xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.c (revision f1e2e235)
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 
35 #include <linux/bitmap.h>
36 
37 #include <sys/mplock2.h>
38 
39 /**
40  * DOC: Global GTT views
41  *
42  * Background and previous state
43  *
44  * Historically objects could exists (be bound) in global GTT space only as
45  * singular instances with a view representing all of the object's backing pages
46  * in a linear fashion. This view will be called a normal view.
47  *
48  * To support multiple views of the same object, where the number of mapped
49  * pages is not equal to the backing store, or where the layout of the pages
50  * is not linear, concept of a GGTT view was added.
51  *
52  * One example of an alternative view is a stereo display driven by a single
53  * image. In this case we would have a framebuffer looking like this
54  * (2x2 pages):
55  *
56  *    12
57  *    34
58  *
59  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
60  * rendering. In contrast, fed to the display engine would be an alternative
61  * view which could look something like this:
62  *
63  *   1212
64  *   3434
65  *
66  * In this example both the size and layout of pages in the alternative view is
67  * different from the normal view.
68  *
69  * Implementation and usage
70  *
71  * GGTT views are implemented using VMAs and are distinguished via enum
72  * i915_ggtt_view_type and struct i915_ggtt_view.
73  *
74  * A new flavour of core GEM functions which work with GGTT bound objects were
75  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
76  * renaming  in large amounts of code. They take the struct i915_ggtt_view
77  * parameter encapsulating all metadata required to implement a view.
78  *
79  * As a helper for callers which are only interested in the normal view,
80  * globally const i915_ggtt_view_normal singleton instance exists. All old core
81  * GEM API functions, the ones not taking the view parameter, are operating on,
82  * or with the normal GGTT view.
83  *
84  * Code wanting to add or use a new GGTT view needs to:
85  *
86  * 1. Add a new enum with a suitable name.
87  * 2. Extend the metadata in the i915_ggtt_view structure if required.
88  * 3. Add support to i915_get_vma_pages().
89  *
90  * New views are required to build a scatter-gather table from within the
91  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
92  * exists for the lifetime of an VMA.
93  *
94  * Core API is designed to have copy semantics which means that passed in
95  * struct i915_ggtt_view does not need to be persistent (left around after
96  * calling the core API functions).
97  *
98  */
99 
100 static inline struct i915_ggtt *
101 i915_vm_to_ggtt(struct i915_address_space *vm)
102 {
103 	GEM_BUG_ON(!i915_is_ggtt(vm));
104 	return container_of(vm, struct i915_ggtt, base);
105 }
106 
107 static int
108 i915_get_ggtt_vma_pages(struct i915_vma *vma);
109 
110 const struct i915_ggtt_view i915_ggtt_view_normal = {
111 	.type = I915_GGTT_VIEW_NORMAL,
112 };
113 const struct i915_ggtt_view i915_ggtt_view_rotated = {
114 	.type = I915_GGTT_VIEW_ROTATED,
115 };
116 
117 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
118 			       	int enable_ppgtt)
119 {
120 	bool has_aliasing_ppgtt;
121 	bool has_full_ppgtt;
122 	bool has_full_48bit_ppgtt;
123 
124 	has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
125 	has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
126 	has_full_48bit_ppgtt =
127 	       	IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
128 
129 	if (intel_vgpu_active(dev_priv))
130 		has_full_ppgtt = false; /* emulation is too hard */
131 
132 	if (!has_aliasing_ppgtt)
133 		return 0;
134 
135 	/*
136 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
137 	 * execlists, the sole mechanism available to submit work.
138 	 */
139 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
140 		return 0;
141 
142 	if (enable_ppgtt == 1)
143 		return 1;
144 
145 	if (enable_ppgtt == 2 && has_full_ppgtt)
146 		return 2;
147 
148 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
149 		return 3;
150 
151 #ifdef CONFIG_INTEL_IOMMU
152 	/* Disable ppgtt on SNB if VT-d is on. */
153 	if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
154 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
155 		return 0;
156 	}
157 #endif
158 
159 	/* Early VLV doesn't have this */
160 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->dev->pdev->revision < 0xb) {
161 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
162 		return 0;
163 	}
164 
165 	if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
166 		return has_full_48bit_ppgtt ? 3 : 2;
167 	else
168 		return has_aliasing_ppgtt ? 1 : 0;
169 }
170 
171 static int ppgtt_bind_vma(struct i915_vma *vma,
172 			  enum i915_cache_level cache_level,
173 			  u32 unused)
174 {
175 	u32 pte_flags = 0;
176 
177 	/* Currently applicable only to VLV */
178 	if (vma->obj->gt_ro)
179 		pte_flags |= PTE_READ_ONLY;
180 
181 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
182 				cache_level, pte_flags);
183 
184 	return 0;
185 }
186 
187 static void ppgtt_unbind_vma(struct i915_vma *vma)
188 {
189 	vma->vm->clear_range(vma->vm,
190 			     vma->node.start,
191 			     vma->obj->base.size,
192 			     true);
193 }
194 
195 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
196 				  enum i915_cache_level level,
197 				  bool valid)
198 {
199 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
200 	pte |= addr;
201 
202 	switch (level) {
203 	case I915_CACHE_NONE:
204 		pte |= PPAT_UNCACHED_INDEX;
205 		break;
206 	case I915_CACHE_WT:
207 		pte |= PPAT_DISPLAY_ELLC_INDEX;
208 		break;
209 	default:
210 		pte |= PPAT_CACHED_INDEX;
211 		break;
212 	}
213 
214 	return pte;
215 }
216 
217 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
218 				  const enum i915_cache_level level)
219 {
220 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
221 	pde |= addr;
222 	if (level != I915_CACHE_NONE)
223 		pde |= PPAT_CACHED_PDE_INDEX;
224 	else
225 		pde |= PPAT_UNCACHED_INDEX;
226 	return pde;
227 }
228 
229 #define gen8_pdpe_encode gen8_pde_encode
230 #define gen8_pml4e_encode gen8_pde_encode
231 
232 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
233 				 enum i915_cache_level level,
234 				 bool valid, u32 unused)
235 {
236 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 
239 	switch (level) {
240 	case I915_CACHE_L3_LLC:
241 	case I915_CACHE_LLC:
242 		pte |= GEN6_PTE_CACHE_LLC;
243 		break;
244 	case I915_CACHE_NONE:
245 		pte |= GEN6_PTE_UNCACHED;
246 		break;
247 	default:
248 		MISSING_CASE(level);
249 	}
250 
251 	return pte;
252 }
253 
254 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
255 				 enum i915_cache_level level,
256 				 bool valid, u32 unused)
257 {
258 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
260 
261 	switch (level) {
262 	case I915_CACHE_L3_LLC:
263 		pte |= GEN7_PTE_CACHE_L3_LLC;
264 		break;
265 	case I915_CACHE_LLC:
266 		pte |= GEN6_PTE_CACHE_LLC;
267 		break;
268 	case I915_CACHE_NONE:
269 		pte |= GEN6_PTE_UNCACHED;
270 		break;
271 	default:
272 		MISSING_CASE(level);
273 	}
274 
275 	return pte;
276 }
277 
278 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
279 				 enum i915_cache_level level,
280 				 bool valid, u32 flags)
281 {
282 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
283 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
284 
285 	if (!(flags & PTE_READ_ONLY))
286 		pte |= BYT_PTE_WRITEABLE;
287 
288 	if (level != I915_CACHE_NONE)
289 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
290 
291 	return pte;
292 }
293 
294 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
295 				 enum i915_cache_level level,
296 				 bool valid, u32 unused)
297 {
298 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
299 	pte |= HSW_PTE_ADDR_ENCODE(addr);
300 
301 	if (level != I915_CACHE_NONE)
302 		pte |= HSW_WB_LLC_AGE3;
303 
304 	return pte;
305 }
306 
307 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
308 				  enum i915_cache_level level,
309 				  bool valid, u32 unused)
310 {
311 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
312 	pte |= HSW_PTE_ADDR_ENCODE(addr);
313 
314 	switch (level) {
315 	case I915_CACHE_NONE:
316 		break;
317 	case I915_CACHE_WT:
318 		pte |= HSW_WT_ELLC_LLC_AGE3;
319 		break;
320 	default:
321 		pte |= HSW_WB_ELLC_LLC_AGE3;
322 		break;
323 	}
324 
325 	return pte;
326 }
327 
328 static int __setup_page_dma(struct drm_device *dev,
329 			    struct i915_page_dma *p, gfp_t flags)
330 {
331 	struct device *device = &dev->pdev->dev;
332 
333 	p->page = alloc_page(flags);
334 	if (!p->page)
335 		return -ENOMEM;
336 
337 	p->daddr = dma_map_page(device,
338 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
339 
340 	if (dma_mapping_error(device, p->daddr)) {
341 		__free_page(p->page);
342 		return -EINVAL;
343 	}
344 
345 	return 0;
346 }
347 
348 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
349 {
350 	return __setup_page_dma(dev, p, GFP_KERNEL);
351 }
352 
353 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
354 {
355 	if (WARN_ON(!p->page))
356 		return;
357 
358 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
359 	__free_page(p->page);
360 	memset(p, 0, sizeof(*p));
361 }
362 
363 static void *kmap_page_dma(struct i915_page_dma *p)
364 {
365 	return kmap_atomic(p->page);
366 }
367 
368 /* We use the flushing unmap only with ppgtt structures:
369  * page directories, page tables and scratch pages.
370  */
371 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
372 {
373 	/* There are only few exceptions for gen >=6. chv and bxt.
374 	 * And we are not sure about the latter so play safe for now.
