xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.c (revision 6a3cbbc2)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prefetch.h>
26 
27 #include "i915_drv.h"
28 
29 static const char *i915_fence_get_driver_name(struct fence *fence)
30 {
31 	return "i915";
32 }
33 
34 static const char *i915_fence_get_timeline_name(struct fence *fence)
35 {
36 	/* Timelines are bound by eviction to a VM. However, since
37 	 * we only have a global seqno at the moment, we only have
38 	 * a single timeline. Note that each timeline will have
39 	 * multiple execution contexts (fence contexts) as we allow
40 	 * engines within a single timeline to execute in parallel.
41 	 */
42 	return "global";
43 }
44 
45 static bool i915_fence_signaled(struct fence *fence)
46 {
47 	return i915_gem_request_completed(to_request(fence));
48 }
49 
50 static bool i915_fence_enable_signaling(struct fence *fence)
51 {
52 	if (i915_fence_signaled(fence))
53 		return false;
54 
55 	intel_engine_enable_signaling(to_request(fence));
56 	return true;
57 }
58 
59 static signed long i915_fence_wait(struct fence *fence,
60 				   bool interruptible,
61 				   signed long timeout_jiffies)
62 {
63 	s64 timeout_ns, *timeout;
64 	int ret;
65 
66 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
67 		timeout_ns = jiffies_to_nsecs(timeout_jiffies);
68 		timeout = &timeout_ns;
69 	} else {
70 		timeout = NULL;
71 	}
72 
73 	ret = i915_wait_request(to_request(fence),
74 				interruptible, timeout,
75 				NO_WAITBOOST);
76 	if (ret == -ETIME)
77 		return 0;
78 
79 	if (ret < 0)
80 		return ret;
81 
82 	if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
83 		timeout_jiffies = nsecs_to_jiffies(timeout_ns);
84 
85 	return timeout_jiffies;
86 }
87 
88 static void i915_fence_value_str(struct fence *fence, char *str, int size)
89 {
90 	snprintf(str, size, "%u", fence->seqno);
91 }
92 
93 static void i915_fence_timeline_value_str(struct fence *fence, char *str,
94 					  int size)
95 {
96 	snprintf(str, size, "%u",
97 		 intel_engine_get_seqno(to_request(fence)->engine));
98 }
99 
100 static void i915_fence_release(struct fence *fence)
101 {
102 	struct drm_i915_gem_request *req = to_request(fence);
103 
104 	kmem_cache_free(req->i915->requests, req);
105 }
106 
107 const struct fence_ops i915_fence_ops = {
108 	.get_driver_name = i915_fence_get_driver_name,
109 	.get_timeline_name = i915_fence_get_timeline_name,
110 	.enable_signaling = i915_fence_enable_signaling,
111 	.signaled = i915_fence_signaled,
112 	.wait = i915_fence_wait,
113 	.release = i915_fence_release,
114 	.fence_value_str = i915_fence_value_str,
115 	.timeline_value_str = i915_fence_timeline_value_str,
116 };
117 
118 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
119 				   struct drm_file *file)
120 {
121 	struct drm_i915_private *dev_private;
122 	struct drm_i915_file_private *file_priv;
123 
124 	WARN_ON(!req || !file || req->file_priv);
125 
126 	if (!req || !file)
127 		return -EINVAL;
128 
129 	if (req->file_priv)
130 		return -EINVAL;
131 
132 	dev_private = req->i915;
133 	file_priv = file->driver_priv;
134 
135 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
136 	req->file_priv = file_priv;
137 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
138 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
139 
140 	return 0;
141 }
142 
143 static inline void
144 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
145 {
146 	struct drm_i915_file_private *file_priv = request->file_priv;
147 
148 	if (!file_priv)
149 		return;
150 
151 	lockmgr(&file_priv->mm.lock, LK_EXCLUSIVE);
152 	list_del(&request->client_list);
153 	request->file_priv = NULL;
154 	lockmgr(&file_priv->mm.lock, LK_RELEASE);
155 }
156 
157 void i915_gem_retire_noop(struct i915_gem_active *active,
158 			  struct drm_i915_gem_request *request)
159 {
160 	/* Space left intentionally blank */
161 }
162 
163 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
164 {
165 	struct i915_gem_active *active, *next;
166 
167 	trace_i915_gem_request_retire(request);
168 	list_del(&request->link);
169 
170 	/* We know the GPU must have read the request to have
171 	 * sent us the seqno + interrupt, so use the position
172 	 * of tail of the request to update the last known position
173 	 * of the GPU head.
