xref: /dragonfly/sys/dev/drm/i915/i915_gem_request.h (revision d19ef5a2)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_GEM_REQUEST_H
26 #define I915_GEM_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 
30 #include "i915_gem.h"
31 #include "i915_sw_fence.h"
32 
33 struct drm_file;
34 struct drm_i915_gem_object;
35 struct drm_i915_gem_request;
36 
37 struct intel_wait {
38 	struct rb_node node;
39 	struct task_struct *tsk;
40 	struct drm_i915_gem_request *request;
41 	u32 seqno;
42 };
43 
44 struct intel_signal_node {
45 	struct rb_node node;
46 	struct intel_wait wait;
47 };
48 
49 struct i915_dependency {
50 	struct i915_priotree *signaler;
51 	struct list_head signal_link;
52 	struct list_head wait_link;
53 	struct list_head dfs_link;
54 	unsigned long flags;
55 #define I915_DEPENDENCY_ALLOC BIT(0)
56 };
57 
58 /* Requests exist in a complex web of interdependencies. Each request
59  * has to wait for some other request to complete before it is ready to be run
60  * (e.g. we have to wait until the pixels have been rendering into a texture
61  * before we can copy from it). We track the readiness of a request in terms
62  * of fences, but we also need to keep the dependency tree for the lifetime
63  * of the request (beyond the life of an individual fence). We use the tree
64  * at various points to reorder the requests whilst keeping the requests
65  * in order with respect to their various dependencies.
66  */
67 struct i915_priotree {
68 	struct list_head signalers_list; /* those before us, we depend upon */
69 	struct list_head waiters_list; /* those after us, they depend upon us */
70 	struct rb_node node;
71 	int priority;
72 #define I915_PRIORITY_MAX 1024
73 #define I915_PRIORITY_MIN (-I915_PRIORITY_MAX)
74 };
75 
76 /**
77  * Request queue structure.
78  *
79  * The request queue allows us to note sequence numbers that have been emitted
80  * and may be associated with active buffers to be retired.
81  *
82  * By keeping this list, we can avoid having to do questionable sequence
83  * number comparisons on buffer last_read|write_seqno. It also allows an
84  * emission time to be associated with the request for tracking how far ahead
85  * of the GPU the submission is.
86  *
87  * When modifying this structure be very aware that we perform a lockless
88  * RCU lookup of it that may race against reallocation of the struct
89  * from the slab freelist. We intentionally do not zero the structure on
90  * allocation so that the lookup can use the dangling pointers (and is
91  * cogniscent that those pointers may be wrong). Instead, everything that
92  * needs to be initialised must be done so explicitly.
93  *
94  * The requests are reference counted.
95  */
96 struct drm_i915_gem_request {
97 	struct dma_fence fence;
98 	spinlock_t lock;
99 
100 	/** On Which ring this request was generated */
101 	struct drm_i915_private *i915;
102 
103 	/**
104 	 * Context and ring buffer related to this request
105 	 * Contexts are refcounted, so when this request is associated with a
106 	 * context, we must increment the context's refcount, to guarantee that
107 	 * it persists while any request is linked to it. Requests themselves
108 	 * are also refcounted, so the request will only be freed when the last
109 	 * reference to it is dismissed, and the code in
110 	 * i915_gem_request_free() will then decrement the refcount on the
111 	 * context.
112 	 */
113 	struct i915_gem_context *ctx;
114 	struct intel_engine_cs *engine;
115 	struct intel_ring *ring;
116 	struct intel_timeline *timeline;
117 	struct intel_signal_node signaling;
118 
119 	/* Fences for the various phases in the request's lifetime.
120 	 *
121 	 * The submit fence is used to await upon all of the request's
122 	 * dependencies. When it is signaled, the request is ready to run.
123 	 * It is used by the driver to then queue the request for execution.
124 	 */
125 	struct i915_sw_fence submit;
126 	wait_queue_t submitq;
127 	wait_queue_head_t execute;
128 
129 	/* A list of everyone we wait upon, and everyone who waits upon us.
130 	 * Even though we will not be submitted to the hardware before the
131 	 * submit fence is signaled (it waits for all external events as well
132 	 * as our own requests), the scheduler still needs to know the
133 	 * dependency tree for the lifetime of the request (from execbuf
134 	 * to retirement), i.e. bidirectional dependency information for the
135 	 * request not tied to individual fences.
