xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.c (revision 2b57e6df)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30 
31 #include "i915_drv.h"
32 
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 	return "i915";
36 }
37 
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 	/* The timeline struct (as part of the ppgtt underneath a context)
41 	 * may be freed when the request is no longer in use by the GPU.
42 	 * We could extend the life of a context to beyond that of all
43 	 * fences, possibly keeping the hw resource around indefinitely,
44 	 * or we just give them a false name. Since
45 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 	 * lie seems justifiable.
47 	 */
48 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49 		return "signaled";
50 
51 	return to_request(fence)->timeline->common->name;
52 }
53 
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56 	return i915_gem_request_completed(to_request(fence));
57 }
58 
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61 	if (i915_fence_signaled(fence))
62 		return false;
63 
64 	intel_engine_enable_signaling(to_request(fence));
65 	return true;
66 }
67 
68 static signed long i915_fence_wait(struct dma_fence *fence,
69 				   bool interruptible,
70 				   signed long timeout)
71 {
72 	return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74 
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77 	struct drm_i915_gem_request *req = to_request(fence);
78 
79 	/* The request is put onto a RCU freelist (i.e. the address
80 	 * is immediately reused), mark the fences as being freed now.
81 	 * Otherwise the debugobjects for the fences are only marked as
82 	 * freed when the slab cache itself is freed, and so we would get
83 	 * caught trying to reuse dead objects.
84 	 */
85 	i915_sw_fence_fini(&req->submit);
86 
87 	kmem_cache_free(req->i915->requests, req);
88 }
89 
90 const struct dma_fence_ops i915_fence_ops = {
91 	.get_driver_name = i915_fence_get_driver_name,
92 	.get_timeline_name = i915_fence_get_timeline_name,
93 	.enable_signaling = i915_fence_enable_signaling,
94 	.signaled = i915_fence_signaled,
95 	.wait = i915_fence_wait,
96 	.release = i915_fence_release,
97 };
98 
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102 	struct drm_i915_file_private *file_priv;
103 
104 	file_priv = request->file_priv;
105 	if (!file_priv)
106 		return;
107 
108 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
109 	if (request->file_priv) {
110 		list_del(&request->client_link);
111 		request->file_priv = NULL;
112 	}
113 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
114 }
115 
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119 	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121 
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124 		     struct i915_dependency *dep)
125 {
126 	kmem_cache_free(i915->dependencies, dep);
127 }
128 
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 			       struct i915_priotree *signal,
132 			       struct i915_dependency *dep,
133 			       unsigned long flags)
134 {
135 	INIT_LIST_HEAD(&dep->dfs_link);
136 	list_add(&dep->wait_link, &signal->waiters_list);
137 	list_add(&dep->signal_link, &pt->signalers_list);
138 	dep->signaler = signal;
139 	dep->flags = flags;
140 }
141 
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 			     struct i915_priotree *pt,
145 			     struct i915_priotree *signal)
146 {
147 	struct i915_dependency *dep;
148 
149 	dep = i915_dependency_alloc(i915);
150 	if (!dep)
151 		return -ENOMEM;
152 
153 	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 	return 0;
155 }
156 
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160 	struct i915_dependency *dep, *next;
161 
162 	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163 
164 	/* Everyone we depended upon (the fences we wait to be signaled)
165 	 * should retire before us and remove themselves from our list.
166 	 * However, retirement is run independently on each timeline and
167 	 * so we may be called out-of-order.
168 	 */
169 	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 		list_del(&dep->wait_link);
171 		if (dep->flags & I915_DEPENDENCY_ALLOC)
172 			i915_dependency_free(i915, dep);
173 	}
174 
175 	/* Remove ourselves from everyone who depends upon us */
176 	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 		list_del(&dep->signal_link);
178 		if (dep->flags & I915_DEPENDENCY_ALLOC)
179 			i915_dependency_free(i915, dep);
180 	}
181 }
182 
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186 	INIT_LIST_HEAD(&pt->signalers_list);
187 	INIT_LIST_HEAD(&pt->waiters_list);
188 	RB_CLEAR_NODE(&pt->node);
189 	pt->priority = INT_MIN;
190 }
191 
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194 	struct intel_engine_cs *engine;
195 	enum intel_engine_id id;
196 	int ret;
197 
198 	/* Carefully retire all requests without writing to the rings */
199 	ret = i915_gem_wait_for_idle(i915,
200 				     I915_WAIT_INTERRUPTIBLE |
