xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.h (revision 1093ca81)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 struct drm_i915_file_private;
38 
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 typedef uint64_t gen8_ppgtt_pdpe_t;
43 typedef uint64_t gen8_ppgtt_pml4e_t;
44 
45 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
46 
47 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
48 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
49 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
51 #define GEN6_PTE_CACHE_LLC		(2 << 1)
52 #define GEN6_PTE_UNCACHED		(1 << 1)
53 #define GEN6_PTE_VALID			(1 << 0)
54 
55 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
56 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
57 #define I915_PDES			512
58 #define I915_PDE_MASK			(I915_PDES - 1)
59 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
60 
61 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
62 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
63 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
64 #define GEN6_PDE_SHIFT			22
65 #define GEN6_PDE_VALID			(1 << 0)
66 
67 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
68 
69 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
70 #define BYT_PTE_WRITEABLE		(1 << 1)
71 
72 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
73  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
74  */
75 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
76 					 (((bits) & 0x8) << (11 - 3)))
77 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
78 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
79 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
80 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
81 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
82 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
83 #define HSW_PTE_UNCACHED		(0)
84 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
85 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
86 
87 /* GEN8 legacy style address is defined as a 3 level page table:
88  * 31:30 | 29:21 | 20:12 |  11:0
89  * PDPE  |  PDE  |  PTE  | offset
90  * The difference as compared to normal x86 3 level page table is the PDPEs are
91  * programmed via register.
92  *
93  * GEN8 48b legacy style address is defined as a 4 level page table:
94  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
95  * PML4E | PDPE  |  PDE  |  PTE  | offset
96  */
97 #define GEN8_PML4ES_PER_PML4		512
98 #define GEN8_PML4E_SHIFT		39
99 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
100 #define GEN8_PDPE_SHIFT			30
101 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
102  * tables */
103 #define GEN8_PDPE_MASK			0x1ff
104 #define GEN8_PDE_SHIFT			21
105 #define GEN8_PDE_MASK			0x1ff
106 #define GEN8_PTE_SHIFT			12
107 #define GEN8_PTE_MASK			0x1ff
108 #define GEN8_LEGACY_PDPES		4
109 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
110 
111 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
112 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
113 
114 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
115 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
116 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
117 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
118 
119 #define CHV_PPAT_SNOOP			(1<<6)
120 #define GEN8_PPAT_AGE(x)		(x<<4)
121 #define GEN8_PPAT_LLCeLLC		(3<<2)
122 #define GEN8_PPAT_LLCELLC		(2<<2)
123 #define GEN8_PPAT_LLC			(1<<2)
124 #define GEN8_PPAT_WB			(3<<0)
125 #define GEN8_PPAT_WT			(2<<0)
126 #define GEN8_PPAT_WC			(1<<0)
127 #define GEN8_PPAT_UC			(0<<0)
128 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
129 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
130 
131 enum i915_ggtt_view_type {
132 	I915_GGTT_VIEW_NORMAL = 0,
133 	I915_GGTT_VIEW_ROTATED,
134 	I915_GGTT_VIEW_PARTIAL,
135 };
136 
137 struct intel_rotation_info {
138 	unsigned int uv_offset;
139 	uint32_t pixel_format;
140 	unsigned int uv_start_page;
141 	struct {
142 		/* tiles */
143 		unsigned int width, height;
144 	} plane[2];
145 };
146 
147 struct i915_ggtt_view {
148 	enum i915_ggtt_view_type type;
149 
150 	union {
151 		struct {
152 			u64 offset;
153 			unsigned int size;
154 		} partial;
155 		struct intel_rotation_info rotated;
156 	} params;
157 
158 	struct sg_table *pages;
159 };
160 
161 extern const struct i915_ggtt_view i915_ggtt_view_normal;
162 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
163 
164 enum i915_cache_level;
165 
166 /**
167  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
168  * VMA's presence cannot be guaranteed before binding, or after unbinding the
169  * object into/from the address space.
170  *
171  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
172  * will always be <= an objects lifetime. So object refcounting should cover us.
