xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.h (revision 335b9e93)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 #include <linux/io-mapping.h>
38 
39 #include "i915_gem_request.h"
40 
41 #define I915_FENCE_REG_NONE -1
42 #define I915_MAX_NUM_FENCES 32
43 /* 32 fences + sign bit for FENCE_REG_NONE */
44 #define I915_MAX_NUM_FENCE_BITS 6
45 
46 struct drm_i915_file_private;
47 struct drm_i915_fence_reg;
48 
49 typedef uint32_t gen6_pte_t;
50 typedef uint64_t gen8_pte_t;
51 typedef uint64_t gen8_pde_t;
52 typedef uint64_t gen8_ppgtt_pdpe_t;
53 typedef uint64_t gen8_ppgtt_pml4e_t;
54 
55 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
56 
57 #define I915_GTT_PAGE_SIZE_4K	(1ULL << 12)
58 #define I915_GTT_PAGE_MASK	-I915_GTT_PAGE_SIZE_4K
59 
60 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
61 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
62 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
63 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
64 #define GEN6_PTE_CACHE_LLC		(2 << 1)
65 #define GEN6_PTE_UNCACHED		(1 << 1)
66 #define GEN6_PTE_VALID			(1 << 0)
67 
68 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
69 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
70 #define I915_PDES			512
71 #define I915_PDE_MASK			(I915_PDES - 1)
72 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
73 
74 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
75 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
76 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
77 #define GEN6_PDE_SHIFT			22
78 #define GEN6_PDE_VALID			(1 << 0)
79 
80 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
81 
82 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
83 #define BYT_PTE_WRITEABLE		(1 << 1)
84 
85 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
86  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
87  */
88 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
89 					 (((bits) & 0x8) << (11 - 3)))
90 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
91 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
92 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
93 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
94 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
95 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
96 #define HSW_PTE_UNCACHED		(0)
97 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
98 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
99 
100 /* GEN8 legacy style address is defined as a 3 level page table:
101  * 31:30 | 29:21 | 20:12 |  11:0
102  * PDPE  |  PDE  |  PTE  | offset
103  * The difference as compared to normal x86 3 level page table is the PDPEs are
104  * programmed via register.
105  *
106  * GEN8 48b legacy style address is defined as a 4 level page table:
107  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
108  * PML4E | PDPE  |  PDE  |  PTE  | offset
109  */
110 #define GEN8_PML4ES_PER_PML4		512
111 #define GEN8_PML4E_SHIFT		39
112 #define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
113 #define GEN8_PDPE_SHIFT			30
114 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
115  * tables */
116 #define GEN8_PDPE_MASK			0x1ff
117 #define GEN8_PDE_SHIFT			21
118 #define GEN8_PDE_MASK			0x1ff
119 #define GEN8_PTE_SHIFT			12
120 #define GEN8_PTE_MASK			0x1ff
121 #define GEN8_LEGACY_PDPES		4
122 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
123 
124 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
125 				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
126 
127 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
128 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
129 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
130 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
131 
132 #define CHV_PPAT_SNOOP			(1<<6)
133 #define GEN8_PPAT_AGE(x)		(x<<4)
134 #define GEN8_PPAT_LLCeLLC		(3<<2)
135 #define GEN8_PPAT_LLCELLC		(2<<2)
136 #define GEN8_PPAT_LLC			(1<<2)
137 #define GEN8_PPAT_WB			(3<<0)
138 #define GEN8_PPAT_WT			(2<<0)
139 #define GEN8_PPAT_WC			(1<<0)
140 #define GEN8_PPAT_UC			(0<<0)
141 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
142 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
143 
144 enum i915_ggtt_view_type {
145 	I915_GGTT_VIEW_NORMAL = 0,
146 	I915_GGTT_VIEW_ROTATED,
147 	I915_GGTT_VIEW_PARTIAL,
148 };
149 
150 struct intel_rotation_info {
151 	struct {
152 		/* tiles */
153 		unsigned int width, height, stride, offset;
154 	} plane[2];
155 };
156 
157 struct i915_ggtt_view {
158 	enum i915_ggtt_view_type type;
159 
160 	union {
161 		struct {
162 			u64 offset;
163 			unsigned int size;
164 		} partial;
165 		struct intel_rotation_info rotated;
166 	} params;
167 };
168 
169 extern const struct i915_ggtt_view i915_ggtt_view_normal;
170 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
171 
172 enum i915_cache_level;
173 
174 /**
175  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
176  * VMA's presence cannot be guaranteed before binding, or after unbinding the
177  * object into/from the address space.
