xref: /dragonfly/sys/dev/drm/i915/i915_gem_gtt.h (revision 7ec9f8e5)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33 
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36 
37 struct drm_i915_file_private;
38 
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44 
45 
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC		(2 << 1)
51 #define GEN6_PTE_UNCACHED		(1 << 1)
52 #define GEN6_PTE_VALID			(1 << 0)
53 
54 #define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
55 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
56 #define I915_PDES			512
57 #define I915_PDE_MASK			(I915_PDES - 1)
58 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
59 
60 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
61 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
62 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
63 #define GEN6_PDE_SHIFT			22
64 #define GEN6_PDE_VALID			(1 << 0)
65 
66 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
67 
68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
69 #define BYT_PTE_WRITEABLE		(1 << 1)
70 
71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73  */
74 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
75 					 (((bits) & 0x8) << (11 - 3)))
76 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
77 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
78 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
79 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
80 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
81 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
82 #define HSW_PTE_UNCACHED		(0)
83 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
84 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
85 
86 /* GEN8 legacy style address is defined as a 3 level page table:
87  * 31:30 | 29:21 | 20:12 |  11:0
88  * PDPE  |  PDE  |  PTE  | offset
89  * The difference as compared to normal x86 3 level page table is the PDPEs are
90  * programmed via register.
91  */
92 #define GEN8_PDPE_SHIFT			30
93 #define GEN8_PDPE_MASK			0x3
94 #define GEN8_PDE_SHIFT			21
95 #define GEN8_PDE_MASK			0x1ff
96 #define GEN8_PTE_SHIFT			12
97 #define GEN8_PTE_MASK			0x1ff
98 #define GEN8_LEGACY_PDPES		4
99 #define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
100 
101 #define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
102 #define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
103 #define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
104 #define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
105 
106 #define CHV_PPAT_SNOOP			(1<<6)
107 #define GEN8_PPAT_AGE(x)		(x<<4)
108 #define GEN8_PPAT_LLCeLLC		(3<<2)
109 #define GEN8_PPAT_LLCELLC		(2<<2)
110 #define GEN8_PPAT_LLC			(1<<2)
111 #define GEN8_PPAT_WB			(3<<0)
112 #define GEN8_PPAT_WT			(2<<0)
113 #define GEN8_PPAT_WC			(1<<0)
114 #define GEN8_PPAT_UC			(0<<0)
115 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
116 #define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
117 
118 enum i915_ggtt_view_type {
119 	I915_GGTT_VIEW_NORMAL = 0,
120 	I915_GGTT_VIEW_ROTATED,
121 	I915_GGTT_VIEW_PARTIAL,
122 };
123 
124 struct intel_rotation_info {
125 	unsigned int height;
126 	unsigned int pitch;
127 	uint32_t pixel_format;
128 	uint64_t fb_modifier;
129 };
130 
131 struct i915_ggtt_view {
132 	enum i915_ggtt_view_type type;
133 
134 	union {
135 		struct {
136 			unsigned long offset;
137 			unsigned int size;
138 		} partial;
139 	} params;
140 
141 	struct sg_table *pages;
142 
143 	union {
144 		struct intel_rotation_info rotation_info;
145 	};
146 };
147 
148 extern const struct i915_ggtt_view i915_ggtt_view_normal;
149 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
150 
151 enum i915_cache_level;
152 
153 /**
154  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
155  * VMA's presence cannot be guaranteed before binding, or after unbinding the
156  * object into/from the address space.
157  *
158  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
159  * will always be <= an objects lifetime. So object refcounting should cover us.
160  */
161 struct i915_vma {
162 	struct drm_mm_node node;
163 	struct drm_i915_gem_object *obj;
164 	struct i915_address_space *vm;
165 
166 	/** Flags and address space this VMA is bound to */
167 #define GLOBAL_BIND	(1<<0)
168 #define LOCAL_BIND	(1<<1)
169 	unsigned int bound : 4;
170 
171 	/**
172 	 * Support different GGTT views into the same object.
173 	 * This means there can be multiple VMA mappings per object and per VM.
174 	 * i915_ggtt_view_type is used to distinguish between those entries.
175 	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
176 	 * assumed in GEM functions which take no ggtt view parameter.
177 	 */
178 	struct i915_ggtt_view ggtt_view;
179 
180 	/** This object's place on the active/inactive lists */
181 	struct list_head mm_list;
182 
183 	struct list_head vma_link; /* Link in the object's VMA list */
184 
185 	/** This vma's place in the batchbuffer or on the eviction list */
186 	struct list_head exec_list;
187 
188 	/**
189 	 * Used for performing relocations during execbuffer insertion.
190 	 */
191 	struct hlist_node exec_node;
192 	unsigned long exec_handle;
193 	struct drm_i915_gem_exec_object2 *exec_entry;
194 
195 	/**
196 	 * How many users have pinned this object in GTT space. The following
197 	 * users can each hold at most one reference: pwrite/pread, execbuffer
198 	 * (objects are not allowed multiple times for the same batchbuffer),
199 	 * and the framebuffer code. When switching/pageflipping, the
200 	 * framebuffer code has at most two buffers pinned per crtc.