174 	 *
175 	 * Note this requires that we are always called in request
176 	 * completion order.
177 	 */
178 	list_del(&request->ring_link);
179 	request->ring->last_retired_head = request->postfix;
180 
181 	/* Walk through the active list, calling retire on each. This allows
182 	 * objects to track their GPU activity and mark themselves as idle
183 	 * when their *last* active request is completed (updating state
184 	 * tracking lists for eviction, active references for GEM, etc).
185 	 *
186 	 * As the ->retire() may free the node, we decouple it first and
187 	 * pass along the auxiliary information (to avoid dereferencing
188 	 * the node after the callback).
189 	 */
190 	list_for_each_entry_safe(active, next, &request->active_list, link) {
191 		/* In microbenchmarks or focusing upon time inside the kernel,
192 		 * we may spend an inordinate amount of time simply handling
193 		 * the retirement of requests and processing their callbacks.
194 		 * Of which, this loop itself is particularly hot due to the
195 		 * cache misses when jumping around the list of i915_gem_active.
196 		 * So we try to keep this loop as streamlined as possible and
197 		 * also prefetch the next i915_gem_active to try and hide
198 		 * the likely cache miss.
199 		 */
200 		prefetchw(next);
201 
202 		INIT_LIST_HEAD(&active->link);
203 		RCU_INIT_POINTER(active->request, NULL);
204 
205 		active->retire(active, request);
206 	}
207 
208 	i915_gem_request_remove_from_client(request);
209 
210 	if (request->previous_context) {
211 		if (i915.enable_execlists)
212 			intel_lr_context_unpin(request->previous_context,
213 					       request->engine);
214 	}
215 
216 	i915_gem_context_put(request->ctx);
217 	i915_gem_request_put(request);
218 }
219 
220 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
221 {
222 	struct intel_engine_cs *engine = req->engine;
223 	struct drm_i915_gem_request *tmp;
224 
225 	lockdep_assert_held(&req->i915->drm.struct_mutex);
226 	GEM_BUG_ON(list_empty(&req->link));
227 
228 	do {
229 		tmp = list_first_entry(&engine->request_list,
230 				       typeof(*tmp), link);
231 
232 		i915_gem_request_retire(tmp);
233 	} while (tmp != req);
234 }
235 
236 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
237 {
238 	struct i915_gpu_error *error = &dev_priv->gpu_error;
239 
240 	if (i915_terminally_wedged(error))
241 		return -EIO;
242 
243 	if (i915_reset_in_progress(error)) {
244 		/* Non-interruptible callers can't handle -EAGAIN, hence return
245 		 * -EIO unconditionally for these.