375 	 */
376 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
377 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
378 
379 	kunmap_atomic(vaddr);
380 }
381 
382 #define kmap_px(px) kmap_page_dma(px_base(px))
383 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
384 
385 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
386 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
387 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
388 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
389 
390 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
391 			  const uint64_t val)
392 {
393 	int i;
394 	uint64_t * const vaddr = kmap_page_dma(p);
395 
396 	for (i = 0; i < 512; i++)
397 		vaddr[i] = val;
398 
399 	kunmap_page_dma(dev, vaddr);
400 }
401 
402 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
403 			     const uint32_t val32)
404 {
405 	uint64_t v = val32;
406 
407 	v = v << 32 | val32;
408 
409 	fill_page_dma(dev, p, v);
410 }
411 
412 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
413 {
414 	struct i915_page_scratch *sp;
415 	int ret;
416 
417 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
418 	if (sp == NULL)
419 		return ERR_PTR(-ENOMEM);
420 
421 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
422 	if (ret) {
423 		kfree(sp);
424 		return ERR_PTR(ret);
425 	}
426 
427 	set_pages_uc(px_page(sp), 1);
428 
429 	return sp;
430 }
431 
432 static void free_scratch_page(struct drm_device *dev,
433 			      struct i915_page_scratch *sp)
434 {
435 	set_pages_wb(px_page(sp), 1);
436 
437 	cleanup_px(dev, sp);
438 	kfree(sp);
439 }
440 
441 static struct i915_page_table *alloc_pt(struct drm_device *dev)
442 {
443 	struct i915_page_table *pt;
444 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
445 		GEN8_PTES : GEN6_PTES;
446 	int ret = -ENOMEM;
447 
448 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
449 	if (!pt)
450 		return ERR_PTR(-ENOMEM);
451 
452 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
453 				GFP_KERNEL);
454 
455 	if (!pt->used_ptes)
456 		goto fail_bitmap;
457 
458 	ret = setup_px(dev, pt);
459 	if (ret)
460 		goto fail_page_m;
461 
462 	return pt;
463 
464 fail_page_m:
465 	kfree(pt->used_ptes);
466 fail_bitmap:
467 	kfree(pt);
468 
469 	return ERR_PTR(ret);
470 }
471 
472 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
473 {
474 	cleanup_px(dev, pt);
475 	kfree(pt->used_ptes);
476 	kfree(pt);
477 }
478 
479 static void gen8_initialize_pt(struct i915_address_space *vm,
480 			       struct i915_page_table *pt)
481 {
482 	gen8_pte_t scratch_pte;
483 
484 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
485 				      I915_CACHE_LLC, true);
486 
487 	fill_px(vm->dev, pt, scratch_pte);
488 }
489 
490 static void gen6_initialize_pt(struct i915_address_space *vm,
491 			       struct i915_page_table *pt)
492 {
493 	gen6_pte_t scratch_pte;
494 
495 	WARN_ON(px_dma(vm->scratch_page) == 0);
496 
497 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
498 				     I915_CACHE_LLC, true, 0);
499 
500 	fill32_px(vm->dev, pt, scratch_pte);
501 }
502 
503 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
504 {
505 	struct i915_page_directory *pd;
506 	int ret = -ENOMEM;
507 
508 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
509 	if (!pd)
510 		return ERR_PTR(-ENOMEM);
511 
512 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
513 				sizeof(*pd->used_pdes), GFP_KERNEL);
514 	if (!pd->used_pdes)
515 		goto fail_bitmap;
516 
517 	ret = setup_px(dev, pd);
518 	if (ret)
519 		goto fail_page_m;
520 
521 	return pd;
522 
523 fail_page_m:
524 	kfree(pd->used_pdes);
525 fail_bitmap:
526 	kfree(pd);
527 
528 	return ERR_PTR(ret);
529 }
530 
531 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
532 {
533 	if (px_page(pd)) {
534 		cleanup_px(dev, pd);
535 		kfree(pd->used_pdes);
536 		kfree(pd);
537 	}
538 }
539 
540 static void gen8_initialize_pd(struct i915_address_space *vm,
541 			       struct i915_page_directory *pd)
542 {
543 	gen8_pde_t scratch_pde;
544 
545 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
546 
547 	fill_px(vm->dev, pd, scratch_pde);
548 }
549 
550 static int __pdp_init(struct drm_device *dev,
551 		      struct i915_page_directory_pointer *pdp)
552 {
553 	size_t pdpes = I915_PDPES_PER_PDP(dev);
554 
555 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
556 				  sizeof(unsigned long),
557 				  GFP_KERNEL);
558 	if (!pdp->used_pdpes)
559 		return -ENOMEM;
560 
561 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
562 				      GFP_KERNEL);
563 	if (!pdp->page_directory) {
564 		kfree(pdp->used_pdpes);
565 		/* the PDP might be the statically allocated top level. Keep it
566 		 * as clean as possible */
567 		pdp->used_pdpes = NULL;
568 		return -ENOMEM;
569 	}
570 
571 	return 0;
572 }
573 
574 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
575 {
576 	kfree(pdp->used_pdpes);
577 	kfree(pdp->page_directory);
578 	pdp->page_directory = NULL;
579 }
580 
581 static struct
582 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
583 {
584 	struct i915_page_directory_pointer *pdp;
585 	int ret = -ENOMEM;
586 
587 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
588 
589 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
590 	if (!pdp)
591 		return ERR_PTR(-ENOMEM);
592 
593 	ret = __pdp_init(dev, pdp);
594 	if (ret)
595 		goto fail_bitmap;
596 
597 	ret = setup_px(dev, pdp);
598 	if (ret)
599 		goto fail_page_m;
600 
601 	return pdp;
602 
603 fail_page_m:
604 	__pdp_fini(pdp);
605 fail_bitmap:
606 	kfree(pdp);
607 
608 	return ERR_PTR(ret);
609 }
610 
611 static void free_pdp(struct drm_device *dev,
612 		     struct i915_page_directory_pointer *pdp)
613 {
614 	__pdp_fini(pdp);
615 	if (USES_FULL_48BIT_PPGTT(dev)) {
616 		cleanup_px(dev, pdp);
617 		kfree(pdp);
618 	}
619 }
620 
621 static void gen8_initialize_pdp(struct i915_address_space *vm,
622 				struct i915_page_directory_pointer *pdp)
623 {
624 	gen8_ppgtt_pdpe_t scratch_pdpe;
625 
626 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
627 
628 	fill_px(vm->dev, pdp, scratch_pdpe);
629 }
630 
631 static void gen8_initialize_pml4(struct i915_address_space *vm,
632 				 struct i915_pml4 *pml4)
633 {
634 	gen8_ppgtt_pml4e_t scratch_pml4e;
635 
636 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
637 					  I915_CACHE_LLC);
638 
639 	fill_px(vm->dev, pml4, scratch_pml4e);
640 }
641 
642 static void
643 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
644 			  struct i915_page_directory_pointer *pdp,
645 			  struct i915_page_directory *pd,
646 			  int index)
647 {
648 	gen8_ppgtt_pdpe_t *page_directorypo;
649 
650 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
651 		return;
652 
653 	page_directorypo = kmap_px(pdp);
654 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
655 	kunmap_px(ppgtt, page_directorypo);
656 }
657 
658 static void
659 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
660 				  struct i915_pml4 *pml4,
661 				  struct i915_page_directory_pointer *pdp,
662 				  int index)
663 {
664 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
665 
666 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
667 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
668 	kunmap_px(ppgtt, pagemap);
669 }
670 
671 /* Broadwell Page Directory Pointer Descriptors */
672 static int gen8_write_pdp(struct drm_i915_gem_request *req,
673 			  unsigned entry,
674 			  dma_addr_t addr)
675 {
676 	struct intel_engine_cs *engine = req->engine;
677 	int ret;
678 
679 	BUG_ON(entry >= 4);
680 
681 	ret = intel_ring_begin(req, 6);
682 	if (ret)
683 		return ret;
684 
685 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
686 	intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
687 	intel_ring_emit(engine, upper_32_bits(addr));
688 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
689 	intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
690 	intel_ring_emit(engine, lower_32_bits(addr));
691 	intel_ring_advance(engine);
692 
693 	return 0;
694 }
695 
696 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
697 				 struct drm_i915_gem_request *req)
698 {
699 	int i, ret;
700 
701 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
702 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
703 
704 		ret = gen8_write_pdp(req, i, pd_daddr);
705 		if (ret)
706 			return ret;
707 	}
708 
709 	return 0;
710 }
711 
712 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
713 			      struct drm_i915_gem_request *req)
714 {
715 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
716 }
717 
718 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
719 				       struct i915_page_directory_pointer *pdp,
720 				       uint64_t start,
721 				       uint64_t length,
722 				       gen8_pte_t scratch_pte)
723 {
724 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
725 	gen8_pte_t *pt_vaddr;
726 	unsigned pdpe = gen8_pdpe_index(start);
727 	unsigned pde = gen8_pde_index(start);
728 	unsigned pte = gen8_pte_index(start);
729 	unsigned num_entries = length >> PAGE_SHIFT;
730 	unsigned last_pte, i;
731 
732 	if (WARN_ON(!pdp))
733 		return;
734 
735 	while (num_entries) {
736 		struct i915_page_directory *pd;
737 		struct i915_page_table *pt;
738 
739 		if (WARN_ON(!pdp->page_directory[pdpe]))
740 			break;
741 
742 		pd = pdp->page_directory[pdpe];
743 
744 		if (WARN_ON(!pd->page_table[pde]))
745 			break;
746 
747 		pt = pd->page_table[pde];
748 
749 		if (WARN_ON(!px_page(pt)))
750 			break;
751 
752 		last_pte = pte + num_entries;
753 		if (last_pte > GEN8_PTES)
754 			last_pte = GEN8_PTES;
755 
756 		pt_vaddr = kmap_px(pt);
757 
758 		for (i = pte; i < last_pte; i++) {
759 			pt_vaddr[i] = scratch_pte;
760 			num_entries--;
761 		}
762 
763 		kunmap_px(ppgtt, pt_vaddr);
764 
765 		pte = 0;
766 		if (++pde == I915_PDES) {
767 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
768 				break;
769 			pde = 0;
770 		}
771 	}
772 }
773 
774 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
775 				   uint64_t start,
776 				   uint64_t length,
777 				   bool use_scratch)
778 {
779 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
780 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
781 						 I915_CACHE_LLC, use_scratch);
782 
783 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
784 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
785 					   scratch_pte);
786 	} else {
787 		uint64_t pml4e;
788 		struct i915_page_directory_pointer *pdp;
789 
790 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
791 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
792 						   scratch_pte);
793 		}
794 	}
795 }
796 
797 static void
798 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
799 			      struct i915_page_directory_pointer *pdp,
800 			      struct sg_page_iter *sg_iter,
801 			      uint64_t start,
802 			      enum i915_cache_level cache_level)
803 {
804 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
805 	gen8_pte_t *pt_vaddr;
806 	unsigned pdpe = gen8_pdpe_index(start);
807 	unsigned pde = gen8_pde_index(start);
808 	unsigned pte = gen8_pte_index(start);
809 
810 	pt_vaddr = NULL;
811 
812 	while (__sg_page_iter_next(sg_iter)) {
813 		if (pt_vaddr == NULL) {
814 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
815 			struct i915_page_table *pt = pd->page_table[pde];
816 			pt_vaddr = kmap_px(pt);
817 		}
818 
819 		pt_vaddr[pte] =
820 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
821 					cache_level, true);
822 		if (++pte == GEN8_PTES) {
823 			kunmap_px(ppgtt, pt_vaddr);
824 			pt_vaddr = NULL;
825 			if (++pde == I915_PDES) {
826 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
827 					break;
828 				pde = 0;
829 			}
830 			pte = 0;
831 		}
832 	}
833 
834 	if (pt_vaddr)
835 		kunmap_px(ppgtt, pt_vaddr);
836 }
837 
838 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
839 				      struct sg_table *pages,
840 				      uint64_t start,
841 				      enum i915_cache_level cache_level,
842 				      u32 unused)
843 {
844 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
845 	struct sg_page_iter sg_iter;
846 
847 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
848 
849 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
850 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
851 					      cache_level);
852 	} else {
853 		struct i915_page_directory_pointer *pdp;
854 		uint64_t pml4e;
855 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
856 
857 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
858 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
859 						      start, cache_level);
860 		}
861 	}
862 }
863 
864 static void gen8_free_page_tables(struct drm_device *dev,
865 				  struct i915_page_directory *pd)
866 {
867 	int i;
868 
869 	if (!px_page(pd))
870 		return;
871 
872 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
873 		if (WARN_ON(!pd->page_table[i]))
874 			continue;
875 
876 		free_pt(dev, pd->page_table[i]);
877 		pd->page_table[i] = NULL;
878 	}
879 }
880 
881 static int gen8_init_scratch(struct i915_address_space *vm)
882 {
883 	struct drm_device *dev = vm->dev;
884 	int ret;
885 
886 	vm->scratch_page = alloc_scratch_page(dev);
887 	if (IS_ERR(vm->scratch_page))
888 		return PTR_ERR(vm->scratch_page);
889 
890 	vm->scratch_pt = alloc_pt(dev);
891 	if (IS_ERR(vm->scratch_pt)) {
892 		ret = PTR_ERR(vm->scratch_pt);
893 		goto free_scratch_page;
894 	}
895 
896 	vm->scratch_pd = alloc_pd(dev);
897 	if (IS_ERR(vm->scratch_pd)) {
898 		ret = PTR_ERR(vm->scratch_pd);
899 		goto free_pt;
900 	}
901 
902 	if (USES_FULL_48BIT_PPGTT(dev)) {
903 		vm->scratch_pdp = alloc_pdp(dev);
904 		if (IS_ERR(vm->scratch_pdp)) {
905 			ret = PTR_ERR(vm->scratch_pdp);
906 			goto free_pd;
907 		}
908 	}
909 
910 	gen8_initialize_pt(vm, vm->scratch_pt);
911 	gen8_initialize_pd(vm, vm->scratch_pd);
912 	if (USES_FULL_48BIT_PPGTT(dev))
913 		gen8_initialize_pdp(vm, vm->scratch_pdp);
914 
915 	return 0;
916 
917 free_pd:
918 	free_pd(dev, vm->scratch_pd);
919 free_pt:
920 	free_pt(dev, vm->scratch_pt);
921 free_scratch_page:
922 	free_scratch_page(dev, vm->scratch_page);
923 
924 	return ret;
925 }
926 
927 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
928 {
929 	enum vgt_g2v_type msg;
930 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
931 	int i;
932 
933 	if (USES_FULL_48BIT_PPGTT(dev_priv)) {
934 		u64 daddr = px_dma(&ppgtt->pml4);
935 
936 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
937 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
938 
939 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
940 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
941 	} else {
942 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
943 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
944 
945 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
946 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
947 		}
948 
949 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
950 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
951 	}
952 
953 	I915_WRITE(vgtif_reg(g2v_notify), msg);
954 
955 	return 0;
956 }
957 
958 static void gen8_free_scratch(struct i915_address_space *vm)
959 {
960 	struct drm_device *dev = vm->dev;
961 
962 	if (USES_FULL_48BIT_PPGTT(dev))
963 		free_pdp(dev, vm->scratch_pdp);
964 	free_pd(dev, vm->scratch_pd);
965 	free_pt(dev, vm->scratch_pt);
966 	free_scratch_page(dev, vm->scratch_page);
967 }
968 
969 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
970 				    struct i915_page_directory_pointer *pdp)
971 {
972 	int i;
973 
974 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
975 		if (WARN_ON(!pdp->page_directory[i]))
976 			continue;
977 
978 		gen8_free_page_tables(dev, pdp->page_directory[i]);
979 		free_pd(dev, pdp->page_directory[i]);
980 	}
981 
982 	free_pdp(dev, pdp);
983 }
984 
985 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
986 {
987 	int i;
988 
989 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
990 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
991 			continue;
992 
993 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
994 	}
995 
996 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
997 }
998 
999 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1000 {
1001 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1002 
1003 	if (intel_vgpu_active(to_i915(vm->dev)))
1004 		gen8_ppgtt_notify_vgt(ppgtt, false);
1005 
1006 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1007 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1008 	else
1009 		gen8_ppgtt_cleanup_4lvl(ppgtt);
1010 
1011 	gen8_free_scratch(vm);
1012 }
1013 
1014 /**
1015  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1016  * @vm:	Master vm structure.
1017  * @pd:	Page directory for this address range.
1018  * @start:	Starting virtual address to begin allocations.
1019  * @length:	Size of the allocations.
1020  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1021  *		caller to free on error.
1022  *
1023  * Allocate the required number of page tables. Extremely similar to
1024  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1025  * the page directory boundary (instead of the page directory pointer). That
1026  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1027  * possible, and likely that the caller will need to use multiple calls of this
1028  * function to achieve the appropriate allocation.
