_t val)
380 {
381 	int i;
382 	uint64_t * const vaddr = kmap_page_dma(p);
383 
384 	for (i = 0; i < 512; i++)
385 		vaddr[i] = val;
386 
387 	kunmap_page_dma(dev, vaddr);
388 }
389 
390 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
391 			     const uint32_t val32)
392 {
393 	uint64_t v = val32;
394 
395 	v = v << 32 | val32;
396 
397 	fill_page_dma(dev, p, v);
398 }
399 
400 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
401 {
402 	struct i915_page_scratch *sp;
403 	int ret;
404 
405 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
406 	if (sp == NULL)
407 		return ERR_PTR(-ENOMEM);
408 
409 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
410 	if (ret) {
411 		kfree(sp);
412 		return ERR_PTR(ret);
413 	}
414 
415 	set_pages_uc(px_page(sp), 1);
416 
417 	return sp;
418 }
419 
420 static void free_scratch_page(struct drm_device *dev,
421 			      struct i915_page_scratch *sp)
422 {
423 	set_pages_wb(px_page(sp), 1);
424 
425 	cleanup_px(dev, sp);
426 	kfree(sp);
427 }
428 
429 static struct i915_page_table *alloc_pt(struct drm_device *dev)
430 {
431 	struct i915_page_table *pt;
432 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
433 		GEN8_PTES : GEN6_PTES;
434 	int ret = -ENOMEM;
435 
436 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
437 	if (!pt)
438 		return ERR_PTR(-ENOMEM);
439 
440 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
441 				GFP_KERNEL);
442 
443 	if (!pt->used_ptes)
444 		goto fail_bitmap;
445 
446 	ret = setup_px(dev, pt);
447 	if (ret)
448 		goto fail_page_m;
449 
450 	return pt;
451 
452 fail_page_m:
453 	kfree(pt->used_ptes);
454 fail_bitmap:
455 	kfree(pt);
456 
457 	return ERR_PTR(ret);
458 }
459 
460 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
461 {
462 	cleanup_px(dev, pt);
463 	kfree(pt->used_ptes);
464 	kfree(pt);
465 }
466 
467 static void gen8_initialize_pt(struct i915_address_space *vm,
468 			       struct i915_page_table *pt)
469 {
470 	gen8_pte_t scratch_pte;
471 
472 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
473 				      I915_CACHE_LLC, true);
474 
475 	fill_px(vm->dev, pt, scratch_pte);
476 }
477 
478 static void gen6_initialize_pt(struct i915_address_space *vm,
479 			       struct i915_page_table *pt)
480 {
481 	gen6_pte_t scratch_pte;
482 
483 	WARN_ON(px_dma(vm->scratch_page) == 0);
484 
485 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
486 				     I915_CACHE_LLC, true, 0);
487 
488 	fill32_px(vm->dev, pt, scratch_pte);
489 }
490 
491 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
492 {
493 	struct i915_page_directory *pd;
494 	int ret = -ENOMEM;
495 
496 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
497 	if (!pd)
498 		return ERR_PTR(-ENOMEM);
499 
500 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
501 				sizeof(*pd->used_pdes), GFP_KERNEL);
502 	if (!pd->used_pdes)
503 		goto fail_bitmap;
504 
505 	ret = setup_px(dev, pd);
506 	if (ret)
507 		goto fail_page_m;
508 
509 	return pd;
510 
511 fail_page_m:
512 	kfree(pd->used_pdes);
513 fail_bitmap:
514 	kfree(pd);
515 
516 	return ERR_PTR(ret);
517 }
518 
519 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
520 {
521 	if (px_page(pd)) {
522 		cleanup_px(dev, pd);
523 		kfree(pd->used_pdes);
524 		kfree(pd);
525 	}
526 }
527 
528 static void gen8_initialize_pd(struct i915_address_space *vm,
529 			       struct i915_page_directory *pd)
530 {
531 	gen8_pde_t scratch_pde;
532 
533 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
534 
535 	fill_px(vm->dev, pd, scratch_pde);
536 }
537 
538 static int __pdp_init(struct drm_device *dev,
539 		      struct i915_page_directory_pointer *pdp)
540 {
541 	size_t pdpes = I915_PDPES_PER_PDP(dev);
542 
543 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
544 				  sizeof(unsigned long),
545 				  GFP_KERNEL);
546 	if (!pdp->used_pdpes)
547 		return -ENOMEM;
548 
549 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
550 				      GFP_KERNEL);
551 	if (!pdp->page_directory) {
552 		kfree(pdp->used_pdpes);
553 		/* the PDP might be the statically allocated top level. Keep it
554 		 * as clean as possible */
555 		pdp->used_pdpes = NULL;
556 		return -ENOMEM;
557 	}
558 
559 	return 0;
560 }
561 
562 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
563 {
564 	kfree(pdp->used_pdpes);
565 	kfree(pdp->page_directory);
566 	pdp->page_directory = NULL;
567 }
568 
569 static struct
570 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
571 {
572 	struct i915_page_directory_pointer *pdp;
573 	int ret = -ENOMEM;
574 
575 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
576 
577 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
578 	if (!pdp)
579 		return ERR_PTR(-ENOMEM);
580 
581 	ret = __pdp_init(dev, pdp);
582 	if (ret)
583 		goto fail_bitmap;
584 
585 	ret = setup_px(dev, pdp);
586 	if (ret)
587 		goto fail_page_m;
588 
589 	return pdp;
590 
591 fail_page_m:
592 	__pdp_fini(pdp);
593 fail_bitmap:
594 	kfree(pdp);
595 
596 	return ERR_PTR(ret);
597 }
598 
599 static void free_pdp(struct drm_device *dev,
600 		     struct i915_page_directory_pointer *pdp)
601 {
602 	__pdp_fini(pdp);
603 	if (USES_FULL_48BIT_PPGTT(dev)) {
604 		cleanup_px(dev, pdp);
605 		kfree(pdp);
606 	}
607 }
608 
609 static void gen8_initialize_pdp(struct i915_address_space *vm,
610 				struct i915_page_directory_pointer *pdp)
611 {
612 	gen8_ppgtt_pdpe_t scratch_pdpe;
613 
614 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
615 
616 	fill_px(vm->dev, pdp, scratch_pdpe);
617 }
618 
619 static void gen8_initialize_pml4(struct i915_address_space *vm,
620 				 struct i915_pml4 *pml4)
621 {
622 	gen8_ppgtt_pml4e_t scratch_pml4e;
623 
624 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
625 					  I915_CACHE_LLC);
626 
627 	fill_px(vm->dev, pml4, scratch_pml4e);
628 }
629 
630 static void
631 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
632 			  struct i915_page_directory_pointer *pdp,
633 			  struct i915_page_directory *pd,
634 			  int index)
635 {
636 	gen8_ppgtt_pdpe_t *page_directorypo;
637 
638 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
639 		return;
640 
641 	page_directorypo = kmap_px(pdp);
642 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
643 	kunmap_px(ppgtt, page_directorypo);
644 }
645 
646 static void
647 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
648 				  struct i915_pml4 *pml4,
649 				  struct i915_page_directory_pointer *pdp,
650 				  int index)
651 {
652 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
653 
654 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
655 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
656 	kunmap_px(ppgtt, pagemap);
657 }
658 
659 /* Broadwell Page Directory Pointer Descriptors */
660 static int gen8_write_pdp(struct drm_i915_gem_request *req,
661 			  unsigned entry,
662 			  dma_addr_t addr)
663 {
664 	struct intel_engine_cs *ring = req->ring;
665 	int ret;
666 
667 	BUG_ON(entry >= 4);
668 
669 	ret = intel_ring_begin(req, 6);
670 	if (ret)
671 		return ret;
672 
673 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
675 	intel_ring_emit(ring, upper_32_bits(addr));
676 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
678 	intel_ring_emit(ring, lower_32_bits(addr));
679 	intel_ring_advance(ring);
680 
681 	return 0;
682 }
683 
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685 				 struct drm_i915_gem_request *req)
686 {
687 	int i, ret;
688 
689 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691 
692 		ret = gen8_write_pdp(req, i, pd_daddr);
693 		if (ret)
694 			return ret;
695 	}
696 
697 	return 0;
698 }
699 
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701 			      struct drm_i915_gem_request *req)
702 {
703 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705 
706 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
707 				       struct i915_page_directory_pointer *pdp,
708 				       uint64_t start,
709 				       uint64_t length,
710 				       gen8_pte_t scratch_pte)
711 {
712 	struct i915_hw_ppgtt *ppgtt =
713 		container_of(vm, struct i915_hw_ppgtt, base);
714 	gen8_pte_t *pt_vaddr;
715 	unsigned pdpe = gen8_pdpe_index(start);
716 	unsigned pde = gen8_pde_index(start);
717 	unsigned pte = gen8_pte_index(start);
718 	unsigned num_entries = length >> PAGE_SHIFT;
719 	unsigned last_pte, i;
720 
721 	if (WARN_ON(!pdp))
722 		return;
723 
724 	while (num_entries) {
725 		struct i915_page_directory *pd;
726 		struct i915_page_table *pt;
727 
728 		if (WARN_ON(!pdp->page_directory[pdpe]))
729 			break;
730 
731 		pd = pdp->page_directory[pdpe];
732 
733 		if (WARN_ON(!pd->page_table[pde]))
734 			break;
735 
736 		pt = pd->page_table[pde];
737 
738 		if (WARN_ON(!px_page(pt)))
739 			break;
740 
741 		last_pte = pte + num_entries;
742 		if (last_pte > GEN8_PTES)
743 			last_pte = GEN8_PTES;
744 
745 		pt_vaddr = kmap_px(pt);
746 
747 		for (i = pte; i < last_pte; i++) {
748 			pt_vaddr[i] = scratch_pte;
749 			num_entries--;
750 		}
751 
752 		kunmap_px(ppgtt, pt);
753 
754 		pte = 0;
755 		if (++pde == I915_PDES) {
756 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
757 				break;
758 			pde = 0;
759 		}
760 	}
761 }
762 
763 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
764 				   uint64_t start,
765 				   uint64_t length,
766 				   bool use_scratch)
767 {
768 	struct i915_hw_ppgtt *ppgtt =
769 		container_of(vm, struct i915_hw_ppgtt, base);
770 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
771 						 I915_CACHE_LLC, use_scratch);
772 
773 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
774 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
775 					   scratch_pte);
776 	} else {
777 		uint64_t pml4e;
778 		struct i915_page_directory_pointer *pdp;
779 
780 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
781 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
782 						   scratch_pte);
783 		}
784 	}
785 }
786 
787 static void
788 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
789 			      struct i915_page_directory_pointer *pdp,
790 			      struct sg_page_iter *sg_iter,
791 			      uint64_t start,
792 			      enum i915_cache_level cache_level)
793 {
794 	struct i915_hw_ppgtt *ppgtt =
795 		container_of(vm, struct i915_hw_ppgtt, base);
796 	gen8_pte_t *pt_vaddr;
797 	unsigned pdpe = gen8_pdpe_index(start);
798 	unsigned pde = gen8_pde_index(start);
799 	unsigned pte = gen8_pte_index(start);
800 
801 	pt_vaddr = NULL;
802 
803 	while (__sg_page_iter_next(sg_iter)) {
804 		if (pt_vaddr == NULL) {
805 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
806 			struct i915_page_table *pt = pd->page_table[pde];
807 			pt_vaddr = kmap_px(pt);
808 		}
809 
810 		pt_vaddr[pte] =
811 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
812 					cache_level, true);
813 		if (++pte == GEN8_PTES) {
814 			kunmap_px(ppgtt, pt_vaddr);
815 			pt_vaddr = NULL;
816 			if (++pde == I915_PDES) {
817 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
818 					break;
819 				pde = 0;
820 			}
821 			pte = 0;
822 		}
823 	}
824 
825 	if (pt_vaddr)
826 		kunmap_px(ppgtt, pt_vaddr);
827 }
828 
829 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
830 				      struct sg_table *pages,
831 				      uint64_t start,
832 				      enum i915_cache_level cache_level,
833 				      u32 unused)
834 {
835 	struct i915_hw_ppgtt *ppgtt =
836 		container_of(vm, struct i915_hw_ppgtt, base);
837 	struct sg_page_iter sg_iter;
838 
839 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
840 
841 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
842 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
843 					      cache_level);
844 	} else {
845 		struct i915_page_directory_pointer *pdp;
846 		uint64_t pml4e;
847 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
848 
849 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
850 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