246 		 */
247 		if (!dev_priv->mm.interruptible)
248 			return -EIO;
249 
250 		return -EAGAIN;
251 	}
252 
253 	return 0;
254 }
255 
256 static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
257 {
258 	struct intel_engine_cs *engine;
259 	enum intel_engine_id id;
260 	int ret;
261 
262 	/* Carefully retire all requests without writing to the rings */
263 	for_each_engine(engine, dev_priv, id) {
264 		ret = intel_engine_idle(engine,
265 					I915_WAIT_INTERRUPTIBLE |
266 					I915_WAIT_LOCKED);
267 		if (ret)
268 			return ret;
269 	}
270 	i915_gem_retire_requests(dev_priv);
271 
272 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
273 	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
274 		while (intel_kick_waiters(dev_priv) ||
275 		       intel_kick_signalers(dev_priv))
276 			yield();
277 	}
278 
279 	/* Finally reset hw state */
280 	for_each_engine(engine, dev_priv, id)
281 		intel_engine_init_seqno(engine, seqno);
282 
283 	return 0;
284 }
285 
286 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
287 {
288 	struct drm_i915_private *dev_priv = to_i915(dev);
289 	int ret;
290 
291 	if (seqno == 0)
292 		return -EINVAL;
293 
294 	/* HWS page needs to be set less than what we
295 	 * will inject to ring
296 	 */
297 	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
298 	if (ret)
299 		return ret;
300 
301 	dev_priv->next_seqno = seqno;
302 	return 0;
303 }
304 
305 static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
306 {
307 	/* reserve 0 for non-seqno */
308 	if (unlikely(dev_priv->next_seqno == 0)) {
309 		int ret;
310 
311 		ret = i915_gem_init_seqno(dev_priv, 0);
312 		if (ret)
313 			return ret;
314 
315 		dev_priv->next_seqno = 1;
316 	}
317 
318 	*seqno = dev_priv->next_seqno++;
319 	return 0;
320 }
321 
322 static int __i915_sw_fence_call
323 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
324 {
325 	struct drm_i915_gem_request *request =
326 		container_of(fence, typeof(*request), submit);
327 
328 	/* Will be called from irq-context when using foreign DMA fences */
329 
330 	switch (state) {
331 	case FENCE_COMPLETE:
332 		request->engine->last_submitted_seqno = request->fence.seqno;
333 		request->engine->submit_request(request);
334 		break;
335 
336 	case FENCE_FREE:
337 		break;
338 	}
339 
340 	return NOTIFY_DONE;
341 }
342 
343 /**
344  * i915_gem_request_alloc - allocate a request structure
345  *
346  * @engine: engine that we wish to issue the request on.
347  * @ctx: context that the request will be associated with.
348  *       This can be NULL if the request is not directly related to
349  *       any specific user context, in which case this function will
350  *       choose an appropriate context to use.
351  *
352  * Returns a pointer to the allocated request if successful,
353  * or an error code if not.
354  */
355 struct drm_i915_gem_request *
356 i915_gem_request_alloc(struct intel_engine_cs *engine,
357 		       struct i915_gem_context *ctx)
358 {
359 	struct drm_i915_private *dev_priv = engine->i915;
360 	struct drm_i915_gem_request *req;
361 	u32 seqno;
362 	int ret;
363 
364 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
365 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
366 	 * and restart.
367 	 */
368 	ret = i915_gem_check_wedge(dev_priv);
369 	if (ret)
370 		return ERR_PTR(ret);
371 
372 	/* Move the oldest request to the slab-cache (if not in use!) */
373 	req = list_first_entry_or_null(&engine->request_list,
374 				       typeof(*req), link);
375 	if (req && i915_gem_request_completed(req))
376 		i915_gem_request_retire(req);
377 
378 	/* Beware: Dragons be flying overhead.
379 	 *
380 	 * We use RCU to look up requests in flight. The lookups may
381 	 * race with the request being allocated from the slab freelist.
382 	 * That is the request we are writing to here, may be in the process
383 	 * of being read by __i915_gem_active_get_rcu(). As such,
384 	 * we have to be very careful when overwriting the contents. During
385 	 * the RCU lookup, we change chase the request->engine pointer,
386 	 * read the request->fence.seqno and increment the reference count.
387 	 *
388 	 * The reference count is incremented atomically. If it is zero,
389 	 * the lookup knows the request is unallocated and complete. Otherwise,
390 	 * it is either still in use, or has been reallocated and reset
391 	 * with fence_init(). This increment is safe for release as we check
392 	 * that the request we have a reference to and matches the active
393 	 * request.