1029  *
1030  * Return: 0 if success; negative error code otherwise.
1031  */
1032 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1033 				     struct i915_page_directory *pd,
1034 				     uint64_t start,
1035 				     uint64_t length,
1036 				     unsigned long *new_pts)
1037 {
1038 	struct drm_device *dev = vm->dev;
1039 	struct i915_page_table *pt;
1040 	uint32_t pde;
1041 
1042 	gen8_for_each_pde(pt, pd, start, length, pde) {
1043 		/* Don't reallocate page tables */
1044 		if (test_bit(pde, pd->used_pdes)) {
1045 			/* Scratch is never allocated this way */
1046 			WARN_ON(pt == vm->scratch_pt);
1047 			continue;
1048 		}
1049 
1050 		pt = alloc_pt(dev);
1051 		if (IS_ERR(pt))
1052 			goto unwind_out;
1053 
1054 		gen8_initialize_pt(vm, pt);
1055 		pd->page_table[pde] = pt;
1056 		__set_bit(pde, new_pts);
1057 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1058 	}
1059 
1060 	return 0;
1061 
1062 unwind_out:
1063 	for_each_set_bit(pde, new_pts, I915_PDES)
1064 		free_pt(dev, pd->page_table[pde]);
1065 
1066 	return -ENOMEM;
1067 }
1068 
1069 /**
1070  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1071  * @vm:	Master vm structure.
1072  * @pdp:	Page directory pointer for this address range.
1073  * @start:	Starting virtual address to begin allocations.
1074  * @length:	Size of the allocations.
1075  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1076  *		caller to free on error.
1077  *
1078  * Allocate the required number of page directories starting at the pde index of
1079  * @start, and ending at the pde index @start + @length. This function will skip
1080  * over already allocated page directories within the range, and only allocate
1081  * new ones, setting the appropriate pointer within the pdp as well as the
1082  * correct position in the bitmap @new_pds.
1083  *
1084  * The function will only allocate the pages within the range for a give page
1085  * directory pointer. In other words, if @start + @length straddles a virtually
1086  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1087  * required by the caller, This is not currently possible, and the BUG in the
1088  * code will prevent it.
1089  *
1090  * Return: 0 if success; negative error code otherwise.
1091  */
1092 static int
1093 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1094 				  struct i915_page_directory_pointer *pdp,
1095 				  uint64_t start,
1096 				  uint64_t length,
1097 				  unsigned long *new_pds)
1098 {
1099 	struct drm_device *dev = vm->dev;
1100 	struct i915_page_directory *pd;
1101 	uint32_t pdpe;
1102 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1103 
1104 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1105 
1106 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1107 		if (test_bit(pdpe, pdp->used_pdpes))
1108 			continue;
1109 
1110 		pd = alloc_pd(dev);
1111 		if (IS_ERR(pd))
1112 			goto unwind_out;
1113 
1114 		gen8_initialize_pd(vm, pd);
1115 		pdp->page_directory[pdpe] = pd;
1116 		__set_bit(pdpe, new_pds);
1117 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1118 	}
1119 
1120 	return 0;
1121 
1122 unwind_out:
1123 	for_each_set_bit(pdpe, new_pds, pdpes)
1124 		free_pd(dev, pdp->page_directory[pdpe]);
1125 
1126 	return -ENOMEM;
1127 }
1128 
1129 /**
1130  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1131  * @vm:	Master vm structure.
1132  * @pml4:	Page map level 4 for this address range.
1133  * @start:	Starting virtual address to begin allocations.
1134  * @length:	Size of the allocations.
1135  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1136  *		caller to free on error.
1137  *
1138  * Allocate the required number of page directory pointers. Extremely similar to
1139  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1140  * The main difference is here we are limited by the pml4 boundary (instead of
1141  * the page directory pointer).
1142  *
1143  * Return: 0 if success; negative error code otherwise.
1144  */
1145 static int
1146 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1147 				  struct i915_pml4 *pml4,
1148 				  uint64_t start,
1149 				  uint64_t length,
1150 				  unsigned long *new_pdps)
1151 {
1152 	struct drm_device *dev = vm->dev;
1153 	struct i915_page_directory_pointer *pdp;
1154 	uint32_t pml4e;
1155 
1156 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1157 
1158 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1159 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1160 			pdp = alloc_pdp(dev);
1161 			if (IS_ERR(pdp))
1162 				goto unwind_out;
1163 
1164 			gen8_initialize_pdp(vm, pdp);
1165 			pml4->pdps[pml4e] = pdp;
1166 			__set_bit(pml4e, new_pdps);
1167 			trace_i915_page_directory_pointer_entry_alloc(vm,
1168 								      pml4e,
1169 								      start,
1170 								      GEN8_PML4E_SHIFT);
1171 		}
1172 	}
1173 
1174 	return 0;
1175 
1176 unwind_out:
1177 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1178 		free_pdp(dev, pml4->pdps[pml4e]);
1179 
1180 	return -ENOMEM;
1181 }
1182 
1183 static void
1184 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1185 {
1186 	kfree(new_pts);
1187 	kfree(new_pds);
1188 }
1189 
1190 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1191  * of these are based on the number of PDPEs in the system.
1192  */
1193 static
1194 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1195 					 unsigned long **new_pts,
1196 					 uint32_t pdpes)
1197 {
1198 	unsigned long *pds;
1199 	unsigned long *pts;
1200 
1201 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1202 	if (!pds)
1203 		return -ENOMEM;
1204 
1205 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1206 		      GFP_TEMPORARY);
1207 	if (!pts)
1208 		goto err_out;
1209 
1210 	*new_pds = pds;
1211 	*new_pts = pts;
1212 
1213 	return 0;
1214 
1215 err_out:
1216 	free_gen8_temp_bitmaps(pds, pts);
1217 	return -ENOMEM;
1218 }
1219 
1220 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1221  * the page table structures, we mark them dirty so that
1222  * context switching/execlist queuing code takes extra steps
1223  * to ensure that tlbs are flushed.
1224  */
1225 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1226 {
1227 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1228 }
1229 
1230 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1231 				    struct i915_page_directory_pointer *pdp,
1232 				    uint64_t start,
1233 				    uint64_t length)
1234 {
1235 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1236 	unsigned long *new_page_dirs, *new_page_tables;
1237 	struct drm_device *dev = vm->dev;
1238 	struct i915_page_directory *pd;
1239 	const uint64_t orig_start = start;
1240 	const uint64_t orig_length = length;
1241 	uint32_t pdpe;
1242 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1243 	int ret;
1244 
1245 	/* Wrap is never okay since we can only represent 48b, and we don't
1246 	 * actually use the other side of the canonical address space.
1247 	 */
1248 	if (WARN_ON(start + length < start))
1249 		return -ENODEV;
1250 
1251 	if (WARN_ON(start + length > vm->total))
1252 		return -ENODEV;
1253 
1254 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1255 	if (ret)
1256 		return ret;
1257 
1258 	/* Do the allocations first so we can easily bail out */
1259 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1260 						new_page_dirs);
1261 	if (ret) {
1262 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1263 		return ret;
1264 	}
1265 
1266 	/* For every page directory referenced, allocate page tables */
1267 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1268 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1269 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1270 		if (ret)
1271 			goto err_out;
1272 	}
1273 
1274 	start = orig_start;
1275 	length = orig_length;
1276 
1277 	/* Allocations have completed successfully, so set the bitmaps, and do
1278 	 * the mappings. */
1279 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1280 		gen8_pde_t *const page_directory = kmap_px(pd);
1281 		struct i915_page_table *pt;
1282 		uint64_t pd_len = length;
1283 		uint64_t pd_start = start;
1284 		uint32_t pde;
1285 
1286 		/* Every pd should be allocated, we just did that above. */
1287 		WARN_ON(!pd);
1288 
1289 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1290 			/* Same reasoning as pd */
1291 			WARN_ON(!pt);
1292 			WARN_ON(!pd_len);
1293 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1294 
1295 			/* Set our used ptes within the page table */
1296 			bitmap_set(pt->used_ptes,
1297 				   gen8_pte_index(pd_start),
1298 				   gen8_pte_count(pd_start, pd_len));
1299 
1300 			/* Our pde is now pointing to the pagetable, pt */
1301 			__set_bit(pde, pd->used_pdes);
1302 
1303 			/* Map the PDE to the page table */
1304 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1305 							      I915_CACHE_LLC);
1306 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1307 							gen8_pte_index(start),
1308 							gen8_pte_count(start, length),
1309 							GEN8_PTES);
1310 
1311 			/* NB: We haven't yet mapped ptes to pages. At this
1312 			 * point we're still relying on insert_entries() */
1313 		}
1314 
1315 		kunmap_px(ppgtt, page_directory);
1316 		__set_bit(pdpe, pdp->used_pdpes);
1317 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1318 	}
1319 
1320 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1321 	mark_tlbs_dirty(ppgtt);
1322 	return 0;
1323 
1324 err_out:
1325 	while (pdpe--) {
1326 		unsigned long temp;
1327 
1328 		for_each_set_bit(temp, new_page_tables + pdpe *
1329 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1330 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1331 	}
1332 
1333 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1334 		free_pd(dev, pdp->page_directory[pdpe]);
1335 
1336 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1337 	mark_tlbs_dirty(ppgtt);
1338 	return ret;
1339 }
1340 
1341 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1342 				    struct i915_pml4 *pml4,
1343 				    uint64_t start,
1344 				    uint64_t length)
1345 {
1346 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1347 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1348 	struct i915_page_directory_pointer *pdp;
1349 	uint64_t pml4e;
1350 	int ret = 0;
1351 
1352 	/* Do the pml4 allocations first, so we don't need to track the newly
1353 	 * allocated tables below the pdp */
1354 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1355 
1356 	/* The pagedirectory and pagetable allocations are done in the shared 3
1357 	 * and 4 level code. Just allocate the pdps.
1358 	 */
1359 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1360 						new_pdps);
1361 	if (ret)
1362 		return ret;
1363 
1364 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1365 	     "The allocation has spanned more than 512GB. "
1366 	     "It is highly likely this is incorrect.");
1367 
1368 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1369 		WARN_ON(!pdp);
1370 
1371 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1372 		if (ret)
1373 			goto err_out;
1374 
1375 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1376 	}
1377 
1378 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1379 		  GEN8_PML4ES_PER_PML4);
1380 
1381 	return 0;
1382 
1383 err_out:
1384 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1385 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1386 
1387 	return ret;
1388 }
1389 
1390 static int gen8_alloc_va_range(struct i915_address_space *vm,
1391 			       uint64_t start, uint64_t length)
1392 {
1393 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1394 
1395 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1396 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1397 	else
1398 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1399 }
1400 
1401 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1402 			  uint64_t start, uint64_t length,
1403 			  gen8_pte_t scratch_pte,
1404 			  struct seq_file *m)
1405 {
1406 	struct i915_page_directory *pd;
1407 	uint32_t pdpe;
1408 
1409 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1410 		struct i915_page_table *pt;
1411 		uint64_t pd_len = length;
1412 		uint64_t pd_start = start;
1413 		uint32_t pde;
1414 
1415 		if (!test_bit(pdpe, pdp->used_pdpes))
1416 			continue;
1417 
1418 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1419 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1420 			uint32_t  pte;
1421 			gen8_pte_t *pt_vaddr;
1422 
1423 			if (!test_bit(pde, pd->used_pdes))
1424 				continue;
1425 
1426 			pt_vaddr = kmap_px(pt);
1427 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1428 				uint64_t va =
1429 					(pdpe << GEN8_PDPE_SHIFT) |
1430 					(pde << GEN8_PDE_SHIFT) |
1431 					(pte << GEN8_PTE_SHIFT);
1432 				int i;
1433 				bool found = false;
1434 
1435 				for (i = 0; i < 4; i++)
1436 					if (pt_vaddr[pte + i] != scratch_pte)
1437 						found = true;
1438 				if (!found)
1439 					continue;
1440 
1441 				seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1442 				for (i = 0; i < 4; i++) {
1443 					if (pt_vaddr[pte + i] != scratch_pte)
1444 						seq_printf(m, " %lx", pt_vaddr[pte + i]);
1445 					else
1446 						seq_puts(m, "  SCRATCH ");
1447 				}
1448 				seq_puts(m, "\n");
1449 			}
1450 			/* don't use kunmap_px, it could trigger
1451 			 * an unnecessary flush.
1452 			 */
1453 			kunmap_atomic(pt_vaddr);
1454 		}
1455 	}
1456 }
1457 
1458 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1459 {
1460 	struct i915_address_space *vm = &ppgtt->base;
1461 	uint64_t start = ppgtt->base.start;
1462 	uint64_t length = ppgtt->base.total;
1463 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1464 						 I915_CACHE_LLC, true);
1465 
1466 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1467 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1468 	} else {
1469 		uint64_t pml4e;
1470 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1471 		struct i915_page_directory_pointer *pdp;
1472 
1473 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1474 			if (!test_bit(pml4e, pml4->used_pml4es))
1475 				continue;
1476 
1477 			seq_printf(m, "    PML4E #%lu\n", pml4e);
1478 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1479 		}
1480 	}
1481 }
1482 
1483 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1484 {
1485 	unsigned long *new_page_dirs, *new_page_tables;
1486 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1487 	int ret;
1488 
1489 	/* We allocate temp bitmap for page tables for no gain
1490 	 * but as this is for init only, lets keep the things simple
1491 	 */
1492 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/* Allocate for all pdps regardless of how the ppgtt
1497 	 * was defined.