178  *
179  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
180  * will always be <= an objects lifetime. So object refcounting should cover us.
181  */
182 struct i915_vma {
183 	struct drm_mm_node node;
184 	struct drm_i915_gem_object *obj;
185 	struct i915_address_space *vm;
186 	struct drm_i915_fence_reg *fence;
187 	struct sg_table *pages;
188 	void __iomem *iomap;
189 	u64 size;
190 	u64 display_alignment;
191 
192 	unsigned int flags;
193 	/**
194 	 * How many users have pinned this object in GTT space. The following
195 	 * users can each hold at most one reference: pwrite/pread, execbuffer
196 	 * (objects are not allowed multiple times for the same batchbuffer),
197 	 * and the framebuffer code. When switching/pageflipping, the
198 	 * framebuffer code has at most two buffers pinned per crtc.
199 	 *
200 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
201 	 * bits with absolutely no headroom. So use 4 bits.
202 	 */
203 #define I915_VMA_PIN_MASK 0xf
204 #define I915_VMA_PIN_OVERFLOW	BIT(5)
205 
206 	/** Flags and address space this VMA is bound to */
207 #define I915_VMA_GLOBAL_BIND	BIT(6)
208 #define I915_VMA_LOCAL_BIND	BIT(7)
209 #define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
210 
211 #define I915_VMA_GGTT		BIT(8)
212 #define I915_VMA_CAN_FENCE	BIT(9)
213 #define I915_VMA_CLOSED		BIT(10)
214 
215 	unsigned int active;
216 	struct i915_gem_active last_read[I915_NUM_ENGINES];
217 	struct i915_gem_active last_fence;
218 
219 	/**
220 	 * Support different GGTT views into the same object.
221 	 * This means there can be multiple VMA mappings per object and per VM.
222 	 * i915_ggtt_view_type is used to distinguish between those entries.
223 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
224 	 * assumed in GEM functions which take no ggtt view parameter.
225 	 */
226 	struct i915_ggtt_view ggtt_view;
227 
228 	/** This object's place on the active/inactive lists */
229 	struct list_head vm_link;
230 
231 	struct list_head obj_link; /* Link in the object's VMA list */
232 
233 	/** This vma's place in the batchbuffer or on the eviction list */
234 	struct list_head exec_list;
235 
236 	/**
237 	 * Used for performing relocations during execbuffer insertion.
238 	 */
239 	struct hlist_node exec_node;
240 	unsigned long exec_handle;
241 	struct drm_i915_gem_exec_object2 *exec_entry;
242 };
243 
244 struct i915_vma *
245 i915_vma_create(struct drm_i915_gem_object *obj,
246 		struct i915_address_space *vm,
247 		const struct i915_ggtt_view *view);
248 void i915_vma_unpin_and_release(struct i915_vma **p_vma);
249 
250 static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
251 {
252 	return vma->flags & I915_VMA_GGTT;
253 }
254 
255 static inline bool i915_vma_is_map_and_fenceable(const struct i915_vma *vma)
256 {
257 	return vma->flags & I915_VMA_CAN_FENCE;
258 }
259 
260 static inline bool i915_vma_is_closed(const struct i915_vma *vma)
261 {
262 	return vma->flags & I915_VMA_CLOSED;
263 }
264 
265 static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
266 {
267 	return vma->active;
268 }
269 
270 static inline bool i915_vma_is_active(const struct i915_vma *vma)
271 {
272 	return i915_vma_get_active(vma);
273 }
274 
275 static inline void i915_vma_set_active(struct i915_vma *vma,
276 				       unsigned int engine)
277 {
278 	vma->active |= BIT(engine);
279 }
280 
281 static inline void i915_vma_clear_active(struct i915_vma *vma,
282 					 unsigned int engine)
283 {
284 	vma->active &= ~BIT(engine);
285 }
286 
287 static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
288 					      unsigned int engine)
289 {
290 	return vma->active & BIT(engine);
291 }
292 
293 static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
294 {
295 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
296 	GEM_BUG_ON(!vma->node.allocated);
297 	GEM_BUG_ON(upper_32_bits(vma->node.start));
298 	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
299 	return lower_32_bits(vma->node.start);
300 }
301 
302 struct i915_page_dma {
303 	struct page *page;
304 	union {
305 		dma_addr_t daddr;
306 
307 		/* For gen6/gen7 only. This is the offset in the GGTT
308 		 * where the page directory entries for PPGTT begin
309 		 */
310 		uint32_t ggtt_offset;
311 	};
312 };
313 
314 #define px_base(px) (&(px)->base)
315 #define px_page(px) (px_base(px)->page)
316 #define px_dma(px) (px_base(px)->daddr)