201 				     I915_WAIT_LOCKED);
202 	if (ret)
203 		return ret;
204 
205 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206 	for_each_engine(engine, i915, id) {
207 		struct i915_gem_timeline *timeline;
208 		struct intel_timeline *tl = engine->timeline;
209 
210 		if (!i915_seqno_passed(seqno, tl->seqno)) {
211 			/* spin until threads are complete */
212 			while (intel_breadcrumbs_busy(engine))
213 				cond_resched();
214 		}
215 
216 		/* Finally reset hw state */
217 		tl->seqno = seqno;
218 		intel_engine_init_global_seqno(engine, seqno);
219 
220 		list_for_each_entry(timeline, &i915->gt.timelines, link)
221 			memset(timeline->engine[id].sync_seqno, 0,
222 			       sizeof(timeline->engine[id].sync_seqno));
223 	}
224 
225 	return 0;
226 }
227 
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230 	struct drm_i915_private *dev_priv = to_i915(dev);
231 
232 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
233 
234 	if (seqno == 0)
235 		return -EINVAL;
236 
237 	/* HWS page needs to be set less than what we
238 	 * will inject to ring
239 	 */
240 	return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242 
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245 	u32 active = ++engine->timeline->inflight_seqnos;
246 	u32 seqno = engine->timeline->seqno;
247 	int ret;
248 
249 	/* Reservation is fine until we need to wrap around */
250 	if (likely(!add_overflows(seqno, active)))
251 		return 0;
252 
253 	ret = reset_all_global_seqno(engine->i915, 0);
254 	if (ret) {
255 		engine->timeline->inflight_seqnos--;
256 		return ret;
257 	}
258 
259 	return 0;
260 }
261 
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264 	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265 	engine->timeline->inflight_seqnos--;
266 }
267 
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269 			  struct drm_i915_gem_request *request)
270 {
271 	/* Space left intentionally blank */
272 }
273 
274 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
275 {
276 	struct intel_engine_cs *engine = request->engine;
277 	struct i915_gem_active *active, *next;
278 
279 	lockdep_assert_held(&request->i915->drm.struct_mutex);
280 	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
281 	GEM_BUG_ON(!i915_gem_request_completed(request));
282 	GEM_BUG_ON(!request->i915->gt.active_requests);
283 
284 	trace_i915_gem_request_retire(request);
285 
286 	spin_lock_irq(&engine->timeline->lock);
287 	list_del_init(&request->link);
288 	spin_unlock_irq(&engine->timeline->lock);
289 
290 	/* We know the GPU must have read the request to have
291 	 * sent us the seqno + interrupt, so use the position
292 	 * of tail of the request to update the last known position
293 	 * of the GPU head.
294 	 *
295 	 * Note this requires that we are always called in request
296 	 * completion order.
297 	 */
298 	list_del(&request->ring_link);
299 	request->ring->head = request->postfix;
300 	if (!--request->i915->gt.active_requests) {
301 		GEM_BUG_ON(!request->i915->gt.awake);
302 		mod_delayed_work(request->i915->wq,
303 				 &request->i915->gt.idle_work,
304 				 msecs_to_jiffies(100));
305 	}
306 	unreserve_seqno(request->engine);
307 
308 	/* Walk through the active list, calling retire on each. This allows
309 	 * objects to track their GPU activity and mark themselves as idle
310 	 * when their *last* active request is completed (updating state
311 	 * tracking lists for eviction, active references for GEM, etc).
312 	 *
313 	 * As the ->retire() may free the node, we decouple it first and
314 	 * pass along the auxiliary information (to avoid dereferencing
315 	 * the node after the callback).
316 	 */
317 	list_for_each_entry_safe(active, next, &request->active_list, link) {
318 		/* In microbenchmarks or focusing upon time inside the kernel,
319 		 * we may spend an inordinate amount of time simply handling
320 		 * the retirement of requests and processing their callbacks.
321 		 * Of which, this loop itself is particularly hot due to the
322 		 * cache misses when jumping around the list of i915_gem_active.
323 		 * So we try to keep this loop as streamlined as possible and
324 		 * also prefetch the next i915_gem_active to try and hide
325 		 * the likely cache miss.
326 		 */
327 		prefetchw(next);
328 
329 		INIT_LIST_HEAD(&active->link);
330 		RCU_INIT_POINTER(active->request, NULL);
331 
332 		active->retire(active, request);
333 	}
334 
335 	i915_gem_request_remove_from_client(request);
336 
337 	/* Retirement decays the ban score as it is a sign of ctx progress */
338 	if (request->ctx->ban_score > 0)
339 		request->ctx->ban_score--;
340 
341 	/* The backing object for the context is done after switching to the
342 	 * *next* context. Therefore we cannot retire the previous context until
343 	 * the next context has already started running. However, since we
344 	 * cannot take the required locks at i915_gem_request_submit() we
345 	 * defer the unpinning of the active context to now, retirement of
346 	 * the subsequent request.