1498 	 */
1499 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1500 						0, 1ULL << 32,
1501 						new_page_dirs);
1502 	if (!ret)
1503 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1504 
1505 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1506 
1507 	return ret;
1508 }
1509 
1510 /*
1511  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1512  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1513  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1514  * space.
1515  *
1516  */
1517 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1518 {
1519 	int ret;
1520 
1521 	ret = gen8_init_scratch(&ppgtt->base);
1522 	if (ret)
1523 		return ret;
1524 
1525 	ppgtt->base.start = 0;
1526 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1527 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1528 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1529 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1530 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1531 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1532 	ppgtt->debug_dump = gen8_dump_ppgtt;
1533 
1534 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1535 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1536 		if (ret)
1537 			goto free_scratch;
1538 
1539 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1540 
1541 		ppgtt->base.total = 1ULL << 48;
1542 		ppgtt->switch_mm = gen8_48b_mm_switch;
1543 	} else {
1544 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1545 		if (ret)
1546 			goto free_scratch;
1547 
1548 		ppgtt->base.total = 1ULL << 32;
1549 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1550 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1551 							      0, 0,
1552 							      GEN8_PML4E_SHIFT);
1553 
1554 		if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1555 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1556 			if (ret)
1557 				goto free_scratch;
1558 		}
1559 	}
1560 
1561 	if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1562 		gen8_ppgtt_notify_vgt(ppgtt, true);
1563 
1564 	return 0;
1565 
1566 free_scratch:
1567 	gen8_free_scratch(&ppgtt->base);
1568 	return ret;
1569 }
1570 
1571 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1572 {
1573 	struct i915_address_space *vm = &ppgtt->base;
1574 	struct i915_page_table *unused;
1575 	gen6_pte_t scratch_pte;
1576 	uint32_t pd_entry;
1577 	uint32_t  pte, pde;
1578 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1579 
1580 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1581 				     I915_CACHE_LLC, true, 0);
1582 
1583 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1584 		u32 expected;
1585 		gen6_pte_t *pt_vaddr;
1586 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1587 		pd_entry = readl(ppgtt->pd_addr + pde);
1588 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1589 
1590 		if (pd_entry != expected)
1591 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1592 				   pde,
1593 				   pd_entry,
1594 				   expected);
1595 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1596 
1597 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1598 
1599 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1600 			unsigned long va =
1601 				(pde * PAGE_SIZE * GEN6_PTES) +
1602 				(pte * PAGE_SIZE);
1603 			int i;
1604 			bool found = false;
1605 			for (i = 0; i < 4; i++)
1606 				if (pt_vaddr[pte + i] != scratch_pte)
1607 					found = true;
1608 			if (!found)
1609 				continue;
1610 
1611 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1612 			for (i = 0; i < 4; i++) {
1613 				if (pt_vaddr[pte + i] != scratch_pte)
1614 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1615 				else
1616 					seq_puts(m, "  SCRATCH ");
1617 			}
1618 			seq_puts(m, "\n");
1619 		}
1620 		kunmap_px(ppgtt, pt_vaddr);
1621 	}
1622 }
1623 
1624 /* Write pde (index) from the page directory @pd to the page table @pt */
1625 static void gen6_write_pde(struct i915_page_directory *pd,
1626 			    const int pde, struct i915_page_table *pt)
1627 {
1628 	/* Caller needs to make sure the write completes if necessary */
1629 	struct i915_hw_ppgtt *ppgtt =
1630 		container_of(pd, struct i915_hw_ppgtt, pd);
1631 	u32 pd_entry;
1632 
1633 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1634 	pd_entry |= GEN6_PDE_VALID;
1635 
1636 	writel(pd_entry, ppgtt->pd_addr + pde);
1637 }
1638 
1639 /* Write all the page tables found in the ppgtt structure to incrementing page
1640  * directories. */
1641 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1642 				  struct i915_page_directory *pd,
1643 				  uint32_t start, uint32_t length)
1644 {
1645 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1646 	struct i915_page_table *pt;
1647 	uint32_t pde;
1648 
1649 	gen6_for_each_pde(pt, pd, start, length, pde)
1650 		gen6_write_pde(pd, pde, pt);
1651 
1652 	/* Make sure write is complete before other code can use this page
1653 	 * table. Also require for WC mapped PTEs */
1654 	readl(ggtt->gsm);
1655 }
1656 
1657 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1658 {
1659 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1660 
1661 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1662 }
1663 
1664 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1665 			 struct drm_i915_gem_request *req)
1666 {
1667 	struct intel_engine_cs *engine = req->engine;
1668 	int ret;
1669 
1670 	/* NB: TLBs must be flushed and invalidated before a switch */
1671 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1672 	if (ret)
1673 		return ret;
1674 
1675 	ret = intel_ring_begin(req, 6);
1676 	if (ret)
1677 		return ret;
1678 
1679 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1680 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1681 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1682 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1683 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1684 	intel_ring_emit(engine, MI_NOOP);
1685 	intel_ring_advance(engine);
1686 
1687 	return 0;
1688 }
1689 
1690 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1691 			  struct drm_i915_gem_request *req)
1692 {
1693 	struct intel_engine_cs *engine = req->engine;
1694 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1695 
1696 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1697 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1698 	return 0;
1699 }
1700 
1701 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1702 			  struct drm_i915_gem_request *req)
1703 {
1704 	struct intel_engine_cs *engine = req->engine;
1705 	int ret;
1706 
1707 	/* NB: TLBs must be flushed and invalidated before a switch */
1708 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1709 	if (ret)
1710 		return ret;
1711 
1712 	ret = intel_ring_begin(req, 6);
1713 	if (ret)
1714 		return ret;
1715 
1716 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1717 	intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1718 	intel_ring_emit(engine, PP_DIR_DCLV_2G);
1719 	intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1720 	intel_ring_emit(engine, get_pd_offset(ppgtt));
1721 	intel_ring_emit(engine, MI_NOOP);
1722 	intel_ring_advance(engine);
1723 
1724 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1725 	if (engine->id != RCS) {
1726 		ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1727 		if (ret)
1728 			return ret;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735 			  struct drm_i915_gem_request *req)
1736 {
1737 	struct intel_engine_cs *engine = req->engine;
1738 	struct drm_device *dev = ppgtt->base.dev;
1739 	struct drm_i915_private *dev_priv = dev->dev_private;
1740 
1741 
1742 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1743 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1744 
1745 	POSTING_READ(RING_PP_DIR_DCLV(engine));
1746 
1747 	return 0;
1748 }
1749 
1750 static void gen8_ppgtt_enable(struct drm_device *dev)
1751 {
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 	struct intel_engine_cs *engine;
1754 
1755 	for_each_engine(engine, dev_priv) {
1756 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1757 		I915_WRITE(RING_MODE_GEN7(engine),
1758 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1759 	}
1760 }
1761 
1762 static void gen7_ppgtt_enable(struct drm_device *dev)
1763 {
1764 	struct drm_i915_private *dev_priv = dev->dev_private;
1765 	struct intel_engine_cs *engine;
1766 	uint32_t ecochk, ecobits;
1767 
1768 	ecobits = I915_READ(GAC_ECO_BITS);
1769 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1770 
1771 	ecochk = I915_READ(GAM_ECOCHK);
1772 	if (IS_HASWELL(dev)) {
1773 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1774 	} else {
1775 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1776 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1777 	}
1778 	I915_WRITE(GAM_ECOCHK, ecochk);
1779 
1780 	for_each_engine(engine, dev_priv) {
1781 		/* GFX_MODE is per-ring on gen7+ */
1782 		I915_WRITE(RING_MODE_GEN7(engine),
1783 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1784 	}
1785 }
1786 
1787 static void gen6_ppgtt_enable(struct drm_device *dev)
1788 {
1789 	struct drm_i915_private *dev_priv = dev->dev_private;
1790 	uint32_t ecochk, gab_ctl, ecobits;
1791 
1792 	ecobits = I915_READ(GAC_ECO_BITS);
1793 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1794 		   ECOBITS_PPGTT_CACHE64B);
1795 
1796 	gab_ctl = I915_READ(GAB_CTL);
1797 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1798 
1799 	ecochk = I915_READ(GAM_ECOCHK);
1800 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1801 
1802 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1803 }
1804 
1805 /* PPGTT support for Sandybdrige/Gen6 and later */
1806 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1807 				   uint64_t start,
1808 				   uint64_t length,
1809 				   bool use_scratch)
1810 {
1811 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1812 	gen6_pte_t *pt_vaddr, scratch_pte;
1813 	unsigned first_entry = start >> PAGE_SHIFT;
1814 	unsigned num_entries = length >> PAGE_SHIFT;
1815 	unsigned act_pt = first_entry / GEN6_PTES;
1816 	unsigned first_pte = first_entry % GEN6_PTES;
1817 	unsigned last_pte, i;
1818 
1819 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1820 				     I915_CACHE_LLC, true, 0);
1821 
1822 	while (num_entries) {
1823 		last_pte = first_pte + num_entries;
1824 		if (last_pte > GEN6_PTES)
1825 			last_pte = GEN6_PTES;
1826 
1827 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1828 
1829 		for (i = first_pte; i < last_pte; i++)
1830 			pt_vaddr[i] = scratch_pte;
1831 
1832 		kunmap_px(ppgtt, pt_vaddr);
1833 
1834 		num_entries -= last_pte - first_pte;
1835 		first_pte = 0;
1836 		act_pt++;
1837 	}
1838 }
1839 
1840 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1841 				      struct sg_table *pages,
1842 				      uint64_t start,
1843 				      enum i915_cache_level cache_level, u32 flags)
1844 {
1845 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1846 	unsigned first_entry = start >> PAGE_SHIFT;
1847 	unsigned act_pt = first_entry / GEN6_PTES;
1848 	unsigned act_pte = first_entry % GEN6_PTES;
1849 	gen6_pte_t *pt_vaddr = NULL;
1850 	struct sgt_iter sgt_iter;
1851 	dma_addr_t addr;
1852 
1853 	for_each_sgt_dma(addr, sgt_iter, pages) {
1854 		if (pt_vaddr == NULL)
1855 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1856 
1857 		pt_vaddr[act_pte] =
1858 			vm->pte_encode(addr, cache_level, true, flags);
1859 
1860 		if (++act_pte == GEN6_PTES) {
1861 			kunmap_px(ppgtt, pt_vaddr);
1862 			pt_vaddr = NULL;
1863 			act_pt++;
1864 			act_pte = 0;
1865 		}
1866 	}
1867 
1868 	if (pt_vaddr)
1869 		kunmap_px(ppgtt, pt_vaddr);
1870 }
1871 
1872 static int gen6_alloc_va_range(struct i915_address_space *vm,
1873 			       uint64_t start_in, uint64_t length_in)
1874 {
1875 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1876 	struct drm_device *dev = vm->dev;
1877 	struct drm_i915_private *dev_priv = to_i915(dev);
1878 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1879 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1880 	struct i915_page_table *pt;
1881 	uint32_t start, length, start_save, length_save;
1882 	uint32_t pde;
1883 	int ret;
1884 
1885 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1886 		return -ENODEV;
1887 
1888 	start = start_save = start_in;
1889 	length = length_save = length_in;
1890 
1891 	bitmap_zero(new_page_tables, I915_PDES);
1892 
1893 	/* The allocation is done in two stages so that we can bail out with
1894 	 * minimal amount of pain. The first stage finds new page tables that
1895 	 * need allocation. The second stage marks use ptes within the page
1896 	 * tables.