851 						      start, cache_level);
852 		}
853 	}
854 }
855 
856 static void gen8_free_page_tables(struct drm_device *dev,
857 				  struct i915_page_directory *pd)
858 {
859 	int i;
860 
861 	if (!px_page(pd))
862 		return;
863 
864 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
865 		if (WARN_ON(!pd->page_table[i]))
866 			continue;
867 
868 		free_pt(dev, pd->page_table[i]);
869 		pd->page_table[i] = NULL;
870 	}
871 }
872 
873 static int gen8_init_scratch(struct i915_address_space *vm)
874 {
875 	struct drm_device *dev = vm->dev;
876 
877 	vm->scratch_page = alloc_scratch_page(dev);
878 	if (IS_ERR(vm->scratch_page))
879 		return PTR_ERR(vm->scratch_page);
880 
881 	vm->scratch_pt = alloc_pt(dev);
882 	if (IS_ERR(vm->scratch_pt)) {
883 		free_scratch_page(dev, vm->scratch_page);
884 		return PTR_ERR(vm->scratch_pt);
885 	}
886 
887 	vm->scratch_pd = alloc_pd(dev);
888 	if (IS_ERR(vm->scratch_pd)) {
889 		free_pt(dev, vm->scratch_pt);
890 		free_scratch_page(dev, vm->scratch_page);
891 		return PTR_ERR(vm->scratch_pd);
892 	}
893 
894 	if (USES_FULL_48BIT_PPGTT(dev)) {
895 		vm->scratch_pdp = alloc_pdp(dev);
896 		if (IS_ERR(vm->scratch_pdp)) {
897 			free_pd(dev, vm->scratch_pd);
898 			free_pt(dev, vm->scratch_pt);
899 			free_scratch_page(dev, vm->scratch_page);
900 			return PTR_ERR(vm->scratch_pdp);
901 		}
902 	}
903 
904 	gen8_initialize_pt(vm, vm->scratch_pt);
905 	gen8_initialize_pd(vm, vm->scratch_pd);
906 	if (USES_FULL_48BIT_PPGTT(dev))
907 		gen8_initialize_pdp(vm, vm->scratch_pdp);
908 
909 	return 0;
910 }
911 
912 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
913 {
914 	enum vgt_g2v_type msg;
915 	struct drm_device *dev = ppgtt->base.dev;
916 	struct drm_i915_private *dev_priv = dev->dev_private;
917 	int i;
918 
919 	if (USES_FULL_48BIT_PPGTT(dev)) {
920 		u64 daddr = px_dma(&ppgtt->pml4);
921 
922 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
923 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
924 
925 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
926 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
927 	} else {
928 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
929 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
930 
931 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
932 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
933 		}
934 
935 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
936 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
937 	}
938 
939 	I915_WRITE(vgtif_reg(g2v_notify), msg);
940 
941 	return 0;
942 }
943 
944 static void gen8_free_scratch(struct i915_address_space *vm)
945 {
946 	struct drm_device *dev = vm->dev;
947 
948 	if (USES_FULL_48BIT_PPGTT(dev))
949 		free_pdp(dev, vm->scratch_pdp);
950 	free_pd(dev, vm->scratch_pd);
951 	free_pt(dev, vm->scratch_pt);
952 	free_scratch_page(dev, vm->scratch_page);
953 }
954 
955 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
956 				    struct i915_page_directory_pointer *pdp)
957 {
958 	int i;
959 
960 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
961 		if (WARN_ON(!pdp->page_directory[i]))
962 			continue;
963 
964 		gen8_free_page_tables(dev, pdp->page_directory[i]);
965 		free_pd(dev, pdp->page_directory[i]);
966 	}
967 
968 	free_pdp(dev, pdp);
969 }
970 
971 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
972 {
973 	int i;
974 
975 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
976 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
977 			continue;
978 
979 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
980 	}
981 
982 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
983 }
984 
985 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
986 {
987 	struct i915_hw_ppgtt *ppgtt =
988 		container_of(vm, struct i915_hw_ppgtt, base);
989 
990 	if (intel_vgpu_active(vm->dev))
991 		gen8_ppgtt_notify_vgt(ppgtt, false);
992 
993 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
994 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
995 	else
996 		gen8_ppgtt_cleanup_4lvl(ppgtt);
997 
998 	gen8_free_scratch(vm);
999 }
1000 
1001 /**
1002  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1003  * @vm:	Master vm structure.
1004  * @pd:	Page directory for this address range.
1005  * @start:	Starting virtual address to begin allocations.
1006  * @length:	Size of the allocations.
1007  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1008  *		caller to free on error.
1009  *
1010  * Allocate the required number of page tables. Extremely similar to
1011  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1012  * the page directory boundary (instead of the page directory pointer). That
1013  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1014  * possible, and likely that the caller will need to use multiple calls of this
1015  * function to achieve the appropriate allocation.
1016  *
1017  * Return: 0 if success; negative error code otherwise.
1018  */
1019 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1020 				     struct i915_page_directory *pd,
1021 				     uint64_t start,
1022 				     uint64_t length,
1023 				     unsigned long *new_pts)
1024 {
1025 	struct drm_device *dev = vm->dev;
1026 	struct i915_page_table *pt;
1027 	uint32_t pde;
1028 
1029 	gen8_for_each_pde(pt, pd, start, length, pde) {
1030 		/* Don't reallocate page tables */
1031 		if (test_bit(pde, pd->used_pdes)) {
1032 			/* Scratch is never allocated this way */
1033 			WARN_ON(pt == vm->scratch_pt);
1034 			continue;
1035 		}
1036 
1037 		pt = alloc_pt(dev);
1038 		if (IS_ERR(pt))
1039 			goto unwind_out;
1040 
1041 		gen8_initialize_pt(vm, pt);
1042 		pd->page_table[pde] = pt;
1043 		__set_bit(pde, new_pts);
1044 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1045 	}
1046 
1047 	return 0;
1048 
1049 unwind_out:
1050 	for_each_set_bit(pde, new_pts, I915_PDES)
1051 		free_pt(dev, pd->page_table[pde]);
1052 
1053 	return -ENOMEM;
1054 }
1055 
1056 /**
1057  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1058  * @vm:	Master vm structure.
1059  * @pdp:	Page directory pointer for this address range.
1060  * @start:	Starting virtual address to begin allocations.
1061  * @length:	Size of the allocations.
1062  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1063  *		caller to free on error.
1064  *
1065  * Allocate the required number of page directories starting at the pde index of
1066  * @start, and ending at the pde index @start + @length. This function will skip
1067  * over already allocated page directories within the range, and only allocate
1068  * new ones, setting the appropriate pointer within the pdp as well as the
1069  * correct position in the bitmap @new_pds.
1070  *
1071  * The function will only allocate the pages within the range for a give page
1072  * directory pointer. In other words, if @start + @length straddles a virtually
1073  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1074  * required by the caller, This is not currently possible, and the BUG in the
1075  * code will prevent it.
1076  *
1077  * Return: 0 if success; negative error code otherwise.
1078  */
1079 static int
1080 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1081 				  struct i915_page_directory_pointer *pdp,
1082 				  uint64_t start,
1083 				  uint64_t length,
1084 				  unsigned long *new_pds)
1085 {
1086 	struct drm_device *dev = vm->dev;
1087 	struct i915_page_directory *pd;
1088 	uint32_t pdpe;
1089 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1090 
1091 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1092 
1093 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1094 		if (test_bit(pdpe, pdp->used_pdpes))
1095 			continue;
1096 
1097 		pd = alloc_pd(dev);
1098 		if (IS_ERR(pd))
1099 			goto unwind_out;
1100 
1101 		gen8_initialize_pd(vm, pd);
1102 		pdp->page_directory[pdpe] = pd;
1103 		__set_bit(pdpe, new_pds);
1104 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1105 	}
1106 
1107 	return 0;
1108 
1109 unwind_out:
1110 	for_each_set_bit(pdpe, new_pds, pdpes)
1111 		free_pd(dev, pdp->page_directory[pdpe]);
1112 
1113 	return -ENOMEM;
1114 }
1115 
1116 /**
1117  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1118  * @vm:	Master vm structure.
1119  * @pml4:	Page map level 4 for this address range.
1120  * @start:	Starting virtual address to begin allocations.
1121  * @length:	Size of the allocations.
1122  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1123  *		caller to free on error.
1124  *
1125  * Allocate the required number of page directory pointers. Extremely similar to
1126  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1127  * The main difference is here we are limited by the pml4 boundary (instead of
1128  * the page directory pointer).
1129  *
1130  * Return: 0 if success; negative error code otherwise.
1131  */
1132 static int
1133 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1134 				  struct i915_pml4 *pml4,
1135 				  uint64_t start,
1136 				  uint64_t length,
1137 				  unsigned long *new_pdps)
1138 {
1139 	struct drm_device *dev = vm->dev;
1140 	struct i915_page_directory_pointer *pdp;
1141 	uint32_t pml4e;
1142 
1143 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1144 
1145 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1146 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1147 			pdp = alloc_pdp(dev);
1148 			if (IS_ERR(pdp))
1149 				goto unwind_out;
1150 
1151 			gen8_initialize_pdp(vm, pdp);
1152 			pml4->pdps[pml4e] = pdp;
1153 			__set_bit(pml4e, new_pdps);
1154 			trace_i915_page_directory_pointer_entry_alloc(vm,
1155 								      pml4e,
1156 								      start,
1157 								      GEN8_PML4E_SHIFT);
1158 		}
1159 	}
1160 
1161 	return 0;
1162 
1163 unwind_out:
1164 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1165 		free_pdp(dev, pml4->pdps[pml4e]);
1166 
1167 	return -ENOMEM;
1168 }
1169 
1170 static void
1171 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1172 {
1173 	kfree(new_pts);
1174 	kfree(new_pds);
1175 }
1176 
1177 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1178  * of these are based on the number of PDPEs in the system.
1179  */
1180 static
1181 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1182 					 unsigned long **new_pts,
1183 					 uint32_t pdpes)
1184 {
1185 	unsigned long *pds;
1186 	unsigned long *pts;
1187 
1188 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1189 	if (!pds)
1190 		return -ENOMEM;
1191 
1192 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1193 		      GFP_TEMPORARY);
1194 	if (!pts)
1195 		goto err_out;
1196 
1197 	*new_pds = pds;
1198 	*new_pts = pts;
1199 
1200 	return 0;
1201 
1202 err_out:
1203 	free_gen8_temp_bitmaps(pds, pts);
1204 	return -ENOMEM;
1205 }
1206 
1207 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1208  * the page table structures, we mark them dirty so that
1209  * context switching/execlist queuing code takes extra steps
1210  * to ensure that tlbs are flushed.
1211  */
1212 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1213 {
1214 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1215 }
1216 
1217 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1218 				    struct i915_page_directory_pointer *pdp,
1219 				    uint64_t start,
1220 				    uint64_t length)
1221 {
1222 	struct i915_hw_ppgtt *ppgtt =
1223 		container_of(vm, struct i915_hw_ppgtt, base);
1224 	unsigned long *new_page_dirs, *new_page_tables;
1225 	struct drm_device *dev = vm->dev;
1226 	struct i915_page_directory *pd;
1227 	const uint64_t orig_start = start;
1228 	const uint64_t orig_length = length;
1229 	uint32_t pdpe;
1230 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1231 	int ret;
1232 
1233 	/* Wrap is never okay since we can only represent 48b, and we don't
1234 	 * actually use the other side of the canonical address space.