394 	 *
395 	 * Before we increment the refcount, we chase the request->engine
396 	 * pointer. We must not call kmem_cache_zalloc() or else we set
397 	 * that pointer to NULL and cause a crash during the lookup. If
398 	 * we see the request is completed (based on the value of the
399 	 * old engine and seqno), the lookup is complete and reports NULL.
400 	 * If we decide the request is not completed (new engine or seqno),
401 	 * then we grab a reference and double check that it is still the
402 	 * active request - which it won't be and restart the lookup.
403 	 *
404 	 * Do not use kmem_cache_zalloc() here!
405 	 */
406 	req = kzalloc(sizeof(*req), GFP_KERNEL);
407 	if (!req)
408 		return ERR_PTR(-ENOMEM);
409 
410 	ret = i915_gem_get_seqno(dev_priv, &seqno);
411 	if (ret)
412 		goto err;
413 
414 	lockinit(&req->lock, "i915_rl", 0, 0);
415 	fence_init(&req->fence,
416 		   &i915_fence_ops,
417 		   &req->lock,
418 		   engine->fence_context,
419 		   seqno);
420 
421 	i915_sw_fence_init(&req->submit, submit_notify);
422 
423 	INIT_LIST_HEAD(&req->active_list);
424 	req->i915 = dev_priv;
425 	req->engine = engine;
426 	req->ctx = i915_gem_context_get(ctx);
427 
428 	/* No zalloc, must clear what we need by hand */
429 	req->previous_context = NULL;
430 	req->file_priv = NULL;
431 	req->batch = NULL;
432 
433 	/*
434 	 * Reserve space in the ring buffer for all the commands required to
435 	 * eventually emit this request. This is to guarantee that the
436 	 * i915_add_request() call can't fail. Note that the reserve may need
437 	 * to be redone if the request is not actually submitted straight
438 	 * away, e.g. because a GPU scheduler has deferred it.
439 	 */
440 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
441 
442 	if (i915.enable_execlists)
443 		ret = intel_logical_ring_alloc_request_extras(req);
444 	else
445 		ret = intel_ring_alloc_request_extras(req);
446 	if (ret)
447 		goto err_ctx;
448 
449 	/* Record the position of the start of the request so that
450 	 * should we detect the updated seqno part-way through the
451 	 * GPU processing the request, we never over-estimate the
452 	 * position of the head.
453 	 */
454 	req->head = req->ring->tail;
455 
456 	return req;
457 
458 err_ctx:
459 	i915_gem_context_put(ctx);
460 err:
461 	kmem_cache_free(dev_priv->requests, req);
462 	return ERR_PTR(ret);
463 }
464 
465 static int
466 i915_gem_request_await_request(struct drm_i915_gem_request *to,
467 			       struct drm_i915_gem_request *from)
468 {
469 	int idx, ret;
470 
471 	GEM_BUG_ON(to == from);
472 
473 	if (to->engine == from->engine)
474 		return 0;
475 
476 	idx = intel_engine_sync_index(from->engine, to->engine);
477 	if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
478 		return 0;
479 
480 	trace_i915_gem_ring_sync_to(to, from);
481 	if (!i915.semaphores) {
482 		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
483 			ret = i915_sw_fence_await_dma_fence(&to->submit,
484 							    &from->fence, 0,
485 							    GFP_KERNEL);
486 			if (ret < 0)
487 				return ret;
488 		}
489 	} else {
490 		ret = to->engine->semaphore.sync_to(to, from);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
496 	return 0;
497 }
498 
499 /**
500  * i915_gem_request_await_object - set this request to (async) wait upon a bo
501  *
502  * @to: request we are wishing to use
503  * @obj: object which may be in use on another ring.
504  *
505  * This code is meant to abstract object synchronization with the GPU.