201 	 *
202 	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
203 	 * bits with absolutely no headroom. So use 4 bits. */
204 	unsigned int pin_count:4;
205 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
206 };
207 
208 struct i915_page_table {
209 	struct vm_page *page;
210 	dma_addr_t daddr;
211 
212 	unsigned long *used_ptes;
213 };
214 
215 struct i915_page_directory {
216 	struct vm_page *page; /* NULL for GEN6-GEN7 */
217 	union {
218 		uint32_t pd_offset;
219 		dma_addr_t daddr;
220 	};
221 
222 	unsigned long *used_pdes;
223 	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
224 };
225 
226 struct i915_page_directory_pointer {
227 	/* struct page *page; */
228 	DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
229 	struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
230 };
231 
232 struct i915_address_space {
233 	struct drm_mm mm;
234 	struct drm_device *dev;
235 	struct list_head global_link;
236 	unsigned long start;		/* Start offset always 0 for dri2 */
237 	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
238 
239 	struct {
240 		dma_addr_t addr;
241 		struct vm_page *page;
242 	} scratch;
243 
244 	/**
245 	 * List of objects currently involved in rendering.
246 	 *
247 	 * Includes buffers having the contents of their GPU caches
248 	 * flushed, not necessarily primitives. last_read_req
249 	 * represents when the rendering involved will be completed.
250 	 *
251 	 * A reference is held on the buffer while on this list.
252 	 */
253 	struct list_head active_list;
254 
255 	/**
256 	 * LRU list of objects which are not in the ringbuffer and
257 	 * are ready to unbind, but are still in the GTT.
258 	 *
259 	 * last_read_req is NULL while an object is in this list.
260 	 *
261 	 * A reference is not held on the buffer while on this list,
262 	 * as merely being GTT-bound shouldn't prevent its being
263 	 * freed, and we'll pull it off the list in the free path.
264 	 */
265 	struct list_head inactive_list;
266 
267 	/* FIXME: Need a more generic return type */
268 	gen6_pte_t (*pte_encode)(dma_addr_t addr,
269 				 enum i915_cache_level level,
270 				 bool valid, u32 flags); /* Create a valid PTE */
271 	/* flags for pte_encode */
272 #define PTE_READ_ONLY	(1<<0)
273 	int (*allocate_va_range)(struct i915_address_space *vm,
274 				 uint64_t start,
275 				 uint64_t length);
276 	void (*clear_range)(struct i915_address_space *vm,
277 			    uint64_t start,
278 			    uint64_t length,
279 			    bool use_scratch);
280 	void (*insert_entries)(struct i915_address_space *vm,
281 			       struct sg_table *st,
282 			       uint64_t start,
283 			       enum i915_cache_level cache_level, u32 flags);
284 	void (*cleanup)(struct i915_address_space *vm);
285 	/** Unmap an object from an address space. This usually consists of
286 	 * setting the valid PTE entries to a reserved scratch page. */
287 	void (*unbind_vma)(struct i915_vma *vma);
288 	/* Map an object into an address space with the given cache flags. */
289 	int (*bind_vma)(struct i915_vma *vma,
290 			enum i915_cache_level cache_level,
291 			u32 flags);
292 };
293 
294 /* The Graphics Translation Table is the way in which GEN hardware translates a
295  * Graphics Virtual Address into a Physical Address. In addition to the normal
296  * collateral associated with any va->pa translations GEN hardware also has a
297  * portion of the GTT which can be mapped by the CPU and remain both coherent
298  * and correct (in cases like swizzling). That region is referred to as GMADR in
299  * the spec.
300  */
301 struct i915_gtt {
302 	struct i915_address_space base;
303 	size_t stolen_size;		/* Total size of stolen memory */
304 
305 	unsigned long mappable_end;	/* End offset that we can CPU map */
306 	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
307 	phys_addr_t mappable_base;	/* PA of our GMADR */
308 
309 	/** "Graphics Stolen Memory" holds the global PTEs */
310 	void __iomem *gsm;
311 
312 	bool do_idle_maps;
313 
314 	int mtrr;
315 
316 	/* global gtt ops */
317 	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
318 			  size_t *stolen, phys_addr_t *mappable_base,
319 			  unsigned long *mappable_end);
320 };
321 
322 struct i915_hw_ppgtt {
323 	struct i915_address_space base;
324 	struct kref ref;
325 	struct drm_mm_node node;
326 	unsigned long pd_dirty_rings;
327 	union {
328 		struct i915_page_directory_pointer pdp;
329 		struct i915_page_directory pd;
330 	};
331 
332 	struct i915_page_table *scratch_pt;
333 	struct i915_page_directory *scratch_pd;
334 
335 	struct drm_i915_file_private *file_priv;
336 
337 	gen6_pte_t __iomem *pd_addr;
338 
339 	int (*enable)(struct i915_hw_ppgtt *ppgtt);
340 	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
341 			 struct intel_engine_cs *ring);
342 	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
343 };
344 
345 /* For each pde iterates over every pde between from start until start + length.