136 	 */
137 	struct i915_priotree priotree;
138 	struct i915_dependency dep;
139 
140 	/** GEM sequence number associated with this request on the
141 	 * global execution timeline. It is zero when the request is not
142 	 * on the HW queue (i.e. not on the engine timeline list).
143 	 * Its value is guarded by the timeline spinlock.
144 	 */
145 	u32 global_seqno;
146 
147 	/** Position in the ring of the start of the request */
148 	u32 head;
149 
150 	/**
151 	 * Position in the ring of the start of the postfix.
152 	 * This is required to calculate the maximum available ring space
153 	 * without overwriting the postfix.
154 	 */
155 	u32 postfix;
156 
157 	/** Position in the ring of the end of the whole request */
158 	u32 tail;
159 
160 	/** Position in the ring of the end of any workarounds after the tail */
161 	u32 wa_tail;
162 
163 	/** Preallocate space in the ring for the emitting the request */
164 	u32 reserved_space;
165 
166 	/** Batch buffer related to this request if any (used for
167 	 * error state dump only).
168 	 */
169 	struct i915_vma *batch;
170 	struct list_head active_list;
171 
172 	/** Time at which this request was emitted, in jiffies. */
173 	unsigned long emitted_jiffies;
174 
175 	/** engine->request_list entry for this request */
176 	struct list_head link;
177 
178 	/** ring->request_list entry for this request */
179 	struct list_head ring_link;
180 
181 	struct drm_i915_file_private *file_priv;
182 	/** file_priv list entry for this request */
183 	struct list_head client_link;
184 };
185 
186 extern const struct dma_fence_ops i915_fence_ops;
187 
188 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
189 {
190 	return fence->ops == &i915_fence_ops;
191 }
192 
193 struct drm_i915_gem_request * __must_check
194 i915_gem_request_alloc(struct intel_engine_cs *engine,
195 		       struct i915_gem_context *ctx);
196 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req);
197 
198 static inline struct drm_i915_gem_request *
199 to_request(struct dma_fence *fence)
200 {
201 	/* We assume that NULL fence/request are interoperable */
202 	BUILD_BUG_ON(offsetof(struct drm_i915_gem_request, fence) != 0);
203 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
204 	return container_of(fence, struct drm_i915_gem_request, fence);
205 }
206 
207 static inline struct drm_i915_gem_request *
208 i915_gem_request_get(struct drm_i915_gem_request *req)
209 {
210 	return to_request(dma_fence_get(&req->fence));
211 }
212 
213 static inline struct drm_i915_gem_request *
214 i915_gem_request_get_rcu(struct drm_i915_gem_request *req)
215 {
216 	return to_request(dma_fence_get_rcu(&req->fence));
217 }
218 
219 static inline void
220 i915_gem_request_put(struct drm_i915_gem_request *req)
221 {
222 	dma_fence_put(&req->fence);
223 }
224 
225 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
226 					   struct drm_i915_gem_request *src)
227 {
228 	if (src)
229 		i915_gem_request_get(src);
230 
231 	if (*pdst)
232 		i915_gem_request_put(*pdst);
233 
234 	*pdst = src;
235 }
236 
237 /**
238  * i915_gem_request_global_seqno - report the current global seqno
239  * @request - the request
240  *
241  * A request is assigned a global seqno only when it is on the hardware
242  * execution queue. The global seqno can be used to maintain a list of
243  * requests on the same engine in retirement order, for example for
244  * constructing a priority queue for waiting. Prior to its execution, or
245  * if it is subsequently removed in the event of preemption, its global
246  * seqno is zero. As both insertion and removal from the execution queue
247  * may operate in IRQ context, it is not guarded by the usual struct_mutex
248  * BKL. Instead those relying on the global seqno must be prepared for its
249  * value to change between reads. Only when the request is complete can
250  * the global seqno be stable (due to the memory barriers on submitting
251  * the commands to the hardware to write the breadcrumb, if the HWS shows
252  * that it has passed the global seqno and the global seqno is unchanged
253  * after the read, it is indeed complete).