506  * Conceptually we serialise writes between engines inside the GPU.
507  * We only allow one engine to write into a buffer at any time, but
508  * multiple readers. To ensure each has a coherent view of memory, we must:
509  *
510  * - If there is an outstanding write request to the object, the new
511  *   request must wait for it to complete (either CPU or in hw, requests
512  *   on the same ring will be naturally ordered).
513  *
514  * - If we are a write request (pending_write_domain is set), the new
515  *   request must wait for outstanding read requests to complete.
516  *
517  * Returns 0 if successful, else propagates up the lower layer error.
518  */
519 int
520 i915_gem_request_await_object(struct drm_i915_gem_request *to,
521 			      struct drm_i915_gem_object *obj,
522 			      bool write)
523 {
524 	struct i915_gem_active *active;
525 	unsigned long active_mask;
526 	int idx;
527 
528 	if (write) {
529 		active_mask = i915_gem_object_get_active(obj);
530 		active = obj->last_read;
531 	} else {
532 		active_mask = 1;
533 		active = &obj->last_write;
534 	}
535 
536 	for_each_active(active_mask, idx) {
537 		struct drm_i915_gem_request *request;
538 		int ret;
539 
540 		request = i915_gem_active_peek(&active[idx],
541 					       &obj->base.dev->struct_mutex);
542 		if (!request)
543 			continue;
544 
545 		ret = i915_gem_request_await_request(to, request);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	return 0;
551 }
552 
553 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
554 {
555 	struct drm_i915_private *dev_priv = engine->i915;
556 
557 	dev_priv->gt.active_engines |= intel_engine_flag(engine);
558 	if (dev_priv->gt.awake)
559 		return;
560 
561 	intel_runtime_pm_get_noresume(dev_priv);
562 	dev_priv->gt.awake = true;
563 
564 	intel_enable_gt_powersave(dev_priv);
565 	i915_update_gfx_val(dev_priv);
566 	if (INTEL_GEN(dev_priv) >= 6)
567 		gen6_rps_busy(dev_priv);
568 
569 	queue_delayed_work(dev_priv->wq,
570 			   &dev_priv->gt.retire_work,
571 			   round_jiffies_up_relative(HZ));
572 }
573 
574 /*
575  * NB: This function is not allowed to fail. Doing so would mean the the
576  * request is not being tracked for completion but the work itself is
577  * going to happen on the hardware. This would be a Bad Thing(tm).
578  */
579 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
580 {
581 	struct intel_engine_cs *engine = request->engine;
582 	struct intel_ring *ring = request->ring;
583 	struct drm_i915_gem_request *prev;
584 	u32 request_start;
585 	u32 reserved_tail;
586 	int ret;
587 
588 	trace_i915_gem_request_add(request);
589 
590 	/*
591 	 * To ensure that this call will not fail, space for its emissions
592 	 * should already have been reserved in the ring buffer. Let the ring
593 	 * know that it is time to use that space up.
594 	 */
595 	request_start = ring->tail;
596 	reserved_tail = request->reserved_space;
597 	request->reserved_space = 0;
598 
599 	/*
600 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
601 	 * after having emitted the batchbuffer command. Hence we need to fix
602 	 * things up similar to emitting the lazy request. The difference here
603 	 * is that the flush _must_ happen before the next request, no matter
604 	 * what.
605 	 */
606 	if (flush_caches) {
607 		ret = engine->emit_flush(request, EMIT_FLUSH);
608 
609 		/* Not allowed to fail! */
610 		WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
611 	}
612 
613 	/* Record the position of the start of the breadcrumb so that
614 	 * should we detect the updated seqno part-way through the
615 	 * GPU processing the request, we never over-estimate the
616 	 * position of the ring's HEAD.
