xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.c (revision 2ea2781e)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 
27 #include "i915_drv.h"
28 
29 static const char *i915_fence_get_driver_name(struct fence *fence)
30 {
31 	return "i915";
32 }
33 
34 static const char *i915_fence_get_timeline_name(struct fence *fence)
35 {
36 	/* Timelines are bound by eviction to a VM. However, since
37 	 * we only have a global seqno at the moment, we only have
38 	 * a single timeline. Note that each timeline will have
39 	 * multiple execution contexts (fence contexts) as we allow
40 	 * engines within a single timeline to execute in parallel.
41 	 */
42 	return "global";
43 }
44 
45 static bool i915_fence_signaled(struct fence *fence)
46 {
47 	return i915_gem_request_completed(to_request(fence));
48 }
49 
50 static bool i915_fence_enable_signaling(struct fence *fence)
51 {
52 	if (i915_fence_signaled(fence))
53 		return false;
54 
55 	intel_engine_enable_signaling(to_request(fence));
56 	return true;
57 }
58 
59 static signed long i915_fence_wait(struct fence *fence,
60 				   bool interruptible,
61 				   signed long timeout_jiffies)
62 {
63 	s64 timeout_ns, *timeout;
64 	int ret;
65 
66 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
67 		timeout_ns = jiffies_to_nsecs(timeout_jiffies);
68 		timeout = &timeout_ns;
69 	} else {
70 		timeout = NULL;
71 	}
72 
73 	ret = i915_wait_request(to_request(fence),
74 				interruptible, timeout,
75 				NO_WAITBOOST);
76 	if (ret == -ETIME)
77 		return 0;
78 
79 	if (ret < 0)
80 		return ret;
81 
82 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
83 		timeout_jiffies = nsecs_to_jiffies(timeout_ns);
84 
85 	return timeout_jiffies;
86 }
87 
88 static void i915_fence_value_str(struct fence *fence, char *str, int size)
89 {
90 	snprintf(str, size, "%u", fence->seqno);
91 }
92 
93 static void i915_fence_timeline_value_str(struct fence *fence, char *str,
94 					  int size)
95 {
96 	snprintf(str, size, "%u",
97 		 intel_engine_get_seqno(to_request(fence)->engine));
98 }
99 
100 static void i915_fence_release(struct fence *fence)
101 {
102 	struct drm_i915_gem_request *req = to_request(fence);
103 
104 	kmem_cache_free(req->i915->requests, req);
105 }
106 
107 const struct fence_ops i915_fence_ops = {
108 	.get_driver_name = i915_fence_get_driver_name,
109 	.get_timeline_name = i915_fence_get_timeline_name,
110 	.enable_signaling = i915_fence_enable_signaling,
111 	.signaled = i915_fence_signaled,
112 	.wait = i915_fence_wait,
113 	.release = i915_fence_release,
114 	.fence_value_str = i915_fence_value_str,
115 	.timeline_value_str = i915_fence_timeline_value_str,
116 };
117 
118 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
119 				   struct drm_file *file)
120 {
121 	struct drm_i915_private *dev_private;
122 	struct drm_i915_file_private *file_priv;
123 
124 	WARN_ON(!req || !file || req->file_priv);
125 
126 	if (!req || !file)
127 		return -EINVAL;
128 
129 	if (req->file_priv)
130 		return -EINVAL;
131 
132 	dev_private = req->i915;
133 	file_priv = file->driver_priv;
134 
135 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
136 	req->file_priv = file_priv;
137 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
138 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
139 
140 	req->pid = curproc->p_pid;
141 
142 	return 0;
143 }
144 
145 static inline void
146 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
147 {
148 	struct drm_i915_file_private *file_priv = request->file_priv;
149 
150 	if (!file_priv)
151 		return;
152 
153 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
154 	list_del(&request->client_list);
155 	request->file_priv = NULL;
156 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
157 
158 #if 0
159 	put_pid(request->pid);
160 	request->pid = NULL;
161 #else
162 	request->pid = 0;
163 #endif
164 }
165 
166 void i915_gem_retire_noop(struct i915_gem_active *active,
167 			  struct drm_i915_gem_request *request)
168 {
169 	/* Space left intentionally blank */
170 }
171 
172 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
173 {
174 	struct i915_gem_active *active, *next;
175 
176 	trace_i915_gem_request_retire(request);
177 	list_del(&request->link);
178 
179 	/* We know the GPU must have read the request to have
180 	 * sent us the seqno + interrupt, so use the position
181 	 * of tail of the request to update the last known position
182 	 * of the GPU head.