254  */
255 static u32
256 i915_gem_request_global_seqno(const struct drm_i915_gem_request *request)
257 {
258 	return READ_ONCE(request->global_seqno);
259 }
260 
261 int
262 i915_gem_request_await_object(struct drm_i915_gem_request *to,
263 			      struct drm_i915_gem_object *obj,
264 			      bool write);
265 int i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
266 				     struct dma_fence *fence);
267 
268 void __i915_add_request(struct drm_i915_gem_request *req, bool flush_caches);
269 #define i915_add_request(req) \
270 	__i915_add_request(req, false)
271 
272 void __i915_gem_request_submit(struct drm_i915_gem_request *request);
273 void i915_gem_request_submit(struct drm_i915_gem_request *request);
274 
275 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request);
276 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request);
277 
278 struct intel_rps_client;
279 #define NO_WAITBOOST ERR_PTR(-1)
280 #define IS_RPS_CLIENT(p) (!IS_ERR(p))
281 #define IS_RPS_USER(p) (!IS_ERR_OR_NULL(p))
282 
283 long i915_wait_request(struct drm_i915_gem_request *req,
284 		       unsigned int flags,
285 		       long timeout)
286 	__attribute__((nonnull(1)));
287 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
288 #define I915_WAIT_LOCKED	BIT(1) /* struct_mutex held, handle GPU reset */
289 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
290 
291 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine);
292 
293 /**
294  * Returns true if seq1 is later than seq2.
295  */
296 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
297 {
298 	return (s32)(seq1 - seq2) >= 0;
299 }
300 
301 static inline bool
302 __i915_gem_request_started(const struct drm_i915_gem_request *req, u32 seqno)
303 {
304 	GEM_BUG_ON(!seqno);
305 	return i915_seqno_passed(intel_engine_get_seqno(req->engine),
306 				 seqno - 1);
307 }
308 
309 static inline bool
310 i915_gem_request_started(const struct drm_i915_gem_request *req)
311 {
312 	u32 seqno;
313 
314 	seqno = i915_gem_request_global_seqno(req);
315 	if (!seqno)
316 		return false;
317 
318 	return __i915_gem_request_started(req, seqno);
319 }
320 
321 static inline bool
322 __i915_gem_request_completed(const struct drm_i915_gem_request *req, u32 seqno)
323 {
324 	GEM_BUG_ON(!seqno);
325 	return i915_seqno_passed(intel_engine_get_seqno(req->engine), seqno) &&
326 		seqno == i915_gem_request_global_seqno(req);
327 }
328 
329 static inline bool
330 i915_gem_request_completed(const struct drm_i915_gem_request *req)
331 {
332 	u32 seqno;
333 
334 	seqno = i915_gem_request_global_seqno(req);
335 	if (!seqno)
336 		return false;
337 
338 	return __i915_gem_request_completed(req, seqno);
339 }
340 
341 bool __i915_spin_request(const struct drm_i915_gem_request *request,
342 			 u32 seqno, int state, unsigned long timeout_us);
343 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
344 				     int state, unsigned long timeout_us)
345 {
346 	u32 seqno;
347 
348 	seqno = i915_gem_request_global_seqno(request);
349 	if (!seqno)
350 		return 0;
351 
352 	return (__i915_gem_request_started(request, seqno) &&
353 		__i915_spin_request(request, seqno, state, timeout_us));
354 }
355 
356 /* We treat requests as fences. This is not be to confused with our
357  * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
358  * We use the fences to synchronize access from the CPU with activity on the
359  * GPU, for example, we should not rewrite an object's PTE whilst the GPU
360  * is reading them. We also track fences at a higher level to provide
361  * implicit synchronisation around GEM objects, e.g. set-domain will wait
362  * for outstanding GPU rendering before marking the object ready for CPU
363  * access, or a pageflip will wait until the GPU is complete before showing
364  * the frame on the scanout.
365  *
366  * In order to use a fence, the object must track the fence it needs to
367  * serialise with. For example, GEM objects want to track both read and
368  * write access so that we can perform concurrent read operations between
369  * the CPU and GPU engines, as well as waiting for all rendering to
370  * complete, or waiting for the last GPU user of a "fence register". The
371  * object then embeds a #i915_gem_active to track the most recent (in
372  * retirement order) request relevant for the desired mode of access.
373  * The #i915_gem_active is updated with i915_gem_active_set() to track the
374  * most recent fence request, typically this is done as part of
375  * i915_vma_move_to_active().
376  *
377  * When the #i915_gem_active completes (is retired), it will
378  * signal its completion to the owner through a callback as well as mark
379  * itself as idle (i915_gem_active.request == NULL). The owner
380  * can then perform any action, such as delayed freeing of an active
381  * resource including itself.