1235 	 */
1236 	if (WARN_ON(start + length < start))
1237 		return -ENODEV;
1238 
1239 	if (WARN_ON(start + length > vm->total))
1240 		return -ENODEV;
1241 
1242 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1243 	if (ret)
1244 		return ret;
1245 
1246 	/* Do the allocations first so we can easily bail out */
1247 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1248 						new_page_dirs);
1249 	if (ret) {
1250 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1251 		return ret;
1252 	}
1253 
1254 	/* For every page directory referenced, allocate page tables */
1255 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1256 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1257 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1258 		if (ret)
1259 			goto err_out;
1260 	}
1261 
1262 	start = orig_start;
1263 	length = orig_length;
1264 
1265 	/* Allocations have completed successfully, so set the bitmaps, and do
1266 	 * the mappings. */
1267 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1268 		gen8_pde_t *const page_directory = kmap_px(pd);
1269 		struct i915_page_table *pt;
1270 		uint64_t pd_len = length;
1271 		uint64_t pd_start = start;
1272 		uint32_t pde;
1273 
1274 		/* Every pd should be allocated, we just did that above. */
1275 		WARN_ON(!pd);
1276 
1277 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1278 			/* Same reasoning as pd */
1279 			WARN_ON(!pt);
1280 			WARN_ON(!pd_len);
1281 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1282 
1283 			/* Set our used ptes within the page table */
1284 			bitmap_set(pt->used_ptes,
1285 				   gen8_pte_index(pd_start),
1286 				   gen8_pte_count(pd_start, pd_len));
1287 
1288 			/* Our pde is now pointing to the pagetable, pt */
1289 			__set_bit(pde, pd->used_pdes);
1290 
1291 			/* Map the PDE to the page table */
1292 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1293 							      I915_CACHE_LLC);
1294 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1295 							gen8_pte_index(start),
1296 							gen8_pte_count(start, length),
1297 							GEN8_PTES);
1298 
1299 			/* NB: We haven't yet mapped ptes to pages. At this
1300 			 * point we're still relying on insert_entries() */
1301 		}
1302 
1303 		kunmap_px(ppgtt, page_directory);
1304 		__set_bit(pdpe, pdp->used_pdpes);
1305 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1306 	}
1307 
1308 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1309 	mark_tlbs_dirty(ppgtt);
1310 	return 0;
1311 
1312 err_out:
1313 	while (pdpe--) {
1314 		unsigned long temp;
1315 
1316 		for_each_set_bit(temp, new_page_tables + pdpe *
1317 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1318 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1319 	}
1320 
1321 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1322 		free_pd(dev, pdp->page_directory[pdpe]);
1323 
1324 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1325 	mark_tlbs_dirty(ppgtt);
1326 	return ret;
1327 }
1328 
1329 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1330 				    struct i915_pml4 *pml4,
1331 				    uint64_t start,
1332 				    uint64_t length)
1333 {
1334 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1335 	struct i915_hw_ppgtt *ppgtt =
1336 			container_of(vm, struct i915_hw_ppgtt, base);
1337 	struct i915_page_directory_pointer *pdp;
1338 	uint64_t pml4e;
1339 	int ret = 0;
1340 
1341 	/* Do the pml4 allocations first, so we don't need to track the newly
1342 	 * allocated tables below the pdp */
1343 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1344 
1345 	/* The pagedirectory and pagetable allocations are done in the shared 3
1346 	 * and 4 level code. Just allocate the pdps.
1347 	 */
1348 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1349 						new_pdps);
1350 	if (ret)
1351 		return ret;
1352 
1353 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1354 	     "The allocation has spanned more than 512GB. "
1355 	     "It is highly likely this is incorrect.");
1356 
1357 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1358 		WARN_ON(!pdp);
1359 
1360 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1361 		if (ret)
1362 			goto err_out;
1363 
1364 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1365 	}
1366 
1367 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1368 		  GEN8_PML4ES_PER_PML4);
1369 
1370 	return 0;
1371 
1372 err_out:
1373 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1374 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1375 
1376 	return ret;
1377 }
1378 
1379 static int gen8_alloc_va_range(struct i915_address_space *vm,
1380 			       uint64_t start, uint64_t length)
1381 {
1382 	struct i915_hw_ppgtt *ppgtt =
1383 		container_of(vm, struct i915_hw_ppgtt, base);
1384 
1385 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1386 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1387 	else
1388 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1389 }
1390 
1391 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1392 			  uint64_t start, uint64_t length,
1393 			  gen8_pte_t scratch_pte,
1394 			  struct seq_file *m)
1395 {
1396 	struct i915_page_directory *pd;
1397 	uint32_t pdpe;
1398 
1399 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1400 		struct i915_page_table *pt;
1401 		uint64_t pd_len = length;
1402 		uint64_t pd_start = start;
1403 		uint32_t pde;
1404 
1405 		if (!test_bit(pdpe, pdp->used_pdpes))
1406 			continue;
1407 
1408 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1409 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1410 			uint32_t  pte;
1411 			gen8_pte_t *pt_vaddr;
1412 
1413 			if (!test_bit(pde, pd->used_pdes))
1414 				continue;
1415 
1416 			pt_vaddr = kmap_px(pt);
1417 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1418 				uint64_t va =
1419 					(pdpe << GEN8_PDPE_SHIFT) |
1420 					(pde << GEN8_PDE_SHIFT) |
1421 					(pte << GEN8_PTE_SHIFT);
1422 				int i;
1423 				bool found = false;
1424 
1425 				for (i = 0; i < 4; i++)
1426 					if (pt_vaddr[pte + i] != scratch_pte)
1427 						found = true;
1428 				if (!found)
1429 					continue;
1430 
1431 				seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1432 				for (i = 0; i < 4; i++) {
1433 					if (pt_vaddr[pte + i] != scratch_pte)
1434 						seq_printf(m, " %lx", pt_vaddr[pte + i]);
1435 					else
1436 						seq_puts(m, "  SCRATCH ");
1437 				}
1438 				seq_puts(m, "\n");
1439 			}
1440 			/* don't use kunmap_px, it could trigger
1441 			 * an unnecessary flush.
1442 			 */
1443 			kunmap_atomic(pt_vaddr);
1444 		}
1445 	}
1446 }
1447 
1448 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1449 {
1450 	struct i915_address_space *vm = &ppgtt->base;
1451 	uint64_t start = ppgtt->base.start;
1452 	uint64_t length = ppgtt->base.total;
1453 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1454 						 I915_CACHE_LLC, true);
1455 
1456 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1457 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1458 	} else {
1459 		uint64_t pml4e;
1460 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1461 		struct i915_page_directory_pointer *pdp;
1462 
1463 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1464 			if (!test_bit(pml4e, pml4->used_pml4es))
1465 				continue;
1466 
1467 			seq_printf(m, "    PML4E #%lu\n", pml4e);
1468 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1469 		}
1470 	}
1471 }
1472 
1473 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1474 {
1475 	unsigned long *new_page_dirs, *new_page_tables;
1476 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1477 	int ret;
1478 
1479 	/* We allocate temp bitmap for page tables for no gain
1480 	 * but as this is for init only, lets keep the things simple
1481 	 */
1482 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1483 	if (ret)
1484 		return ret;
1485 
1486 	/* Allocate for all pdps regardless of how the ppgtt
1487 	 * was defined.
1488 	 */
1489 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1490 						0, 1ULL << 32,
1491 						new_page_dirs);
1492 	if (!ret)
1493 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1494 
1495 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1496 
1497 	return ret;
1498 }
1499 
1500 /*
1501  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1502  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1503  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1504  * space.
1505  *
1506  */
1507 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1508 {
1509 	int ret;
1510 
1511 	ret = gen8_init_scratch(&ppgtt->base);
1512 	if (ret)
1513 		return ret;
1514 
1515 	ppgtt->base.start = 0;
1516 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1517 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1518 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1519 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1520 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1521 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1522 	ppgtt->debug_dump = gen8_dump_ppgtt;
1523 
1524 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1525 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1526 		if (ret)
1527 			goto free_scratch;
1528 
1529 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1530 
1531 		ppgtt->base.total = 1ULL << 48;
1532 		ppgtt->switch_mm = gen8_48b_mm_switch;
1533 	} else {
1534 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1535 		if (ret)
1536 			goto free_scratch;
1537 
1538 		ppgtt->base.total = 1ULL << 32;
1539 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1540 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1541 							      0, 0,
1542 							      GEN8_PML4E_SHIFT);
1543 
1544 		if (intel_vgpu_active(ppgtt->base.dev)) {
1545 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1546 			if (ret)
1547 				goto free_scratch;
1548 		}
1549 	}
1550 
1551 	if (intel_vgpu_active(ppgtt->base.dev))
1552 		gen8_ppgtt_notify_vgt(ppgtt, true);
1553 
1554 	return 0;
1555 
1556 free_scratch:
1557 	gen8_free_scratch(&ppgtt->base);
1558 	return ret;
1559 }
1560 
1561 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1562 {
1563 	struct i915_address_space *vm = &ppgtt->base;
1564 	struct i915_page_table *unused;
1565 	gen6_pte_t scratch_pte;
1566 	uint32_t pd_entry;
1567 	uint32_t  pte, pde, temp;
1568 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1569 
1570 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1571 				     I915_CACHE_LLC, true, 0);
1572 
1573 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1574 		u32 expected;
1575 		gen6_pte_t *pt_vaddr;
1576 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1577 		pd_entry = readl(ppgtt->pd_addr + pde);
1578 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1579 
1580 		if (pd_entry != expected)
1581 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1582 				   pde,
1583 				   pd_entry,
1584 				   expected);
1585 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1586 
1587 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1588 
1589 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1590 			unsigned long va =
1591 				(pde * PAGE_SIZE * GEN6_PTES) +
1592 				(pte * PAGE_SIZE);
1593 			int i;
1594 			bool found = false;
1595 			for (i = 0; i < 4; i++)
1596 				if (pt_vaddr[pte + i] != scratch_pte)
1597 					found = true;
1598 			if (!found)
1599 				continue;
1600 
1601 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1602 			for (i = 0; i < 4; i++) {
1603 				if (pt_vaddr[pte + i] != scratch_pte)
1604 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1605 				else
1606 					seq_puts(m, "  SCRATCH ");
1607 			}
1608 			seq_puts(m, "\n");
1609 		}
1610 		kunmap_px(ppgtt, pt_vaddr);
1611 	}
1612 }
1613 
1614 /* Write pde (index) from the page directory @pd to the page table @pt */
1615 static void gen6_write_pde(struct i915_page_directory *pd,
1616 			    const int pde, struct i915_page_table *pt)
1617 {
1618 	/* Caller needs to make sure the write completes if necessary */
1619 	struct i915_hw_ppgtt *ppgtt =
1620 		container_of(pd, struct i915_hw_ppgtt, pd);
1621 	u32 pd_entry;
1622 
1623 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1624 	pd_entry |= GEN6_PDE_VALID;
1625 
1626 	writel(pd_entry, ppgtt->pd_addr + pde);
1627 }
1628 
1629 /* Write all the page tables found in the ppgtt structure to incrementing page
1630  * directories. */
1631 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1632 				  struct i915_page_directory *pd,
1633 				  uint32_t start, uint32_t length)
1634 {
1635 	struct i915_page_table *pt;
1636 	uint32_t pde, temp;
1637 
1638 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1639 		gen6_write_pde(pd, pde, pt);
1640 
1641 	/* Make sure write is complete before other code can use this page
1642 	 * table. Also require for WC mapped PTEs */
1643 	readl(dev_priv->gtt.gsm);
1644 }
1645 
1646 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1647 {
1648 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1649 
1650 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1651 }
1652 
1653 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1654 			 struct drm_i915_gem_request *req)
1655 {
1656 	struct intel_engine_cs *ring = req->ring;
1657 	int ret;
1658 
1659 	/* NB: TLBs must be flushed and invalidated before a switch */
1660 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1661 	if (ret)
1662 		return ret;
1663 
1664 	ret = intel_ring_begin(req, 6);
1665 	if (ret)
1666 		return ret;
1667 
1668 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1669 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1670 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1671 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1672 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1673 	intel_ring_emit(ring, MI_NOOP);
1674 	intel_ring_advance(ring);
1675 
1676 	return 0;
1677 }
1678 
1679 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1680 			  struct drm_i915_gem_request *req)
1681 {
1682 	struct intel_engine_cs *ring = req->ring;
1683 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1684 