173  */
174 struct i915_vma {
175 	struct drm_mm_node node;
176 	struct drm_i915_gem_object *obj;
177 	struct i915_address_space *vm;
178 
179 	/** Flags and address space this VMA is bound to */
180 #define GLOBAL_BIND	(1<<0)
181 #define LOCAL_BIND	(1<<1)
182 	unsigned int bound : 4;
183 	bool is_ggtt : 1;
184 
185 	/**
186 	 * Support different GGTT views into the same object.
187 	 * This means there can be multiple VMA mappings per object and per VM.
188 	 * i915_ggtt_view_type is used to distinguish between those entries.
189 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
190 	 * assumed in GEM functions which take no ggtt view parameter.
191 	 */
192 	struct i915_ggtt_view ggtt_view;
193 
194 	/** This object's place on the active/inactive lists */
195 	struct list_head vm_link;
196 
197 	struct list_head obj_link; /* Link in the object's VMA list */
198 
199 	/** This vma's place in the batchbuffer or on the eviction list */
200 	struct list_head exec_list;
201 
202 	/**
203 	 * Used for performing relocations during execbuffer insertion.
204 	 */
205 	struct hlist_node exec_node;
206 	unsigned long exec_handle;
207 	struct drm_i915_gem_exec_object2 *exec_entry;
208 
209 	/**
210 	 * How many users have pinned this object in GTT space. The following
211 	 * users can each hold at most one reference: pwrite/pread, execbuffer
212 	 * (objects are not allowed multiple times for the same batchbuffer),
213 	 * and the framebuffer code. When switching/pageflipping, the
214 	 * framebuffer code has at most two buffers pinned per crtc.
215 	 *
216 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
217 	 * bits with absolutely no headroom. So use 4 bits. */
218 	unsigned int pin_count:4;
219 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
220 };
221 
222 struct i915_page_dma {
223 	struct vm_page *page;
224 	union {
225 		dma_addr_t daddr;
226 
227 		/* For gen6/gen7 only. This is the offset in the GGTT
228 		 * where the page directory entries for PPGTT begin
229 		 */
230 		uint32_t ggtt_offset;
231 	};
232 };
233 
234 #define px_base(px) (&(px)->base)
235 #define px_page(px) (px_base(px)->page)
236 #define px_dma(px) (px_base(px)->daddr)
237 
238 struct i915_page_scratch {
239 	struct i915_page_dma base;
240 };
241 
242 struct i915_page_table {
243 	struct i915_page_dma base;
244 
245 	unsigned long *used_ptes;
246 };
247 
248 struct i915_page_directory {
249 	struct i915_page_dma base;
250 
251 	unsigned long *used_pdes;
252 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
253 };
254 
255 struct i915_page_directory_pointer {
256 	struct i915_page_dma base;
257 
258 	unsigned long *used_pdpes;
259 	struct i915_page_directory **page_directory;
260 };
261 
262 struct i915_pml4 {
263 	struct i915_page_dma base;
264 
265 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
266 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
267 };
268 
269 struct i915_address_space {
270 	struct drm_mm mm;
271 	struct drm_device *dev;
272 	struct list_head global_link;
273 	u64 start;		/* Start offset always 0 for dri2 */
274 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
275 
276 	bool is_ggtt;
277 
278 	struct i915_page_scratch *scratch_page;
279 	struct i915_page_table *scratch_pt;
280 	struct i915_page_directory *scratch_pd;
281 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
282 
283 	/**
284 	 * List of objects currently involved in rendering.
285 	 *
286 	 * Includes buffers having the contents of their GPU caches
287 	 * flushed, not necessarily primitives. last_read_req
288 	 * represents when the rendering involved will be completed.
289 	 *
290 	 * A reference is held on the buffer while on this list.
291 	 */
292 	struct list_head active_list;
293 
294 	/**
295 	 * LRU list of objects which are not in the ringbuffer and
296 	 * are ready to unbind, but are still in the GTT.
297 	 *
298 	 * last_read_req is NULL while an object is in this list.
299 	 *
300 	 * A reference is not held on the buffer while on this list,
301 	 * as merely being GTT-bound shouldn't prevent its being
302 	 * freed, and we'll pull it off the list in the free path.