382  */
383 struct i915_gem_active;
384 
385 typedef void (*i915_gem_retire_fn)(struct i915_gem_active *,
386 				   struct drm_i915_gem_request *);
387 
388 struct i915_gem_active {
389 	struct drm_i915_gem_request __rcu *request;
390 	struct list_head link;
391 	i915_gem_retire_fn retire;
392 };
393 
394 void i915_gem_retire_noop(struct i915_gem_active *,
395 			  struct drm_i915_gem_request *request);
396 
397 /**
398  * init_request_active - prepares the activity tracker for use
399  * @active - the active tracker
400  * @func - a callback when then the tracker is retired (becomes idle),
401  *         can be NULL
402  *
403  * init_request_active() prepares the embedded @active struct for use as
404  * an activity tracker, that is for tracking the last known active request
405  * associated with it. When the last request becomes idle, when it is retired
406  * after completion, the optional callback @func is invoked.
407  */
408 static inline void
409 init_request_active(struct i915_gem_active *active,
410 		    i915_gem_retire_fn retire)
411 {
412 	INIT_LIST_HEAD(&active->link);
413 	active->retire = retire ?: i915_gem_retire_noop;
414 }
415 
416 /**
417  * i915_gem_active_set - updates the tracker to watch the current request
418  * @active - the active tracker
419  * @request - the request to watch
420  *
421  * i915_gem_active_set() watches the given @request for completion. Whilst
422  * that @request is busy, the @active reports busy. When that @request is
423  * retired, the @active tracker is updated to report idle.
424  */
425 static inline void
426 i915_gem_active_set(struct i915_gem_active *active,
427 		    struct drm_i915_gem_request *request)
428 {
429 	list_move(&active->link, &request->active_list);
430 	rcu_assign_pointer(active->request, request);
431 }
432 
433 /**
434  * i915_gem_active_set_retire_fn - updates the retirement callback
435  * @active - the active tracker
436  * @fn - the routine called when the request is retired
437  * @mutex - struct_mutex used to guard retirements
438  *
439  * i915_gem_active_set_retire_fn() updates the function pointer that
440  * is called when the final request associated with the @active tracker
441  * is retired.
442  */
443 static inline void
444 i915_gem_active_set_retire_fn(struct i915_gem_active *active,
445 			      i915_gem_retire_fn fn,
446 			      struct lock *mutex)
447 {
448 	lockdep_assert_held(mutex);
449 	active->retire = fn ?: i915_gem_retire_noop;
450 }
451 
452 static inline struct drm_i915_gem_request *
453 __i915_gem_active_peek(const struct i915_gem_active *active)
454 {
455 	/* Inside the error capture (running with the driver in an unknown
456 	 * state), we want to bend the rules slightly (a lot).
457 	 *
458 	 * Work is in progress to make it safer, in the meantime this keeps
459 	 * the known issue from spamming the logs.
460 	 */
461 	return rcu_dereference_protected(active->request, 1);
462 }
463 
464 /**
465  * i915_gem_active_raw - return the active request
466  * @active - the active tracker
467  *
468  * i915_gem_active_raw() returns the current request being tracked, or NULL.
469  * It does not obtain a reference on the request for the caller, so the caller
470  * must hold struct_mutex.
471  */
472 static inline struct drm_i915_gem_request *
473 i915_gem_active_raw(const struct i915_gem_active *active, struct lock *mutex)
474 {
475 	return rcu_dereference_protected(active->request,
476 					 lockdep_is_held(mutex));
477 }
478 
479 /**
480  * i915_gem_active_peek - report the active request being monitored
481  * @active - the active tracker
482  *
483  * i915_gem_active_peek() returns the current request being tracked if
484  * still active, or NULL. It does not obtain a reference on the request
485  * for the caller, so the caller must hold struct_mutex.
486  */
487 static inline struct drm_i915_gem_request *
488 i915_gem_active_peek(const struct i915_gem_active *active, struct lock *mutex)
489 {
490 	struct drm_i915_gem_request *request;
491 
492 	request = i915_gem_active_raw(active, mutex);
493 	if (!request || i915_gem_request_completed(request))
494 		return NULL;
495 
496 	return request;
497 }
498 
499 /**
500  * i915_gem_active_get - return a reference to the active request
501  * @active - the active tracker
502  *
503  * i915_gem_active_get() returns a reference to the active request, or NULL
504  * if the active tracker is idle. The caller must hold struct_mutex.