1897 	 */
1898 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1899 		if (pt != vm->scratch_pt) {
1900 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1901 			continue;
1902 		}
1903 
1904 		/* We've already allocated a page table */
1905 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1906 
1907 		pt = alloc_pt(dev);
1908 		if (IS_ERR(pt)) {
1909 			ret = PTR_ERR(pt);
1910 			goto unwind_out;
1911 		}
1912 
1913 		gen6_initialize_pt(vm, pt);
1914 
1915 		ppgtt->pd.page_table[pde] = pt;
1916 		__set_bit(pde, new_page_tables);
1917 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1918 	}
1919 
1920 	start = start_save;
1921 	length = length_save;
1922 
1923 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1924 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1925 
1926 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1927 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1928 			   gen6_pte_count(start, length));
1929 
1930 		if (__test_and_clear_bit(pde, new_page_tables))
1931 			gen6_write_pde(&ppgtt->pd, pde, pt);
1932 
1933 		trace_i915_page_table_entry_map(vm, pde, pt,
1934 					 gen6_pte_index(start),
1935 					 gen6_pte_count(start, length),
1936 					 GEN6_PTES);
1937 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1938 				GEN6_PTES);
1939 	}
1940 
1941 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1942 
1943 	/* Make sure write is complete before other code can use this page
1944 	 * table. Also require for WC mapped PTEs */
1945 	readl(ggtt->gsm);
1946 
1947 	mark_tlbs_dirty(ppgtt);
1948 	return 0;
1949 
1950 unwind_out:
1951 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1952 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1953 
1954 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1955 		free_pt(vm->dev, pt);
1956 	}
1957 
1958 	mark_tlbs_dirty(ppgtt);
1959 	return ret;
1960 }
1961 
1962 static int gen6_init_scratch(struct i915_address_space *vm)
1963 {
1964 	struct drm_device *dev = vm->dev;
1965 
1966 	vm->scratch_page = alloc_scratch_page(dev);
1967 	if (IS_ERR(vm->scratch_page))
1968 		return PTR_ERR(vm->scratch_page);
1969 
1970 	vm->scratch_pt = alloc_pt(dev);
1971 	if (IS_ERR(vm->scratch_pt)) {
1972 		free_scratch_page(dev, vm->scratch_page);
1973 		return PTR_ERR(vm->scratch_pt);
1974 	}
1975 
1976 	gen6_initialize_pt(vm, vm->scratch_pt);
1977 
1978 	return 0;
1979 }
1980 
1981 static void gen6_free_scratch(struct i915_address_space *vm)
1982 {
1983 	struct drm_device *dev = vm->dev;
1984 
1985 	free_pt(dev, vm->scratch_pt);
1986 	free_scratch_page(dev, vm->scratch_page);
1987 }
1988 
1989 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1990 {
1991 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1992 	struct i915_page_directory *pd = &ppgtt->pd;
1993 	struct drm_device *dev = vm->dev;
1994 	struct i915_page_table *pt;
1995 	uint32_t pde;
1996 
1997 	drm_mm_remove_node(&ppgtt->node);
1998 
1999 	gen6_for_all_pdes(pt, pd, pde)
2000 		if (pt != vm->scratch_pt)
2001 			free_pt(dev, pt);
2002 
2003 	gen6_free_scratch(vm);
2004 }
2005 
2006 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2007 {
2008 	struct i915_address_space *vm = &ppgtt->base;
2009 	struct drm_device *dev = ppgtt->base.dev;
2010 	struct drm_i915_private *dev_priv = to_i915(dev);
2011 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2012 	bool retried = false;
2013 	int ret;
2014 
2015 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2016 	 * allocator works in address space sizes, so it's multiplied by page
2017 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2018 	 */
2019 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2020 
2021 	ret = gen6_init_scratch(vm);
2022 	if (ret)
2023 		return ret;
2024 
2025 alloc:
2026 	ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2027 						  &ppgtt->node, GEN6_PD_SIZE,
2028 						  GEN6_PD_ALIGN, 0,
2029 						  0, ggtt->base.total,
2030 						  DRM_MM_TOPDOWN);
2031 	if (ret == -ENOSPC && !retried) {
2032 		ret = i915_gem_evict_something(dev, &ggtt->base,
2033 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2034 					       I915_CACHE_NONE,
2035 					       0, ggtt->base.total,
2036 					       0);
2037 		if (ret)
2038 			goto err_out;
2039 
2040 		retried = true;
2041 		goto alloc;
2042 	}
2043 
2044 	if (ret)
2045 		goto err_out;
2046 
2047 
2048 	if (ppgtt->node.start < ggtt->mappable_end)
2049 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2050 
2051 	return 0;
2052 
2053 err_out:
2054 	gen6_free_scratch(vm);
2055 	return ret;
2056 }
2057 
2058 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2059 {
2060 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2061 }
2062 
2063 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2064 				  uint64_t start, uint64_t length)
2065 {
2066 	struct i915_page_table *unused;
2067 	uint32_t pde;
2068 
2069 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2070 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2071 }
2072 
2073 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2074 {
2075 	struct drm_device *dev = ppgtt->base.dev;
2076 	struct drm_i915_private *dev_priv = to_i915(dev);
2077 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2078 	int ret;
2079 
2080 	ppgtt->base.pte_encode = ggtt->base.pte_encode;
2081 	if (IS_GEN6(dev)) {
2082 		ppgtt->switch_mm = gen6_mm_switch;
2083 	} else if (IS_HASWELL(dev)) {
2084 		ppgtt->switch_mm = hsw_mm_switch;
2085 	} else if (IS_GEN7(dev)) {
2086 		ppgtt->switch_mm = gen7_mm_switch;
2087 	} else
2088 		BUG();
2089 
2090 	if (intel_vgpu_active(dev_priv))
2091 		ppgtt->switch_mm = vgpu_mm_switch;
2092 
2093 	ret = gen6_ppgtt_alloc(ppgtt);
2094 	if (ret)
2095 		return ret;
2096 
2097 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2098 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2099 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2100 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2101 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2102 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2103 	ppgtt->base.start = 0;
2104 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2105 	ppgtt->debug_dump = gen6_dump_ppgtt;
2106 
2107 	ppgtt->pd.base.ggtt_offset =
2108 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2109 
2110 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2111 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2112 
2113 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2114 
2115 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2116 
2117 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2118 			 ppgtt->node.size >> 20,
2119 			 ppgtt->node.start / PAGE_SIZE);
2120 
2121 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2122 		  ppgtt->pd.base.ggtt_offset << 10);
2123 
2124 	return 0;
2125 }
2126 
2127 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2128 {
2129 	ppgtt->base.dev = dev;
2130 
2131 	if (INTEL_INFO(dev)->gen < 8)
2132 		return gen6_ppgtt_init(ppgtt);
2133 	else
2134 		return gen8_ppgtt_init(ppgtt);
2135 }
2136 
2137 static void i915_address_space_init(struct i915_address_space *vm,
2138 				    struct drm_i915_private *dev_priv)
2139 {
2140 	drm_mm_init(&vm->mm, vm->start, vm->total);
2141 	vm->dev = dev_priv->dev;
2142 	INIT_LIST_HEAD(&vm->active_list);
2143 	INIT_LIST_HEAD(&vm->inactive_list);
2144 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2145 }
2146 
2147 static void gtt_write_workarounds(struct drm_device *dev)
2148 {
2149 	struct drm_i915_private *dev_priv = dev->dev_private;
2150 
2151 	/* This function is for gtt related workarounds. This function is
2152 	 * called on driver load and after a GPU reset, so you can place
2153 	 * workarounds here even if they get overwritten by GPU reset.
2154 	 */
2155 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2156 	if (IS_BROADWELL(dev))
2157 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2158 	else if (IS_CHERRYVIEW(dev))
2159 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2160 	else if (IS_SKYLAKE(dev))
2161 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2162 	else if (IS_BROXTON(dev))
2163 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2164 }
2165 
2166 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2167 {
2168 	struct drm_i915_private *dev_priv = dev->dev_private;
2169 	int ret = 0;
2170 
2171 	ret = __hw_ppgtt_init(dev, ppgtt);
2172 	if (ret == 0) {
2173 		kref_init(&ppgtt->ref);
2174 		i915_address_space_init(&ppgtt->base, dev_priv);
2175 	}
2176 
2177 	return ret;
2178 }
2179 
2180 int i915_ppgtt_init_hw(struct drm_device *dev)
2181 {
2182 	gtt_write_workarounds(dev);
2183 
2184 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2185 	 * and the PDPs are contained within the context itself.  We don't
2186 	 * need to do anything here. */
2187 	if (i915.enable_execlists)
2188 		return 0;
2189 
2190 	if (!USES_PPGTT(dev))
2191 		return 0;
2192 
2193 	if (IS_GEN6(dev))
2194 		gen6_ppgtt_enable(dev);
2195 	else if (IS_GEN7(dev))
2196 		gen7_ppgtt_enable(dev);
2197 	else if (INTEL_INFO(dev)->gen >= 8)
2198 		gen8_ppgtt_enable(dev);
2199 	else
2200 		MISSING_CASE(INTEL_INFO(dev)->gen);
2201 
2202 	return 0;
2203 }
2204 
2205 struct i915_hw_ppgtt *
2206 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2207 {
2208 	struct i915_hw_ppgtt *ppgtt;
2209 	int ret;
2210 
2211 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2212 	if (!ppgtt)
2213 		return ERR_PTR(-ENOMEM);
2214 
2215 	ret = i915_ppgtt_init(dev, ppgtt);
2216 	if (ret) {
2217 		kfree(ppgtt);
2218 		return ERR_PTR(ret);
2219 	}
2220 
2221 	ppgtt->file_priv = fpriv;
2222 
2223 	trace_i915_ppgtt_create(&ppgtt->base);
2224 
2225 	return ppgtt;
2226 }
2227 
2228 void  i915_ppgtt_release(struct kref *kref)
2229 {
2230 	struct i915_hw_ppgtt *ppgtt =
2231 		container_of(kref, struct i915_hw_ppgtt, ref);
2232 
2233 	trace_i915_ppgtt_release(&ppgtt->base);
2234 
2235 	/* vmas should already be unbound */
2236 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2237 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2238 
2239 	list_del(&ppgtt->base.global_link);
2240 	drm_mm_takedown(&ppgtt->base.mm);
2241 
2242 	ppgtt->base.cleanup(&ppgtt->base);
2243 	kfree(ppgtt);
2244 }
2245 
2246 extern int intel_iommu_gfx_mapped;
2247 /* Certain Gen5 chipsets require require idling the GPU before
2248  * unmapping anything from the GTT when VT-d is enabled.
2249  */
2250 static bool needs_idle_maps(struct drm_device *dev)
2251 {
2252 #ifdef CONFIG_INTEL_IOMMU
2253 	/* Query intel_iommu to see if we need the workaround. Presumably that
2254 	 * was loaded first.
2255 	 */
2256 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2257 		return true;
2258 #endif
2259 	return false;
2260 }
2261 
2262 static bool do_idling(struct drm_i915_private *dev_priv)
2263 {
2264 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2265 	bool ret = dev_priv->mm.interruptible;
2266 
2267 	if (unlikely(ggtt->do_idle_maps)) {
2268 		dev_priv->mm.interruptible = false;
2269 		if (i915_gem_wait_for_idle(dev_priv)) {
2270 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2271 			/* Wait a bit, in hopes it avoids the hang */
2272 			udelay(10);
2273 		}
2274 	}
2275 
2276 	return ret;
2277 }
2278 
2279 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2280 {
2281 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2282 
2283 	if (unlikely(ggtt->do_idle_maps))
2284 		dev_priv->mm.interruptible = interruptible;
2285 }
2286 
2287 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2288 {
2289 	struct intel_engine_cs *engine;
2290 
2291 	if (INTEL_INFO(dev_priv)->gen < 6)
2292 		return;
2293 
2294 	for_each_engine(engine, dev_priv) {
2295 		u32 fault_reg;
2296 		fault_reg = I915_READ(RING_FAULT_REG(engine));
2297 		if (fault_reg & RING_FAULT_VALID) {
2298 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2299 					 "\tAddr: 0x%08ux\n"
2300 					 "\tAddress space: %s\n"
2301 					 "\tSource ID: %d\n"
2302 					 "\tType: %d\n",
2303 					 fault_reg & LINUX_PAGE_MASK,
2304 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2305 					 RING_FAULT_SRCID(fault_reg),
2306 					 RING_FAULT_FAULT_TYPE(fault_reg));
2307 			I915_WRITE(RING_FAULT_REG(engine),
2308 				   fault_reg & ~RING_FAULT_VALID);
2309 		}
2310 	}
2311 	POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2312 }
2313 
2314 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2315 {
2316 	if (INTEL_INFO(dev_priv)->gen < 6) {
2317 		intel_gtt_chipset_flush();
2318 	} else {
2319 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2320 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2321 	}
2322 }
2323 
2324 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2325 {
2326 	struct drm_i915_private *dev_priv = to_i915(dev);
2327 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2328 
2329 	/* Don't bother messing with faults pre GEN6 as we have little
2330 	 * documentation supporting that it's a good idea.
2331 	 */
2332 	if (INTEL_INFO(dev)->gen < 6)
2333 		return;
2334 
2335 	i915_check_and_clear_faults(dev_priv);
2336 
2337 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2338 			     true);
2339 
2340 	i915_ggtt_flush(dev_priv);
2341 }
2342 
2343 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2344 {
2345 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2346 			obj->pages->sgl, obj->pages->nents,
2347 			PCI_DMA_BIDIRECTIONAL))
2348 		return -ENOSPC;
2349 
2350 	return 0;
2351 }
2352 
2353 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2354 {
2355 #ifdef writeq
2356 	writeq(pte, addr);
2357 #else
2358 	iowrite32((u32)pte, addr);
2359 	iowrite32(pte >> 32, addr + 4);
2360 #endif
2361 }
2362 
2363 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2364 				  dma_addr_t addr,
2365 				  uint64_t offset,
2366 				  enum i915_cache_level level,
2367 				  u32 unused)
2368 {
2369 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2370 	gen8_pte_t __iomem *pte =
2371 		(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2372 		(offset >> PAGE_SHIFT);
2373 	int rpm_atomic_seq;
2374 
2375 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2376 
2377 	gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2378 
2379 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2380 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2381 
2382 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2383 }
2384 
2385 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2386 				     struct sg_table *st,
2387 				     uint64_t start,
2388 				     enum i915_cache_level level, u32 unused)
2389 {
2390 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2391 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2392 	struct sgt_iter sgt_iter;
2393 	gen8_pte_t __iomem *gtt_entries;
2394 	gen8_pte_t gtt_entry;
2395 	dma_addr_t addr;
2396 	int rpm_atomic_seq;
2397 	int i = 0;
2398 
2399 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2400 
2401 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2402 
2403 	for_each_sgt_dma(addr, sgt_iter, st) {
2404 		gtt_entry = gen8_pte_encode(addr, level, true);
2405 		gen8_set_pte(&gtt_entries[i++], gtt_entry);
2406 	}
2407 
2408 	/*
2409 	 * XXX: This serves as a posting read to make sure that the PTE has
2410 	 * actually been updated. There is some concern that even though
2411 	 * registers and PTEs are within the same BAR that they are potentially
2412 	 * of NUMA access patterns. Therefore, even with the way we assume
2413 	 * hardware should work, we must keep this posting read for paranoia.