617 	 */
618 	request->postfix = ring->tail;
619 
620 	/* Not allowed to fail! */
621 	ret = engine->emit_request(request);
622 	WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
623 
624 	/* Sanity check that the reserved size was large enough. */
625 	ret = ring->tail - request_start;
626 	if (ret < 0)
627 		ret += ring->size;
628 	WARN_ONCE(ret > reserved_tail,
629 		  "Not enough space reserved (%d bytes) "
630 		  "for adding the request (%d bytes)\n",
631 		  reserved_tail, ret);
632 
633 	/* Seal the request and mark it as pending execution. Note that
634 	 * we may inspect this state, without holding any locks, during
635 	 * hangcheck. Hence we apply the barrier to ensure that we do not
636 	 * see a more recent value in the hws than we are tracking.
637 	 */
638 
639 	prev = i915_gem_active_raw(&engine->last_request,
640 				   &request->i915->drm.struct_mutex);
641 	if (prev)
642 		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
643 					     &request->submitq);
644 
645 	request->emitted_jiffies = jiffies;
646 	request->previous_seqno = engine->last_pending_seqno;
647 	engine->last_pending_seqno = request->fence.seqno;
648 	i915_gem_active_set(&engine->last_request, request);
649 	list_add_tail(&request->link, &engine->request_list);
650 	list_add_tail(&request->ring_link, &ring->request_list);
651 
652 	i915_gem_mark_busy(engine);
653 
654 	local_bh_disable();
655 	i915_sw_fence_commit(&request->submit);
656 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
657 }
658 
659 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
660 {
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&q->lock, flags);
664 	if (list_empty(&wait->task_list))
665 		__add_wait_queue(q, wait);
666 	spin_unlock_irqrestore(&q->lock, flags);
667 }
668 
669 static unsigned long local_clock_us(unsigned int *cpu)
670 {
671 	unsigned long t;
672 
673 	/* Cheaply and approximately convert from nanoseconds to microseconds.
674 	 * The result and subsequent calculations are also defined in the same
675 	 * approximate microseconds units. The principal source of timing
676 	 * error here is from the simple truncation.
677 	 *
678 	 * Note that local_clock() is only defined wrt to the current CPU;
679 	 * the comparisons are no longer valid if we switch CPUs. Instead of
680 	 * blocking preemption for the entire busywait, we can detect the CPU
681 	 * switch and use that as indicator of system load and a reason to
682 	 * stop busywaiting, see busywait_stop().
683 	 */
684 	*cpu = get_cpu();
685 	t = local_clock() >> 10;
686 	put_cpu();
687 
688 	return t;
689 }
690 
691 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
692 {
693 	unsigned int this_cpu;
694 
695 	if (time_after(local_clock_us(&this_cpu), timeout))
696 		return true;
697 
698 	return this_cpu != cpu;
699 }
700 
701 bool __i915_spin_request(const struct drm_i915_gem_request *req,
702 			 int state, unsigned long timeout_us)
703 {
704 	unsigned int cpu;
705 
706 	/* When waiting for high frequency requests, e.g. during synchronous
707 	 * rendering split between the CPU and GPU, the finite amount of time
708 	 * required to set up the irq and wait upon it limits the response
709 	 * rate. By busywaiting on the request completion for a short while we
710 	 * can service the high frequency waits as quick as possible. However,
711 	 * if it is a slow request, we want to sleep as quickly as possible.
712 	 * The tradeoff between waiting and sleeping is roughly the time it
713 	 * takes to sleep on a request, on the order of a microsecond.
714 	 */
715 
716 	timeout_us += local_clock_us(&cpu);
717 	do {
718 		if (i915_gem_request_completed(req))
719 			return true;
720 
721 		if (signal_pending_state(state, current))
722 			break;
723 
724 		if (busywait_stop(timeout_us, cpu))
725 			break;
726 
727 		cpu_relax();
728 	} while (!need_resched());
729 
730 	return false;
731 }
732 
733 /**
734  * i915_wait_request - wait until execution of request has finished
735  * @req: duh!