347 	 */
348 	if (engine->last_retired_context)
349 		engine->context_unpin(engine, engine->last_retired_context);
350 	engine->last_retired_context = request->ctx;
351 
352 	dma_fence_signal(&request->fence);
353 
354 	i915_priotree_fini(request->i915, &request->priotree);
355 	i915_gem_request_put(request);
356 }
357 
358 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
359 {
360 	struct intel_engine_cs *engine = req->engine;
361 	struct drm_i915_gem_request *tmp;
362 
363 	lockdep_assert_held(&req->i915->drm.struct_mutex);
364 	GEM_BUG_ON(!i915_gem_request_completed(req));
365 
366 	if (list_empty(&req->link))
367 		return;
368 
369 	do {
370 		tmp = list_first_entry(&engine->timeline->requests,
371 				       typeof(*tmp), link);
372 
373 		i915_gem_request_retire(tmp);
374 	} while (tmp != req);
375 }
376 
377 static u32 timeline_get_seqno(struct intel_timeline *tl)
378 {
379 	return ++tl->seqno;
380 }
381 
382 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
383 {
384 	struct intel_engine_cs *engine = request->engine;
385 	struct intel_timeline *timeline;
386 	u32 seqno;
387 
388 //	GEM_BUG_ON(!irqs_disabled());
389 	lockdep_assert_held(&engine->timeline->lock);
390 
391 	trace_i915_gem_request_execute(request);
392 
393 	/* Transfer from per-context onto the global per-engine timeline */
394 	timeline = engine->timeline;
395 	GEM_BUG_ON(timeline == request->timeline);
396 
397 	seqno = timeline_get_seqno(timeline);
398 	GEM_BUG_ON(!seqno);
399 	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
400 
401 	/* We may be recursing from the signal callback of another i915 fence */
402 	lockmgr(&request->lock, LK_EXCLUSIVE);
403 	request->global_seqno = seqno;
404 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
405 		intel_engine_enable_signaling(request);
406 	lockmgr(&request->lock, LK_RELEASE);
407 
408 	engine->emit_breadcrumb(request,
409 				request->ring->vaddr + request->postfix);
410 
411 	lockmgr(&request->timeline->lock, LK_EXCLUSIVE);
412 	list_move_tail(&request->link, &timeline->requests);
413 	lockmgr(&request->timeline->lock, LK_RELEASE);
414 
415 	wake_up_all(&request->execute);
416 }
417 
418 void i915_gem_request_submit(struct drm_i915_gem_request *request)
419 {
420 	struct intel_engine_cs *engine = request->engine;
421 	unsigned long flags;
422 
423 	/* Will be called from irq-context when using foreign fences. */
424 	spin_lock_irqsave(&engine->timeline->lock, flags);
425 
426 	__i915_gem_request_submit(request);
427 
428 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
429 }
430 
431 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
432 {
433 	struct intel_engine_cs *engine = request->engine;
434 	struct intel_timeline *timeline;
435 
436 	GEM_BUG_ON(!irqs_disabled());
437 	lockdep_assert_held(&engine->timeline->lock);
438 
439 	/* Only unwind in reverse order, required so that the per-context list
440 	 * is kept in seqno/ring order.
441 	 */
442 	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
443 	engine->timeline->seqno--;
444 
445 	/* We may be recursing from the signal callback of another i915 fence */
446 	lockmgr(&request->lock, LK_EXCLUSIVE);
447 	request->global_seqno = 0;
448 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
449 		intel_engine_cancel_signaling(request);
450 	lockmgr(&request->lock, LK_RELEASE);
451 
452 	/* Transfer back from the global per-engine timeline to per-context */
453 	timeline = request->timeline;
454 	GEM_BUG_ON(timeline == engine->timeline);
455 
456 	lockmgr(&timeline->lock, LK_EXCLUSIVE);
457 	list_move(&request->link, &timeline->requests);
458 	lockmgr(&timeline->lock, LK_RELEASE);
459 
460 	/* We don't need to wake_up any waiters on request->execute, they
461 	 * will get woken by any other event or us re-adding this request
462 	 * to the engine timeline (__i915_gem_request_submit()). The waiters
463 	 * should be quite adapt at finding that the request now has a new
464 	 * global_seqno to the one they went to sleep on.
465 	 */
466 }
467 
468 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
469 {
470 	struct intel_engine_cs *engine = request->engine;
471 	unsigned long flags;
472 
473 	/* Will be called from irq-context when using foreign fences. */
474 	spin_lock_irqsave(&engine->timeline->lock, flags);
475 
476 	__i915_gem_request_unsubmit(request);
477 
478 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
479 }
480 
481 static int __i915_sw_fence_call
482 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
483 {
484 	struct drm_i915_gem_request *request =
485 		container_of(fence, typeof(*request), submit);
486 
487 	switch (state) {
488 	case FENCE_COMPLETE:
489 		trace_i915_gem_request_submit(request);
490 		request->engine->submit_request(request);
491 		break;
492 
493 	case FENCE_FREE:
494 		i915_gem_request_put(request);
495 		break;
496 	}
497 
498 	return NOTIFY_DONE;
499 }
500 
501 /**
502  * i915_gem_request_alloc - allocate a request structure
503  *
504  * @engine: engine that we wish to issue the request on.
505  * @ctx: context that the request will be associated with.
506  *       This can be NULL if the request is not directly related to
507  *       any specific user context, in which case this function will
508  *       choose an appropriate context to use.