317 
318 struct i915_page_table {
319 	struct i915_page_dma base;
320 
321 	unsigned long *used_ptes;
322 };
323 
324 struct i915_page_directory {
325 	struct i915_page_dma base;
326 
327 	unsigned long *used_pdes;
328 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
329 };
330 
331 struct i915_page_directory_pointer {
332 	struct i915_page_dma base;
333 
334 	unsigned long *used_pdpes;
335 	struct i915_page_directory **page_directory;
336 };
337 
338 struct i915_pml4 {
339 	struct i915_page_dma base;
340 
341 	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
342 	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
343 };
344 
345 struct i915_address_space {
346 	struct drm_mm mm;
347 	struct drm_device *dev;
348 	/* Every address space belongs to a struct file - except for the global
349 	 * GTT that is owned by the driver (and so @file is set to NULL). In
350 	 * principle, no information should leak from one context to another
351 	 * (or between files/processes etc) unless explicitly shared by the
352 	 * owner. Tracking the owner is important in order to free up per-file
353 	 * objects along with the file, to aide resource tracking, and to
354 	 * assign blame.
355 	 */
356 	struct drm_i915_file_private *file;
357 	struct list_head global_link;
358 	u64 start;		/* Start offset always 0 for dri2 */
359 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
360 
361 	bool closed;
362 
363 	struct i915_page_dma scratch_page;
364 	struct i915_page_table *scratch_pt;
365 	struct i915_page_directory *scratch_pd;
366 	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
367 
368 	/**
369 	 * List of objects currently involved in rendering.
370 	 *
371 	 * Includes buffers having the contents of their GPU caches
372 	 * flushed, not necessarily primitives. last_read_req
373 	 * represents when the rendering involved will be completed.
374 	 *
375 	 * A reference is held on the buffer while on this list.
376 	 */
377 	struct list_head active_list;
378 
379 	/**
380 	 * LRU list of objects which are not in the ringbuffer and
381 	 * are ready to unbind, but are still in the GTT.
382 	 *
383 	 * last_read_req is NULL while an object is in this list.
384 	 *
385 	 * A reference is not held on the buffer while on this list,
386 	 * as merely being GTT-bound shouldn't prevent its being
387 	 * freed, and we'll pull it off the list in the free path.
388 	 */
389 	struct list_head inactive_list;
390 
391 	/**
392 	 * List of vma that have been unbound.
393 	 *
394 	 * A reference is not held on the buffer while on this list.
395 	 */
396 	struct list_head unbound_list;
397 
398 	/* FIXME: Need a more generic return type */
399 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
400 				 enum i915_cache_level level,
401 				 u32 flags); /* Create a valid PTE */
402 	/* flags for pte_encode */
403 #define PTE_READ_ONLY	(1<<0)
404 	int (*allocate_va_range)(struct i915_address_space *vm,
405 				 uint64_t start,
406 				 uint64_t length);
407 	void (*clear_range)(struct i915_address_space *vm,
408 			    uint64_t start,
409 			    uint64_t length);
410 	void (*insert_page)(struct i915_address_space *vm,
411 			    dma_addr_t addr,
412 			    uint64_t offset,
413 			    enum i915_cache_level cache_level,
414 			    u32 flags);
415 	void (*insert_entries)(struct i915_address_space *vm,
416 			       struct sg_table *st,
417 			       uint64_t start,
418 			       enum i915_cache_level cache_level, u32 flags);
419 	void (*cleanup)(struct i915_address_space *vm);
420 	/** Unmap an object from an address space. This usually consists of
421 	 * setting the valid PTE entries to a reserved scratch page. */
422 	void (*unbind_vma)(struct i915_vma *vma);
423 	/* Map an object into an address space with the given cache flags. */
424 	int (*bind_vma)(struct i915_vma *vma,
425 			enum i915_cache_level cache_level,
426 			u32 flags);
427 };
428 
429 #define i915_is_ggtt(V) (!(V)->file)
430 
431 /* The Graphics Translation Table is the way in which GEN hardware translates a
432  * Graphics Virtual Address into a Physical Address. In addition to the normal
433  * collateral associated with any va->pa translations GEN hardware also has a
434  * portion of the GTT which can be mapped by the CPU and remain both coherent
435  * and correct (in cases like swizzling). That region is referred to as GMADR in
436  * the spec.