2414 	 */
2415 	if (i != 0)
2416 		WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2417 
2418 	/* This next bit makes the above posting read even more important. We
2419 	 * want to flush the TLBs only after we're certain all the PTE updates
2420 	 * have finished.
2421 	 */
2422 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2423 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2424 
2425 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2426 }
2427 
2428 struct insert_entries {
2429 	struct i915_address_space *vm;
2430 	struct sg_table *st;
2431 	uint64_t start;
2432 	enum i915_cache_level level;
2433 	u32 flags;
2434 };
2435 
2436 static int gen8_ggtt_insert_entries__cb(void *_arg)
2437 {
2438 	struct insert_entries *arg = _arg;
2439 	gen8_ggtt_insert_entries(arg->vm, arg->st,
2440 				 arg->start, arg->level, arg->flags);
2441 	return 0;
2442 }
2443 
2444 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2445 					  struct sg_table *st,
2446 					  uint64_t start,
2447 					  enum i915_cache_level level,
2448 					  u32 flags)
2449 {
2450 	struct insert_entries arg = { vm, st, start, level, flags };
2451 #ifndef __DragonFly__
2452 	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2453 #else
2454 	/* XXX: is this enough ?
2455 	 * See Linux commit 5bab6f60cb4d1417ad7c599166bcfec87529c1a2 */
2456 	get_mplock();
2457 	gen8_ggtt_insert_entries__cb(&arg);
2458 	rel_mplock();
2459 #endif
2460 }
2461 
2462 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2463 				  dma_addr_t addr,
2464 				  uint64_t offset,
2465 				  enum i915_cache_level level,
2466 				  u32 flags)
2467 {
2468 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2469 	gen6_pte_t __iomem *pte =
2470 		(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2471 		(offset >> PAGE_SHIFT);
2472 	int rpm_atomic_seq;
2473 
2474 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2475 
2476 	iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2477 
2478 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2479 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2480 
2481 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2482 }
2483 
2484 /*
2485  * Binds an object into the global gtt with the specified cache level. The object
2486  * will be accessible to the GPU via commands whose operands reference offsets
2487  * within the global GTT as well as accessible by the GPU through the GMADR
2488  * mapped BAR (dev_priv->mm.gtt->gtt).
2489  */
2490 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2491 				     struct sg_table *st,
2492 				     uint64_t start,
2493 				     enum i915_cache_level level, u32 flags)
2494 {
2495 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2496 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2497 	struct sgt_iter sgt_iter;
2498 	gen6_pte_t __iomem *gtt_entries;
2499 	gen6_pte_t gtt_entry;
2500 	dma_addr_t addr;
2501 	int rpm_atomic_seq;
2502 	int i = 0;
2503 
2504 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2505 
2506 	gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2507 
2508 	for_each_sgt_dma(addr, sgt_iter, st) {
2509 		gtt_entry = vm->pte_encode(addr, level, true, flags);
2510 		iowrite32(gtt_entry, &gtt_entries[i++]);
2511 	}
2512 
2513 	/* XXX: This serves as a posting read to make sure that the PTE has
2514 	 * actually been updated. There is some concern that even though
2515 	 * registers and PTEs are within the same BAR that they are potentially
2516 	 * of NUMA access patterns. Therefore, even with the way we assume
2517 	 * hardware should work, we must keep this posting read for paranoia.
2518 	 */
2519 	if (i != 0)
2520 		WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2521 
2522 	/* This next bit makes the above posting read even more important. We
2523 	 * want to flush the TLBs only after we're certain all the PTE updates
2524 	 * have finished.
2525 	 */
2526 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2527 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2528 
2529 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2530 }
2531 
2532 static void nop_clear_range(struct i915_address_space *vm,
2533 			    uint64_t start,
2534 			    uint64_t length,
2535 			    bool use_scratch)
2536 {
2537 }
2538 
2539 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2540 				  uint64_t start,
2541 				  uint64_t length,
2542 				  bool use_scratch)
2543 {
2544 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2545 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2546 	unsigned first_entry = start >> PAGE_SHIFT;
2547 	unsigned num_entries = length >> PAGE_SHIFT;
2548 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2549 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2550 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2551 	int i;
2552 	int rpm_atomic_seq;
2553 
2554 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2555 
2556 	if (WARN(num_entries > max_entries,
2557 		 "First entry = %d; Num entries = %d (max=%d)\n",
2558 		 first_entry, num_entries, max_entries))
2559 		num_entries = max_entries;
2560 
2561 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2562 				      I915_CACHE_LLC,
2563 				      use_scratch);
2564 	for (i = 0; i < num_entries; i++)
2565 		gen8_set_pte(&gtt_base[i], scratch_pte);
2566 	readl(gtt_base);
2567 
2568 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2569 }
2570 
2571 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2572 				  uint64_t start,
2573 				  uint64_t length,
2574 				  bool use_scratch)
2575 {
2576 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2577 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2578 	unsigned first_entry = start >> PAGE_SHIFT;
2579 	unsigned num_entries = length >> PAGE_SHIFT;
2580 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2581 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2582 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2583 	int i;
2584 	int rpm_atomic_seq;
2585 
2586 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2587 
2588 	if (WARN(num_entries > max_entries,
2589 		 "First entry = %d; Num entries = %d (max=%d)\n",
2590 		 first_entry, num_entries, max_entries))
2591 		num_entries = max_entries;
2592 
2593 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2594 				     I915_CACHE_LLC, use_scratch, 0);
2595 
2596 	for (i = 0; i < num_entries; i++)
2597 		iowrite32(scratch_pte, &gtt_base[i]);
2598 	readl(gtt_base);
2599 
2600 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2601 }
2602 
2603 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2604 				  dma_addr_t addr,
2605 				  uint64_t offset,
2606 				  enum i915_cache_level cache_level,
2607 				  u32 unused)
2608 {
2609 	struct drm_i915_private *dev_priv = to_i915(vm->dev);
2610 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2611 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2612 	int rpm_atomic_seq;
2613 
2614 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2615 
2616 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2617 
2618 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2619 }
2620 
2621 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2622 				     struct sg_table *pages,
2623 				     uint64_t start,
2624 				     enum i915_cache_level cache_level, u32 unused)
2625 {
2626 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2627 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2628 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2629 	int rpm_atomic_seq;
2630 
2631 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2632 
2633 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2634 
2635 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2636 
2637 }
2638 
2639 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2640 				  uint64_t start,
2641 				  uint64_t length,
2642 				  bool unused)
2643 {
2644 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2645 	unsigned first_entry = start >> PAGE_SHIFT;
2646 	unsigned num_entries = length >> PAGE_SHIFT;
2647 	int rpm_atomic_seq;
2648 
2649 	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2650 
2651 	intel_gtt_clear_range(first_entry, num_entries);
2652 
2653 	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2654 }
2655 
2656 static int ggtt_bind_vma(struct i915_vma *vma,
2657 			 enum i915_cache_level cache_level,
2658 			 u32 flags)
2659 {
2660 	struct drm_i915_gem_object *obj = vma->obj;
2661 	u32 pte_flags = 0;
2662 	int ret;
2663 
2664 	ret = i915_get_ggtt_vma_pages(vma);
2665 	if (ret)
2666 		return ret;
2667 
2668 	/* Currently applicable only to VLV */
2669 	if (obj->gt_ro)
2670 		pte_flags |= PTE_READ_ONLY;
2671 
2672 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2673 				vma->node.start,
2674 				cache_level, pte_flags);
2675 
2676 	/*
2677 	 * Without aliasing PPGTT there's no difference between
2678 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2679 	 * upgrade to both bound if we bind either to avoid double-binding.
2680 	 */
2681 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2682 
2683 	return 0;
2684 }
2685 
2686 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2687 				 enum i915_cache_level cache_level,
2688 				 u32 flags)
2689 {
2690 	u32 pte_flags;
2691 	int ret;
2692 
2693 	ret = i915_get_ggtt_vma_pages(vma);
2694 	if (ret)
2695 		return ret;
2696 
2697 	/* Currently applicable only to VLV */
2698 	pte_flags = 0;
2699 	if (vma->obj->gt_ro)
2700 		pte_flags |= PTE_READ_ONLY;
2701 
2702 
2703 	if (flags & GLOBAL_BIND) {
2704 		vma->vm->insert_entries(vma->vm,
2705 					vma->ggtt_view.pages,
2706 					vma->node.start,
2707 					cache_level, pte_flags);
2708 	}
2709 
2710 	if (flags & LOCAL_BIND) {
2711 		struct i915_hw_ppgtt *appgtt =
2712 			to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2713 		appgtt->base.insert_entries(&appgtt->base,
2714 					    vma->ggtt_view.pages,
2715 					    vma->node.start,
2716 					    cache_level, pte_flags);
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 static void ggtt_unbind_vma(struct i915_vma *vma)
2723 {
2724 	struct drm_device *dev = vma->vm->dev;
2725 	struct drm_i915_private *dev_priv = dev->dev_private;
2726 	struct drm_i915_gem_object *obj = vma->obj;
2727 	const uint64_t size = min_t(uint64_t,
2728 				    obj->base.size,
2729 				    vma->node.size);
2730 
2731 	if (vma->bound & GLOBAL_BIND) {
2732 		vma->vm->clear_range(vma->vm,
2733 				     vma->node.start,
2734 				     size,
2735 				     true);
2736 	}
2737 
2738 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2739 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2740 
2741 		appgtt->base.clear_range(&appgtt->base,
2742 					 vma->node.start,
2743 					 size,
2744 					 true);
2745 	}
2746 }
2747 
2748 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2749 {
2750 	struct drm_device *dev = obj->base.dev;
2751 	struct drm_i915_private *dev_priv = dev->dev_private;
2752 	bool interruptible;
2753 
2754 	interruptible = do_idling(dev_priv);
2755 
2756 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2757 		     PCI_DMA_BIDIRECTIONAL);
2758 
2759 	undo_idling(dev_priv, interruptible);
2760 }
2761 
2762 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2763 				  unsigned long color,
2764 				  u64 *start,
2765 				  u64 *end)
2766 {
2767 	if (node->color != color)
2768 		*start += 4096;
2769 
2770 	if (!list_empty(&node->node_list)) {
2771 		node = list_entry(node->node_list.next,
2772 				  struct drm_mm_node,
2773 				  node_list);
2774 		if (node->allocated && node->color != color)
2775 			*end -= 4096;
2776 	}
2777 }
2778 
2779 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2780 				     u64 start,
2781 				     u64 mappable_end,
2782 				     u64 end)
2783 {
2784 	/* Let GEM Manage all of the aperture.
2785 	 *
2786 	 * However, leave one page at the end still bound to the scratch page.
2787 	 * There are a number of places where the hardware apparently prefetches
2788 	 * past the end of the object, and we've seen multiple hangs with the
2789 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2790 	 * aperture.  One page should be enough to keep any prefetching inside
2791 	 * of the aperture.