509  *
510  * Returns a pointer to the allocated request if successful,
511  * or an error code if not.
512  */
513 struct drm_i915_gem_request *
514 i915_gem_request_alloc(struct intel_engine_cs *engine,
515 		       struct i915_gem_context *ctx)
516 {
517 	struct drm_i915_private *dev_priv = engine->i915;
518 	struct drm_i915_gem_request *req;
519 	int ret;
520 
521 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
522 
523 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
524 	 * EIO if the GPU is already wedged.
525 	 */
526 	if (i915_terminally_wedged(&dev_priv->gpu_error))
527 		return ERR_PTR(-EIO);
528 
529 	/* Pinning the contexts may generate requests in order to acquire
530 	 * GGTT space, so do this first before we reserve a seqno for
531 	 * ourselves.
532 	 */
533 	ret = engine->context_pin(engine, ctx);
534 	if (ret)
535 		return ERR_PTR(ret);
536 
537 	ret = reserve_seqno(engine);
538 	if (ret)
539 		goto err_unpin;
540 
541 	/* Move the oldest request to the slab-cache (if not in use!) */
542 	req = list_first_entry_or_null(&engine->timeline->requests,
543 				       typeof(*req), link);
544 	if (req && i915_gem_request_completed(req))
545 		i915_gem_request_retire(req);
546 
547 	/* Beware: Dragons be flying overhead.
548 	 *
549 	 * We use RCU to look up requests in flight. The lookups may
550 	 * race with the request being allocated from the slab freelist.
551 	 * That is the request we are writing to here, may be in the process
552 	 * of being read by __i915_gem_active_get_rcu(). As such,
553 	 * we have to be very careful when overwriting the contents. During
554 	 * the RCU lookup, we change chase the request->engine pointer,
555 	 * read the request->global_seqno and increment the reference count.
556 	 *
557 	 * The reference count is incremented atomically. If it is zero,
558 	 * the lookup knows the request is unallocated and complete. Otherwise,
559 	 * it is either still in use, or has been reallocated and reset
560 	 * with dma_fence_init(). This increment is safe for release as we
561 	 * check that the request we have a reference to and matches the active
562 	 * request.
563 	 *
564 	 * Before we increment the refcount, we chase the request->engine
565 	 * pointer. We must not call kmem_cache_zalloc() or else we set
566 	 * that pointer to NULL and cause a crash during the lookup. If
567 	 * we see the request is completed (based on the value of the
568 	 * old engine and seqno), the lookup is complete and reports NULL.
569 	 * If we decide the request is not completed (new engine or seqno),
570 	 * then we grab a reference and double check that it is still the
571 	 * active request - which it won't be and restart the lookup.
572 	 *
573 	 * Do not use kmem_cache_zalloc() here!
574 	 */
575 	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
576 	if (!req) {
577 		ret = -ENOMEM;
578 		goto err_unreserve;
579 	}
580 
581 	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
582 	GEM_BUG_ON(req->timeline == engine->timeline);
583 
584 	lockinit(&req->lock, "i915_rl", 0, 0);
585 	dma_fence_init(&req->fence,
586 		       &i915_fence_ops,
587 		       &req->lock,
588 		       req->timeline->fence_context,
589 		       timeline_get_seqno(req->timeline));
590 
591 	/* We bump the ref for the fence chain */
592 	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
593 	init_waitqueue_head(&req->execute);
594 
595 	i915_priotree_init(&req->priotree);
596 
597 	INIT_LIST_HEAD(&req->active_list);
598 	req->i915 = dev_priv;
599 	req->engine = engine;
600 	req->ctx = ctx;
601 
602 	/* No zalloc, must clear what we need by hand */
603 	req->global_seqno = 0;
604 	req->file_priv = NULL;
605 	req->batch = NULL;
606 
607 	/*
608 	 * Reserve space in the ring buffer for all the commands required to
609 	 * eventually emit this request. This is to guarantee that the
610 	 * i915_add_request() call can't fail. Note that the reserve may need
611 	 * to be redone if the request is not actually submitted straight
612 	 * away, e.g. because a GPU scheduler has deferred it.
613 	 */
614 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
615 	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
616 
617 	ret = engine->request_alloc(req);
618 	if (ret)
619 		goto err_ctx;
620 
621 	/* Record the position of the start of the request so that
622 	 * should we detect the updated seqno part-way through the
623 	 * GPU processing the request, we never over-estimate the
624 	 * position of the head.