1685 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1686 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1687 	return 0;
1688 }
1689 
1690 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1691 			  struct drm_i915_gem_request *req)
1692 {
1693 	struct intel_engine_cs *ring = req->ring;
1694 	int ret;
1695 
1696 	/* NB: TLBs must be flushed and invalidated before a switch */
1697 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1698 	if (ret)
1699 		return ret;
1700 
1701 	ret = intel_ring_begin(req, 6);
1702 	if (ret)
1703 		return ret;
1704 
1705 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1706 	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1707 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1708 	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1709 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1710 	intel_ring_emit(ring, MI_NOOP);
1711 	intel_ring_advance(ring);
1712 
1713 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1714 	if (ring->id != RCS) {
1715 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1716 		if (ret)
1717 			return ret;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1724 			  struct drm_i915_gem_request *req)
1725 {
1726 	struct intel_engine_cs *ring = req->ring;
1727 	struct drm_device *dev = ppgtt->base.dev;
1728 	struct drm_i915_private *dev_priv = dev->dev_private;
1729 
1730 
1731 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1732 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1733 
1734 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1735 
1736 	return 0;
1737 }
1738 
1739 static void gen8_ppgtt_enable(struct drm_device *dev)
1740 {
1741 	struct drm_i915_private *dev_priv = dev->dev_private;
1742 	struct intel_engine_cs *ring;
1743 	int j;
1744 
1745 	for_each_ring(ring, dev_priv, j) {
1746 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1747 		I915_WRITE(RING_MODE_GEN7(ring),
1748 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1749 	}
1750 }
1751 
1752 static void gen7_ppgtt_enable(struct drm_device *dev)
1753 {
1754 	struct drm_i915_private *dev_priv = dev->dev_private;
1755 	struct intel_engine_cs *ring;
1756 	uint32_t ecochk, ecobits;
1757 	int i;
1758 
1759 	ecobits = I915_READ(GAC_ECO_BITS);
1760 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1761 
1762 	ecochk = I915_READ(GAM_ECOCHK);
1763 	if (IS_HASWELL(dev)) {
1764 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1765 	} else {
1766 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1767 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1768 	}
1769 	I915_WRITE(GAM_ECOCHK, ecochk);
1770 
1771 	for_each_ring(ring, dev_priv, i) {
1772 		/* GFX_MODE is per-ring on gen7+ */
1773 		I915_WRITE(RING_MODE_GEN7(ring),
1774 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1775 	}
1776 }
1777 
1778 static void gen6_ppgtt_enable(struct drm_device *dev)
1779 {
1780 	struct drm_i915_private *dev_priv = dev->dev_private;
1781 	uint32_t ecochk, gab_ctl, ecobits;
1782 
1783 	ecobits = I915_READ(GAC_ECO_BITS);
1784 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1785 		   ECOBITS_PPGTT_CACHE64B);
1786 
1787 	gab_ctl = I915_READ(GAB_CTL);
1788 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1789 
1790 	ecochk = I915_READ(GAM_ECOCHK);
1791 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1792 
1793 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1794 }
1795 
1796 /* PPGTT support for Sandybdrige/Gen6 and later */
1797 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1798 				   uint64_t start,
1799 				   uint64_t length,
1800 				   bool use_scratch)
1801 {
1802 	struct i915_hw_ppgtt *ppgtt =
1803 		container_of(vm, struct i915_hw_ppgtt, base);
1804 	gen6_pte_t *pt_vaddr, scratch_pte;
1805 	unsigned first_entry = start >> PAGE_SHIFT;
1806 	unsigned num_entries = length >> PAGE_SHIFT;
1807 	unsigned act_pt = first_entry / GEN6_PTES;
1808 	unsigned first_pte = first_entry % GEN6_PTES;
1809 	unsigned last_pte, i;
1810 
1811 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1812 				     I915_CACHE_LLC, true, 0);
1813 
1814 	while (num_entries) {
1815 		last_pte = first_pte + num_entries;
1816 		if (last_pte > GEN6_PTES)
1817 			last_pte = GEN6_PTES;
1818 
1819 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1820 
1821 		for (i = first_pte; i < last_pte; i++)
1822 			pt_vaddr[i] = scratch_pte;
1823 
1824 		kunmap_px(ppgtt, pt_vaddr);
1825 
1826 		num_entries -= last_pte - first_pte;
1827 		first_pte = 0;
1828 		act_pt++;
1829 	}
1830 }
1831 
1832 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1833 				      struct sg_table *pages,
1834 				      uint64_t start,
1835 				      enum i915_cache_level cache_level, u32 flags)
1836 {
1837 	struct i915_hw_ppgtt *ppgtt =
1838 		container_of(vm, struct i915_hw_ppgtt, base);
1839 	gen6_pte_t *pt_vaddr;
1840 	unsigned first_entry = start >> PAGE_SHIFT;
1841 	unsigned act_pt = first_entry / GEN6_PTES;
1842 	unsigned act_pte = first_entry % GEN6_PTES;
1843 	struct sg_page_iter sg_iter;
1844 
1845 	pt_vaddr = NULL;
1846 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1847 		if (pt_vaddr == NULL)
1848 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1849 
1850 		pt_vaddr[act_pte] =
1851 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1852 				       cache_level, true, flags);
1853 
1854 		if (++act_pte == GEN6_PTES) {
1855 			kunmap_px(ppgtt, pt_vaddr);
1856 			pt_vaddr = NULL;
1857 			act_pt++;
1858 			act_pte = 0;
1859 		}
1860 	}
1861 	if (pt_vaddr)
1862 		kunmap_px(ppgtt, pt_vaddr);
1863 }
1864 
1865 static int gen6_alloc_va_range(struct i915_address_space *vm,
1866 			       uint64_t start_in, uint64_t length_in)
1867 {
1868 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1869 	struct drm_device *dev = vm->dev;
1870 	struct drm_i915_private *dev_priv = dev->dev_private;
1871 	struct i915_hw_ppgtt *ppgtt =
1872 				container_of(vm, struct i915_hw_ppgtt, base);
1873 	struct i915_page_table *pt;
1874 	uint32_t start, length, start_save, length_save;
1875 	uint32_t pde, temp;
1876 	int ret;
1877 
1878 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1879 		return -ENODEV;
1880 
1881 	start = start_save = start_in;
1882 	length = length_save = length_in;
1883 
1884 	bitmap_zero(new_page_tables, I915_PDES);
1885 
1886 	/* The allocation is done in two stages so that we can bail out with
1887 	 * minimal amount of pain. The first stage finds new page tables that
1888 	 * need allocation. The second stage marks use ptes within the page
1889 	 * tables.
1890 	 */
1891 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1892 		if (pt != vm->scratch_pt) {
1893 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1894 			continue;
1895 		}
1896 
1897 		/* We've already allocated a page table */
1898 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1899 
1900 		pt = alloc_pt(dev);
1901 		if (IS_ERR(pt)) {
1902 			ret = PTR_ERR(pt);
1903 			goto unwind_out;
1904 		}
1905 
1906 		gen6_initialize_pt(vm, pt);
1907 
1908 		ppgtt->pd.page_table[pde] = pt;
1909 		__set_bit(pde, new_page_tables);
1910 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1911 	}
1912 
1913 	start = start_save;
1914 	length = length_save;
1915 
1916 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1917 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1918 
1919 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1920 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1921 			   gen6_pte_count(start, length));
1922 
1923 		if (__test_and_clear_bit(pde, new_page_tables))
1924 			gen6_write_pde(&ppgtt->pd, pde, pt);
1925 
1926 		trace_i915_page_table_entry_map(vm, pde, pt,
1927 					 gen6_pte_index(start),
1928 					 gen6_pte_count(start, length),
1929 					 GEN6_PTES);
1930 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1931 				GEN6_PTES);
1932 	}
1933 
1934 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1935 
1936 	/* Make sure write is complete before other code can use this page
1937 	 * table. Also require for WC mapped PTEs */
1938 	readl(dev_priv->gtt.gsm);
1939 
1940 	mark_tlbs_dirty(ppgtt);
1941 	return 0;
1942 
1943 unwind_out:
1944 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1945 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1946 
1947 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1948 		free_pt(vm->dev, pt);
1949 	}
1950 
1951 	mark_tlbs_dirty(ppgtt);
1952 	return ret;
1953 }
1954 
1955 static int gen6_init_scratch(struct i915_address_space *vm)
1956 {
1957 	struct drm_device *dev = vm->dev;
1958 
1959 	vm->scratch_page = alloc_scratch_page(dev);
1960 	if (IS_ERR(vm->scratch_page))
1961 		return PTR_ERR(vm->scratch_page);
1962 
1963 	vm->scratch_pt = alloc_pt(dev);
1964 	if (IS_ERR(vm->scratch_pt)) {
1965 		free_scratch_page(dev, vm->scratch_page);
1966 		return PTR_ERR(vm->scratch_pt);
1967 	}
1968 
1969 	gen6_initialize_pt(vm, vm->scratch_pt);
1970 
1971 	return 0;
1972 }
1973 
1974 static void gen6_free_scratch(struct i915_address_space *vm)
1975 {
1976 	struct drm_device *dev = vm->dev;
1977 
1978 	free_pt(dev, vm->scratch_pt);
1979 	free_scratch_page(dev, vm->scratch_page);
1980 }
1981 
1982 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1983 {
1984 	struct i915_hw_ppgtt *ppgtt =
1985 		container_of(vm, struct i915_hw_ppgtt, base);
1986 	struct i915_page_table *pt;
1987 	uint32_t pde;
1988 
1989 	drm_mm_remove_node(&ppgtt->node);
1990 
1991 	gen6_for_all_pdes(pt, ppgtt, pde) {
1992 		if (pt != vm->scratch_pt)
1993 			free_pt(ppgtt->base.dev, pt);
1994 	}
1995 
1996 	gen6_free_scratch(vm);
1997 }
1998 
1999 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2000 {
2001 	struct i915_address_space *vm = &ppgtt->base;
2002 	struct drm_device *dev = ppgtt->base.dev;
2003 	struct drm_i915_private *dev_priv = dev->dev_private;
2004 	bool retried = false;
2005 	int ret;
2006 
2007 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2008 	 * allocator works in address space sizes, so it's multiplied by page
2009 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2010 	 */
2011 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2012 
2013 	ret = gen6_init_scratch(vm);
2014 	if (ret)
2015 		return ret;
2016 
2017 alloc:
2018 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2019 						  &ppgtt->node, GEN6_PD_SIZE,
2020 						  GEN6_PD_ALIGN, 0,
2021 						  0, dev_priv->gtt.base.total,
2022 						  DRM_MM_TOPDOWN);
2023 	if (ret == -ENOSPC && !retried) {
2024 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2025 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2026 					       I915_CACHE_NONE,
2027 					       0, dev_priv->gtt.base.total,
2028 					       0);
2029 		if (ret)
2030 			goto err_out;
2031 
2032 		retried = true;
2033 		goto alloc;
2034 	}
2035 
2036 	if (ret)
2037 		goto err_out;
2038 
2039 
2040 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2041 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2042 
2043 	return 0;
2044 
2045 err_out:
2046 	gen6_free_scratch(vm);
2047 	return ret;
2048 }
2049 
2050 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2051 {
2052 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2053 }
2054 
2055 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2056 				  uint64_t start, uint64_t length)
2057 {
2058 	struct i915_page_table *unused;
2059 	uint32_t pde, temp;
2060 
2061 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2062 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2063 }
2064 
2065 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2066 {
2067 	struct drm_device *dev = ppgtt->base.dev;
2068 	struct drm_i915_private *dev_priv = dev->dev_private;
2069 	int ret;
2070 
2071 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2072 	if (IS_GEN6(dev)) {
2073 		ppgtt->switch_mm = gen6_mm_switch;
2074 	} else if (IS_HASWELL(dev)) {
2075 		ppgtt->switch_mm = hsw_mm_switch;
2076 	} else if (IS_GEN7(dev)) {
2077 		ppgtt->switch_mm = gen7_mm_switch;
2078 	} else
2079 		BUG();
2080 
2081 	if (intel_vgpu_active(dev))
2082 		ppgtt->switch_mm = vgpu_mm_switch;
2083 
2084 	ret = gen6_ppgtt_alloc(ppgtt);
2085 	if (ret)
2086 		return ret;
2087 
2088 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2089 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2090 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2091 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2092 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2093 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2094 	ppgtt->base.start = 0;
2095 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2096 	ppgtt->debug_dump = gen6_dump_ppgtt;
2097 
2098 	ppgtt->pd.base.ggtt_offset =
2099 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2100 
2101 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2102 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2103 
2104 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2105 
2106 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2107 
2108 	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
2109 			 ppgtt->node.size >> 20,
2110 			 ppgtt->node.start / PAGE_SIZE);
2111 
2112 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2113 		  ppgtt->pd.base.ggtt_offset << 10);
2114 
2115 	return 0;
2116 }
2117 
2118 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2119 {
2120 	ppgtt->base.dev = dev;
2121 
2122 	if (INTEL_INFO(dev)->gen < 8)
2123 		return gen6_ppgtt_init(ppgtt);
2124 	else
2125 		return gen8_ppgtt_init(ppgtt);
2126 }
2127 
2128 static void i915_address_space_init(struct i915_address_space *vm,
2129 				    struct drm_i915_private *dev_priv)
2130 {
2131 	drm_mm_init(&vm->mm, vm->start, vm->total);
2132 	vm->dev = dev_priv->dev;
2133 	INIT_LIST_HEAD(&vm->active_list);
2134 	INIT_LIST_HEAD(&vm->inactive_list);
2135 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2136 }
2137 
2138 static void gtt_write_workarounds(struct drm_device *dev)
2139 {
2140 	struct drm_i915_private *dev_priv = dev->dev_private;
2141 
2142 	/* This function is for gtt related workarounds. This function is
2143 	 * called on driver load and after a GPU reset, so you can place
2144 	 * workarounds here even if they get overwritten by GPU reset.