437  */
438 struct i915_ggtt {
439 	struct i915_address_space base;
440 	struct io_mapping mappable;	/* Mapping to our CPU mappable region */
441 
442 	size_t stolen_size;		/* Total size of stolen memory */
443 	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
444 	size_t stolen_reserved_base;
445 	size_t stolen_reserved_size;
446 	u64 mappable_end;		/* End offset that we can CPU map */
447 	phys_addr_t mappable_base;	/* PA of our GMADR */
448 
449 	/** "Graphics Stolen Memory" holds the global PTEs */
450 	void __iomem *gsm;
451 
452 	bool do_idle_maps;
453 
454 	int mtrr;
455 
456 	struct drm_mm_node error_capture;
457 };
458 
459 struct i915_hw_ppgtt {
460 	struct i915_address_space base;
461 	struct kref ref;
462 	struct drm_mm_node node;
463 	unsigned long pd_dirty_rings;
464 	union {
465 		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
466 		struct i915_page_directory_pointer pdp;	/* GEN8+ */
467 		struct i915_page_directory pd;		/* GEN6-7 */
468 	};
469 
470 	gen6_pte_t __iomem *pd_addr;
471 
472 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
473 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
474 			 struct drm_i915_gem_request *req);
475 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
476 };
477 
478 /*
479  * gen6_for_each_pde() iterates over every pde from start until start+length.
480  * If start and start+length are not perfectly divisible, the macro will round
481  * down and up as needed. Start=0 and length=2G effectively iterates over
482  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
483  * so each of the other parameters should preferably be a simple variable, or
484  * at most an lvalue with no side-effects!
485  */
486 #define gen6_for_each_pde(pt, pd, start, length, iter)			\
487 	for (iter = gen6_pde_index(start);				\
488 	     length > 0 && iter < I915_PDES &&				\
489 		(pt = (pd)->page_table[iter], true);			\
490 	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
491 		    temp = min(temp - start, length);			\
492 		    start += temp, length -= temp; }), ++iter)
493 
494 #define gen6_for_all_pdes(pt, pd, iter)					\
495 	for (iter = 0;							\
496 	     iter < I915_PDES &&					\
497 		(pt = (pd)->page_table[iter], true);			\
498 	     ++iter)
499 
500 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
501 {
502 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
503 
504 	return (address >> PAGE_SHIFT) & mask;
505 }
506 
507 /* Helper to counts the number of PTEs within the given length. This count
508  * does not cross a page table boundary, so the max value would be
509  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
510 */
511 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
512 				      uint32_t pde_shift)
513 {
514 	const uint64_t mask = ~((1ULL << pde_shift) - 1);
515 	uint64_t end;
516 
517 	WARN_ON(length == 0);
518 	WARN_ON(offset_in_page(addr|length));
519 
520 	end = addr + length;
521 
522 	if ((addr & mask) != (end & mask))
523 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
524 
525 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
526 }
527 
528 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
529 {
530 	return (addr >> shift) & I915_PDE_MASK;
531 }
532 
533 static inline uint32_t gen6_pte_index(uint32_t addr)
534 {
535 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
536 }
537 
538 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
539 {
540 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
541 }
542 
543 static inline uint32_t gen6_pde_index(uint32_t addr)
544 {
545 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
546 }
547 
548 /* Equivalent to the gen6 version, For each pde iterates over every pde
549  * between from start until start + length. On gen8+ it simply iterates
550  * over every page directory entry in a page directory.
551  */
552 #define gen8_for_each_pde(pt, pd, start, length, iter)			\
553 	for (iter = gen8_pde_index(start);				\
554 	     length > 0 && iter < I915_PDES &&				\
555 		(pt = (pd)->page_table[iter], true);			\
556 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
557 		    temp = min(temp - start, length);			\
558 		    start += temp, length -= temp; }), ++iter)
559 
560 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
561 	for (iter = gen8_pdpe_index(start);				\
562 	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
563 		(pd = (pdp)->page_directory[iter], true);		\
564 	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
565 		    temp = min(temp - start, length);			\
566 		    start += temp, length -= temp; }), ++iter)
567 
568 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
569 	for (iter = gen8_pml4e_index(start);				\
570 	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
571 		(pdp = (pml4)->pdps[iter], true);			\
572 	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
573 		    temp = min(temp - start, length);			\
574 		    start += temp, length -= temp; }), ++iter)
575 
576 static inline uint32_t gen8_pte_index(uint64_t address)
577 {
578 	return i915_pte_index(address, GEN8_PDE_SHIFT);
579 }
580 
581 static inline uint32_t gen8_pde_index(uint64_t address)
582 {
583 	return i915_pde_index(address, GEN8_PDE_SHIFT);
584 }
585 
586 static inline uint32_t gen8_pdpe_index(uint64_t address)
587 {
588 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
589 }
590 
591 static inline uint32_t gen8_pml4e_index(uint64_t address)
592 {
593 	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
594 }
595 
596 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
597 {
598 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
599 }
600 
601 static inline dma_addr_t
602 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
603 {
604 	return test_bit(n, ppgtt->pdp.used_pdpes) ?