2792 	 */
2793 	struct drm_i915_private *dev_priv = to_i915(dev);
2794 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2795 	struct drm_mm_node *entry;
2796 	struct drm_i915_gem_object *obj;
2797 	unsigned long hole_start, hole_end;
2798 	int ret;
2799 	unsigned long mappable;
2800 	int error;
2801 
2802 	mappable = min(end, mappable_end) - start;
2803 	BUG_ON(mappable_end > end);
2804 
2805 	ggtt->base.start = start;
2806 
2807 	/* Subtract the guard page before address space initialization to
2808 	 * shrink the range used by drm_mm */
2809 	ggtt->base.total = end - start - PAGE_SIZE;
2810 	i915_address_space_init(&ggtt->base, dev_priv);
2811 	ggtt->base.total += PAGE_SIZE;
2812 
2813 	ret = intel_vgt_balloon(dev_priv);
2814 	if (ret)
2815 		return ret;
2816 
2817 	if (!HAS_LLC(dev))
2818 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2819 
2820 	/* Mark any preallocated objects as occupied */
2821 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2822 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2823 
2824 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2825 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2826 
2827 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2828 		ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2829 		if (ret) {
2830 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2831 			return ret;
2832 		}
2833 		vma->bound |= GLOBAL_BIND;
2834 		__i915_vma_set_map_and_fenceable(vma);
2835 		list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2836 	}
2837 
2838 	/* Clear any non-preallocated blocks */
2839 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2840 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2841 			      hole_start, hole_end);
2842 		ggtt->base.clear_range(&ggtt->base, hole_start,
2843 				     hole_end - hole_start, true);
2844 	}
2845 
2846 #ifdef __DragonFly__
2847 	device_printf(dev->dev->bsddev,
2848 	    "taking over the fictitious range 0x%llx-0x%llx\n",
2849 	    dev_priv->ggtt.mappable_base + start, dev_priv->ggtt.mappable_base + start + mappable);
2850 	error = -vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base + start,
2851 	    dev_priv->ggtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2852 #endif
2853 
2854 	/* And finally clear the reserved guard page */
2855 	ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2856 
2857 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2858 		struct i915_hw_ppgtt *ppgtt;
2859 
2860 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2861 		if (!ppgtt)
2862 			return -ENOMEM;
2863 
2864 		ret = __hw_ppgtt_init(dev, ppgtt);
2865 		if (ret) {
2866 			ppgtt->base.cleanup(&ppgtt->base);
2867 			kfree(ppgtt);
2868 			return ret;
2869 		}
2870 
2871 		if (ppgtt->base.allocate_va_range)
2872 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2873 							    ppgtt->base.total);
2874 		if (ret) {
2875 			ppgtt->base.cleanup(&ppgtt->base);
2876 			kfree(ppgtt);
2877 			return ret;
2878 		}
2879 
2880 		ppgtt->base.clear_range(&ppgtt->base,
2881 					ppgtt->base.start,
2882 					ppgtt->base.total,
2883 					true);
2884 
2885 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2886 		WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2887 		ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 /**
2894  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2895  * @dev: DRM device
2896  */
2897 void i915_gem_init_ggtt(struct drm_device *dev)
2898 {
2899 	struct drm_i915_private *dev_priv = to_i915(dev);
2900 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2901 
2902 	i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2903 }
2904 
2905 /**
2906  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2907  * @dev: DRM device
2908  */
2909 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2910 {
2911 	struct drm_i915_private *dev_priv = to_i915(dev);
2912 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2913 
2914 	if (dev_priv->mm.aliasing_ppgtt) {
2915 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2916 
2917 		ppgtt->base.cleanup(&ppgtt->base);
2918 		kfree(ppgtt);
2919 	}
2920 
2921 	i915_gem_cleanup_stolen(dev);
2922 
2923 	if (drm_mm_initialized(&ggtt->base.mm)) {
2924 		intel_vgt_deballoon(dev_priv);
2925 
2926 		drm_mm_takedown(&ggtt->base.mm);
2927 		list_del(&ggtt->base.global_link);
2928 	}
2929 
2930 	ggtt->base.cleanup(&ggtt->base);
2931 }
2932 
2933 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2934 {
2935 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2936 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2937 	return snb_gmch_ctl << 20;
2938 }
2939 
2940 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2941 {
2942 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2943 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2944 	if (bdw_gmch_ctl)
2945 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2946 
2947 #ifdef CONFIG_X86_32
2948 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2949 	if (bdw_gmch_ctl > 4)
2950 		bdw_gmch_ctl = 4;
2951 #endif
2952 
2953 	return bdw_gmch_ctl << 20;
2954 }
2955 
2956 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2957 {
2958 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2959 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2960 
2961 	if (gmch_ctrl)
2962 		return 1 << (20 + gmch_ctrl);
2963 
2964 	return 0;
2965 }
2966 
2967 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2968 {
2969 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2970 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2971 	return snb_gmch_ctl << 25; /* 32 MB units */
2972 }
2973 
2974 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2975 {
2976 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2977 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2978 	return bdw_gmch_ctl << 25; /* 32 MB units */
2979 }
2980 
2981 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2982 {
2983 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2984 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2985 
2986 	/*
2987 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2988 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2989 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2990 	 */
2991 	if (gmch_ctrl < 0x11)
2992 		return gmch_ctrl << 25;
2993 	else if (gmch_ctrl < 0x17)
2994 		return (gmch_ctrl - 0x11 + 2) << 22;
2995 	else
2996 		return (gmch_ctrl - 0x17 + 9) << 22;
2997 }
2998 
2999 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
3000 {
3001 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
3002 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
3003 
3004 	if (gen9_gmch_ctl < 0xf0)
3005 		return gen9_gmch_ctl << 25; /* 32 MB units */
3006 	else
3007 		/* 4MB increments starting at 0xf0 for 4MB */
3008 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
3009 }
3010 
3011 static int ggtt_probe_common(struct drm_device *dev,
3012 			     size_t gtt_size)
3013 {
3014 	struct drm_i915_private *dev_priv = to_i915(dev);
3015 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3016 	struct i915_page_scratch *scratch_page;
3017 	phys_addr_t ggtt_phys_addr;
3018 
3019 	/* For Modern GENs the PTEs and register space are split in the BAR */
3020 	ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
3021 			 (pci_resource_len(dev->pdev, 0) / 2);
3022 
3023 	/*
3024 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
3025 	 * dropped. For WC mappings in general we have 64 byte burst writes
3026 	 * when the WC buffer is flushed, so we can't use it, but have to
3027 	 * resort to an uncached mapping. The WC issue is easily caught by the
3028 	 * readback check when writing GTT PTE entries.
3029 	 */
3030 	if (IS_BROXTON(dev))
3031 		ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
3032 	else
3033 		ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
3034 	if (!ggtt->gsm) {
3035 		DRM_ERROR("Failed to map the gtt page table\n");
3036 		return -ENOMEM;
3037 	}
3038 
3039 	scratch_page = alloc_scratch_page(dev);
3040 	if (IS_ERR(scratch_page)) {
3041 		DRM_ERROR("Scratch setup failed\n");
3042 		/* iounmap will also get called at remove, but meh */
3043 		iounmap(ggtt->gsm);
3044 		return PTR_ERR(scratch_page);
3045 	}
3046 
3047 	ggtt->base.scratch_page = scratch_page;
3048 
3049 	return 0;
3050 }
3051 
3052 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3053  * bits. When using advanced contexts each context stores its own PAT, but
3054  * writing this data shouldn't be harmful even in those cases. */
3055 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3056 {
3057 	uint64_t pat;
3058 
3059 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
3060 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3061 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3062 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
3063 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3064 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3065 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3066 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3067 
3068 	if (!USES_PPGTT(dev_priv))
3069 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3070 		 * so RTL will always use the value corresponding to
3071 		 * pat_sel = 000".
3072 		 * So let's disable cache for GGTT to avoid screen corruptions.
3073 		 * MOCS still can be used though.
3074 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3075 		 * before this patch, i.e. the same uncached + snooping access
3076 		 * like on gen6/7 seems to be in effect.
3077 		 * - So this just fixes blitter/render access. Again it looks
3078 		 * like it's not just uncached access, but uncached + snooping.
3079 		 * So we can still hold onto all our assumptions wrt cpu
3080 		 * clflushing on LLC machines.
3081 		 */
3082 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3083 
3084 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3085 	 * write would work. */
3086 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3087 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3088 }
3089 
3090 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3091 {
3092 	uint64_t pat;
3093 
3094 	/*
3095 	 * Map WB on BDW to snooped on CHV.
3096 	 *
3097 	 * Only the snoop bit has meaning for CHV, the rest is
3098 	 * ignored.
3099 	 *
3100 	 * The hardware will never snoop for certain types of accesses:
3101 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3102 	 * - PPGTT page tables
3103 	 * - some other special cycles
3104 	 *
3105 	 * As with BDW, we also need to consider the following for GT accesses:
3106 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3107 	 * so RTL will always use the value corresponding to
3108 	 * pat_sel = 000".
3109 	 * Which means we must set the snoop bit in PAT entry 0
3110 	 * in order to keep the global status page working.
3111 	 */
3112 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3113 	      GEN8_PPAT(1, 0) |
3114 	      GEN8_PPAT(2, 0) |
3115 	      GEN8_PPAT(3, 0) |
3116 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3117 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3118 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3119 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3120 
3121 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3122 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3123 }
3124 
3125 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3126 {
3127 	struct drm_device *dev = ggtt->base.dev;
3128 	struct drm_i915_private *dev_priv = to_i915(dev);
3129 	u16 snb_gmch_ctl;
3130 	int ret;
3131 
3132 	/* TODO: We're not aware of mappable constraints on gen8 yet */
3133 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3134 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3135 
3136 #if 0
3137 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3138 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3139 #endif
3140 
3141 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3142 
3143 	if (INTEL_INFO(dev)->gen >= 9) {
3144 		ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3145 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3146 	} else if (IS_CHERRYVIEW(dev)) {
3147 		ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3148 		ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3149 	} else {
3150 		ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3151 		ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3152 	}
3153 
3154 	ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3155 
3156 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3157 		chv_setup_private_ppat(dev_priv);
3158 	else
3159 		bdw_setup_private_ppat(dev_priv);
3160 
3161 	ret = ggtt_probe_common(dev, ggtt->size);
3162 
3163 	ggtt->base.bind_vma = ggtt_bind_vma;
3164 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3165 	ggtt->base.insert_page = gen8_ggtt_insert_page;
3166 	ggtt->base.clear_range = nop_clear_range;
3167 	if (!USES_FULL_PPGTT(dev_priv))
3168 		ggtt->base.clear_range = gen8_ggtt_clear_range;
3169 
3170 	ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3171 	if (IS_CHERRYVIEW(dev_priv))
3172 		ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3173 
3174 	return ret;
3175 }
3176 
3177 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3178 {
3179 	struct drm_device *dev = ggtt->base.dev;
3180 	u16 snb_gmch_ctl;
3181 	int ret;
3182 
3183 	ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3184 	ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3185 
3186 	/* 64/512MB is the current min/max we actually know of, but this is just
3187 	 * a coarse sanity check.
3188 	 */
3189 	if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3190 		DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3191 		return -ENXIO;
3192 	}
3193 
3194 #if 0
3195 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3196 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3197 #endif
3198 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3199 
3200 	ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3201 	ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3202 	ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3203 
3204 	ret = ggtt_probe_common(dev, ggtt->size);
3205 
3206 	ggtt->base.clear_range = gen6_ggtt_clear_range;
3207 	ggtt->base.insert_page = gen6_ggtt_insert_page;
3208 	ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3209 	ggtt->base.bind_vma = ggtt_bind_vma;
3210 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3211 
3212 	return ret;
3213 }
3214 
3215 static void gen6_gmch_remove(struct i915_address_space *vm)
3216 {
3217 	struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3218 
3219 	iounmap(ggtt->gsm);
3220 	free_scratch_page(vm->dev, vm->scratch_page);
3221 }
3222 
3223 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3224 {
3225 	struct drm_device *dev = ggtt->base.dev;
3226 	struct drm_i915_private *dev_priv = to_i915(dev);
3227 #if 0
3228 	int ret;
3229 
3230 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3231 	if (!ret) {
3232 		DRM_ERROR("failed to set up gmch\n");
3233 		return -EIO;
3234 	}
3235 #endif
3236 
3237 	intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3238 		      &ggtt->mappable_base, &ggtt->mappable_end);
3239 
3240 	ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3241 	ggtt->base.insert_page = i915_ggtt_insert_page;
3242 	ggtt->base.insert_entries = i915_ggtt_insert_entries;
3243 	ggtt->base.clear_range = i915_ggtt_clear_range;
3244 	ggtt->base.bind_vma = ggtt_bind_vma;
3245 	ggtt->base.unbind_vma = ggtt_unbind_vma;
3246 
3247 	if (unlikely(ggtt->do_idle_maps))
3248 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3249 
3250 	return 0;
3251 }
3252 
3253 static void i915_gmch_remove(struct i915_address_space *vm)
3254 {
3255 	intel_gmch_remove();
3256 }
3257 
3258 /**
3259  * i915_ggtt_init_hw - Initialize GGTT hardware
3260  * @dev: DRM device
3261  */
3262 int i915_ggtt_init_hw(struct drm_device *dev)
3263 {
3264 	struct drm_i915_private *dev_priv = to_i915(dev);
3265 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3266 	int ret;
3267 
3268 	if (INTEL_INFO(dev)->gen <= 5) {
3269 		ggtt->probe = i915_gmch_probe;
3270 		ggtt->base.cleanup = i915_gmch_remove;
3271 	} else if (INTEL_INFO(dev)->gen < 8) {
3272 		ggtt->probe = gen6_gmch_probe;
3273 		ggtt->base.cleanup = gen6_gmch_remove;
3274 
3275 		if (HAS_EDRAM(dev))
3276 			ggtt->base.pte_encode = iris_pte_encode;
3277 		else if (IS_HASWELL(dev))
3278 			ggtt->base.pte_encode = hsw_pte_encode;
3279 		else if (IS_VALLEYVIEW(dev))
3280 			ggtt->base.pte_encode = byt_pte_encode;
3281 		else if (INTEL_INFO(dev)->gen >= 7)
3282 			ggtt->base.pte_encode = ivb_pte_encode;
3283 		else
3284 			ggtt->base.pte_encode = snb_pte_encode;
3285 	} else {
3286 		ggtt->probe = gen8_gmch_probe;
3287 		ggtt->base.cleanup = gen6_gmch_remove;
3288 	}
3289 
3290 	ggtt->base.dev = dev;
3291 	ggtt->base.is_ggtt = true;
3292 
3293 	ret = ggtt->probe(ggtt);
3294 	if (ret)
3295 		return ret;
3296 
3297 	if ((ggtt->base.total - 1) >> 32) {
3298 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3299 			  "of address space! Found %lldM!\n",
3300 			  ggtt->base.total >> 20);
3301 		ggtt->base.total = 1ULL << 32;
3302 		ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3303 	}
3304 
3305 	/*
3306 	 * Initialise stolen early so that we may reserve preallocated
3307 	 * objects for the BIOS to KMS transition.