183 	 *
184 	 * Note this requires that we are always called in request
185 	 * completion order.
186 	 */
187 	list_del(&request->ring_link);
188 	request->ring->last_retired_head = request->postfix;
189 
190 	/* Walk through the active list, calling retire on each. This allows
191 	 * objects to track their GPU activity and mark themselves as idle
192 	 * when their *last* active request is completed (updating state
193 	 * tracking lists for eviction, active references for GEM, etc).
194 	 *
195 	 * As the ->retire() may free the node, we decouple it first and
196 	 * pass along the auxiliary information (to avoid dereferencing
197 	 * the node after the callback).
198 	 */
199 	list_for_each_entry_safe(active, next, &request->active_list, link) {
200 		/* In microbenchmarks or focusing upon time inside the kernel,
201 		 * we may spend an inordinate amount of time simply handling
202 		 * the retirement of requests and processing their callbacks.
203 		 * Of which, this loop itself is particularly hot due to the
204 		 * cache misses when jumping around the list of i915_gem_active.
205 		 * So we try to keep this loop as streamlined as possible and
206 		 * also prefetch the next i915_gem_active to try and hide
207 		 * the likely cache miss.
208 		 */
209 		prefetchw(next);
210 
211 		INIT_LIST_HEAD(&active->link);
212 		RCU_INIT_POINTER(active->request, NULL);
213 
214 		active->retire(active, request);
215 	}
216 
217 	i915_gem_request_remove_from_client(request);
218 
219 	if (request->previous_context) {
220 		if (i915.enable_execlists)
221 			intel_lr_context_unpin(request->previous_context,
222 					       request->engine);
223 	}
224 
225 	i915_gem_context_put(request->ctx);
226 	i915_gem_request_put(request);
227 }
228 
229 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
230 {
231 	struct intel_engine_cs *engine = req->engine;
232 	struct drm_i915_gem_request *tmp;
233 
234 	lockdep_assert_held(&req->i915->drm.struct_mutex);
235 	GEM_BUG_ON(list_empty(&req->link));
236 
237 	do {
238 		tmp = list_first_entry(&engine->request_list,
239 				       typeof(*tmp), link);
240 
241 		i915_gem_request_retire(tmp);
242 	} while (tmp != req);
243 }
244 
245 static int i915_gem_check_wedge(unsigned int reset_counter, bool interruptible)
246 {
247 	if (__i915_terminally_wedged(reset_counter))
248 		return -EIO;
249 
250 	if (__i915_reset_in_progress(reset_counter)) {
251 		/* Non-interruptible callers can't handle -EAGAIN, hence return
252 		 * -EIO unconditionally for these.
253 		 */
254 		if (!interruptible)
255 			return -EIO;
256 
257 		return -EAGAIN;
258 	}
259 
260 	return 0;
261 }
262 
263 static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
264 {
265 	struct intel_engine_cs *engine;
266 	int ret;
267 
268 	/* Carefully retire all requests without writing to the rings */
269 	for_each_engine(engine, dev_priv) {
270 		ret = intel_engine_idle(engine, true);
271 		if (ret)
272 			return ret;
273 	}
274 	i915_gem_retire_requests(dev_priv);
275 
276 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
277 	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
278 		while (intel_kick_waiters(dev_priv) ||
279 		       intel_kick_signalers(dev_priv))
280 			yield();
281 	}
282 
283 	/* Finally reset hw state */
284 	for_each_engine(engine, dev_priv)
285 		intel_engine_init_seqno(engine, seqno);
286 
287 	return 0;
288 }
289 
290 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
291 {
292 	struct drm_i915_private *dev_priv = to_i915(dev);
293 	int ret;
294 
295 	if (seqno == 0)
296 		return -EINVAL;
297 
298 	/* HWS page needs to be set less than what we
299 	 * will inject to ring
300 	 */
301 	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
302 	if (ret)
303 		return ret;
304 
305 	dev_priv->next_seqno = seqno;
306 	return 0;
307 }
308 
309 static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
310 {
311 	/* reserve 0 for non-seqno */
312 	if (unlikely(dev_priv->next_seqno == 0)) {
313 		int ret;
314 
315 		ret = i915_gem_init_seqno(dev_priv, 0);
316 		if (ret)
317 			return ret;
318 
319 		dev_priv->next_seqno = 1;
320 	}
321 
322 	*seqno = dev_priv->next_seqno++;
323 	return 0;
324 }
325 
326 /**
327  * i915_gem_request_alloc - allocate a request structure
328  *
329  * @engine: engine that we wish to issue the request on.