303 	 */
304 	struct list_head inactive_list;
305 
306 	/* FIXME: Need a more generic return type */
307 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
308 				 enum i915_cache_level level,
309 				 bool valid, u32 flags); /* Create a valid PTE */
310 	/* flags for pte_encode */
311 #define PTE_READ_ONLY	(1<<0)
312 	int (*allocate_va_range)(struct i915_address_space *vm,
313 				 uint64_t start,
314 				 uint64_t length);
315 	void (*clear_range)(struct i915_address_space *vm,
316 			    uint64_t start,
317 			    uint64_t length,
318 			    bool use_scratch);
319 	void (*insert_entries)(struct i915_address_space *vm,
320 			       struct sg_table *st,
321 			       uint64_t start,
322 			       enum i915_cache_level cache_level, u32 flags);
323 	void (*cleanup)(struct i915_address_space *vm);
324 	/** Unmap an object from an address space. This usually consists of
325 	 * setting the valid PTE entries to a reserved scratch page. */
326 	void (*unbind_vma)(struct i915_vma *vma);
327 	/* Map an object into an address space with the given cache flags. */
328 	int (*bind_vma)(struct i915_vma *vma,
329 			enum i915_cache_level cache_level,
330 			u32 flags);
331 };
332 
333 #define i915_is_ggtt(V) ((V)->is_ggtt)
334 
335 /* The Graphics Translation Table is the way in which GEN hardware translates a
336  * Graphics Virtual Address into a Physical Address. In addition to the normal
337  * collateral associated with any va->pa translations GEN hardware also has a
338  * portion of the GTT which can be mapped by the CPU and remain both coherent
339  * and correct (in cases like swizzling). That region is referred to as GMADR in
340  * the spec.
341  */
342 struct i915_ggtt {
343 	struct i915_address_space base;
344 
345 	size_t stolen_size;		/* Total size of stolen memory */
346 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
347 	size_t stolen_reserved_base;
348 	size_t stolen_reserved_size;
349 	size_t size;			/* Total size of Global GTT */
350 	u64 mappable_end;		/* End offset that we can CPU map */
351 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
352 	phys_addr_t mappable_base;	/* PA of our GMADR */
353 
354 	/** "Graphics Stolen Memory" holds the global PTEs */
355 	void __iomem *gsm;
356 
357 	bool do_idle_maps;
358 
359 	int mtrr;
360 
361 	int (*probe)(struct i915_ggtt *ggtt);
362 };
363 
364 struct i915_hw_ppgtt {
365 	struct i915_address_space base;
366 	struct kref ref;
367 	struct drm_mm_node node;
368 	unsigned long pd_dirty_rings;
369 	union {
370 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
371 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
372 		struct i915_page_directory pd;		/* GEN6-7 */
373 	};
374 
375 	struct drm_i915_file_private *file_priv;
376 
377 	gen6_pte_t __iomem *pd_addr;
378 
379 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
380 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
381 			 struct drm_i915_gem_request *req);
382 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
383 };
384 
385 /* For each pde iterates over every pde between from start until start + length.
386  * If start, and start+length are not perfectly divisible, the macro will round
387  * down, and up as needed. The macro modifies pde, start, and length. Dev is
388  * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
389  * and length = 2G effectively iterates over every PDE in the system.