3308 	 */
3309 	ret = i915_gem_init_stolen(dev);
3310 	if (ret)
3311 		goto out_gtt_cleanup;
3312 
3313 	/* GMADR is the PCI mmio aperture into the global GTT. */
3314 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3315 		 ggtt->base.total >> 20);
3316 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3317 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3318 #ifdef CONFIG_INTEL_IOMMU
3319 	if (intel_iommu_gfx_mapped)
3320 		DRM_INFO("VT-d active for gfx access\n");
3321 #endif
3322 
3323 	return 0;
3324 
3325 out_gtt_cleanup:
3326 	ggtt->base.cleanup(&ggtt->base);
3327 
3328 	return ret;
3329 }
3330 
3331 int i915_ggtt_enable_hw(struct drm_device *dev)
3332 {
3333 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3334 		return -EIO;
3335 
3336 	return 0;
3337 }
3338 
3339 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3340 {
3341 	struct drm_i915_private *dev_priv = to_i915(dev);
3342 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3343 	struct drm_i915_gem_object *obj;
3344 	struct i915_vma *vma;
3345 
3346 	i915_check_and_clear_faults(dev_priv);
3347 
3348 	/* First fill our portion of the GTT with scratch pages */
3349 	ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3350 			       true);
3351 
3352 	/* Cache flush objects bound into GGTT and rebind them. */
3353 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3354 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3355 			if (vma->vm != &ggtt->base)
3356 				continue;
3357 
3358 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3359 					      PIN_UPDATE));
3360 		}
3361 
3362 		if (obj->pin_display)
3363 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3364 	}
3365 
3366 	if (INTEL_INFO(dev)->gen >= 8) {
3367 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3368 			chv_setup_private_ppat(dev_priv);
3369 		else
3370 			bdw_setup_private_ppat(dev_priv);
3371 
3372 		return;
3373 	}
3374 
3375 	if (USES_PPGTT(dev)) {
3376 		struct i915_address_space *vm;
3377 
3378 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3379 			/* TODO: Perhaps it shouldn't be gen6 specific */
3380 
3381 			struct i915_hw_ppgtt *ppgtt;
3382 
3383 			if (vm->is_ggtt)
3384 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3385 			else
3386 				ppgtt = i915_vm_to_ppgtt(vm);
3387 
3388 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3389 					      0, ppgtt->base.total);
3390 		}
3391 	}
3392 
3393 	i915_ggtt_flush(dev_priv);
3394 }
3395 
3396 static struct i915_vma *
3397 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3398 		      struct i915_address_space *vm,
3399 		      const struct i915_ggtt_view *ggtt_view)
3400 {
3401 	struct i915_vma *vma;
3402 
3403 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3404 		return ERR_PTR(-EINVAL);
3405 
3406 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3407 	if (vma == NULL)
3408 		return ERR_PTR(-ENOMEM);
3409 
3410 	INIT_LIST_HEAD(&vma->vm_link);
3411 	INIT_LIST_HEAD(&vma->obj_link);
3412 	INIT_LIST_HEAD(&vma->exec_list);
3413 	vma->vm = vm;
3414 	vma->obj = obj;
3415 	vma->is_ggtt = i915_is_ggtt(vm);
3416 
3417 	if (i915_is_ggtt(vm))
3418 		vma->ggtt_view = *ggtt_view;
3419 	else
3420 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3421 
3422 	list_add_tail(&vma->obj_link, &obj->vma_list);
3423 
3424 	return vma;
3425 }
3426 
3427 struct i915_vma *
3428 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3429 				  struct i915_address_space *vm)
3430 {
3431 	struct i915_vma *vma;
3432 
3433 	vma = i915_gem_obj_to_vma(obj, vm);
3434 	if (!vma)
3435 		vma = __i915_gem_vma_create(obj, vm,
3436 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3437 
3438 	return vma;
3439 }
3440 
3441 struct i915_vma *
3442 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3443 				       const struct i915_ggtt_view *view)
3444 {
3445 	struct drm_device *dev = obj->base.dev;
3446 	struct drm_i915_private *dev_priv = to_i915(dev);
3447 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3448 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3449 
3450 	if (!vma)
3451 		vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3452 
3453 	return vma;
3454 
3455 }
3456 
3457 static struct scatterlist *
3458 rotate_pages(const dma_addr_t *in, unsigned int offset,
3459 	     unsigned int width, unsigned int height,
3460 	     unsigned int stride,
3461 	     struct sg_table *st, struct scatterlist *sg)
3462 {
3463 	unsigned int column, row;
3464 	unsigned int src_idx;
3465 
3466 	for (column = 0; column < width; column++) {
3467 		src_idx = stride * (height - 1) + column;
3468 		for (row = 0; row < height; row++) {
3469 			st->nents++;
3470 			/* We don't need the pages, but need to initialize
3471 			 * the entries so the sg list can be happily traversed.
3472 			 * The only thing we need are DMA addresses.
3473 			 */
3474 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3475 			sg_dma_address(sg) = in[offset + src_idx];
3476 			sg_dma_len(sg) = PAGE_SIZE;
3477 			sg = sg_next(sg);
3478 			src_idx -= stride;
3479 		}
3480 	}
3481 
3482 	return sg;
3483 }
3484 
3485 static struct sg_table *
3486 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3487 			  struct drm_i915_gem_object *obj)
3488 {
3489 	unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3490 	unsigned int size_pages_uv;
3491 	struct sgt_iter sgt_iter;
3492 	dma_addr_t dma_addr;
3493 	unsigned long i;
3494 	dma_addr_t *page_addr_list;
3495 	struct sg_table *st;
3496 	unsigned int uv_start_page;
3497 	struct scatterlist *sg;
3498 	int ret = -ENOMEM;
3499 
3500 	/* Allocate a temporary list of source pages for random access. */
3501 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3502 				       sizeof(dma_addr_t));
3503 	if (!page_addr_list)
3504 		return ERR_PTR(ret);
3505 
3506 	/* Account for UV plane with NV12. */
3507 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3508 		size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3509 	else
3510 		size_pages_uv = 0;
3511 
3512 	/* Allocate target SG list. */
3513 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3514 	if (!st)
3515 		goto err_st_alloc;
3516 
3517 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3518 	if (ret)
3519 		goto err_sg_alloc;
3520 
3521 	/* Populate source page list from the object. */
3522 	i = 0;
3523 	for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3524 		page_addr_list[i++] = dma_addr;
3525 
3526 	GEM_BUG_ON(i != n_pages);
3527 	st->nents = 0;
3528 	sg = st->sgl;
3529 
3530 	/* Rotate the pages. */
3531 	sg = rotate_pages(page_addr_list, 0,
3532 			  rot_info->plane[0].width, rot_info->plane[0].height,
3533 			  rot_info->plane[0].width,
3534 			  st, sg);
3535 
3536 	/* Append the UV plane if NV12. */
3537 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3538 		uv_start_page = size_pages;
3539 
3540 		/* Check for tile-row un-alignment. */
3541 		if (offset_in_page(rot_info->uv_offset))
3542 			uv_start_page--;
3543 
3544 		rot_info->uv_start_page = uv_start_page;
3545 
3546 		sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3547 				  rot_info->plane[1].width, rot_info->plane[1].height,
3548 				  rot_info->plane[1].width,
3549 				  st, sg);
3550 	}
3551 
3552 	DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3553 		      obj->base.size, rot_info->plane[0].width,
3554 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3555 		      size_pages);
3556 
3557 	drm_free_large(page_addr_list);
3558 
3559 	return st;
3560 
3561 err_sg_alloc:
3562 	kfree(st);
3563 err_st_alloc:
3564 	drm_free_large(page_addr_list);
3565 
3566 	DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3567 		      obj->base.size, ret, rot_info->plane[0].width,
3568 		      rot_info->plane[0].height, size_pages + size_pages_uv,
3569 		      size_pages);
3570 	return ERR_PTR(ret);
3571 }
3572 
3573 static struct sg_table *
3574 intel_partial_pages(const struct i915_ggtt_view *view,
3575 		    struct drm_i915_gem_object *obj)
3576 {
3577 	struct sg_table *st;
3578 	struct scatterlist *sg;
3579 	struct sg_page_iter obj_sg_iter;
3580 	int ret = -ENOMEM;
3581 
3582 	st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3583 	if (!st)
3584 		goto err_st_alloc;
3585 
3586 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3587 	if (ret)
3588 		goto err_sg_alloc;
3589 
3590 	sg = st->sgl;
3591 	st->nents = 0;
3592 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3593 		view->params.partial.offset)
3594 	{
3595 		if (st->nents >= view->params.partial.size)
3596 			break;
3597 
3598 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3599 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3600 		sg_dma_len(sg) = PAGE_SIZE;
3601 
3602 		sg = sg_next(sg);
3603 		st->nents++;
3604 	}
3605 
3606 	return st;
3607 
3608 err_sg_alloc:
3609 	kfree(st);
3610 err_st_alloc:
3611 	return ERR_PTR(ret);
3612 }
3613 
3614 static int
3615 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3616 {
3617 	int ret = 0;
3618 
3619 	if (vma->ggtt_view.pages)
3620 		return 0;
3621 
3622 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3623 		vma->ggtt_view.pages = vma->obj->pages;
3624 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3625 		vma->ggtt_view.pages =
3626 			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3627 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3628 		vma->ggtt_view.pages =
3629 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3630 	else
3631 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3632 			  vma->ggtt_view.type);
3633 
3634 	if (!vma->ggtt_view.pages) {
3635 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3636 			  vma->ggtt_view.type);
3637 		ret = -EINVAL;
3638 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3639 		ret = PTR_ERR(vma->ggtt_view.pages);
3640 		vma->ggtt_view.pages = NULL;
3641 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3642 			  vma->ggtt_view.type, ret);
3643 	}
3644 
3645 	return ret;
3646 }
3647 
3648 /**
3649  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3650  * @vma: VMA to map
3651  * @cache_level: mapping cache level
3652  * @flags: flags like global or local mapping
3653  *
3654  * DMA addresses are taken from the scatter-gather table of this object (or of
3655  * this VMA in case of non-default GGTT views) and PTE entries set up.
3656  * Note that DMA addresses are also the only part of the SG table we care about.
3657  */
3658 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3659 		  u32 flags)
3660 {
3661 	int ret;
3662 	u32 bind_flags;
3663 
3664 	if (WARN_ON(flags == 0))
3665 		return -EINVAL;
3666 
3667 	bind_flags = 0;
3668 	if (flags & PIN_GLOBAL)
3669 		bind_flags |= GLOBAL_BIND;
3670 	if (flags & PIN_USER)
3671 		bind_flags |= LOCAL_BIND;
3672 
3673 	if (flags & PIN_UPDATE)
3674 		bind_flags |= vma->bound;
3675 	else
3676 		bind_flags &= ~vma->bound;
3677 
3678 	if (bind_flags == 0)
3679 		return 0;
3680 
3681 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3682 		/* XXX: i915_vma_pin() will fix this +- hack */
3683 		vma->pin_count++;
3684 		trace_i915_va_alloc(vma);
3685 		ret = vma->vm->allocate_va_range(vma->vm,
3686 						 vma->node.start,
3687 						 vma->node.size);
3688 		vma->pin_count--;
3689 		if (ret)
3690 			return ret;
3691 	}
3692 
3693 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3694 	if (ret)
3695 		return ret;
3696 
3697 	vma->bound |= bind_flags;
3698 
3699 	return 0;
3700 }
3701 
3702 /**
3703  * i915_ggtt_view_size - Get the size of a GGTT view.
3704  * @obj: Object the view is of.
3705  * @view: The view in question.
3706  *
3707  * @return The size of the GGTT view in bytes.
3708  */
3709 size_t
3710 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3711 		    const struct i915_ggtt_view *view)
3712 {
3713 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3714 		return obj->base.size;
3715 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3716 		return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3717 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3718 		return view->params.partial.size << PAGE_SHIFT;
3719 	} else {
3720 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3721 		return obj->base.size;
3722 	}
3723 }
3724 
3725 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3726 {
3727 	void __iomem *ptr;
3728 
3729 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3730 	if (WARN_ON(!vma->obj->map_and_fenceable))
3731 		return ERR_PTR(-ENODEV);
3732 
3733 	GEM_BUG_ON(!vma->is_ggtt);
3734 	GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3735 
3736 	ptr = vma->iomap;
3737 	if (ptr == NULL) {
3738 		ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3739 					vma->node.start,
3740 					vma->node.size);
3741 		if (ptr == NULL)
3742 			return ERR_PTR(-ENOMEM);
3743 
3744 		vma->iomap = ptr;
3745 	}
3746 
3747 	vma->pin_count++;
3748 	return ptr;
3749 }
3750