330  * @ctx: context that the request will be associated with.
331  *       This can be NULL if the request is not directly related to
332  *       any specific user context, in which case this function will
333  *       choose an appropriate context to use.
334  *
335  * Returns a pointer to the allocated request if successful,
336  * or an error code if not.
337  */
338 struct drm_i915_gem_request *
339 i915_gem_request_alloc(struct intel_engine_cs *engine,
340 		       struct i915_gem_context *ctx)
341 {
342 	struct drm_i915_private *dev_priv = engine->i915;
343 	unsigned int reset_counter = i915_reset_counter(&dev_priv->gpu_error);
344 	struct drm_i915_gem_request *req;
345 	u32 seqno;
346 	int ret;
347 
348 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
349 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
350 	 * and restart.
351 	 */
352 	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
353 	if (ret)
354 		return ERR_PTR(ret);
355 
356 	/* Move the oldest request to the slab-cache (if not in use!) */
357 	req = list_first_entry_or_null(&engine->request_list,
358 				       typeof(*req), link);
359 	if (req && i915_gem_request_completed(req))
360 		i915_gem_request_retire(req);
361 
362 	/* Beware: Dragons be flying overhead.
363 	 *
364 	 * We use RCU to look up requests in flight. The lookups may
365 	 * race with the request being allocated from the slab freelist.
366 	 * That is the request we are writing to here, may be in the process
367 	 * of being read by __i915_gem_active_get_request_rcu(). As such,
368 	 * we have to be very careful when overwriting the contents. During
369 	 * the RCU lookup, we change chase the request->engine pointer,
370 	 * read the request->fence.seqno and increment the reference count.
371 	 *
372 	 * The reference count is incremented atomically. If it is zero,
373 	 * the lookup knows the request is unallocated and complete. Otherwise,
374 	 * it is either still in use, or has been reallocated and reset
375 	 * with fence_init(). This increment is safe for release as we check
376 	 * that the request we have a reference to and matches the active
377 	 * request.
378 	 *
379 	 * Before we increment the refcount, we chase the request->engine
380 	 * pointer. We must not call kmem_cache_zalloc() or else we set
381 	 * that pointer to NULL and cause a crash during the lookup. If
382 	 * we see the request is completed (based on the value of the
383 	 * old engine and seqno), the lookup is complete and reports NULL.
384 	 * If we decide the request is not completed (new engine or seqno),
385 	 * then we grab a reference and double check that it is still the
386 	 * active request - which it won't be and restart the lookup.
387 	 *
388 	 * Do not use kmem_cache_zalloc() here!
389 	 */
390 	req = kzalloc(sizeof(*req), GFP_KERNEL);
391 	if (!req)
392 		return ERR_PTR(-ENOMEM);
393 
394 	ret = i915_gem_get_seqno(dev_priv, &seqno);
395 	if (ret)
396 		goto err;
397 
398 	lockinit(&req->lock, "i915_rl", 0, 0);
399 	fence_init(&req->fence,
400 		   &i915_fence_ops,
401 		   &req->lock,
402 		   engine->fence_context,
403 		   seqno);
404 
405 	INIT_LIST_HEAD(&req->active_list);
406 	req->i915 = dev_priv;
407 	req->engine = engine;
408 	req->ctx = i915_gem_context_get(ctx);
409 
410 	/* No zalloc, must clear what we need by hand */
411 	req->previous_context = NULL;
412 	req->file_priv = NULL;
413 	req->batch_obj = NULL;
414 	req->pid = 0;
415 	req->elsp_submitted = 0;
416 
417 	/*
418 	 * Reserve space in the ring buffer for all the commands required to
419 	 * eventually emit this request. This is to guarantee that the
420 	 * i915_add_request() call can't fail. Note that the reserve may need
421 	 * to be redone if the request is not actually submitted straight
422 	 * away, e.g. because a GPU scheduler has deferred it.