625 	 */
626 	req->head = req->ring->emit;
627 
628 	/* Check that we didn't interrupt ourselves with a new request */
629 	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
630 	return req;
631 
632 err_ctx:
633 	/* Make sure we didn't add ourselves to external state before freeing */
634 	GEM_BUG_ON(!list_empty(&req->active_list));
635 	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
636 	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
637 
638 	kmem_cache_free(dev_priv->requests, req);
639 err_unreserve:
640 	unreserve_seqno(engine);
641 err_unpin:
642 	engine->context_unpin(engine, ctx);
643 	return ERR_PTR(ret);
644 }
645 
646 static int
647 i915_gem_request_await_request(struct drm_i915_gem_request *to,
648 			       struct drm_i915_gem_request *from)
649 {
650 	u32 seqno;
651 	int ret;
652 
653 	GEM_BUG_ON(to == from);
654 
655 	if (i915_gem_request_completed(from))
656 		return 0;
657 
658 	if (to->engine->schedule) {
659 		ret = i915_priotree_add_dependency(to->i915,
660 						   &to->priotree,
661 						   &from->priotree);
662 		if (ret < 0)
663 			return ret;
664 	}
665 
666 	if (to->timeline == from->timeline)
667 		return 0;
668 
669 	if (to->engine == from->engine) {
670 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
671 						       &from->submit,
672 						       GFP_KERNEL);
673 		return ret < 0 ? ret : 0;
674 	}
675 
676 	seqno = i915_gem_request_global_seqno(from);
677 	if (!seqno) {
678 		ret = i915_sw_fence_await_dma_fence(&to->submit,
679 						    &from->fence, 0,
680 						    GFP_KERNEL);
681 		return ret < 0 ? ret : 0;
682 	}
683 
684 	if (seqno <= to->timeline->sync_seqno[from->engine->id])
685 		return 0;
686 
687 	trace_i915_gem_ring_sync_to(to, from);
688 	if (!i915.semaphores) {
689 		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
690 			ret = i915_sw_fence_await_dma_fence(&to->submit,
691 							    &from->fence, 0,
692 							    GFP_KERNEL);
693 			if (ret < 0)
694 				return ret;
695 		}
696 	} else {
697 		ret = to->engine->semaphore.sync_to(to, from);
698 		if (ret)
699 			return ret;
700 	}
701 
702 	to->timeline->sync_seqno[from->engine->id] = seqno;
703 	return 0;
704 }
705 
706 int
707 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
708 				 struct dma_fence *fence)
709 {
710 	struct dma_fence_array *array;
711 	int ret;
712 	int i;
713 
714 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
715 		return 0;
716 
717 	if (dma_fence_is_i915(fence))
718 		return i915_gem_request_await_request(req, to_request(fence));
719 
720 	if (!dma_fence_is_array(fence)) {
721 		ret = i915_sw_fence_await_dma_fence(&req->submit,
722 						    fence, I915_FENCE_TIMEOUT,
723 						    GFP_KERNEL);
724 		return ret < 0 ? ret : 0;
725 	}
726 
727 	/* Note that if the fence-array was created in signal-on-any mode,
728 	 * we should *not* decompose it into its individual fences. However,
729 	 * we don't currently store which mode the fence-array is operating
730 	 * in. Fortunately, the only user of signal-on-any is private to
731 	 * amdgpu and we should not see any incoming fence-array from
732 	 * sync-file being in signal-on-any mode.
733 	 */
734 
735 	array = to_dma_fence_array(fence);
736 	for (i = 0; i < array->num_fences; i++) {
737 		struct dma_fence *child = array->fences[i];
738 
739 		if (dma_fence_is_i915(child))
740 			ret = i915_gem_request_await_request(req,
741 							     to_request(child));
742 		else
743 			ret = i915_sw_fence_await_dma_fence(&req->submit,
744 							    child, I915_FENCE_TIMEOUT,
745 							    GFP_KERNEL);
746 		if (ret < 0)
747 			return ret;
748 	}
749 
750 	return 0;
751 }
752 
753 /**
754  * i915_gem_request_await_object - set this request to (async) wait upon a bo
755  *
756  * @to: request we are wishing to use
757  * @obj: object which may be in use on another ring.
758  *
759  * This code is meant to abstract object synchronization with the GPU.
760  * Conceptually we serialise writes between engines inside the GPU.
761  * We only allow one engine to write into a buffer at any time, but
762  * multiple readers. To ensure each has a coherent view of memory, we must:
763  *
764  * - If there is an outstanding write request to the object, the new
765  *   request must wait for it to complete (either CPU or in hw, requests
766  *   on the same ring will be naturally ordered).
767  *
768  * - If we are a write request (pending_write_domain is set), the new
769  *   request must wait for outstanding read requests to complete.
770  *
771  * Returns 0 if successful, else propagates up the lower layer error.