390  *
391  * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
392  */
393 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
394 	for (iter = gen6_pde_index(start); \
395 	     length > 0 && iter < I915_PDES ? \
396 			(pt = (pd)->page_table[iter]), 1 : 0; \
397 	     iter++, \
398 	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
399 	     temp = min_t(unsigned, temp, length), \
400 	     start += temp, length -= temp)
401 
402 #define gen6_for_all_pdes(pt, ppgtt, iter)  \
403 	for (iter = 0;		\
404 	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
405 	     iter++)
406 
407 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
408 {
409 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
410 
411 	return (address >> PAGE_SHIFT) & mask;
412 }
413 
414 /* Helper to counts the number of PTEs within the given length. This count
415  * does not cross a page table boundary, so the max value would be
416  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
417 */
418 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
419 				      uint32_t pde_shift)
420 {
421 	const uint64_t mask = ~((1ULL << pde_shift) - 1);
422 	uint64_t end;
423 
424 	WARN_ON(length == 0);
425 	WARN_ON(offset_in_page(addr|length));
426 
427 	end = addr + length;
428 
429 	if ((addr & mask) != (end & mask))
430 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
431 
432 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
433 }
434 
435 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
436 {
437 	return (addr >> shift) & I915_PDE_MASK;
438 }
439 
440 static inline uint32_t gen6_pte_index(uint32_t addr)
441 {
442 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
443 }
444 
445 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
446 {
447 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
448 }
449 
450 static inline uint32_t gen6_pde_index(uint32_t addr)
451 {
452 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
453 }
454 
455 /* Equivalent to the gen6 version, For each pde iterates over every pde
456  * between from start until start + length. On gen8+ it simply iterates
457  * over every page directory entry in a page directory.
458  */
459 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
460 	for (iter = gen8_pde_index(start);				\
461 	     length > 0 && iter < I915_PDES &&				\
462 		(pt = (pd)->page_table[iter], true);			\
463 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
464 		    temp = min(temp - start, length);			\
465 		    start += temp, length -= temp; }), ++iter)
466 
467 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
468 	for (iter = gen8_pdpe_index(start);				\
469 	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
470 		(pd = (pdp)->page_directory[iter], true);		\
471 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
472 		    temp = min(temp - start, length);			\
473 		    start += temp, length -= temp; }), ++iter)
474 
475 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
476 	for (iter = gen8_pml4e_index(start);				\
477 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
478 		(pdp = (pml4)->pdps[iter], true);			\
479 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
480 		    temp = min(temp - start, length);			\
481 		    start += temp, length -= temp; }), ++iter)
482 
483 static inline uint32_t gen8_pte_index(uint64_t address)
484 {
485 	return i915_pte_index(address, GEN8_PDE_SHIFT);
486 }
487 
488 static inline uint32_t gen8_pde_index(uint64_t address)
489 {
490 	return i915_pde_index(address, GEN8_PDE_SHIFT);
491 }
492 
493 static inline uint32_t gen8_pdpe_index(uint64_t address)
494 {
495 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
496 }
497 
498 static inline uint32_t gen8_pml4e_index(uint64_t address)
499 {
500 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
501 }
502 
503 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
504 {
505 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
506 }
507 
508 static inline dma_addr_t
509 i915_page_dir_dma_addr(struct i915_hw_ppgtt *ppgtt, const unsigned n)
510 {
511 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
512 		px_dma(ppgtt->pdp.page_directory[n]) :
513 		px_dma(ppgtt->base.scratch_pd);
514 }
515 
516 int i915_ggtt_init_hw(struct drm_device *dev);
517 int i915_ggtt_enable_hw(struct drm_device *dev);
518 void i915_gem_init_ggtt(struct drm_device *dev);
519 void i915_ggtt_cleanup_hw(struct drm_device *dev);
520 
521 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
522 int i915_ppgtt_init_hw(struct drm_device *dev);
523 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
524 void i915_ppgtt_release(struct kref *kref);
525 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
526 					struct drm_i915_file_private *fpriv);
527 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
528 {
529 	if (ppgtt)
530 		kref_get(&ppgtt->ref);
531 }
532 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
533 {
534 	if (ppgtt)
535 		kref_put(&ppgtt->ref, i915_ppgtt_release);
536 }
537 
538 void i915_check_and_clear_faults(struct drm_device *dev);
539 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
540 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
541 
542 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
543 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
544 
545 static inline bool
546 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
547                      const struct i915_ggtt_view *b)
548 {
549 	if (WARN_ON(!a || !b))
550 		return false;
551 
552 	if (a->type != b->type)
553 		return false;
554 	if (a->type != I915_GGTT_VIEW_NORMAL)
555 		return !memcmp(&a->params, &b->params, sizeof(a->params));
556 	return true;
557 }
558 
559 size_t
560 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
561 		    const struct i915_ggtt_view *view);
562 
563 #endif
564