346  * If start, and start+length are not perfectly divisible, the macro will round
347  * down, and up as needed. The macro modifies pde, start, and length. Dev is
348  * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
349  * and length = 2G effectively iterates over every PDE in the system.
350  *
351  * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
352  */
353 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
354 	for (iter = gen6_pde_index(start); \
355 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
356 	     iter++, \
357 	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
358 	     temp = min_t(unsigned, temp, length), \
359 	     start += temp, length -= temp)
360 
361 #define gen6_for_all_pdes(pt, ppgtt, iter)  \
362 	for (iter = 0;		\
363 	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
364 	     iter++)
365 
366 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
367 {
368 	const uint32_t mask = NUM_PTE(pde_shift) - 1;
369 
370 	return (address >> PAGE_SHIFT) & mask;
371 }
372 
373 /* Helper to counts the number of PTEs within the given length. This count
374  * does not cross a page table boundary, so the max value would be
375  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
376 */
377 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
378 				      uint32_t pde_shift)
379 {
380 	const uint64_t mask = ~((1 << pde_shift) - 1);
381 	uint64_t end;
382 
383 	WARN_ON(length == 0);
384 	WARN_ON(offset_in_page(addr|length));
385 
386 	end = addr + length;
387 
388 	if ((addr & mask) != (end & mask))
389 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
390 
391 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
392 }
393 
394 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
395 {
396 	return (addr >> shift) & I915_PDE_MASK;
397 }
398 
399 static inline uint32_t gen6_pte_index(uint32_t addr)
400 {
401 	return i915_pte_index(addr, GEN6_PDE_SHIFT);
402 }
403 
404 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
405 {
406 	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
407 }
408 
409 static inline uint32_t gen6_pde_index(uint32_t addr)
410 {
411 	return i915_pde_index(addr, GEN6_PDE_SHIFT);
412 }
413 
414 /* Equivalent to the gen6 version, For each pde iterates over every pde
415  * between from start until start + length. On gen8+ it simply iterates
416  * over every page directory entry in a page directory.
417  */
418 #define gen8_for_each_pde(pt, pd, start, length, temp, iter)		\
419 	for (iter = gen8_pde_index(start); \
420 	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES;	\
421 	     iter++,				\
422 	     temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start,	\
423 	     temp = min(temp, length),					\
424 	     start += temp, length -= temp)
425 
426 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter)		\
427 	for (iter = gen8_pdpe_index(start);	\
428 	     pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES;	\
429 	     iter++,				\
430 	     temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start,	\
431 	     temp = min(temp, length),					\
432 	     start += temp, length -= temp)
433 
434 /* Clamp length to the next page_directory boundary */
435 static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
436 {
437 	uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
438 
439 	if (next_pd > (start + length))
440 		return length;
441 
442 	return next_pd - start;
443 }
444 
445 static inline uint32_t gen8_pte_index(uint64_t address)
446 {
447 	return i915_pte_index(address, GEN8_PDE_SHIFT);
448 }
449 
450 static inline uint32_t gen8_pde_index(uint64_t address)
451 {
452 	return i915_pde_index(address, GEN8_PDE_SHIFT);
453 }
454 
455 static inline uint32_t gen8_pdpe_index(uint64_t address)
456 {
457 	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
458 }
459 
460 static inline uint32_t gen8_pml4e_index(uint64_t address)
461 {
462 	WARN_ON(1); /* For 64B */
463 	return 0;
464 }
465 
466 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
467 {
468 	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
469 }
470 
471 int i915_gem_gtt_init(struct drm_device *dev);
472 void i915_gem_init_global_gtt(struct drm_device *dev);
473 void i915_global_gtt_cleanup(struct drm_device *dev);
474 
475 
476 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
477 int i915_ppgtt_init_hw(struct drm_device *dev);
478 void i915_ppgtt_release(struct kref *kref);
479 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
480 					struct drm_i915_file_private *fpriv);
481 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
482 {
483 	if (ppgtt)
484 		kref_get(&ppgtt->ref);
485 }
486 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
487 {
488 	if (ppgtt)
489 		kref_put(&ppgtt->ref, i915_ppgtt_release);
490 }
491 
492 void i915_check_and_clear_faults(struct drm_device *dev);
493 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
494 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
495 
496 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
497 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
498 
499 static inline bool
500 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
501                      const struct i915_ggtt_view *b)
502 {
503 	if (WARN_ON(!a || !b))
504 		return false;
505 
506 	if (a->type != b->type)
507 		return false;
508 	if (a->type == I915_GGTT_VIEW_PARTIAL)
509 		return !memcmp(&a->params, &b->params, sizeof(a->params));
510 	return true;
511 }
512 
513 size_t
514 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
515 		    const struct i915_ggtt_view *view);
516 
517 #endif
518