423 	 */
424 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
425 
426 	if (i915.enable_execlists)
427 		ret = intel_logical_ring_alloc_request_extras(req);
428 	else
429 		ret = intel_ring_alloc_request_extras(req);
430 	if (ret)
431 		goto err_ctx;
432 
433 	return req;
434 
435 err_ctx:
436 	i915_gem_context_put(ctx);
437 err:
438 	kmem_cache_free(dev_priv->requests, req);
439 	return ERR_PTR(ret);
440 }
441 
442 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
443 {
444 	struct drm_i915_private *dev_priv = engine->i915;
445 
446 	dev_priv->gt.active_engines |= intel_engine_flag(engine);
447 	if (dev_priv->gt.awake)
448 		return;
449 
450 	intel_runtime_pm_get_noresume(dev_priv);
451 	dev_priv->gt.awake = true;
452 
453 	intel_enable_gt_powersave(dev_priv);
454 	i915_update_gfx_val(dev_priv);
455 	if (INTEL_GEN(dev_priv) >= 6)
456 		gen6_rps_busy(dev_priv);
457 
458 	queue_delayed_work(dev_priv->wq,
459 			   &dev_priv->gt.retire_work,
460 			   round_jiffies_up_relative(HZ));
461 }
462 
463 /*
464  * NB: This function is not allowed to fail. Doing so would mean the the
465  * request is not being tracked for completion but the work itself is
466  * going to happen on the hardware. This would be a Bad Thing(tm).
467  */
468 void __i915_add_request(struct drm_i915_gem_request *request,
469 			struct drm_i915_gem_object *obj,
470 			bool flush_caches)
471 {
472 	struct intel_engine_cs *engine;
473 	struct intel_ring *ring;
474 	u32 request_start;
475 	u32 reserved_tail;
476 	int ret;
477 
478 	if (WARN_ON(!request))
479 		return;
480 
481 	engine = request->engine;
482 	ring = request->ring;
483 
484 	/*
485 	 * To ensure that this call will not fail, space for its emissions
486 	 * should already have been reserved in the ring buffer. Let the ring
487 	 * know that it is time to use that space up.
488 	 */
489 	request_start = ring->tail;
490 	reserved_tail = request->reserved_space;
491 	request->reserved_space = 0;
492 
493 	/*
494 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
495 	 * after having emitted the batchbuffer command. Hence we need to fix
496 	 * things up similar to emitting the lazy request. The difference here
497 	 * is that the flush _must_ happen before the next request, no matter
498 	 * what.
499 	 */
500 	if (flush_caches) {
501 		ret = engine->emit_flush(request, EMIT_FLUSH);
502 
503 		/* Not allowed to fail! */
504 		WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
505 	}
506 
507 	trace_i915_gem_request_add(request);
508 
509 	request->head = request_start;
510 
511 	/* Whilst this request exists, batch_obj will be on the
512 	 * active_list, and so will hold the active reference. Only when this
513 	 * request is retired will the the batch_obj be moved onto the
514 	 * inactive_list and lose its active reference. Hence we do not need
515 	 * to explicitly hold another reference here.
516 	 */
517 	request->batch_obj = obj;
518 
519 	/* Seal the request and mark it as pending execution. Note that
520 	 * we may inspect this state, without holding any locks, during
521 	 * hangcheck. Hence we apply the barrier to ensure that we do not
522 	 * see a more recent value in the hws than we are tracking.
523 	 */
524 	request->emitted_jiffies = jiffies;
525 	request->previous_seqno = engine->last_submitted_seqno;
526 	engine->last_submitted_seqno = request->fence.seqno;
527 	i915_gem_active_set(&engine->last_request, request);
528 	list_add_tail(&request->link, &engine->request_list);
529 	list_add_tail(&request->ring_link, &ring->request_list);
530 
531 	/* Record the position of the start of the request so that
532 	 * should we detect the updated seqno part-way through the
533 	 * GPU processing the request, we never over-estimate the
534 	 * position of the head.
535 	 */
536 	request->postfix = ring->tail;
537 
538 	/* Not allowed to fail! */
539 	ret = engine->emit_request(request);
540 	WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
541 
542 	/* Sanity check that the reserved size was large enough. */
543 	ret = ring->tail - request_start;
544 	if (ret < 0)
545 		ret += ring->size;
546 	WARN_ONCE(ret > reserved_tail,
547 		  "Not enough space reserved (%d bytes) "
548 		  "for adding the request (%d bytes)\n",
549 		  reserved_tail, ret);
550 
551 	i915_gem_mark_busy(engine);
552 	engine->submit_request(request);
553 }
554 
555 static unsigned long local_clock_us(unsigned int *cpu)
556 {
557 	unsigned long t;
558 
559 	/* Cheaply and approximately convert from nanoseconds to microseconds.