605 		px_dma(ppgtt->pdp.page_directory[n]) :
606 		px_dma(ppgtt->base.scratch_pd);
607 }
608 
609 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
610 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
611 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
612 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
613 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
614 
615 int i915_ppgtt_init_hw(struct drm_device *dev);
616 void i915_ppgtt_release(struct kref *kref);
617 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
618 					struct drm_i915_file_private *fpriv);
619 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
620 {
621 	if (ppgtt)
622 		kref_get(&ppgtt->ref);
623 }
624 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
625 {
626 	if (ppgtt)
627 		kref_put(&ppgtt->ref, i915_ppgtt_release);
628 }
629 
630 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
631 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
632 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
633 
634 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
635 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
636 
637 /* Flags used by pin/bind&friends. */
638 #define PIN_NONBLOCK		BIT(0)
639 #define PIN_MAPPABLE		BIT(1)
640 #define PIN_ZONE_4G		BIT(2)
641 #define PIN_NONFAULT		BIT(3)
642 
643 #define PIN_MBZ			BIT(5) /* I915_VMA_PIN_OVERFLOW */
644 #define PIN_GLOBAL		BIT(6) /* I915_VMA_GLOBAL_BIND */
645 #define PIN_USER		BIT(7) /* I915_VMA_LOCAL_BIND */
646 #define PIN_UPDATE		BIT(8)
647 
648 #define PIN_HIGH		BIT(9)
649 #define PIN_OFFSET_BIAS		BIT(10)
650 #define PIN_OFFSET_FIXED	BIT(11)
651 #define PIN_OFFSET_MASK		(~4095)
652 
653 int __i915_vma_do_pin(struct i915_vma *vma,
654 		      u64 size, u64 alignment, u64 flags);
655 static inline int __must_check
656 i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
657 {
658 	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
659 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
660 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
661 
662 	/* Pin early to prevent the shrinker/eviction logic from destroying
663 	 * our vma as we insert and bind.
664 	 */
665 	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0))
666 		return 0;
667 
668 	return __i915_vma_do_pin(vma, size, alignment, flags);
669 }
670 
671 static inline int i915_vma_pin_count(const struct i915_vma *vma)
672 {
673 	return vma->flags & I915_VMA_PIN_MASK;
674 }
675 
676 static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
677 {
678 	return i915_vma_pin_count(vma);
679 }
680 
681 static inline void __i915_vma_pin(struct i915_vma *vma)
682 {
683 	vma->flags++;
684 	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
685 }
686 
687 static inline void __i915_vma_unpin(struct i915_vma *vma)
688 {
689 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
690 	vma->flags--;
691 }
692 
693 static inline void i915_vma_unpin(struct i915_vma *vma)
694 {
695 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
696 	__i915_vma_unpin(vma);
697 }
698 
699 /**
700  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
701  * @vma: VMA to iomap
702  *
703  * The passed in VMA has to be pinned in the global GTT mappable region.
704  * An extra pinning of the VMA is acquired for the return iomapping,
705  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
706  * after the iomapping is no longer required.
707  *
708  * Callers must hold the struct_mutex.
709  *
710  * Returns a valid iomapped pointer or ERR_PTR.
711  */
712 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
713 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
714 
715 /**
716  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
717  * @vma: VMA to unpin
718  *
719  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
720  *
721  * Callers must hold the struct_mutex. This function is only valid to be
722  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
723  */
724 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
725 {
726 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
727 	GEM_BUG_ON(vma->iomap == NULL);
728 	i915_vma_unpin(vma);
729 }
730 
731 static inline struct page *i915_vma_first_page(struct i915_vma *vma)
732 {
733 	GEM_BUG_ON(!vma->pages);
734 	return sg_page(vma->pages->sgl);
735 }
736 
737 #endif
738