736  * @flags: how to wait
737  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
738  * @rps: client to charge for RPS boosting
739  *
740  * Note: It is of utmost importance that the passed in seqno and reset_counter
741  * values have been read by the caller in an smp safe manner. Where read-side
742  * locks are involved, it is sufficient to read the reset_counter before
743  * unlocking the lock that protects the seqno. For lockless tricks, the
744  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
745  * inserted.
746  *
747  * Returns 0 if the request was found within the alloted time. Else returns the
748  * errno with remaining time filled in timeout argument.
749  */
750 int i915_wait_request(struct drm_i915_gem_request *req,
751 		      unsigned int flags,
752 		      s64 *timeout,
753 		      struct intel_rps_client *rps)
754 {
755 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
756 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
757 	DEFINE_WAIT(reset);
758 	struct intel_wait wait;
759 	unsigned long timeout_remain;
760 	int ret = 0;
761 
762 	might_sleep();
763 #if IS_ENABLED(CONFIG_LOCKDEP)
764 	GEM_BUG_ON(!!lockdep_is_held(&req->i915->drm.struct_mutex) !=
765 		   !!(flags & I915_WAIT_LOCKED));
766 #endif
767 
768 	if (i915_gem_request_completed(req))
769 		return 0;
770 
771 	timeout_remain = MAX_SCHEDULE_TIMEOUT;
772 	if (timeout) {
773 		if (WARN_ON(*timeout < 0))
774 			return -EINVAL;
775 
776 		if (*timeout == 0)
777 			return -ETIME;
778 
779 		/* Record current time in case interrupted, or wedged */
780 		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
781 		*timeout += ktime_get_raw_ns();
782 	}
783 
784 	trace_i915_gem_request_wait_begin(req);
785 
786 	/* This client is about to stall waiting for the GPU. In many cases
787 	 * this is undesirable and limits the throughput of the system, as
788 	 * many clients cannot continue processing user input/output whilst
789 	 * blocked. RPS autotuning may take tens of milliseconds to respond
790 	 * to the GPU load and thus incurs additional latency for the client.
791 	 * We can circumvent that by promoting the GPU frequency to maximum
792 	 * before we wait. This makes the GPU throttle up much more quickly
793 	 * (good for benchmarks and user experience, e.g. window animations),
794 	 * but at a cost of spending more power processing the workload
795 	 * (bad for battery). Not all clients even want their results
796 	 * immediately and for them we should just let the GPU select its own
797 	 * frequency to maximise efficiency. To prevent a single client from
798 	 * forcing the clocks too high for the whole system, we only allow
799 	 * each client to waitboost once in a busy period.
800 	 */
801 	if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
802 		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
803 
804 	/* Optimistic short spin before touching IRQs */
805 	if (i915_spin_request(req, state, 5))
806 		goto complete;
807 
808 	set_current_state(state);
809 	if (flags & I915_WAIT_LOCKED)
810 		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
811 
812 	intel_wait_init(&wait, req->fence.seqno);
813 	if (intel_engine_add_wait(req->engine, &wait))
814 		/* In order to check that we haven't missed the interrupt
815 		 * as we enabled it, we need to kick ourselves to do a
816 		 * coherent check on the seqno before we sleep.
817 		 */
818 		goto wakeup;
819 
820 	for (;;) {
821 		if (signal_pending_state(state, current)) {
822 			ret = -ERESTARTSYS;
823 			break;
824 		}
825 
826 		timeout_remain = io_schedule_timeout(timeout_remain);
827 		if (timeout_remain == 0) {
828 			ret = -ETIME;
829 			break;
830 		}
831 
832 		if (intel_wait_complete(&wait))
833 			break;
834 
835 		set_current_state(state);
836 
837 wakeup:
838 		/* Carefully check if the request is complete, giving time
839 		 * for the seqno to be visible following the interrupt.