560 	 * The result and subsequent calculations are also defined in the same
561 	 * approximate microseconds units. The principal source of timing
562 	 * error here is from the simple truncation.
563 	 *
564 	 * Note that local_clock() is only defined wrt to the current CPU;
565 	 * the comparisons are no longer valid if we switch CPUs. Instead of
566 	 * blocking preemption for the entire busywait, we can detect the CPU
567 	 * switch and use that as indicator of system load and a reason to
568 	 * stop busywaiting, see busywait_stop().
569 	 */
570 	*cpu = get_cpu();
571 	t = local_clock() >> 10;
572 	put_cpu();
573 
574 	return t;
575 }
576 
577 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
578 {
579 	unsigned int this_cpu;
580 
581 	if (time_after(local_clock_us(&this_cpu), timeout))
582 		return true;
583 
584 	return this_cpu != cpu;
585 }
586 
587 bool __i915_spin_request(const struct drm_i915_gem_request *req,
588 			 int state, unsigned long timeout_us)
589 {
590 	unsigned int cpu;
591 
592 	/* When waiting for high frequency requests, e.g. during synchronous
593 	 * rendering split between the CPU and GPU, the finite amount of time
594 	 * required to set up the irq and wait upon it limits the response
595 	 * rate. By busywaiting on the request completion for a short while we
596 	 * can service the high frequency waits as quick as possible. However,
597 	 * if it is a slow request, we want to sleep as quickly as possible.
598 	 * The tradeoff between waiting and sleeping is roughly the time it
599 	 * takes to sleep on a request, on the order of a microsecond.
600 	 */
601 
602 	timeout_us += local_clock_us(&cpu);
603 	do {
604 		if (i915_gem_request_completed(req))
605 			return true;
606 
607 		if (signal_pending_state(state, current))
608 			break;
609 
610 		if (busywait_stop(timeout_us, cpu))
611 			break;
612 
613 		cpu_relax();
614 	} while (!need_resched());
615 
616 	return false;
617 }
618 
619 /**
620  * i915_wait_request - wait until execution of request has finished
621  * @req: duh!
622  * @interruptible: do an interruptible wait (normally yes)
623  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
624  * @rps: client to charge for RPS boosting
625  *
626  * Note: It is of utmost importance that the passed in seqno and reset_counter
627  * values have been read by the caller in an smp safe manner. Where read-side
628  * locks are involved, it is sufficient to read the reset_counter before
629  * unlocking the lock that protects the seqno. For lockless tricks, the
630  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
631  * inserted.
632  *
633  * Returns 0 if the request was found within the alloted time. Else returns the
634  * errno with remaining time filled in timeout argument.
635  */
636 int i915_wait_request(struct drm_i915_gem_request *req,
637 		      bool interruptible,
638 		      s64 *timeout,
639 		      struct intel_rps_client *rps)
640 {
641 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
642 	DEFINE_WAIT(reset);
643 	struct intel_wait wait;
644 	unsigned long timeout_remain;
645 	int ret = 0;
646 
647 	might_sleep();
648 
649 	if (i915_gem_request_completed(req))
650 		return 0;
651 
652 	timeout_remain = MAX_SCHEDULE_TIMEOUT;
653 	if (timeout) {
654 		if (WARN_ON(*timeout < 0))
655 			return -EINVAL;
656 
657 		if (*timeout == 0)
658 			return -ETIME;
659 
660 		/* Record current time in case interrupted, or wedged */
661 		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
662 		*timeout += ktime_get_raw_ns();
663 	}
664 
665 	trace_i915_gem_request_wait_begin(req);
666 
667 	/* This client is about to stall waiting for the GPU. In many cases
668 	 * this is undesirable and limits the throughput of the system, as
669 	 * many clients cannot continue processing user input/output whilst
670 	 * blocked. RPS autotuning may take tens of milliseconds to respond
671 	 * to the GPU load and thus incurs additional latency for the client.