2145 	 */
2146 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2147 	if (IS_BROADWELL(dev))
2148 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2149 	else if (IS_CHERRYVIEW(dev))
2150 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2151 	else if (IS_SKYLAKE(dev))
2152 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2153 	else if (IS_BROXTON(dev))
2154 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2155 }
2156 
2157 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2158 {
2159 	struct drm_i915_private *dev_priv = dev->dev_private;
2160 	int ret = 0;
2161 
2162 	ret = __hw_ppgtt_init(dev, ppgtt);
2163 	if (ret == 0) {
2164 		kref_init(&ppgtt->ref);
2165 		i915_address_space_init(&ppgtt->base, dev_priv);
2166 	}
2167 
2168 	return ret;
2169 }
2170 
2171 int i915_ppgtt_init_hw(struct drm_device *dev)
2172 {
2173 	gtt_write_workarounds(dev);
2174 
2175 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2176 	 * and the PDPs are contained within the context itself.  We don't
2177 	 * need to do anything here. */
2178 	if (i915.enable_execlists)
2179 		return 0;
2180 
2181 	if (!USES_PPGTT(dev))
2182 		return 0;
2183 
2184 	if (IS_GEN6(dev))
2185 		gen6_ppgtt_enable(dev);
2186 	else if (IS_GEN7(dev))
2187 		gen7_ppgtt_enable(dev);
2188 	else if (INTEL_INFO(dev)->gen >= 8)
2189 		gen8_ppgtt_enable(dev);
2190 	else
2191 		MISSING_CASE(INTEL_INFO(dev)->gen);
2192 
2193 	return 0;
2194 }
2195 
2196 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2197 {
2198 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2199 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2200 
2201 	if (i915.enable_execlists)
2202 		return 0;
2203 
2204 	if (!ppgtt)
2205 		return 0;
2206 
2207 	return ppgtt->switch_mm(ppgtt, req);
2208 }
2209 
2210 struct i915_hw_ppgtt *
2211 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2212 {
2213 	struct i915_hw_ppgtt *ppgtt;
2214 	int ret;
2215 
2216 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2217 	if (!ppgtt)
2218 		return ERR_PTR(-ENOMEM);
2219 
2220 	ret = i915_ppgtt_init(dev, ppgtt);
2221 	if (ret) {
2222 		kfree(ppgtt);
2223 		return ERR_PTR(ret);
2224 	}
2225 
2226 	ppgtt->file_priv = fpriv;
2227 
2228 	trace_i915_ppgtt_create(&ppgtt->base);
2229 
2230 	return ppgtt;
2231 }
2232 
2233 void  i915_ppgtt_release(struct kref *kref)
2234 {
2235 	struct i915_hw_ppgtt *ppgtt =
2236 		container_of(kref, struct i915_hw_ppgtt, ref);
2237 
2238 	trace_i915_ppgtt_release(&ppgtt->base);
2239 
2240 	/* vmas should already be unbound */
2241 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2242 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2243 
2244 	list_del(&ppgtt->base.global_link);
2245 	drm_mm_takedown(&ppgtt->base.mm);
2246 
2247 	ppgtt->base.cleanup(&ppgtt->base);
2248 	kfree(ppgtt);
2249 }
2250 
2251 extern int intel_iommu_gfx_mapped;
2252 /* Certain Gen5 chipsets require require idling the GPU before
2253  * unmapping anything from the GTT when VT-d is enabled.
2254  */
2255 static bool needs_idle_maps(struct drm_device *dev)
2256 {
2257 #ifdef CONFIG_INTEL_IOMMU
2258 	/* Query intel_iommu to see if we need the workaround. Presumably that
2259 	 * was loaded first.
2260 	 */
2261 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2262 		return true;
2263 #endif
2264 	return false;
2265 }
2266 
2267 static bool do_idling(struct drm_i915_private *dev_priv)
2268 {
2269 	bool ret = dev_priv->mm.interruptible;
2270 
2271 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2272 		dev_priv->mm.interruptible = false;
2273 		if (i915_gpu_idle(dev_priv->dev)) {
2274 			DRM_ERROR("Couldn't idle GPU\n");
2275 			/* Wait a bit, in hopes it avoids the hang */
2276 			udelay(10);
2277 		}
2278 	}
2279 
2280 	return ret;
2281 }
2282 
2283 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2284 {
2285 	if (unlikely(dev_priv->gtt.do_idle_maps))
2286 		dev_priv->mm.interruptible = interruptible;
2287 }
2288 
2289 void i915_check_and_clear_faults(struct drm_device *dev)
2290 {
2291 	struct drm_i915_private *dev_priv = dev->dev_private;
2292 	struct intel_engine_cs *ring;
2293 	int i;
2294 
2295 	if (INTEL_INFO(dev)->gen < 6)
2296 		return;
2297 
2298 	for_each_ring(ring, dev_priv, i) {
2299 		u32 fault_reg;
2300 		fault_reg = I915_READ(RING_FAULT_REG(ring));
2301 		if (fault_reg & RING_FAULT_VALID) {
2302 #if 0
2303 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2304 					 "\tAddr: 0x%08lx\n"
2305 					 "\tAddress space: %s\n"
2306 					 "\tSource ID: %d\n"
2307 					 "\tType: %d\n",
2308 					 fault_reg & PAGE_MASK,
2309 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2310 					 RING_FAULT_SRCID(fault_reg),
2311 					 RING_FAULT_FAULT_TYPE(fault_reg));
2312 #endif
2313 			I915_WRITE(RING_FAULT_REG(ring),
2314 				   fault_reg & ~RING_FAULT_VALID);
2315 		}
2316 	}
2317 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2318 }
2319 
2320 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2321 {
2322 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2323 		intel_gtt_chipset_flush();
2324 	} else {
2325 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2326 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2327 	}
2328 }
2329 
2330 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2331 {
2332 	struct drm_i915_private *dev_priv = dev->dev_private;
2333 
2334 	/* Don't bother messing with faults pre GEN6 as we have little
2335 	 * documentation supporting that it's a good idea.
2336 	 */
2337 	if (INTEL_INFO(dev)->gen < 6)
2338 		return;
2339 
2340 	i915_check_and_clear_faults(dev);
2341 
2342 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2343 				       dev_priv->gtt.base.start,
2344 				       dev_priv->gtt.base.total,
2345 				       true);
2346 
2347 	i915_ggtt_flush(dev_priv);
2348 }
2349 
2350 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2351 {
2352 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2353 			obj->pages->sgl, obj->pages->nents,
2354 			PCI_DMA_BIDIRECTIONAL))
2355 		return -ENOSPC;
2356 
2357 	return 0;
2358 }
2359 
2360 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2361 {
2362 #ifdef writeq
2363 	writeq(pte, addr);
2364 #else
2365 	iowrite32((u32)pte, addr);
2366 	iowrite32(pte >> 32, addr + 4);
2367 #endif
2368 }
2369 
2370 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2371 				     struct sg_table *st,
2372 				     uint64_t start,
2373 				     enum i915_cache_level level, u32 unused)
2374 {
2375 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2376 	unsigned first_entry = start >> PAGE_SHIFT;
2377 	gen8_pte_t __iomem *gtt_entries =
2378 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2379 	int i = 0;
2380 	struct sg_page_iter sg_iter;
2381 	dma_addr_t addr = 0; /* shut up gcc */
2382 	int rpm_atomic_seq;
2383 
2384 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2385 
2386 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2387 		addr = sg_dma_address(sg_iter.sg) +
2388 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2389 		gen8_set_pte(&gtt_entries[i],
2390 			     gen8_pte_encode(addr, level, true));
2391 		i++;
2392 	}
2393 
2394 	/*
2395 	 * XXX: This serves as a posting read to make sure that the PTE has
2396 	 * actually been updated. There is some concern that even though
2397 	 * registers and PTEs are within the same BAR that they are potentially
2398 	 * of NUMA access patterns. Therefore, even with the way we assume
2399 	 * hardware should work, we must keep this posting read for paranoia.
2400 	 */
2401 	if (i != 0)
2402 		WARN_ON(readq(&gtt_entries[i-1])
2403 			!= gen8_pte_encode(addr, level, true));
2404 
2405 	/* This next bit makes the above posting read even more important. We
2406 	 * want to flush the TLBs only after we're certain all the PTE updates
2407 	 * have finished.
2408 	 */
2409 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2410 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2411 
2412 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2413 }
2414 
2415 struct insert_entries {
2416 	struct i915_address_space *vm;
2417 	struct sg_table *st;
2418 	uint64_t start;
2419 	enum i915_cache_level level;
2420 	u32 flags;
2421 };
2422 
2423 static int gen8_ggtt_insert_entries__cb(void *_arg)
2424 {
2425 	struct insert_entries *arg = _arg;
2426 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2427 				 arg->start, arg->level, arg->flags);
2428 	return 0;
2429 }
2430 
2431 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2432 					  struct sg_table *st,
2433 					  uint64_t start,
2434 					  enum i915_cache_level level,
2435 					  u32 flags)
2436 {
2437 	struct insert_entries arg = { vm, st, start, level, flags };
2438 #ifndef __DragonFly__
2439 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2440 #else
2441 	/* XXX: is this enough ?
2442 	 * See Linux commit 5bab6f60cb4d1417ad7c599166bcfec87529c1a2 */
2443 	get_mplock();
2444 	gen8_ggtt_insert_entries__cb(&arg);
2445 	rel_mplock();
2446 #endif
2447 }
2448 
2449 /*
2450  * Binds an object into the global gtt with the specified cache level. The object
2451  * will be accessible to the GPU via commands whose operands reference offsets
2452  * within the global GTT as well as accessible by the GPU through the GMADR
2453  * mapped BAR (dev_priv->mm.gtt->gtt).