772  */
773 int
774 i915_gem_request_await_object(struct drm_i915_gem_request *to,
775 			      struct drm_i915_gem_object *obj,
776 			      bool write)
777 {
778 	struct dma_fence *excl;
779 	int ret = 0;
780 
781 	if (write) {
782 		struct dma_fence **shared;
783 		unsigned int count, i;
784 
785 		ret = reservation_object_get_fences_rcu(obj->resv,
786 							&excl, &count, &shared);
787 		if (ret)
788 			return ret;
789 
790 		for (i = 0; i < count; i++) {
791 			ret = i915_gem_request_await_dma_fence(to, shared[i]);
792 			if (ret)
793 				break;
794 
795 			dma_fence_put(shared[i]);
796 		}
797 
798 		for (; i < count; i++)
799 			dma_fence_put(shared[i]);
800 		kfree(shared);
801 	} else {
802 		excl = reservation_object_get_excl_rcu(obj->resv);
803 	}
804 
805 	if (excl) {
806 		if (ret == 0)
807 			ret = i915_gem_request_await_dma_fence(to, excl);
808 
809 		dma_fence_put(excl);
810 	}
811 
812 	return ret;
813 }
814 
815 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
816 {
817 	struct drm_i915_private *dev_priv = engine->i915;
818 
819 	if (dev_priv->gt.awake)
820 		return;
821 
822 	GEM_BUG_ON(!dev_priv->gt.active_requests);
823 
824 	intel_runtime_pm_get_noresume(dev_priv);
825 	dev_priv->gt.awake = true;
826 
827 	intel_enable_gt_powersave(dev_priv);
828 	i915_update_gfx_val(dev_priv);
829 	if (INTEL_GEN(dev_priv) >= 6)
830 		gen6_rps_busy(dev_priv);
831 
832 	queue_delayed_work(dev_priv->wq,
833 			   &dev_priv->gt.retire_work,
834 			   round_jiffies_up_relative(HZ));
835 }
836 
837 /*
838  * NB: This function is not allowed to fail. Doing so would mean the the
839  * request is not being tracked for completion but the work itself is
840  * going to happen on the hardware. This would be a Bad Thing(tm).
841  */
842 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
843 {
844 	struct intel_engine_cs *engine = request->engine;
845 	struct intel_ring *ring = request->ring;
846 	struct intel_timeline *timeline = request->timeline;
847 	struct drm_i915_gem_request *prev;
848 	u32 *cs;
849 	int err;
850 
851 	lockdep_assert_held(&request->i915->drm.struct_mutex);
852 	trace_i915_gem_request_add(request);
853 
854 	/* Make sure that no request gazumped us - if it was allocated after
855 	 * our i915_gem_request_alloc() and called __i915_add_request() before
856 	 * us, the timeline will hold its seqno which is later than ours.
857 	 */
858 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
859 
860 	/*
861 	 * To ensure that this call will not fail, space for its emissions
862 	 * should already have been reserved in the ring buffer. Let the ring
863 	 * know that it is time to use that space up.
864 	 */
865 	request->reserved_space = 0;
866 
867 	/*
868 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
869 	 * after having emitted the batchbuffer command. Hence we need to fix
870 	 * things up similar to emitting the lazy request. The difference here
871 	 * is that the flush _must_ happen before the next request, no matter
872 	 * what.
873 	 */
874 	if (flush_caches) {
875 		err = engine->emit_flush(request, EMIT_FLUSH);
876 
877 		/* Not allowed to fail! */
878 		WARN(err, "engine->emit_flush() failed: %d!\n", err);
879 	}
880 
881 	/* Record the position of the start of the breadcrumb so that
882 	 * should we detect the updated seqno part-way through the
883 	 * GPU processing the request, we never over-estimate the
884 	 * position of the ring's HEAD.
885 	 */
886 	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
887 	GEM_BUG_ON(IS_ERR(cs));
888 	request->postfix = intel_ring_offset(request, cs);
889 
890 	/* Seal the request and mark it as pending execution. Note that
891 	 * we may inspect this state, without holding any locks, during
892 	 * hangcheck. Hence we apply the barrier to ensure that we do not
893 	 * see a more recent value in the hws than we are tracking.
894 	 */
895 
896 	prev = i915_gem_active_raw(&timeline->last_request,
897 				   &request->i915->drm.struct_mutex);
898 	if (prev) {
899 		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
900 					     &request->submitq);
901 		if (engine->schedule)
902 			__i915_priotree_add_dependency(&request->priotree,
903 						       &prev->priotree,
904 						       &request->dep,
905 						       0);
906 	}
907 
908 	spin_lock_irq(&timeline->lock);
909 	list_add_tail(&request->link, &timeline->requests);
910 	spin_unlock_irq(&timeline->lock);
911 
912 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
913 	i915_gem_active_set(&timeline->last_request, request);
914 
915 	list_add_tail(&request->ring_link, &ring->request_list);
916 	request->emitted_jiffies = jiffies;
917 
918 	if (!request->i915->gt.active_requests++)
919 		i915_gem_mark_busy(engine);
920 
921 	/* Let the backend know a new request has arrived that may need
922 	 * to adjust the existing execution schedule due to a high priority
923 	 * request - i.e. we may want to preempt the current request in order
924 	 * to run a high priority dependency chain *before* we can execute this
925 	 * request.
926 	 *
927 	 * This is called before the request is ready to run so that we can
928 	 * decide whether to preempt the entire chain so that it is ready to
929 	 * run at the earliest possible convenience.