840 		 * We also have to check in case we are kicked by the GPU
841 		 * reset in order to drop the struct_mutex.
842 		 */
843 		if (__i915_request_irq_complete(req))
844 			break;
845 
846 		/* If the GPU is hung, and we hold the lock, reset the GPU
847 		 * and then check for completion. On a full reset, the engine's
848 		 * HW seqno will be advanced passed us and we are complete.
849 		 * If we do a partial reset, we have to wait for the GPU to
850 		 * resume and update the breadcrumb.
851 		 *
852 		 * If we don't hold the mutex, we can just wait for the worker
853 		 * to come along and update the breadcrumb (either directly
854 		 * itself, or indirectly by recovering the GPU).
855 		 */
856 		if (flags & I915_WAIT_LOCKED &&
857 		    i915_reset_in_progress(&req->i915->gpu_error)) {
858 			__set_current_state(TASK_RUNNING);
859 			i915_reset(req->i915);
860 			reset_wait_queue(&req->i915->gpu_error.wait_queue,
861 					 &reset);
862 			continue;
863 		}
864 
865 		/* Only spin if we know the GPU is processing this request */
866 		if (i915_spin_request(req, state, 2))
867 			break;
868 	}
869 
870 	intel_engine_remove_wait(req->engine, &wait);
871 	if (flags & I915_WAIT_LOCKED)
872 		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
873 	__set_current_state(TASK_RUNNING);
874 
875 complete:
876 	trace_i915_gem_request_wait_end(req);
877 
878 	if (timeout) {
879 		*timeout -= ktime_get_raw_ns();
880 		if (*timeout < 0)
881 			*timeout = 0;
882 
883 		/*
884 		 * Apparently ktime isn't accurate enough and occasionally has a
885 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
886 		 * things up to make the test happy. We allow up to 1 jiffy.
887 		 *
888 		 * This is a regrssion from the timespec->ktime conversion.
889 		 */
890 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
891 			*timeout = 0;
892 	}
893 
894 	if (IS_RPS_USER(rps) &&
895 	    req->fence.seqno == req->engine->last_submitted_seqno) {
896 		/* The GPU is now idle and this client has stalled.
897 		 * Since no other client has submitted a request in the
898 		 * meantime, assume that this client is the only one
899 		 * supplying work to the GPU but is unable to keep that
900 		 * work supplied because it is waiting. Since the GPU is
901 		 * then never kept fully busy, RPS autoclocking will
902 		 * keep the clocks relatively low, causing further delays.
903 		 * Compensate by giving the synchronous client credit for
904 		 * a waitboost next time.
905 		 */
906 		lockmgr(&req->i915->rps.client_lock, LK_EXCLUSIVE);
907 		list_del_init(&rps->link);
908 		lockmgr(&req->i915->rps.client_lock, LK_RELEASE);
909 	}
910 
911 	return ret;
912 }
913 
914 static bool engine_retire_requests(struct intel_engine_cs *engine)
915 {
916 	struct drm_i915_gem_request *request, *next;
917 
918 	list_for_each_entry_safe(request, next, &engine->request_list, link) {
919 		if (!i915_gem_request_completed(request))
920 			return false;
921 
922 		i915_gem_request_retire(request);
923 	}
924 
925 	return true;
926 }
927 
928 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
929 {
930 	struct intel_engine_cs *engine;
931 	unsigned int tmp;
932 
933 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
934 
935 	if (dev_priv->gt.active_engines == 0)
936 		return;
937 
938 	GEM_BUG_ON(!dev_priv->gt.awake);
939 
940 	for_each_engine_masked(engine, dev_priv, dev_priv->gt.active_engines, tmp)
941 		if (engine_retire_requests(engine))
942 			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
943 
944 	if (dev_priv->gt.active_engines == 0)
945 		queue_delayed_work(dev_priv->wq,
946 				   &dev_priv->gt.idle_work,
947 				   msecs_to_jiffies(100));
948 }
949