2454  */
2455 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2456 				     struct sg_table *st,
2457 				     uint64_t start,
2458 				     enum i915_cache_level level, u32 flags)
2459 {
2460 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2461 	unsigned first_entry = start >> PAGE_SHIFT;
2462 	gen6_pte_t __iomem *gtt_entries =
2463 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2464 	int i = 0;
2465 	struct sg_page_iter sg_iter;
2466 	dma_addr_t addr = 0;
2467 	int rpm_atomic_seq;
2468 
2469 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2470 
2471 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2472 		addr = sg_page_iter_dma_address(&sg_iter);
2473 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2474 		i++;
2475 	}
2476 
2477 	/* XXX: This serves as a posting read to make sure that the PTE has
2478 	 * actually been updated. There is some concern that even though
2479 	 * registers and PTEs are within the same BAR that they are potentially
2480 	 * of NUMA access patterns. Therefore, even with the way we assume
2481 	 * hardware should work, we must keep this posting read for paranoia.
2482 	 */
2483 	if (i != 0) {
2484 		unsigned long gtt = readl(&gtt_entries[i-1]);
2485 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2486 	}
2487 
2488 	/* This next bit makes the above posting read even more important. We
2489 	 * want to flush the TLBs only after we're certain all the PTE updates
2490 	 * have finished.
2491 	 */
2492 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2493 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2494 
2495 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2496 }
2497 
2498 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2499 				  uint64_t start,
2500 				  uint64_t length,
2501 				  bool use_scratch)
2502 {
2503 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2504 	unsigned first_entry = start >> PAGE_SHIFT;
2505 	unsigned num_entries = length >> PAGE_SHIFT;
2506 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2507 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2508 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2509 	int i;
2510 	int rpm_atomic_seq;
2511 
2512 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2513 
2514 	if (WARN(num_entries > max_entries,
2515 		 "First entry = %d; Num entries = %d (max=%d)\n",
2516 		 first_entry, num_entries, max_entries))
2517 		num_entries = max_entries;
2518 
2519 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2520 				      I915_CACHE_LLC,
2521 				      use_scratch);
2522 	for (i = 0; i < num_entries; i++)
2523 		gen8_set_pte(&gtt_base[i], scratch_pte);
2524 	readl(gtt_base);
2525 
2526 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2527 }
2528 
2529 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2530 				  uint64_t start,
2531 				  uint64_t length,
2532 				  bool use_scratch)
2533 {
2534 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2535 	unsigned first_entry = start >> PAGE_SHIFT;
2536 	unsigned num_entries = length >> PAGE_SHIFT;
2537 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2538 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2539 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2540 	int i;
2541 	int rpm_atomic_seq;
2542 
2543 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2544 
2545 	if (WARN(num_entries > max_entries,
2546 		 "First entry = %d; Num entries = %d (max=%d)\n",
2547 		 first_entry, num_entries, max_entries))
2548 		num_entries = max_entries;
2549 
2550 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2551 				     I915_CACHE_LLC, use_scratch, 0);
2552 
2553 	for (i = 0; i < num_entries; i++)
2554 		iowrite32(scratch_pte, &gtt_base[i]);
2555 	readl(gtt_base);
2556 
2557 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2558 }
2559 
2560 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2561 				     struct sg_table *pages,
2562 				     uint64_t start,
2563 				     enum i915_cache_level cache_level, u32 unused)
2564 {
2565 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2566 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2567 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2568 	int rpm_atomic_seq;
2569 
2570 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571 
2572 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2573 
2574 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 
2576 }
2577 
2578 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2579 				  uint64_t start,
2580 				  uint64_t length,
2581 				  bool unused)
2582 {
2583 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2584 	unsigned first_entry = start >> PAGE_SHIFT;
2585 	unsigned num_entries = length >> PAGE_SHIFT;
2586 	int rpm_atomic_seq;
2587 
2588 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2589 
2590 	intel_gtt_clear_range(first_entry, num_entries);
2591 
2592 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 }
2594 
2595 static int ggtt_bind_vma(struct i915_vma *vma,
2596 			 enum i915_cache_level cache_level,
2597 			 u32 flags)
2598 {
2599 	struct drm_i915_gem_object *obj = vma->obj;
2600 	u32 pte_flags = 0;
2601 	int ret;
2602 
2603 	ret = i915_get_ggtt_vma_pages(vma);
2604 	if (ret)
2605 		return ret;
2606 
2607 	/* Currently applicable only to VLV */
2608 	if (obj->gt_ro)
2609 		pte_flags |= PTE_READ_ONLY;
2610 
2611 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2612 				vma->node.start,
2613 				cache_level, pte_flags);
2614 
2615 	/*
2616 	 * Without aliasing PPGTT there's no difference between
2617 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2618 	 * upgrade to both bound if we bind either to avoid double-binding.
2619 	 */
2620 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2621 
2622 	return 0;
2623 }
2624 
2625 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2626 				 enum i915_cache_level cache_level,
2627 				 u32 flags)
2628 {
2629 	struct drm_device *dev = vma->vm->dev;
2630 	struct drm_i915_private *dev_priv = dev->dev_private;
2631 	struct drm_i915_gem_object *obj = vma->obj;
2632 	struct sg_table *pages = obj->pages;
2633 	u32 pte_flags = 0;
2634 	int ret;
2635 
2636 	ret = i915_get_ggtt_vma_pages(vma);
2637 	if (ret)
2638 		return ret;
2639 	pages = vma->ggtt_view.pages;
2640 
2641 	/* Currently applicable only to VLV */
2642 	if (obj->gt_ro)
2643 		pte_flags |= PTE_READ_ONLY;
2644 
2645 
2646 	if (flags & GLOBAL_BIND) {
2647 		vma->vm->insert_entries(vma->vm, pages,
2648 					vma->node.start,
2649 					cache_level, pte_flags);
2650 	}
2651 
2652 	if (flags & LOCAL_BIND) {
2653 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2654 		appgtt->base.insert_entries(&appgtt->base, pages,
2655 					    vma->node.start,
2656 					    cache_level, pte_flags);
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 static void ggtt_unbind_vma(struct i915_vma *vma)
2663 {
2664 	struct drm_device *dev = vma->vm->dev;
2665 	struct drm_i915_private *dev_priv = dev->dev_private;
2666 	struct drm_i915_gem_object *obj = vma->obj;
2667 	const uint64_t size = min_t(uint64_t,
2668 				    obj->base.size,
2669 				    vma->node.size);
2670 
2671 	if (vma->bound & GLOBAL_BIND) {
2672 		vma->vm->clear_range(vma->vm,
2673 				     vma->node.start,
2674 				     size,
2675 				     true);
2676 	}
2677 
2678 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2679 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2680 
2681 		appgtt->base.clear_range(&appgtt->base,
2682 					 vma->node.start,
2683 					 size,
2684 					 true);
2685 	}
2686 }
2687 
2688 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2689 {
2690 	struct drm_device *dev = obj->base.dev;
2691 	struct drm_i915_private *dev_priv = dev->dev_private;
2692 	bool interruptible;
2693 
2694 	interruptible = do_idling(dev_priv);
2695 
2696 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2697 		     PCI_DMA_BIDIRECTIONAL);
2698 
2699 	undo_idling(dev_priv, interruptible);
2700 }
2701 
2702 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2703 				  unsigned long color,
2704 				  u64 *start,
2705 				  u64 *end)
2706 {
2707 	if (node->color != color)
2708 		*start += 4096;
2709 
2710 	if (!list_empty(&node->node_list)) {
2711 		node = list_entry(node->node_list.next,
2712 				  struct drm_mm_node,
2713 				  node_list);
2714 		if (node->allocated && node->color != color)
2715 			*end -= 4096;
2716 	}
2717 }
2718 
2719 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2720 				     u64 start,
2721 				     u64 mappable_end,
2722 				     u64 end)
2723 {
2724 	/* Let GEM Manage all of the aperture.
2725 	 *
2726 	 * However, leave one page at the end still bound to the scratch page.
2727 	 * There are a number of places where the hardware apparently prefetches
2728 	 * past the end of the object, and we've seen multiple hangs with the
2729 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2730 	 * aperture.  One page should be enough to keep any prefetching inside
2731 	 * of the aperture.
2732 	 */
2733 	struct drm_i915_private *dev_priv = dev->dev_private;
2734 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2735 	struct drm_mm_node *entry;
2736 	struct drm_i915_gem_object *obj;
2737 	unsigned long hole_start, hole_end;
2738 	int ret;
2739 	unsigned long mappable;
2740 	int error;
2741 
2742 	mappable = min(end, mappable_end) - start;
2743 	BUG_ON(mappable_end > end);
2744 
2745 	ggtt_vm->start = start;
2746 
2747 	/* Subtract the guard page before address space initialization to
2748 	 * shrink the range used by drm_mm */
2749 	ggtt_vm->total = end - start - PAGE_SIZE;
2750 	i915_address_space_init(ggtt_vm, dev_priv);
2751 	ggtt_vm->total += PAGE_SIZE;
2752 
2753 	if (intel_vgpu_active(dev)) {
2754 		ret = intel_vgt_balloon(dev);
2755 		if (ret)
2756 			return ret;
2757 	}
2758 
2759 	if (!HAS_LLC(dev))
2760 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2761 
2762 	/* Mark any preallocated objects as occupied */
2763 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2764 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2765 
2766 		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2767 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2768 
2769 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2770 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2771 		if (ret) {
2772 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2773 			return ret;
2774 		}
2775 		vma->bound |= GLOBAL_BIND;
2776 		__i915_vma_set_map_and_fenceable(vma);
2777 		list_add_tail(&vma->vm_link, &ggtt_vm->inactive_list);
2778 	}
2779 
2780 	/* Clear any non-preallocated blocks */
2781 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2782 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2783 			      hole_start, hole_end);
2784 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2785 				     hole_end - hole_start, true);
2786 	}
2787 
2788 #ifdef __DragonFly__
2789 	device_printf(dev->dev->bsddev,
2790 	    "taking over the fictitious range 0x%lx-0x%lx\n",
2791 	    dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2792 	error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2793 	    dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2794 #endif
2795 
2796 	/* And finally clear the reserved guard page */
2797 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2798 
2799 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2800 		struct i915_hw_ppgtt *ppgtt;
2801 
2802 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2803 		if (!ppgtt)
2804 			return -ENOMEM;
2805 
2806 		ret = __hw_ppgtt_init(dev, ppgtt);
2807 		if (ret) {
2808 			ppgtt->base.cleanup(&ppgtt->base);
2809 			kfree(ppgtt);
2810 			return ret;
2811 		}
2812 
2813 		if (ppgtt->base.allocate_va_range)
2814 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2815 							    ppgtt->base.total);
2816 		if (ret) {
2817 			ppgtt->base.cleanup(&ppgtt->base);
2818 			kfree(ppgtt);
2819 			return ret;
2820 		}
2821 
2822 		ppgtt->base.clear_range(&ppgtt->base,
2823 					ppgtt->base.start,
2824 					ppgtt->base.total,
2825 					true);
2826 
2827 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2828 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2829 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 void i915_gem_init_global_gtt(struct drm_device *dev)
2836 {
2837 	struct drm_i915_private *dev_priv = dev->dev_private;
2838 	u64 gtt_size, mappable_size;
2839 
2840 	gtt_size = dev_priv->gtt.base.total;
2841 	mappable_size = dev_priv->gtt.mappable_end;
2842 
2843 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2844 }
2845 
2846 void i915_global_gtt_cleanup(struct drm_device *dev)
2847 {
2848 	struct drm_i915_private *dev_priv = dev->dev_private;
2849 	struct i915_address_space *vm = &dev_priv->gtt.base;
2850 
2851 	if (dev_priv->mm.aliasing_ppgtt) {
2852 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2853 
2854 		ppgtt->base.cleanup(&ppgtt->base);
2855 	}
2856 
2857 	i915_gem_cleanup_stolen(dev);
2858 
2859 	if (drm_mm_initialized(&vm->mm)) {
2860 		if (intel_vgpu_active(dev))
2861 			intel_vgt_deballoon();
2862 
2863 		drm_mm_takedown(&vm->mm);
2864 		list_del(&vm->global_link);
2865 	}
2866 
2867 	vm->cleanup(vm);
2868 }
2869 
2870 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2871 {
2872 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2873 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2874 	return snb_gmch_ctl << 20;
2875 }
2876 
2877 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2878 {
2879 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2880 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2881 	if (bdw_gmch_ctl)
2882 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2883 
2884 #ifdef CONFIG_X86_32
2885 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2886 	if (bdw_gmch_ctl > 4)
2887 		bdw_gmch_ctl = 4;
2888 #endif
2889 
2890 	return bdw_gmch_ctl << 20;
2891 }
2892 
2893 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2894 {
2895 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2896 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2897 
2898 	if (gmch_ctrl)
2899 		return 1 << (20 + gmch_ctrl);
2900 
2901 	return 0;
2902 }
2903 
2904 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2905 {
2906 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2907 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2908 	return snb_gmch_ctl << 25; /* 32 MB units */
2909 }
2910 
2911 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2912 {
2913 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2914 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2915 	return bdw_gmch_ctl << 25; /* 32 MB units */
2916 }
2917 
2918 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2919 {
2920 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2921 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2922 
2923 	/*
2924 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2925 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2926 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2927 	 */
2928 	if (gmch_ctrl < 0x11)
2929 		return gmch_ctrl << 25;
2930 	else if (gmch_ctrl < 0x17)
2931 		return (gmch_ctrl - 0x11 + 2) << 22;
2932 	else
2933 		return (gmch_ctrl - 0x17 + 9) << 22;
2934 }
2935 
2936 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2937 {
2938 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2939 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2940 
2941 	if (gen9_gmch_ctl < 0xf0)
2942 		return gen9_gmch_ctl << 25; /* 32 MB units */
2943 	else
2944 		/* 4MB increments starting at 0xf0 for 4MB */
2945 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2946 }
2947 
2948 static int ggtt_probe_common(struct drm_device *dev,
2949 			     size_t gtt_size)
2950 {
2951 	struct drm_i915_private *dev_priv = dev->dev_private;
2952 	struct i915_page_scratch *scratch_page;
2953 	phys_addr_t gtt_phys_addr;
2954 
2955 	/* For Modern GENs the PTEs and register space are split in the BAR */
2956 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2957 		(pci_resource_len(dev->pdev, 0) / 2);
2958 
2959 	/*
2960 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2961 	 * dropped. For WC mappings in general we have 64 byte burst writes
2962 	 * when the WC buffer is flushed, so we can't use it, but have to
2963 	 * resort to an uncached mapping. The WC issue is easily caught by the
2964 	 * readback check when writing GTT PTE entries.