930 	 */
931 	if (engine->schedule)
932 		engine->schedule(request, request->ctx->priority);
933 
934 	local_bh_disable();
935 	i915_sw_fence_commit(&request->submit);
936 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
937 }
938 
939 static unsigned long local_clock_us(unsigned int *cpu)
940 {
941 	unsigned long t;
942 
943 	/* Cheaply and approximately convert from nanoseconds to microseconds.
944 	 * The result and subsequent calculations are also defined in the same
945 	 * approximate microseconds units. The principal source of timing
946 	 * error here is from the simple truncation.
947 	 *
948 	 * Note that local_clock() is only defined wrt to the current CPU;
949 	 * the comparisons are no longer valid if we switch CPUs. Instead of
950 	 * blocking preemption for the entire busywait, we can detect the CPU
951 	 * switch and use that as indicator of system load and a reason to
952 	 * stop busywaiting, see busywait_stop().
953 	 */
954 	*cpu = get_cpu();
955 	t = local_clock() >> 10;
956 	put_cpu();
957 
958 	return t;
959 }
960 
961 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
962 {
963 	unsigned int this_cpu;
964 
965 	if (time_after(local_clock_us(&this_cpu), timeout))
966 		return true;
967 
968 	return this_cpu != cpu;
969 }
970 
971 bool __i915_spin_request(const struct drm_i915_gem_request *req,
972 			 u32 seqno, int state, unsigned long timeout_us)
973 {
974 	struct intel_engine_cs *engine = req->engine;
975 	unsigned int irq, cpu;
976 
977 	/* When waiting for high frequency requests, e.g. during synchronous
978 	 * rendering split between the CPU and GPU, the finite amount of time
979 	 * required to set up the irq and wait upon it limits the response
980 	 * rate. By busywaiting on the request completion for a short while we
981 	 * can service the high frequency waits as quick as possible. However,
982 	 * if it is a slow request, we want to sleep as quickly as possible.
983 	 * The tradeoff between waiting and sleeping is roughly the time it
984 	 * takes to sleep on a request, on the order of a microsecond.
985 	 */
986 
987 	irq = atomic_read(&engine->irq_count);
988 	timeout_us += local_clock_us(&cpu);
989 	do {
990 		if (seqno != i915_gem_request_global_seqno(req))
991 			break;
992 
993 		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
994 				      seqno))
995 			return true;
996 
997 		/* Seqno are meant to be ordered *before* the interrupt. If
998 		 * we see an interrupt without a corresponding seqno advance,
999 		 * assume we won't see one in the near future but require
1000 		 * the engine->seqno_barrier() to fixup coherency.
1001 		 */
1002 		if (atomic_read(&engine->irq_count) != irq)
1003 			break;
1004 
1005 		if (signal_pending_state(state, current))
1006 			break;
1007 
1008 		if (busywait_stop(timeout_us, cpu))
1009 			break;
1010 
1011 		cpu_relax();
1012 	} while (!need_resched());
1013 
1014 	return false;
1015 }
1016 
1017 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1018 {
1019 	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1020 		return false;
1021 
1022 	__set_current_state(TASK_RUNNING);
1023 	i915_reset(request->i915);
1024 	return true;
1025 }
1026 
1027 /**
1028  * i915_wait_request - wait until execution of request has finished
1029  * @req: the request to wait upon
1030  * @flags: how to wait
1031  * @timeout: how long to wait in jiffies
1032  *
1033  * i915_wait_request() waits for the request to be completed, for a
1034  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1035  * unbounded wait).
1036  *
1037  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1038  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1039  * must not specify that the wait is locked.
1040  *
1041  * Returns the remaining time (in jiffies) if the request completed, which may
1042  * be zero or -ETIME if the request is unfinished after the timeout expires.
1043  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1044  * pending before the request completes.
1045  */
1046 long i915_wait_request(struct drm_i915_gem_request *req,
1047 		       unsigned int flags,
1048 		       long timeout)
1049 {
1050 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1051 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1052 	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1053 	DEFINE_WAIT_FUNC(reset, default_wake_function);
1054 	DEFINE_WAIT_FUNC(exec, default_wake_function);
1055 	struct intel_wait wait;
1056 
1057 	might_sleep();
1058 #if IS_ENABLED(CONFIG_LOCKDEP)
1059 	GEM_BUG_ON(debug_locks &&
1060 		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1061 		   !!(flags & I915_WAIT_LOCKED));
1062 #endif
1063 	GEM_BUG_ON(timeout < 0);
1064 
1065 	if (i915_gem_request_completed(req))
1066 		return timeout;
1067 
1068 	if (!timeout)
1069 		return -ETIME;
1070 
1071 	trace_i915_gem_request_wait_begin(req, flags);
1072 
1073 	add_wait_queue(&req->execute, &exec);
1074 	if (flags & I915_WAIT_LOCKED)
1075 		add_wait_queue(errq, &reset);
1076 
1077 	intel_wait_init(&wait, req);
1078 
1079 restart:
1080 	do {
1081 		set_current_state(state);
1082 		if (intel_wait_update_request(&wait, req))
1083 			break;
1084 
1085 		if (flags & I915_WAIT_LOCKED &&
1086 		    __i915_wait_request_check_and_reset(req))
1087 			continue;
1088 
1089 		if (signal_pending_state(state, current)) {
1090 			timeout = -ERESTARTSYS;
1091 			goto complete;
1092 		}
1093 
1094 		if (!timeout) {
1095 			timeout = -ETIME;
1096 			goto complete;
1097 		}
1098 
1099 		timeout = io_schedule_timeout(timeout);
1100 	} while (1);
1101 
1102 	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1103 	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1104 
1105 	/* Optimistic short spin before touching IRQs */
1106 	if (i915_spin_request(req, state, 5))
1107 		goto complete;
1108 
1109 	set_current_state(state);
1110 	if (intel_engine_add_wait(req->engine, &wait))
1111 		/* In order to check that we haven't missed the interrupt
1112 		 * as we enabled it, we need to kick ourselves to do a
1113 		 * coherent check on the seqno before we sleep.