505  */
506 static inline struct drm_i915_gem_request *
507 i915_gem_active_get(const struct i915_gem_active *active, struct lock *mutex)
508 {
509 	return i915_gem_request_get(i915_gem_active_peek(active, mutex));
510 }
511 
512 /**
513  * __i915_gem_active_get_rcu - return a reference to the active request
514  * @active - the active tracker
515  *
516  * __i915_gem_active_get() returns a reference to the active request, or NULL
517  * if the active tracker is idle. The caller must hold the RCU read lock, but
518  * the returned pointer is safe to use outside of RCU.
519  */
520 static inline struct drm_i915_gem_request *
521 __i915_gem_active_get_rcu(const struct i915_gem_active *active)
522 {
523 	/* Performing a lockless retrieval of the active request is super
524 	 * tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
525 	 * slab of request objects will not be freed whilst we hold the
526 	 * RCU read lock. It does not guarantee that the request itself
527 	 * will not be freed and then *reused*. Viz,
528 	 *
529 	 * Thread A			Thread B
530 	 *
531 	 * req = active.request
532 	 *				retire(req) -> free(req);
533 	 *				(req is now first on the slab freelist)
534 	 *				active.request = NULL
535 	 *
536 	 *				req = new submission on a new object
537 	 * ref(req)
538 	 *
539 	 * To prevent the request from being reused whilst the caller
540 	 * uses it, we take a reference like normal. Whilst acquiring
541 	 * the reference we check that it is not in a destroyed state
542 	 * (refcnt == 0). That prevents the request being reallocated
543 	 * whilst the caller holds on to it. To check that the request
544 	 * was not reallocated as we acquired the reference we have to
545 	 * check that our request remains the active request across
546 	 * the lookup, in the same manner as a seqlock. The visibility
547 	 * of the pointer versus the reference counting is controlled
548 	 * by using RCU barriers (rcu_dereference and rcu_assign_pointer).
549 	 *
550 	 * In the middle of all that, we inspect whether the request is
551 	 * complete. Retiring is lazy so the request may be completed long
552 	 * before the active tracker is updated. Querying whether the
553 	 * request is complete is far cheaper (as it involves no locked
554 	 * instructions setting cachelines to exclusive) than acquiring
555 	 * the reference, so we do it first. The RCU read lock ensures the
556 	 * pointer dereference is valid, but does not ensure that the
557 	 * seqno nor HWS is the right one! However, if the request was
558 	 * reallocated, that means the active tracker's request was complete.
559 	 * If the new request is also complete, then both are and we can
560 	 * just report the active tracker is idle. If the new request is
561 	 * incomplete, then we acquire a reference on it and check that
562 	 * it remained the active request.
563 	 *
564 	 * It is then imperative that we do not zero the request on
565 	 * reallocation, so that we can chase the dangling pointers!
566 	 * See i915_gem_request_alloc().
567 	 */
568 	do {
569 		struct drm_i915_gem_request *request;
570 
571 		request = rcu_dereference(active->request);
572 		if (!request || i915_gem_request_completed(request))
573 			return NULL;
574 
575 		/* An especially silly compiler could decide to recompute the
576 		 * result of i915_gem_request_completed, more specifically
577 		 * re-emit the load for request->fence.seqno. A race would catch
578 		 * a later seqno value, which could flip the result from true to
579 		 * false. Which means part of the instructions below might not
580 		 * be executed, while later on instructions are executed. Due to
581 		 * barriers within the refcounting the inconsistency can't reach
582 		 * past the call to i915_gem_request_get_rcu, but not executing
583 		 * that while still executing i915_gem_request_put() creates
584 		 * havoc enough.  Prevent this with a compiler barrier.
585 		 */
586 		barrier();
587 
588 		request = i915_gem_request_get_rcu(request);
589 
590 		/* What stops the following rcu_access_pointer() from occurring
591 		 * before the above i915_gem_request_get_rcu()? If we were
592 		 * to read the value before pausing to get the reference to
593 		 * the request, we may not notice a change in the active
594 		 * tracker.
595 		 *
596 		 * The rcu_access_pointer() is a mere compiler barrier, which
597 		 * means both the CPU and compiler are free to perform the
598 		 * memory read without constraint. The compiler only has to
599 		 * ensure that any operations after the rcu_access_pointer()
600 		 * occur afterwards in program order. This means the read may
601 		 * be performed earlier by an out-of-order CPU, or adventurous
602 		 * compiler.