2965 	 */
2966 	if (IS_BROXTON(dev))
2967 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2968 	else
2969 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2970 	if (!dev_priv->gtt.gsm) {
2971 		DRM_ERROR("Failed to map the gtt page table\n");
2972 		return -ENOMEM;
2973 	}
2974 
2975 	scratch_page = alloc_scratch_page(dev);
2976 	if (IS_ERR(scratch_page)) {
2977 		DRM_ERROR("Scratch setup failed\n");
2978 		/* iounmap will also get called at remove, but meh */
2979 		iounmap(dev_priv->gtt.gsm);
2980 		return PTR_ERR(scratch_page);
2981 	}
2982 
2983 	dev_priv->gtt.base.scratch_page = scratch_page;
2984 
2985 	return 0;
2986 }
2987 
2988 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2989  * bits. When using advanced contexts each context stores its own PAT, but
2990  * writing this data shouldn't be harmful even in those cases. */
2991 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2992 {
2993 	uint64_t pat;
2994 
2995 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2996 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2997 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2998 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2999 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3000 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3001 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3002 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3003 
3004 	if (!USES_PPGTT(dev_priv->dev))
3005 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3006 		 * so RTL will always use the value corresponding to
3007 		 * pat_sel = 000".
3008 		 * So let's disable cache for GGTT to avoid screen corruptions.
3009 		 * MOCS still can be used though.
3010 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3011 		 * before this patch, i.e. the same uncached + snooping access
3012 		 * like on gen6/7 seems to be in effect.
3013 		 * - So this just fixes blitter/render access. Again it looks
3014 		 * like it's not just uncached access, but uncached + snooping.
3015 		 * So we can still hold onto all our assumptions wrt cpu
3016 		 * clflushing on LLC machines.
3017 		 */
3018 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3019 
3020 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3021 	 * write would work. */
3022 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3023 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3024 }
3025 
3026 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3027 {
3028 	uint64_t pat;
3029 
3030 	/*
3031 	 * Map WB on BDW to snooped on CHV.
3032 	 *
3033 	 * Only the snoop bit has meaning for CHV, the rest is
3034 	 * ignored.
3035 	 *
3036 	 * The hardware will never snoop for certain types of accesses:
3037 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3038 	 * - PPGTT page tables
3039 	 * - some other special cycles
3040 	 *
3041 	 * As with BDW, we also need to consider the following for GT accesses:
3042 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3043 	 * so RTL will always use the value corresponding to
3044 	 * pat_sel = 000".
3045 	 * Which means we must set the snoop bit in PAT entry 0
3046 	 * in order to keep the global status page working.
3047 	 */
3048 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3049 	      GEN8_PPAT(1, 0) |
3050 	      GEN8_PPAT(2, 0) |
3051 	      GEN8_PPAT(3, 0) |
3052 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3053 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3054 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3055 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3056 
3057 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3058 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3059 }
3060 
3061 static int gen8_gmch_probe(struct drm_device *dev,
3062 			   u64 *gtt_total,
3063 			   size_t *stolen,
3064 			   phys_addr_t *mappable_base,
3065 			   u64 *mappable_end)
3066 {
3067 	struct drm_i915_private *dev_priv = dev->dev_private;
3068 	u64 gtt_size;
3069 	u16 snb_gmch_ctl;
3070 	int ret;
3071 
3072 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3073 	*mappable_base = pci_resource_start(dev->pdev, 2);
3074 	*mappable_end = pci_resource_len(dev->pdev, 2);
3075 
3076 #if 0
3077 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3078 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3079 #endif
3080 
3081 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3082 
3083 	if (INTEL_INFO(dev)->gen >= 9) {
3084 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
3085 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3086 	} else if (IS_CHERRYVIEW(dev)) {
3087 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
3088 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3089 	} else {
3090 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
3091 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3092 	}
3093 
3094 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3095 
3096 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3097 		chv_setup_private_ppat(dev_priv);
3098 	else
3099 		bdw_setup_private_ppat(dev_priv);
3100 
3101 	ret = ggtt_probe_common(dev, gtt_size);
3102 
3103 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3104 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3105 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3106 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3107 
3108 	if (IS_CHERRYVIEW(dev_priv))
3109 		dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3110 
3111 	return ret;
3112 }
3113 
3114 static int gen6_gmch_probe(struct drm_device *dev,
3115 			   u64 *gtt_total,
3116 			   size_t *stolen,
3117 			   phys_addr_t *mappable_base,
3118 			   u64 *mappable_end)
3119 {
3120 	struct drm_i915_private *dev_priv = dev->dev_private;
3121 	unsigned int gtt_size;
3122 	u16 snb_gmch_ctl;
3123 	int ret;
3124 
3125 	*mappable_base = pci_resource_start(dev->pdev, 2);
3126 	*mappable_end = pci_resource_len(dev->pdev, 2);
3127 
3128 	/* 64/512MB is the current min/max we actually know of, but this is just
3129 	 * a coarse sanity check.
3130 	 */
3131 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3132 		DRM_ERROR("Unknown GMADR size (%lx)\n",
3133 			  dev_priv->gtt.mappable_end);
3134 		return -ENXIO;
3135 	}
3136 
3137 #if 0
3138 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3139 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3140 #endif
3141 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3142 
3143 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3144 
3145 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3146 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3147 
3148 	ret = ggtt_probe_common(dev, gtt_size);
3149 
3150 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3151 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3152 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3153 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3154 
3155 	return ret;
3156 }
3157 
3158 static void gen6_gmch_remove(struct i915_address_space *vm)
3159 {
3160 
3161 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3162 
3163 	iounmap(gtt->gsm);
3164 	free_scratch_page(vm->dev, vm->scratch_page);
3165 }
3166 
3167 static int i915_gmch_probe(struct drm_device *dev,
3168 			   u64 *gtt_total,
3169 			   size_t *stolen,
3170 			   phys_addr_t *mappable_base,
3171 			   u64 *mappable_end)
3172 {
3173 	struct drm_i915_private *dev_priv = dev->dev_private;
3174 #if 0
3175 	int ret;
3176 
3177 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3178 	if (!ret) {
3179 		DRM_ERROR("failed to set up gmch\n");
3180 		return -EIO;
3181 	}
3182 #endif
3183 
3184 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3185 
3186 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3187 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3188 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3189 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3190 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3191 
3192 	if (unlikely(dev_priv->gtt.do_idle_maps))
3193 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3194 
3195 	return 0;
3196 }
3197 
3198 static void i915_gmch_remove(struct i915_address_space *vm)
3199 {
3200 	intel_gmch_remove();
3201 }
3202 
3203 int i915_gem_gtt_init(struct drm_device *dev)
3204 {
3205 	struct drm_i915_private *dev_priv = dev->dev_private;
3206 	struct i915_gtt *gtt = &dev_priv->gtt;
3207 	int ret;
3208 
3209 	if (INTEL_INFO(dev)->gen <= 5) {
3210 		gtt->gtt_probe = i915_gmch_probe;
3211 		gtt->base.cleanup = i915_gmch_remove;
3212 	} else if (INTEL_INFO(dev)->gen < 8) {
3213 		gtt->gtt_probe = gen6_gmch_probe;
3214 		gtt->base.cleanup = gen6_gmch_remove;
3215 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3216 			gtt->base.pte_encode = iris_pte_encode;
3217 		else if (IS_HASWELL(dev))
3218 			gtt->base.pte_encode = hsw_pte_encode;
3219 		else if (IS_VALLEYVIEW(dev))
3220 			gtt->base.pte_encode = byt_pte_encode;
3221 		else if (INTEL_INFO(dev)->gen >= 7)
3222 			gtt->base.pte_encode = ivb_pte_encode;
3223 		else
3224 			gtt->base.pte_encode = snb_pte_encode;
3225 	} else {
3226 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3227 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3228 	}
3229 
3230 	gtt->base.dev = dev;
3231 	gtt->base.is_ggtt = true;
3232 
3233 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3234 			     &gtt->mappable_base, &gtt->mappable_end);
3235 	if (ret)
3236 		return ret;
3237 
3238 	/*
3239 	 * Initialise stolen early so that we may reserve preallocated
3240 	 * objects for the BIOS to KMS transition.
3241 	 */
3242 	ret = i915_gem_init_stolen(dev);
3243 	if (ret)
3244 		goto out_gtt_cleanup;
3245 
3246 	/* GMADR is the PCI mmio aperture into the global GTT. */
3247 	DRM_INFO("Memory usable by graphics device = %luM\n",
3248 		 gtt->base.total >> 20);
3249 	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
3250 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3251 #ifdef CONFIG_INTEL_IOMMU
3252 	if (intel_iommu_gfx_mapped)
3253 		DRM_INFO("VT-d active for gfx access\n");
3254 #endif
3255 	/*
3256 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3257 	 * user's requested state against the hardware/driver capabilities.  We
3258 	 * do this now so that we can print out any log messages once rather
3259 	 * than every time we check intel_enable_ppgtt().