672 	 * We can circumvent that by promoting the GPU frequency to maximum
673 	 * before we wait. This makes the GPU throttle up much more quickly
674 	 * (good for benchmarks and user experience, e.g. window animations),
675 	 * but at a cost of spending more power processing the workload
676 	 * (bad for battery). Not all clients even want their results
677 	 * immediately and for them we should just let the GPU select its own
678 	 * frequency to maximise efficiency. To prevent a single client from
679 	 * forcing the clocks too high for the whole system, we only allow
680 	 * each client to waitboost once in a busy period.
681 	 */
682 	if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
683 		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
684 
685 	/* Optimistic short spin before touching IRQs */
686 	if (i915_spin_request(req, state, 5))
687 		goto complete;
688 
689 	set_current_state(state);
690 	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
691 
692 	intel_wait_init(&wait, req->fence.seqno);
693 	if (intel_engine_add_wait(req->engine, &wait))
694 		/* In order to check that we haven't missed the interrupt
695 		 * as we enabled it, we need to kick ourselves to do a
696 		 * coherent check on the seqno before we sleep.
697 		 */
698 		goto wakeup;
699 
700 	for (;;) {
701 		if (signal_pending_state(state, current)) {
702 			ret = -ERESTARTSYS;
703 			break;
704 		}
705 
706 		timeout_remain = io_schedule_timeout(timeout_remain);
707 		if (timeout_remain == 0) {
708 			ret = -ETIME;
709 			break;
710 		}
711 
712 		if (intel_wait_complete(&wait))
713 			break;
714 
715 		set_current_state(state);
716 
717 wakeup:
718 		/* Carefully check if the request is complete, giving time
719 		 * for the seqno to be visible following the interrupt.
720 		 * We also have to check in case we are kicked by the GPU
721 		 * reset in order to drop the struct_mutex.
722 		 */
723 		if (__i915_request_irq_complete(req))
724 			break;
725 
726 		/* Only spin if we know the GPU is processing this request */
727 		if (i915_spin_request(req, state, 2))
728 			break;
729 	}
730 	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
731 
732 	intel_engine_remove_wait(req->engine, &wait);
733 	__set_current_state(TASK_RUNNING);
734 complete:
735 	trace_i915_gem_request_wait_end(req);
736 
737 	if (timeout) {
738 		*timeout -= ktime_get_raw_ns();
739 		if (*timeout < 0)
740 			*timeout = 0;
741 
742 		/*
743 		 * Apparently ktime isn't accurate enough and occasionally has a
744 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
745 		 * things up to make the test happy. We allow up to 1 jiffy.
746 		 *
747 		 * This is a regrssion from the timespec->ktime conversion.
748 		 */
749 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
750 			*timeout = 0;
751 	}
752 
753 	if (IS_RPS_USER(rps) &&
754 	    req->fence.seqno == req->engine->last_submitted_seqno) {
755 		/* The GPU is now idle and this client has stalled.
756 		 * Since no other client has submitted a request in the
757 		 * meantime, assume that this client is the only one
758 		 * supplying work to the GPU but is unable to keep that
759 		 * work supplied because it is waiting. Since the GPU is
760 		 * then never kept fully busy, RPS autoclocking will
761 		 * keep the clocks relatively low, causing further delays.
762 		 * Compensate by giving the synchronous client credit for
763 		 * a waitboost next time.
764 		 */
765 		lockmgr(&req->i915->rps.client_lock, LK_EXCLUSIVE);
766 		list_del_init(&rps->link);
767 		lockmgr(&req->i915->rps.client_lock, LK_RELEASE);
768 	}
769 
770 	return ret;
771 }
772 
773 static void engine_retire_requests(struct intel_engine_cs *engine)
774 {
775 	struct drm_i915_gem_request *request, *next;
776 
777 	list_for_each_entry_safe(request, next, &engine->request_list, link) {
778 		if (!i915_gem_request_completed(request))
779 			break;
780 
781 		i915_gem_request_retire(request);
782 	}
783 }
784 
785 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
786 {
787 	struct intel_engine_cs *engine;
788 
789 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
790 
791 	if (dev_priv->gt.active_engines == 0)
792 		return;
793 
794 	GEM_BUG_ON(!dev_priv->gt.awake);
795 
796 	for_each_engine(engine, dev_priv) {
797 		engine_retire_requests(engine);
798 		if (!intel_engine_is_active(engine))
799 			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
800 	}
801 
802 	if (dev_priv->gt.active_engines == 0)
803 		queue_delayed_work(dev_priv->wq,
804 				   &dev_priv->gt.idle_work,
805 				   msecs_to_jiffies(100));
806 }
807