1114 		 */
1115 		goto wakeup;
1116 
1117 	if (flags & I915_WAIT_LOCKED)
1118 		__i915_wait_request_check_and_reset(req);
1119 
1120 	for (;;) {
1121 		if (signal_pending_state(state, current)) {
1122 			timeout = -ERESTARTSYS;
1123 			break;
1124 		}
1125 
1126 		if (!timeout) {
1127 			timeout = -ETIME;
1128 			break;
1129 		}
1130 
1131 		timeout = io_schedule_timeout(timeout);
1132 
1133 		if (intel_wait_complete(&wait) &&
1134 		    intel_wait_check_request(&wait, req))
1135 			break;
1136 
1137 		set_current_state(state);
1138 
1139 wakeup:
1140 		/* Carefully check if the request is complete, giving time
1141 		 * for the seqno to be visible following the interrupt.
1142 		 * We also have to check in case we are kicked by the GPU
1143 		 * reset in order to drop the struct_mutex.
1144 		 */
1145 		if (__i915_request_irq_complete(req))
1146 			break;
1147 
1148 		/* If the GPU is hung, and we hold the lock, reset the GPU
1149 		 * and then check for completion. On a full reset, the engine's
1150 		 * HW seqno will be advanced passed us and we are complete.
1151 		 * If we do a partial reset, we have to wait for the GPU to
1152 		 * resume and update the breadcrumb.
1153 		 *
1154 		 * If we don't hold the mutex, we can just wait for the worker
1155 		 * to come along and update the breadcrumb (either directly
1156 		 * itself, or indirectly by recovering the GPU).
1157 		 */
1158 		if (flags & I915_WAIT_LOCKED &&
1159 		    __i915_wait_request_check_and_reset(req))
1160 			continue;
1161 
1162 		/* Only spin if we know the GPU is processing this request */
1163 		if (i915_spin_request(req, state, 2))
1164 			break;
1165 
1166 		if (!intel_wait_check_request(&wait, req)) {
1167 			intel_engine_remove_wait(req->engine, &wait);
1168 			goto restart;
1169 		}
1170 	}
1171 
1172 	intel_engine_remove_wait(req->engine, &wait);
1173 complete:
1174 	__set_current_state(TASK_RUNNING);
1175 	if (flags & I915_WAIT_LOCKED)
1176 		remove_wait_queue(errq, &reset);
1177 	remove_wait_queue(&req->execute, &exec);
1178 	trace_i915_gem_request_wait_end(req);
1179 
1180 	return timeout;
1181 }
1182 
1183 static void engine_retire_requests(struct intel_engine_cs *engine)
1184 {
1185 	struct drm_i915_gem_request *request, *next;
1186 	u32 seqno = intel_engine_get_seqno(engine);
1187 	LINUX_LIST_HEAD(retire);
1188 
1189 	spin_lock_irq(&engine->timeline->lock);
1190 	list_for_each_entry_safe(request, next,
1191 				 &engine->timeline->requests, link) {
1192 		if (!i915_seqno_passed(seqno, request->global_seqno))
1193 			break;
1194 
1195 		list_move_tail(&request->link, &retire);
1196 	}
1197 	spin_unlock_irq(&engine->timeline->lock);
1198 
1199 	list_for_each_entry_safe(request, next, &retire, link)
1200 		i915_gem_request_retire(request);
1201 }
1202 
1203 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1204 {
1205 	struct intel_engine_cs *engine;
1206 	enum intel_engine_id id;
1207 
1208 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1209 
1210 	if (!dev_priv->gt.active_requests)
1211 		return;
1212 
1213 	for_each_engine(engine, dev_priv, id)
1214 		engine_retire_requests(engine);
1215 }
1216 
1217 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1218 #include "selftests/mock_request.c"
1219 #include "selftests/i915_gem_request.c"
1220 #endif
1221