3260 	 */
3261 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3262 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3263 
3264 	return 0;
3265 
3266 out_gtt_cleanup:
3267 	gtt->base.cleanup(&dev_priv->gtt.base);
3268 
3269 	return ret;
3270 }
3271 
3272 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3273 {
3274 	struct drm_i915_private *dev_priv = dev->dev_private;
3275 	struct drm_i915_gem_object *obj;
3276 	struct i915_address_space *vm;
3277 	struct i915_vma *vma;
3278 	bool flush;
3279 
3280 	i915_check_and_clear_faults(dev);
3281 
3282 	/* First fill our portion of the GTT with scratch pages */
3283 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3284 				       dev_priv->gtt.base.start,
3285 				       dev_priv->gtt.base.total,
3286 				       true);
3287 
3288 	/* Cache flush objects bound into GGTT and rebind them. */
3289 	vm = &dev_priv->gtt.base;
3290 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3291 		flush = false;
3292 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3293 			if (vma->vm != vm)
3294 				continue;
3295 
3296 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3297 					      PIN_UPDATE));
3298 
3299 			flush = true;
3300 		}
3301 
3302 		if (flush)
3303 			i915_gem_clflush_object(obj, obj->pin_display);
3304 	}
3305 
3306 	if (INTEL_INFO(dev)->gen >= 8) {
3307 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3308 			chv_setup_private_ppat(dev_priv);
3309 		else
3310 			bdw_setup_private_ppat(dev_priv);
3311 
3312 		return;
3313 	}
3314 
3315 	if (USES_PPGTT(dev)) {
3316 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3317 			/* TODO: Perhaps it shouldn't be gen6 specific */
3318 
3319 			struct i915_hw_ppgtt *ppgtt =
3320 					container_of(vm, struct i915_hw_ppgtt,
3321 						     base);
3322 
3323 			if (i915_is_ggtt(vm))
3324 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3325 
3326 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3327 					      0, ppgtt->base.total);
3328 		}
3329 	}
3330 
3331 	i915_ggtt_flush(dev_priv);
3332 }
3333 
3334 static struct i915_vma *
3335 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3336 		      struct i915_address_space *vm,
3337 		      const struct i915_ggtt_view *ggtt_view)
3338 {
3339 	struct i915_vma *vma;
3340 
3341 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3342 		return ERR_PTR(-EINVAL);
3343 
3344 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3345 	if (vma == NULL)
3346 		return ERR_PTR(-ENOMEM);
3347 
3348 	INIT_LIST_HEAD(&vma->vm_link);
3349 	INIT_LIST_HEAD(&vma->obj_link);
3350 	INIT_LIST_HEAD(&vma->exec_list);
3351 	vma->vm = vm;
3352 	vma->obj = obj;
3353 	vma->is_ggtt = i915_is_ggtt(vm);
3354 
3355 	if (i915_is_ggtt(vm))
3356 		vma->ggtt_view = *ggtt_view;
3357 	else
3358 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3359 
3360 	list_add_tail(&vma->obj_link, &obj->vma_list);
3361 
3362 	return vma;
3363 }
3364 
3365 struct i915_vma *
3366 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3367 				  struct i915_address_space *vm)
3368 {
3369 	struct i915_vma *vma;
3370 
3371 	vma = i915_gem_obj_to_vma(obj, vm);
3372 	if (!vma)
3373 		vma = __i915_gem_vma_create(obj, vm,
3374 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3375 
3376 	return vma;
3377 }
3378 
3379 struct i915_vma *
3380 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3381 				       const struct i915_ggtt_view *view)
3382 {
3383 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3384 	struct i915_vma *vma;
3385 
3386 	if (WARN_ON(!view))
3387 		return ERR_PTR(-EINVAL);
3388 
3389 	vma = i915_gem_obj_to_ggtt_view(obj, view);
3390 
3391 	if (IS_ERR(vma))
3392 		return vma;
3393 
3394 	if (!vma)
3395 		vma = __i915_gem_vma_create(obj, ggtt, view);
3396 
3397 	return vma;
3398 
3399 }
3400 
3401 static struct scatterlist *
3402 rotate_pages(const dma_addr_t *in, unsigned int offset,
3403 	     unsigned int width, unsigned int height,
3404 	     unsigned int stride,
3405 	     struct sg_table *st, struct scatterlist *sg)
3406 {
3407 	unsigned int column, row;
3408 	unsigned int src_idx;
3409 
3410 	if (!sg) {
3411 		st->nents = 0;
3412 		sg = st->sgl;
3413 	}
3414 
3415 	for (column = 0; column < width; column++) {
3416 		src_idx = stride * (height - 1) + column;
3417 		for (row = 0; row < height; row++) {
3418 			st->nents++;
3419 			/* We don't need the pages, but need to initialize
3420 			 * the entries so the sg list can be happily traversed.
3421 			 * The only thing we need are DMA addresses.
3422 			 */
3423 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3424 			sg_dma_address(sg) = in[offset + src_idx];
3425 			sg_dma_len(sg) = PAGE_SIZE;
3426 			sg = sg_next(sg);
3427 			src_idx -= stride;
3428 		}
3429 	}
3430 
3431 	return sg;
3432 }
3433 
3434 static struct sg_table *
3435 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3436 			  struct drm_i915_gem_object *obj)
3437 {
3438 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3439 	unsigned int size_pages_uv;
3440 	struct sg_page_iter sg_iter;
3441 	unsigned long i;
3442 	dma_addr_t *page_addr_list;
3443 	struct sg_table *st;
3444 	unsigned int uv_start_page;
3445 	struct scatterlist *sg;
3446 	int ret = -ENOMEM;
3447 
3448 	/* Allocate a temporary list of source pages for random access. */
3449 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3450 				       sizeof(dma_addr_t));
3451 	if (!page_addr_list)
3452 		return ERR_PTR(ret);
3453 
3454 	/* Account for UV plane with NV12. */
3455 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3456 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3457 	else
3458 		size_pages_uv = 0;
3459 
3460 	/* Allocate target SG list. */
3461 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3462 	if (!st)
3463 		goto err_st_alloc;
3464 
3465 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3466 	if (ret)
3467 		goto err_sg_alloc;
3468 
3469 	/* Populate source page list from the object. */
3470 	i = 0;
3471 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3472 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3473 		i++;
3474 	}
3475 
3476 	/* Rotate the pages. */
3477 	sg = rotate_pages(page_addr_list, 0,
3478 		     rot_info->width_pages, rot_info->height_pages,
3479 		     rot_info->width_pages,
3480 		     st, NULL);
3481 
3482 	/* Append the UV plane if NV12. */
3483 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3484 		uv_start_page = size_pages;
3485 
3486 		/* Check for tile-row un-alignment. */
3487 		if (offset_in_page(rot_info->uv_offset))
3488 			uv_start_page--;
3489 
3490 		rot_info->uv_start_page = uv_start_page;
3491 
3492 		rotate_pages(page_addr_list, uv_start_page,
3493 			     rot_info->width_pages_uv,
3494 			     rot_info->height_pages_uv,
3495 			     rot_info->width_pages_uv,
3496 			     st, sg);
3497 	}
3498 
3499 	DRM_DEBUG_KMS(
3500 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3501 		      obj->base.size, rot_info->pitch, rot_info->height,
3502 		      rot_info->pixel_format, rot_info->width_pages,
3503 		      rot_info->height_pages, size_pages + size_pages_uv,
3504 		      size_pages);
3505 
3506 	drm_free_large(page_addr_list);
3507 
3508 	return st;
3509 
3510 err_sg_alloc:
3511 	kfree(st);
3512 err_st_alloc:
3513 	drm_free_large(page_addr_list);
3514 
3515 	DRM_DEBUG_KMS(
3516 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3517 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3518 		      rot_info->pixel_format, rot_info->width_pages,
3519 		      rot_info->height_pages, size_pages + size_pages_uv,
3520 		      size_pages);
3521 	return ERR_PTR(ret);
3522 }
3523 
3524 static struct sg_table *
3525 intel_partial_pages(const struct i915_ggtt_view *view,
3526 		    struct drm_i915_gem_object *obj)
3527 {
3528 	struct sg_table *st;
3529 	struct scatterlist *sg;
3530 	struct sg_page_iter obj_sg_iter;
3531 	int ret = -ENOMEM;
3532 
3533 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3534 	if (!st)
3535 		goto err_st_alloc;
3536 
3537 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3538 	if (ret)
3539 		goto err_sg_alloc;
3540 
3541 	sg = st->sgl;
3542 	st->nents = 0;
3543 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3544 		view->params.partial.offset)
3545 	{
3546 		if (st->nents >= view->params.partial.size)
3547 			break;
3548 
3549 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3550 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3551 		sg_dma_len(sg) = PAGE_SIZE;
3552 
3553 		sg = sg_next(sg);
3554 		st->nents++;
3555 	}
3556 
3557 	return st;
3558 
3559 err_sg_alloc:
3560 	kfree(st);
3561 err_st_alloc:
3562 	return ERR_PTR(ret);
3563 }
3564 
3565 static int
3566 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3567 {
3568 	int ret = 0;
3569 
3570 	if (vma->ggtt_view.pages)
3571 		return 0;
3572 
3573 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3574 		vma->ggtt_view.pages = vma->obj->pages;
3575 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3576 		vma->ggtt_view.pages =
3577 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3578 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3579 		vma->ggtt_view.pages =
3580 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3581 	else
3582 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3583 			  vma->ggtt_view.type);
3584 
3585 	if (!vma->ggtt_view.pages) {
3586 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3587 			  vma->ggtt_view.type);
3588 		ret = -EINVAL;
3589 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3590 		ret = PTR_ERR(vma->ggtt_view.pages);
3591 		vma->ggtt_view.pages = NULL;
3592 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3593 			  vma->ggtt_view.type, ret);
3594 	}
3595 
3596 	return ret;
3597 }
3598 
3599 /**
3600  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3601  * @vma: VMA to map
3602  * @cache_level: mapping cache level
3603  * @flags: flags like global or local mapping
3604  *
3605  * DMA addresses are taken from the scatter-gather table of this object (or of
3606  * this VMA in case of non-default GGTT views) and PTE entries set up.
3607  * Note that DMA addresses are also the only part of the SG table we care about.
3608  */
3609 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3610 		  u32 flags)
3611 {
3612 	int ret;
3613 	u32 bind_flags;
3614 
3615 	if (WARN_ON(flags == 0))
3616 		return -EINVAL;
3617 
3618 	bind_flags = 0;
3619 	if (flags & PIN_GLOBAL)
3620 		bind_flags |= GLOBAL_BIND;
3621 	if (flags & PIN_USER)
3622 		bind_flags |= LOCAL_BIND;
3623 
3624 	if (flags & PIN_UPDATE)
3625 		bind_flags |= vma->bound;
3626 	else
3627 		bind_flags &= ~vma->bound;
3628 
3629 	if (bind_flags == 0)
3630 		return 0;
3631 
3632 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3633 		/* XXX: i915_vma_pin() will fix this +- hack */
3634 		vma->pin_count++;
3635 		trace_i915_va_alloc(vma);
3636 		ret = vma->vm->allocate_va_range(vma->vm,
3637 						 vma->node.start,
3638 						 vma->node.size);
3639 		vma->pin_count--;
3640 		if (ret)
3641 			return ret;
3642 	}
3643 
3644 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3645 	if (ret)
3646 		return ret;
3647 
3648 	vma->bound |= bind_flags;
3649 
3650 	return 0;
3651 }
3652 
3653 /**
3654  * i915_ggtt_view_size - Get the size of a GGTT view.
3655  * @obj: Object the view is of.
3656  * @view: The view in question.
3657  *
3658  * @return The size of the GGTT view in bytes.
3659  */
3660 size_t
3661 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3662 		    const struct i915_ggtt_view *view)
3663 {
3664 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3665 		return obj->base.size;
3666 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3667 		return view->params.rotated.size;
3668 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3669 		return view->params.partial.size << PAGE_SHIFT;
3670 	} else {
3671 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3672 		return obj->base.size;
3673 	}
3674 }
3675