603 		 *
604 		 * The atomic operation at the heart of
605 		 * i915_gem_request_get_rcu(), see dma_fence_get_rcu(), is
606 		 * atomic_inc_not_zero() which is only a full memory barrier
607 		 * when successful. That is, if i915_gem_request_get_rcu()
608 		 * returns the request (and so with the reference counted
609 		 * incremented) then the following read for rcu_access_pointer()
610 		 * must occur after the atomic operation and so confirm
611 		 * that this request is the one currently being tracked.
612 		 *
613 		 * The corresponding write barrier is part of
614 		 * rcu_assign_pointer().
615 		 */
616 		if (!request || request == rcu_access_pointer(active->request))
617 			return rcu_pointer_handoff(request);
618 
619 		i915_gem_request_put(request);
620 	} while (1);
621 }
622 
623 /**
624  * i915_gem_active_get_unlocked - return a reference to the active request
625  * @active - the active tracker
626  *
627  * i915_gem_active_get_unlocked() returns a reference to the active request,
628  * or NULL if the active tracker is idle. The reference is obtained under RCU,
629  * so no locking is required by the caller.
630  *
631  * The reference should be freed with i915_gem_request_put().
632  */
633 static inline struct drm_i915_gem_request *
634 i915_gem_active_get_unlocked(const struct i915_gem_active *active)
635 {
636 	struct drm_i915_gem_request *request;
637 
638 	rcu_read_lock();
639 	request = __i915_gem_active_get_rcu(active);
640 	rcu_read_unlock();
641 
642 	return request;
643 }
644 
645 /**
646  * i915_gem_active_isset - report whether the active tracker is assigned
647  * @active - the active tracker
648  *
649  * i915_gem_active_isset() returns true if the active tracker is currently
650  * assigned to a request. Due to the lazy retiring, that request may be idle
651  * and this may report stale information.
652  */
653 static inline bool
654 i915_gem_active_isset(const struct i915_gem_active *active)
655 {
656 	return rcu_access_pointer(active->request);
657 }
658 
659 /**
660  * i915_gem_active_wait - waits until the request is completed
661  * @active - the active request on which to wait
662  * @flags - how to wait
663  * @timeout - how long to wait at most
664  * @rps - userspace client to charge for a waitboost
665  *
666  * i915_gem_active_wait() waits until the request is completed before
667  * returning, without requiring any locks to be held. Note that it does not
668  * retire any requests before returning.
669  *
670  * This function relies on RCU in order to acquire the reference to the active
671  * request without holding any locks. See __i915_gem_active_get_rcu() for the
672  * glory details on how that is managed. Once the reference is acquired, we
673  * can then wait upon the request, and afterwards release our reference,
674  * free of any locking.
675  *
676  * This function wraps i915_wait_request(), see it for the full details on
677  * the arguments.
678  *
679  * Returns 0 if successful, or a negative error code.
680  */
681 static inline int
682 i915_gem_active_wait(const struct i915_gem_active *active, unsigned int flags)
683 {
684 	struct drm_i915_gem_request *request;
685 	long ret = 0;
686 
687 	request = i915_gem_active_get_unlocked(active);
688 	if (request) {
689 		ret = i915_wait_request(request, flags, MAX_SCHEDULE_TIMEOUT);
690 		i915_gem_request_put(request);
691 	}
692 
693 	return ret < 0 ? ret : 0;
694 }
695 
696 /**
697  * i915_gem_active_retire - waits until the request is retired
698  * @active - the active request on which to wait
699  *
700  * i915_gem_active_retire() waits until the request is completed,
701  * and then ensures that at least the retirement handler for this
702  * @active tracker is called before returning. If the @active
703  * tracker is idle, the function returns immediately.
704  */
705 static inline int __must_check
706 i915_gem_active_retire(struct i915_gem_active *active,
707 		       struct lock *mutex)
708 {
709 	struct drm_i915_gem_request *request;
710 	long ret;
711 
712 	request = i915_gem_active_raw(active, mutex);
713 	if (!request)
714 		return 0;
715 
716 	ret = i915_wait_request(request,
717 				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
718 				MAX_SCHEDULE_TIMEOUT);
719 	if (ret < 0)
720 		return ret;
721 
722 	list_del_init(&active->link);
723 	RCU_INIT_POINTER(active->request, NULL);
724 
725 	active->retire(active, request);
726 
727 	return 0;
728 }
729 
730 #define for_each_active(mask, idx) \
731 	for (; mask ? idx = ffs(mask) - 1, 1 : 0; mask &= ~BIT(idx))
732 
733 #endif /* I915_GEM_REQUEST_H */
734